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Abstract

Mordell’s theorem states that the group of rational points on an elliptic curve E
defined over Q is a finitely generated abelian group. This thesis considers Mordell’s
theorem over rational function fields of the form Fq(t), where q is a prime power.
Assuming the existence of an Fq(t)-rational point of order 3 in E(Fq(t)), we prove
this adaptation by performing an elementary descent by 3-isogeny. In the end we
look at explicit examples for the rank of an elliptic curve over a rational function
field.
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1 Introduction

An important part of number theory is the study of so-called algebraic plane curves. An algebraic
plane curve is defined by the zero set of a polynomial in two variables, which is defined over a
field. It turns out that various problems in number theory can be reduced to the study of rational
points on algebraic plane curves. In fact, when proving Fermat’s Last Theorem, which states
that no positive integers a, b and c exists such that an + bn = cn for n > 2, Andrew Wiles used a
very special family of algebraic plane curves, namely the elliptic curves [16]. These elliptic curves
are algebraic plane curves defined by an equation of the form

E : y2 = x3 + ax2 + bx+ c, (1.1)

where f(x) := x3 + ax2 + bx+ c has no multiple roots and the coefficients are from some field K
with char(K) 6= 2. These type of curves turn out to carry a lot more structure than one would
imagine by just looking at the equation that defines them. In fact, when considering the points
on E with coordinates in K and adding an additional point at infinity one can construct a group
denoted by E(K).

Probably even less obvious is the fact that when K = Q, the group of rational points on the
curve E is finitely generated. A result proven by Louis Joel Mordell (28 January 1888 – 12 March
1972) in 1922 [7]. It turns out that this property holds in more generality. Approximately 30
years later S. Lang and A. Néron proved that the group of rational points on an abelian variety
A over a field K is also finitely generated when K is finitely generated over its prime field [6].
This thesis will not discuss the full generality of abelian varieties. In fact, we will restrict our-
selves to elliptic curves over rational function fields of the form Fq(t), where q is some prime power.

An important unsolved problem regarding the rank of E(K), with K a number field, is the
Birch and Swinnerton-Dyer conjecture [17]. It relates the rank of the group to an associated zeta
function and it is one of the Millennium Prize Problems listed by the Clay Mathematics Institute.
In fact, when considering the Birch and Swinnerton-Dyer conjecture over function fields a lot
more is known [12, Section 2 & 3]. This makes the study of elliptic curves over function fields
worthwhile. Moreover, the study of the rank is worthwhile, because the algebraic structure of
the solution set of (1.1) is completely determined by the rank and the corresponding torsion group.

The main goal of this thesis is to show that the group of Fq(t)-rational points on an elliptic
curve over Fq(t) is finitely generated and to find a method for computing the rank. This result is a
special case of the theorem by S. Lang and A. Néron, but we will prove it in an elementary way. To
do so without having to resort to algebraic number theory over function fields we will make several
extra assumptions along the way. One of them will be the existence of a Fq(t)-rational point of
order 3 on the curve, which will give us the tools to rewrite the equation of the curve in a more pleas-
ant way. Some of the results proven hold for any rational function field K(t) with char(K) not 2
or 3. We will state in which cases theorems and lemmas hold in more generality than just for Fq(t).

We start by giving a short introduction on projective geometry and elliptic curves. After that
we introduce the method of proof to show that E(Fq(t)) is finitely generated, when there is a
Fq(t)-rational point of order 3 on the curve. In Sections 4 and 5 the theorem is proven and we
end this thesis by considering some examples of elliptic curves and their rank.
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2 Preliminaries

2.1 Projective Geometry and Curves

Before delving into the theory involving elliptic curves it is good to note that we are considering
curves in the so-called projective plane and not in an affine space such as the Euclidean plane.
This section is dedicated to give the appropriate background to study curves in the projective
plane. We start by giving the definition of the K-rational points on the projective plane.

Definition 2.1. Let K be a field. The set of K-rational points on the projective plane is defined
as the set of triples [a, b, c] ∈ K3, where we consider two triples to be equal if and only if they lie
on the same line through the origin. In formal notation:

P2(K) :=
{[a, b, c] : a, b, c ∈ K not all zero}

∼
,

where we say that two triples [a, b, c] ∼ [a′, b′, c′] if and only if there is some nonzero t such that
[a, b, c] = [ta′, tb′, tc′].

The projective plane seems to be a rather strange setting to study elliptic curves. However, it
turns out to be incredibly useful to study these curves in P2(K). Before we state this reason we
first need the definition of the K-rational points on the affine plane.

Definition 2.2. Let K be a field. The set of K-rational points on the affine plane is defined as

A2(K) := {(x, y) : x and y are coordinates in K}.

As found in for example [9, Appendix A.1] we can associate P2(K) with A2(K) by adding all the
directions in A2(K) to A2(K) itself. In other words, P2(K) = A2(K) ∪ {all directions in A2(K)}.
This means that we can view P2(K) as A2(K) with the addition of some extra points, which we
call points at infinity. The addition of these points at infinity is important for the study of elliptic
curves as it implies equality in Bézout’s theorem [9, Appendix A.4]. This theorem asserts the
existence of 3 intersection points of a cubic with a line, which we will need when creating a group
structure on the elliptic curve.

Now that we have some intuition of the projective plane we can discuss the notion of a
projective plane curve. We start by stating what it means for a polynomial to be homogeneous.

Definition 2.3. Let K be a field. A polynomial F (X,Y, Z) ∈ K[X,Y, Y ] is called a homogeneous
polynomial of degree d if it satisfies F (tX, tY, tZ) = tdF (X,Y, Z).

With this definition we obtain the following notion of a projective plane curve C and its
K-rational points.

Definition 2.4. A projective plane curve C over a field K is defined by the set of solutions to

F (X,Y, Z) = 0,

where F (X,Y, Z) ∈ K[X,Y, Z] is a nonconstant homogeneous polynomial. We usually write this
as C : F (X,Y, Z) = 0.

Definition 2.5. Let K be a field and C be a projective plane curve. The set of K-rational points
on C is the set

C(K) := {[X,Y, Z] ∈ P2(K) : F (X,Y, Z) = 0}.
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If we have a projective curve C we can define a new, nonhomogeneous, polynomial f(x, y) by
setting f(x, y) := F (x, y, 1). We call C0 : f(x, y) = 0 the affine part of a projective curve C. As
completely discussed in [9, Appendix A.2] we can write any projective curve C as the union of its
affine part C0 together with its points at infinity (given by Z = 0). These points at infinity will
correspond to the limiting directions of the tangent lines to the affine curve C0. The process of
reducing a projective plane curve C to an affine curve C0 with some extra points at infinity is
called dehomogenization. This process is not restricted to the variable Z, other affine points and
other points at infinity can be obtained by for example setting X = 1 and X = 0. Note that for
simplicity we usually write the curve in its affine form.

This process can also be done in reverse. If we start with a curve C0 : f(x, y) = 0 in the affine
plane, where f(x, y) =

∑
i,j

aijx
iyj . Then we can get the corresponding projective plane curve

C : F (X,Y, Z) = 0 by defining F (X,Y, Z) :=
∑
i,j

aijX
iY jZd−i−j , where d is the largest value of

i+ j such that aij 6= 0.

Another important notion that is needed for the study of elliptic curves is the notion of
singularity of projective plane curves. Before we say what this means, we first discuss the notion
of singularity for affine curves.

Definition 2.6. Let K be a field and let C0 : f(x, y) = 0 be an affine plane curve over K. Let
P = (x, y) be a point on the curve C0. We say that P is a singular point if

∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

We call a point P on C0 nonsingular if it is not singular and the curve C0 is called nonsingular
if every point on C0 is nonsingular.

In a similar fashion the notion of singularity for a projective plane curve is given.

Definition 2.7. Let K be a field and let C : F (X,Y, Z) = 0 be a projective plane curve over K.
Let P = [X,Y, Z] be a point on the curve C. We say that P is a singular point if

∂F

∂X
(P ) =

∂F

∂Y
(P ) =

∂F

∂Z
(P ) = 0.

We call a point P on C nonsingular if it is not singular and the curve C is called nonsingular if
every point on C is nonsingular.

2.2 The Group Law on Elliptic Curves

As discussed before, Mordell’s theorem states that the group of rational points on an elliptic curve
over Q is finitely generated. This means that there is some sort of group theoretic structure on the
rational points of an elliptic curve. This section is dedicated to the group law on elliptic curves.
We start by giving the definition of an elliptic curve and a rational point on this curve. Note
that we introduce the definition in its affine form due to the fact that in the upcoming sections
we will mostly work with this form. Moreover, throughout this section (and throughout the
rest of this thesis, unless specified otherwise) the field K is assumed to not have characteristic 2 or 3.

The reason for this assumption is quite delicate. If we allow characteristic 2, then the
equation given in Definition 2.8 will not be general enough to describe all elliptic curves. Allowing
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characteristic 3 would lead to issues in defining the 3-isogenies in Section 5.2, as Ē would not be
a nonsingular curve in characteristic 3. For explicit p-descent in characteristic p, see [14].

Definition 2.8. An elliptic curve over K is defined by a cubic equation

E : y2 = f(x) = x3 + ax2 + bx+ c,

where a, b, c ∈ K and f has distinct roots, i.e., E is nonsingular.

We want the curve E to be nonsingular, because when defining the group law we need the
existence of the derivative of f at every point on the curve E. In homogeneous form (so seen as a
projective plane curve) the equation defining E becomes:

Y 2Z = X3 + aX2Z + bXZ2 + cZ3.

Setting Z = 0, we find X3 = 0 and hence an elliptic curve has one point at infinity given by
(0 : 1 : 0), where (0 : 1 : 0) denotes the equivalence class of the point [0, 1, 0] ∈ P2(K). The point
at infinity corresponds to the point where vertical lines meet, i.e., x = “constant” in the affine
plane. We call this point O and it will serve as the identity element of our group.

We know that a group is given by a triplet (G,+, e), where G is a set, + an operation and
e the unit element. In the case of elliptic curves we have G = E(K) and e = O, where E(K)
denotes the set of K-rational points on E. The operation +, that makes this triplet into an
abelian group is defined below.

Let P = (x1, y1) and Q = (x2, y2) be K-rational points on the elliptic curve. Draw a line
through P and Q and call the third intersection point P ∗ Q. Note that the existence of this
third intersection point is always guaranteed due to equality in Bézout’s theorem† and that it
is K-rational by construction. To obtain P +Q simply draw a vertical line through the point
P ∗Q (which is equivalent to joining P ∗Q to O), the point where this line intersects the curve is
defined as P +Q. This process is seen in the figure below.

Figure 1: The group law on an elliptic curve [9, Section 1.4].

†Loosely speaking, equality in Bézout’s theorem tells us that a straight line and a cubic curve always
have three points of intersection, counting multiplicity, when seen as projective plane curves.
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Note that there are some special cases; if we add the point P to itself, then the point P ∗P is
the intersection point with the curve and the tangent line through P . Also, if P ∗Q is the point
at infinity, then we obtain that P +Q = O.

With this definition of the group law it becomes apparent that P + Q = Q + P , as the
line connecting P to Q is the same as the line connecting Q to P and hence the group law is
commutative. Moreover, the facts that the point at infinity O acts as the identity, that + maps
E(K) to itself and that P−1 = (x1,−y1) are also not hard to verify. Checking that the group
law is associative is rather lengthy and hence skipped. For the interested reader we refer to [9,
Section 1.4].

It is possible to deduce explicit formulas for this group law using tangent lines and lines
through points. Deducing these formulas would not be very illuminating, hence we only state
them. For the interested reader we again refer to [9, Section 1.4]. To get explicit formulas, let
P = (x1, y1), Q = (x2, y2) and P ∗ Q = (x3, y3). It is clear that P + Q = (x3,−y3) and doing
the computations we will obtain x3 = λ2 − a− x1 − x2 and y3 = λx3 + ν, where λ = y2−y1

x2−x1
and

ν = y1 − λx1.

As the observant reader might notice, these formulas are only valid if P 6= Q, i.e., the points
P and Q need to be distinct. However, we would also like to be able to compute P + P explicitly.
Luckily, there is the so-called duplication formula. When we want to add the point P = (x1, y1)

to itself we need to use λ = f ′(x1)
2y1

instead of λ = y2−y1
x2−x1

. The rest of the formulas to compute x3

and y3 remain the same. Using this we can also obtain an explicit expression for the x-coordinate
of 2(x, y). It is given as follows:

x(2P ) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
. (2.1)

2.3 Points of Finite Order

In proving an analogue of Mordell’s theorem over Fq(t) we will assume the existence of a rational
point of order 3 on the elliptic curve. Due to this assumption it might not come as a surprise
that points of order dividing 3 will play a major role in this thesis. Therefore, in this section, we
will discuss more thoroughly the points of order 3 in E(K).

