


Abstract

In this bachelor’s project, I aim to describe, given a general monic
polynomial with integer coefficients of degree n ≤ 6, the Galois group of
its splitting field over Q. First of all, there are two situations to consider:
the polynomial is irreducible or reducible. In the former case, we can
use discriminant, resolvent and the subtle connection between irreducibil-
ity and transitive subgroups of Sn; in the latter case, we can factor the
polynomial into irreducible factors of smaller degrees, explore the relation
among their splitting fields and apply the results we already obtained.
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1 Introduction and preliminaries

Galois theory is a deep and rich branch of algebra named after the French
mathematician Évariste Galois. In the beginning, it was introduced to solve
the famous problem: does a general polynomial of degree at least 5 have an
explicit formula for its roots? By works of Galois, the answer is no, because Sn
is not solvable for all n ≥ 5. Later, Galois theory was also found helpful in both
classical and contemporary mathematics, for example, trisecting an angle and
differential equations. In this project, I will attempt to explore the relationship
between polynomials and the Galois groups associated with them. This helps us
in understanding the polynomial in many ways, for instance, given a polynomial,
if we only know one of its roots but we also know how the Galois group acts
on its roots, we might be able to guess the remaining roots without having to
compute them.
The restriction that we are considering monic polynomials with integer coeffi-
cients might seem harsh here. But in fact, any polynomial f(x) = anx

n + . . .+
a1x + a0 in Q[x] can be transformed into a monic one in Z[x], and these two
polynomials will have the same splitting field. First note that we can multiply
the least common multiple of the denominators of an, . . . , a0 so we have a poly-
nomial in Z[x] that has the same zeros. Hence we may suppose an, . . . , a0 ∈ Z.
Next, note that the following polynomial:

g(x) = an−1n f(
x

an
) = an−1n (an

xn

ann
+ an−1

xn−1

an−1n

+ . . .+
a1x

an
+ a0)

will be a monic polynomial in Z[x]. Furthermore, let α1, . . . , αn be the ze-
ros of f(x), then anα1, . . . , anαn are the zeros of g(x). Therefore they will
have the same splitting field over Q and their Galois groups, which are the
Q-automorphisms of their splitting fields, will be the same.

1.1 Galois groups, transitive groups and permutations

First, we need some preliminaries before understanding what Galois groups are
about. I assume the reader is familiar with basic concepts on fields, especially
field extensions.

Definition. A field extension L ⊇ K is called normal if every irreducible poly-
nomial f(x) ∈ K[x] which has a zero in L, splits as a product of factors of
degree one in L[x].

Example 1.1. 1. Let L = C and K = R, then L ⊇ K is normal. Indeed,
every f(x) ∈ R[x] has its zeros in C.

2. Let L = Q( 4
√

2) and K = Q, then L ⊇ K is NOT normal, x4 − 2 = 0 has
a zero in L, but also has a zero x = i 4

√
2 not in L.

Definition. An extension L ⊇ K is called separable if every element of L is
algebraic and its minimal polynomial over K is separable.
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Theorem 1.1. Every algebraic extension of fields of characteristic 0 is separa-
ble.

Proof. See, for example, page 112 of [1].

Since we are concerned with algebraic extensions over Q, whose characteristic
is 0, with this theorem we don’t need to worry about separablility.

Definition. A K-automorphism L ⊇ K is an isomorphism σ : L→ L such that

σ(k) = k

for all k ∈ K.

Definition. The Galois group Gal(L/K) is the group of all K-automorphism of
the normal and separable extension L ⊇ K. We also denote by Galf the Galois
group of the splitting field of a separable polynomial f over a field.

Remark 1.2. Some instructive examples are included in section 2.3, which,
hopefully, can provide a rough idea about Galois groups.

Theorem 1.3. Let f(x) ∈ Z[x], let L be its splitting field over Q and consider
σ ∈ Gal(L/Q). Then if a ∈ L is a zero of f(x), so is σ(a) ∈ L.

Proof. Let f(x) = 0, then:

σ(f(x)) = σ(anx
n+. . .+a1x+a0) = σ(an)(σ(x))n+. . .+σ(a1)σ(x)+σ(a0) = 0.

Theorem 1.4. The Galois group of the splitting field over Q of a polynomial
in Z[x] of degree n is isomorphic to a subgroup of Sn

Proof. This is a direct consequence of previous theorem.

Definition. A subgroup H ⊆ Sn is called transitive if for all i, j ∈ {1, 2, . . . , n}
there exists σ ∈ H such that σ(i) = j

Theorem 1.5. Let L be the splitting field of a separable polynomial f(x) in Z[x]
of degree n, then Gal(L/Q) is isomorphic to a transitive subgroup of Sn if and
only if f(x) is irreducible.

Proof. Let f(x) ∈ K[x] be irreducible and separable. By definition f(x) has
n distinct zeros a1, a2, . . . , an ∈ L. Therefore, for all i, j ∈ {1, 2, . . . , n} we
can construct a Q-automorphism sending ai to aj , hence Galf is isomorphic
to a transitive subgroup of Sn. Conversely, suppose Gal(L/Q) is isomorphic
to a transitive subgroup of Sn, let h(x) be an irreducible factor of f(x) and
a1, a2, . . . , an ∈ L be the zeros of f(x). Then there exists ai such that h(ai) = 0,
but we also have h(aj) = 0 for all j since Gal(L/Q) is transitive, which means
(after possibly multiplying by a nonzero element of K) that h = f .
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Theorem 1.6. Let H be a transitive subgroup of Sn, then n divides |H|.

Proof. Let X = {1, . . . , n}. Take x ∈ X, we have a subgroup of H, which is
called the stabilizer, defined as Stab(x) = {h ∈ H : hx = x}.
The map

ϕ : H → X, h 7→ h(1)

is surjective as H is transitive. Moreover, H/Stab(1)→ X is clearly a bijection
and hence n = |X| is a divisor of |H|.

Theorem 1.7. Let f(x) ∈ Z[x] of degree n be irreducible and separable and L
be its splitting field over Q, then n divides |Gal(L/Q)|

Proof. This is the direct consequence of previous two theorems.

1.2 Discriminant, resultant and resolvent

In later sections, discriminants and resolvents will be used frequently to analyze
our problem; in the meanwhile, discriminants would be difficult to compute by
hand if we do not resort to resultants.

Definition. The discriminant of a polynomial f(x) = anx
n+an−1x

n−1 + . . .+
a1x+ a0, where n > 1, is defined as

∆(f) = a2n−2n

∏
1≤i<j≤n

(αi − αj)2

where the αi are the roots of f .

Remark 1.8. We generally do not consider discriminants for linear polynomi-
als. In the rest of this text, mostly we will encounter monic polynomials, and
in such cases ∆(f) =

∏
1≤i<j≤n(αi − αj)2. Furthermore, note that ∆(f) = 0 if

and only if f has multiple zeros. In this text we consider separable polynomials
only, thus the discriminants are never zero. Moreover, ∆(f) is a symmetric
polynomial in the αi’s and hence it can be expressed in terms of the elementary
symmetric polynomials in the αi’s, which up to sign are the aj/an.

Theorem 1.9. Let f be a monic, separable and irreducible polynomial in Q[x]
of degree > 1, then:

√
∆(f) ∈ Q⇔ The Galois group of the splitting field of f

over Q consists of even permutations only.

Proof. If
√

∆(f) ∈ Q then it is fixed by elements of the Galois group, but√
∆(f) =

∏
1≤i<j≤n(xi − xj) can only be fixed by even permutations; the

converse is obvious.

The following tool will be very helpful to us in computing the discriminant of
a polynomial, which can be found on pages 47-48 of http://websites.math.
leidenuniv.nl/algebra/ant.pdf, lecture notes by P. Stevenhagen of the Uni-
versity of Leiden. However, Theorem 1.10 is not proved there.
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Definition. Let g(x) = b
∏r
i=1(x−βi) and h(x) = c

∏s
i=1(x−γi) be polynomials

with coefficients and roots in a field, then their resultant Res(f, g) is defined as

Res(g, h) = bscr
r∏
i=1

s∏
j=1

(βi − γj).

Theorem 1.10. Let g, h be defined as in the previous definition, then we have:

1. Res(g, h) = (−1)rsRes(h, g)

2. Res(g, h) = bs
∏r
i=1 h (βi)

3. Res(g, h) = bs−s1Res (g, h1), where h1 6= 0 satisfies h1 ≡ h mod g, and s1
is the degree of h1

Proof. 1. By definition, we have:

Res(g, h) = bscr
r∏
i=1

s∏
j=1

(βi − γj)

= (−1)rscrbs
s∏
j=1

r∏
i=1

(γj − βi)

= (−1)rsRes(h, g)

2. This is obvious by substituting the definition of h into the definition of
Res(g, h).

3. h1(βi) = h(βi) as h1 ≡ h mod g, hence Res(g, h1) = bs1
∏r
i=1 h1(βi) by

property 2, and hence

bs−s1Res(g, h1) = bs−s1bs1
r∏
i=1

h1(βi)

= bs
r∏
i=1

h1(βi)

= bs
r∏
i=1

h(βi)

= Res(g, h)

Remark 1.11. In subsequent sections, we will need Res(f, f ′), the importance
of which is in the next theorem. Say f is of degree 4, then Res(f, f ′) involves
the resultant of polynomials of degree 4 and 3, and the computation can be made
easier by property 3, which allows us to replace f ′ by the remainder of f divided
by f ′. Repeat this process until the remainder is of low degree (usually 1 or
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2), so we can spot its zeros (say, αi) very easily. Afterwards, we use property
1 to swap f and that remainder, and finally we can use property 2 to get a
simple formula linking Res(f, f ′) and

∏
f(αi). For an explicit example using

this theorem, refer to section 2.1 where the discriminant of a general, monic
polynomial of degree 3 is calculated.

Theorem 1.12. Let f ∈ F [x] be monic and of degree n larger than 1, then:

∆(f) = (−1)
1
2n(n−1)Res(f, f ′)

Proof. The proof of Theorem 1.12 requires new techniques, e.g. Sylvester’s
matrix, which are not very relevant to our problem here, thus I omit it. But
the proof can be found on, for instance, pages 119-121 of [2].

Now we have a tool to determine whether Galf consists of even permutations
or not, using discriminants, which can be computed using resultants. But to
obtain more information on Galf , we’ll also need resolvents.

Definition. Let K be a field and f(x) ∈ K[x] be separable and of degree
n. The resolvent polynomial of f(x) with respect to a subgroup G ⊆ Sn and
F (x1, . . . , xn) ∈ K[x1, . . . , xn] such that G = {σ ∈ Sn : σF = F} is the stabi-
lizer of F , is:

rG,F (f)(y) =
∏

σi∈Sn/G

(y − (σiF ))(x1, . . . , xn), xi 7→ ai

where σi are coset representatives of Sn/G and ai are roots of f(x).

