university of groningen

Galois groups and monic polynomials in $\mathbb{Z}[x]$ of degrees ≤ 6

Bachelor's Project Mathematics

June 2020
Student: J. Zhang
First supervisor: Prof. J. Top
Second assessor: Dr. F. Bianchi

Abstract

In this bachelor's project, I aim to describe, given a general monic polynomial with integer coefficients of degree $n \leq 6$, the Galois group of its splitting field over \mathbb{Q}. First of all, there are two situations to consider: the polynomial is irreducible or reducible. In the former case, we can use discriminant, resolvent and the subtle connection between irreducibility and transitive subgroups of S_{n}; in the latter case, we can factor the polynomial into irreducible factors of smaller degrees, explore the relation among their splitting fields and apply the results we already obtained.

Contents

1 Introduction and preliminaries 4
1.1 Galois groups, transitive groups and permutations 4
1.2 Discriminant, resultant and resolvent 6
1.3 Discussion on the reducibility of a polynomial 10
2 Polynomials of degrees of 1, 2 and 3 13
2.1 Irreducible polynomials 13
2.2 Reducible polynomials 15
2.3 Examples 16
3 Polynomials of degree of 4 18
3.1 Irreducible polynomials 18
3.2 Reducible polynomials 21
3.3 Examples 22
4 Polynomials of degree of 5 24
4.1 Irreducible polynomials 24
4.2 Reducible polynomials 33
4.3 Examples 33
5 Polynomials of degree of 6 36
5.1 Irreducible polynomials 36
5.2 Reducible polynomials 51
5.3 Examples 53

1 Introduction and preliminaries

Galois theory is a deep and rich branch of algebra named after the French mathematician Évariste Galois. In the beginning, it was introduced to solve the famous problem: does a general polynomial of degree at least 5 have an explicit formula for its roots? By works of Galois, the answer is no, because S_{n} is not solvable for all $n \geq 5$. Later, Galois theory was also found helpful in both classical and contemporary mathematics, for example, trisecting an angle and differential equations. In this project, I will attempt to explore the relationship between polynomials and the Galois groups associated with them. This helps us in understanding the polynomial in many ways, for instance, given a polynomial, if we only know one of its roots but we also know how the Galois group acts on its roots, we might be able to guess the remaining roots without having to compute them.
The restriction that we are considering monic polynomials with integer coefficients might seem harsh here. But in fact, any polynomial $f(x)=a_{n} x^{n}+\ldots+$ $a_{1} x+a_{0}$ in $\mathbb{Q}[x]$ can be transformed into a monic one in $\mathbb{Z}[x]$, and these two polynomials will have the same splitting field. First note that we can multiply the least common multiple of the denominators of a_{n}, \ldots, a_{0} so we have a polynomial in $\mathbb{Z}[x]$ that has the same zeros. Hence we may suppose $a_{n}, \ldots, a_{0} \in \mathbb{Z}$. Next, note that the following polynomial:

$$
g(x)=a_{n}^{n-1} f\left(\frac{x}{a_{n}}\right)=a_{n}^{n-1}\left(a_{n} \frac{x^{n}}{a_{n}^{n}}+a_{n-1} \frac{x^{n-1}}{a_{n}^{n-1}}+\ldots+\frac{a_{1} x}{a_{n}}+a_{0}\right)
$$

will be a monic polynomial in $\mathbb{Z}[x]$. Furthermore, let $\alpha_{1}, \ldots, \alpha_{n}$ be the zeros of $f(x)$, then $a_{n} \alpha_{1}, \ldots, a_{n} \alpha_{n}$ are the zeros of $g(x)$. Therefore they will have the same splitting field over \mathbb{Q} and their Galois groups, which are the \mathbb{Q}-automorphisms of their splitting fields, will be the same.

1.1 Galois groups, transitive groups and permutations

First, we need some preliminaries before understanding what Galois groups are about. I assume the reader is familiar with basic concepts on fields, especially field extensions.

Definition. A field extension $L \supseteq K$ is called normal if every irreducible polynomial $f(x) \in K[x]$ which has a zero in L, splits as a product of factors of degree one in $L[x]$.

Example 1.1. 1. Let $L=\mathbb{C}$ and $K=\mathbb{R}$, then $L \supseteq K$ is normal. Indeed, every $f(x) \in \mathbb{R}[x]$ has its zeros in \mathbb{C}.
2. Let $L=\mathbb{Q}(\sqrt[4]{2})$ and $K=\mathbb{Q}$, then $L \supseteq K$ is NOT normal, $x^{4}-2=0$ has a zero in L, but also has a zero $x=i \sqrt[4]{2}$ not in L.

Definition. An extension $L \supseteq K$ is called separable if every element of L is algebraic and its minimal polynomial over K is separable.

Theorem 1.1. Every algebraic extension of fields of characteristic 0 is separable.

Proof. See, for example, page 112 of [1].
Since we are concerned with algebraic extensions over \mathbb{Q}, whose characteristic is 0 , with this theorem we don't need to worry about separablility.

Definition. A K-automorphism $L \supseteq K$ is an isomorphism $\sigma: L \rightarrow L$ such that

$$
\sigma(k)=k
$$

for all $k \in K$.
Definition. The Galois group $\operatorname{Gal}(L / K)$ is the group of all K-automorphism of the normal and separable extension $L \supseteq K$. We also denote by Gal ${ }_{f}$ the Galois group of the splitting field of a separable polynomial f over a field.

Remark 1.2. Some instructive examples are included in section 2.3, which, hopefully, can provide a rough idea about Galois groups.

Theorem 1.3. Let $f(x) \in \mathbb{Z}[x]$, let L be its splitting field over \mathbb{Q} and consider $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$. Then if $a \in L$ is a zero of $f(x)$, so is $\sigma(a) \in L$.

Proof. Let $f(x)=0$, then:
$\sigma(f(x))=\sigma\left(a_{n} x^{n}+\ldots+a_{1} x+a_{0}\right)=\sigma\left(a_{n}\right)(\sigma(x))^{n}+\ldots+\sigma\left(a_{1}\right) \sigma(x)+\sigma\left(a_{0}\right)=0$.

Theorem 1.4. The Galois group of the splitting field over \mathbb{Q} of a polynomial in $\mathbb{Z}[x]$ of degree n is isomorphic to a subgroup of S_{n}

Proof. This is a direct consequence of previous theorem.
Definition. A subgroup $H \subseteq S_{n}$ is called transitive if for all $i, j \in\{1,2, \ldots, n\}$ there exists $\sigma \in H$ such that $\sigma(i)=j$

Theorem 1.5. Let L be the splitting field of a separable polynomial $f(x)$ in $\mathbb{Z}[x]$ of degree n, then $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic to a transitive subgroup of S_{n} if and only if $f(x)$ is irreducible.

Proof. Let $f(x) \in K[x]$ be irreducible and separable. By definition $f(x)$ has n distinct zeros $a_{1}, a_{2}, \ldots, a_{n} \in L$. Therefore, for all $i, j \in\{1,2, \ldots, n\}$ we can construct a \mathbb{Q}-automorphism sending a_{i} to a_{j}, hence Gal_{f} is isomorphic to a transitive subgroup of S_{n}. Conversely, suppose $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic to a transitive subgroup of S_{n}, let $h(x)$ be an irreducible factor of $f(x)$ and $a_{1}, a_{2}, \ldots, a_{n} \in L$ be the zeros of $f(x)$. Then there exists a_{i} such that $h\left(a_{i}\right)=0$, but we also have $h\left(a_{j}\right)=0$ for all j since $\operatorname{Gal}(L / \mathbb{Q})$ is transitive, which means (after possibly multiplying by a nonzero element of K) that $h=f$.

Theorem 1.6. Let H be a transitive subgroup of S_{n}, then n divides $|H|$.
Proof. Let $X=\{1, \ldots, n\}$. Take $x \in X$, we have a subgroup of H, which is called the stabilizer, defined as $\operatorname{Stab}(x)=\{h \in H: h x=x\}$.
The map

$$
\varphi: H \rightarrow X, \quad h \mapsto h(1)
$$

is surjective as H is transitive. Moreover, $H / \operatorname{Stab}(1) \rightarrow X$ is clearly a bijection and hence $n=|X|$ is a divisor of $|H|$.

Theorem 1.7. Let $f(x) \in \mathbb{Z}[x]$ of degree n be irreducible and separable and L be its splitting field over \mathbb{Q}, then n divides $|\operatorname{Gal}(L / \mathbb{Q})|$

Proof. This is the direct consequence of previous two theorems.

1.2 Discriminant, resultant and resolvent

In later sections, discriminants and resolvents will be used frequently to analyze our problem; in the meanwhile, discriminants would be difficult to compute by hand if we do not resort to resultants.

Definition. The discriminant of a polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+$ $a_{1} x+a_{0}$, where $n>1$, is defined as

$$
\Delta(f)=a_{n}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

where the α_{i} are the roots of f.
Remark 1.8. We generally do not consider discriminants for linear polynomials. In the rest of this text, mostly we will encounter monic polynomials, and in such cases $\Delta(f)=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$. Furthermore, note that $\Delta(f)=0$ if and only if f has multiple zeros. In this text we consider separable polynomials only, thus the discriminants are never zero. Moreover, $\Delta(f)$ is a symmetric polynomial in the α_{i} 's and hence it can be expressed in terms of the elementary symmetric polynomials in the α_{i} 's, which up to sign are the a_{j} / a_{n}.

Theorem 1.9. Let f be a monic, separable and irreducible polynomial in $\mathbb{Q}[x]$ of degree >1, then: $\sqrt{\Delta(f)} \in \mathbb{Q} \Leftrightarrow$ The Galois group of the splitting field of f over \mathbb{Q} consists of even permutations only.

Proof. If $\sqrt{\Delta(f)} \in \mathbb{Q}$ then it is fixed by elements of the Galois group, but $\sqrt{\Delta(f)}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$ can only be fixed by even permutations; the converse is obvious.

The following tool will be very helpful to us in computing the discriminant of a polynomial, which can be found on pages 47-48 of http://websites.math. leidenuniv.nl/algebra/ant.pdf, lecture notes by P. Stevenhagen of the University of Leiden. However, Theorem 1.10 is not proved there.

Definition. Let $g(x)=b \prod_{i=1}^{r}\left(x-\beta_{i}\right)$ and $h(x)=c \prod_{i=1}^{s}\left(x-\gamma_{i}\right)$ be polynomials with coefficients and roots in a field, then their resultant $\operatorname{Res}(f, g)$ is defined as

$$
\operatorname{Res}(g, h)=b^{s} c^{r} \prod_{i=1}^{r} \prod_{j=1}^{s}\left(\beta_{i}-\gamma_{j}\right)
$$

Theorem 1.10. Let g, h be defined as in the previous definition, then we have:

1. $\operatorname{Res}(g, h)=(-1)^{r s} \operatorname{Res}(h, g)$
2. $\operatorname{Res}(g, h)=b^{s} \prod_{i=1}^{r} h\left(\beta_{i}\right)$
3. $\operatorname{Res}(g, h)=b^{s-s_{1}} \operatorname{Res}\left(g, h_{1}\right)$, where $h_{1} \neq 0$ satisfies $h_{1} \equiv h \bmod g$, and s_{1} is the degree of h_{1}

Proof. 1. By definition, we have:

$$
\begin{aligned}
\operatorname{Res}(g, h) & =b^{s} c^{r} \prod_{i=1}^{r} \prod_{j=1}^{s}\left(\beta_{i}-\gamma_{j}\right) \\
& =(-1)^{r s} c^{r} b^{s} \prod_{j=1}^{s} \prod_{i=1}^{r}\left(\gamma_{j}-\beta_{i}\right) \\
& =(-1)^{r s} \operatorname{Res}(h, g)
\end{aligned}
$$

2. This is obvious by substituting the definition of h into the definition of $\operatorname{Res}(g, h)$.
3. $h_{1}\left(\beta_{i}\right)=h\left(\beta_{i}\right)$ as $h_{1} \equiv h \bmod g$, hence $\operatorname{Res}\left(g, h_{1}\right)=b^{s_{1}} \prod_{i=1}^{r} h_{1}\left(\beta_{i}\right)$ by property 2 , and hence

$$
\begin{aligned}
b^{s-s_{1}} \operatorname{Res}\left(g, h_{1}\right) & =b^{s-s_{1}} b^{s_{1}} \prod_{i=1}^{r} h_{1}\left(\beta_{i}\right) \\
& =b^{s} \prod_{i=1}^{r} h_{1}\left(\beta_{i}\right) \\
& =b^{s} \prod_{i=1}^{r} h\left(\beta_{i}\right) \\
& =\operatorname{Res}(g, h)
\end{aligned}
$$

Remark 1.11. In subsequent sections, we will need Res $\left(f, f^{\prime}\right)$, the importance of which is in the next theorem. Say f is of degree 4, then Res $\left(f, f^{\prime}\right)$ involves the resultant of polynomials of degree 4 and 3, and the computation can be made easier by property 3, which allows us to replace f^{\prime} by the remainder of f divided by f^{\prime}. Repeat this process until the remainder is of low degree (usually 1 or
2), so we can spot its zeros (say, α_{i}) very easily. Afterwards, we use property 1 to swap f and that remainder, and finally we can use property 2 to get a simple formula linking $\operatorname{Res}\left(f, f^{\prime}\right)$ and $\prod f\left(\alpha_{i}\right)$. For an explicit example using this theorem, refer to section 2.1 where the discriminant of a general, monic polynomial of degree 3 is calculated.

Theorem 1.12. Let $f \in F[x]$ be monic and of degree n larger than 1 , then:

$$
\Delta(f)=(-1)^{\frac{1}{2} n(n-1)} \operatorname{Res}\left(f, f^{\prime}\right)
$$

Proof. The proof of Theorem 1.12 requires new techniques, e.g. Sylvester's matrix, which are not very relevant to our problem here, thus I omit it. But the proof can be found on, for instance, pages 119-121 of [2].

Now we have a tool to determine whether Gal_{f} consists of even permutations or not, using discriminants, which can be computed using resultants. But to obtain more information on Gal_{f}, we'll also need resolvents.

Definition. Let K be a field and $f(x) \in K[x]$ be separable and of degree n. The resolvent polynomial of $f(x)$ with respect to a subgroup $G \subseteq S_{n}$ and $F\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]$ such that $G=\left\{\sigma \in S_{n}: \sigma F=F\right\}$ is the stabilizer of F, is:

$$
r_{G, F}(f)(y)=\prod_{\sigma_{i} \in S_{n} / G}\left(y-\left(\sigma_{i} F\right)\right)\left(x_{1}, \ldots, x_{n}\right), \quad x_{i} \mapsto a_{i}
$$

where σ_{i} are coset representatives of S_{n} / G and a_{i} are roots of $f(x)$.
Theorem 1.13. The resolvent polynomial r of $f(x) \in K[x]$ has its coefficients in K.

Proof. Let $\tau \in \operatorname{Gal}(L / K) \subseteq S_{n}$ where L is the splitting field of f over K, then:

$$
\tau(r)=\prod_{\sigma \in S_{n} / G}(T-(\tau \sigma F))\left(a_{1}, \ldots, a_{n}\right)=\prod_{\sigma \in S_{n} / G}(T-(\sigma F))\left(a_{1}, \ldots, a_{n}\right)=r
$$

Because if σ_{i} are representatives of different coset then so are $\tau \sigma_{i}$. Thus, r is fixed by all K-automorphisms and hence r has its coefficients in K.

Theorem 1.14. Let the resolvent polynomial $r_{G_{F}, F}(f)$ of $f(x) \in K[x]$ be separable. Then $\operatorname{Gal}(L / K)$, where L is the splitting field of f over K, is conjugate in G to a subgroup of G_{F}, the stabilizer of F in G, if and only if $r_{G, F}(f)$ has a root in K.

Proof. (\Rightarrow) Let $\sigma \in G$ such that $\sigma^{-1} \operatorname{Gal}(L / K) \sigma \subseteq G_{F}$ and let $\alpha_{1}, \ldots, \alpha_{n}$ be the zeros of $f(x)$. Then for $\tau \in \operatorname{Gal}(L / K)$ one has $\sigma^{-1} \tau \sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Hence

$$
\tau \sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

and therefore r has a root in K.

Before proving the other direction, we note a small consequence of r being separable:
Let σ_{i} be the representatives of G / G_{F} and $\sigma_{1}=e$. Then, for all $\sigma \in G$, we have $\sigma=\sigma_{i} \tau$ for some i, where $\tau \in G_{F}$. Then:

$$
\sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\sigma_{i} \tau F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\sigma_{i} F\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

which is a zero of r. Since all zeros of r are distinct, $\sigma_{i} F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ $\sigma_{1} F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ if and only if $\sigma_{i}=\sigma_{1}=e$. This means $\sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ if and only if $\sigma=\sigma_{1} \tau=\tau \in G_{F}$.
(\Leftarrow) Assume $\sigma_{i} F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K$ for some i and let $\tau \in G_{F}$. Then we have $\tau \sigma_{i} F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\sigma_{i} F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, which means $\sigma_{i}^{-1} \tau \sigma_{i} F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Since r is separable, by the discussion just before this proof, this occurs if and only if $\sigma_{i}^{-1} \tau \sigma_{i} \in G_{F}$, hence $\sigma^{-1} \operatorname{Gal}(L / K) \sigma \subseteq G_{F}$.

Remark 1.15. We can actually use Theorem 1.14 to prove Theorem 1.9. Consider $F=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and a monic, irreducible and separable polynomial of degree n in $\mathbb{Z}[x]$ which has zeros $\left\{a_{1}, \ldots, a_{n}\right\}$. Let $\sigma \in S_{n}$, then $\sigma F=\operatorname{sgn}(\sigma) F$, hence the stabilizer is precisely A_{n}. Then our resolvent polynomial:

$$
\begin{aligned}
r_{S_{n}, F}(f)(y) & =\prod_{\sigma_{i} \in S_{n} / A_{n}}\left(y-\left(\sigma_{i} F\right)\right), \quad x_{i} \mapsto a_{i} \\
& =(y-F)(y+F), \quad x_{i} \mapsto a_{i} \\
& =(y-\sqrt{\Delta})(y+\sqrt{\Delta}) \\
& =y^{2}-\Delta
\end{aligned}
$$

Note $\Delta=\prod\left(a_{i}-a_{j}\right) \neq 0$ because f is separable, hence this resolvent is separable as well. Therefore $y^{2}-\Delta$ has a solution in \mathbb{Q} if and only if $\mathrm{Gal}_{f} \subseteq A_{n}$ (up to conjugacy, but since A_{n} is a normal subgroup of S_{n}, no conjugation is needed). In fact, Theorem 1.9 does not hold for monic polynomials only. Let a_{n} be the leading coefficient of f and multiply F by a constant a_{n}^{n-1}, the above discussion holds as well after referring to the definition of the discriminant of a general polynomial.

Now I present a theorem which is sometimes much easier to use than using resolvents.

Theorem 1.16 (Dedekind's Theorem). Let $f(x)$ be a separable and irreducible polynomial of degree n in $\mathbb{Z}[x]$, and

$$
\varphi: \mathbb{Z}[x] \rightarrow \mathbb{F}_{p}[x], \quad \sum_{i=0}^{n} a_{i} x^{i} \mapsto \sum_{i=0}^{n} \overline{a_{i}} x^{i}
$$

be the map of reduction modulo a prime number p. Assume $\varphi(f)$ is also separable and has the same degree as f, and $\varphi(f)=f_{1}^{*} \ldots f_{m}^{*}$ where each f_{i}^{*} is irreducible over \mathbb{F}_{p}, then Gal_{f}, the Galois group of the splitting field of f over \mathbb{Q}, contains a permutation which is a product of cycles of lengths $\operatorname{deg}\left(f_{1}^{*}\right), \ldots \operatorname{deg}\left(f_{m}^{*}\right)$.

Proof. See, for example, Chapter VII section 2 of [3].
Remark 1.17. In this paper we are only considering monic polynomials, thus the degree is always preserved under reduction. Note that in general, if G is a transitive subgroup of S_{n} having a large index, it's impossible to conclude $\mathrm{Gal}_{f} \cong G$ using only Dedekind's Theorem, because that would be equivalent to proving that for all $p, f(x)$ factorizes into certain forms over \mathbb{F}_{p}. (See Example 4.5).

1.3 Discussion on the reducibility of a polynomial

As noted in previous sections, it is crucial to know whether a given polynomial is reducible or not before we apply theorems, thus, in this section, we explore some common ways to do that.

Theorem 1.18 (Lemma of Gauss). Let $f(x) \in \mathbb{Z}[x]$ be monic. If $g(x) \in \mathbb{Q}[x]$ is monic and divides $f(x)$, then $g(x) \in \mathbb{Z}[x]$ as well.

Proof. This is a very famous result from algebra, thus I state it without proof. The proof can be found in many textbooks, for instance, chapter 11 section 3 of [4].

Remark 1.19. Note that it means if $f(x) \in \mathbb{Z}[x]$ is monic and (non-trivially) reducible in $\mathbb{Q}[x]$, then its factors are monic (up to product with a unit) and have their coefficients in \mathbb{Z} as well. Put another way, this means the reducibility of a monic polynomial with integer coefficients over \mathbb{Q} is equivalent to its reducibility over \mathbb{Z}.

Theorem 1.20 (Eisenstein's criterion). Let $f(X)=a_{n} x^{n}+a_{n-1} x^{x-1}+\ldots+$ $a_{1} x+a_{0} \in \mathbb{Z}[x]$. If there exists a prime number p such that:

- p divides each a_{i} for $0 \leq i<n$
- p does not divide a_{n}
- p^{2} does not divide a_{0}
then $f(x)$ is irreducible over \mathbb{Q}.
Proof. See, for instance, page 404 of [4].
Remark 1.21. Note that the irreducible polynomials which satisfy the Eisenstein's criterion are only small portion of all irreducible polynomials. In a paper [5], it is shown that less than 1 percent of polynomials with at least 7 non-zero coefficients satisfy the Eisenstein's criterion; on the other hand, there are p^{n}
polynomials of degree n in $\mathbb{F}_{p}[x]$, out of which $\frac{1}{n} \sum_{d \mid n} \mu(d) p^{d}$ polynomials are irreducible (see page 588 of [6]). For example, on \mathbb{F}_{5} there are $5^{7}=78125$ polynomials of degree 5, and 11160 of them are irreducible, which accounts for a proportion much greater than 1 percent.