Let P be a point of order 3 in E(K), i.e., 3P = O and P 6= O. This is equivalent to
saying 2P = −P and this tells us that x(2P ) = x(−P ). Conversely, let P 6= O be such that
x(2P ) = x(−P ). As our curve E is symmetric around the x-axis we obtain that 2P = ±P . The
assumption that P 6= O then tells us that 3P = O. We conclude that P is a point of order 3 in
E(K) if and only if x(2P ) = x(−P ).

Write P = (x, y) and consider the equation x(2P ) = x(−P ). Using the duplication formula
we can rewrite this equation as

x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
= x.

Cross multiplying and combining terms implies that P is a point of order 3 if and only if the
x-coordinate of P is a root of the polynomial ψ3(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2.

8



In Section 5 we will study elliptic curves of the form E : y2 = x3 +A(x−B)2, where A = a2

and B are in Fq[t]. In this case a point P has order 3 in E(Fq(t)) if and only if the x-coordinate
of P is a root of

p3(x) = 3x4 + 4Ax3 − 12ABx2 + 12AB2x. (2.2)

Allowing points in the algebraic closure Fq(t), we see that there are 8 points of order 3.
Following [9, Theorem 2.1] we obtain that p3 has four distinct roots and hence the group
consisting of Fq(t)-rational points of order dividing 3 on E, denoted by E(Fq(t))[3] and called the
3-torsion subgroup, is a group of order 9. All the elements have order dividing 3 and therefore
E(Fq(t))[3] ∼= (Z/3Z)

2
. However, we would like to know how many points there are of order

3 that are Fq(t)-rational. In any specific example we can deduce this using the rational root
theorem.

Theorem 2.9 (The Rational Root Theorem). Let R be a unique factorization domain. Let
Frac(R) be its field of fractions. Let p

q ∈ Frac(R), with p, q ∈ R coprime, be a solution of a
polynomial equation over R:

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0.

Then q must divide an and p must divide a0.

Proof. See [11, Section V.5]

There are elliptic curves over Fq(t) that have E(Fq(t))[3] ∼= (Z/3Z)
2
. For example, the curve

E : y2 = x3 + (4t4 + 6t)x+ (11t6 + t3 + 3) over F13(t) has this property. When considering elliptic
curves over Q this matter becomes less complicated. In fact, there can be at most three rational
points of order 3 in E(Q), as is found in [13, Section 2.4].

2.4 Isogenies of Elliptic Curves

This section contains a short introduction to the theory of isogenies and some useful results. We
will not prove the results as they require knowledge about algebraic geometry and commutative
algebra. An excellent reference on the rigorous theory of isogenies is [8, Sections III.4 & III.6].
The following definitions, lemmas and theorems are based on [15, Section 12].

Definition 2.10. Let E1 and E2 be elliptic curves over a field K and let K be a fixed algebraic
closure of K. An isogeny from E1 to E2 is a nonconstant group homomorphism φ : E1(K) →
E2(K) that is given by rational functions.

Important is that an isogeny is always a group homomorphism of K-rational points on E1 to
the K-rational points on E2.

Lemma 2.11. Let E1 and E2 be elliptic curves over a field K and let φ be an isogeny from E1

to E2. Then φ is of the form φ(x, y) = (r1(x), yr2(x)), where r1 and r2 are rational functions.

If the coefficients of the rational functions r1 and r2 lie in K, we say that the isogeny φ is
defined over K.

Definition 2.12. Keep the notation of Lemma 2.11 and write r1(x) = p(x)
q(x) with polynomials

p(x) and q(x) that do not have a common factor. The degree of φ is defined as

deg(φ) = max{deg(p(x)),deg(q(x))}.

9



Definition 2.13. Let E1 and E2 be elliptic curves over a field K. If φ is an isogeny from E1 to
E2 of degree one, then we say that φ is an isomorphism of elliptic curves. In this case we say
that E1 is isomorphic to E2.

Definition 2.14. Keep the notation of Lemma 2.11, we say that φ is separable if the derivative
r′1(x) is not identically zero.

Lemma 2.15. Let φ : E1 → E2 be an isogeny of elliptic curves E1 and E2 that are defined over
a field K. If φ is separable, then

deg(φ) = # ker(φ).

Theorem 2.16. Let E1 and E2 be elliptic curves over a field K and let K be a fixed algebraic
closure of K. Let φ : E1(K) → E2(K) be a nonconstant map given by rational functions. If
φ(O1) = O2, then φ is an isogeny.

Theorem 2.17. Let φ : E1 → E2 be an isogeny of elliptic curves that are defined over a field K.
Then there exists a dual isogeny φ̂ : E2 → E1 such that φ̂ ◦ φ is multiplication by deg(φ) on E1.

These results should give us enough information regarding isogenies to successfully deduce
that the isogeny in Section 5 is in fact of degree 3.

The upcoming sections will discuss Mordell’s theorem and its method of proof. In the next
section we state and proof the so-called Descent theorem. The sections thereafter will be dedicated
to proving the needed criteria for the Descent theorem.

3 Mordell’s Theorem and Descent

Formally, Mordell’s theorem can be stated as follows.

Theorem 3.1 (Mordell’s Theorem). If E is an elliptic curve over Q, then the group E(Q) is
finitely generated.

In most introductory books Mordell’s theorem is usually proved with the assumption that
there exists a rational point of order 2 in E(Q), because it makes the proof a lot simpler. Moreover,
height functions and a descent method play an important role in the proof. We will use a similar
approach for proving the main theorem of this thesis, which is as follows.

Theorem 3.2. Let E be an elliptic curve over Fq(t) given by

E : y2 = x3 + c ·A(x−B)2,

where A,B ∈ Fq[t], c ∈ Fq and char(Fq) /∈ {2, 3}. Moreover, assume that A is a perfect square in
Fq(t). Then the group E(Fq(t)) consisting of Fq(t)-rational points on E is finitely generated.

Note that it is not strange to expect Mordell’s theorem to hold over function fields of the
form Fq(t). In fact, the fields Q and Fq(t) are quite similar. They are both the field of fraction
of the Euclidean rings Z and Fq[t] respectively. Moreover, it turns out that Fq[t] has a similar
distribution of irreducible elements as Z, which makes them relatively similar in a number theoretic
sense. For a closer look at the similarities, see [5].

Most of the needed lemmas to prove Theorem 3.2 can actually be proven for an arbitrary
field K of characteristic not 2 or 3 instead of only for Fq. Moreover, some properties can also
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be proven for an arbitrary elliptic curve E of the form given in Definition 2.8. We will try to
prove these lemmas in their most general form and only introduce extra constraints when necessary.

Theorem 3.2 can be proven using a so-called descent method, which is relatively similar to
the method of infinite descent by Fermat [2]. The theorem holds for any abelian group and if we
wish, we can completely forget that we are working with elliptic curves. The statement and proof
follows [9, Theorem 3.5] and [13, Theorem 2]

Theorem 3.3 (The Descent Theorem). Let Γ be an abelian group and suppose that there exists
a function (called a height function)

h : Γ→ [0,∞)

such that the following properties hold:

(1) For every real number M , the set {P ∈ Γ: h(P ) ≤M} is finite.
(2) For every P0 ∈ Γ there is a constant κ0 so that

h(P + P0) ≤ 3h(P ) + κ0 for all P ∈ Γ.

(3) There is a constant κ such that

h(3P ) ≥ 9h(P )− κ for all P ∈ Γ.

Suppose further that
(4) The index [Γ : 3Γ] is finite, where 3Γ := {g ∈ Γ: g = 3g′ for some g′ ∈ Γ}.

Then the group Γ is finitely generated.

One should remark a few things. The first one being that all four criteria of the Descent
theorem are necessary to conclude that the group is finitely generated. For example, the additive
group Q is not finitely generated, but [Q : 3Q] = [Q : Q] = 1. Moreover, the particular choice of
the numbers 3 and 32 is not special at all. In fact, this theorem can be proven for any integer m
as is done in [8, Section VIII.3]. With this being said we prove the Descent theorem.

Proof of the Descent Theorem. As [Γ: 3Γ] is finite, we have that there are finitely many points
that represent the cosets of 3Γ in Γ, and we call them Q1, . . . , Qn. If P is an arbitrary element in
Γ, then it must live in one of the cosets Q1, . . . , Qn. In other words, there is some index i1 and
element P1 ∈ Γ such that

P = 3P1 +Qi1 .

This process can be repeated inductively and we obtain the following:

P1 = 3P2 +Qi2 ,

P2 = 3P3 +Qi3 ,

...

Pm−1 = 3Pm +Qim ,

where Qi1 , . . . , Qim are chosen from the representatives Q1, . . . , Qn and P1, . . . , Pm ∈ Γ. Note
that from the first two equations we can write

P = 3(3P2 +Qi2) +Qi1 = 32P2 + 3Qi2 +Qi1 .

11



Applying all the equations obtained above will eventually give us the following expression for P :

P = Qi1 + 3Qi2 + 32Qi3 + · · ·+ 3m−1Qim + 3mPm.

In particular, this tells us that P ∈ 〈Qi1 , . . . , Qim , Pm〉; the subgroup of Γ generated by the
Qi1 , . . . , Qim and Pm. As {Qi1 , . . . , Qim} is a subset of the set of all the cosets of 3Γ in Γ we can
in fact say that P ∈ 〈Q1, . . . , Qn, Pm〉.

Our goal now is to show that Pm can be chosen from a finite set, as that would indeed imply
that Γ is finitely generated. So far we have only used the fact that [Γ: 3Γ] is finite, but we also
need to use the other 3 properties stated in the theorem. In fact, using property (2) we obtain
that

h(P −Qi) ≤ 3h(P ) + κi,

for some κi independent of P and all i = 1, . . . , n. Defining κ′ := max {κi} we obtain that
h(P −Qi) ≤ 3h(P ) + κ′ for all i = 1, . . . , n. If we now apply property (3) we get the following:

9h(Pj) ≤ h(3Pj) + κ

= h(Pj−1 −Qij ) + κ

≤ 3h(Pj−1) + κ+ κ′.

Dividing both sides by 9 and rearranging some terms yields that

h(Pj) ≤
4

9
h(Pj−1)− 1

9
(h(Pj−1)− (κ+ κ′)) .

If h(Pj−1) ≥ κ+κ′, then we have h(Pj) ≤ 4
9h(Pj−1). From this we can conclude that the sequence

of Pj ’s is such that h(Pj)→ 0 and hence there will be some index m for which h(Pm) ≤ κ+ κ′.
We can pick this index and subsequently find that P ∈ 〈Q1, . . . , Qn, Pm〉, where h(Pm) ≤ κ+ κ′.
We conclude that Γ is generated by {Q1, . . . , Qn} ∪ {R ∈ Γ: h(R) ≤ κ+ κ′}. From property (1)
we know that this is in fact a finite set, which finishes the proof.

The following sections will mainly be focussed on applying the Descent theorem to prove
Theorem 3.2. Most of the upcoming results are straightforward results from either [18] or [13]
and we will only give some outline of the ideas. For full rigorous proofs one should refer to the
aforementioned theses.

4 Heights on Function Fields

To prove Mordell’s theorem one defines a so-called height function h on the rational numbers. It
turns out that this function is precisely the function that satisfies the first three properties of the
Descent theorem. We want to define a similar function, but then for the field Fq(t) instead of Q.
Before doing this we first look at the definition of the height of a rational number.

Definition 4.1. The height of a rational number is given by the function h : Q→ R≥0, which is
defined by h(x) := log max {|m|, |n|} and where x = m

n is written in lowest terms.

Two things should get our attention in this definition. The first one being the notion of the
absolute value of an integer and the second one being the fact that h(x) sort of tells us something
about the complexity of x. For example the height of 1

2 is much smaller than the height of 500
1001 ,
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although the numbers are very close to each other on the number line.

To obtain a height function h on Fq(t) we will first define a absolute value on Fq[t]. In fact,
most of the upcoming results work for any field K with char(K) not 2 or 3.

Definition 4.2. The function | · | : K[t] → R≥0 is said to be an absolute value on K[t] if it
satisfies the following properties:

(1) |f | ≥ 0 for all f ∈ K[t], with equality if and only if f = 0,
(2) |fg| = |f ||g| for all f, g ∈ K[t],
(3) |f + g| ≤ |f |+ |g|.

One can easily check that the function |f | := edeg(f) is an absolute value on K[t] if we set
deg(0) = −∞. Moreover, if K = Fq, then also the function |f | := qdeg(f) works as an absolute
value. We are now ready to define a height function on the rational function field K(t).

Definition 4.3. The function h : K(t)→ R≥0 defined by h(x(t)) = max {deg(f),deg(g)}, where

x(t) = f(t)
g(t) is written in lowest terms, is called the height of x(t).