Theorem 1.13. The resolvent polynomial r of f(x) ∈ K[x] has its coefficients
in K.

Proof. Let τ ∈ Gal(L/K) ⊆ Sn where L is the splitting field of f over K, then:

τ(r) =
∏

σ∈Sn/G

(T − (τσF ))(a1, . . . , an) =
∏

σ∈Sn/G

(T − (σF ))(a1, . . . , an) = r

Because if σi are representatives of different coset then so are τσi. Thus, r is
fixed by all K-automorphisms and hence r has its coefficients in K.

Theorem 1.14. Let the resolvent polynomial rGF ,F (f) of f(x) ∈ K[x] be sep-
arable. Then Gal(L/K), where L is the splitting field of f over K, is conjugate
in G to a subgroup of GF , the stabilizer of F in G, if and only if rG,F (f) has a
root in K.

Proof. (⇒) Let σ ∈ G such that σ−1Gal(L/K)σ ⊆ GF and let α1, . . . , αn be
the zeros of f(x). Then for τ ∈ Gal(L/K) one has σ−1τσF (α1, . . . , αn) =
F (α1, . . . , αn). Hence

τσF (α1, . . . , αn) = σF (α1, . . . , αn)
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and therefore r has a root in K.

Before proving the other direction, we note a small consequence of r being
separable:
Let σi be the representatives of G/GF and σ1 = e. Then, for all σ ∈ G, we have
σ = σiτ for some i, where τ ∈ GF . Then:

σF (α1, . . . , αn) = σiτF (α1, . . . , αn) = σiF (α1, . . . , αn)

which is a zero of r. Since all zeros of r are distinct, σiF (α1, . . . , αn) =
σ1F (α1, . . . , αn) if and only if σi = σ1 = e. This means σF (α1, . . . , αn) =
F (α1, . . . , αn) if and only if σ = σ1τ = τ ∈ GF .

(⇐) Assume σiF (α1, . . . , αn) ∈ K for some i and let τ ∈ GF . Then we
have τσiF (α1, . . . , αn) = σiF (α1, . . . , αn), which means σ−1i τσiF (α1, . . . , αn) =
F (α1, . . . , αn). Since r is separable, by the discussion just before this proof, this
occurs if and only if σ−1i τσi ∈ GF , hence σ−1Gal(L/K)σ ⊆ GF .

Remark 1.15. We can actually use Theorem 1.14 to prove Theorem 1.9. Con-
sider F =

∏
1≤i<j≤n(xi−xj) ∈ Q[x1, . . . , xn] and a monic, irreducible and sep-

arable polynomial of degree n in Z[x] which has zeros {a1, . . . , an}. Let σ ∈ Sn,
then σF = sgn(σ)F , hence the stabilizer is precisely An. Then our resolvent
polynomial:

rSn,F (f)(y) =
∏

σi∈Sn/An

(y − (σiF )), xi 7→ ai

=(y − F )(y + F ), xi 7→ ai

=(y −
√

∆)(y +
√

∆)

=y2 −∆

Note ∆ =
∏

(ai−aj) 6= 0 because f is separable, hence this resolvent is separable
as well. Therefore y2 −∆ has a solution in Q if and only if Galf ⊆ An (up to
conjugacy, but since An is a normal subgroup of Sn, no conjugation is needed).
In fact, Theorem 1.9 does not hold for monic polynomials only. Let an be the
leading coefficient of f and multiply F by a constant an−1n , the above discussion
holds as well after referring to the definition of the discriminant of a general
polynomial.

Now I present a theorem which is sometimes much easier to use than using
resolvents.

Theorem 1.16 (Dedekind’s Theorem). Let f(x) be a separable and irreducible
polynomial of degree n in Z[x], and

ϕ : Z[x]→ Fp[x],

n∑
i=0

aix
i 7→

n∑
i=0

aix
i
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be the map of reduction modulo a prime number p. Assume ϕ(f) is also separable
and has the same degree as f , and ϕ(f) = f∗1 . . . f

∗
m where each f∗i is irreducible

over Fp, then Galf , the Galois group of the splitting field of f over Q, contains
a permutation which is a product of cycles of lengths deg(f∗1 ), . . .deg(f∗m).

Proof. See, for example, Chapter VII section 2 of [3].

Remark 1.17. In this paper we are only considering monic polynomials, thus
the degree is always preserved under reduction. Note that in general, if G is
a transitive subgroup of Sn having a large index, it’s impossible to conclude
Galf ∼= G using only Dedekind’s Theorem, because that would be equivalent to
proving that for all p, f(x) factorizes into certain forms over Fp. (See Example
4.5).

1.3 Discussion on the reducibility of a polynomial

As noted in previous sections, it is crucial to know whether a given polynomial
is reducible or not before we apply theorems, thus, in this section, we explore
some common ways to do that.

Theorem 1.18 (Lemma of Gauss). Let f(x) ∈ Z[x] be monic. If g(x) ∈ Q[x]
is monic and divides f(x), then g(x) ∈ Z[x] as well.

Proof. This is a very famous result from algebra, thus I state it without proof.
The proof can be found in many textbooks, for instance, chapter 11 section 3
of [4].

Remark 1.19. Note that it means if f(x) ∈ Z[x] is monic and (non-trivially)
reducible in Q[x], then its factors are monic (up to product with a unit) and have
their coefficients in Z as well. Put another way, this means the reducibility of a
monic polynomial with integer coefficients over Q is equivalent to its reducibility
over Z.

Theorem 1.20 (Eisenstein’s criterion). Let f(X) = anx
n + an−1x

x−1 + . . .+
a1x+ a0 ∈ Z[x]. If there exists a prime number p such that:

• p divides each ai for 0 ≤ i < n

• p does not divide an

• p2 does not divide a0

then f(x) is irreducible over Q.

Proof. See, for instance, page 404 of [4].

Remark 1.21. Note that the irreducible polynomials which satisfy the Eisen-
stein’s criterion are only small portion of all irreducible polynomials. In a paper
[5], it is shown that less than 1 percent of polynomials with at least 7 non-zero
coefficients satisfy the Eisenstein’s criterion; on the other hand, there are pn
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polynomials of degree n in Fp[x], out of which 1
n

∑
d|n µ(d)pd polynomials are

irreducible (see page 588 of [6]). For example, on F5 there are 57 = 78125 poly-
nomials of degree 5, and 11160 of them are irreducible, which accounts for a
proportion much greater than 1 percent.

Theorem 1.22. Let f be a polynomial over Z. If f splits into linear factors,
then ∆(f), the discriminant of f , is a square in Z.

Proof. Let f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0, then its discriminant is

∆(f) = a2n−2n

∏
1≤i<j≤n

(αi − αj)2

=
∏

1≤i<j≤n

(an−1n αi − an−1n αj)
2

where the αi are the zeros of f(x). Take an arbitrary αi. Construct a monic
polynomial g(x) in Z[x] such that after evaluation at an−1n αi, every term has a

common factor an
2−n−1
n :

g(x) =xn + an−1anx
n−1 + . . .+ a1a

n2−2n
n xa0a

n2−n−1
n

g(an−1n αi) =an
2−n−1
n · anαni + an

2−n−1
n · an−1αn−1i + . . .

+ an
2−n−1
n · a1αi + an

2−n−1
n · a0

=an
2−n−1
n f(αi)

=0.

Thus an−1n αi are zeros of g(x). But by Theorem 1.18, an−1n αi must be integers,
hence ∆(f) = a2n−2n

∏
1≤i<j≤n(αi − αj)2 must be square in Z.

Remark 1.23. The above theorem actually holds not just for Z, but also for
all domains; see [7] for more information. Notice the similarity and difference
with Theorem 1.9, which proved a necessary and sufficient condition about when
∆(f) is a square in Q, assuming f(x) is irreducible in the first place; while in
our current theorem, we assumed f(x) splits into linear products then we arrive
at a direct consequence of this: ∆(f) is a square in Z.

Theorem 1.24. Let f be a polynomial over Z of degree n. If f is irreducible
over Z, then

|∆(f)| ≥ π
n
2 nn

2nn!

where ∆(f) is the discriminant of f .

Proof. This is a direct consequence of a theorem called Minkowski’s bound or
Minkowski’s constant. The proof can be found, for instance, chapter V section
4 of [8].
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Remark 1.25. By elementary logic (A ⇒ B means not A or B), this theorem

also means that, either f is not irreducible or |∆(f)| ≥ π
n
2 nn

2nn! , which is equivalent

to say |∆(f)| < π
n
2 nn

2nn! ⇒ f is reducible. This could be helpful when discussing
reducibility of polynomials. However, this theorem is not a good tool to detect
reducible polynomials, because the discriminants tend to be much larger than the
bound. A somewhat trivial example is when n = 2, the bound is π/2 = 1.57...,
consider f(x) = x2+3x+2 having discriminant 1 < 1.57, so it must be reducible.
In fact f(x) = (x+ 1)(x+ 2).
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2 Polynomials of degrees of 1, 2 and 3

The case of degree 1 is trivial, as there is only one subgroup of S1. The case of
degree 2 is similar, there are only two subgroups of S2. Let f(x) = x2 +a1x+a0
be an arbitrary monic polynomial in Z[x]. If its discriminant ∆(f) = a21−4a0 is
a square in Q then the zeros of f(x), −a1 ±

√
a21 − 4a0, are in Q as well, hence

Galf only consists of identity; otherwise its Galois group is isomorphic to S2.
Thus the remaining of this section will only concern polynomials of degree 3.

2.1 Irreducible polynomials

Let f(x) = x3 +a2x
2 +a1x+a0 be an arbitrary monic irreducible polynomial in

Z[x] and L be its splitting field over Q. Thus |Gal(L/Q)| divides |S3| = 6, and
by Theorem 1.7, 3 divides |Gal(L/Q)|, hence |Gal(L/Q)| = 3 or 6. The only
subgroup of S3 of order 3 is A3, which consists of even permutations only, and
S3 itself consists of both odd and even permutations, thus Theorem 1.9, which
points out the connection between discriminant and even permutations, would
be helpful here.
First, we need to calculate the discriminant of f , this can be done with the help
of the resultant and Theorems 1.12 and 1.10:

∆(f) =(−1)
1
2 3·2Res(f, f ′) = −Res(f, f ′) by Thm 1.12

=(−1)(−1)3·2Res(f ′, f) = −Res(f ′, f) by Thm 1.10(1)

=− 32 ·Res(3x2 + 2a2x+ a1, (
2a1
3
− 2a22

9
)x+ a0 −

a1a2
9

) by Thm 1.10(3)

=− 9(−1)2·1 ·Res((2a1
3
− 2a22

9
)x+ a0 −

a1a2
9

, 3x2 + 2a2x+ a1) by Thm 1.10(1)

=− 9 · (2a1
3
− 2a22

9
)2 · (a1 + 2a2(

a1a2
9
− a0)/(

2a1
3
− 2a22

9
)

+ 3((
a1a2

9
− a0)/(

2a1
3
− 2a22

9
))2) by Thm 1.10(2)

=− 27a20 − 4a31 + 18a0a1a2 + a21a
2
2 − 4a0a

3
2.