Theorem 1.22. Let f be a polynomial over \mathbb{Z}. If f splits into linear factors, then $\Delta(f)$, the discriminant of f, is a square in \mathbb{Z}.

Proof. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, then its discriminant is

$$
\begin{aligned}
\Delta(f) & =a_{n}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \\
& =\prod_{1 \leq i<j \leq n}\left(a_{n}^{n-1} \alpha_{i}-a_{n}^{n-1} \alpha_{j}\right)^{2}
\end{aligned}
$$

where the α_{i} are the zeros of $f(x)$. Take an arbitrary α_{i}. Construct a monic polynomial $g(x)$ in $\mathbb{Z}[x]$ such that after evaluation at $a_{n}^{n-1} \alpha_{i}$, every term has a common factor $a_{n}^{n^{2}-n-1}$:

$$
\begin{aligned}
g(x)= & x^{n}+a_{n-1} a_{n} x^{n-1}+\ldots+a_{1} a_{n}^{n^{2}-2 n} x a_{0} a_{n}^{n^{2}-n-1} \\
g\left(a_{n}^{n-1} \alpha_{i}\right)= & a_{n}^{n^{2}-n-1} \cdot a_{n} \alpha_{i}^{n}+a_{n}^{n^{2}-n-1} \cdot a_{n-1} \alpha_{i}^{n-1}+\ldots \\
& +a_{n}^{n^{2}-n-1} \cdot a_{1} \alpha_{i}+a_{n}^{n^{2}-n-1} \cdot a_{0} \\
= & a_{n}^{n^{2}-n-1} f\left(\alpha_{i}\right) \\
= & 0 .
\end{aligned}
$$

Thus $a_{n}^{n-1} \alpha_{i}$ are zeros of $g(x)$. But by Theorem 1.18, $a_{n}^{n-1} \alpha_{i}$ must be integers, hence $\Delta(f)=a_{n}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ must be square in \mathbb{Z}.
Remark 1.23. The above theorem actually holds not just for \mathbb{Z}, but also for all domains; see [7] for more information. Notice the similarity and difference with Theorem 1.9, which proved a necessary and sufficient condition about when $\Delta(f)$ is a square in \mathbb{Q}, assuming $f(x)$ is irreducible in the first place; while in our current theorem, we assumed $f(x)$ splits into linear products then we arrive at a direct consequence of this: $\Delta(f)$ is a square in \mathbb{Z}.

Theorem 1.24. Let f be a polynomial over \mathbb{Z} of degree n. If f is irreducible over \mathbb{Z}, then

$$
|\Delta(f)| \geq \frac{\pi^{\frac{n}{2}} n^{n}}{2^{n} n!}
$$

where $\Delta(f)$ is the discriminant of f.
Proof. This is a direct consequence of a theorem called Minkowski's bound or Minkowski's constant. The proof can be found, for instance, chapter V section 4 of [8].

Remark 1.25. By elementary logic $(A \Rightarrow B$ means not A or $B)$, this theorem also means that, either f is not irreducible or $|\Delta(f)| \geq \frac{\pi^{\frac{n}{2}} n^{n}}{2^{n} n!}$, which is equivalent to say $|\Delta(f)|<\frac{\pi^{\frac{n}{2}} n^{n}}{2^{n} n!} \Rightarrow f$ is reducible. This could be helpful when discussing reducibility of polynomials. However, this theorem is not a good tool to detect reducible polynomials, because the discriminants tend to be much larger than the bound. A somewhat trivial example is when $n=2$, the bound is $\pi / 2=1.57 \ldots$, consider $f(x)=x^{2}+3 x+2$ having discriminant $1<1.57$, so it must be reducible. In fact $f(x)=(x+1)(x+2)$.

2 Polynomials of degrees of 1, 2 and 3

The case of degree 1 is trivial, as there is only one subgroup of S_{1}. The case of degree 2 is similar, there are only two subgroups of S_{2}. Let $f(x)=x^{2}+a_{1} x+a_{0}$ be an arbitrary monic polynomial in $\mathbb{Z}[x]$. If its discriminant $\Delta(f)=a_{1}^{2}-4 a_{0}$ is a square in \mathbb{Q} then the zeros of $f(x),-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}$, are in \mathbb{Q} as well, hence Gal_{f} only consists of identity; otherwise its Galois group is isomorphic to S_{2}. Thus the remaining of this section will only concern polynomials of degree 3 .

2.1 Irreducible polynomials

Let $f(x)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be an arbitrary monic irreducible polynomial in $\mathbb{Z}[x]$ and L be its splitting field over \mathbb{Q}. Thus $|\operatorname{Gal}(L / \mathbb{Q})|$ divides $\left|S_{3}\right|=6$, and by Theorem $1.7,3$ divides $|\operatorname{Gal}(L / \mathbb{Q})|$, hence $|\operatorname{Gal}(L / \mathbb{Q})|=3$ or 6 . The only subgroup of S_{3} of order 3 is A_{3}, which consists of even permutations only, and S_{3} itself consists of both odd and even permutations, thus Theorem 1.9, which points out the connection between discriminant and even permutations, would be helpful here.
First, we need to calculate the discriminant of f, this can be done with the help of the resultant and Theorems 1.12 and 1.10:

$$
\begin{aligned}
\Delta(f)= & (-1)^{\frac{1}{2} 3 \cdot 2} \operatorname{Res}\left(f, f^{\prime}\right)=-\operatorname{Res}\left(f, f^{\prime}\right) \quad \text { by Thm } 1.12 \\
= & (-1)(-1)^{3 \cdot 2} \operatorname{Res}\left(f^{\prime}, f\right)=-\operatorname{Res}\left(f^{\prime}, f\right) \quad \text { by Thm } 1.10(1) \\
= & -3^{2} \cdot \operatorname{Res}\left(3 x^{2}+2 a_{2} x+a_{1},\left(\frac{2 a_{1}}{3}-\frac{2 a_{2}^{2}}{9}\right) x+a_{0}-\frac{a_{1} a_{2}}{9}\right) \quad \text { by Thm } 1.10(3) \\
= & -9(-1)^{2 \cdot 1} \cdot \operatorname{Res}\left(\left(\frac{2 a_{1}}{3}-\frac{2 a_{2}^{2}}{9}\right) x+a_{0}-\frac{a_{1} a_{2}}{9}, 3 x^{2}+2 a_{2} x+a_{1}\right) \quad \text { by Thm } 1.10(1) \\
= & -9 \cdot\left(\frac{2 a_{1}}{3}-\frac{2 a_{2}^{2}}{9}\right)^{2} \cdot\left(a_{1}+2 a_{2}\left(\frac{a_{1} a_{2}}{9}-a_{0}\right) /\left(\frac{2 a_{1}}{3}-\frac{2 a_{2}^{2}}{9}\right)\right. \\
& \left.+3\left(\left(\frac{a_{1} a_{2}}{9}-a_{0}\right) /\left(\frac{2 a_{1}}{3}-\frac{2 a_{2}^{2}}{9}\right)\right)^{2}\right) \quad \text { by Thm 1.10(2) } \\
= & -27 a_{0}^{2}-4 a_{1}^{3}+18 a_{0} a_{1} a_{2}+a_{1}^{2} a_{2}^{2}-4 a_{0} a_{2}^{3} .
\end{aligned}
$$

We can also transform $f(x)$ to a simpler polynomial in the form of $x^{3}+p x+q$, the discriminant of which is easier to compute, and it generally gives us more insight into its zeros. This will be presented below.

Write $f(x)$ in terms of its three roots, expand and compare with the original polynomial, we have:

$$
\begin{aligned}
f(x) & =\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& =x^{3}-\left(x_{1}+x_{2}+x_{3}\right) x^{2}+\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right) x-x_{1} x_{2} x_{3} \\
& =x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
\end{aligned}
$$

Note that if we substitute $x=y-\frac{a_{2}}{3}$ we have a 3 rd-degree polynomial $h(y)$ in the form as $h(y)=y^{3}+p y+q$, and the roots of h and f differ by a fixed rational constant $\frac{a_{2}}{3}$, thus the Galois groups with respect to them are the same. Writing out the process explicitly:

$$
\begin{aligned}
h(y) & =\left(y-\frac{a_{2}}{3}\right)^{3}+a_{2}\left(y-\frac{a_{2}}{3}\right)^{2}+a_{1}\left(y-\frac{a_{2}}{3}\right)+a_{0} \\
& =y^{3}-a_{2} y^{2}+\frac{1}{3} a_{2}^{2} y-\frac{1}{27} a_{2}^{3}+a_{2} y^{2}-\frac{2}{3} a_{2}^{2} y+\frac{1}{9} a_{2}^{3}+a_{1} y-\frac{1}{3} a_{1} a_{2}+a_{0} \\
& =y^{3}+\left(-\frac{1}{3} a_{2}^{2}\right) y+\left(\frac{2}{27} a_{2}^{3}-\frac{1}{3} a_{1} a_{2}+a_{0}\right) \\
& =y^{3}+p y+q
\end{aligned}
$$

Thus $p=-\frac{1}{3} a_{2}^{2}$ and $q=\frac{2}{27} a_{2}^{3}-\frac{1}{3} a_{1} a_{2}+a_{0}$.
Next, we would like to compute the discriminant of h. Let x_{1}, x_{2}, x_{3} be its roots, expand $\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$ and compare coefficients, we have:

$$
\left\{\begin{array}{c}
x_{1}+x_{2}+x_{3}=0 \\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=p \\
x_{1} x_{2} x_{3}=-q
\end{array}\right.
$$

which leads to:

$$
\begin{aligned}
\left(x_{1}-x_{2}\right)^{2} & =\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2} \\
& =x_{3}^{2}+\frac{4 q}{x_{3}}
\end{aligned}
$$

and similar results for $\left(x_{1}-x_{3}\right)^{2}$ and $\left(x_{3}-x_{2}\right)^{2}$. Thus:

$$
\begin{aligned}
\Delta= & \left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{3}-x_{2}\right)^{2} \\
= & \left(x_{3}^{2}+\frac{4 q}{x_{3}}\right)\left(x_{1}^{2}+\frac{4 q}{x_{1}}\right)\left(x_{2}^{2}+\frac{4 q}{x_{2}}\right) \\
= & \frac{\left(x_{1} x_{2} x_{3}\right)^{3}+16 q^{2}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)+4 q\left(x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+x_{3}^{3} x_{1}^{3}\right)+64 q^{3}}{x_{1} x_{2} x_{3}} \\
= & \frac{63 q^{3}+16 q^{2}\left(x_{1}^{3}+x_{2}^{3}-\left(x_{1}+x_{2}\right)^{3}\right)+4 q\left(\left(p x_{1}+q\right)\left(p x_{2}+q\right)+\right)}{x_{1} x_{2} x_{3}} \\
& +\frac{\left(p x_{1}+q\right)\left(p x_{3}+q\right)+\left(p x_{2}+q\right)\left(p x_{3}+q\right)}{x_{1} x_{2} x_{3}} \\
= & -4 p^{3}-27 q^{2}
\end{aligned}
$$

Thus, by Theorem 1.9 , if $\sqrt{\Delta} \in \mathbb{Q}$, the Galois group with respect to this polynomial consists of even permutations only, and hence it must be isomorphic to A_{3}; if $\sqrt{\Delta} \notin \mathbb{Q}$, then the Galois group is isomorphic to S_{3}.

2.2 Reducible polynomials

Let $f(x)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$ be reducible, then there are a few different cases to be considered:

- Case 1: $f(x)=(x-a)(x-b)(x-c)$ where $a, b, c \in \mathbb{Z}$

If this case happens, by Theorem 1.22, its discriminant is a square of an integer. In this case Gal_{f} is trivial as $f(x)$ has rational roots only.

- Case 2: $f(x)=\left(x^{2}+a x+b\right)(x-c)$ where $\left(x^{2}+a x+b\right)$ is irreducible over \mathbb{Q} and $a, b, c \in \mathbb{Z}$

This case can be identified when $f(x)$ is reducible and contains only one integer root. In this case, Gal_{f} is the same as the Galois group of the splitting field over \mathbb{Q} of $x^{2}+a x+b$, which has been discussed in the beginning of this section.

2.3 Examples

Example 2.1. Let $f(x)=x^{2}-3 x+2$, which does not have real zeors. Its zeros are:

$$
x=\frac{3 \pm \sqrt{17} i}{2}
$$

thus $\mathrm{Gal}_{f} \cong S_{2}$, and the action of its element is complex conjugation.
Example 2.2. Let $f(x)=x^{3}-2$, its discriminant is -108 which is not a square in \mathbb{Q}, thus $\mathrm{Gal}_{f} \cong S_{3}$.
The actions of elements in Gal_{f} can be seen intuitively by plotting its roots in the complex plane in figure 1:

Figure 1: Roots of $x^{3}-2$ in complex plane
Note $S_{3} \cong\langle\sigma, \tau\rangle$ where $\sigma^{3}=e$ and $\tau^{2}=e$, thus here σ corresponds to rotating the roots by 120 degrees and τ corresponds to flipping the roots about the x-axis.

Example 2.3. Let $f(x)=x^{3}+x^{2}-2 x-1$, its discriminant is $49=7^{2}$, thus $\operatorname{Gal}_{f} \cong A_{3} \cong \mathbb{Z}_{3}$.
The actions of elements in Gal_{f} can be seen by inspecting its three roots:

$$
\begin{aligned}
& x_{1}=\varepsilon+\varepsilon^{6} \\
& x_{2}=\varepsilon^{2}+\varepsilon^{5} \\
& x_{3}=\varepsilon^{3}+\varepsilon^{4}
\end{aligned}
$$

where ε is a primitive 7th root of unity (so $\varepsilon^{7}=1$ and $\varepsilon \neq 1$, in other words, $\varepsilon^{6}+\varepsilon^{5}+\varepsilon^{4}+\varepsilon^{3}+\varepsilon^{2}+\varepsilon+1=0$). Note that

$$
\begin{aligned}
x_{1}^{2} & =\left(\varepsilon+\varepsilon^{6}\right)^{2} \\
& =\varepsilon^{2}+\varepsilon^{12}+2 \cdot \varepsilon^{1+6} \\
& =\varepsilon^{2}+\varepsilon^{5}+2 \\
& =x_{2}+2
\end{aligned}
$$

Similarly:

$$
x_{2}^{2}=x_{3}+2, \quad x_{3}^{2}=x_{1}+2
$$

Hence the action of elements of Gal_{f} on the set of zeros is squaring and subtracting 2.

3 Polynomials of degree of 4

3.1 Irreducible polynomials

Let $f(x)$ be an arbitrary monic irreducible polynomial in $\mathbb{Z}[x]$ and L be its splitting field over \mathbb{Q}. Thus $|\operatorname{Gal}(L / \mathbb{Q})|$ divides $\left|S_{4}\right|=24$, and by Theorem 1.7, 4 divides $|\operatorname{Gal}(L / \mathbb{Q})|$, hence $|\operatorname{Gal}(L / \mathbb{Q})|=4,8,12,24$. Thus, first of all, we make a classification of these transitive subgroups, and we only need them up to conjugacy within S_{4}, as we can always re-lable the zeros of $f(x)$.

- $V_{4}=\{e,(12)(34),(13)(24),(14)(23)\}=\langle(14)(23),(12)(34)\rangle$, the Klein four-group which is normal in S_{4}.
- $D_{4}=V_{4} \cup\{(1243),(1342),(14),(23)\}=\langle(1234),(13)\rangle$, the dihedral group. In fact, there are three such subgroups in total, the other two are $V_{4} \cup$ $\{(1324),(1423),(12),(34)\}$ and $V_{4} \cup\{(1234),(1432),(13),(24)\}$ and they are all conjugate in S_{4}.
- $Z_{4} \cong\langle(1234)\rangle=\{e,(1234),(13)(24),(1432)\}$, the cyclic group of order 4. In fact there are 3 such subgroups, the remaining 2 are $\langle(1324)\rangle=$ $\{e,(1324),(12)(34),(1423)\}$ and $\langle(1243)\rangle=\{e,(1243),(14)(23),(1342)\}$, and of course they are all conjugate in S_{4}.
- A_{4}.
- S_{4}.

There is another class of subgroups of order 4, the non-normal Klein fourgroup, which is $\langle(12),(34)\rangle=\{e,(12),(34),(12)(34)\}$ (or any of the 6 subgroups conjugate to this one in S_{4}). This group is clearly not transitive because, for example, no element in it maps 1 to 3 . The above are the only classes of subgroups of order $4,8,12,24$ of S_{4} and 5 of them are transitive.
It is not hard to describe the subgroup structure of these groups, which is summarized in Figure 2 in the next page, where $G_{1} \rightarrow G_{2}$ means $G_{1} \supset G_{2}$ (in general, after possibly conjugating G_{2} inside S_{4}, but for the specific subgroups presented above no conjugation is needed).

Let $f(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$ be monic and irreducible. The discriminant of $f(x)$ can be calculated, with the help of resultant, by using Theorem 1.12 and Theorem 1.10 to be:

$$
\begin{aligned}
\Delta= & 144 a_{0}^{2} a_{2} a_{3}^{2}+18 a_{1}^{3} a_{2} a_{3}-192 a_{0}^{2} a_{1} a_{3}-6 a_{0} a_{1}^{2} a_{3}^{2}+144 a_{0} a_{1}^{2} a_{2}-4 a_{0} a_{2}^{3} a_{3}^{2} \\
& +a_{1}^{2} a_{2}^{2} a_{3}^{2}+256 a_{0}^{3}-27 a_{1}^{4}+18 a_{0} a_{1} a_{2} a_{3}^{3}-4 a_{1}^{3} a_{3}^{3}-128 a_{0}^{2} a_{2}^{2}+16 a_{0} a_{2}^{4} \\
& -4 a_{1}^{2} a_{2}^{3}-27 a_{0}^{2} a_{3}^{4}-80 a_{0} a_{1} a_{2}^{2} a_{3} .
\end{aligned}
$$

By the following command in Magma (freely available online at http://magma. maths.usyd.edu.au/calc/), we can find an $F \in \mathbb{Q}\left[x_{1}, \ldots, x_{4}\right]$ that has D_{4} as stabilizer:

Figure 2: Structure of transitive subgroups of S_{4}

Q:=Rationals();
D4:=MatrixGroup<4,Q | $[0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0]$, $[0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1]>$; InvariantsOfDegree (D4,2);

I chose $F=x_{1} x_{3}+x_{2} x_{4}$ here. The action of S_{4} on $F=x_{1} x_{3}+x_{2} x_{4}$ clearly gives three different polynomials, namely $x_{1} x_{3}+x_{2} x_{4}, x_{1} x_{2}+x_{3} x_{4}$ and $x_{1} x_{4}+x_{2} x_{3}$ (which is equivalent to say that the elements in S_{4} / D_{4} are $e,(23)$ and (34)). Hence the resolvent polynomial of $f(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ with respect to F and D_{4} equals:
$r(y)=r_{D_{4}, F}(f)(y)=\left(y-\left(\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}\right)\right)\left(y-\left(\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}\right)\right)\left(y-\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}\right)\right)$
where α_{i} are zeros of $f(x)$. Vieta's formula for $f(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+$ $a_{0}=\prod_{i=1}^{4}\left(x-\alpha_{i}\right)$ gives:

$$
\begin{aligned}
& a_{3}=-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right) \\
& a_{2}=\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{4}+\alpha_{3} \alpha_{4} \\
& a_{1}=-\left(\alpha_{1} \alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha_{4}\right) \\
& a_{0}=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}
\end{aligned}
$$

Expand $r(y)$:

$$
\begin{aligned}
r(y)= & y^{3}-\left(\left(\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}\right)+\left(\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}\right)+\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}\right)\right) y^{2} \\
& +\left(\left(\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}\right)\left(\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}\right)+\left(\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}\right)\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}\right)\right. \\
& \left.+\left(\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}\right)\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}\right)\right) y \\
& -\left(\left(\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}\right)\left(\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}\right)\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}\right)\right) \\
= & y^{3}-\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{4}+\alpha_{3} \alpha_{4}\right) y^{2} \\
& +\left(\alpha_{1}^{2} \alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{2}^{2} \alpha_{4}+\alpha_{1} \alpha_{3}^{2} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha_{4}^{2}+\alpha_{1}^{2} \alpha_{3} \alpha_{4}\right. \\
& +\alpha_{1} \alpha_{2} \alpha_{3}^{2}+\alpha_{1} \alpha_{2} \alpha_{4}^{2}+\alpha_{2}^{2} \alpha_{3} \alpha_{4}+\alpha_{1}^{2} \alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{2}^{2} \alpha_{3}+\alpha_{1} \alpha_{3} \alpha_{4}^{2} \\
& \left.+\alpha_{2} \alpha_{3}^{2} \alpha_{4}\right) y-\alpha_{1}^{3} \alpha_{2} \alpha_{3} \alpha_{4}-\alpha_{1}^{2} \alpha_{2}^{2} \alpha_{3}^{2}-\alpha_{1}^{2} \alpha_{2}^{2} \alpha_{4}^{2} \\
& -\alpha_{1} \alpha_{2}^{3} \alpha_{3} \alpha_{4}-\alpha_{1}^{2} \alpha_{3}^{2} \alpha_{4}^{2}-\alpha_{1} \alpha_{2} \alpha_{3}^{3} \alpha_{4}-\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}^{3}-\alpha_{2}^{2} \alpha_{3}^{2} \alpha_{4}^{2}
\end{aligned}
$$

Compare coefficients of the expansion with Vieta's formula, we have:

$$
r(y)=y^{3}-a_{2} y^{2}+\left(a_{1} a_{3}-4 a_{0}\right) y-a_{1}^{2}-a_{0} a_{3}^{2}+4 a_{0} a_{2}
$$

To describe the Galois group $G=G a l_{f}$ of the splitting field L over \mathbb{Q} of $f(x)$, there are a few cases to be considered.