We should note that the definition of height on K(t) is defined analogously to the height
function on Q. This follows from the following:

h(x(t)) = max {deg(f),deg(g)} = max {log |f |, log |g|} = log max {|f |, |g|}.

To be able to apply the Descent theorem to the abelian group E(Fq(t)) we need the notion of
height of a point on E(Fq(t)), however this is simply defined as the height of its x-coordinate.
Formally stated:

Definition 4.4. Let P = (x(t), y(t)) be a point on an elliptic curve over Fq(t). The height of P
is defined as h(P ) := h(x(t)) and if P = O, then we define h(O) = 0.

Our ultimate goal is to prove that E(Fq(t)) is finitely generated. We will systematically follow
the steps of the Descent theorem, which we will state as four consecutive lemmas for convenience.

Lemma 4.5. For every real number M , the set

{P ∈ E(Fq(t)) : h(P ) ≤M}

is finite.

Lemma 4.6. For every P0 ∈ E(Fq(t)) there is a constant κ0 so that

h(P + P0) ≤ 3h(P ) + κ0 for all P ∈ E(Fq(t)).

Lemma 4.7. There is a constant κ such that

h(3P ) ≥ 9h(P )− κ for all P ∈ E(Fq(t)).

Lemma 4.8. The index [E(Fq(t)) : 3E(Fq(t))] is finite.

The first three lemmas are the easiest to prove and can be done for any elliptic curve E
defined over Fq(t). The fourth lemma will be proven with the curve E from Theorem 3.2 and the
extra assumptions stated in that theorem to avoid algebraic number theory over function fields.
We start by giving the proof of Lemma 4.5.

13



Proof of Lemma 4.5. Note that it suffices to show that the number of elements in

Z := {x ∈ Fq(t) : h(x) ≤M}

is finite for all M ≥ 0. This follows from the fact that the set of x-coordinates of Fq(t)-rational
points on E with bounded height is subset of Z and for each x-coordinate we have at most

two y-coordinates. So we take an arbitrary x ∈ Z and write it in lowest terms as x = f(t)
g(t) ,

where f and g are in Fq[t]. Since f and g are polynomials over a finite field with q elements and
their degree is bounded due to x being in Z, we can conclude that there are only finitely many
possibilities for the polynomials f and g. Hence there are also only finitely many possibilities for
the element x, which concludes the proof.

During this thesis we try to keep things as general as possible, with regard to which field
we take for K in E(K(t)). One should realize that the proof of Lemma 4.5 only works for finite
fields K. For example, if one would consider the set

{x ∈ R(t) : h(x) ≤M},

then it becomes clear that this set is not finite for all M > 0 as there are already infinitely many
polynomials of degree 1 in R(t).

Before we can prove Lemma 4.6 we need to achieve some auxiliary results. We will state
them as lemmas and use them in the proof of Lemma 4.6. Again, most of these results hold for
any elliptic curve E and any field K with char(K) not 2 or 3.

Lemma 4.9. Let P = (x, y) be a point on an elliptic curve E with x, y ∈ K(t). We can write
x = m

e2 and y = n
e3 , where m,n, e ∈ K[t], e 6= 0 and gcd(m, e) = gcd(n, e) = 1.

Proof. This is just a slight adaptation of the proof given in [9, Section 3.2], where we should keep
in mind that we are working over K(t) and not over Q. For the full proof the reader should look
at [18, Section 4.3].

There is one more lemma needed before we can prove Lemma 4.6, which is stated below.

Lemma 4.10. Let P = (x, y) be a point on an elliptic curve E with x = m
e2 and y = n

e3 , where
m,n, e ∈ K[t], e 6= 0 and gcd(m, e) = gcd(n, e) = 1. Then we have that

deg(n) ≤ k +
3

2
h(P ),

for some constant k depending on a, b and c.

Proof. The idea of the proof is as follows. First of all we should note that the following two
properties hold for elements f, g ∈ K[t]:

(1) deg(fg) = deg(f) + deg(g),
(2) deg(f + g) ≤ max {deg(f),deg(g)}.

Moreover, both deg(e2) and deg(m) are less than or equal to h(P ). These (in)equalities will give
an upper bound for deg(n2).

The point P is assumed to be a rational point on the curve E. Hence we can plug in the point
into the equation of the curve E and by clearing denominators we obtain the following equation:

n2 = m3 + ae2m2 + be4m+ ce6. (4.1)

14



Using equation (4.1) and the aforementioned inequalities yields deg(n) ≤ k + 3
2h(P ), where

k := 1
2 max {deg(a),deg(b),deg(c)}. For a more detailed version of the proof, see [18, Proposition

2]

We now have the appropriate tools to prove Lemma 4.6. In contrast to the proof of Lemma
4.5 where K needs to be a finite field, this proof works for a general field with characteristic not
2 or 3.

Proof of Lemma 4.6. Again, we will only give an outline of the proof. A more detailed version is
available in [18, Lemma 2]. First of all, note that we can exclude any fixed finite set of points P .
This follows from the fact that for any finite number of points P , we just look at the differences
h(P + P0)− 3h(P ) and take κ0 larger than the finite number of values that occur. Having said
this we proof the statement for P /∈ {P0,−P0,O} as we can then avoid using the duplication
formula. In fact, the additional assumption of P0 6= O can be made, because the inequality would
be trivial in this case.

Write P = (x, y), P0 = (x0, y0) and P +P0 = (ξ, η). The goal is to write h(P +P0) = h(ξ) in
terms of h(P ) = h(x). Using the formulas from the group law as found in Section 2.2 we have
the following expression for ξ:

ξ = λ2 − a− x− x0 with λ =
y0 − y
x0 − x

. (4.2)

Some computations and recalling that any rational point (x, y) on E can be written as (me2 ,
n
e3 )

yields that

ξ =
Ane+Bm2 + Cme2 +De4

Em2 + Fme2 +Ge4
,

where A, . . . , G are certain elements in K(t) depending on a, b, c, x0 and y0. We do not know
whether this in written in lowest terms, but in any case we can write

h(ξ) ≤ max {deg(Ane+Bm2 + Cme2 +De4),deg(Em2 + Fme2 +Ge4)}.

We are now left with two cases, the first one is when this maximum equals deg(Ane + Bm2 +
Cme2 +De4) and the second one when this maximum equals deg(Em2 + Fme2 +Ge4). Using
Lemma 4.10 we obtain in the first case that

h(ξ) ≤ max {deg(A) + k, deg(B),deg(C),deg(D)}+ 2h(P )

and in the second case that

h(ξ) ≤ max {deg(E),deg(F ),deg(G)}+ 2h(P ).

Defining κ0 := max {deg(A) + k, deg(B),deg(C),deg(D),deg(E),deg(F ),deg(G)} shows that
h(ξ) ≤ 2h(P ) + κ0 and hence also h(ξ) ≤ 3h(P ) + κ0, as desired.

We are now halfway through proving that E(Fq(t)) is finitely generated. We have already
shown that our function h satisfies the first and second condition for the Descent theorem. This
section finishes by showing the third property of h that is needed for the descent argument.
Section 5 will show that the index [E(Fq(t)) : 3E(Fq(t))] is finite.

Before we continue it is convenient to introduce some new notation. We define the function
H : K(t) → R≥0 as H(x) = eh(x) (or e = q in case of K being finite). Note that this function
H is nothing more than raising the function h from Definition 4.3 to the power e (or q). The
following lemma concerned with the function H is tremendously useful.
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Lemma 4.11. Let φ(X) and ψ(X) be coprime in K(t)[X] and let d = max {deg(φ),deg(ψ)}.
Then there exists a positive constant C such that

CH(x)d ≤ H
(
φ(x)

ψ(x)

)
for all x ∈ K(t).

Proof. The proof of this theorem has nothing to do with elliptic curves and hence we refer to [18,
Section 4.4] for the full proof.

The use of Lemma 4.11 only shows itself when we know something about the point 3P on
the curve E. In fact, if we have a rational point P = (x, y) on E and the point 3P = (ξ, η), we
would like to show that ξ is a quotient of coprime polynomials φ(X) and ψ(X) in K(t)[X] with
max {deg(φ),deg(ψ)} = 9. Taking logarithms of the equation in Lemma 4.11 then yields that
h(ξ) ≥ 9h(x)− log(C) for all x ∈ K(t). All of this implies that h(3P ) ≥ 9h(P )− log(C), which
proves Lemma 4.7.

We formally state the aforementioned property of ξ and refer to the proof.

Proposition 4.12. Let P = (x, y) be a rational point on the curve E and write (ξ, η) for the
point 3P . The coordinate ξ can be written as a quotient of two coprime polynomials φ(X) and
ψ(X) in K(t)[X], with max {deg(φ),deg(ψ)} = 9.

Proof. The proof of this statement is very tedious and is done in [13, Appendix B]. The proof of
the case K(t) is completely similar. A similar result even holds for multiplication by any integer
n, not only for n = 3. The interested reader is referred to [15, Section 3.2], where some theory on
division polynomials is discussed.

As explained before, we have now in fact shown Lemma 4.7. Hence we have treated all the
properties regarding heights for the descent argument. Next section will be dedicated completely
to showing that the index is finite. In order to do so without having to resort to topics as
algebraic number theory over function fields or Galois cohomology we have to make some extra
assumptions.

5 Bounding the Index

In this section we will prove that the index [E(L) : 3E(L)] is finite, where L := Fq(t) and
char(Fq) /∈ {2, 3}. We will not do this for a general elliptic curve E, but we will do this for elliptic
curves of the form

E : y2 = x3 +A(x−B)2,

where the coefficients A and B are from Fq[t] and A is a perfect square. We will later see that this
result helps us in proving Theorem 3.2. This choice for the curve E is not completely arbitrary.
In fact, we will show that any elliptic curve having an L-rational point of order 3 can be written
in this form.

5.1 Rewriting the Elliptic Curve

Let P = (α, β) be a L-rational point of order 3 on an elliptic curve given by E : y2 = x3+ax2+bx+c.
Shifting the x-coordinate of P to 0, i.e., replacing x by x+ α gives us the following:

y2 = (x+ α)3 + a(x+ α)2 + b(x+ α) + c

= x3 + x2(3α+ a) + x(3α2 + 2aα+ b) + α3 + aα2 + αb+ c

= x3 + x2(3α+ a) + x(3α2 + 2aα+ b) + β2.
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Renaming 3α+ a to a and 3α2 + 2aα+ b to b gives an equation of the form:

y2 = x3 + ax2 + bx+ β2.

The point (0, β) is of order 3, hence we have 2(0, β) = (0,−β). Using the duplication formula we

obtain that
(
b2−4aβ2

4β2 , 4abβ2−b3−8β4

−8β3

)
= (0,−β) and hence b2 = 4aβ2. Suppose that b 6= 0†, then

a 6= 0 and a must be a perfect square. All of this means that there is an element z ∈ Fq(t) such

that z2 = β2

a . Combining everything yields the following equation:

y2 = x3 + ax2 +
√

4a2z2x+ z2a

= x3 + ax2 + 2azx+ z2a

= x3 + a(x+ z)2.

Let us write z = f
g , then we multiply the obtained equation by g6 and obtain

(yg3)2 = (xg2)3 + ag2(xg2 + fg)2.

Changing coordinates y := yg3 and x := xg2 yields that the equation can be written as

y2 = x3 + d(x+ r)2,

for some perfect square d ∈ Fq(t) and r ∈ Fq[t]. Write d = w2

t2 in lowest terms and multiply the
equation by t6 to obtain

y2t6 = x3t6 + w2(xt2 + rt2)2.

Changing coordinates as before yields that the equation can be written as

y2 = x3 + w2(x+ rt2)2,

with w2 and rt2 both in Fq[t]. Setting A := w2 and B := −rt2 shows indeed that the curve can
be written as

E : y2 = x3 +A(x−B)2, (5.1)

with A a perfect square and B both in Fq[t]. This justifies the study of elliptic curves of this
form.

5.2 The Curve Ē and the Homomorphisms φ and φ̂

Showing that [E(L) : 3E(L)] <∞ is the hardest part in showing that E(L) is finitely generated.
The statement is similar to a theorem known as the weak Mordell-Weil theorem, which states
that [E(K) : mE(K)] is finite for any elliptic curve E over K and integer m, where K a number
field (a finite extension of Q). M. van Beek shows in [13] that [E(Q) : 3E(Q)] is finite for elliptic
curves over Q of the form E : y2 = x3 +A(x−B)2, where A is not necessarily a perfect square.
We try to adapt her proof to elliptic curves over function fields. Before stating the outline of the
proof, first some notation.