We can also transform f(x) to a simpler polynomial in the form of x3 + px+ q,
the discriminant of which is easier to compute, and it generally gives us more
insight into its zeros. This will be presented below.

Write f(x) in terms of its three roots, expand and compare with the original
polynomial, we have:

f(x) = (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x− x1x2x3
= x3 + a2x

2 + a1x+ a0
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Note that if we substitute x = y − a2
3 we have a 3rd-degree polynomial h(y)

in the form as h(y) = y3 + py + q, and the roots of h and f differ by a fixed
rational constant a2

3 , thus the Galois groups with respect to them are the same.
Writing out the process explicitly:

h(y) = (y − a2
3

)3 + a2(y − a2
3

)2 + a1(y − a2
3

) + a0

= y3 − a2y2 +
1

3
a22y −

1

27
a32 + a2y

2 − 2

3
a22y +

1

9
a32 + a1y −

1

3
a1a2 + a0

= y3 + (−1

3
a22)y + (

2

27
a32 −

1

3
a1a2 + a0)

= y3 + py + q

Thus p = − 1
3a

2
2 and q = 2

27a
3
2 − 1

3a1a2 + a0.
Next, we would like to compute the discriminant of h. Let x1, x2, x3 be its roots,
expand (x− x1)(x− x2)(x− x3) and compare coefficients, we have: x1 + x2 + x3 = 0

x1x2 + x1x3 + x2x3 = p
x1x2x3 = −q

which leads to:

(x1 − x2)2 = (x1 + x2)2 − 4x1x2

= x23 +
4q

x3

and similar results for (x1 − x3)2 and (x3 − x2)2. Thus:

∆ =(x1 − x2)2(x1 − x3)2(x3 − x2)2

=

(
x23 +

4q

x3

)(
x21 +

4q

x1

)(
x22 +

4q

x2

)
=

(x1x2x3)
3

+ 16q2
(
x31 + x32 + x33

)
+ 4q

(
x31x

3
2 + x32x

3
3 + x33x

3
1

)
+ 64q3

x1x2x3

=
63q3 + 16q2

(
x31 + x32 − (x1 + x2)

3
)

+ 4q ((px1 + q)(px2 + q)+)

x1x2x3

+
(px1 + q)(px3 + q) + (px2 + q)(px3 + q)

x1x2x3

=− 4p3 − 27q2

Thus, by Theorem 1.9, if
√

∆ ∈ Q, the Galois group with respect to this poly-
nomial consists of even permutations only, and hence it must be isomorphic to
A3; if

√
∆ /∈ Q, then the Galois group is isomorphic to S3.
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2.2 Reducible polynomials

Let f(x) = x3 + a2x
2 + a1x + a0 ∈ Z[x] be reducible, then there are a few

different cases to be considered:

• Case 1: f(x) = (x− a)(x− b)(x− c) where a, b, c ∈ Z

If this case happens, by Theorem 1.22, its discriminant is a square of an integer.
In this case Galf is trivial as f(x) has rational roots only.

• Case 2: f(x) = (x2 + ax+ b)(x− c) where (x2 + ax+ b) is irreducible over
Q and a, b, c ∈ Z

This case can be identified when f(x) is reducible and contains only one integer
root. In this case, Galf is the same as the Galois group of the splitting field
over Q of x2 +ax+ b, which has been discussed in the beginning of this section.

15



2.3 Examples

Example 2.1. Let f(x) = x2−3x+2, which does not have real zeors. Its zeros
are:

x =
3±
√

17i

2

thus Galf ∼= S2, and the action of its element is complex conjugation.

Example 2.2. Let f(x) = x3−2, its discriminant is −108 which is not a square
in Q, thus Galf ∼= S3.
The actions of elements in Galf can be seen intuitively by plotting its roots in
the complex plane in figure 1:

Figure 1: Roots of x3 − 2 in complex plane

Note S3
∼= 〈σ, τ〉 where σ3 = e and τ2 = e, thus here σ corresponds to rotating

the roots by 120 degrees and τ corresponds to flipping the roots about the x-axis.

Example 2.3. Let f(x) = x3 + x2 − 2x − 1, its discriminant is 49 = 72, thus
Galf ∼= A3

∼= Z3.
The actions of elements in Galf can be seen by inspecting its three roots:

x1 = ε+ ε6

x2 = ε2 + ε5

x3 = ε3 + ε4

16



where ε is a primitive 7th root of unity (so ε7 = 1 and ε 6= 1, in other words,
ε6 + ε5 + ε4 + ε3 + ε2 + ε+ 1 = 0). Note that

x21 = (ε+ ε6)2

= ε2 + ε12 + 2 · ε1+6

= ε2 + ε5 + 2

= x2 + 2

Similarly:
x22 = x3 + 2, x23 = x1 + 2,

Hence the action of elements of Galf on the set of zeros is squaring and sub-
tracting 2.

17



3 Polynomials of degree of 4

3.1 Irreducible polynomials

Let f(x) be an arbitrary monic irreducible polynomial in Z[x] and L be its
splitting field over Q. Thus |Gal(L/Q)| divides |S4| = 24, and by Theorem
1.7, 4 divides |Gal(L/Q)|, hence |Gal(L/Q)| = 4, 8, 12, 24. Thus, first of all, we
make a classification of these transitive subgroups, and we only need them up
to conjugacy within S4, as we can always re-lable the zeros of f(x).

• V4 = {e, (12)(34), (13)(24), (14)(23)} = 〈(14)(23), (12)(34)〉, the Klein
four-group which is normal in S4.

• D4 = V4∪{(1243), (1342), (14), (23)} = 〈(1234), (13)〉, the dihedral group.
In fact, there are three such subgroups in total, the other two are V4 ∪
{(1324), (1423), (12), (34)} and V4 ∪ {(1234), (1432), (13), (24)} and they
are all conjugate in S4.

• Z4
∼= 〈(1234)〉 = {e, (1234), (13)(24), (1432)}, the cyclic group of order

4. In fact there are 3 such subgroups, the remaining 2 are 〈(1324)〉 =
{e, (1324), (12)(34), (1423)} and 〈(1243)〉 = {e, (1243), (14)(23), (1342)},
and of course they are all conjugate in S4.

• A4.

• S4.

There is another class of subgroups of order 4, the non-normal Klein four-
group, which is 〈(12), (34)〉 = {e, (12), (34), (12)(34)} (or any of the 6 subgroups
conjugate to this one in S4). This group is clearly not transitive because, for
example, no element in it maps 1 to 3. The above are the only classes of
subgroups of order 4, 8, 12, 24 of S4 and 5 of them are transitive.
It is not hard to describe the subgroup structure of these groups, which is
summarized in Figure 2 in the next page, where G1 → G2 means G1 ⊃ G2 (in
general, after possibly conjugating G2 inside S4, but for the specific subgroups
presented above no conjugation is needed).

Let f(x) = x4 + a3x
3 + a2x

2 + a1x + a0 ∈ Z[x] be monic and irreducible. The
discriminant of f(x) can be calculated, with the help of resultant, by using
Theorem 1.12 and Theorem 1.10 to be:

∆ =144a20a2a
2
3 + 18a31a2a3 − 192a20a1a3 − 6a0a

2
1a

2
3 + 144a0a

2
1a2 − 4a0a

3
2a

2
3

+ a21a
2
2a

2
3 + 256a30 − 27a41 + 18a0a1a2a

3
3 − 4a31a

3
3 − 128a20a

2
2 + 16a0a

4
2

− 4a21a
3
2 − 27a20a

4
3 − 80a0a1a

2
2a3.

By the following command in Magma (freely available online at http://magma.
maths.usyd.edu.au/calc/), we can find an F ∈ Q[x1, . . . , x4] that has D4 as
stabilizer:
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Figure 2: Structure of transitive subgroups of S4

Q:=Rationals();

D4:=MatrixGroup<4,Q | [0,0,0,1, 1,0,0,0, 0,1,0,0, 0,0,1,0],

[0,0,1,0, 0,1,0,0, 1,0,0,0, 0,0,0,1]>;

InvariantsOfDegree(D4,2);

I chose F = x1x3+x2x4 here. The action of S4 on F = x1x3+x2x4 clearly gives
three different polynomials, namely x1x3 + x2x4, x1x2 + x3x4 and x1x4 + x2x3
(which is equivalent to say that the elements in S4/D4 are e, (23) and (34)).
Hence the resolvent polynomial of f(x) = x4 + a3x

3 + a2x
2 + a1x + a0 with

respect to F and D4 equals:

r(y) = rD4,F (f)(y) = (y−(α1α3+α2α4))(y−(α1α2+α3α4))(y−(α1α4+α2α3))

where αi are zeros of f(x). Vieta’s formula for f(x) = x4 +a3x
3 +a2x

2 +a1x+

a0 =
∏4
i=1(x− αi) gives:

a3 = −(α1 + α2 + α3 + α4)

a2 = α1α2 + α1α3 + α2α3 + α1α4 + α2α4 + α3α4

a1 = −(α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4)

a0 = α1α2α3α4
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Expand r(y):

r(y) =y3 − ((α1α2 + α3α4) + (α1α3 + α2α4) + (α1α4 + α2α3))y2

+ ((α1α2 + α3α4)(α1α3 + α2α4) + (α1α3 + α2α4)(α1α4 + α2α3)

+ (α1α2 + α3α4)(α1α4 + α2α3))y

− ((α1α2 + α3α4)(α1α3 + α2α4)(α1α4 + α2α3))

=y3 − (α1α2 + α1α3 + α2α3 + α1α4 + α2α4 + α3α4)y2

+ (α2
1α2α3 + α1α

2
2α4 + α1α

2
3α4 + α2α3α

2
4 + α2

1α3α4

+ α1α2α
2
3 + α1α2α

2
4 + α2

2α3α4 + α2
1α2α4 + α1α

2
2α3 + α1α3α

2
4

+ α2α
2
3α4)y − α3

1α2α3α4 − α2
1α

2
2α

2
3 − α2

1α
2
2α

2
4

− α1α
3
2α3α4 − α2

1α
2
3α

2
4 − α1α2α

3
3α4 − α1α2α3α

3
4 − α2

2α
2
3α

2
4

Compare coefficients of the expansion with Vieta’s formula, we have:

r(y) = y3 − a2y2 + (a1a3 − 4a0)y − a21 − a0a23 + 4a0a2

To describe the Galois group G = Galf of the splitting field L over Q of f(x),
there are a few cases to be considered.