- Case 1: $r(y)$ is irreducible over \mathbb{Q}

Since $r(y)$ is of degree 3 and is irreducible, it does not have a zero in \mathbb{Q} and moreover it is separable. Hence by Theorem 1.14, Gal_{f} cannot be a subgroup of D_{4}, so it is either A_{4} or S_{4}, and this can be checked by whether $\sqrt{\Delta} \in \mathbb{Q}$ and apply Theorem 1.9.
Alternatively, we have that both $f(x)$ and $r(y)$ are irreducible over \mathbb{Q}, so they are minimal polynomials of α_{1} and $\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4} \in L$ respectively. Thus, by the tower law, $[L: \mathbb{Q}]$ must be divisible by 3 and 4 , the degrees of $f(x)$ and $r(y)$, and hence $|G|=|\operatorname{Gal}(L / \mathbb{Q})|$ must also be divisible by 3 and 4. From the list of transitive subgroups of S_{4} we can see that only A_{4} and S_{4} satisfy this. Therefore, by Theorem 1.9, if $\sqrt{\Delta} \in \mathbb{Q}$ we have $G=A_{4}$, otherwise $G=S_{4}$.

- Case 2: $r(y)$ is reducible over \mathbb{Q}

Since $r(y)$ is of degree 3 and is reducible over \mathbb{Q}, it must has a zero $b \in \mathbb{Q}$, thus Theorem 1.14 applies here (provided $r(y)$ is separable), hence Gal_{f} must be one of D_{4}, V_{4} or Z_{4}. Next, if $\sqrt{\Delta(f)} \in \mathbb{Q}$ by Theorem 1.9 we have $G a l_{f} \subseteq A_{4}$, and out of V_{4}, Z_{4} and D_{4} only $V_{4}=\{e,(12)(34),(13)(24),(14)(23)\}$ satisfies this, thus in this case $G a l_{f}=V_{4}$.

Now assume $\sqrt{\Delta(f)} \notin \mathbb{Q}$. Without loss of generality, let the zero $b=\alpha_{1} \alpha_{2}+$ $\alpha_{3} \alpha_{4} \in \mathbb{Q}$ (as we can always re-label the α_{i} to make this happen), by using

Vieta's formula mentioned before, it can be shown that :

$$
\begin{aligned}
4 b-a_{3}^{2}-4 a_{2}= & 4\left(\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}\right)-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)^{2} \\
& -4\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{4}+\alpha_{3} \alpha_{4}\right) \\
= & 4 \alpha_{1} \alpha_{2}+4 \alpha_{3} \alpha_{4}-\left(2 \alpha_{1} \alpha_{2}+2 \alpha_{1} \alpha_{3}+2 \alpha_{1} \alpha_{4}+\alpha_{1}^{2}+\alpha_{2}^{2}\right. \\
& \left.+2 \alpha_{2} \alpha_{3}+\alpha_{3}^{2}+2 \alpha_{2} \alpha_{4}+2 \alpha_{3} \alpha_{4}+\alpha_{4}^{2}\right)-4 \alpha_{1} \alpha_{2} \\
& -4 \alpha_{1} \alpha_{3}-4 \alpha_{2} \alpha_{3}-4 \alpha_{1} \alpha_{4}-4 \alpha_{2} \alpha_{4}-4 \alpha_{3} \alpha_{4} \\
= & \alpha_{1}^{2}+2 \alpha_{1} \alpha_{2}-2 \alpha_{1} \alpha_{3}-2 \alpha_{1} \alpha_{4}+\alpha_{2}^{2}+\alpha_{3}^{2} \\
& -2 \alpha_{2} \alpha_{3}+\alpha_{4}^{2}+2 \alpha_{3} \alpha_{4}-2 \alpha_{2} \alpha_{4} \\
= & \left(\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}\right)^{2}
\end{aligned}
$$

Thus we have:

$$
\sqrt{4 b+a_{3}^{2}-4 a_{2}}=\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}
$$

Consider $\sqrt{\Delta(f)\left(4 b+a_{3}^{2}-4 a_{2}\right)}=\sqrt{\Delta(f)}\left(\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{1}\right)$, if this expression lies in \mathbb{Q} then elements of G must fix it, and out of the two remaining choices D_{4} and Z_{4} only the latter one does so, because (1324) is a generator of Z_{4} (up to conjugacy), and:

$$
\left\{\begin{array}{l}
(1324) \sqrt{\Delta(f)}=-\sqrt{\Delta(f)} \\
(1324)\left(\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}\right)=\alpha_{3}+\alpha_{4}-\alpha_{2}-\alpha_{1}=-\left(\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}\right)
\end{array}\right.
$$

Therefore (1324) fixes $\sqrt{\Delta(f)}\left(\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}\right)=\sqrt{\Delta(f)\left(4 b+a_{3}^{2}-4 a_{2}\right)}$. Hence if $\sqrt{\Delta(f)\left(4 b+a_{3}^{2}-4 a_{2}\right)} \in \mathbb{Q}$ then $G a l_{f}=Z_{4}$, otherwise $G a l_{f}=D_{4}$. The previous argument fails when $4 b+a_{3}^{2}-4 a_{2}=0$, in this case, we use a similar expression

$$
b^{2}-4 a_{0}=\left(\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}\right)^{2}-4 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}=\left(\alpha_{1} \alpha_{2}-\alpha_{3} \alpha_{4}\right)^{2}
$$

and proceed the same way, it's easy to see that if $\sqrt{\Delta(f)\left(b^{2}-4 a_{0}\right)} \in \mathbb{Q}$ then $G a l_{f}=Z_{4}$, otherwise $G a l_{f}=D_{4}$.

Remark 3.1. To differentiate whether $G a l_{f}$ is isomorphic to D_{4} or Z_{4}, various other methods exist, e.g. Dedekind's Theorem 1.16 or another resolvent with respect to Z_{4}. The end of section 4.1 explores such possibilities, where we have to find a way to differentiate D_{5} or Z_{5}.

3.2 Reducible polynomials

There are several cases to be considered:

- Case 1: f splits into linear factors in $\mathbb{Q}[x]$

If this case happens, by Theorem 1.22, its discriminant is a square of an integer. In this case the Galois group is simply the identity, as it only has rational roots.

- Case 2: f has only one irreducible factor of degree 2 or 3

In this case, $f(x)=(x-a)(x-b) g(x)$ or $f(x)=(x-a) h(x)$ where $g(x)$ and $h(x)$ are irreducible over \mathbb{Q} and are of degrees 2 and 3 respectively. Then clearly $\mathrm{Gal}_{f} \cong \mathrm{Gal}_{g}$ or $\mathrm{Gal}_{f} \cong \mathrm{Gal}_{h}$ and we can apply results we already have.

- Case 3: f has two irreducible factors of degree 2

Write $f(x)=g(x) h(x)$, where $g(x)$ and $h(x)$ are irreducible over \mathbb{Q} and are of degrees 2. Let L_{f}, L_{g} and L_{h} denote the splitting field of $f(x), g(x)$ and $h(x)$ over \mathbb{Q} respectively. If $h(x)$ splits in $L_{g}[x]$, then $L_{f}=L_{g}$ and hence $G a l_{f}=G a l_{g}=S_{2}$. Otherwise, L_{f} is the same field as $L_{g} \supset L_{h} \supset \mathbb{Q}$ where \supset denotes field extensions of degree 2 , and hence

$$
G a l_{f}=G a l_{g} \times G a l_{h}=S_{2} \times S_{2} \cong V_{4}
$$

The case in which $G a l_{f} \cong S_{2}$, i.e. $g(x)$ and $h(x)$ share a common splitting field, can be identified by the following theorem.

Theorem 3.2. Let $f(x)=g(x) h(x), L_{g}$ and L_{h} defined as above. Then $h(x)$ splits in L_{g} if and only if $\Delta(g) \Delta(h)$ is a square in \mathbb{Q}.

Proof. Write $g(x)=x^{2}+a x+b, h(x)=x^{2}+c x+d \in \mathbb{Z}[x]$ for the irreducible factors (they have to be of this form by Lemma of Gauss 1.18). Then $L_{g}=$ $\mathbb{Q}\left(\sqrt{a^{2}-4 b}\right)$ which has a basis $\left\{1, \sqrt{a^{2}-4 b}\right\}$. If $h(x)$ splits in $L_{g}[x]$, then there must exist $q_{1}, q_{2} \in \mathbb{Q}$ such that:

$$
\begin{aligned}
& \sqrt{c^{2}-4 d}=q_{1}+q_{2} \sqrt{a^{2}-4 b} \\
\Rightarrow \quad & \sqrt{c^{2}-4 d}-q_{2} \sqrt{a^{2}-4 b}=q_{1} \\
\Rightarrow \quad & c^{2}-4 d+q_{2}^{2}\left(a^{2}-4 b\right)-2 q_{2} \sqrt{c^{2}-4 d} \sqrt{a^{2}-4 b}=q_{1}^{2}
\end{aligned}
$$

which holds if and only if $\sqrt{c^{2}-4 d} \sqrt{a^{2}-4 b} \in \mathbb{Q}$.

3.3 Examples

We use the following command in Mathematica:

```
IrreduciblePolynomialQ[x^4+a3 x^3+a2 x^2+a1 x+a0]
d=256 a0^3-27 a1^4+144 a0 a1^2 a2-128 a0^2 a2^2-4 a1^2 a2^3
+16 a0 a2^4-192 a0^2 a1 a3+18 a1^3 a2 a3-80 a0 a1 a2^2 a3
-6 a0 a1^2 a3^2+144 a0^2 a2 a3^2+a1^2 a2^2 a3^2-4 a0 a2^3 a3^2
-4 a1^3 a3^3+18 a0 a1 a2 a3^3-27 a0^2 a3^4;
Sqrt [d]
theta:=y^3 -a2 y^2 +(a1 a3-4a0) y-a1^2 -a3^2 a0 +4 a2 a0
```

```
Factor[theta]
f=4 beta - a3^2 -4a2
Sqrt[d f]
```

This command except for the last two lines, given integer values a_{3}, \ldots, a_{0}, returns whether $f(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ is irreducible, $\sqrt{\Delta(f)}$, the resolvent polynomial and its factorization. If the resolvent has a unique zero in \mathbb{Q}, set this zero to be β and run the last two lines.

Example 3.1. Let $f(x)=x^{4}+2 x^{3}+4 x^{2}+6 x+8$ which is irreducible, then $\sqrt{\Delta(f)}=4 \sqrt{2685} \notin \mathbb{Q}$, and the resolvent polynomial $\theta(y)=60-20 y-4 y^{2}+y^{3}$ which is irreducible over \mathbb{Q}, hence Case 1 in Section 3.1 applies and $\operatorname{Gal}_{f} \cong S_{4}$.

Example 3.2. Let $f(x)=x^{4}+8 x+12$ which is irreducible, then $\sqrt{\Delta(f)}=$ $576 \in \mathbb{Q}$, and the resolvent polynomial $\theta(y)=-64-48 y+y^{3}$ which is irreducible over \mathbb{Q}. Hence Case 1 in Section 3.1 applies and $\mathrm{Gal}_{f} \cong A_{4}$
Example 3.3. Let $f(x)=x^{4}+4 x^{2}+5$ which is irreducible, then $\sqrt{\Delta(f)}=$ $16 \sqrt{5} \notin \mathbb{Q}$, and the resolvent polynomial $\theta(y)=(-4+y)\left(-20+y^{2}\right)$ which has a unique zero $y=4$ in \mathbb{Q} and is clearly separable. Set $\beta=4$ and run the 2nd part of command, we have $4 \beta+a_{3}^{2}-4 a_{2}=0$ so we cannot use $\sqrt{\Delta\left(4 \beta+a_{3}^{2}-4 a_{2}\right)}$ here. But $\beta+a_{3}^{2}-4 a_{0}=-4 \neq 0$, and $\sqrt{\Delta\left(\beta+a_{3}^{2}-4 a_{0}\right)}=32 \sqrt{5} i \notin \mathbb{Q}$, thus Case 2 in Section 3.1 applies and $\mathrm{Gal}_{f} \cong D_{4}$.

Example 3.4. Let $f(x)=x^{4}+1$ which is irreducible, then $\sqrt{\Delta(f)}=16 \in \mathbb{Q}$, and the resolvent polynomial $\theta(y)=y(-2+y)(2+y)$ which splits into linear factors over \mathbb{Q}. Hence Case 2 in Section 3.1 applies and $\mathrm{Gal}_{f} \cong V_{4}$

Example 3.5. Let $f(x)=x^{4}+3 x^{3}+9 x^{2}+27 x+81$ which is irreducible, then $\sqrt{\Delta(f)}=3645 \sqrt{5} \notin \mathbb{Q}$, and the resolvent polynomial $\theta(y)=(-18+y)(-81+$ $9 y+y^{2}$) which has a unique zero $y=18$ in \mathbb{Q} and is clearly separable. Set $\beta=18$ and run the 2nd part of commmand, we have $4 \beta+a_{3}^{2}-4 a_{2}=27 \neq 0$ and $\sqrt{\Delta\left(4 \beta+a_{3}^{2}-4 a_{2}\right)}=10935 \sqrt{15} \notin \mathbb{Q}$, thus Case 2 in Section 3.1 applies and $\mathrm{Gal}_{f} \cong Z_{4}$.

4 Polynomials of degree of 5

4.1 Irreducible polynomials

Let $f(x)$ be an arbitrary monic and irreducible polynomial in $\mathbb{Z}[x]$ and L be its splitting field over \mathbb{Q}. Thus $|\operatorname{Gal}(L / \mathbb{Q})|$ divides $\left|S_{5}\right|=120$, and by Theorem 1.7 since $f(x)$ is irreducible in $\mathbb{Q}[x]$, moreover 5 divides $|\operatorname{Gal}(L / \mathbb{Q})|$. Hence $|\operatorname{Gal}(L / \mathbb{Q})|$ is one of $5,10,15,20,30,40,60,120$. Thus, first of all, we would like to make a list of the transitive subgroups, of S_{5} (again, up to conjugacy):

- $Z_{5} \cong\langle(12345)\rangle=\{e,(12345),(13524),(14253),(15432)\}$, the cyclic group of order 5. Subgroups of 5 (a prime number) must be cyclic, thus Z_{5} is the only kind of subgroup of order 5 up to conjugacy.
- $D_{5}=\langle(12345),(14)(23)\rangle$, the dihedral group of order 10. Furthermore, a subgroup of order 10 must contain an element of order 2 and an element of order 5 by Cauchy's theorem, the latter can only be a 5 -cycle and the former can only be either a transposition or the form of $(a b)(c d)$. If it's a transposition we get a group of order larger than 10 (in fact, $\left.S_{5}=\{\langle(12345),(12)\rangle\}\right)$; if it's $(\mathrm{ab})(\mathrm{cd})$ we get D_{5}. Thus D_{5} is the only kind of subgroup of order 10 up to conjugacy.
- $G A(1,5)=\langle(12345),(1243)\rangle$, the general affine group of order 20. There are 6 such subgroups and all are conjugate in S_{5}. For more information on affine groups, see, for example, page 27 of [9].
- A_{5}.
- S_{5}.

The uniqueness of these transitive subgroups are proved by the following theorem.

Theorem 4.1. Let G be a transitive subgroup of S_{5}, then G is conjugate to one of the above groups.

Proof. 5 must divide the order of G, thus G must contain a 5-cycle (abcde), furthermore G contains $Z_{5} \cong\langle(a b c d e)\rangle$ as a subgroup, which is also a Sylow-5 group. By Sylow's theorem, the number of Sylow-5 groups as subgroups in G is equal to $1 \bmod 5$, and it divides $\# G$. Thus either G has exactly 1 or exactly 6 subgroups of order 5 (in the latter case all 5 -cycles in S_{5} are in G).

- Case 1: G has exactly 6 subgroups of order 5 .

Note that in this case, since all 5 -cycles are contained, all 3-cycles in S_{5} can also be obtained via:

$$
(i j k)=(l i k j m)(j i k l m), \quad i, j, k, l, m=1,2,3,4,5
$$

Hence G contains A_{5}, so it is either A_{5} or S_{5}. The fact that A_{n} is generated by the 3 -cyclesin S_{n} is a well-known fact in group theory.

- Case 2: G has exactly 1 subgroup of order 5 .

Without loss of generality, let (12345) be the generator of this subgroup. Note that, for all $g \in G$:

$$
g\langle(12345)\rangle g^{-1}=\langle(12345)\rangle
$$

hence G is a subgroup of the normaliser

$$
N(\langle(12345)\rangle)=\left\{\sigma\langle(12345)\rangle \sigma^{-1}=\langle(12345)\rangle, \sigma \in S_{5}\right\}
$$

On page 414, lemma 14.1.2 of [1], it is proved that $N=G A(1,5)$ (in fact, it's proved there that in $S_{p}, N(\langle(12 \ldots p)\rangle)=G A(1, p)$, where p is a prime). Transitive subgroups of $G A(1,5)$ must be of order 5,10 or 20 , in the discussion in the beginning of this section, we saw that they can only be Z_{5}, D_{5} and $G A(1,5)$ and hence G must be conjugate to one of them.
$G A(1,5)$ is the group of maps $i \mapsto c i+d$ where $c, d \in \mathbb{F}_{5}$ and $c \neq 0$. It is generated by translation by 1 and multiplication by 2 which correspond to (12345) and (1243) respectively. Note that $G A(1,5) \cap A_{5}=\langle(12345),(14)(23)\rangle=$ D_{5}, because:

$$
\begin{aligned}
G A(1,5) \cap A_{5}= & \{e,(12345),(13524),(14253),(15432)\} \\
& \cup\{(14)(23),(15)(24),(25)(34),(12)(35),(13)(45)\} \\
= & \left\{e, a, a^{2}, a^{3}, a^{4}, b, a b, a^{2} b, a^{3} b, a^{4} b\right\}
\end{aligned}
$$

where $a=(12345)$ and $b=(14)(23)$.
Remark 4.2. This can also be proved using the sign homomorphism $G A(1,5) \rightarrow$ $\{ \pm 1\}$, of which the kernel is a subgroup of order 10 consisting of the even permutations in $G A(1,5)$. In our discussion in the beginning of this section, we saw that D_{5} is the only subgroup (up to conjugacy) of S_{5} of order 10.

Hence, the connection between the 5 transitive subgroups can be described by Figure 3 in the next page, where $G_{1} \rightarrow G_{2}$ means $G_{1} \supseteq G_{2}$ (after possibly conjugating G_{2}):
Thus, one way to solve our problem could be: first use a resolvent polynomial whose stabilizer is $G A(1,5)$, then consider whether the discriminant is a square in \mathbb{Q} or not, if it is, then the Galois group is a subset of A_{5}. In this text, we use $h=u^{2}$, where

$$
u=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{1} x_{5}-x_{1} x_{3}-x_{3} x_{5}-x_{2} x_{5}-x_{2} x_{4}-x_{1} x_{4}
$$

It is clear that u^{2} is fixed by $G A(1,5)=\langle(12345),(1243)\rangle$, thus we have $\operatorname{Stab}\left(u^{2}\right) \supseteq G A(1,5)$. On the other hand, elements of $\operatorname{Stab}\left(u^{2}\right)$ must belong to one of the 5 transitive subgroups of S_{5} mentioned earlier; many elements in A_{5} and S_{5}, for example (123) $\in A_{5} \subset S_{5}$, do not fix u^{2} while the generators of $G A(1,5)$ do, thus $\operatorname{Stab}\left(u^{2}\right) \subseteq G A(1,5)$ hence we have equality.

Figure 3: Structure of transitive subgroups of S_{5}

There are 6 coset representatives in $S_{5} / G A(1,5):(1),(123),(234),(345),(145)$ and (125), hence the resolvent polynomial $\theta(y)$ of $f(x)=x^{5}+a_{4} x^{4}+a_{3} x^{3}+$ $a_{2} x^{2}+a_{1} x+a_{0}$, with respect to $h\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$ and $G A_{1,5} \subset S_{5}$ is:

$$
\begin{aligned}
\theta_{G A(1,5), h}(y) & =\prod_{\tau \in S_{5} / G A(1,5)}(y-\tau h)\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right), \quad x_{i} \mapsto \alpha_{i} \\
& =\prod_{i=1}^{6}\left(y-\tau_{i} h\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right), \quad x_{i} \mapsto \alpha_{i} \\
& =\prod_{i=1}^{6}\left(y-\tau_{i} h\right)\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)
\end{aligned}
$$

where τ_{i} are the six coset representatives and α_{i} are the roots of $f(x)=x^{5}+$ $a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. For sake of simplicity we'll write $\theta(y)$ instead of $\theta_{G A(1,5), h}(y)$ from now on.
Note that if we define a new polynomial

$$
\Gamma(y)=\prod_{i=1}^{6}\left(y-\tau_{i} u\right)
$$

then $\theta(y)$ can be calculated with the help of $\Gamma(y)$:

$$
\begin{aligned}
\theta\left(y^{2}\right) & =\prod_{i=1}^{6}\left(y^{2}-\tau_{i} h\right) \\
& =\tau_{i} \prod_{i=1}^{6}\left(y^{2}-h\right) \quad\left(\text { as } \tau_{i} \in S_{5} \text { do not act on the indeterminate } y\right) \\
& =\tau_{i} \prod_{i=1}^{6}\left(y^{2}-u^{2}\right) \\
& =\tau_{i} \prod_{i=1}^{6}(y-u)(y+u) \\
& =(-1)^{6} \prod_{i=1}^{6}\left(y-\tau_{i} u\right)\left(-y-\tau_{i} u\right) \\
& =\Gamma(y) \Gamma(-y)
\end{aligned}
$$

followed by replacing y^{2} by y. The product ending up having even powers of y only is a guaranteed result, as polynomials in $R[x]$ in the form $g(x) g(-x)$ must be invariant under the change of sign of x, where R is commutative.

Remark 4.3. In this section, as in the previous one, we will need some results that are too complicated to work out by hand, (for example, determining whether the resolvent has a root in \mathbb{Q} and the explicit formula of the discriminant of a general quintic), and I would like to leave them to computer programs (e.g. Mathematica) where appropriate.