Definition 5.1. Let K be a field. The group of units of K is denoted by K∗. Moreover, we
define K∗3 := {β ∈ K∗ : β = γ3 for some γ ∈ K∗}.

†See Section 7 for the case b = 0.
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We will prove that the index is finite by considering the following two points.

1. First we will introduce another elliptic curve Ē over L and two homomorphisms φ : E(L)→
Ē(L) and φ̂ : Ē(L)→ E(L) . These mappings will turn out to satisfy φ̂ ◦ φ = [3], where [3]
stands for multiplication by 3 in E(L). These mappings are obtained from [3, Section 8.4].

2. After the introduction of this new curve Ē we will introduce two group homomorphisms
α : E(L)→ L∗/L∗3 and ᾱ : Ē(L)→ L∗/L∗3. These mappings will provide a way to bound
the index.

From Section 5.1 we know that A is a perfect square, i.e., A = a2 for some a ∈ Fq[t]. In fact,
because we will define a similar map ᾱ we will also assume that −3 is a square in L. This is for
example the case when q ∈ {7, 13, 19}. For such q we will denote δ :=

√
−3 ∈ L. As we will see

later, the assumption that −3 is a perfect square is not necessary. However, this assumption will
simplify things a lot in the upcoming statements. We now give explicit equations for the curve Ē
and the mapping φ. The curve Ē, found in [3, Section 8.4], is given by:

Ē : y2 = x3 + Ā(x− B̄)2, (5.2)

where Ā = −3A = δ2a2 and B̄ = 4A+27B
9 . The mapping φ is given by:

φ : E(L)→ Ē(L)

(x, y) 7→ (ξ, η),
(5.3)

where ξ = 1
x2

(
x3 + 4A

(
1
3x

2 −Bx+B2
))

, η = y
x3

(
x3 + 4AB (x− 2B)

)
and L denotes a fixed

algebraic closure of L.

Following [3, Section 8.4] we have that φ(O) = φ(0,±aB) = Ō, so that ker(φ) = {O, (0,±aB)}.
Theorem 2.16 then tells us that φ is an isogeny and Theorem 2.17 tells us that there exists a dual
isogeny φ̂ such that φ̂ ◦ φ is multiplication by deg(φ) on E. This dual isogeny is given by:

φ̂ : Ē(L)→ E(L)

(ξ, η) 7→ (x, y),
(5.4)

where x = 1
9ξ2

(
ξ3 + 4Ā( 1

3ξ
2 − B̄ξ + B̄2)

)
, y = η

27ξ3

(
ξ3 + 4ĀB̄(ξ − 2B̄)

)
and φ̂(Ō) = φ̂(0,±δaB̄) =

O. In fact, due to Definition 2.14 it is not hard to see that φ is separable and hence by Lemma
2.15 we have that deg(φ) = 3. Therefore we have that φ̂ ◦ φ is just multiplication by 3 in E(L),

as the isogenies φ and φ̂ restrict to group homomorphisms when considered as mappings from
E(L)→ Ē(L) and Ē(L)→ E(L) respectively.

The introduction of the curve Ē and the homomorphisms φ and φ̂ is not without reason. The
fact that multiplication by 3 on E can be split into two homomorphism is very convenient as the
following proposition explains.

Proposition 5.2. Let A and B be abelian groups and suppose that φ : A→ B and φ̂ : B → A are
homomorphisms satisfying φ̂ ◦ φ = [n], where [n] denotes multiplication by n ∈ Z≥2 on the group

A. Moreover, suppose that φ(A) has finite index in B and that φ̂(B) has finite index in A. Then

[A : nA] ≤ [A : φ̂(B)][B : φ(A)].
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Proof. Write b1, · · · , bm for the cosets of φ(A) in B and a1, · · · , al for the cosets of φ̂(B) in A.
We claim that the cosets of nA in A can all be represented by elements from

C := {ai + φ̂(bj) : 1 ≤ i ≤ l, 1 ≤ j ≤ m}.

The above statements implies that we need to show that any a ∈ A can be written as an element
of some coset β + nA, where β ∈ C. In other words, we need to show that a = β + na′ for some
a′ ∈ A. So take an arbitrary element a ∈ A. As a must be in one of the cosets of φ̂(B) in A

we can write a = ai + φ̂(b) for some representative ai and some b ∈ B. Similarly we can write
b = bj + φ(a′) for some representative bj and some element a′ ∈ A. Using this we can write:

a = ai + φ̂(b)

= ai + φ̂(bj + φ(a′))

= ai + φ̂(bj) + na′,

which shows that C contains a complete set of cosets for nA in A. As C has at most mn elements,
the statement follows.

Returning to the realm of elliptic curves, where we want to show that [E(L) : 3E(L)] <∞,
we see that Proposition 5.2 is extremely useful. In fact, because we have already established that
multiplication by 3 on E can be decomposed into 2 homomorphisms φ and φ̂, we only need to
show that both [E(L) : φ̂(Ē(L))] and [Ē(L) : φ(E(L))] are finite, as Proposition 5.2 with n = 3
then shows that [E(L) : 3E(L)] is finite.

5.3 The Group Homomorphism α

To show the indices are [E(L) : φ̂(Ē(L))] and [Ē(L) : φ(E(L))] finite, a map α : E(L)→ L∗/L∗3

will be introduced. The definition of α is adapted from [3, Definition 8.4.7] and it is given as:

α(P ) =

{
1, if P = O,
y − (x−B)a, if P = (x, y) ∈ E(L),

(5.5)

where d := d mod L∗3 for some d ∈ L∗.

It will be shown that α is a homomorphism with finite image. Moreover, it will be shown
that ker(α) = φ̂(Ē(L)), where φ̂ is seen as a group homomorphism between rational points on

elliptic curves. This means by the first isomorphism theorem that E(L)/φ̂(Ē(L)) ∼= α(E(L)) and

because α has finite image we can conclude that [E(L) : φ̂(Ē(L))] is finite. This of course does not
show that the other index is finite, however we can define a map ᾱ : Ē(L)→ L∗/L∗3 analogously
to α (as −3 is a perfect square in L) and from that obtain that the other index is finite as well.

Using this it suffices to show that α is a homomorphism with finite image and ker(α) = φ̂(Ē(L)).

As the observant reader might notice, the map α is not properly defined yet. Namely, if
y− (x−B)a = 0, then the map α is not defined. Luckily this only happens for points of the form

±P = (0,±aB). We define α for these points separately: α(0, aB) := 2aB and α(0,−aB) := 1
2aB .

Now that α is properly defined, it will be shown that it is a homomorphism. This will be done in
two steps, which will be stated as lemmas.

Lemma 5.3. The map α sends inverses to inverses. In other words:

α(−P ) = α(P )−1.
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Proof. The statement is clear for P = O and P = (0,±aB). In all other cases x 6= 0 and for the
point P = (x, y) we obtain:

α(P )−1 ≡ 1

y − (x−B)a

(
mod L∗3

)
≡ y + (x−B)a

x3

(
mod L∗3

)
≡ y + (x−B)a

(
mod L∗3

)
≡ −y − (x−B)a

(
mod L∗3

)
≡ α(−P ),

where in the second equality we used that x3 = (y + (x−B)a)(y − (x−B)a).

Lemma 5.4. Let P1, P2 and P3 be L-rational points on E. If P1 + P2 + P3 = O, then
α(P1)α(P2)α(P3) = 1.

Proof. There are a few trivial cases of this lemma such as P1 = P2 = P3 = O and P1 =
(0, aB), P2 = (0,−aB), P3 = O. It is not hard to see that the statement holds for these cases. We
turn towards the nontrivial case.

From [9, Section 1.4] we know that having three L-rational points on E summing to O is
equivalent to saying that they are colinear. Write y = λx + ν for the line through P1, P2 and
P3, and write x1, x2, x3 for the x-coordinates of the points P1, P2, P3 respectively. Plugging in
y = λx+ ν into the equation of the elliptic curve gives:

x3 + (A− λ2)x2 + (−2AB − 2λν)x+AB2 − ν2 = 0.

We know that x1, x2 and x3 are the roots of this polynomial, hence we have the following
expressions for the xi:

x1 + x2 + x3 = λ2 −A,
x2x3 + x1x2 + x1x3 = −2(AB + λν),

x1x2x3 = ν2 −AB2.

(5.6)

Writing out α(P1)α(P2)α(P3) with the definition of α and using the equations from (5.6) to
rewrite the expression we find that

α(P1)α(P2)α(P3) = (ν + aB)3.

The explicit calculations of this result are very tedious and can be found in [13, Section 3.2]†.
Using this we see that α(P1)α(P2)α(P3) is a perfect cube and hence α(P1)α(P2)α(P3) = 1, as
desired.

Showing α is a homomorphism is now very easy.

Theorem 5.5. The mapping α given by (5.5) is a homomorphism.

†The result proven there is the same as ours up to sign.
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Proof. From Lemma 5.3 and Lemma 5.4 we see the following:

Let P1 and P2 be rational points on E and let P3 be the third intersection with the line
through P1, P2 and E. Then we have

α(P1 + P2) = α(−P3)

= α(P3)−1

= α(P1)α(P2),

which shows that α is indeed a homomorphism.

What remains to be shown is that α has finite image and that ker(α) = φ̂(Ē(L)). We fill now
first show that α has finite image, which is a rather straightforward adaptation of [13, Section 4.1]

Theorem 5.6. . The image of the mapping α from (5.5) is contained in the subgroup of L∗/L∗3

consisting of elements {upε11 · · · p
εj
j }, where εi ∈ {0, 1, 2}, u ∈ F∗q/F∗3q and the pi are monic

irreducible elements that divide 2aB.

Proof. From Lemma 4.9 we know that we can write x = m
e2 and y = n

e3 with gcd(m, e) =
gcd(n, e) = 1 and e 6= 0. Plugging these values for x and y into the equation for E and clearing
denominators yields

n2 = m3 + a2m2e2 − 2a2Bme4 + a2B2e6. (5.7)

Factorizing this equation yields the following expression:

m3 = (n+ ame− aBe3)(n− ame+ aBe3).

It should be noted that K[t] is a principal ideal domain, when K is any field. In particular Fq[t]
is a principal ideal domain. Therefore we enjoy unique (up to units and ordering) factorization of
elements and the notion of greatest common divisor is well-defined. Define

d := gcd(n+ ame− aBe3, n− ame+ aBe3),

then we can write:

n− ame+ aBe3 = u1dc1 and n+ ame− aBe3 = u2dc2,

for some coprime c1, c2 in Fq[t] and u1, u2 units. We factor c1 into a part coprime to d (call it
k) and another part which will be of the form pr11 · · · prww , for some irreducible elements pi that
divide d and ri ∈ Z. Similarly, we decompose c2 (in a part l and a part qt11 · · · qtss ) and obtain:

m3 = (n+ ame− aBe3)(n− ame+ aBe3)

= u2dc2u1dc1

= u1u2kp
r1
1 · · · prww lqt11 · · · qtss d2.

Note that kl is coprime with pr11 · · · prww qt11 · · · qtss d2 and that k and l are both coprime as well,
hence k must be a cube and we can write n− ame+ aBe3 = u1dp

r1
1 · · · prww f3, for some f ∈ Fq[t].

This shows that

α(
m

e2
,
n

e3
) =

n

e3
− am

e2
+ aB

= n− ame+ aBe3

= u1dp
r1
1 · · · p

rw
w .

If we want to show that the image of α is finite we need to show the following lemma.
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Lemma 5.7. The irreducible factors of d are contained in a finite set.

Proof. The greatest common divisor d can be rewritten as:

d = gcd(n+ ame− aBe3, n− ame+ aBe3)

= gcd(n+ ame− aBe3, n− ame+ aBe3 − (n+ ame− aBe3))

= gcd(n+ ame− aBe3,−2ae(m−Be2))

= gcd(n+ ae(m−Be2),−2a(m−Be2)),

where in the last equality we used that n+ ae(m−Be2) and e are coprime, because n and e are
coprime.

Note that there are only a fixed, finite number of irreducible factors in −2a. Hence we will
only look at the irreducible factors of d′ := gcd(n+ ae(m−Be2),m−Be2). If there are a finite
number of them, then the lemma is proven.

Suppose that n+ ae(m−Be2) and m−Be2 have irreducible factors in common, then n and
m−Be2 have these same irreducible factors in common. Assume that we have

d′ = p1 · · · pl,
n = p1 · · · pls,

m−Be2 = p1 · · · plt,

where the pi are irreducible elements and s, t ∈ Fq[t] such that gcd(s, t) = 1. Starting from
equation (5.7) we get the following:

n2 = m3 + a2m2e2 − 2a2Bme4 + a2B2e6

n2 = m3 + a2m2e2 − a2Bme4 − a2Be4(m−Be2)

p2
1 · · · p2

l s
2 = m3 + a2m2e2 − a2Bme4 − a2Be4p1 · · · plt

p2
1 · · · p2

l s
2 + a2Be4p1 · · · plt = m3 + a2m2e2 − a2Bme4

p1 · · · pl(p1 · · · pls2 + a2Be4t) = m3 + a2me2(m−Be2)

p1 · · · pl(p1 · · · pls2 + a2Be4t) = m3 + a2me2p1 · · · plt
p1 · · · pl(p1 · · · pls2 + a2Be4t− a2me2t) = m3.