• Case 1: r(y) is irreducible over Q

Since r(y) is of degree 3 and is irreducible, it does not have a zero in Q and
moreover it is separable. Hence by Theorem 1.14, Galf cannot be a subgroup

of D4, so it is either A4 or S4, and this can be checked by whether
√

∆ ∈ Q and
apply Theorem 1.9.
Alternatively, we have that both f(x) and r(y) are irreducible over Q, so they
are minimal polynomials of α1 and α1α2 + α3α4 ∈ L respectively. Thus, by
the tower law, [L : Q] must be divisible by 3 and 4, the degrees of f(x) and
r(y), and hence |G| = |Gal(L/Q)| must also be divisible by 3 and 4. From the
list of transitive subgroups of S4 we can see that only A4 and S4 satisfy this.
Therefore, by Theorem 1.9, if

√
∆ ∈ Q we have G = A4, otherwise G = S4.

• Case 2: r(y) is reducible over Q

Since r(y) is of degree 3 and is reducible over Q, it must has a zero b ∈ Q, thus
Theorem 1.14 applies here (provided r(y) is separable), hence Galf must be one

of D4, V4 or Z4. Next, if
√

∆(f) ∈ Q by Theorem 1.9 we have Galf ⊆ A4, and
out of V4, Z4 and D4 only V4 = {e, (12)(34), (13)(24), (14)(23)} satisfies this,
thus in this case Galf = V4.

Now assume
√

∆(f) /∈ Q. Without loss of generality, let the zero b = α1α2 +
α3α4 ∈ Q (as we can always re-label the αi to make this happen), by using
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Vieta’s formula mentioned before, it can be shown that :

4b− a23 − 4a2 =4(α1α2 + α3α4)− (α1 + α2 + α3 + α4)2

− 4(α1α2 + α1α3 + α2α3 + α1α4 + α2α4 + α3α4)

=4α1α2 + 4α3α4 − (2α1α2 + 2α1α3 + 2α1α4 + α2
1 + α2

2

+ 2α2α3 + α2
3 + 2α2α4 + 2α3α4 + α2

4)− 4α1α2

− 4α1α3 − 4α2α3 − 4α1α4 − 4α2α4 − 4α3α4

=α2
1 + 2α1α2 − 2α1α3 − 2α1α4 + α2

2 + α2
3

− 2α2α3 + α2
4 + 2α3α4 − 2α2α4

=(α1 + α2 − α3 − α4)2

Thus we have: √
4b+ a23 − 4a2 = α1 + α2 − α3 − α4

Consider
√

∆(f)(4b+ a23 − 4a2) =
√

∆(f)(α1 +α2−α3−α1), if this expression
lies in Q then elements of G must fix it, and out of the two remaining choices
D4 and Z4 only the latter one does so, because (1324) is a generator of Z4 (up
to conjugacy), and:

{
(1324)

√
∆(f) = −

√
∆(f)

(1324)(α1 + α2 − α3 − α4) = α3 + α4 − α2 − α1 = −(α1 + α2 − α3 − α4)

Therefore (1324) fixes
√

∆(f)(α1 + α2 − α3 − α4) =
√

∆(f)(4b+ a23 − 4a2).

Hence if
√

∆(f)(4b+ a23 − 4a2) ∈ Q then Galf = Z4, otherwise Galf = D4.
The previous argument fails when 4b + a23 − 4a2 = 0, in this case, we use a
similar expression

b2 − 4a0 = (α1α2 + α3α4)2 − 4α1α2α3α4 = (α1α2 − α3α4)
2

and proceed the same way, it’s easy to see that if
√

∆(f) (b2 − 4a0) ∈ Q then
Galf = Z4, otherwise Galf = D4.

Remark 3.1. To differentiate whether Galf is isomorphic to D4 or Z4, various
other methods exist, e.g. Dedekind’s Theorem 1.16 or another resolvent with
respect to Z4. The end of section 4.1 explores such possibilities, where we have
to find a way to differentiate D5 or Z5.

3.2 Reducible polynomials

There are several cases to be considered:

• Case 1: f splits into linear factors in Q[x]
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If this case happens, by Theorem 1.22, its discriminant is a square of an integer.
In this case the Galois group is simply the identity, as it only has rational roots.

• Case 2: f has only one irreducible factor of degree 2 or 3

In this case, f(x) = (x − a)(x − b)g(x) or f(x) = (x − a)h(x) where g(x) and
h(x) are irreducible over Q and are of degrees 2 and 3 respectively. Then clearly
Galf ∼= Galg or Galf ∼= Galh and we can apply results we already have.

• Case 3: f has two irreducible factors of degree 2

Write f(x) = g(x)h(x), where g(x) and h(x) are irreducible over Q and are
of degrees 2. Let Lf , Lg and Lh denote the splitting field of f(x), g(x) and
h(x) over Q respectively. If h(x) splits in Lg[x], then Lf = Lg and hence
Galf = Galg = S2 . Otherwise, Lf is the same field as Lg ⊃ Lh ⊃ Q where ⊃
denotes field extensions of degree 2, and hence

Galf = Galg ×Galh = S2 × S2
∼= V4

The case in which Galf ∼= S2, i.e. g(x) and h(x) share a common splitting field,
can be identified by the following theorem.

Theorem 3.2. Let f(x) = g(x)h(x), Lg and Lh defined as above. Then h(x)
splits in Lg if and only if ∆(g)∆(h) is a square in Q.

Proof. Write g(x) = x2 + ax + b, h(x) = x2 + cx + d ∈ Z[x] for the irreducible
factors (they have to be of this form by Lemma of Gauss 1.18). Then Lg =
Q(
√
a2 − 4b) which has a basis

{
1,
√
a2 − 4b

}
. If h(x) splits in Lg[x], then there

must exist q1, q2 ∈ Q such that:√
c2 − 4d = q1 + q2

√
a2 − 4b

⇒
√
c2 − 4d− q2

√
a2 − 4b = q1

⇒ c2 − 4d+ q22(a2 − 4b)− 2q2
√
c2 − 4d

√
a2 − 4b = q21

which holds if and only if
√
c2 − 4d

√
a2 − 4b ∈ Q.

3.3 Examples

We use the following command in Mathematica:

IrreduciblePolynomialQ[x^4+a3 x^3+a2 x^2+a1 x+a0]

d=256 a0^3-27 a1^4+144 a0 a1^2 a2-128 a0^2 a2^2-4 a1^2 a2^3

+16 a0 a2^4-192 a0^2 a1 a3+18 a1^3 a2 a3-80 a0 a1 a2^2 a3

-6 a0 a1^2 a3^2+144 a0^2 a2 a3^2+a1^2 a2^2 a3^2-4 a0 a2^3 a3^2

-4 a1^3 a3^3+18 a0 a1 a2 a3^3-27 a0^2 a3^4;

Sqrt[d]

theta:=y^3 -a2 y^2 +(a1 a3-4a0) y-a1^2 -a3^2 a0 +4 a2 a0
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Factor[theta]

f=4 beta - a3^2 -4a2

Sqrt[d f]

This command except for the last two lines, given integer values a3, . . . , a0,
returns whether f(x) = x4 + a3x

3 + a2x
2 + a1x+ a0 is irreducible,

√
∆(f), the

resolvent polynomial and its factorization. If the resolvent has a unique zero in
Q, set this zero to be β and run the last two lines.

Example 3.1. Let f(x) = x4 + 2x3 + 4x2 + 6x + 8 which is irreducible, then√
∆(f) = 4

√
2685 /∈ Q, and the resolvent polynomial θ(y) = 60−20y−4y2 +y3

which is irreducible over Q, hence Case 1 in Section 3.1 applies and Galf ∼= S4.

Example 3.2. Let f(x) = x4 + 8x + 12 which is irreducible, then
√

∆(f) =
576 ∈ Q, and the resolvent polynomial θ(y) = −64−48y+y3 which is irreducible
over Q. Hence Case 1 in Section 3.1 applies and Galf ∼= A4

Example 3.3. Let f(x) = x4 + 4x2 + 5 which is irreducible, then
√

∆(f) =

16
√

5 /∈ Q, and the resolvent polynomial θ(y) = (−4 + y)(−20 + y2) which has a
unique zero y = 4 in Q and is clearly separable. Set β = 4 and run the 2nd part
of command, we have 4β + a23 − 4a2 = 0 so we cannot use

√
∆(4β + a23 − 4a2)

here. But β + a23 − 4a0 = −4 6= 0, and
√

∆(β + a23 − 4a0) = 32
√

5i /∈ Q, thus
Case 2 in Section 3.1 applies and Galf ∼= D4.

Example 3.4. Let f(x) = x4 + 1 which is irreducible, then
√

∆(f) = 16 ∈ Q,
and the resolvent polynomial θ(y) = y(−2 + y)(2 + y) which splits into linear
factors over Q. Hence Case 2 in Section 3.1 applies and Galf ∼= V4

Example 3.5. Let f(x) = x4 + 3x3 + 9x2 + 27x+ 81 which is irreducible, then√
∆(f) = 3645

√
5 /∈ Q, and the resolvent polynomial θ(y) = (−18 + y)(−81 +

9y + y2) which has a unique zero y = 18 in Q and is clearly separable. Set
β = 18 and run the 2nd part of commmand, we have 4β + a23 − 4a2 = 27 6= 0
and

√
∆(4β + a23 − 4a2) = 10935

√
15 /∈ Q, thus Case 2 in Section 3.1 applies

and Galf ∼= Z4.
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4 Polynomials of degree of 5

4.1 Irreducible polynomials

Let f(x) be an arbitrary monic and irreducible polynomial in Z[x] and L be
its splitting field over Q. Thus |Gal(L/Q)| divides |S5| = 120, and by Theorem
1.7 since f(x) is irreducible in Q[x], moreover 5 divides |Gal(L/Q)|. Hence
|Gal(L/Q)| is one of 5, 10, 15, 20, 30, 40, 60, 120. Thus, first of all, we would like
to make a list of the transitive subgroups, of S5 (again, up to conjugacy):

• Z5
∼= 〈(12345)〉 = {e, (12345), (13524), (14253), (15432)}, the cyclic group

of order 5. Subgroups of 5 (a prime number) must be cyclic, thus Z5 is
the only kind of subgroup of order 5 up to conjugacy.

• D5 = 〈(12345), (14)(23)〉, the dihedral group of order 10. Furthermore, a
subgroup of order 10 must contain an element of order 2 and an element
of order 5 by Cauchy’s theorem, the latter can only be a 5-cycle and
the former can only be either a transposition or the form of (ab)(cd).
If it’s a transposition we get a group of order larger than 10 (in fact,
S5 = {〈(12345), (12)〉}); if it’s (ab)(cd) we get D5. Thus D5 is the only
kind of subgroup of order 10 up to conjugacy.

• GA(1, 5) = 〈(12345), (1243)〉, the general affine group of order 20. There
are 6 such subgroups and all are conjugate in S5. For more information
on affine groups, see, for example, page 27 of [9].

• A5.

• S5.

The uniqueness of these transitive subgroups are proved by the following theo-
rem.