In Mathematica, define the $6 u$ as:

```
u1 := x1 x2 + x2 x3 + x3 x4 + x4 x5 + x1 x5 - x1 x3 - x3 x5 - x2 x5 -
    x2 x4 - x1 x4
u2 := u1 /. {x1 -> x2, x2 -> x3, x3 -> x1}
u3 := u1 /. {x2 -> x3, x3 -> x4, x4 -> x2}
u4 := u1 /. {x3 -> x4, x4 -> x5, x5 -> x3}
u5 := u1 /. {x1 -> x4, x4 -> x5, x5 -> x1}
u6 := u1 /. {x1 -> x2, x2 -> x5, x5 -> x1}
```

Then run the following:

```
Eliminate[{Gamma== (y - u1) (y - u2) (y - u3) (y - u4) (y - u5) (y - u6),
    e1 == x1 + x2 + x3 + x4 + x5,
    e2 == x1 x2 + x1 x3 + x1 x4 + x1 x5 + x2 x3 + x2 x4 + x2 x5 +
        x3 x4 + x3 x5 + x4 x5,
    e3 == x1 x2 x3 + x1 x2 x4 + x1 x2 x5 + x1 x3 x4 + x1 x3 x5 +
        x1 x4 x5 + x2 x3 x4 + x2 x3 x5 + x2 x4 x5 + x3 x4 x5,
    e4 == x1 x2 x3 x4 + x1 x2 x3 x5 + x1 x2 x4 x5 + x1 x3 x4 x5 +
        x2 x3 x4 x5,
    e5 == x1 x2 x3 x4 x5}, {x1, x2, x3, x4, x5}]
```

By the result and the expression for $\sqrt{\Delta}$, we have:

$$
\Gamma(y)=y^{6}+B_{2} y^{4}+B_{4} y^{2}+B_{6}-2^{5} \sqrt{\Delta} y
$$

where Δ is the discriminant of $f(x)=x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$,

$$
\begin{aligned}
B_{2}= & 8 \sigma_{1} \sigma_{3}-3 \sigma_{2}^{2}-20 \sigma_{4} \\
B_{4}= & 3 \sigma_{2}^{4}-16 \sigma_{1} \sigma_{2}^{2} \sigma_{3}+16 \sigma_{1}^{2} \sigma_{3}^{2}+16 \sigma_{2} \sigma_{3}^{2}+16 \sigma_{1}^{2} \sigma_{2} \sigma_{4}-8 \sigma_{2}^{2} \sigma_{4} \\
& -112 \sigma_{1} \sigma_{3} \sigma_{4}+240 \sigma_{4}^{2}-64 \sigma_{1}^{3} \sigma_{5}+240 \sigma_{1} \sigma_{2} \sigma_{5}-400 \sigma_{3} \sigma_{5} \\
B_{6}= & 8 \sigma_{1} \sigma_{2}^{4} \sigma_{3}-\sigma_{2}^{6}-16 \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}^{2}-16 \sigma_{2}^{3} \sigma_{3}^{2}+64 \sigma_{1} \sigma_{2} \sigma_{3}^{3}-64 \sigma_{3}^{4} \\
& -16 \sigma_{1}^{2} \sigma_{2}^{3} \sigma_{4}+28 \sigma_{2}^{4} \sigma_{4}+64 \sigma_{1}^{3} \sigma_{2} \sigma_{3} \sigma_{4}-112 \sigma_{1} \sigma_{2}^{2} \sigma_{3} \sigma_{4} \\
& -128 \sigma_{1}^{2} \sigma_{3}^{2} \sigma_{4}+224 \sigma_{2} \sigma_{3}^{2} \sigma_{4}-64 \sigma_{1}^{4} \sigma_{4}^{2}+224 \sigma_{1}^{2} \sigma_{2} \sigma_{4}^{2} \\
& -176 \sigma_{2}^{2} \sigma_{4}^{2}-64 \sigma_{1} \sigma_{3} \sigma_{4}^{2}+320 \sigma_{4}^{3}+48 \sigma_{1} \sigma_{2}^{3} \sigma_{5}-192 \sigma_{1}^{2} \sigma_{2} \sigma_{3} \sigma_{5} \\
& -80 \sigma_{2}^{2} \sigma_{3} \sigma_{5}+640 \sigma_{1} \sigma_{3}^{2} \sigma_{5}+384 \sigma_{1}^{3} \sigma_{4} \sigma_{5}-640 \sigma_{1} \sigma_{2} \sigma_{4} \sigma_{5} \\
& -1600 \sigma_{3} \sigma_{4} \sigma_{5}-1600 \sigma_{1}^{2} \sigma_{5}^{2}+4000 \sigma_{2} \sigma_{5}^{2}
\end{aligned}
$$

and σ_{i} are elementary symmetric polynomials. Now

$$
\begin{aligned}
\theta\left(y^{2}\right) & =\Gamma(y) \Gamma(-y) \\
& =\left(y^{6}+B_{2} y^{4}+B_{4} y^{2}+B_{6}\right)^{2}-2^{10} \Delta \cdot y^{2}
\end{aligned}
$$

and replace y^{2} by y, we have

$$
\theta(y)=\left(y^{3}+B_{2} y^{2}+B_{4} y+B_{6}\right)^{2}-2^{10} \Delta \cdot y
$$

After evaluation $x_{i} \mapsto \alpha_{i}$, we also have $\sigma_{i} \mapsto a_{i} \in \mathbb{Z}$ and hence the resolvent $\theta(y) \in \mathbb{Z}[y]$ indeed, which can also be inferred from Theorem 1.13.
We could use Theorems 1.10 and 1.12 to compute Δ explicitly, but it's too much of work to do polynomial division manually, so we can use tools like Mathematica or Maple to do it. In Mathematica, run

Discriminant $\left[x^{\wedge} 5+a 4 x^{\wedge} 4+a 3 x^{\wedge} 3+a 2 x^{\wedge} 2+a 1 x+a 0, x\right]$
we have:

$$
\begin{aligned}
\Delta= & 256 a_{4}^{5} a_{0}^{3}-192 a_{4}^{4} a_{3} a_{1} a_{0}^{2}-128 a_{4}^{4} a_{2}^{2} a_{0}^{2}+144 a_{4}^{4} a_{2} a_{1}^{2} a_{0}-27 a_{4}^{4} a_{1}^{4}+144 a_{4}^{3} a_{3}^{2} a_{2} a_{0}^{2} \\
& -6 a_{4}^{3} a_{3}^{2} a_{1}^{2} a_{0}-80 a_{4}^{3} a_{3} a_{2}^{2} a_{1} a_{0}+18 a_{4}^{3} a_{3} a_{2} a_{1}^{3}-1600 a_{4}^{3} a_{3} a_{0}^{3}+16 a_{4}^{3} a_{2}^{4} a_{0}-4 a_{4}^{3} a_{2}^{3} a_{1}^{2} \\
& +160 a_{4}^{3} a_{2} a_{1} a_{0}^{2}-36 a_{4}^{3} a_{1}^{3} a_{0}-27 a_{4}^{2} a_{3}^{4} a_{0}^{2}+18 a_{4}^{2} a_{3}^{3} a_{2} a_{1} a_{0}-4 a_{4}^{2} a_{3}^{3} a_{1}^{3}-4 a_{4}^{2} a_{3}^{2} a_{2}^{3} a_{0} \\
& +a_{4}^{2} a_{3}^{2} a_{2}^{2} a_{1}^{2}+1020 a_{4}^{2} a_{3}^{2} a_{1} a_{0}^{2}+560 a_{4}^{2} a_{3} a_{2}^{2} a_{0}^{2}-746 a_{4}^{2} a_{3} a_{2} a_{1}^{2} a_{0}+144 a_{4}^{2} a_{3} a_{1}^{4} \\
& +24 a_{4}^{2} a_{2}^{3} a_{1} a_{0}-6 a_{4}^{2} a_{2}^{2} a_{1}^{3}+2000 a_{4}^{2} a_{2} a_{0}^{3}-50 a_{4}^{2} a_{1}^{2} a_{0}^{2}-630 a_{4} a_{3}^{3} a_{2} a_{0}^{2}+24 a_{4} a_{3}^{3} a_{1}^{2} a_{0} \\
& +356 a_{4} a_{3}^{2} a_{2}^{2} a_{1} a_{0}-80 a_{4} a_{3}^{2} a_{2} a_{1}^{3}+2250 a_{4} a_{3}^{2} a_{0}^{3}-72 a_{4} a_{3} a_{2}^{4} a_{0}+18 a_{4} a_{3} a_{2}^{3} a_{1}^{2} \\
& -2050 a_{4} a_{3} a_{2} a_{1} a_{0}^{2}+160 a_{4} a_{3} a_{1}^{3} a_{0}-900 a_{4} a_{2}^{3} a_{0}^{2}+1020 a_{4} a_{2}^{2} a_{1}^{2} a_{0}-192 a_{4} a_{2} a_{1}^{4} \\
& -2500 a_{4} a_{1} a_{0}^{3}+108 a_{3}^{5} a_{0}^{2}-72 a_{3}^{4} a_{2} a_{1} a_{0}+16 a_{3}^{4} a_{1}^{3}+16 a_{3}^{3} a_{2}^{3} a_{0}-4 a_{3}^{3} a_{2}^{2} a_{1}^{2} \\
& -900 a_{3}^{3} a_{1} a_{0}^{2}+825 a_{3}^{2} a_{2}^{2} a_{0}^{2}+560 a_{3}^{2} a_{2} a_{1}^{2} a_{0}-128 a_{3}^{2} a_{1}^{4}-27 a_{2}^{4} a_{1}^{2}+2250 a_{2}^{2} a_{1} a_{0}^{2} \\
& -630 a_{3} a_{2}^{3} a_{1} a_{0}+144 a_{3} a_{2}^{2} a_{1}^{3}-3750 a_{3} a_{2} a_{0}^{3}+2000 a_{3}^{2} a_{1}^{2} a_{0}^{2}+108 a_{2}^{5} a_{0} \\
& -1600 a_{2} a_{1}^{3} a_{0}+256 a_{1}^{5}+3125 a_{0}^{4}
\end{aligned}
$$

Summing up what we have right now:

1. $f(x)=x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$ is irreducible;
2. $\mathrm{Gal}_{f} \subseteq S_{5}$ is conjugate to one of the following: $Z_{5}, D_{5}, G A(1,5), A_{5}$ or S_{5};
3. If $\sqrt{\Delta} \in \mathbb{Q}$, then $\mathrm{Gal}_{f} \subseteq A_{5}$ by Theorem 1.9;
4. If $\theta(y)$, the resolvent we found, is separable and has a zero in \mathbb{Q}, then Gal_{f} is conjugate to a subgroup of $G A(1,5)$ by Theorem 1.14 ;
5. If 3 holds but not 4 , then $\mathrm{Gal}_{f}=A_{5}$;
6. If 4 holds but not 3 , then $\mathrm{Gal}_{f}=G A(1,5)$;
7. If both 3 and 4 do not hold, then $\mathrm{Gal}_{f}=S_{5}$.
8. If 3 and 4 hold simultaneously, $\mathrm{Gal}_{f}=Z_{5}$ or $\mathrm{Gal}_{f}=D_{5}$ as seen from Figure 3;

Remark 4.4. In situation 4, checking whether $\theta(y)$ has a root in \mathbb{Q} or not can be explored a bit further. Note that $\theta(y)$ must be monic and have its coefficients in \mathbb{Z}, thus by Lemma of Gauss 1.18 , if it has a zero in \mathbb{Q} that zero must be in \mathbb{Z}; further more, that zero must divide the constant term of $\theta(y)$, so in our case it divides B_{6}^{2} hence it must divide B_{6}. Therefore we can try substituting factors of B_{6} into $\theta(y)$ and see if we get zero. Likewise, reducing the polynomial in \mathbb{F}_{p} might help too.

Thus, only situation 8 needs to be explored further. One way to do this is through the next small theorem:

Theorem 4.5. Let $f(x)$ be a monic and irreducible polynomial in $\mathbb{Z}[x]$, then Gal_{f} is conjugate to $Z_{5} \cong\langle(12345)\rangle$ if and only if $f(x)$ splits into linear products in $\mathbb{Q}(\alpha)[x]$, where α is a root of $f(x)$.

Proof. If $f(x)$ splits completely in $\mathbb{Q}(\alpha),[L: Q]=5$ where L is the splitting field of $f(x)$ over \mathbb{Q}, but $\left|\operatorname{Gal}_{f}\right|=[L: Q]=5, \mathrm{Gal}_{f} \subseteq S_{5}$ and Gal ${ }_{f}$ must be transitive, thus, up to conjugacy, $\mathrm{Gal}_{f}=\mathbb{Z}_{5}$ by the discussion in the beginning of this section.
Similarly, if $\mathrm{Gal}_{f}=\mathbb{Z}_{5}$, then $[L: Q]=\left|\mathrm{Gal}_{f}\right|=5$, hence the result follows.
Remark 4.6. However, note that this theorem could be difficult to apply without the help of a computing program. Suppose $f(x)$ has zeros α_{i} and $f(x)$ splits into linear factors in $\mathbb{Q}\left(\alpha_{1}\right)[x]$, then the above theorem tells us that the Galois extension is of degree 5, hence for the remain zeros $\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ there exists a 4-by-5 matrix in \mathbb{Q} such that:

$$
\left[\begin{array}{lllll}
a_{1} & b_{1} & c_{1} & d_{1} & e_{1} \\
a_{2} & b_{2} & c_{2} & d_{2} & e_{2} \\
a_{3} & b_{3} & c_{3} & d_{3} & e_{3} \\
a_{4} & b_{4} & c_{4} & d_{4} & e_{4}
\end{array}\right]\left[\begin{array}{c}
1 \\
\alpha_{1} \\
\alpha_{1}^{2} \\
\alpha_{1}^{3} \\
\alpha_{1}^{4}
\end{array}\right]=\left[\begin{array}{l}
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5}
\end{array}\right]
$$

Furthermore, by expanding $\prod\left(x-\alpha_{i}\right)=f(x)=\sum s_{i} x^{i} \in \mathbb{Z}[x]$ and comparing coefficients, for each of the coefficients in front of the terms $x^{4}, x^{3}, x^{2}, x^{1}, 1$ we obtain similar equations. But again, in general it would be difficult to solve them. A quick way using this theorem with Mathematica is presented in Example 4.5.

Another way to differentiate situation 8 could be using Dedekind's Theorem 1.16, which in this case implies Gal_{f} contains 5 -cycles if and only if for every prime number p such that the reduction modulo p of f is separable, it is either irreducible or splits into linear factors over \mathbb{F}_{p}. On the other hand, if situation 8 happens and for some p, the reduction modulo p of f contains two irreducible quadratic polynomials in $\mathbb{F}_{p}[x]$, then Gal_{f} must be isomorphic to D_{5}, which contains a generator of the form $(a b)(c d)$.

However, note that the above method using Dedekind's Theorem works well in situation 8 only in case $\mathrm{Gal}_{f}=D_{5}$; see the remark below Dedekind's Theorem 1.16. Yet another, more systematic way to differentiate situation 8 could be using a new resolvent polynomial with respect to \mathbb{Z}_{5} instead of $G A(1,5)$. First, we need to find a polynomial in $\mathbb{Z}\left[x_{1}, \ldots, x_{5}\right]$ that has \mathbb{Z}_{5} as its stabilizer, then check whether the resolvent has a root in \mathbb{Q} and apply Theorem 1.14. This can also be done using Magma.

Note that subgroups of S_{n} can be represented by a matrix group. E.g. (12345) corresponds to the following 5 -by- 5 matrix because:

$$
\left(\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right)\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lllll}
x_{2} & x_{3} & x_{4} & x_{5} & x_{1}
\end{array}\right)
$$

Thus the five transitive subgroups of S_{5} can be represented as follows in Magma:

```
Q:=Rationals();
Z5:=MatrixGroup<5,Q | [0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0,
0,0,0,1,0]>;
D5:=MatrixGroup<5,Q | [0,0,0,1,0, 0,0,1,0,0, 0,1,0,0,0, 1,0,0,0,0,
0,0,0,0,1],[0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0,
0,0,1,0,0, 0,0,0,1,0]>;
GA15:=MatrixGroup<5,Q | [0,0,1,0,0, 1,0,0,0,0, 0,0,0,1,0, 0,1,0,0,0,
0,0,0,0,1], [0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0,
0,0,1,0,0, 0,0,0,1,0]>;
A5:=MatrixGroup<5,Q | [0,0,1,0,0, 1,0,0,0,0, 0,1,0,0,0, 0,0,0,1,0,
0,0,0,0,1],[0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0,
0,0,1,0,0, 0,0,0,1,0]>;
S5:=MatrixGroup<5,Q | [0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0,
0,0,0,1,0],[0,1,0,0,0, 1,0,0,0,0, 0,0,1,0,0,
0,0,0,1,0, 0,0,0,0,1]>;
```

We want to find an $F \in \mathbb{Q}\left[x_{1}, \ldots, x_{5}\right]$ such that F is fixed by Z_{5} but not by any element in any larger group. It helps to use the following command to find the number of basis of the invariant space of degree $d=1,2,3,4$ in the polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{5}\right]$:

```
[#InvariantsOfDegree(Z5,d) : d in [1..4]];
[#InvariantsOfDegree(D5,d) : d in [1..4]];
[#InvariantsOfDegree(GA15,d) : d in [1..4]];
[#InvariantsOfDegree(A5,d) : d in [1..4]];
[#InvariantsOfDegree(S5,d) : d in [1..4]];
```

The result says when $d=1$ the invariant space of five groups have dimension 1 ; when $d=2$, the invariant space of Z_{5} or D_{5} has dimension 3 and for the remaining groups the dimension is 2 ; when $d=3$, the invariant space of Z_{5} has dimension 7 , that of D_{5} has dimension 5 and for the remaining groups the dimension is 3 . Thus there must exist an F of degree 3 such that F is fixed by Z_{5} but not by any larger group. Run the following and compare the result, we can find a choice for our F :

InvariantsOfDegree ($\mathrm{Z} 5,3$) ;
InvariantsOfDegree (D5,3);

```
InvariantsOfDegree(GA15,3);
InvariantsOfDegree(A5,3);
InvariantsOfDegree(S5,3);
```

One option is $F=x_{1}^{2} x_{2}+x_{1} x_{5}^{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{4}+x_{4}^{2} x_{5}-x_{1} x_{2} x_{3}-x_{1} x_{2} x_{5}-$ $x_{1} x_{4} x_{5}-x_{2} x_{3} x_{4}-x_{3} x_{4} x_{5}$, which is a difference between two elements that appear in InvariantsOfDegree ($\mathrm{Z} 5,3$) ; for invariant space for Z_{5}. To find the coefficients of our resolvent $r_{S_{5}, u}(y)=\prod_{\tau \in S_{5} / Z_{5}}(y-\tau(u))$, use the following command:

```
U:=InvariantsOfDegree(Z5,3); u:=U [2]-U[6] ;
P<x1,x2,x3,x4,x5>:=PolynomialRing(Q,5);
orb:=(P!u)^Sym(5); #orb;
R<e1, e2, e3, e4, e5> := PolynomialRing(Q, 5);
a,b:=IsSymmetric(-&+orb, R); b;
```

The last line gives us the coefficient of y^{23}, the other coefficients can be found similarly using Vieta's formula. For example, the constant term is the product of all terms in orb so it can be calculated by :

\&*orb

The coefficient in front of y^{22} can be given as:

```
c:=&+[orb];
X:=[0: j in [1..24]];
i:=1;
while i le 24 do
X[i]=&+[orb[i]: i in [1..i]];
i=i+1;
end while;
d:=&+[orb[k]*(c-X[k]): k in [1..24]];
```


4.2 Reducible polynomials

Let $f(x)$ be a monic reducible polynomial of degree 5 in $\mathbb{Z}[x]$. As always, let's discuss this case by case.

- Case 1: $f(x)$ contains a linear factor.

Examples of this case could be $f(x)=(x-a)\left(x^{4}+b x^{3}+c x^{2}+d x+e\right), f(x)=$ $(x-a)(x-b)(x-c)\left(x^{2}+d x+e\right), f(x)=(x-a)\left(x^{2}+b x+c\right)\left(x^{2}+d x+e\right)$ etc., where $a, b, c, d, e \in \mathbb{Z}$. Since linear factors in \mathbb{Z} always split in \mathbb{Q}, in this case we can always refer to results we already have and there is nothing new to say.

- Case 2: $f(x)$ has two irreducible factors, one of which is of degree 2 and the other is of degree 3 .

Let $f(x)=g(x) h(x)=\left(x^{2}+a x+b\right)\left(x^{3}+c x^{2}+d x+e\right)$, where $a, b, c, d, e \in \mathbb{Z}$, $g(x)$ and $h(x)$ are irreducible over \mathbb{Q}. Let L_{f}, L_{g} and L_{h} denote the splitting field of $f(x), g(x)$ and $h(x)$ over \mathbb{Q} respectively.
First of all, note that:

$$
\left\{\begin{array}{l}
{\left[L_{g}: \mathbb{Q}\right]=2} \\
{\left[L_{h}: \mathbb{Q}\right]=3 \quad \text { or } \quad 6,}
\end{array}\right.
$$

Thus if $g(x)$ splits in L_{h}, we must have $L_{f}=L_{h},\left[L_{h}: \mathbb{Q}\right]=6$ and $\left[L_{h}: L_{g}\right]=3$, hence $G_{f}=G_{h}=S_{3}$.
Let x_{1} and x_{2} be roots of $g(x), x_{3}, x_{4}$ and x_{5} be roots of $h(x)$. Note that $\left[L_{g}: \mathbb{Q}\right]=2$, thus $x_{1}, x_{2} \in L_{h}$ if and only if they are swapped by elements of order 2 and fixed otherwise, but elements of order 2 in S_{3} are precisely 3 transpostisions which are odd, and odd permutations reverse the sign of ($x_{3}-$ $\left.x_{4}\right)\left(x_{3}-x_{5}\right)\left(x_{4}-x_{5}\right)$ and even ones fix it. Therefore, all elements of S_{3} fix $\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)\left(x_{3}-x_{5}\right)\left(x_{4}-x_{5}\right)=\sqrt{\Delta(g)} \sqrt{\Delta(h)}$, This is equivalent to saying

$$
\sqrt{\Delta(g)} \sqrt{\Delta(h)} \in \mathbb{Q}
$$

Now suppose $g(x)$ and $h(x)$ do not share the same splitting field. Thus $L_{f}=$ $L_{g} \supset L_{h} \supset \mathbb{Q}$ where \supset denotes field extension, and $G_{f}=G_{g} \times G_{h}$ must be a nontrivial subgroup of $S_{2} \times S_{3} \cong D_{6}$, the dihedral group of order 12, thus either $G_{f}=D_{6}$, or $S_{2} \times A_{3} \cong Z_{6}$ which is isomorphic to the cyclic group of order 6 . Finally, note that the latter happens if and only if $\Delta(h)$, the discriminant of $h(x)$, is a square in \mathbb{Q} by Theorem 1.9.