This means that p1 · · · pl has to divide m as well and hence p1, · · · , pl are irreducible factors of
both m and n. Looking at equation (5.7) again we see that

n2 −m3 − a2m2e2 − 2a2Bme4 = a2B2e6.

So any irreducible element that is both a factor of m and n must either be a factor of aB or e,
but the latter is impossible as gcd(m, e) = gcd(n, e) = 1. We conclude that the irreducible factors
of d′ are from the set {pi : pi irreducible and pi|aB} and therefore the irreducible factors of d are
from the set {pi : pi irreducible and pi|2aB}, which finishes the proof of Lemma 5.7.

We can now conclude the proof of Theorem 5.6. Indeed, we have shown that the image of α
is contained in the set

{upε11 · · · p
εj
j : εi ∈ {0, 1, 2}, u ∈ F∗q/F∗3q and pi|2aB},

where the pi are monic irreducible elements. Now note that the number of elements in F∗q/F∗3q is
clearly finite. Therefore we can indeed conclude that α has finite image, as desired.
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Note that the image of α is finite for any field K(t) for which it holds that K∗/K∗3 is finite.
In fact, if K is algebraically closed, then every unit is a cube. So K∗/K∗3 is finite as well.

All that remains to be shown is that ker(α) = φ̂(Ē(L)), which will take up the remaining part
of this section. The upcoming results and proofs are adaptations from [3, Section 8.4.3 & 8.4.4].

Proposition 5.8. The kernel of α is equal to the image of φ̂. Formally stated:

ker(α) = φ̂(Ē(L)).

Before we give the proof of this proposition, we first state and prove some useful lemmas
about the image of the original mapping φ.

Lemma 5.9. Recall that
√
−3 = δ ∈ L and denote by Î := φ(E(L)). The following two properties

hold.

(1) Ō ∈ Î and ±T̂ = (0,±δaB̄) ∈ Î if and only if 3a2

2B
is a cube in L.

(2) A general point P̂ = (x̂, ŷ) ∈ Ē(L) different from ±T̂ or Ō belongs to Î if and only if there
exists γ ∈ L such that γ3 = ŷ − (x̂− B̄)δa.

Proof. (1) By definition we have that φ̂(O) = Ō and hence Ō ∈ Î. Looking at the definition of φ
we have that ±T̂ ∈ Î if and only if there exists x ∈ L such that x3 + 4a2( 1

3x
2 − Bx+ B2) = 0.

Note that this implies that x 6= 0, because B 6= 0 as E is an elliptic curve. Plugging this into
SageMath [10] (see Appendix A listing 2), we see that we have a rational solution if and only if
−64/729a6 − 8/9Ba4 + 2/27(4a2 + 27B)Ba2 − 2B2a2 is a cube. Some algebra yields that this is

equivalent to −2a(9B̄) being a cube, which is equivalent to (−18)2a2B̄2

(6B)3
being a cube. This is in

turn equivalent to 3a2

2B
being a cube, as desired.

(2) Note that x = 0 implies that (x, y) = ±T , with ±T = (0, aB) and φ(±T ) = Ō. So we can
assume that x 6= 0. Take (x, y) ∈ Î, some algebra yields:

ŷ − (x̂− B̄)δa =
θ

x3
,

where

θ = y
(
x3 + 4AB(x− 2B)

)
−
(
x4 + 4Ax

(
1

3
x2 −Bx+B2

)
− x3

9
(4A+ 27B)

)
aδ.

Letting SageMath simplify this (see Appendix A listing 1) and recalling that A = a2 we obtain
the following expression for θ:

θ = −4B2a3δx+ 4Ba3δx2 − aδx4 − 1

9

(
8a3 − 27Ba

)
δx3 − (8B2a2 − 4Ba2x− x3)y.

On the other hand we have that(
y −

(
1

3
x−B

)
δa

)3

= y3 − 3y2

(
1

3
x−B

)
δa+ 3y

(
1

3
x−B

)2

δ2a2 −
(

1

3
x−B

)3

δ3a3

= y3 − 3y2

(
1

3
x−B

)
δa− 9y

(
1

3
x−B

)2

a2 + 3

(
1

3
x−B

)3

δa3.
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Plugging in y2 = x3 + a2(x−B)2 and letting SageMath simplify the expression we obtain:(
y −

(
1

3
x−B

)
δa

)3

= θ.

This shows that θ is a cube and hence ŷ−(x̂−B̄)δa is a cube as well, which finishes one implication.

Conversely, suppose that (x̂, ŷ) ∈ Ē(L) such that there exists γ ∈ L satisfying γ3 = ŷ − (x̂−
B̄)δa. Note that γ = 0 yields 0 = ŷ2 − (x̂ − B̄)2Ā = x̂3 and hence x̂ = 0. But then we would
have that our point is ±T̂ , so in the present case γ 6= 0.

Lemma 5.10. Set u = γ+x̂/γ
2 and v = γ−x̂/γ

2aδ . We have

(1) (x̂/γ)3 = ŷ + (x̂− B̄)aδ,

(2) B = (v + 1/3)(u2 − a2(v − 2/3)2).

Proof. (1) This should be clear as:

(x̂/γ)3 =
ŷ2 − δ2a2(x̂− B̄)2

ŷ − δa(x̂− B̄)
= ŷ + (x̂− B̄)aδ.

(2) We can write γ = u+ vaδ and x̂/γ = u− vaδ, hence x̂ = u2 + 3a2v2. We compute γ3− (x̂/γ)3

in two ways. On the one hand, we have

γ3 − x̂3

γ3
= 6u2vaδ + 2(vaδ)3 = −2aδ(3a2v3 − 3u2v).

On the other hand we have

γ3 − x̂3

γ3
= −2δa

(
u2 + 3a2v2 − 4a2 + 27B

9

)
.

Equating both these expressions and some elementary algebra proves the lemma.

It is now relatively easy to finish the proof of Lemma 5.9. In fact, because B 6= 0 we have
v + 1

3 6= 0. Therefore we can define

x =
B

v + 1/3
= u2 − a2(v − 2/3)2

and
y = ux = u3 − ua2(v − 2/3)2.

We thus have y2 = u2x2 = u2B2

(v+1/3)2 and

(v + 1/3)3(x3 + a2(x−B)2) = B3 + (v + 1/3)3a2

(
B

v + 1/3
−B

)2

= B3 + a2(v + 1/3) (B − (v + 1/3)B)
2

= B3 +B2a2(v + 1/3) (2/3− v)
2

= B2(B + a2(v + 1/3)(v − 2/3)2)

= B2(v + 1/3)u2.
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This in fact shows that y2 = x3 + a2(x−B)2 and hence (x, y) ∈ E(L).

All that is left, is to show that φ(x, y) = (x̂, ŷ). Note that we have φ(x, y) = (α, β) with

α =
1

x2
(x3 + 4a2

(
1

3
x2 −Bx+B2

)
= x+ 4a2

(
1/3−B/x+ (B/x)2

)
= u2 − a2(v − 2/3)2 + a2

(
4/3− 4(v + 1/3) + 4(v + 1/3)2

)
= u2 + 3a2v2

= x̂.

In a similar fashion is is found that β = ŷ, which finishes the proof of the lemma.

The following is an immediate consequence by considering the dual isogeny.

Corollary 5.11. Let I := φ̂(Ē(L)). The following two properties hold.

(1) O ∈ I and ±T = (0,±aB) ∈ I if and only if −a
2

2B is a cube in L.

(2) A general point P = (x, y) ∈ E(L) different from ±T or O belongs to I if and only if there
exists γ ∈ L such that γ3 = y − (x−B)a.

We are now ready to give the proof of Proposition 5.8.

Proof of Proposition 5.8. The proof follows from the following three points.

(1) O ∈ ker(α) and clearly O ∈ φ̂(Ē(L)).

(2) ±T ∈ ker(α) if and only if 2aB is a cube in L, if and only if 4a2B2

−8B3 is a cube, if and only if
−a2
2B is a cube, and hence by Corollary 5.11 if and only if ±T ∈ φ̂(Ē(L)).

(3) For any other point (x, y) /∈ {O,±T} we have (x, y) ∈ ker(α) if and only if y − (x−B)a is

a cube and by Corollary 5.11 if and only if (x, y) ∈ φ̂(Ē(L)).

We are now almost ready to give a proof for Theorem 3.2. In fact, we have already proven it
in the case when −3 is a perfect square and when E : y2 = x3 + a2(x−B)2. However, Theorem
3.2 does not require these assumptions and we need one more result before we can give a proof.

Lemma 5.12. Let q = pn be a prime power with p /∈ {2, 3}, then we have that −3 is a perfect
square in L if and only if q ≡ 1 mod 6.

Proof. First note that −3 is a perfect square in L if and only if −3 is a perfect square in Fq. Now
if −3 is a perfect square in Fq, then the existence of a cube root of unity in Fq is guaranteed.
Therefore 3 divides q − 1 and hence q ≡ 1 mod 6.

Conversely, let q be a prime power such that q ≡ 1 mod 6 and consider the finite field Fq.
Note that 3 divides q − 1 and hence we have the existence of a primitive cube root of unity

ω := −1+
√
−3

2 . Moreover, some rewriting yields that
√
−3 = 2ω + 1 and hence the square root of

−3 is always in Fq.

It has been a long journey, but we are now finally able to present a proof for Theorem 3.2.
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Proof of Theorem 3.2. The proof is done in four separate cases.

Case 1: Consider the elliptic curve E : y2 = x3 + a2(x − B)2, with a,B ∈ Fq[t]. Moreover,
suppose that −3 is a perfect square in L (which is equivalent to saying q ≡ 1 mod 6 by
Lemma 5.12). Using Lemma 4.5, 4.6, 4.7 and the fact that [E(L) : 3E(L)] is finite for the
elliptic curve E : y2 = x3 + a2(x−B)2 we can conclude via the Descent theorem that E(L)
is finitely generated.

Case 2: Consider the same curve as in case 1, but now suppose that −3 is not a perfect square
in L. From Lemma 5.12 we deduce that q 6≡ 1 mod 6 and because the characteristic of Fq
is not 2 or 3, we also have that gcd(q, 6) = 1. Together this implies that q ≡ −1 mod 6,
so q2 ≡ 1 mod 6 and hence −3 is a perfect square in Fq2 . Consider the elliptic curve
E : y2 = x3 + a2(x−B)2 as before, but over Fq2(t). So a and B are both in Fq2 [t] and the
characteristic of our field is still not 2 or 3. Due to the fact that −3 is a square in Fq2 , the
previous paragraph tells us that E(Fq2(t)) is a finitely generated abelian group. Moreover,
we know that L ⊂ Fq2(t) and hence E(L) is a subgroup of E(Fq2(t)). We can therefore
conclude that E(L) must be finitely generated as well.

Case 3: Consider the elliptic curve E : y2 = x3 + c · a2(x−B)2, with a,B ∈ Fq[t] and c ∈ Fq. If
c is a perfect square, then the problem reduces to either case 1 or case 2. So in this case
also E(L) is finitely generated.

Case 4: Consider the curve from case 3, but suppose that c is not a perfect square. Consider
the field extension L (

√
c) ∼= Fq2(t) and consider the curve E : y2 = x3 + c · a2(x−B)2 over

L (
√
c). Then c · a2 is a perfect square and we reduce to either case 1 or case 2. So also in

this case, E(L) is finitely generated.

The four cases above cover all possibilities and hence the theorem is proven.

One might think that a similar type of reasoning works for general c ∈ Fq[t]. However, if
c ∈ Fq[t] \ Fq, then L (

√
c) 6∼= Fq2(t). So in this case we can not reduce to a simpler case as in the

proof of Theorem 3.2. Next section we have a look at the computation of the rank, when it is
possible. Moreover, we will look at some examples of this computation.

6 Computing the Rank

6.1 A Formula for the Rank

In the previous section it is shown that the group E(Fq(t)) is finitely generated when E : y2 =
x3 + c · a2(x−B)2 with a,B ∈ Fq[t], c ∈ Fq and char(Fq) /∈ {2, 3}. This section investigates the
rank of the group E(Fq(t)) whenever q ≡ 1 mod 6 and c = 1. If this is not the case the rank
might be deduced by first determining the rank of E over some field extension M of Fq(t) and
noting that E(Fq(t)) must be a subgroup of E(M), as we saw in the proof of Theorem 3.2. This
section ends with some explicit examples of rank computations.