Theorem 4.1. Let G be a transitive subgroup of S5, then G is conjugate to one
of the above groups.

Proof. 5 must divide the order of G, thus G must contain a 5-cycle (abcde),
furthermore G contains Z5

∼= 〈(abcde)〉 as a subgroup, which is also a Sylow-5
group. By Sylow’s theorem, the number of Sylow-5 groups as subgroups in G
is equal to 1 mod 5, and it divides #G. Thus either G has exactly 1 or exactly
6 subgroups of order 5 (in the latter case all 5-cycles in S5 are in G).

• Case 1: G has exactly 6 subgroups of order 5.

Note that in this case, since all 5-cycles are contained, all 3-cycles in S5 can also
be obtained via:

(ijk) = (likjm)(jiklm), i, j, k, l,m = 1, 2, 3, 4, 5

Hence G contains A5, so it is either A5 or S5. The fact that An is generated by
the 3-cyclesin Sn is a well-known fact in group theory.
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• Case 2: G has exactly 1 subgroup of order 5.

Without loss of generality, let (12345) be the generator of this subgroup. Note
that, for all g ∈ G:

g 〈(12345)〉 g−1 = 〈(12345)〉

hence G is a subgroup of the normaliser

N(〈(12345)〉) =
{
σ 〈(12345)〉σ−1 = 〈(12345)〉 , σ ∈ S5

}
On page 414, lemma 14.1.2 of [1], it is proved that N = GA(1, 5) (in fact,
it’s proved there that in Sp, N(〈(12 . . . p)〉) = GA(1, p), where p is a prime).
Transitive subgroups of GA(1, 5) must be of order 5, 10 or 20, in the discussion
in the beginning of this section, we saw that they can only be Z5, D5 and
GA(1, 5) and hence G must be conjugate to one of them.

GA(1, 5) is the group of maps i 7→ ci + d where c, d ∈ F5 and c 6= 0. It
is generated by translation by 1 and multiplication by 2 which correspond to
(12345) and (1243) respectively. Note thatGA(1, 5)∩A5 = 〈(12345), (14)(23)〉 =
D5, because:

GA(1, 5) ∩A5 = {e, (12345), (13524), (14253), (15432)}
∪ {(14)(23), (15)(24), (25)(34), (12)(35), (13)(45)}

=
{
e, a, a2, a3, a4, b, ab, a2b, a3b, a4b

}
where a = (12345) and b = (14)(23).

Remark 4.2. This can also be proved using the sign homomorphism GA(1, 5)→
{±1}, of which the kernel is a subgroup of order 10 consisting of the even per-
mutations in GA(1, 5). In our discussion in the beginning of this section, we
saw that D5 is the only subgroup (up to conjugacy) of S5 of order 10.

Hence, the connection between the 5 transitive subgroups can be described by
Figure 3 in the next page, where G1 → G2 means G1 ⊇ G2 (after possibly
conjugating G2):
Thus, one way to solve our problem could be: first use a resolvent polynomial
whose stabilizer is GA(1, 5), then consider whether the discriminant is a square
in Q or not, if it is, then the Galois group is a subset of A5. In this text, we use
h = u2, where

u = x1x2 + x2x3 + x3x4 + x4x5 + x1x5 − x1x3 − x3x5 − x2x5 − x2x4 − x1x4

It is clear that u2 is fixed by GA(1, 5) = 〈(12345), (1243)〉, thus we have
Stab(u2) ⊇ GA(1, 5). On the other hand, elements of Stab(u2) must belong
to one of the 5 transitive subgroups of S5 mentioned earlier; many elements in
A5 and S5, for example (123) ∈ A5 ⊂ S5, do not fix u2 while the generators of
GA(1, 5) do, thus Stab(u2) ⊆ GA(1, 5) hence we have equality.
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Figure 3: Structure of transitive subgroups of S5

There are 6 coset representatives in S5/GA(1, 5): (1), (123), (234), (345), (145)
and (125), hence the resolvent polynomial θ(y) of f(x) = x5 + a4x

4 + a3x
3 +

a2x
2 + a1x + a0, with respect to h(x1, x2, x3, x4, x5) ∈ Z[x1, x2, x3, x4, x5] and

GA1,5 ⊂ S5 is:

θGA(1,5),h(y) =
∏

τ∈S5/GA(1,5)

(y − τh)(x1, x2, x3, x4, x5), xi 7→ αi

=

6∏
i=1

(y − τih)(x1, x2, x3, x4, x5), xi 7→ αi

=

6∏
i=1

(y − τih)(α1, α2, α3, α4, α5)

where τi are the six coset representatives and αi are the roots of f(x) = x5 +
a4x

4 + a3x
3 + a2x

2 + a1x+ a0. For sake of simplicity we’ll write θ(y) instead of
θGA(1,5),h(y) from now on.
Note that if we define a new polynomial

Γ(y) =

6∏
i=1

(y − τiu)
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then θ(y) can be calculated with the help of Γ(y):

θ(y2) =

6∏
i=1

(y2 − τih)

=τi

6∏
i=1

(y2 − h) (as τi ∈ S5 do not act on the indeterminate y)

=τi

6∏
i=1

(y2 − u2)

=τi

6∏
i=1

(y − u)(y + u)

=(−1)6
6∏
i=1

(y − τiu)(−y − τiu)

=Γ(y)Γ(−y)

followed by replacing y2 by y. The product ending up having even powers of y
only is a guaranteed result, as polynomials in R[x] in the form g(x)g(−x) must
be invariant under the change of sign of x, where R is commutative.

Remark 4.3. In this section, as in the previous one, we will need some results
that are too complicated to work out by hand, (for example, determining whether
the resolvent has a root in Q and the explicit formula of the discriminant of a
general quintic), and I would like to leave them to computer programs (e.g.
Mathematica) where appropriate.

In Mathematica, define the 6 u as:

u1 := x1 x2 + x2 x3 + x3 x4 + x4 x5 + x1 x5 - x1 x3 - x3 x5 - x2 x5 -

x2 x4 - x1 x4

u2 := u1 /. {x1 -> x2, x2 -> x3, x3 -> x1}

u3 := u1 /. {x2 -> x3, x3 -> x4, x4 -> x2}

u4 := u1 /. {x3 -> x4, x4 -> x5, x5 -> x3}

u5 := u1 /. {x1 -> x4, x4 -> x5, x5 -> x1}

u6 := u1 /. {x1 -> x2, x2 -> x5, x5 -> x1}

Then run the following:

Eliminate[{Gamma==(y - u1)(y - u2)(y - u3)(y - u4)(y - u5)(y - u6),

e1 == x1 + x2 + x3 + x4 + x5,

e2 == x1 x2 + x1 x3 + x1 x4 + x1 x5 + x2 x3 + x2 x4 + x2 x5 +

x3 x4 + x3 x5 + x4 x5,

e3 == x1 x2 x3 + x1 x2 x4 + x1 x2 x5 + x1 x3 x4 + x1 x3 x5 +

x1 x4 x5 + x2 x3 x4 + x2 x3 x5 + x2 x4 x5 + x3 x4 x5,

e4 == x1 x2 x3 x4 + x1 x2 x3 x5 + x1 x2 x4 x5 + x1 x3 x4 x5 +

x2 x3 x4 x5,

e5 == x1 x2 x3 x4 x5}, {x1, x2, x3, x4, x5}]
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By the result and the expression for
√

∆, we have:

Γ(y) = y6 +B2y
4 +B4y

2 +B6 − 25
√

∆y

where ∆ is the discriminant of f(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0,

B2 =8σ1σ3 − 3σ2
2 − 20σ4

B4 =3σ4
2 − 16σ1σ

2
2σ3 + 16σ2

1σ
2
3 + 16σ2σ

2
3 + 16σ2

1σ2σ4 − 8σ2
2σ4

− 112σ1σ3σ4 + 240σ2
4 − 64σ3

1σ5 + 240σ1σ2σ5 − 400σ3σ5

B6 =8σ1σ
4
2σ3 − σ6

2 − 16σ2
1σ

2
2σ

2
3 − 16σ3

2σ
2
3 + 64σ1σ2σ

3
3 − 64σ4

3

− 16σ2
1σ

3
2σ4 + 28σ4

2σ4 + 64σ3
1σ2σ3σ4 − 112σ1σ

2
2σ3σ4

− 128σ2
1σ

2
3σ4 + 224σ2σ

2
3σ4 − 64σ4

1σ
2
4 + 224σ2

1σ2σ
2
4

− 176σ2
2σ

2
4 − 64σ1σ3σ

2
4 + 320σ3

4 + 48σ1σ
3
2σ5 − 192σ2

1σ2σ3σ5

− 80σ2
2σ3σ5 + 640σ1σ

2
3σ5 + 384σ3

1σ4σ5 − 640σ1σ2σ4σ5

− 1600σ3σ4σ5 − 1600σ2
1σ

2
5 + 4000σ2σ

2
5

and σi are elementary symmetric polynomials. Now

θ
(
y2
)

= Γ(y)Γ(−y)

=
(
y6 +B2y

4 +B4y
2 +B6

)2 − 210∆ · y2

and replace y2 by y, we have

θ(y) =
(
y3 +B2y

2 +B4y +B6

)2 − 210∆ · y

After evaluation xi 7→ αi, we also have σi 7→ ai ∈ Z and hence the resolvent
θ(y) ∈ Z[y] indeed, which can also be inferred from Theorem 1.13.
We could use Theorems 1.10 and 1.12 to compute ∆ explicitly, but it’s too much
of work to do polynomial division manually, so we can use tools like Mathematica
or Maple to do it. In Mathematica, run

Discriminant[x^5 + a4 x^4 + a3 x^3 + a2 x^2 + a1 x + a0, x]

we have:
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∆ =256a54a
3
0 − 192a44a3a1a

2
0 − 128a44a

2
2a

2
0 + 144a44a2a

2
1a0 − 27a44a

4
1 + 144a34a

2
3a2a

2
0

− 6a34a
2
3a

2
1a0 − 80a34a3a

2
2a1a0 + 18a34a3a2a

3
1 − 1600a34a3a

3
0 + 16a34a

4
2a0 − 4a34a

3
2a

2
1

+ 160a34a2a1a
2
0 − 36a34a

3
1a0 − 27a24a

4
3a

2
0 + 18a24a

3
3a2a1a0 − 4a24a

3
3a

3
1 − 4a24a

2
3a

3
2a0

+ a24a
2
3a

2
2a

2
1 + 1020a24a

2
3a1a

2
0 + 560a24a3a

2
2a

2
0 − 746a24a3a2a

2
1a0 + 144a24a3a

4
1

+ 24a24a
3
2a1a0 − 6a24a

2
2a

3
1 + 2000a24a2a

3
0 − 50a24a

2
1a

2
0 − 630a4a

3
3a2a

2
0 + 24a4a

3
3a

2
1a0

+ 356a4a
2
3a

2
2a1a0 − 80a4a

2
3a2a

3
1 + 2250a4a

2
3a

3
0 − 72a4a3a

4
2a0 + 18a4a3a

3
2a

2
1

− 2050a4a3a2a1a
2
0 + 160a4a3a

3
1a0 − 900a4a

3
2a

2
0 + 1020a4a

2
2a

2
1a0 − 192a4a2a

4
1

− 2500a4a1a
3
0 + 108a53a

2
0 − 72a43a2a1a0 + 16a43a

3
1 + 16a33a

3
2a0 − 4a33a

2
2a

2
1

− 900a33a1a
2
0 + 825a23a

2
2a

2
0 + 560a23a2a

2
1a0 − 128a23a

4
1 − 27a42a

2
1 + 2250a22a1a

2
0

− 630a3a
3
2a1a0 + 144a3a

2
2a

3
1 − 3750a3a2a

3
0 + 2000a3a

2
1a

2
0 + 108a52a0

− 1600a2a
3
1a0 + 256a51 + 3125a40

Summing up what we have right now:

1. f(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 ∈ Z[x] is irreducible;

2. Galf ⊆ S5 is conjugate to one of the following: Z5, D5, GA(1, 5), A5 or
S5,;

3. If
√

∆ ∈ Q, then Galf ⊆ A5 by Theorem 1.9;

4. If θ(y), the resolvent we found, is separable and has a zero in Q, then Galf
is conjugate to a subgroup of GA(1, 5) by Theorem 1.14;

5. If 3 holds but not 4, then Galf = A5;

6. If 4 holds but not 3, then Galf = GA(1, 5);

7. If both 3 and 4 do not hold, then Galf = S5.

8. If 3 and 4 hold simultaneously, Galf = Z5 or Galf = D5 as seen from
Figure 3;

Remark 4.4. In situation 4, checking whether θ(y) has a root in Q or not can
be explored a bit further. Note that θ(y) must be monic and have its coefficients
in Z, thus by Lemma of Gauss 1.18, if it has a zero in Q that zero must be in
Z; further more, that zero must divide the constant term of θ(y), so in our case
it divides B2

6 hence it must divide B6. Therefore we can try substituting factors
of B6 into θ(y) and see if we get zero. Likewise, reducing the polynomial in Fp
might help too.

Thus, only situation 8 needs to be explored further. One way to do this is
through the next small theorem:
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Theorem 4.5. Let f(x) be a monic and irreducible polynomial in Z[x], then
Galf is conjugate to Z5

∼= 〈(12345)〉 if and only if f(x) splits into linear products
in Q(α)[x], where α is a root of f(x).

Proof. If f(x) splits completely in Q(α), [L : Q] = 5 where L is the splitting
field of f(x) over Q, but |Galf | = [L : Q] = 5, Galf ⊆ S5 and Galf must be
transitive, thus, up to conjugacy, Galf = Z5 by the discussion in the beginning
of this section.
Similarly, if Galf = Z5, then [L : Q] = |Galf | = 5, hence the result follows.

Remark 4.6. However, note that this theorem could be difficult to apply without
the help of a computing program. Suppose f(x) has zeros αi and f(x) splits
into linear factors in Q(α1)[x], then the above theorem tells us that the Galois
extension is of degree 5, hence for the remain zeros α2, α3, α4, α5 there exists a
4-by-5 matrix in Q such that:


a1 b1 c1 d1 e1
a2 b2 c2 d2 e2
a3 b3 c3 d3 e3
a4 b4 c4 d4 e4




1
α1

α2
1

α3
1

α4
1

 =


α2

α3

α4

α5


Furthermore, by expanding

∏
(x − αi) = f(x) =

∑
six

i ∈ Z[x] and comparing
coefficients, for each of the coefficients in front of the terms x4, x3, x2, x1, 1 we
obtain similar equations. But again, in general it would be difficult to solve them.
A quick way using this theorem with Mathematica is presented in Example 4.5.

Another way to differentiate situation 8 could be using Dedekind’s Theorem
1.16, which in this case implies Galf contains 5-cycles if and only if for every
prime number p such that the reduction modulo p of f is separable, it is either
irreducible or splits into linear factors over Fp. On the other hand, if situation
8 happens and for some p, the reduction modulo p of f contains two irreducible
quadratic polynomials in Fp[x], then Galf must be isomorphic to D5, which
contains a generator of the form (ab)(cd).

However, note that the above method using Dedekind’s Theorem works well in
situation 8 only in case Galf = D5; see the remark below Dedekind’s Theorem
1.16. Yet another, more systematic way to differentiate situation 8 could be
using a new resolvent polynomial with respect to Z5 instead of GA(1, 5). First,
we need to find a polynomial in Z[x1, . . . , x5] that has Z5 as its stabilizer, then
check whether the resolvent has a root in Q and apply Theorem 1.14. This can
also be done using Magma.

30



Note that subgroups of Sn can be represented by a matrix group. E.g. (12345)
corresponds to the following 5-by-5 matrix because:

(
x1 x2 x3 x4 x5

)


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 =
(
x2 x3 x4 x5 x1

)

Thus the five transitive subgroups of S5 can be represented as follows in Magma:

Q:=Rationals();

Z5:=MatrixGroup<5,Q | [0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0,

0,0,0,1,0]>;

D5:=MatrixGroup<5,Q | [0,0,0,1,0, 0,0,1,0,0, 0,1,0,0,0, 1,0,0,0,0,

0,0,0,0,1],[0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0,

0,0,1,0,0, 0,0,0,1,0]>;

GA15:=MatrixGroup<5,Q | [0,0,1,0,0, 1,0,0,0,0, 0,0,0,1,0, 0,1,0,0,0,

0,0,0,0,1], [0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0,

0,0,1,0,0, 0,0,0,1,0]>;

A5:=MatrixGroup<5,Q | [0,0,1,0,0, 1,0,0,0,0, 0,1,0,0,0, 0,0,0,1,0,

0,0,0,0,1],[0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0,

0,0,1,0,0, 0,0,0,1,0]>;

S5:=MatrixGroup<5,Q | [0,0,0,0,1, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0,

0,0,0,1,0],[0,1,0,0,0, 1,0,0,0,0, 0,0,1,0,0,

0,0,0,1,0, 0,0,0,0,1]>;

We want to find an F ∈ Q[x1, . . . , x5] such that F is fixed by Z5 but not by any
element in any larger group. It helps to use the following command to find the
number of basis of the invariant space of degree d = 1, 2, 3, 4 in the polynomial
ring Q[x1, . . . , x5]:

[#InvariantsOfDegree(Z5,d) : d in [1..4]];

[#InvariantsOfDegree(D5,d) : d in [1..4]];

[#InvariantsOfDegree(GA15,d) : d in [1..4]];

[#InvariantsOfDegree(A5,d) : d in [1..4]];

[#InvariantsOfDegree(S5,d) : d in [1..4]];

The result says when d = 1 the invariant space of five groups have dimension
1; when d = 2, the invariant space of Z5 or D5 has dimension 3 and for the
remaining groups the dimension is 2; when d = 3, the invariant space of Z5

has dimension 7, that of D5 has dimension 5 and for the remaining groups the
dimension is 3. Thus there must exist an F of degree 3 such that F is fixed by
Z5 but not by any larger group. Run the following and compare the result, we
can find a choice for our F :

InvariantsOfDegree(Z5,3);

InvariantsOfDegree(D5,3);
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InvariantsOfDegree(GA15,3);

InvariantsOfDegree(A5,3);

InvariantsOfDegree(S5,3);

One option is F = x21x2 + x1x
2
5 + x22x3 + x23x4 + x24x5 − x1x2x3 − x1x2x5 −

x1x4x5 − x2x3x4 − x3x4x5, which is a difference between two elements that
appear in InvariantsOfDegree(Z5,3); for invariant space for Z5. To find the
coefficients of our resolvent rS5,u(y) =

∏
τ∈S5/Z5

(y − τ(u)), use the following
command:

U:=InvariantsOfDegree(Z5,3); u:=U[2]-U[6];

P<x1,x2,x3,x4,x5>:=PolynomialRing(Q,5);

orb:=(P!u)^Sym(5); #orb;

R<e1, e2, e3, e4, e5> := PolynomialRing(Q, 5);

a,b:=IsSymmetric(-&+orb, R); b;

The last line gives us the coefficient of y23, the other coefficients can be found
similarly using Vieta’s formula. For example, the constant term is the product
of all terms in orb so it can be calculated by :

&*orb

The coefficient in front of y22 can be given as:

c:=&+[orb];

X:=[0: j in [1..24]];

i:=1;

while i le 24 do

X[i]=&+[orb[i]: i in [1..i]];

i=i+1;

end while;

d:=&+[orb[k]*(c-X[k]): k in [1..24]];
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4.2 Reducible polynomials

Let f(x) be a monic reducible polynomial of degree 5 in Z[x]. As always, let’s
discuss this case by case.

• Case 1: f(x) contains a linear factor.

Examples of this case could be f(x) = (x− a)(x4 + bx3 + cx2 + dx+ e), f(x) =
(x− a)(x− b)(x− c)(x2 + dx+ e), f(x) = (x− a)(x2 + bx+ c)(x2 + dx+ e) etc.,
where a, b, c, d, e ∈ Z. Since linear factors in Z always split in Q, in this case we
can always refer to results we already have and there is nothing new to say.

• Case 2: f(x) has two irreducible factors, one of which is of degree 2 and
the other is of degree 3.

Let f(x) = g(x)h(x) = (x2 + ax+ b)(x3 + cx2 + dx+ e), where a, b, c, d, e ∈ Z,
g(x) and h(x) are irreducible over Q. Let Lf , Lg and Lh denote the splitting
field of f(x), g(x) and h(x) over Q respectively.
First of all, note that: {

[Lg : Q] = 2

[Lh : Q] = 3 or 6,

Thus if g(x) splits in Lh, we must have Lf = Lh, [Lh : Q] = 6 and [Lh : Lg] = 3,
hence Gf = Gh = S3.
Let x1 and x2 be roots of g(x), x3, x4 and x5 be roots of h(x). Note that
[Lg : Q] = 2, thus x1, x2 ∈ Lh if and only if they are swapped by elements
of order 2 and fixed otherwise, but elements of order 2 in S3 are precisely 3
transpostisions which are odd, and odd permutations reverse the sign of (x3 −
x4)(x3 − x5)(x4 − x5) and even ones fix it. Therefore, all elements of S3 fix
(x1 − x2)(x3 − x4)(x3 − x5)(x4 − x5) =

√
∆(g)

√
∆(h), This is equivalent to

saying √
∆(g)

√
∆(h) ∈ Q

Now suppose g(x) and h(x) do not share the same splitting field. Thus Lf =
Lg ⊃ Lh ⊃ Q where ⊃ denotes field extension, and Gf = Gg × Gh must be a
nontrivial subgroup of S2×S3

∼= D6, the dihedral group of order 12, thus either
Gf = D6, or S2 × A3

∼= Z6 which is isomorphic to the cyclic group of order 6.
Finally, note that the latter happens if and only if ∆(h), the discriminant of
h(x), is a square in Q by Theorem 1.9.