4.3 Examples

First of all, use the following code in Mathematica for our discriminant and resolvent polynomial:

```
IrreduciblePolynomialQ[x^5+a4 x^4+a3 x^3+a2 x^2+a1 x+a0]
B2=8 a4 a2-3 a3^2-20 a1 ;
```

```
B4=3 a3^4-16 a4 a3^2 a2+16 a4^2 a2^2+16 a3 a2^2+16 a4^2 a3 a1-8 a3^2
a1 -112 a4 a2 a1+240 a1^2-64 a4^3 a0+240 a4 a3 a0-400 a2 a0 ;
B6=8 a4 a3^4 a2-a3^6-16 a4^2 a3^2 a2^2-16 a3^3 a2^2+64 a4 a3 a2^3
-64 a2^4 -16 a4^2 a3^3 a1+28 a3^4 a1+64 a4^3 a3 a2 a1-112 a4 a3^2 a2 a1
-128 a4^2 a2^2 a1+224 a3 a2^2 a1-64 a4^4 a1^2+224 a4^2 a3 a1^2
-176 a3^2 a1^2-64 a4 a2 a1^2 +320 a1^3+48 a4 a3^3 a0-192 a4^2 a3 a2 a0
-80 a3^2 a2 a0+640 a4 a2^2 a0 +384 a4^3 a1 a0-640 a4 a3 a1 a0
-1600 a2 a1 a0 -1600 a4^2 a0^2+4000 a3 a0^2 ;
d=Discriminant[x^5+a4 x^4+a3 x^3+a2 x^2+a1 x+a0,x];
Sqrt[d]
theta=(y^3+B2 y^2 +B4 y +B6)^2 - 2^10 d y
Factor[theta]
PolynomialGCD[theta, D[theta,y]]
```

Given integer values a_{4}, \ldots, a_{0}, Mathematica will display the following: whether $f=x^{5}+a 4 x^{4}+a 3 x^{3}+a 2 x^{2}+a 1 x+a 0$ is irreducible, $\sqrt{\Delta}$, the resolvent polynomial and its factorization over \mathbb{Z}, and whether it is separable (only value 1 means separable, because of the well-known fact that a non-constant polynomial f is separable if and only if $\left.\operatorname{gcd}\left(f, f^{\prime}\right)=1\right)$. Our resolvent polynomial will be monic and with integer coefficients, so by Lemma of Gauss if it has a root in \mathbb{Q}, that root will also be in \mathbb{Z}, thus factorization over \mathbb{Z} suffices here.

Example 4.1. Let $f(x)=x^{5}-6 x+3$. We have $\sqrt{\Delta}=9 i \sqrt{21451} \notin \mathbb{Q}$, and the resolvent polynomial is $1779231744 y+\left(-69120+8640 y+120 y^{2}+y^{3}\right)^{2}$ which is irreducible over \mathbb{Z}. Furthermore, it is separable. Therefore Gal ${ }_{f}$ cannot be a subgroup of $G A(1,5)$ (by Theorem 1.14) or A_{5} (by Theorem 1.9), thus $\mathrm{Gal}_{f} \cong S_{5}$.

Example 4.2. Let $f(x)=x^{5}+10 x^{2}+24$. We have $\sqrt{\Delta}=36000 \in \mathbb{Q}$, and the resolvent polynomial is $-1327104000000 y+\left(-640000-96000 y+y^{3}\right)^{2}$, which is irreducible over \mathbb{Z}. Furthermore, it is separable. Therefore Gal_{f} cannot be a subgroup of $G A(1,5)$ (by Theorem 1.14), nor can it be S_{5} (by Theorem 1.9), thus $\mathrm{Gal}_{f} \cong A_{5}$.

Example 4.3. Let $f(x)=x^{5}-2$. We have $\sqrt{\Delta}=100 \sqrt{5} \notin \mathbb{Q}$, which means Gal_{f} is either S_{5} or $G A(1,5)$ by Theorem 1.9. Furthermore, the resolvent polynomial is $-51200000 y+y^{6}$, which clearly has a root $y=0$ in \mathbb{Q}. In addition, it is separable. Thus $\mathrm{Gal}_{f} \cong G A(1,5)$ by Theorem 1.14.

Example 4.4. Let $f(x)=x^{5}-5 x+12$. We have $\sqrt{\Delta}=8000 \in \mathbb{Q}$, and the resolvent polynomial is $(-100+y)\left(-16000000+660000000 y+6320000 y^{2}+\right.$ $\left.52000 y^{3}+300 y^{4}+y^{5}\right)$, so it clearly has a root in \mathbb{Q}. Furthermore, it is separable. Thus $\mathrm{Gal}_{f} \cong D_{5}$ or $\mathrm{Gal}_{f} \cong Z_{5}$ by Theorems 1.9 and 1.14. In $\mathbb{F}_{3}[x] f=$ $(x+2)\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right)$, hence by Dedekind's Theorem $1.16 \mathrm{Gal}_{f}$ contains a product of two 2-cycle, thus $\mathrm{Gal}_{f} \cong D_{5}$. (Factorization of a polynomial f over \mathbb{F}_{p} can be done in many convenient ways, for example, the command 'Factor $[f$, Modulus - > p]' in Mathematica.)

Example 4.5. Let $f(x)=x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1$. We have $\sqrt{\Delta}=121 \in \mathbb{Q}$, and the resolvent polynomial is $-14992384 y+\left(3872 y-132 y^{2}+y^{3}\right)^{2}$, which clearly has a root $y=0$ in \mathbb{Q}. Furthermore, it is separable. Thus $\mathrm{Gal}_{f} \cong D_{5}$ or $\mathrm{Gal}_{f} \cong Z_{5}$ by Theorems 1.9 and 1.14. First, I tried factoring $f(x)$ over \mathbb{F}_{p} for $p=2,3,5, \ldots, 67$, it turns out $f(x)$ either is irreducible or splits into linear factors, so there is a good chance that $\mathrm{Gal}_{f} \cong Z_{5}$. To validate this, Dedekind's Theorem alone will not work, becasue then we have to prove that for all p, $f(x)$ either is irreducible or splits into linear factors over \mathbb{F}_{p}. Instead, we can apply Theorem 4.5 by running the following in Mathematica:

Factor[theta, Extension \rightarrow Root[1+3*\#1-3*\#1^2-4*\#1^3+\#1^4+\#1^5\&, 1]]
The result says θ splits into linear factors over $\mathbb{Q}\left(\alpha_{1}\right)$, where α_{1} is a root of f. Thus indeed $\mathrm{Gal}_{f} \cong Z_{5}$.

5 Polynomials of degree of 6

5.1 Irreducible polynomials

As seen from previous sections, the idea of determining Galois group with respect to an irreducible monic polynomial of degree n in $\mathbb{Z}[x]$ can be quite straightforward : first we classify all the transitive subgroups of S_{n}, then we use resolvents and discriminants. Both parts are significantly more difficult in case of degree 6 than lower degrees: there are 1455 subgroups of S_{6} while there are only 156 of S_{5} [10], and the degrees of resolvent polynomials would be very high. Since the latter part is essentially rational root-finding, it does not provide us much insight into Galois theory and it can be handled by computer algorithms relatively easily, in this section I would like to focus on the first part only.
First of all, we describe the element structure of S_{6} :

Representative	Number of elements	Order	Odd or even
identity	1	1	Even
(12)	15	2	Odd
(123)	40	3	Even
(1234)	90	4	Odd
(12345)	144	5	Even
(123456)	120	6	Odd
$(12)(34)$	45	2	Even
$(123)(45)$	120	6	Odd
$(123)(456)$	40	3	Even
$(12)(34)(56)$	15	2	Odd
$(1234)(56)$	90	4	Even

Consider a single cycle of length n. Firstly, there are $\binom{6}{n}$ ways to choose them; secondly, for each combination of these n numbers we have n ! ways to permute them; lastly, n single cycles $\left(a_{1} a_{2} \ldots a_{n}\right), \ldots,\left(a_{i} a_{1} \ldots a_{n-1}\right)$ represent the same element, thus we divide the number by n. For a product of 2 cycles of lengths n and m, repeat the above firstly choose n elements in 6 then choose m elements in $6-n$ and multiply the result together. In case $n=m$, divide the number by 2 because $(a b)(c d)=(c d)(a b)$; in case $n \neq m$, this is unnecessary because $(\mathrm{abc})(\mathrm{de}) \neq(\mathrm{dea})(\mathrm{bc})$. A similar result holds for a product of 3 cycles of length 2. Thus the second column is calculated to be $\frac{6!}{(6-n)!n}$ for a single cycle of length $n, \frac{6!}{(6-n)!n} \frac{(6-n)!}{(6-n-m)!m}$ for a product of two disjoint cycles of lengths n, m when $n \neq m, \frac{6!}{(6-n)!n} \frac{(6-n)!}{(6-n-m)!m} \frac{1}{2}$ when $n=m$, and $\frac{6!}{(6-2)!2} \frac{4!}{(4-2)!2} \frac{2!}{(2-2)!2} \frac{1}{3}$ for a product of three cycles of lenght 2 .

By theorems 1.5 and 1.7, we are looking for transitive subgroups of S_{6} of order $6,12,18,24,30,36,48,60,72,90,120,144,180,240,360$ and 720 . The classification of these transitive subgroups are available in many places online (e.g.
the command TransitiveGroups(6) in Magma lists every transitive subgroup of S_{6}), thus in some difficult cases I'll prove (non-)existence only; in simpler cases I'll prove both (non-)existence and uniqueness

- Order of 6

Any group of order 6 must be isomorphic to either the cyclic group $Z_{6} \cong$ $\langle(123456)\rangle$ or S_{3}. In fact they can both act transitively. Transitivity of Z_{6} is obvious. In the case of S_{3}, note that the group

$$
\langle(145)(263),(12)(34)(56)\rangle
$$

$=\{e,(145)(263),(154)(236),(12)(34)(56),(16)(24)(35),(13)(25)(46)\}$ is clearly transitive and is isomorphic to S_{3}.

Remark 5.1. Another way to gain more insight into the transitivity of S_{3} in S_{6} is, instead of numbers, we consider letters, and $S_{3}=\langle(x y z),(x y)\rangle$ clearly acts transitively on this set of six elements $\left\{x^{2} y, x^{2} z, x y^{2}, y^{2} z, x z^{2}, y z^{2}\right\}$.

- Order of 12

If G is a transitive subgroup of order $12, G$ cannot be cyclic because no element in S_{6} has order 12. Out of the non-cyclic groups of order $12, D_{6}$ or A_{4} are transitive. $D_{6} \cong\langle\sigma, \tau\rangle$ constructed from $Z_{6} \cong\langle\sigma\rangle$ and a transposition $\tau \in S_{6}$ such that $\tau \sigma \tau=\sigma^{-1}$ is clearly transitive. In addition, note that the following group

$$
\begin{aligned}
\langle(145)(263),(12)(34)\rangle= & \{e,(145)(263),(154)(236),(12)(34),(1635)(24)\} \\
& \cup\{(13)(2546),(13)(2645),(1536)(24),(164)(235)\} \\
& \cup\{(146)(253),(145)(263),(154)(236)\}
\end{aligned}
$$

is clearly transitive and is isomorphic to $A_{4} \cong\langle(123),(12)(34)\rangle$, since we can construct a bijection between the conjugacy classes (123) and (123)(456) by the element structure table.

- Order of 18
$S_{3} \times Z_{3}$ constructed from S_{3} discussed earlier is transitive. Note that all the elements of order 3 in S_{3} belong to the conjugacy class (123)(456), thus we can choose $\sigma \in S_{6}$ of order 3 belonging to the class (123) such that $\sigma \notin S_{3}$ and $\sigma \tau=\tau \sigma$ for all $\tau \in S_{3}$ to construct $S_{3} \times Z_{3}$.
- Order of 24

The obvious ones are $A_{4} \times Z_{2}$ and S_{4}, they are transitive as A_{4} is transitive. The construction of the former is explored in the following remark; for the latter, note that by adding a generator $(14)(25)(36)$ into $A_{4} \cong\langle(135)(246),(14)(25)\rangle$ we obtain $\langle(135)(246),(36)\rangle \cong S_{4}$

Remark 5.2. From the element structure table of S_{6} we can see that elements of order 2 can be odd or even, thus this gives us two classes of subgroups isomorphic to $A_{4} \times Z_{2}$, one is $A_{4} \times Z_{2} \cong\langle(135)(246),(14)(25),(15)(24)\rangle$, which consist of even permutations only; the other is $A_{4} \times Z_{2} \cong\langle(135)(246),(14)(25),(15)(24)(36)\rangle$, which consists of 12 even permutations and 12 odd ones. Such problem does not occur when coupling a group with Z_{3}, because all elements of order 3 in S_{6} are even. In addition, this is also not a problem for $S_{4} \times Z_{2}$, because S_{4} already has half of its elements even and the other half odd, so no matter the generator of Z_{2} is even or odd, $S_{4} \times Z_{2}$ must be half odd half even as well.

- Order of 30

No subgroup of 30 exists in S_{6}. Otherwise, by Sylow's theorem, there must be a Sylow-3 subgroup of order 3 and a Sylow- 5 subgroup of order 5. They are of prime orders so they are cyclic and their intersection is trivial, hence they must generate a cyclic group of order 15 , which is impossible in S_{6}.

Remark 5.3. Similar reasoning can also be used to explain why no subgroup of order 15 or 30 exist in S_{5}.

- Order of 36
$S_{3} \times S_{3}$ and $\left(Z_{3} \times Z_{3}\right) \rtimes Z_{4}$, where the latter is a semi-direct product, are transitive subgroups of S_{6}.
- Order of 48
$Z_{2} \times S_{4}$ is a transitive subgroup.
- Order of 60
A_{5} is a transitive subgroup, see the case of Order of 120 for details.
- Order of 72
S_{3} 乙 Z_{2} is a transitive subgroup, where 乙 denotes a wreath product. Let $G \subseteq S_{n}$ and H be groups, then the wreath product of H and G is defined as the semidirect product:

$$
H \succ G=H^{n} \rtimes G
$$

where G acts on H via as a subgroup of S_{n}. So in our case:

$$
S_{3} \backslash Z_{2}=S_{3}^{2} \rtimes Z_{2}
$$

- Order of 90

There does not exist subgroup of order $90=2 \cdot 3^{2} \cdot 5$ in S_{6}. Suppose there exists, let G be such a group.

Suppose G contains even permutations only, then by similar argument in the case Order of 240 below, we have A_{6} is isomorphic to a subgroup of S_{4}, which is impossible;
Thus G must contain precisely 45 even elements and $H=G \cap A_{6}$ is a subgroup of A_{6} of order 45. But by Sylow's theorem (where n_{p} denotes the number of Sylow p-subgroups), $n_{5}=1 \bmod 5$ and n_{5} divides 9 so $n_{5}=1$ and similarly $n_{3}=1$, but these two Sylow subgroups together generate a cyclic group of order 15 , which is impossible in S_{6}.

- Order of 120

In Theorem 4.1, we used the fact that S_{5} contains exactly 6 Sylow- 5 subgroups which are cyclic groups of order 5 . Furthermore, these subgroups are conjugate to each other by Sylow's theorem. Let $S=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$ be the set of these subgroups and note that $\forall i, j \in\{1,2,3,4,5,6\}, \exists \sigma \in S_{5}$ such that $\sigma P_{i} \sigma^{-1}=P_{j}$ because P_{i} are conjugate. This shows that S_{5} acts transitively on S. Now define $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ to be the set of roots of our polynomial. Clearly $X \cong S$ thus S_{5} acts transitively on X as well. In fact, in Theorem 4.1 we noted that if a subgroup of S_{5} contains exactly 6 Sylow- 5 subgroups, then it is either A_{5} or S_{5}, thus the above also holds for A_{5}, hence A_{5} is also a transitive subgroup of S_{6}.
There are no other subgroups of order 120 , because the number of these subgroups is $\frac{720}{120}=6$ and there are already 6 subgroups isomorphic to S_{5}.

- Order of 144

No subgroup of this order exists in S_{6}. Suppose there is, let G be such a group, note that 144 does not divide $360=\left|A_{6}\right|$ hence G cannot consist of even permutations only, thus it contains precisely 72 even elements and $G \cap A_{6}$ is a subgroup of A_{6} of index $\frac{360}{72}=5$, which is a prime, by the second part of Remark 5.4 we know this is impossible,

- Order of 180

There does not exist subgroups of order 180 in S_{6}. If it exists, name it G. G cannot be a subgroup of A_{6} because having index 2 means G is a normal subgroup of A_{6}, which is impossible. Hence G must contain precisely 90 odd permutations and 90 even permutations. By similar argument in the case Order of 240 below, we have A_{6} is isomorphic to a subgroup of S_{4}, a contradiction.

- Order of 240

There does not exist a subgroup G of S_{6} of order 240. If G exists, G can not have even permutations only as 240 does not divide $360=\left|A_{6}\right|$, thus G contains 120 even permutations and 120 odd ones. Hence $G \cap A_{6=N}$ is a subgroup of index 3 of A_{6}. Let A_{6} act on N by conjugation given by the map:

$$
\varphi(\sigma)(N): N \mapsto \sigma N \sigma^{-1}
$$

where $\sigma \in A_{6}$. Since A_{6} is simple, every non-trivial element in it maps N to a different coset, thus we actually have a map from A_{6} to S_{3}. This map is in fact a homomorphism, because:

$$
\varphi(\sigma \tau)(N)=\sigma \tau N \tau^{-1} \sigma^{-1}=\varphi(\sigma) \varphi(\tau)(N)
$$

furthermore it's injective as the kernel contains identity only, so we must have A_{6} is isomorphic to a subgroup of S_{3}, which is impossible.

Remark 5.4. The above can also be used to prove that no subgroup of order 40 exists in S_{5}, using the fact that A_{5} is simple. (In fact A_{n} is simple for all $n \geq 5$).
Furthermore, this can be proved in a different way, using the fact that if H is a subgroup of G of index n where n is the smallest prime dividing the order of G, then H must be normal. (See, e.g. page 36 of [3]). And since A_{6} is simple, every subgroup of A_{6} must have a non-prime index.

- Orders of 720 and 360
S_{6} and A_{6} are the only ones.

Magma can list all 16 transitive and proper subgroups of S_{6}. Summarizing the transitive subgroups up to conjugacy:

ID in Magma	Name	Order	Generators
1	Z_{6}	6	(123456)
2	S_{3}	6	$(135)(246),(14)(23)(56)$
3	D_{6}	12	$(123456),(14)(23)(56)$
4	A_{4}	12	$(135)(246),(14)(25)$
5	$Z_{3} \times S_{3}$	18	$(246),(14)(25)(36)$
6	S_{4}	24	$(135)(246),(36)$
7	$Z_{2} \times A_{4}$	24	$(135)(246),(14)(25),(15)(24)$
8	$Z_{2} \times A_{4}$	24	$(135)(246),(14)(25),(15)(24)(36)$
9	S_{3}^{2}	36	$(246),(15)(24),(14)(25)(36)$
10	$Z_{3}^{2} \rtimes Z_{4}$	36	$(246),(15)(24),(1452)(36)$
11	$Z_{2} \times S_{4}$	48	$(135)(246),(15)(24),(36)$
12	A_{5}	60	$(12346),(14)(56)$
13	$\left.S_{3}\right\urcorner Z_{2}$	72	$(24),(246),(14)(25)(36)$
14	S_{5}	120	$(12346),(12)(34)(56)$
15	A_{6}	360	$(123),(12)(3456)$
16	S_{6}	720	$(123456),(12)$

We can also use Magma to check the subgroup structure of these groups. We are interested in classifying subgroups up to conjugacy, i.e. check whether $\tau G \tau^{-1} \subset$ H for all $\tau \in S_{6}$, thus the following command does so:

```
All:=TransitiveGroups(6); n:=#All;
T:=[All[i] : i in [1..n]];
cT1:={@ Conjugate(T[j],t) : t in Sym(6)@};
{i : i in [1..n] | #T[j] in {#(G meet T[i]) : G in cT1 }};
```

Given a transitive subgroup $T[j]$, the result gives up to conjugacy which $T[k]$ contains $\mathrm{T}[\mathrm{j}]$. Perform this process for all transitive subgroups, we find that, up to conjugacy:

Group	Is a (proper) subgroup of
Z_{6}	$D_{6}, Z_{3} \times S_{3}, S_{4}, S_{3}^{2}, Z_{2} \times S_{4}, S_{3} \backslash Z_{2}, S_{5}, S_{6}$
S_{3}	$D_{6}, Z_{3} \times S_{3}, Z_{2} \times A_{4}, S_{3}^{2}, Z_{2} \times S_{4}, S_{3} \imath Z_{2}, S_{5}, S_{6}$
D_{6}	$S_{3}^{2}, Z_{2} \times S_{4}, S_{3} \imath Z_{2}, S_{5}, S_{6}$
A_{4}	$S_{4}, Z_{2} \times A_{4}, Z_{2} \times A_{4}, Z_{2} \times S_{4}, A_{5}, S_{5}, A_{6}, S_{6}$
$Z_{3} \times S_{3}$	$S_{3}^{2}, S_{3} \imath Z_{2}, S_{6}$
S_{4}	$Z_{2} \times S_{4}, S_{6}$
$Z_{2} \times A_{4}$	$Z_{2} \times S_{4}, A_{6}, S_{6}$
$Z_{2} \times A_{4}$	$Z_{2} \times S_{4}, S_{5}, S_{6}$
S_{3}^{2}	$S_{3} \backslash Z_{2}, S_{6}$
$Z_{3}^{2} \rtimes Z_{4}$	$S_{3} \imath Z_{2}, A_{6}, S_{6}$
$Z_{2} \times S_{4}$	S_{6}
A_{5}	S_{5}, A_{6}, S_{6}
$S_{3} \backslash Z_{2}$	S_{6}
S_{5}	S_{6}
A_{6}	S_{6}

where the blue $Z_{2} \times A_{4} \cong\langle(135)(246),(14)(25),(15)(24)\rangle$ and the black $Z_{2} \times$ $A_{4} \cong\langle(135)(246),(14)(25),(15)(24)(36)\rangle$.

This can also be summarised in the following Figure 4, where $A \rightarrow B$ indicates $A \supset B$, and name in blue means the group consists of even permutations only. Figure 4 looks still messy, so we'd better consider the blue ones and black ones separately based on Theorem 1.9.