By the structure theorem of finitely generated abelian groups we have that

E(Fq(t)) ∼= Zr ⊕ Zpν11 ⊕ · · · ⊕ Zpνss ,

where r ∈ Z≥0 is the rank, the pi are primes and the νi ∈ Z>0.
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For the sake of notation we again write L := Fq(t). From the above we have that every
P ∈ E(L) can be written as:

P = n1P1 + · · ·+ nrPr +m1Q1 + · · ·+msQs.

Looking at 3E(L) we see that we can write

3E(L) ∼= (3Z)r ⊕ 3Zpν11 ⊕ · · · ⊕ 3Zpνss
and hence the quotient is given as

E(L)/3E(L) ∼= (Z/3Z)r ⊕
Zpν11
3Zpν11

⊕ · · · ⊕
Zpνss
3Zpνss

.

This equation might look daunting, but the last s terms simplify quite nicely. In fact, we have

Zpνii
3Zpνii

∼=

{
Z/3Z, if pi = 3

{0}, if pi 6= 3.

Using this we can write [E(L) : 3E(L)] = 3r+number of i such that pi = 3.

Denote Γ := E(L) and write Γ[3] for the subgroup of Γ consisting of points with order dividing
3, called the 3-torsion subgroup. We can relate the size of this subgroup to [Γ: 3Γ] as follows. Let
P ∈ Γ[3] and write

3P = 3(n1P1 + · · ·nrPr +m1Q1 + · · ·msQs) = O.

This tells us that ni = 0 and 3mj ≡ 0 mod p
νj
j . Now note that if pj 6= 3, then mj = 0 and if pj = 3

we obtain that mj ≡ 0 mod p
νj−1
j . Using this we see that #Γ[3] = 3number of j such that pj = 3 and

hence we obtain the quite elegant formula for the rank:

3r =
[Γ: 3Γ]

#Γ[3]
.

We will rewrite this formula into more computable terms. Denote Γ̄ := Ē(L) and note that we

have the subgroup inclusion: 3Γ ⊆ φ̂(Γ̄) ⊆ Γ. This gives that the index [Γ: 3Γ] can be rewritten
as

[Γ: 3Γ] = [Γ: φ̂(Γ̄)][φ̂(Γ̄) : 3Γ]

= [Γ: φ̂(Γ̄)][φ̂(Γ̄) : φ̂ ◦ φ(Γ)].

Before we continue we first state a lemma from group theory.

Lemma 6.1. Let G be an abelian group and H a subgroup of finite index. Let f : G→ G′ be a

homomorphism into some group G′. Then [f(G) : f(H)] = [G : H]
[ker(f) : ker(f)∩H] .

Proof. By the standard isomorphism theorems from group theory we have:

f(G)

f(H)
∼=

G

H + ker(f)

∼=
G/H

(H + ker(f))/H

∼=
G/H

ker(f)/(H ∩ ker(f))
,

from which the desired result follows.
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Using Lemma 6.1 with G = Γ̄ and H = φ(Γ) we find

3r =
[Γ: φ̂(Γ̄)][Γ̄ : φ(Γ)]

#Γ[3] · [ker(φ̂) : ker(φ̂) ∩ φ(Γ)]
. (6.1)

In Section 5 we have already established that [Γ: φ̂(Γ̄)] = #α(Γ) and [Γ̄ : φ(Γ)] = #ᾱ(Γ̄). So lets
now focus on the denominator of the right-hand side of equation (6.1). The only elements that

get mapped to O by φ̂ are Ō and (0,±δaB̄). From Lemma 5.9 we know that (0, δaB̄) ∈ φ(Γ) if

and only if 3a2

2B
is a cube. This yields the following formula for the rank:

3r =

{
#α(Γ)·#ᾱ(Γ̄)

#Γ[3] , if 3a2

2B
is a cube,

#α(Γ)·#ᾱ(Γ̄)
3·#Γ[3] , otherwise.

(6.2)

This formula tells us that once we know enough information about the images of α and ᾱ and
about the amount of 3-torsion, then we can calculate the rank explicitly. The next theorem,
which is based on [4, Theorem 3.1], relates the image of α to the solvability of a cubic equation.
This will come in handy when doing explicit examples.

Theorem 6.2. Let L := Fq(t) and consider the elliptic curve E : y2 = x3 + a2(x− B)2, where
a,B ∈ Fq[t]. An element ū ∈ L∗/L∗3 not equal to 1, 2aB or 1

2aB modulo L∗3 is in the image of α
if and only if for every representative u ∈ L∗ of ū the homogeneous cubic

uX3 +
1

u
Y 3 − 2aBZ3 − 2aXY Z = 0

has an integral † (and hence rational) solution with Z 6= 0 and gcd(X,Y, Z) = 1.

Proof. “⇒” Let ū ∈ L∗/L∗3 be in the image of α. Recalling the definition of the map α we see
that this is equivalent to saying that there exist (x, y) ∈ E(L) such that y − a(x−B) = uz3 for
some z ∈ L∗. Set X = z2, Y = −x and Z = z, then we obtain:

uX3 +
1

u
Y 3 − 2aBZ3 − 2aXY Z =

1

u

(
u2z6 − x3 − 2aBz3u+ 2axuz3

)
=

1

u

(
u2z6 − x3 + 2uaz3 (x−B)

)
=

1

u

((
uz3 + a (x−B)

)2 − x3 − a2 (x−B)
2
)

=
1

u
(y2 − y2)

= 0.

This shows that the cubic equation is satisfied and because z ∈ L∗ we also have Z 6= 0. Moreover,
because the equation is homogeneous we can multiply through by gcd(X,Y, Z) and hence assume
that gcd(X,Y, Z) = 1.

“⇐” Let (X,Y, Z) be a solution to the cubic with Z 6= 0 and gcd(X,Y, Z) = 1. Set x = −XY
Z2

and y = uX3−(1/u)Y 3

2Z3 , then we obtain:

x3 + a2(x−B)2 =
−X3Y 3

Z6
+ a2

(
−XY
Z2

−B
)2

=
−X3Y 3 + Z2

(
−aXY − aBZ2

)2
Z6

.

†Meaning a solution with X, Y and Z in Fq[t].
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From the cubic equation we obtain that −aXY − aBZ2 = −uX3−(1/u)Y 3

2Z and hence:

x3 + a2(x−B)2 =
−X3Y 3 + (1/4)

(
uX3 + (1/u)Y 3

)2
Z6

=
−4X3Y 3 +

(
uX3 + (1/u)Y 3

)2
4Z6

= y2,

which shows that (x, y) ∈ E(L). Moreover, we have that:

α(x, y) ≡ uX3 − (1/u)Y 3

2Z3
+
aXY + aBZ2

Z2

(
mod L∗3

)
≡ 1

2Z3

(
uX3 − (1/u)Y 3 + 2aXY Z + 2aBZ3

) (
mod L∗3

)
≡ 1

2Z3
2uX3

(
mod L∗3

)
≡ u

(
X

Z

)3 (
mod L∗3

)
≡ u

(
mod L∗3

)
,

which shows that (x, y) is indeed the preimage of u under α, as desired.

With this machinery under our belt we are ready to tackle some examples. This is done in
the remaining part of this thesis.

6.2 Explicit Examples

Before we continue with some examples we should note that finding #Γ[3] is rather easy for a
given example, but not trivial to do in general. As discussed in Section 2.3, when considering
elliptic curves over Q it is known that there are at most three Q-rational points of order 3 on the
curve. However, this does not hold for function fields of the form Fq(t). We will therefore not
prove a general result regarding this, but we will deduce the amount of 3-torsion per example.
Theorem 2.9, the rational root theorem, will be of big importance in doing so.

6.2.1 An Example of Rank 0

Consider the elliptic curve E : y2 = x3 + (x − t)2 over F7(t). In this case the points with
x-coordinate zero are given by ±T = (0,±t) and the corresponding elliptic curve is given by
Ē : y2 = x3 + 22(x− 2(3t+ 2))2, with ±T̄ = (0,±2(3t+ 2)). We have that 3

4+6t is not a cube in
F7(t) and hence we will be working with the formula

3r =
#α(Γ) ·#ᾱ(Γ̄)

3 ·#Γ[3]
,

where Γ := E(F7(t)) and Γ̄ := Ē(F7(t)). Lets first have a closer look at the 3-torsion of
the elliptic curve. A point in (x, y) ∈ E(F7(t)) is of order 3 if and only if it is a root of
p3(x) = 3x4 + 4x3 + 2t2x2 + 5t2x. The obvious rational root is given by x = 0 and in fact, this
is the only rational root. To see this, suppose p

q written in lowest terms would be a solution of
p3(x)
x = 0. By the rational root theorem we get that q | 3 and p | 5t2. This yields that q ∈ {1, 3}
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and p ∈ {1, 5, t, 5t, 5t2} and a quick check shows that none of these possibilities lead to p3(x)
x = 0.

Therefore, x = 0 is the only rational root of p3(x) and we conclude that #Γ[3] = 3.

The mapping α : E(F7(t))→ F7(t)∗/F7(t)∗3 is given by

O 7→ 1
(
mod F7(t)∗3

)
,

T 7→ 2t
(
mod F7(t)∗3

)
,

−T 7→ 1

2t
≡ 4t2 ≡ 3t2

(
mod F7(t)∗3

)
,

(x, y) 7→ y − (x− t)
(
mod F7(t)∗3

)
,

where we used that 1, 2 and 3 are representatives for F∗7/F∗37 , so that 3 ≡ 4 mod F7(t)∗3. Theorem
5.6 tells us that

im(α) ⊂ {upe11 · · · p
ej
j : u ∈ F∗7/F∗37 , pi | 2t and ei ∈ {0, 1, 2}},

where the pi are monic irreducible elements. We conclude that an element z in the image of α must
be of the form z = ute1 , with e1 ∈ {0, 1, 2} and u ∈ F∗7/F∗37 . As the number of elements in F∗7/F∗37

is equal to 6
2 = 3 we get that #α(Γ) ≤ 9 and hence #α(Γ) ∈ {3, 9}. Note that t is not the image

of O or ±T under α. So whether #α(Γ) is equal to 3 or 9 depends on whether t is in the image of α.

By Theorem 6.2 we have that t ∈ im(α) if and only if the cubic

tX3 +
1

t
Y 3 − 2tZ3 − 2XY Z = 0

has an integral solution with Z 6= 0 and gcd(X,Y, Z) = 1. In fact, we claim that such a solution
does not exist. To see this first multiply the equation by t to obtain:

t2X3 + Y 3 − 2t2Z3 − 2tXY Z = 0. (?)

Suppose that (?) has an integral solution (X,Y, Z) with Z 6= 0 and gcd(X,Y, Z) = 1. Consider
the polynomial t+ 3 ∈ F7[t], this polynomial is irreducible and hence the ideal (t+ 3) is maximal,
thus prime. Moreover, we have that F7[t]/(t + 3) ∼= F7 via t 7→ 4. Reducing (?) modulo this
prime ideal yields the following cubic equation over F7:

2X3 + Y 3 − 4Z3 + 6XY Z = 0.

Checking all finite possibilities, we conclude that this equation has no nontrivial solution. Re-
calling that X, Y and Z are integral and such that gcd(X,Y, Z) = 1 we can conclude that the
original equation (?) has no nontrivial solution and hence #α(Γ) = 3.

The mapping ᾱ : Ē(F7(t))→ F7(t)∗/F7(t)∗3 is given as

Ō 7→ 1
(
mod F7(t)∗3

)
,

T̄ 7→ 4(2 + 3t) ≡ 5(t+ 3) ≡ 2(t+ 3)
(
mod F7(t)∗3

)
,

−T̄ 7→ 1

5(t+ 3)
≡ 4(t+ 3)2 ≡ 3(t+ 3)2

(
mod F7(t)∗3

)
,

(x̄, ȳ) 7→ ȳ − 2(x̄− (2 + 3t))
(
mod F7(t)∗3

)
.
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Similar reasoning as before shows that an element z ∈ im(ᾱ) has to be of the form z = u(t+ 3)e1 ,
with u ∈ F∗7/F∗37 and e1 ∈ {0, 1, 2}. So again, #ᾱ(Γ̄) ∈ {3, 9}. Note that 2 is not the image of Ō
or ±T̄ under ᾱ. So consider the following cubic equation:

2X3 +
1

2
Y 3 − 4(3t+ 2)Z3 − 4XY Z = 0

and multiply by 2 to make it integral. This yields the cubic equation:

4X3 + Y 3 + (4t+ 5)Z3 −XY Z = 0. (♦)

We use the exact same reasoning as before, but now with the prime ideal (t). Reducing (♦)
modulo (t) yields the following cubic equation over F7:

4X3 + Y 3 + 5Z3 −XY Z = 0.