4.3 Examples

First of all, use the following code in Mathematica for our discriminant and
resolvent polynomial:

IrreduciblePolynomialQ[x^5+a4 x^4+a3 x^3+a2 x^2+a1 x+a0]

B2=8 a4 a2-3 a3^2-20 a1 ;
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B4=3 a3^4-16 a4 a3^2 a2+16 a4^2 a2^2+16 a3 a2^2+16 a4^2 a3 a1-8 a3^2

a1 -112 a4 a2 a1+240 a1^2-64 a4^3 a0+240 a4 a3 a0-400 a2 a0 ;

B6=8 a4 a3^4 a2-a3^6-16 a4^2 a3^2 a2^2-16 a3^3 a2^2+64 a4 a3 a2^3

-64 a2^4 -16 a4^2 a3^3 a1+28 a3^4 a1+64 a4^3 a3 a2 a1-112 a4 a3^2 a2 a1

-128 a4^2 a2^2 a1+224 a3 a2^2 a1-64 a4^4 a1^2+224 a4^2 a3 a1^2

-176 a3^2 a1^2-64 a4 a2 a1^2 +320 a1^3+48 a4 a3^3 a0-192 a4^2 a3 a2 a0

-80 a3^2 a2 a0+640 a4 a2^2 a0 +384 a4^3 a1 a0-640 a4 a3 a1 a0

-1600 a2 a1 a0 -1600 a4^2 a0^2+4000 a3 a0^2 ;

d=Discriminant[x^5+a4 x^4+a3 x^3+a2 x^2+a1 x+a0,x];

Sqrt[d]

theta=(y^3+B2 y^2 +B4 y +B6)^2 - 2^10 d y

Factor[theta]

PolynomialGCD[theta, D[theta,y]]

Given integer values a4, . . . , a0, Mathematica will display the following: whether
f = x5 + a4x4 + a3x3 + a2x2 + a1x + a0 is irreducible,

√
∆, the resolvent

polynomial and its factorization over Z, and whether it is separable (only value 1
means separable, because of the well-known fact that a non-constant polynomial
f is separable if and only if gcd(f,f’)=1). Our resolvent polynomial will be monic
and with integer coefficients, so by Lemma of Gauss if it has a root in Q, that
root will also be in Z, thus factorization over Z suffices here.

Example 4.1. Let f(x) = x5 − 6x + 3. We have
√

∆ = 9i
√

21451 /∈ Q,
and the resolvent polynomial is 1779231744y+ (−69120 + 8640y+ 120y2 + y3)2

which is irreducible over Z. Furthermore, it is separable. Therefore Galf cannot
be a subgroup of GA(1, 5) (by Theorem 1.14) or A5 (by Theorem 1.9), thus
Galf ∼= S5.

Example 4.2. Let f(x) = x5 + 10x2 + 24. We have
√

∆ = 36000 ∈ Q, and the
resolvent polynomial is −1327104000000y + (−640000 − 96000y + y3)2, which
is irreducible over Z. Furthermore, it is separable. Therefore Galf cannot be
a subgroup of GA(1, 5) (by Theorem 1.14), nor can it be S5 (by Theorem 1.9),
thus Galf ∼= A5.

Example 4.3. Let f(x) = x5 − 2. We have
√

∆ = 100
√

5 /∈ Q, which means
Galf is either S5 or GA(1, 5) by Theorem 1.9. Furthermore, the resolvent poly-
nomial is −51200000y+ y6, which clearly has a root y = 0 in Q. In addition, it
is separable. Thus Galf ∼= GA(1, 5) by Theorem 1.14.

Example 4.4. Let f(x) = x5 − 5x + 12. We have
√

∆ = 8000 ∈ Q, and
the resolvent polynomial is (−100 + y)(−16000000 + 660000000y+ 6320000y2 +
52000y3 +300y4+y5), so it clearly has a root in Q. Furthermore, it is separable.
Thus Galf ∼= D5 or Galf ∼= Z5 by Theorems 1.9 and 1.14. In F3[x] f =
(x+2)(x2+x+2)(x2+2x+2), hence by Dedekind’s Theorem 1.16 Galf contains
a product of two 2-cycle, thus Galf ∼= D5. (Factorization of a polynomial f over
Fp can be done in many convenient ways, for example, the command ’Factor[f,
Modulus − > p]’ in Mathematica.)
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Example 4.5. Let f(x) = x5+x4−4x3−3x2+3x+1. We have
√

∆ = 121 ∈ Q,
and the resolvent polynomial is −14992384y + (3872y − 132y2 + y3)2, which
clearly has a root y = 0 in Q. Furthermore, it is separable. Thus Galf ∼= D5

or Galf ∼= Z5 by Theorems 1.9 and 1.14. First, I tried factoring f(x) over Fp
for p = 2, 3, 5, . . . , 67, it turns out f(x) either is irreducible or splits into linear
factors, so there is a good chance that Galf ∼= Z5. To validate this, Dedekind’s
Theorem alone will not work, becasue then we have to prove that for all p, f(x)
either is irreducible or splits into linear factors over Fp. Instead, we can apply
Theorem 4.5 by running the following in Mathematica:

Factor[theta, Extension -> Root[1+3*#1-3*#1^2-4*#1^3+#1^4+#1^5&,1]]

The result says θ splits into linear factors over Q(α1), where α1 is a root of f .
Thus indeed Galf ∼= Z5.
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5 Polynomials of degree of 6

5.1 Irreducible polynomials

As seen from previous sections, the idea of determining Galois group with respect
to an irreducible monic polynomial of degree n in Z[x] can be quite straightfor-
ward : first we classify all the transitive subgroups of Sn, then we use resolvents
and discriminants. Both parts are significantly more difficult in case of degree 6
than lower degrees: there are 1455 subgroups of S6 while there are only 156 of
S5 [10], and the degrees of resolvent polynomials would be very high. Since the
latter part is essentially rational root-finding, it does not provide us much in-
sight into Galois theory and it can be handled by computer algorithms relatively
easily, in this section I would like to focus on the first part only.
First of all, we describe the element structure of S6:

Representative Number of elements Order Odd or even
identity 1 1 Even

(12) 15 2 Odd
(123) 40 3 Even
(1234) 90 4 Odd
(12345) 144 5 Even
(123456) 120 6 Odd
(12)(34) 45 2 Even
(123)(45) 120 6 Odd
(123)(456) 40 3 Even

(12)(34)(56) 15 2 Odd
(1234)(56) 90 4 Even

Consider a single cycle of length n. Firstly, there are
(
6
n

)
ways to choose them;

secondly, for each combination of these n numbers we have n! ways to permute
them; lastly, n single cycles (a1a2 . . . an), . . . , (aia1 . . . an−1) represent the same
element, thus we divide the number by n. For a product of 2 cycles of lengths n
and m, repeat the above firstly choose n elements in 6 then choose m elements
in 6 − n and multiply the result together. In case n = m, divide the number
by 2 because (ab)(cd)=(cd)(ab); in case n 6= m, this is unnecessary because
(abc)(de)6=(dea)(bc). A similar result holds for a product of 3 cycles of length
2. Thus the second column is calculated to be 6!

(6−n)!n for a single cycle of

length n, 6!
(6−n)!n

(6−n)!
(6−n−m)!m for a product of two disjoint cycles of lengths n,m

when n 6= m, 6!
(6−n)!n

(6−n)!
(6−n−m)!m

1
2 when n = m, and 6!

(6−2)!2
4!

(4−2)!2
2!

(2−2)!2
1
3 for a

product of three cycles of lenght 2.

By theorems 1.5 and 1.7, we are looking for transitive subgroups of S6 of order
6, 12, 18, 24, 30, 36, 48, 60, 72, 90, 120, 144, 180, 240, 360 and 720. The clas-
sification of these transitive subgroups are available in many places online (e.g.
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the command TransitiveGroups(6) in Magma lists every transitive subgroup of
S6), thus in some difficult cases I’ll prove (non-)existence only; in simpler cases
I’ll prove both (non-)existence and uniqueness

• Order of 6

Any group of order 6 must be isomorphic to either the cyclic group Z6
∼=

〈(123456)〉 or S3. In fact they can both act transitively. Transitivity of Z6

is obvious. In the case of S3, note that the group

〈(145)(263), (12)(34)(56)〉

= {e, (145)(263), (154)(236), (12)(34)(56), (16)(24)(35), (13)(25)(46)} is clearly
transitive and is isomorphic to S3.

Remark 5.1. Another way to gain more insight into the transitivity of S3 in
S6 is, instead of numbers, we consider letters, and S3 = 〈(xyz), (xy)〉 clearly
acts transitively on this set of six elements

{
x2y, x2z, xy2, y2z, xz2, yz2

}
.

• Order of 12

If G is a transitive subgroup of order 12, G cannot be cyclic because no element
in S6 has order 12. Out of the non-cyclic groups of order 12, D6 or A4 are
transitive. D6

∼= 〈σ, τ〉 constructed from Z6
∼= 〈σ〉 and a transposition τ ∈ S6

such that τστ = σ−1 is clearly transitive. In addition, note that the following
group

〈(145)(263), (12)(34)〉 = {e, (145)(263), (154)(236), (12)(34), (1635)(24)}
∪ {(13)(2546), (13)(2645), (1536)(24), (164)(235)}
∪ {(146)(253), (145)(263), (154)(236)}

is clearly transitive and is isomorphic to A4
∼= 〈(123), (12)(34)〉, since we can

construct a bijection between the conjugacy classes (123) and (123)(456) by the
element structure table.

• Order of 18

S3 × Z3 constructed from S3 discussed earlier is transitive. Note that all the
elements of order 3 in S3 belong to the conjugacy class (123)(456), thus we can
choose σ ∈ S6 of order 3 belonging to the class (123) such that σ /∈ S3 and
στ = τσ for all τ ∈ S3 to construct S3 × Z3.

• Order of 24

The obvious ones are A4×Z2 and S4, they are transitive as A4 is transitive. The
construction of the former is explored in the following remark; for the latter,
note that by adding a generator (14)(25)(36) into A4

∼= 〈(135)(246), (14)(25)〉
we obtain 〈(135)(246), (36)〉 ∼= S4
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Remark 5.2. From the element structure table of S6 we can see that elements of
order 2 can be odd or even, thus this gives us two classes of subgroups isomorphic
to A4 × Z2, one is A4 × Z2

∼= 〈(135)(246), (14)(25), (15)(24)〉 , which consist of
even permutations only; the other is A4×Z2

∼= 〈(135)(246), (14)(25), (15)(24)(36)〉,
which consists of 12 even permutations and 12 odd ones. Such problem does not
occur when coupling a group with Z3, because all elements of order 3 in S6 are
even. In addition, this is also not a problem for S4×Z2, because S4 already has
half of its elements even and the other half odd, so no matter the generator of
Z2 is even or odd, S4 × Z2 must be half odd half even as well.