Let $f(x)$ be a monic, irreducible polynomial of degree 6 with integer coefficients. First of all, we would like to consider whether $\Delta(f)$ is a square in \mathbb{Z}
Case 1: $\Delta(f)$ is a square in \mathbb{Q}. By Theorem $1.9, \mathrm{Gal}_{f}$ must consist of even permutations only, thus we can only consider Figure 5.

Figure 4: Structure of transitive subgroups of S_{6}

Figure 5: Structure of transitive subgroups of S_{6} consisting even permutations only

For simplicity's sake, let r_{G} denote $r_{G, F}(f)$, the resolvent polynomial of $f(x)$ with respect to a transitive subgroup G of S_{6}, where G is the stabilizer of a polynomial $F \in \mathbb{Q}\left[x_{1}, . ., x_{6}\right]$. The corresponding polynomials F will be determined later. And assume all the resolvents are separable. (If not, we can always try a different F). A straightforward strategy is constructing 4 resolvent polynomials $r_{Z_{3}^{2} \rtimes Z_{4}}, r_{Z_{2} \times A_{4}}$ and $r_{A_{5}}$, and consider whether they have a zero in \mathbb{Q}. By Theorem 1.14 Only one of the following situations can happen:

1. None of $r_{Z_{3}^{2} \rtimes Z_{4}}, r_{Z_{2} \times A_{4}}$ and $r_{A_{5}}$ has a zero in $\mathbb{Q} \Leftrightarrow \operatorname{Gal}_{f} \cong A_{4} ;$
2. Only $r_{Z_{3}^{2} \rtimes Z_{4}}$ has a zero in $\mathbb{Q} \Leftrightarrow \mathrm{Gal}_{f} \cong Z_{3}^{2} \rtimes Z_{4}$;
3. Only $r_{Z_{2} \times A_{4}}$ has a zero in $\mathbb{Q} \Leftrightarrow \mathrm{Gal}_{f} \cong Z_{2} \times A_{4}$;
4. Only $r_{A_{5}}$ has a zero in $\mathbb{Q} \Leftrightarrow \mathrm{Gal}_{f} \cong A_{5}$;
5. Both $r_{Z_{2} \times A_{4}}$ and $r_{A_{5}}$ have a zero in $\mathbb{Q} \Leftrightarrow \mathrm{Gal}_{f} \cong A_{4}$.

We can use Dedekind's Theorem 1.16 to make this strategy faster. By the element structure table of S_{6}, we know that the only kinds of even permutations are: e, (12)(34), (123), (123)(456), (12345), (1234)(56). These must occur in A_{6}, but not necessarily in other groups in Figure 5. To find out what kind of cycles are contained in the other 4 groups, we can use the command Classes (G) in Magma, where G denote a group.

- A_{4} only contains cycles of the form: e, (123)(456) and (12)(34);
- $Z_{2} \times A_{4} \cong\langle(135)(246),(14)(25),(15)(24)\rangle$ contains what A_{4} has, and (1234)(56);
- $Z_{2}^{2} \rtimes Z_{4}$ contains cycles of the form: e, $(12)(34),(123),(123)(456)$ and $(1234)(56)$; (So, compared to A_{6}, it does not contain the class (12345)).
- A_{5} contains cycles of the form: e, (12)(34), (123), (123)(456) and (12345); (So, compared to A_{6}, it does not contain the class $\left.(1234)(56)\right)$.

Thus, by the above discussion and Dedekind's Theorem 1.16, the following observation would be very helpful:
Corollary 5.1. Let $f(x)$ be a monic, irreducible polynomial of degree 6 with integer coefficients and $\sqrt{\Delta(f)} \in \mathbb{Z}$. Then:

1. if $f(x)$ factorises into an irreducible quadratic and an irreducible quartic over some \mathbb{F}_{p}, then Gal_{f} must be one of $A_{6}, Z_{2} \times A_{4}$ or $Z_{2}^{2} \rtimes Z_{4}$;
2. if $f(x)$ factorises into a linear factor and an irreducible quintic over some \mathbb{F}_{p}, then Gal_{f} must be A_{6} or A_{5};
3. if $f(x)$ factorises into three linear factor and an irreducible cubic over some \mathbb{F}_{p}, then Gal_{f} must be one of A_{6}, A_{5} or $Z_{2}^{2} \rtimes Z_{4}$;
4. if two of 1, 2 and 3 hold simultaneously, Gal_{f} must be A_{6}.

Case 2: $\Delta(f)$ is not a square in \mathbb{Q}. For simplicity's sake, let r_{G} denote $r_{G, F}(f)$, the resolvent polynomial of $f(x)$ with respect to a transitive subgroup G of S_{6}, where G is the stabilizer of a polynomial $F \in \mathbb{Q}\left[x_{1}, . ., x_{6}\right]$. The corresponding polynomials F will be determined later. And assume all the resolvents are separable. (If not, we can always try a different F). With the help of Theorem 1.14 and Figure 6, we can proceed in the following steps:

Figure 6: Structure of transitive subgroups of S_{6} consisting both odd and even permutations

- Step 1: check whether $r_{S_{3} Z Z_{2}}, r_{S_{5}}$ and $r_{S_{4} \times Z_{2}}$ has a root in \mathbb{Q}.

By Theorem 1.14, only one of these five situations can occur:
(i) If none of the above three resolvents has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=S_{6}$;
(ii) If only $r_{S_{5}}$ has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=S_{5}$;
(iii) If both $r_{S_{3} \backslash Z_{2}}$ and $r_{S_{4} \times Z_{2}}$ or both $r_{S_{3} / Z_{2}}$ and $r_{S_{5}}$ have a zero in \mathbb{Q}, then Gal_{f} is one of Z_{6}, S_{3} or D_{6}, we proceed to Step 2;
(iv) If both $r_{S_{5}}$ and $r_{S_{4} \times Z_{2}}$ have a zero in \mathbb{Q}, then Gal_{f} is one of Z_{6}, S_{3}, D_{6} or $Z_{2} \times A_{4}$, we'll have to proceed to both Step 2 and 4;
(v) If only $r_{S_{3} / Z_{2}}$ has a zero in \mathbb{Q}, then proceed to Step 3 ;
(vi) If only $r_{S_{4} \times Z_{2}}$ has a zero in \mathbb{Q}, then proceed to Step 4 .

- Step 2: check whether $r_{Z_{6}}$ and $r_{S_{3}}$ has a root in \mathbb{Q}.
(i) If neither of these 2 resolvents has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=D_{6}$;
(ii) If $r_{Z_{6}}$ has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=Z_{6}$;
(iii) If $r_{S_{3}}$ has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=S_{3}$.
- Step 3: check whether $r_{S_{3}^{2}}$ and $r_{Z_{3} \times S_{3}}$ has a root in \mathbb{Q}.
(i) If neither of these 2 resolvents has a zero in \mathbb{Q}, then $\operatorname{Gal}_{f}=S_{3} \backslash Z_{2}$;
(ii) If $r_{S_{3}^{2}}$ but not $r_{Z_{3} \times S_{3}}$ has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=S_{3}^{2}$;
(iii) If both resolvents have a zero in \mathbb{Q}, then $\operatorname{Gal}_{f}=Z_{3} \times S_{3}$.

Remark 5.5. Note that in this step we don't need to consider Z_{6}, S_{3} or D_{6}, because if Gal_{f} is one of these three groups, we would have situation (iii) in Step 1. Similar result applies for Step 4.

- Step 4: check whether $r_{S_{4}}$ and $r_{Z_{2} \times A_{4}}$ has a root in \mathbb{Q}.
(i) If neither of these 2 resolvents has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=S_{4} \times Z_{2}$;
(ii) If $r_{S_{4}}$ has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=S_{4}$;
(iii) If $r_{Z_{2} \times A_{4}}$ has a zero in \mathbb{Q}, then $\mathrm{Gal}_{f}=Z_{2} \times A_{4}$.

And of course, sometimes we can also use Dedekind's Theorem 1.16 to make this process faster. Again, with the help of Magma, we can find out that:

- S_{3} 乙 Z_{2} contains all conjugacy classes except for (12345) and (1234);
- S_{5} contains all conjugacy classes except for $(12),(123),(1234)(56)$ and (123)(45);
- $S_{4} \times Z_{2}$ contains all conjugacy classes except for (123), (123)(45) and (12345);
－S_{3}^{2} contains all conjugacy classes except for（12），（123）（45），（1234），（12345） and（1234）（56）；
－S_{4} contains all conjugacy classes except for（123），（123）（45），（1234），（12345） and（1234）（56）；
－$Z_{2} \times A_{4} \cong\langle(135)(246),(14)(25),(15)(24)(36)\rangle$ contains all conjugacy classes except for（12），（123），（123）（45），（12345），（1234）（56）and（123456）；
－$Z_{3} \times S_{3}$ only contains the classes e，（12）（34）（56），（123），（123）（456）and （123456）；
－Z_{6}, S_{3} and D_{6} only contains the classes e，（12）（34），（12）（34）（56），（123）（456） and（123456）．

Thus，by the above discussion and Dedekind＇s Theorem 1．16，we can make the following useful information：

Corollary 5．2．Let $f(x)$ be a monic，irreducible polynomial of degree 6 with integer coefficient and $\sqrt{\Delta(f)} \notin \mathbb{Z}$ ．Then：

1．if $f(x)$ factorises into four linear factors and an irreducible quadratic over some \mathbb{F}_{p} ，then Gal_{f} must be one of S_{6}, S_{3} 乙 $Z_{2}, S_{4} \times Z_{2}$ or S_{4} ；

2．if $f(x)$ factorises into three linear factors and an irreducible cubic over some \mathbb{F}_{p} ，then Gal_{f} must be one of S_{6}, S_{3} 乙 Z_{2}, S_{3}^{2} or $Z_{3} \times S_{3}$ ；

3．if $f(x)$ factorises into one linear factor and an irreducible quintic over some \mathbb{F}_{p} ，then Gal_{f} must be S_{6} or S_{5} ；

4．if $f(x)$ factorises into an irreducible quadratic and an irreducible quartic over some \mathbb{F}_{p} ，then Gal_{f} must be one of S_{6}, S_{3} 乙 Z_{2} or $S_{4} \times Z_{2}$ ；

5．if $f(x)$ factorises into one linear factor，an irreducible quadratic and an irreducible cubic over some \mathbb{F}_{p} ，then Gal_{f} must be S_{6} or S_{3} 乙 Z_{2} ．

Summarizing，we need $3($ when $\sqrt{\Delta(f)} \in \mathbb{Z})+9($ when $\sqrt{\Delta(f)} \notin \mathbb{Z})=12$ resolvent polynomials if Dedekind＇s Theorem 1.16 doesn＇t help．Define these groups in Magma：

```
Q:=Rationals();
Z6:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,
0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0]>;
S3:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,
0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[0,0,0,1,0,0, 0,0,1,0,0,0,
0,1,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,1, 0,0,0,0,1,0]>;
Z3S3:=MatrixGroup<6,Q | [1,0,0,0,0,0, 0,0,0,0,0,1, 0,0,1,0,0,0,
0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,0,0,1,0,0, 0,0,0,0,1,0,
0,0,0,0,0,1,1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,0,0,0]>;
S4:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,
```

```
0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[1,0,0,0,0,0, 0,1,0,0,0,0,
0,0,0,0,0,1, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,1,0,0,0]>;
Z2A4EVEN:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,
0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0], [0,0,0,1,0,0, 0,0,0,0,1,0,
0,0,1,0,0,0, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,0,0,0,1], [0,0,0,0,1,0,
0,0,0,1,0,0, 0,0,1,0,0,0, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1]>;
Z2A4ODD:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,
0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[0,0,0,1,0,0, 0,0,0,0,1,0,
0,0,1,0,0,0, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,0,0,0,1], [0,0,0,0,1,0,
0,0,0,1,0,0, 0,0,0,0,0,1, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,1,0,0,0]>;
S3S3:=MatrixGroup<6,Q | [1,0,0,0,0,0, 0,0,0,0,0,1, 0,0,1,0,0,0,
0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,0,0,0,1,0, 0,0,0,1,0,0,
0,0,1,0,0,0, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1], [0,0,0,1,0,0,
0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,0,0,0]>;
Z3Z3Z4:=MatrixGroup<6,Q | [1,0,0,0,0,0, 0,0,0,0,0,1, 0,0,1,0,0,0,
0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,0,0,0,1,0, 0,0,0,1,0,0,
0,0,1,0,0,0, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1], [0,1,0,0,0,0,
0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0, 0,0,0,1,0,0, 0,0,1,0,0,0]>;
Z2S4:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,
0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[0,0,0,0,1,0, 0,0,0,1,0,0,
0,0,1,0,0,0, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1], [1,0,0,0,0,0,
0,1,0,0,0,0, 0,0,0,0,0,1, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,1,0,0,0]>;
A5:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,
0,0,1,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,0,0,1,0,0, 0,1,0,0,0,0,
0,0,1,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,1,0]>;
S3wrZ2:=MatrixGroup<6,Q | [1,0,0,0,0,0, 0,0,0,1,0,0, 0,0,1,0,0,0,
0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1], [1,0,0,0,0,0, 0,0,0,0,0,1,
0,0,1,0,0,0, 0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0], [0,0,0,1,0,0,
0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,0,0,0]>;
S5:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,
0,0,1,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,1,0,0,0,0, 1,0,0,0,0,0,
0,0,0,1,0,0, 0,0,1,0,0,0, 0,0,0,0,0,1, 0,0,0,0,1,0]>;
```

and run the command
[\#InvariantsOfDegree(G,d) : d in [1..12]];
for all of those groups G, the result is:
[$1,4,10,22,42,80,132,217,335,504,728,1038$]
[$1,5,10,24,42,83,132,222,335,511,728,1047$]
$[1,3,6,12,20,37,56,90,133,197,276,391]$
[$1,3,7,13,23,41,63,98,146,210,294,408$]
[$1,3,6,11,18,32,48,75,111,160,224,313$]
[$1,3,5,10,15,29,41,68,98,147,202,291]$
[$1,3,5,10,15,27,38,60,84,123,166,233$]
[$1,3,5,10,15,26,38,59,84,121,166,230]$
[$1,3,5,10,15,27,38,60,84,122,164,229]$
[$1,2,4,6,10,17,24,36,53,74,102,141]$
$[1,3,5,10,15,26,37,57,79,113,151,207]$
$[1,2,3,5,7,12,15,23,31,44,57,80$]

For groups S_{3}^{2} and $Z_{3}^{2} \rtimes Z_{4}$, the dimensions of their invariant spaces are represented by lines 7 and 8 , which are very close to each other, hence it is especially difficult to find their corresponding F and I took $d=20$ for them. For the remaining cases I took $d=6$. For each group, I take a difference of two bases in its invariant space. To ensure that the stabilizer of the chosen polynomial F is really G, I first define G as a matrix group and then run the command

```
orb:=F^Sym(6);#orb;
```

The result returns a number, and will be $|G|$ if $\operatorname{Stab}(F)=G$. As an example, take $G=Z_{6}$ and run the following:

```
Q:=Rationals();
G:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,
0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0]>;
inv:=InvariantsOfDegree(G,6);
n:=#inv;
F:=inv[n-7]-inv[n-5];
orb:=F^Sym(6);
#orb;
```

The result is 120 , exactly the index of Z_{6}. If the result is undesirable, we can change the numbers $n-7$ and $n-5$ slightly and try again. The result can be summarized below, where for each group G, an F such that $\operatorname{Stab}(F)=G$ is presented:

- Z_{6}

$$
\begin{aligned}
& x_{1}^{2} x_{2} x_{4}^{2} x_{6}-x_{1}^{2} x_{2} x_{4} x_{5} x_{6}+x_{1}^{2} x_{3} x_{4}^{2} x_{5}+x_{1} x_{2}^{2} x_{3} x_{5}^{2}-x_{1} x_{2}^{2} x_{3} x_{5} x_{6}-x_{1} x_{2} x_{3}^{2} x_{4} x_{6}- \\
& x_{1} x_{2} x_{3} x_{4}^{2} x_{5}+x_{1} x_{3}^{2} x_{5} x_{6}^{2}-x_{1} x_{3} x_{4} x_{5} x_{6}^{2}+x_{2}^{2} x_{4} x_{5}^{2} x_{6}+x_{2} x_{3}^{2} x_{4} x_{6}^{2}-x_{2} x_{3} x_{4} x_{5}^{2} x_{6}
\end{aligned}
$$

- S_{3}

$$
\begin{aligned}
& x_{1}^{2} x_{2} x_{5} x_{6}^{2}-x_{1}^{2} x_{3}^{2} x_{5} x_{6}-x_{1}^{2} x_{3} x_{4} x_{5}^{2}+x_{1} x_{2}^{2} x_{3}^{2} x_{4}-x_{1} x_{2} x_{3}^{2} x_{5}^{2}-x_{1} x_{2} x_{4}^{2} x_{6}^{2}-x_{2}^{2} x_{3} x_{4} x_{6}^{2}- \\
& x_{2}^{2} x_{4}^{2} x_{5} x_{6}+x_{3} x_{4}^{2} x_{5}^{2} x_{6} \\
& \quad \bullet Z_{3} \times S_{3} \\
& \quad \\
& -x_{1}^{2} x_{2} x_{3} x_{4} x_{6}+x_{1}^{2} x_{2} x_{4} x_{5} x_{6}-x_{1} x_{2}^{2} x_{3} x_{4} x_{5}+x_{1} x_{2}^{2} x_{3} x_{5} x_{6}+x_{1} x_{2} x_{3}^{2} x_{4} x_{6}+x_{1} x_{2} x_{3} x_{4}^{2} x_{5}- \\
& x_{1} x_{2} x_{3} x_{5} x_{6}^{2}-x_{1} x_{2} x_{4} x_{5}^{2} x_{6}-x_{1} x_{3} x_{4}^{2} x_{5} x_{6}+x_{1} x_{3} x_{4} x_{5} x_{6}^{2}-x_{2} x_{3}^{2} x_{4} x_{5} x_{6}+x_{2} x_{3} x_{4} x_{5}^{2} x_{6}
\end{aligned}
$$

- S_{4}

$$
\begin{aligned}
& -x_{1}^{2} x_{2} x_{3} x_{5} x_{6}+x_{1}^{2} x_{2} x_{4}^{2} x_{5}-x_{1} x_{2}^{2} x_{3} x_{4} x_{6}-x_{1} x_{2} x_{3}^{2} x_{4} x_{5}-x_{1} x_{2} x_{4} x_{5} x_{6}^{2}+x_{1} x_{3}^{2} x_{4} x_{6}^{2}- \\
& x_{1} x_{3} x_{4} x_{5}^{2} x_{6}+x_{2}^{2} x_{3} x_{5}^{2} x_{6}-x_{2} x_{3} x_{4}^{2} x_{5} x_{6}
\end{aligned}
$$

- $Z_{2} \times A_{4}$ (subgroup of A_{6})

$$
\begin{aligned}
& -x_{1}^{2} x_{2}^{2} x_{6}^{2}+x_{1}^{2} x_{2} x_{3} x_{5} x_{6}-x_{1}^{2} x_{3}^{2} x_{5}^{2}+x_{1} x_{2}^{2} x_{3} x_{4} x_{6}+x_{1} x_{2} x_{3}^{2} x_{4} x_{5}+x_{1} x_{2} x_{4} x_{5} x_{6}^{2}+ \\
& x_{1} x_{3} x_{4} x_{5}^{2} x_{6}-x_{2}^{2} x_{3}^{2} x_{4}^{2}+x_{2} x_{3} x_{4}^{2} x_{5} x_{6}-x_{4}^{2} x_{5}^{2} x_{6}^{2}
\end{aligned}
$$

- $Z_{2} \times A_{4}$ (not a subgroup of A_{6})

$$
\begin{aligned}
& x-x_{1}^{3} x_{4}^{3}+x_{1}^{2} x_{2}^{2} x_{3} x_{4}+x_{1}^{2} x_{2}^{2} x_{5} x_{6}+x_{1}^{2} x_{2} x_{3}^{2} x_{6}+x_{1}^{2} x_{2} x_{3} x_{5}^{2}+x_{1}^{2} x_{2} x_{4} x_{6}^{2}+x_{1}^{2} x_{3}^{2} x_{4} x_{5}+ \\
& x_{1}^{2} x_{3} x_{5} x_{6}^{2}+x_{1}^{2} x_{4} x_{5}^{2} x_{6}+x_{1} x_{2}^{2} x_{3}^{2} x_{5}+x_{1} x_{2}^{2} x_{3} x_{6}^{2}+x_{1} x_{2}^{2} x_{4}^{2} x_{6}+x_{1} x_{2} x_{3}^{2} x_{4}^{2}+x_{1} x_{2} x_{5}^{2} x_{6}^{2}+ \\
& x_{1} x_{3}^{2} x_{5}^{2} x_{6}+x_{1} x_{3} x_{4}^{2} x_{5}^{2}+x_{1} x_{4}^{2} x_{5} x_{6}^{2}-x_{2}^{3} x_{5}^{3}+x_{2}^{2} x_{3}^{2} x_{4} x_{6}+x_{2}^{2} x_{3} x_{4}^{2} x_{5}+x_{2}^{2} x_{4} x_{5} x_{6}^{2}+ \\
& x_{2} x_{3}^{2} x_{4} x_{5}^{2}+x_{2} x_{3} x_{4}^{2} x_{6}^{2}+x_{2} x_{4}^{2} x_{5}^{2} x_{6}-x_{3}^{3} x_{6}^{3}+x_{3}^{2} x_{4}^{2} x_{5} x_{6}+x_{3} x_{4} x_{5}^{2} x_{6}^{2}
\end{aligned}
$$