Checking all possibilities we find that this has no nontrivial solutions and hence we conclude
that ᾱ(Γ̄) = 3 and hence 3r+2 = 9. We conclude that the rank of the elliptic curve is 0 and the
computer algebra system Magma [1] agrees.

6.2.2 An Example of Rank 1

Consider the elliptic curve E : y2 = x3 + 92(x− t2)2 over F19(t). In this case we have that the
points with x-coordinate zero are given by ±T = (0,±9t2) and the corresponding elliptic curve is
given by Ē : y2 = x3 + 22(x− (3t2 + 17))2, with ±T̄ = (0,±2(3t2 + 17)) = (0,±6(t+ 8)(t+ 11)).

We have that 35

6t2+15 is not a cube in F19(t) and hence the formula for the rank is

3r =
#α(Γ) ·#ᾱ(Γ̄)

3 ·#Γ[3]
,

where Γ := E(F19(t)) and Γ̄ := Ē(F19(t)). In a similar fashion as in Section 6.2.1 we deduce that
#Γ[3] = 3.

The mapping α : E(F19(t))→ F19(t)∗/F19(t)∗3 is given by

O 7→ 1
(
mod F19(t)∗3

)
,

T 7→ 18t2 ≡ t2
(
mod F19(t)∗3

)
,

−T 7→ 1

t2
≡ t

(
mod F19(t)∗3

)
,

(x, y) 7→ y − 9(x− t2)
(
mod F19(t)∗3

)
,

where we used that 1, 2 and 4 are representatives for F∗19/F∗319, so that 18 ≡ 1 mod F19(t)∗3. Via
Theorem 5.6 we obtain that an element z in the image of α must be of the form z = ute1 , with
e1 ∈ {0, 1, 2} and u ∈ F∗19/F∗319. There are 3 elements in F∗19/F∗319 and hence we get that #α(Γ) ≤ 9,
so that #α(Γ) ∈ {3, 9}. Note that 2 is not the image of O or ±T under α. So whether #α(Γ) is
equal to 3 or 9 depends on whether 2 is in the image of α.

By Theorem 6.2 we have that 2 ∈ im(α) if and only if the cubic

2X3 +
1

2
Y 3 − 2 · 9t2Z3 − 2 · 9XY Z = 0
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has an integral solution with Z 6= 0 and gcd(X,Y, Z) = 1. We claim that such a solution can not
exist. To see this first multiply the equation by 2 to obtain:

4X3 + Y 3 + 2t2Z3 + 2XY Z = 0. (♥)

Suppose that (♥) has an integral solution (X,Y, Z) with Z 6= 0 and gcd(X,Y, Z) = 1. Consider
the polynomial t+ 8 ∈ F19[t], this polynomial generates a prime ideal (t+ 8). Moreover, we have
that F19[t]/(t+ 8) ∼= F19 via t 7→ −8. Reducing (♥) modulo this prime ideal yields the following
cubic equation over F19:

4X3 + Y 3 + 14Z3 + 2XY Z = 0.

This equation has no nontrivial solution over F19. Recalling that X, Y and Z are integral and
such that gcd(X,Y, Z) = 1 we can conclude that the original equation (♥) has no nontrivial
solution and hence #α(Γ) = 3.

The mapping ᾱ : Ē(F19(t))→ F19(t)∗/F19(t)∗3 is given by

Ō 7→ 1
(
mod F19(t)∗3

)
,

T̄ 7→ 4(3t2 + 17) ≡ 12(t+ 8)(t+ 11) ≡ (t+ 8)(t+ 11)
(
mod F19(t)∗3

)
,

−T̄ 7→ 1

(t+ 8)(t+ 11)
≡ (t+ 8)2(t+ 11)2

(
mod F19(t)∗3

)
,

(x̄, ȳ) 7→ ȳ − 2(x̄− (3t2 + 17))
(
mod F19(t)∗3

)
.

Similar reasoning as before shows that an element z ∈ im(ᾱ) has to be of the form z =
u(t+ 8)e1(t+ 11)e2 , with u ∈ F∗19/F∗319 and e1, e2 ∈ {0, 1, 2}. So we have, #ᾱ(Γ̄) ∈ {3, 9, 27}. A
quick calculation shows that the point (4t+ 13, 6t2 + 10t) lies on the curve Ē and

ᾱ(4t+ 13, 6t2 + 10t) ≡ 6t2 + 10t− 2(4t+ 13− 3t2 − 17)
(
mod F19(t)∗3

)
≡ 12t2 + 2t+ 8

(
mod F19(t)∗3

)
≡ 12(t+ 8)2

(
mod F19(t)∗3

)
≡ (t+ 8)2

(
mod F19(t)∗3

)
.

Note that (t+ 8)2 is not the image of Ō, T̄ or −T̄ under ᾱ and hence #ᾱ(Γ̄) ≥ 9. Using the fact
that im(ᾱ) is a group, it is not hard to see that

W := {1, t+8, (t+8)2, (t+8)(t+11), (t+8)2(t+11)2, (t+8)2(t+11), t+11, (t+11)2, (t+8)(t+11)2}

must be contained in the image of ᾱ. Note that 2 is not among the elements of W. So consider
the following cubic equation:

2X3 +
1

2
Y 3 − 4(3t2 + 17)Z3 − 4XY Z = 0

and multiply by 2 to make it integral. This yields the cubic equation:

4X3 + Y 3 + 14(t+ 8)(t+ 11)Z3 − 8XY Z = 0. (♣)

Reducing (♣) modulo the prime ideal (t) yields the following cubic equation over F19:

4X3 + Y 3 + 16Z3 − 8XY Z = 0.

This equation has no nontrivial solutions and hence we conclude that ᾱ(Γ̄) = 9. Therefore we
must have 3r+2 = 27, so that the rank of the elliptic curve is 1. The computer algebra system
Magma agrees.
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6.3 Choice of Prime Ideals and Solvability of the Cubic

In the previous examples we miraculously came up with a prime ideal p and brute forced our
way through solving a cubic equation in Fq[t]/p. This section aims to explain in more depth the
choice of prime ideals and tries to come up with a more elegant method of determining solvability
of the cubic in Fq[t]/p. The problem, which is closely related to [4, Section 5], is about solvability
of cubic equations of the form

u1X
3 + u2Y

3 + u3Z
3 − cXY Z = 0, (6.3)

where u1, u2, u3 and c are in Fq[t]. One should note that when we talk about a solution to
a homogeneous cubic equation over Fq[t], we always mean a nontrivial solution (X,Y, Z) with
gcd(X,Y, Z) = 1. The next lemma, adapted from [4, Lemma 5.3], for which we sketch the proof,
gives us something to hold on to when searching for prime ideals.

Lemma 6.3. Consider the cubic equation given by (6.3) and recall that char(Fq) /∈ {2, 3}. Let p
be a prime ideal not dividing d := u1u2u3(27u1u2u3− c3), then the cubic has a nontrivial solution
over Fq[t]/pn for all n ∈ Z≥1.

Proof. Let p be a prime ideal not dividing d and note that the cubic equation given by (6.3) defines
a plane projective curve. We claim that reducing the coefficients modulo p yields a nonsingular
plane projective curve over Fq[t]/p. First, a point with Z = 0 is singular (See Definition 2.7) if
and only if u1X

3 + u2Y
3 = 0, 3u1X

2 = 0 and 3u2Y
2 = 0. As p - d and char(Fq) /∈ {2, 3} we have

X = Y = 0, which is not possible. Thus any singular point has Z 6= 0, so we may assume that
Z = 1. In this case we have a singular point if and only if 3u1X

2 − cY = 0, 3u2Y
2 − cX = 0

and 3u3 − cXY = 0. If there is such a singular point we can not have c = 0, otherwise u3 = 0,

but p - d. Thus Y = 3u1X
2

c , X = 3u2Y
2

c =
27u2

1u2X
4

c3 , hence either X = 0, which impossible since

otherwise X = Y = 0 hence u3 = 0, or X3 = c3

27u2
1u2

, so that 3u3 = cXY = 3u1X
3 = c3

9u1u2
. In

other words 27u1u2u3 − c3 = 0, which is also excluded as p - d. Hence the cubic is nonsingular
over Fq[t]/p.

Using the Hasse-Weil bound† [9, Theorem 4.1] we obtain that our reduced cubic curve always
has a rational point. Hensel’s lemma [8, Section IV; Lemma 1.2] then shows that this solution
lifts to a solution in Fq[t]/pn for all n ∈ Z≥1, as desired.

So in order to show that a cubic equation of the form given by equation (6.3) has no solution
we only have to look for prime ideals occurring in the factorization of d = u1u2u3(27u1u2u3 − c3).
To illustrate this, recall the example from Section 6.2.2. In this case we wanted to show that the
cubic equation

4X3 + Y 3 + 2t2Z3 + 2XY Z = 0

over F19[t] has no rational solution with Z 6= 0 and gcd(X,Y, Z) = 1. Looking at d =
8t2
(
27 · 8t2 − (−2)3

)
= 18t2(t+ 8)(t+ 11) we see that the prime ideal that worked (p = (t+ 8))

indeed shows up in the factorization of d.

After factorizing d and having a candidate prime ideal p we reduced the cubic equation
modulo p and checked all triples (X,Y, Z) in the residue field Fq[t]/p. However, this brute force
method can quite quickly get of hand as q gets bigger. The question arises is whether we can

†The Hasse-Weil bound gives a lower and upper bound for the number of rational points on algebraic
curves over finite fields.
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reduce our search for solutions. In fact, the answer to this question is in the affirmative. To see
this, consider the cubic equation over Fq of the form:

aX3 + bY 3 + cZ3 − dXY Z = 0, (6.4)

where a, b, c, d ∈ Fq. The following lemma reduces the search for solutions tremendously.

Lemma 6.4. Consider the equation given by (6.4). We have that (x, y, z) is a solution with
z 6= 0 if and only if (x/z, y/z, 1) is a solution.

Proof. For any homogeneous equation in 3 variables we have that (x, y, z) is a solution if and
only if (cx, cy, cz) is a solution for all c 6= 0.

Using Lemma 6.4 we can set Z = 1 in equation (6.4). So we end up looking for solutions to

ax3 + by3 + c− dxy = 0,

which reduces the search to q2 elements, a drastic decrease in computation time.

The study of equations of the form given by equation (6.3) can become quite elaborated. It
is therefore that we finish our study towards these type of equations. We should acknowledge
that this section did not give a proper method of deciding solvability or not, but at least it gave
us some tools on how to approach them. In fact, there is no general algorithm that determines
the solvability of the cubics we considered. There are only methods to show:

(1) that there is a solution, which means trying to find it;

(2) that there is no solution by reducing modulo powers of prime ideals.

However, some equations do not have integral (and hence rational) solutions even though they
have solutions modulo every power of a prime ideal. To conclude the study of solvability of our
cubic we should note that we either; try to find a solution, try to prove no solution exists or give
up. In the latter case we can only give bounds on the rank of an elliptic curve.

7 A Different Elliptic Curve

7.1 Defining the Mappings

Recall that in Section 5.1 we showed that we have an elliptic curve of a particular form. However,
the observant reader might have noticed that at some point we imposed the condition b 6= 0. In
fact, assuming that b = 0 yields a completely different curve. Namely the elliptic curve given by:

E : y2 = x3 + c2, (7.1)

where c is some polynomial in Fq[t]. This section is dedicated to proving that also E(Fq(t)) is
finitely generated, where E is the elliptic curve given by (7.1).

It is important to notice that we have already proven the first three properties of the Descent
theorem (Theorem 3.3) for any elliptic curve E over Fq(t) with char(Fq) /∈ {2, 3}, so we only have
to show finiteness of the index. Due to the extreme similarities with Section 5 and [3, Section
8.4] we will only state, but not prove the upcoming statements. With this having said we take a
q such that −3 is a square, write δ :=

√
−3 ∈ Fq(t) and L := Fq(t), as before. In this case we
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define the curve Ē : y2 = x3 + c̄2, with c̄ := 3δc. It is not hard to see that the curve ¯̄E is given as
¯̄E : y2 = x3 + 36c2, which is isomorphic (See Definition 2.13) to E by replacing x with 9x and
y with 27y. The points with x-coordinate 0 are points of order 3 and on E they are given as
±T = (0,±c). On Ē the points with x-coordinate 0 are given as ±T̄ = (0,±3δc). We now state
some results regarding these curves.