- $S_{3} \times S_{3}$

$$
\begin{aligned}
& x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{5} x_{6}+x_{1}^{7} x_{2}^{6} x_{4} x_{5} x_{6}^{5}+x_{1}^{7} x_{2}^{5} x_{3} x_{4} x_{6}^{6}+x_{1}^{7} x_{2}^{5} x_{4}^{6} x_{5} x_{6}+x_{1}^{7} x_{2} x_{3} x_{4}^{6} x_{6}^{5}+x_{1}^{7} x_{2} x_{4}^{5} x_{5} x_{6}^{6}+ \\
& x_{1}^{6} x_{2}^{7} x_{3}^{5} x_{4} x_{5}+x_{1}^{6} x_{2}^{7} x_{3} x_{5}^{5} x_{6}-x_{1}^{6} x_{2}^{2} x_{3}^{6} x_{4}^{2} x_{5}^{3} x_{6}-x_{1}^{6} x_{2}^{2} x_{3}^{6} x_{4} x_{5}^{3} x_{6}^{2}-x_{1}^{6} x_{2}^{2} x_{3}^{3} x_{4}^{2} x_{5}^{6} x_{6}- \\
& x_{1}^{6} x_{2}^{2} x_{3}^{3} x_{4} x_{5}^{6} x_{6}^{2}-x_{1}^{6} x_{2} x_{3}^{6} x_{4}^{2} x_{5}^{3} x_{6}^{2}+x_{1}^{6} x_{2} x_{3}^{5} x_{5} x_{6}^{7}-x_{1}^{6} x_{2} x_{3}^{3} x_{4}^{2} x_{5}^{6} x_{6}^{2}+x_{1}^{6} x_{2} x_{3} x_{4}^{7} x_{5}^{5}+ \\
& x_{1}^{6} x_{3}^{5} x_{4}^{7} x_{5} x_{6}+x_{1}^{6} x_{3} x_{4} x_{5}^{5} x_{6}^{7}+x_{1}^{5} x_{2}^{7} x_{3}^{6} x_{5} x_{6}+x_{1}^{5} x_{2}^{7} x_{3} x_{4} x_{5}^{6}+x_{1}^{5} x_{2} x_{3}^{6} x_{4}^{7} x_{5}+x_{1}^{5} x_{2} x_{3} x_{5}^{6} x_{6}^{7}+ \\
& x_{1}^{5} x_{3}^{6} x_{4} x_{5} x_{6}^{7}+x_{1}^{5} x_{3} x_{4}^{7} x_{5}^{6} x_{6}-x_{1}^{3} x_{2}^{2} x_{3}^{6} x_{4}^{2} x_{5}^{6} x_{6}-x_{1}^{3} x_{2}^{2} x_{3}^{6} x_{4} x_{5}^{6} x_{6}^{2}-x_{1}^{3} x_{2} x_{3}^{6} x_{4}^{2} x_{5}^{6} x_{6}^{2}- \\
& x_{1}^{2} x_{2}^{6} x_{3}^{2} x_{4}^{6} x_{5} x_{6}^{3}-x_{1}^{2} x_{2}^{6} x_{3}^{2} x_{4}^{3} x_{5} x_{6}^{6}-x_{1}^{2} x_{2}^{6} x_{3} x_{4}^{6} x_{5}^{2} x_{6}^{3}-x_{1}^{2} x_{2}^{6} x_{3} x_{4}^{3} x_{5}^{2} x_{6}^{6}-x_{1}^{2} x_{2}^{3} x_{3}^{2} x_{4}^{6} x_{5} x_{6}^{6}- \\
& x_{1}^{2} x_{2}^{3} x_{3} x_{4}^{6} x_{5}^{2} x_{6}^{6}+x_{1} x_{2}^{7} x_{3}^{6} x_{4} x_{5}^{5}+x_{1} x_{2}^{7} x_{3}^{5} x_{5}^{6} x_{6}+x_{1} x_{2}^{6} x_{3}^{7} x_{4} x_{6}^{5}-x_{1} x_{2}^{6} x_{3}^{2} x_{4}^{6} x_{5}^{2} x_{6}^{3}- \\
& x_{1} x_{2}^{6} x_{3}^{2} x_{4}^{3} x_{5}^{2} x_{6}^{6}+x_{1} x_{2}^{6} x_{4}^{5} x_{5}^{7} x_{6}+x_{1} x_{2}^{5} x_{3}^{7} x_{4}^{6} x_{6}+x_{1} x_{2}^{5} x_{4} x_{5}^{7} x_{6}^{6}-x_{1} x_{2}^{3} x_{3}^{2} x_{4}^{6} x_{5}^{2} x_{6}^{6}+ \\
& x_{1} x_{2} x_{3}^{7} x_{4}^{5} x_{6}^{6}+x_{1} x_{2} x_{3}^{6} x_{5}^{5} x_{6}^{7}+x_{1} x_{2} x_{3}^{5} x_{4}^{7} x_{5}^{6}+x_{1} x_{2} x_{4}^{6} x_{5}^{7} x_{6}^{5}+x_{1} x_{3}^{6} x_{4}^{7} x_{5}^{5} x_{6}+x_{1} x_{3}^{5} x_{4} x_{5}^{6} x_{6}^{7}+ \\
& x_{2}^{6} x_{3}^{7} x_{4}^{5} x_{5} x_{6}+x_{2}^{6} x_{3} x_{4} x_{5}^{7} x_{6}^{5}+x_{2}^{5} x_{3}^{7} x_{4} x_{5} x_{6}^{6}+x_{2}^{5} x_{3} x_{4}^{6} x_{5}^{7} x_{6}+x_{2} x_{3}^{7} x_{4}^{6} x_{5} x_{6}^{5}+x_{2} x_{3} x_{4}^{5} x_{5}^{7} x_{6}^{6}
\end{aligned}
$$

- $Z_{3}^{2} \rtimes Z_{4}$

$$
\begin{aligned}
& -x_{1}^{6} x_{2}^{5} x_{3}^{3} x_{4} x_{5}^{2} x_{6}^{3}-x_{1}^{6} x_{2}^{5} x_{3}^{2} x_{4}^{3} x_{5}^{3} x_{6}+x_{1}^{6} x_{2}^{3} x_{3}^{4} x_{4}^{3} x_{5} x_{6}^{3}-x_{1}^{6} x_{2}^{3} x_{3}^{3} x_{4}^{5} x_{5}^{2} x_{6}-x_{1}^{6} x_{2}^{3} x_{3}^{2} x_{4} x_{5}^{3} x_{6}^{5}+ \\
& x_{1}^{6} x_{2}^{3} x_{3} x_{4}^{3} x_{5}^{4} x_{6}^{4} x_{6}^{3}-x_{1}^{6} x_{2} x_{3}^{3} x_{4}^{3} x_{5}^{2} x_{6}^{5}-x_{1}^{6} x_{2} x_{3}^{2} x_{4}^{5} x_{5}^{3} x_{6}^{3}-x_{1}^{5} x_{2}^{6} x_{3}^{3} x_{4}^{3} x_{5} x_{6}^{2}-x_{1}^{5} x_{2}^{6} x_{3} x_{4}^{2} x_{5}^{3} x_{6}^{3}- \\
& x_{1}^{5} x_{2}^{3} x_{3}^{3} x_{4}^{2} x_{5} x_{6}^{6}-x_{1}^{5} x_{2}^{3} x_{3} x_{4}^{6} x_{5}^{3} x_{6}^{2}-x_{1}^{5} x_{2}^{2} x_{3}^{3} x_{4}^{6} x_{5} x_{6}^{3}-x_{1}^{5} x_{2} x_{3} x_{4}^{3} x_{5}^{3} x_{6}^{6}+x_{1}^{4} x_{2}^{3} x_{3}^{6} x_{4}^{3} x_{5} x_{6}^{3}+ \\
& x_{1}^{4} x_{2}^{3} x_{3} x_{4}^{3} x_{5}^{6} x_{6}^{3}-x_{1}^{3} x_{2}^{6} x_{3}^{5} x_{4}^{2} x_{5} x_{6}^{3}+x_{1}^{3} x_{2}^{6} x_{3}^{3} x_{4}^{4} x_{5}^{3} x_{6}+x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4} x_{5}^{4} x_{6}^{4}-x_{1}^{3} x_{2}^{6} x_{3} x_{4}^{3} x_{5}^{5} x_{6}^{2}- \\
& x_{1}^{3} x_{2}^{5} x_{3}^{6} x_{4}^{3} x_{5}^{2} x_{6}-x_{1}^{3} x_{2}^{5} x_{3}^{2} x_{4} x_{5}^{6} x_{6}^{3}+x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4}^{6} x_{5}^{3} x_{6}+x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4} x_{5}^{3} x_{6}^{6}-x_{1}^{3} x_{2}^{3} x_{3}^{6} x_{4} x_{5}^{2} x_{6}^{5}- \\
& x_{1}^{3} x_{2}^{3} x_{3}^{5} x_{4}^{6} x_{5} x_{6}^{2}-x_{1}^{3} x_{2}^{3} x_{3}^{2} x_{4}^{5} x_{5}^{6} x_{6}-x_{1}^{3} x_{2}^{3} x_{3} x_{4}^{2} x_{5}^{5} x_{6}^{6}-x_{1}^{3} x_{2}^{2} x_{3}^{5} x_{4}^{3} x_{5} x_{6}^{6}-x_{1}^{3} x_{2}^{2} x_{3} x_{4}^{6} x_{5}^{5} x_{6}^{3}- \\
& x_{1}^{3} x_{2} x_{3}^{6} x_{4}^{5} x_{5}^{2} x_{6}^{3}+x_{1}^{3} x_{2} x_{3}^{3} x_{4}^{6} x_{5}^{3} x_{6}^{4}+x_{1}^{3} x_{2} x_{3}^{3} x_{4}^{4} x_{5}^{3} x_{6}^{6}-x_{1}^{3} x_{2} x_{3}^{2} x_{4}^{3} x_{5}^{6} x_{6}^{5}-x_{1}^{2} x_{2}^{5} x_{3}^{6} x_{4} x_{5}^{3} x_{6}^{3}- \\
& x_{1}^{2} x_{2}^{5} x_{3}^{3} x_{4}^{3} x_{5}^{6} x_{6}-x_{1}^{2} x_{2}^{3} x_{3}^{6} x_{4}^{5} x_{5}^{3} x_{6}-x_{1}^{2} x_{2}^{3} x_{3}^{3} x_{4} x_{5}^{6} x_{6}^{5}-x_{1}^{2} x_{2} x_{3}^{6} x_{4}^{3} x_{5}^{3} x_{6}^{5}-x_{1}^{2} x_{2} x_{3}^{3} x_{4}^{5} x_{5}^{6} x_{6}^{3}- \\
& x_{1} x_{2}^{6} x_{3}^{5} x_{4}^{3} x_{5}^{3} x_{6}^{2}-x_{1} x_{2}^{6} x_{3}^{3} x_{4}^{2} x_{5}^{5} x_{6}^{3}+x_{1} x_{2}^{3} x_{3}^{6} x_{4}^{3} x_{5}^{4} x_{6}^{3}-x_{1}^{3} x_{2}^{3} x_{3}^{5} x_{4}^{2} x_{5}^{3} x_{6}^{6}+x_{1} x_{2}^{3} x_{3}^{4} x_{4}^{3} x_{5}^{4} x_{6}^{3}- \\
& x_{1} x_{2}^{3} x_{3}^{3} x_{4}^{6} x_{5}^{5} x_{6}^{2}-x_{1} x_{2}^{2} x_{3}^{5} x_{4}^{6} x_{5}^{3} x_{6}^{3}-x_{1} x_{2}^{2} x_{3}^{3} x_{4}^{3} x_{5}^{5} x_{6}^{6}
\end{aligned}
$$

- $Z_{2} \times S_{4}$
$-x_{1}^{4} x_{2} x_{5}-x_{1}^{4} x_{3} x_{6}+x_{1}^{3} x_{2} x_{3} x_{4}+x_{1}^{3} x_{2} x_{4} x_{6}+x_{1}^{3} x_{3} x_{4} x_{5}+x_{1}^{3} x_{4} x_{5} x_{6}-x_{1} x_{2}^{4} x_{4}+$ $x_{1} x_{2}^{3} x_{3} x_{5}+x_{1} x_{2}^{3} x_{5} x_{6}+x_{1} x_{2} x_{3}^{3} x_{6}+x_{1} x_{2} x_{3} x_{4}^{3}+x_{1} x_{2} x_{3} x_{5}^{3}+x_{1} x_{2} x_{3} x_{6}^{3}+x_{1} x_{2} x_{4}^{3} x_{6}+$ $x_{1} x_{2} x_{5}^{3} x_{6}-x_{1} x_{3}^{4} x_{4}+x_{1} x_{3}^{3} x_{5} x_{6}+x_{1} x_{3} x_{4}^{3} x_{5}+x_{1} x_{3} x_{5} x_{6}^{3}+x_{1} x_{4}^{3} x_{5} x_{6}-x_{1} x_{4} x_{5}^{4}-$ $x_{1} x_{4} x_{6}^{4}-x_{2}^{4} x_{3} x_{6}+x_{2}^{3} x_{3} x_{4} x_{5}+x_{2}^{3} x_{4} x_{5} x_{6}-x_{2} x_{3}^{4} x_{5}+x_{2} x_{3}^{3} x_{4} x_{6}+x_{2} x_{3} x_{4} x_{5}^{3}+$ $x_{2} x_{3} x_{4} x_{6}^{3}-x_{2} x_{4}^{4} x_{5}+x_{2} x_{4} x_{5}^{3} x_{6}-x_{2} x_{5} x_{6}^{4}+x_{3}^{3} x_{4} x_{5} x_{6}-x_{3} x_{4}^{4} x_{6}+x_{3} x_{4} x_{5} x_{6}^{3}-x_{3} x_{5}^{4} x_{6}$
- A_{5}

$$
\begin{aligned}
& x_{1}^{4} x_{2}^{2}+x_{1}^{4} x_{3}^{2}+x_{1}^{4} x_{4}^{2}+x_{1}^{4} x_{5}^{2}+x_{1}^{4} x_{6}^{2}+x_{1}^{2} x_{2}^{4}-x_{1}^{2} x_{2}^{2} x_{4} x_{5}-x_{1}^{2} x_{2} x_{3} x_{4}^{2}-x_{1}^{2} x_{2} x_{5}^{2} x_{6}+ \\
& x_{1}^{2} x_{3}^{4}-x_{1}^{2} x_{3}^{2} x_{4} x_{6}-x_{1}^{2} x_{3} x_{5} x_{6}^{2}+x_{1}^{2} x_{4}^{4}+x_{1}^{2} x_{5}^{4}+x_{1}^{2} x_{6}^{4}-x_{1} x_{2}^{2} x_{3} x_{5}^{2}-x_{1} x_{2}^{2} x_{4}^{2} x_{6}- \\
& x_{1} x_{2} x_{3}^{2} x_{6}^{2}-x_{1} x_{3}^{2} x_{4}^{2} x_{5}-x_{1} x_{4} x_{5}^{2} x_{6}^{2}+x_{2}^{4} x_{3}^{2}+x_{2}^{4} x_{4}^{2}+x_{2}^{4} x_{5}^{2}+x_{2}^{4} x_{6}^{2}+x_{2}^{2} x_{3}^{4}-x_{2}^{2} x_{3}^{2} x_{5} x_{6}- \\
& x_{2}^{2} x_{3} x_{4} x_{6}^{2}+x_{2}^{2} x_{4}^{4}+x_{2}^{2} x_{5}^{4}+x_{2}^{2} x_{6}^{4}-x_{2}^{2} x_{3}^{2} x_{4} x_{5}^{2}-x_{2}^{2} x_{4}^{2} x_{5} x_{6}+x_{3}^{4} x_{4}^{4}+x_{3}^{4} x_{5}^{2}+x_{3}^{4} x_{6}^{2}+ \\
& x_{3}^{2} x_{4}^{4}+x_{3}^{2} x_{5}^{4}+x_{3}^{2} x_{6}^{4}-x_{3} x_{4}^{2} x_{5}^{2} x_{6}+x_{4}^{4} x_{5}^{2}+x_{4}^{4} x_{6}^{2}+x_{4}^{2} x_{5}^{4}+x_{4}^{2} x_{6}^{4}+x_{5}^{4} x_{6}^{2}+x_{5}^{2} x_{6}^{4}
\end{aligned}
$$

- S_{3} 乙 Z_{2}

$$
\begin{aligned}
& x_{1}^{2} x_{2} x_{3}^{2} x_{5}-x_{1}^{2} x_{2} x_{3} x_{4} x_{6}+x_{1}^{2} x_{2} x_{3} x_{5}^{2}-x_{1}^{2} x_{2} x_{4} x_{5} x_{6}+x_{1}^{2} x_{3}^{2} x_{4} x_{5}+x_{1}^{2} x_{3}^{2} x_{5} x_{6}+ \\
& x_{1}^{2} x_{3} x_{4} x_{5}^{2}+x_{1}^{2} x_{3} x_{5}^{2} x_{6}-x_{1} x_{2}^{2} x_{3} x_{4} x_{5}-x_{1} x_{2}^{2} x_{3} x_{5} x_{6}+x_{1} x_{2}^{2} x_{4}^{2} x_{6}+x_{1} x_{2}^{2} x_{4} x_{6}^{2}- \\
& x_{1} x_{2} x_{3}^{2} x_{4} x_{6}+x_{1} x_{2} x_{3}^{2} x_{5}^{2}-x_{1} x_{2} x_{3} x_{4}^{2} x_{5}-x_{1} x_{2} x_{3} x_{5} x_{6}^{2}+x_{1} x_{2} x_{4}^{2} x_{6}^{2}-x_{1} x_{2} x_{4} x_{5}^{2} x_{6}+ \\
& x_{1} x_{3}^{2} x_{4} x_{5}^{2}+x_{1} x_{3}^{2} x_{5}^{2} x_{6}-x_{1} x_{3} x_{4}^{2} x_{5} x_{6}-x_{1} x_{3} x_{4} x_{5} x_{6}^{2}+x_{2}^{2} x_{3} x_{4}^{2} x_{6}+x_{2}^{2} x_{3} x_{4} x_{6}^{2}+ \\
& x_{2}^{2} x_{4}^{2} x_{5} x_{6}+x_{2}^{2} x_{4} x_{5} x_{6}^{2}-x_{2} x_{3}^{2} x_{4} x_{5} x_{6}+x_{2} x_{3} x_{4}^{2} x_{6}^{2}-x_{2} x_{3} x_{4} x_{5}^{2} x_{6}+x_{2} x_{4}^{2} x_{5} x_{6}^{2}
\end{aligned}
$$

- S_{5}

$$
\begin{aligned}
& -x_{1}^{2} x_{2}^{2} x_{3} x_{4}-x_{1}^{2} x_{2}^{2} x_{3} x_{5}+x_{1}^{2} x_{2}^{2} x_{3} x_{6}+x_{1}^{2} x_{2}^{2} x_{4} x_{5}-x_{1}^{2} x_{2}^{2} x_{4} x_{6}-x_{1}^{2} x_{2}^{2} x_{5} x_{6}-x_{1}^{2} x_{2} x_{3}^{2} x_{4}+ \\
& x_{1}^{2} x_{2} x_{3}^{2} x_{5}-x_{1}^{2} x_{2} x_{3}^{2} x_{6}+x_{1}^{2} x_{2} x_{3} x_{4}^{2}-x_{1}^{2} x_{2} x_{3} x_{5}^{2}-x_{1}^{2} x_{2} x_{3} x_{6}^{2}-x_{1}^{2} x_{2} x_{4}^{2} x_{5}-x_{1}^{2} x_{2} x_{4}^{2} x_{6}- \\
& x_{1}^{2} x_{2} x_{4} x_{5}^{2}+x_{1}^{2} x_{2} x_{4} x_{6}^{2}+x_{1}^{2} x_{2} x_{5}^{2} x_{6}-x_{1}^{2} x_{2} x_{5} x_{6}^{2}-x_{1}^{2} x_{3}^{2} x_{4} x_{5}+x_{1}^{2} x_{3}^{2} x_{4} x_{6}-x_{1}^{2} x_{3}^{2} x_{5} x_{6}- \\
& x_{1}^{2} x_{3} x_{4}^{2} x_{5}-x_{1}^{2} x_{3} x_{4}^{2} x_{6}+x_{1}^{2} x_{3} x_{4} x_{5}^{2}-x_{1}^{2} x_{3} x_{4} x_{6}^{2}-x_{1}^{2} x_{3} x_{5}^{2} x_{6}+x_{1}^{2} x_{3} x_{5} x_{6}^{2}+x_{1}^{2} x_{4}^{2} x_{5} x_{6}- \\
& x_{1}^{2} x_{4} x_{5}^{2} x_{6}-x_{1}^{2} x_{4} x_{5} x_{6}^{2}+x_{1} x_{2}^{2} x_{3}^{2} x_{4}-x_{1} x_{2}^{2} x_{3}^{2} x_{5}-x_{1} x_{2}^{2} x_{3}^{2} x_{6}-x_{1} x_{2}^{2} x_{3} x_{4}^{2}+x_{1} x_{2}^{2} x_{3} x_{5}^{2}- \\
& x_{1} x_{2}^{2} x_{3} x_{6}^{2}-x_{1} x_{2}^{2} x_{4}^{2} x_{5}+x_{1} x_{2}^{2} x_{4}^{2} x_{6}-x_{1} x_{2}^{2} x_{4} x_{5}^{2}-x_{1} x_{2}^{2} x_{4} x_{6}^{2}-x_{1} x_{2}^{2} x_{5}^{2} x_{6}+x_{1} x_{2}^{2} x_{5} x_{6}^{2}- \\
& x_{1} x_{2} x_{3}^{2} x_{4}^{2}-x_{1} x_{2} x_{3}^{2} x_{5}^{2}+x_{1} x_{2} x_{3}^{2} x_{6}^{2}+x_{1} x_{2} x_{4}^{2} x_{5}^{2}-x_{1} x_{2} x_{4}^{2} x_{6}^{2}-x_{1} x_{2} x_{5}^{2} x_{6}^{2}+x_{1} x_{3}^{2} x_{4}^{2} x_{5}- \\
& x_{1} x_{3}^{2} x_{4}^{2} x_{6}-x_{1} x_{3}^{2} x_{4} x_{5}^{2}-x_{1} x_{3}^{2} x_{4} x_{6}^{2}+x_{1} x_{3}^{2} x_{5}^{2} x_{6}-x_{1} x_{3}^{2} x_{5} x_{6}^{2}-x_{1} x_{3} x_{4}^{2} x_{5}^{2}+x_{1} x_{3} x_{4}^{2} x_{6}^{2}- \\
& x_{1} x_{3} x_{5}^{2} x_{6}^{2}-x_{1} x_{4}^{2} x_{5}^{2} x_{6}-x_{1} x_{4}^{2} x_{5} x_{6}^{2}+x_{1} x_{4} x_{5}^{2} x_{6}^{2}-x_{2}^{2} x_{3}^{2} x_{4} x_{5}-x_{2}^{2} x_{3}^{2} x_{4} x_{6}+x_{2}^{2} x_{3}^{2} x_{5} x_{6}+ \\
& x_{2}^{2} x_{3} x_{4}^{2} x_{5}-x_{2}^{2} x_{3} x_{4}^{2} x_{6}-x_{2}^{2} x_{3} x_{4} x_{5}^{2}+x_{2}^{2} x_{3} x_{4} x_{6}^{2}-x_{2}^{2} x_{3} x_{5}^{2} x_{6}-x_{2}^{2} x_{3} x_{5} x_{6}^{2}-x_{2}^{2} x_{4}^{2} x_{5} x_{6}+ \\
& x_{2}^{2} x_{4} x_{5}^{2} x_{6}-x_{2}^{2} x_{4} x_{5} x_{6}^{2}-x_{2} x_{3}^{2} x_{4}^{2} x_{5}+x_{2} x_{3}^{2} x_{4}^{2} x_{6}+x_{2} x_{3}^{2} x_{4} x_{5}^{2}-x_{2} x_{3}^{2} x_{4} x_{6}^{2}-x_{2} x_{3}^{2} x_{5}^{2} x_{6}- \\
& x_{2} x_{3}^{2} x_{5} x_{6}^{2}-x_{2} x_{3} x_{4}^{2} x_{5}^{2}-x_{2} x_{3} x_{4}^{2} x_{6}^{2}+x_{2} x_{3} x_{5}^{2} x_{6}^{2}-x_{2} x_{4}^{2} x_{5}^{2} x_{6}+x_{2} x_{4}^{2} x_{5} x_{6}^{2}-x_{2} x_{4} x_{5}^{2} x_{6}^{2}- \\
& x_{3}^{2} x_{4}^{2} x_{5} x_{6}-x_{3}^{2} x_{4} x_{5}^{2} x_{6}+x_{3}^{2} x_{4} x_{5} x_{6}^{2}+x_{3} x_{4}^{2} x_{5}^{2} x_{6}-x_{3} x_{4}^{2} x_{5} x_{6}^{2}-x_{3} x_{4} x_{5}^{2} x_{6}^{2}
\end{aligned}
$$

5.2 Reducible polynomials

- Case 1: the polynomial contains a linear factor.

As discussed in previous sections, this case is completely the same to one of the situations we've already considered.

- Case 2: the polynomial factors into 3 irreducible polynomials of degree 2 .

Let $f(x)=g(x) h(x) j(x)$ where $g(x), h(x), j(x)$ are irreducible quadratics, and let L_{f} denote the splitting field of a polynomial f over \mathbb{Q}. As g, h, j are irreducible quadratics, we know L_{g}, L_{h}, L_{j} are generated by attaching one of the zeros to \mathbb{Q}, or, equivalently, by attaching $\sqrt{\Delta}$ to \mathbb{Q}. Thus, two of L_{g}, L_{h}, L_{j}, say L_{g} and L_{h}, are actually the same extension, if and only if $\sqrt{\Delta(g)}=q \sqrt{\Delta(h)}$ for some $q \in \mathbb{Q}$, which is equivalent to say $\sqrt{\Delta(g)} \sqrt{\Delta(h)} \in \mathbb{Q}$. Now suppose L_{g} and L_{h} define different extension, we want to consider whether the remaining L_{j} is a subfield of $L=L_{g} \cup L_{h}=\mathbb{Q}(\sqrt{\Delta(g)}, \sqrt{\Delta(h)})$. By previous discussion, if $\sqrt{\Delta(g)}=q \sqrt{\Delta(j)}$ or $\sqrt{\Delta(h)}=q \sqrt{\Delta(j)}$ then L_{j} is certainly a subfield of L, so let's also assume this does not hold. Note that a basis for L is $\{1, \sqrt{\Delta(g)}, \sqrt{\Delta(h)}, \sqrt{\Delta(g)} \sqrt{\Delta(h)}\}$, so if L_{j} is a subfield of L, then there must exist $a, b, c, d \in \mathbb{Q}$ such that

$$
a+b \sqrt{\Delta(g)}+c \sqrt{\Delta(h)}+d \sqrt{\Delta(g)} \sqrt{\Delta(h)}=\sqrt{\Delta(j)}
$$

By the assumption that $\sqrt{\Delta(j)}$ is not a rational multiple of $\sqrt{\Delta(g)}$ or $\sqrt{\Delta(h)}$, we have that $b=c=0$, and by similar method in case 3 in Section 3.2, we have that L_{j} is a subfield of L if and only if $\sqrt{\Delta(g)} \sqrt{\Delta(h)} \sqrt{\Delta(j)} \in \mathbb{Q}$.
Summarizing:

1. If the product of every pair of $\sqrt{\Delta(g)}, \sqrt{\Delta(h)}, \sqrt{\Delta(j)}$ is in \mathbb{Q}, then $G_{f} \cong$ S_{2}
2. If $\sqrt{\Delta(g) \Delta(h) \Delta(j)} \in \mathbb{Q}$ or precisely one pair of $\sqrt{\Delta(g)}, \sqrt{\Delta(h)}, \sqrt{\Delta(j)}$ has its product in \mathbb{Q}, then $G_{f} \cong S_{2} \times S_{2}$
3. Otherwise, $G_{f} \cong S_{2} \times S_{2} \times S_{2}$

- Case 3: the polynomial factors into 2 irreducible polynomials, one is of degree 2 , the other is of degree 4 .

Let $f(x)=g(x) h(x)$, where $g(x), h(x)$ are monic, irreducible polynomials of degrees 2 and 4 respectively. Then the question is whether the zeros of $g(x)$ are contained in the splitting field of $h(x)$. Suppose it does, let L_{g} and L_{h} be the splitting field over \mathbb{Q} of g and h respectively, we have:

$$
2=\left|\operatorname{Gal}_{g}\right|=\left[L_{g}: \mathbb{Q}\right]=\frac{\left|L_{h}: \mathbb{Q}\right|}{\left|L_{h}: L_{g}\right|}=\frac{\left|\operatorname{Gal}_{h}\right|}{\left|\operatorname{Gal}_{h}\left(L_{h} / L_{g}\right)\right|}
$$

note that h must not have a zero in L_{g}. Suppose it does, then 0 cannot be its zero so it has two or four zeros in L_{g} because it is of even degree, Having four zeros in L_{g} means $\left|\mathrm{Gal}_{h}\right|=2$, impossible; having two zeros in L_{g} means Gal ${ }_{h}$ is $V_{4} \cong Z_{2} \times Z_{2}$, so it factors into two quadratic polynomials over \mathbb{Q}, contradiction to the assumption that it is irreducible. Thus $\operatorname{Gal}_{h}\left(L_{h} / L_{g}\right)$ must be a transitive subgroup of S_{4}, and this means Gal_{h}, being a transitive group itself, contains a transitive subgroup having index 2. From previous discussions on transitive subgroups of S_{4}, we see that only S_{4} (having A_{4} as subgroup of index 2) and D_{4} (having Z_{4} or V_{4} as subgroup of index 2) satisfy this. Thus, if Gal ${ }_{h}$ is not S_{4} or D_{4}, then the zeros of $g(x)$ cannot be contained in the splitting field of $h(x)$ and thus $\mathrm{Gal}_{f}=\mathrm{Gal}_{h} \times Z_{2}$, i.e. one of $A_{4} \times Z_{2}, V_{4} \times Z_{2}$ and $Z_{4} \times Z_{2}$.
Now suppose Gal_{h} is either S_{4} or D_{4}, note that in both cases $\Delta(h)$ is not a quare in \mathbb{Q}. We would like to know when zeros of $g(x)$ are contained in the splitting field of $h(x)$. If this happens, then $\mathrm{Gal}_{f}=G a l_{h}=S_{4}$ or D_{4}, which have orders 24 and 8 . We know a zero of $h(x)$ must generate a subfield of degree 4 , thus, the quadratic subfield must be generated by both $\sqrt{\Delta(h)}$ and a zero of $g(x)$, equivalently $\sqrt{\Delta(g)}$, thus we must have $\sqrt{\Delta(g)}=q \sqrt{\Delta(h)}$ for some $q \in \mathbb{Q}$, which is equivalent to say $\sqrt{\Delta(g)} \sqrt{\Delta(h)} \in \mathbb{Q}$.
Summarizing case 3:
(i) If $\mathrm{Gal}_{h}=S_{4}$ or D_{4} and $\sqrt{\Delta(g)} \sqrt{\Delta(h)} \in \mathbb{Q}$, then $\mathrm{Gal}_{f}=G a l_{h}$;
(ii) If $\mathrm{Gal}_{h}=S_{4}$ or D_{4} and $\sqrt{\Delta(g)} \sqrt{\Delta(h)} \notin \mathbb{Q}$, then $\mathrm{Gal}_{f}=G a l_{h} \times Z_{2}$;
(iii) If Gal_{h} is neither S_{4} or D_{4}, then $\mathrm{Gal}_{f}=G a l_{h} \times Z_{2}$.

- Case 4: the polynomial factors into 2 irreducible polynomials of degree 3.

Let $f(x)=g(x) h(x)$, where $g(x), h(x)$ are monic, irreducible, cubic polynomials. Note that if g, h define the same extension, i.e. $L_{g}=L_{h}$, then the problem reduces to the case of irreducible polynomial of degree 3, which has been discussed. Thus we only consider $L_{g} \neq L_{h}$. By previous discussions in Section 2.1, we know both L_{g} and L_{h} satisfy $L=\mathbb{Q}(\alpha, \sqrt{\Delta})$ where α is a zero, and $[L: \mathbb{Q}]=3$ if $\sqrt{\Delta} \in \mathbb{Q}$ or 6 otherwise. Thus if both $\sqrt{\Delta(g)}$ and $\sqrt{\Delta(h)}$ are not in \mathbb{Q}, then L_{g} and L_{h} have a common subfield of degree 2 if and only if $\sqrt{\Delta(g)}=q \sqrt{\Delta(h)}$ for some $q \in \mathbb{Q}$, which is equivalent to say $\sqrt{\Delta(g)} \sqrt{\Delta(h)} \in \mathbb{Q}$. Next, note that L_{g} and L_{h} have a common subfield of degree 3 if and only if there exists an isomorphism

$$
\varphi: \mathbb{Q}[x] /(g) \rightarrow \mathbb{Q}[x] /(h), \quad x \mapsto a x^{2}+b x+c
$$

for some $a, b, c \in \mathbb{C}$. Equivalently, $g(x)$ must be sent to 0 , i.e. $g\left(a x^{2}+b x+c\right)=0$ $\bmod h$. Let $g(x)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and $h(x)=x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$ (the
fact that they are monic follows from f is monic and Lemma of Gauss). Then:

$$
\begin{aligned}
g\left(a x^{2}+b x+c\right)= & a^{3} x^{6}+3 a^{2} b x^{5}+\left(3 a b^{2}+3 a^{2} c+a^{2} a_{2}\right) x^{4}+\left(b^{3}+6 a b c+2 a b a_{2}\right) x^{3} \\
& \left(3 a c^{2}+b^{2} a_{2}+3 b^{2} c+2 a c a_{2}+a a_{1}\right) x^{2} \\
& \left(3 b c^{2}+2 b c a_{2}+b a_{1}\right) x+c a_{1}+a_{0}+c^{3}+c^{2} a_{2}
\end{aligned}
$$

On the other hand, let $q(x)=q_{3} x^{3}+q_{2} x^{2}+q_{1} x+q_{0} \in \mathbb{Q}[x]$ be arbitrary. Then:

$$
\begin{aligned}
h(x) q(x)= & \left(x^{3}+b_{2} x^{2}+b_{1} x+b_{0}\right)\left(q_{3} x^{3}+q_{2} x^{2}+q_{1} x+q_{0}\right) \\
= & q_{3} x^{6}+\left(q_{2}+b_{2} q_{3}\right) x^{5}+\left(b_{1} q_{3}+q_{1}+b_{2} q_{2}\right) x^{4}+\left(b_{0} q_{3}+b_{2} q_{1}+q_{0}+b_{1} q_{2}\right) x^{3} \\
& +\left(b_{0} q_{2}+b_{2} q_{0}+b_{1} q_{1}\right) x^{2}+\left(b_{1} q_{0}+b_{0} q_{1}\right) x+b_{0} q_{0}
\end{aligned}
$$

Thus if there exists $q_{3}, q_{2}, q_{1} q_{0} \in \mathbb{Q}$ making the above two expressions equal, then L_{g} and L_{h} have a common subfield of degree 3 .
Summarizing case 4:
(i) If L_{g}, L_{h} don't have a common cubic subfield and both $\sqrt{\Delta(g)}, \sqrt{\Delta(h)} \in$ $\mathbb{Q}($ so their product is also in $\mathbb{Q})$ then $\mathrm{Gal}_{f} \cong A_{3} \times A_{3}$;
(ii) If L_{g}, L_{h} don't have a common cubic subfield and precisely one of $\sqrt{\Delta(g)}$, $\sqrt{\Delta(h)}$ lies in $\mathbb{Q}($ so their product is not in $\mathbb{Q})$, then $\mathrm{Gal}_{f} \cong S_{3} \times A_{3} ;$
(iii) If L_{g}, L_{h} don't have a common cubic subfield, neither of $\sqrt{\Delta(g)}, \sqrt{\Delta(h)}$ lies in \mathbb{Q} and their product is not in \mathbb{Q}, then Gal $_{f} \cong S_{3} \times S_{3}$;
(iv) If L_{g}, L_{h} don't have a common cubic subfield and neither of $\sqrt{\Delta(g)}, \sqrt{\Delta(h)}$ lies in \mathbb{Q}, but their product is in \mathbb{Q}, then again $\mathrm{Gal}_{f} \cong S_{3} \times A_{3}$;
(v) If L_{g}, L_{h} have a common cubic subfield, then Gal_{f} is one of $S_{3} \times Z_{2}, A_{3} \times Z_{2}$ and S_{3}, depending whether they have and share a common quadratic subfield or not.

5.3 Examples

Since in this section, the resolvents are generally of much higher degrees and have much more coefficients than in previous cases, I would like to determine the Galois group of a polynomial by a different way using Magma, without having to compute the coefficients of the resolvent explicitly. But essentially we are still using the facts we obtained about resolvents.

Example 5.1. Let's construct a monic, irreducible polynomial $f(x)$ of degree 6 in $\mathbb{Z}[x]$ that has \mathbb{Z}_{6} as Gal_{f}. By Theorem 1.14 , this happens if and only if we can construct a separable of degree $\frac{\left|S_{6}\right|}{\left|S_{3}\right|}=120$. The idea is the following:

- Step 1. Take a polynomial $F \in \mathbb{Q}\left[x_{1}, . ., x_{6}\right]$ such that $\operatorname{Stab}(F)=Z_{6}$

I take $h\left(x_{1}, . ., x_{6}\right)$ to be:

```
inv:=InvariantsOfDegree(Z6,5);
```

$\mathrm{h}:=\operatorname{inv}[41]-i n v[40]$;

- Step 2. Take a polynomial $f(x)$ whose Galois group to be determined.

Based on Example 2.3, I'm guessing that the minimal polynomial of $\varepsilon+\frac{1}{\varepsilon}$ could have its Galois group isomorphic to \mathbb{Z}_{6}, where ε is the $2 \cdot 6+1=13$-th root of unity. The minimal polynomial can be determined to be $f(x)=x^{6}+x^{5}-5 x^{4}-$ $4 x^{3}+6 x^{2}+3 x-1$. (Many ways to do that, I used WolframAlpha by simply typing in $-(-1)^{(1 / 13)}+1 /\left(-(-1)^{(1 / 13)}\right)$ and the result displays its minimal polynomial, among other things). Its discriminant is $371293=13^{5}$, thus Gal_{f} cannot be a subgroup of A_{6} so it could be Z_{6}, hence at least we didn't make a mistake from the beginning.

- Step 3. Obtain the splitting field K of f in the form of $K=\mathbb{Q}(a)$, and the 6 different zeros of $f(x)$

Here we already have it: $a=\varepsilon+\frac{1}{\varepsilon}$, and the other roots are obtained by repeatedly squaring and subtracting 2 (again, compare Example 2.3). But for other functions we might still need to do this again.

- Step 4. Obtain different $\sigma_{i} h\left(x_{1}, . ., x_{6}\right)$, where σ_{i} are representatives S_{6} / Z_{6};

Since the index of Z_{6} is 120, we should obtain 120 different $\sigma_{i} h$ here.

- Step 5. Evaluate those $\sigma_{i} h\left(x_{1}, . ., x_{6}\right)$ at the zeros of $f(x)$.

If the number of different outcome equals 120, then the resolvent is separable; moreover, if in these outcomes we can found a rational number, then by Theorem $1.14 \mathrm{Gal}_{f} \cong Z_{6}$.
Summarizing, we can achieve this by the following command in Magma:

```
Q:=Rationals();P<x>:=PolynomialRing(Q);
f:=x^6+x^5-5*x^4-4*x^3+6*x^2+3*x-1;
Z6:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,
0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0]>;
inv:=InvariantsOfDegree(Z6,5);
h:=inv[41]-inv [40];
orb:=h^Sym(6);
#orb;
K<a>:=SplittingField(f);
rt:=Roots(f, K);
PK<x1,x2,x3, x4, x5,x6>:=PolynomialRing(K,6);
zeroes:=[ rt[i][1] : i in [1..6]];
#{Evaluate(PK!G,zeroes) : G in orb};
{Evaluate(PK!G,zeroes) : G in orb}
```

The result contains 2 numbers and a list. The first number is the number of different $\sigma_{i} h\left(x_{1}, . ., x_{6}\right)$, if it is less than the index of the transitive subgroup G we are considering, then $\operatorname{Stab}(h) \neq G$ so we need to try a different h. The second number is the number of different $\sigma_{i} h\left(x_{1}, . ., x_{6}\right), x_{i} \mapsto a_{i}$, i.e. the zeros of the resolvent. If this number is not equal to the index, then we also need to try a different $h\left(x_{1}, . ., x_{6}\right)$. Assume both numbers are equal to the index, in the list, see if there is a rational number in it, if there is then Gal_{f} is conjugate to a subgroup of G by Theorem 1.14; if not, either try a different $h\left(x_{1}, . ., x_{6}\right)$ or Gal_{f} is not conjugate to a subgroup of G.
In our case, both numbers are 120 and there is a number 13 in the list, thus $\mathrm{Gal}_{f} \cong Z_{6}$.

Example 5.2. Let $f(x)=x^{6}+2 x^{5}+3 x^{4}+5 x^{3}+8 x^{2}+13 x+21, \Delta(f)=$ $-60209295851=-41 \cdot 113 \cdot 12995747$ which is not a square in \mathbb{Q}, thus Gal_{f} cannot be a subgroup of A_{6}. Furthermore, we have:

$$
\begin{aligned}
f(x) & =x\left(x^{5}+2 x^{4}+2 x^{2}+2 x+1\right) \quad \bmod \quad 3 \\
& =(x+7)\left(x^{2}+x+6\right)\left(x^{3}+11 x^{2}+4 x+9\right) \quad \bmod \quad 17
\end{aligned}
$$

By Corollary 5.2 (3) and (5), $\mathrm{Gal}_{f} \cong S_{6}$.
Example 5.3. Let $f(x)=x^{6}+2 x^{5}+3 x^{4}+5 x^{3}+8 x^{2}+13 x+21, \Delta(f)=$ $-13424896=-(3664)^{2}$ which is not a square in \mathbb{Q}. Hence Gal_{f} is not a subgroup of A_{6}. Using similar method in Example 5.1 by changing the 2nd to 5th lines to this:

```
f:=x^6 + x^5 - 3*x^4 - 2*x^3 - 3*x^2 + x + 1;
Z2S4:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,
0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[0,0,0,0,1,0, 0,0,0,1,0,0,
0,0,1,0,0,0, 0,1,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,1],[1,0,0,0,0,0,
0,1,0,0,0,0, 0,0,0,0,0,1,0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,1,0,0,0]>;
inv:=InvariantsOfDegree(Z2S4,5);
h:=inv[13]-inv [14];
```

Both numbers in the result are 15, which is equal to the index of $Z_{2} \times S_{4}$, thus Gal_{f} is conjugate to a transitive subgroup of $Z_{2} \times S_{4}$. Furthermore, $f(x)=\left(x^{2}+\right.$ $24 x+1)\left(x^{4}+6 x^{3}+26 x^{2}+6 x+1\right) \bmod 29$, thus by Corollary 5.2, $\mathrm{Gal}_{f} \cong Z_{2} \times S_{4}$

Example 5.4. Let $f(x)=x^{6}-24 x^{4}+21 x^{2}+9 x+1, \Delta(f)=13775482161=$ $3^{12} \cdot 7^{2} \cdot 23^{2}$, thus Gal_{f} is a subgroup of A_{6}. Moreover:

$$
\begin{aligned}
f(x) & =(x+1)\left(x^{5}+x^{4}+x^{3}+x^{2}+1\right) \quad \bmod \quad 2 \\
& =(x+5)^{3}\left(x^{3}+6 x^{2}+6\right) \quad \bmod \quad 7
\end{aligned}
$$

Thus, $\mathrm{Gal}_{f} \cong A_{6}$ by Corollary 5.1 (4).

References

[1] David Cox. Galois Theory. Wiley, 2012.
[2] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer, 1996.
[3] Serge Lang. Algebra, revised third edition. Springer, 2000.
[4] Michael Artin. Algebra, second edition. Prentice-HaIl, Inc., 1991.
[5] Arturas Dubickas. Polynomials irreducible by eisenstein's criterion. Applicable Algebra in Engineering, Communication and Computing, 2003.
[6] David S. Dummit and Richard M. Foote. Algebraic algebra, third edition. Wiley, 2004.
[7] M. Fried and S. Friedland. A discriminant criteria for reducibility of a polynomial. Israel Journal of Mathematics, 54(25-32), 1986.
[8] Serge Lang. Algebraic number theory, second edition. Springer, 1994.
[9] S. P. Novikov B. A. Dubrovin, A. T. Fomenko. Modern Geometry, Methods and Applications, Part I. Springer, 1984.
[10] Derek F. Holt. Enumerating subgroups of the symmetric group. Contemporary Mathematics, 2009.