Theorem 7.1. Define the isogeny φ : E(L)→ Ē(L) as

±T 7→ Ō,
O 7→ Ō,

(x, y) 7→
(

1

x2

(
x3 + 4c2

)
,
y

x3

(
x3 − 8c2

))
and the isogeny φ̂ : Ē(L)→ E(L) as

±T̄ 7→ O,
Ō 7→ O,

(x̄, ȳ) 7→
(

1

9x̄2

(
x̄3 − 108c2

)
,

ȳ

27x̄3

(
x̄3 − 216c2

))
,

where L is some fixed algebraic closure of L. Then we have φ ◦ φ̂ = φ̂ ◦ φ = [3], where [3] stands
for multiplication by 3 on the elliptic curve.

Lemma 7.2. Let Î := φ(E(L)). We have the following two statement about Î:

(1) Ō ∈ Î and ±T̄ ∈ Î if and only if −1
2c is a cube.

(2) A general point (x̄, ȳ) ∈ Ē(L) not equal to ±T̄ or Ō is in Î if and only if there exists γ ∈ L
such that γ3 = ȳ − 3δc.

Similar results also hold for the image of the mapping φ̂.

Theorem 7.3. Define the mapping α : E(L)→ L∗/L∗3 as

O 7→ 1
(
mod L∗3

)
,

T 7→ 2c
(
mod L∗3

)
,

−T 7→ 1

2c

(
mod L∗3

)
,

(x, y) 7→ y − c
(
mod L∗3

)
.

The following properties regarding α are true.

(1) The mapping α is a group homomorphism.

(2) Im(α) ⊂ {upe11 · · · p
ej
j : u ∈ F∗q/F∗3q , pi | 2c and ei ∈ {0, 1, 2}}.

(3) Ker(α) = φ̂(Ē(L)).

Similar results also hold for the mapping ᾱ : Ē(L)→ L∗/L∗3.
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The proofs of these results follow a similar reasoning as the results from Section 5. Using
these results and following a similar path as done in Section 5 we indeed obtain that E(L) is
finitely generated, when −3 is perfect square in L. However, as seen in the proof of 3.2 this
assumption can be dropped by looking at E(Fq2(t)). Moreover, following the proof of Theorem
3.2 we can also deduce that E(Fq(t)) is finitely generated, when E : y2 = x3 + d · c2 with c ∈ Fq[t]
and d ∈ Fq. Assuming that −3 is a perfect square in L and that d = 1, defining Γ := E(L) and
Γ̄ := Ē(L), and recalling Section 6.1 yields the following formula for the rank:

3r =

{
#α(Γ)·#ᾱ(Γ̄)

#Γ[3] , if −1
2c is a cube,

#α(Γ)·#ᾱ(Γ̄)
3·#Γ[3] , otherwise.

(7.2)

7.2 Example of Higher Rank

In this section we will assume that d = 1 and that q ≡ 1 mod 6, so that by Lemma 5.12 we
then have that −3 is a perfect square. As turns out, this choice of q also implies that the elliptic
curve given by equation (7.1) admits an automorphism of order 3 defined over Fq(t). The next
definition precisely states what an automorphism of elliptic curves means.

Definition 7.4. Let E be an elliptic curve defined over a field K. An automorphism ρ of E is
an isomorphism (See Definition 2.13) from E to itself.

Example 7.5. Let q be a prime power such that q ≡ 1 mod 6 and let E : y2 = x3 + c2 be an
elliptic curve with c ∈ Fq[t]. Moreover, let ρ : E(Fq(t)) → E(Fq(t)) be the mapping given by

ρ(x, y) := (ωx, y), where ω is a cube root of unity and Fq(t) a fixed algebraic closure of Fq(t).
Then we have that ρ is an automorphism of order 3 defined over Fq(t).

Recall that ρ restricts to a group homomorphism from E(Fq(t)) to itself and that the notation
[1] stands for multiplication by one on an elliptic curve. In our case we have ρ3 = [1] and hence
(ρ− [1])(ρ2 + ρ+ [1]) = 0. It is clear that ρ 6= [1] and therefore ρ2 = −ρ− [1]. Consider the set
Z[ρ] given by

Z[ρ] = {a+ bρ : a, b ∈ Z} ⊂ End(E),

where End(E) is the set of all isogenies from E to E. This inclusion follows from the fact that

g : Z→ End(E),

n 7→ [n]

is an injective ring homomorphism. The following lemma will be useful for determining the rank
of E(Fq(t)).

Lemma 7.6. The set Z[ρ] = {a+ bρ : a, b ∈ Z} is a principal ideal domain.

Proof. Let ω ∈ C be such that ω2 + ω + 1 = 0. Consider the mapping

f : Z[ω]→ Z[ρ],

a+ bω 7→ a+ bρ.

The mapping f defines a ring isomorphism, and because Z[ω] is a Euclidean ring we obtain that
Z[ρ] is Euclidean ring and hence a principal ideal domain.
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The set Z[ρ] acts on E(Fq(t)) via:

Z[ρ]× E(Fq(t))→ E(Fq(t)),
(a+ bρ, (x, y)) 7→ a(x, y) + bρ(x, y),

(7.3)

where ‘+’ denotes addition on the elliptic curve and a(x, y) usual scalar multiplication by a on the
elliptic curve. This makes the Mordell-Weil group E(Fq(t)) a module over Z[ρ] and the structure
theorem for modules over principal ideal domains tells us that

E(Fq(t)) ∼= (Z[ρ])
r ⊕ T

as Z[ρ]-modules, where T is the torsion part of E(Fq(t)).

Note that when looking at the rank of E(Fq(t)) we do so considering this set as a finitely
generated abelian group and not as a Z[ρ]-module. However, we know that abelian groups are
just Z-modules and as a Z-module Z[ρ] has rank 2. So the Mordell-Weil rank† of E(Fq(t)) must
be an even integer.

In order do compute the rank explicitly we need to know when elements are in the image of
α or ᾱ. The following theorem is analogous to Theorem 6.2, but for elliptic curves of the form
E : y2 = x3 + c2.

Theorem 7.7. Let L := Fq(t) and consider the elliptic curve E : y2 = x3 + c2, where c ∈ Fq[t].
An element ū ∈ L∗/L∗3 not equal to 1, 2c or 1

2c modulo L∗3 is in the image of α if and only if for
every representative u ∈ L∗ of ū the homogeneous cubic

uX3 +
1

u
Y 3 + 2cZ3 = 0

has an integral (and hence rational) solution with Z 6= 0 and gcd(X,Y, Z) = 1.

Proof. (Recall the proof of Theorem 6.2) “⇒” Let ū ∈ L∗/L∗3 be in the image of α. Recalling
the definition of the map α we see that this is equivalent to saying that there exist (x, y) ∈ E(L)
such that y−c = uz3 for some z ∈ L∗. Setting X = z2, Y = −x and Z = z yields the desired result.

“⇐” Let (X,Y, Z) be a solution to the cubic with Z 6= 0 and gcd(X,Y, Z) = 1. Setting

x = −XY
Z2 and y = uX3−(1/u)Y 3

2Z3 yields the desired result.

Now that we have all of the necessary information we can consider a specific example. Consider
the elliptic curve E : y2 = x3 +(t(t+ 3))

2
over F13(t). We have that

√
−3 = 6 and the correspond-

ing elliptic curve is Ē : y2 = x3 + (5t(t+ 3))
2
. To ease up some notation, write Γ := E(F13(t))

and Γ̄ := Ē(F13(t)).

A point P 6= O is a point of order 3 if and only if the x-coordinate of P is a solution to

3x4 + 12t2(t+ 3)2x = 0.

A quick check using the rational root theorem shows that only x = 0 is a rational solution and
we deduce that #Γ[3] = 3. Moreover, we have that −1

2t(t+3) is not a cube in F13(t) and hence we

have the following formula for the rank:

3r+2 = #α(Γ) ·#ᾱ(Γ̄).

†Meaning the rank as a finitely generated abelian group.
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1, 2 and 4 are representatives for F∗13/F∗313 and the mapping α : E(F13(t))→ F13(t)∗/F13(t)∗3 is
given by

O 7→ 1
(
mod F13(t)∗3

)
,

T 7→ 2t(t+ 3)
(
mod F13(t)∗3

)
,

−T 7→ 4t2(t+ 3)2
(
mod F13(t)∗3

)
,

(x, y) 7→ y − t(t+ 3)
(
mod F13(t)∗3

)
,

where ±T = (0,±c) = (0,±t(t+ 3)). It is not hard to check that (t, t2 + 10t) ∈ E(F13(t)) and
that α(t, t2 + 10t) = 4t. We can conclude that #α(Γ) ≥ 9 and from Theorem 7.3 we obtain that
an element z in the image of α has to be of the form z = ute1(t+ 3)e2 . So an upper bound for
the size of the image of α is 27. Moreover, using the fact that im(α) is a group we quite easily
find that the set

{1, 2(t+ 3), 4t2(t+ 3)2, 4t2, 2t2, t2(t+ 3), t(t+ 3)2, 2(t+ 3)2, 4(t+ 3)}

has to be contained in the image of α. Now note that 2 ∈ F∗13/F∗313 is not among these elements
and is in the image of α if and only if

2X3 + (1/2)Y 3 + 2t(t+ 3)Z3 = 0

has an integral solution with Z 6= 0 and gcd(X,Y, Z) = 1. So multiply this equation by 2, which
gives us

4X3 + Y 3 + 4t(t+ 3)Z3 = 0

Reducing this equation modulo the prime ideal (t) yields

4X3 + Y 3 = 0

over F13, which has no nontrivial solution. Hence t has to divide both X and Y , and because

Z3 =
−4X3 − Y 3

4t(t+ 3)

we also get that t divides Z. However, then gcd(X,Y, Z) would not be 1, from which we conclude
that our initial equation has no nontrivial solution. We can conclude that #α(Γ) = 9 and in a
similar fashion it is found that #ᾱ(Γ̄) ∈ {9, 27}. Combining these results we obtain that the rank
of E(F13(t)) is 2 or 3, but because the rank has to be even we obtain that the rank is 2.

8 Discussion & Further Developments

Computing the rank of an elliptic curve is not an easy task. We have explored the realm of elliptic
curves over Fq(t) with char(Fq) /∈ {2, 3}, which admit a rational point of order 3. This allowed us
to rewrite the elliptic curve to the form

E : y2 = x3 +A(x−B)2, (8.1)

where A = a2 and B are both in Fq[t]. Or to the form

E : y2 = x3 + c2, (8.2)
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with c ∈ Fq[t]. In both cases we have shown that E(Fq(t)) is a finitely generated abelian group. In
fact, we managed to proof that the groups of Fq(t)-rational point on more general curves are also
finitely generated. These curves are of the form E1 : y2 = x3+e·a2(x−B)2 and E2 : y2 = x3+d·c2,
with e, d ∈ Fq and a,B, c ∈ Fq[t]. These results have been proved using an explicit descent by
3-isogeny and it gave us an explicit way of computing the rank of the group E(Fq(t)), when E is
of the form given by equation (8.1) or (8.2). In order to compute the rank of these groups we
needed a criteria on the (un)solvability of a homogeneous cubic over Fq(t). No general statement
regarding the solvability of this cubic is known and in the examples we discussed we got quite lucky
in proving unsolvability. However, some useful tools in determining this solvability have been given.

The main issue that we avoided by admitting a point of order 3 is the subject of algebraic
number theory over function fields. In fact, when we loosen the assumption that A ∈ Fq(t) \ Fq is

a perfect square in (8.1), we need to work over a field extension of the form Fq(t)(
√
A) 6∼= Fq2(t).

This gets more complicated, because we do not necessarily enjoy unique factorization as we had
with Fq[t].

Suggestions for further research include: finding similar statements as discussed in [4, Section
5], but over function fields of the form Fq(t) or proving that E(Fq(t)) is finitely generated for an
elliptic curve E, which does not necessarily admit a rational point of order 3 so that we have to
work over a field extension without having unique factorization.

A Code Snippets

1 sage: x,y,delta ,a,B = var(’x y delta a B’);

2 sage: z = y*(x^3+a^2*(x-B)^2) - 3*(x^3+a^2*(x-B)^2) *((1/3)*x-B)*delta*a -

9*y*((1/3)*x - B)^2*a^2 + 3*((1/3)*x-B)^3* delta*a^3;

3 sage: z.full_simplify ();

4 sage: k = y*(x^3 + 4*a^2*B*(x-2*B)) - (x^4 + 4*a^2*x*((1/3)*x^2 - B*x + B

^2)-x^3*((4*a^2+27*B)/9))*a*delta;

5 sage: k.full_simplify ();

Listing 1: Code used in Lemma 5.9

1 sage: x,a,B,delta = var(’x a B delta ’);

2 sage: LHS = x^3 + 4*a^2*((1/3)*x^2 -B*x+B^2);

3 sage: equation = (LHS == 0);

4 sage: solve(equation ,x)

Listing 2: Code used in Lemma 5.9
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