• Order of 30

No subgroup of 30 exists in S6. Otherwise, by Sylow’s theorem, there must be
a Sylow-3 subgroup of order 3 and a Sylow-5 subgroup of order 5. They are of
prime orders so they are cyclic and their intersection is trivial, hence they must
generate a cyclic group of order 15, which is impossible in S6.

Remark 5.3. Similar reasoning can also be used to explain why no subgroup of
order 15 or 30 exist in S5.

• Order of 36

S3 × S3 and (Z3 × Z3) o Z4, where the latter is a semi-direct product, are
transitive subgroups of S6.

• Order of 48

Z2 × S4 is a transitive subgroup.

• Order of 60

A5 is a transitive subgroup, see the case of Order of 120 for details.

• Order of 72

S3 oZ2 is a transitive subgroup, where o denotes a wreath product. Let G ⊆ Sn
and H be groups, then the wreath product of H and G is defined as the semi-
direct product:

H oG = Hn oG

where G acts on H via as a subgroup of Sn. So in our case:

S3 o Z2 = S2
3 o Z2

• Order of 90

There does not exist subgroup of order 90 = 2 ·32 ·5 in S6. Suppose there exists,
let G be such a group.
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Suppose G contains even permutations only, then by similar argument in the
case Order of 240 below, we have A6 is isomorphic to a subgroup of S4, which
is impossible;
Thus G must contain precisely 45 even elements and H = G∩A6 is a subgroup
of A6 of order 45. But by Sylow’s theorem (where np denotes the number of
Sylow p-subgroups), n5 = 1 mod 5 and n5 divides 9 so n5 = 1 and similarly
n3 = 1, but these two Sylow subgroups together generate a cyclic group of order
15, which is impossible in S6.

• Order of 120

In Theorem 4.1, we used the fact that S5 contains exactly 6 Sylow-5 subgroups
which are cyclic groups of order 5. Furthermore, these subgroups are conjugate
to each other by Sylow’s theorem. Let S = {P1, P2, P3, P4, P5, P6} be the set
of these subgroups and note that ∀i, j ∈ {1, 2, 3, 4, 5, 6}, ∃σ ∈ S5 such that
σPiσ

−1 = Pj because Pi are conjugate. This shows that S5 acts transitively
on S. Now define X = {x1, x2, x3, x4, x5, x6} to be the set of roots of our
polynomial. Clearly X ∼= S thus S5 acts transitively on X as well. In fact,
in Theorem 4.1 we noted that if a subgroup of S5 contains exactly 6 Sylow-5
subgroups, then it is either A5 or S5, thus the above also holds for A5, hence
A5 is also a transitive subgroup of S6.
There are no other subgroups of order 120, because the number of these sub-
groups is 720

120 = 6 and there are already 6 subgroups isomorphic to S5 .

• Order of 144

No subgroup of this order exists in S6. Suppose there is, let G be such a
group, note that 144 does not divide 360 = |A6| hence G cannot consist of even
permutations only, thus it contains precisely 72 even elements and G ∩ A6 is
a subgroup of A6 of index 360

72 = 5, which is a prime, by the second part of
Remark 5.4 we know this is impossible,

• Order of 180

There does not exist subgroups of order 180 in S6. If it exists, name it G.
G cannot be a subgroup of A6 because having index 2 means G is a normal
subgroup of A6, which is impossible. Hence G must contain precisely 90 odd
permutations and 90 even permutations. By similar argument in the case Order
of 240 below, we have A6 is isomorphic to a subgroup of S4, a contradiction.

• Order of 240

There does not exist a subgroup G of S6 of order 240. If G exists, G can not
have even permutations only as 240 does not divide 360 = |A6|, thus G contains
120 even permutations and 120 odd ones. Hence G ∩ A6=N is a subgroup of
index 3 of A6. Let A6 act on N by conjugation given by the map:

ϕ(σ)(N) : N 7→ σNσ−1
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where σ ∈ A6. Since A6 is simple, every non-trivial element in it maps N to a
different coset, thus we actually have a map from A6 to S3. This map is in fact
a homomorphism, because:

ϕ(στ)(N) = στNτ−1σ−1 = ϕ(σ)ϕ(τ)(N)

furthermore it’s injective as the kernel contains identity only, so we must have
A6 is isomorphic to a subgroup of S3, which is impossible.

Remark 5.4. The above can also be used to prove that no subgroup of order
40 exists in S5, using the fact that A5 is simple. (In fact An is simple for all
n ≥ 5).
Furthermore, this can be proved in a different way, using the fact that if H is
a subgroup of G of index n where n is the smallest prime dividing the order of
G, then H must be normal. (See, e.g. page 36 of [3]). And since A6 is simple,
every subgroup of A6 must have a non-prime index.

• Orders of 720 and 360

S6 and A6 are the only ones.

Magma can list all 16 transitive and proper subgroups of S6. Summarizing the
transitive subgroups up to conjugacy:

ID in Magma Name Order Generators
1 Z6 6 (123456)
2 S3 6 (135)(246), (14)(23)(56)
3 D6 12 (123456), (14)(23)(56)
4 A4 12 (135)(246), (14)(25)
5 Z3 × S3 18 (246), (14)(25)(36)
6 S4 24 (135)(246), (36)
7 Z2 ×A4 24 (135)(246), (14)(25), (15)(24)
8 Z2 ×A4 24 (135)(246), (14)(25), (15)(24)(36)
9 S2

3 36 (246), (15)(24), (14)(25)(36)
10 Z2

3 o Z4 36 (246), (15)(24), (1452)(36)
11 Z2 × S4 48 (135)(246), (15)(24), (36)
12 A5 60 (12346), (14)(56)
13 S3 o Z2 72 (24), (246), (14)(25)(36)
14 S5 120 (12346), (12)(34)(56)
15 A6 360 (123), (12)(3456)
16 S6 720 (123456), (12)

We can also use Magma to check the subgroup structure of these groups. We are
interested in classifying subgroups up to conjugacy, i.e. check whether τGτ−1 ⊂
H for all τ ∈ S6, thus the following command does so:
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All:=TransitiveGroups(6); n:=#All;

T:=[All[i] : i in [1..n]];

cT1:={@ Conjugate(T[j],t) : t in Sym(6)@};

{i : i in [1..n] | #T[j] in {#(G meet T[i]) : G in cT1 }};

Given a transitive subgroup T[j], the result gives up to conjugacy which T[k]
contains T[j]. Perform this process for all transitive subgroups, we find that, up
to conjugacy:

Group Is a (proper) subgroup of
Z6 D6, Z3 × S3, S4, S2

3 , Z2 × S4, S3 o Z2, S5, S6

S3 D6, Z3 × S3, Z2 ×A4, S2
3 , Z2 × S4, S3 o Z2, S5, S6

D6 S2
3 , Z2 × S4, S3 o Z2, S5, S6

A4 S4, Z2 ×A4, Z2 ×A4, Z2 × S4, A5, S5, A6, S6

Z3 × S3 S2
3 , S3 o Z2, S6

S4 Z2 × S4, S6

Z2 ×A4 Z2 × S4, A6, S6

Z2 ×A4 Z2 × S4, S5, S6

S2
3 S3 o Z2, S6

Z2
3 o Z4 S3 o Z2, A6, S6

Z2 × S4 S6

A5 S5, A6, S6

S3 o Z2 S6

S5 S6

A6 S6

where the blue Z2 × A4
∼= 〈(135)(246), (14)(25), (15)(24)〉 and the black Z2 ×

A4
∼= 〈(135)(246), (14)(25), (15)(24)(36)〉.

This can also be summarised in the following Figure 4, where A→ B indicates
A ⊃ B, and name in blue means the group consists of even permutations only.
Figure 4 looks still messy, so we’d better consider the blue ones and black ones
separately based on Theorem 1.9.

Let f(x) be a monic, irreducible polynomial of degree 6 with integer coefficients.
First of all, we would like to consider whether ∆(f) is a square in Z
Case 1: ∆(f) is a square in Q. By Theorem 1.9, Galf must consist of even
permutations only, thus we can only consider Figure 5.
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Figure 4: Structure of transitive subgroups of S6

Figure 5: Structure of transitive subgroups of S6 consisting even permutations
only
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For simplicity’s sake, let rG denote rG,F (f), the resolvent polynomial of f(x)
with respect to a transitive subgroup G of S6, where G is the stabilizer of a
polynomial F ∈ Q[x1, .., x6]. The corresponding polynomials F will be deter-
mined later. And assume all the resolvents are separable. (If not, we can always
try a different F ). A straightforward strategy is constructing 4 resolvent poly-
nomials rZ2

3oZ4
, rZ2×A4

and rA5
, and consider whether they have a zero in Q.

By Theorem 1.14 Only one of the following situations can happen:

1. None of rZ2
3oZ4

, rZ2×A4 and rA5 has a zero in Q ⇔ Galf ∼= A4;

2. Only rZ2
3oZ4

has a zero in Q ⇔ Galf ∼= Z2
3 o Z4;

3. Only rZ2×A4
has a zero in Q ⇔ Galf ∼= Z2 ×A4;

4. Only rA5 has a zero in Q ⇔ Galf ∼= A5;

5. Both rZ2×A4 and rA5 have a zero in Q ⇔ Galf ∼= A4.

We can use Dedekind’s Theorem 1.16 to make this strategy faster. By the
element structure table of S6, we know that the only kinds of even permutations
are: e, (12)(34), (123), (123)(456), (12345), (1234)(56). These must occur in
A6, but not necessarily in other groups in Figure 5. To find out what kind of
cycles are contained in the other 4 groups, we can use the command Classes(G)
in Magma, where G denote a group.

• A4 only contains cycles of the form: e, (123)(456) and (12)(34);

• Z2 × A4
∼= 〈(135)(246), (14)(25), (15)(24)〉 contains what A4 has, and

(1234)(56);

• Z2
2 o Z4 contains cycles of the form: e, (12)(34), (123), (123)(456) and

(1234)(56); (So, compared to A6, it does not contain the class (12345)).

• A5 contains cycles of the form: e, (12)(34), (123), (123)(456) and (12345);
(So, compared to A6, it does not contain the class (1234)(56)).

Thus, by the above discussion and Dedekind’s Theorem 1.16, the following ob-
servation would be very helpful:

Corollary 5.1. Let f(x) be a monic, irreducible polynomial of degree 6 with
integer coefficients and

√
∆(f) ∈ Z. Then:

1. if f(x) factorises into an irreducible quadratic and an irreducible quartic
over some Fp, then Galf must be one of A6, Z2 ×A4 or Z2

2 o Z4;

2. if f(x) factorises into a linear factor and an irreducible quintic over some
Fp, then Galf must be A6 or A5;

3. if f(x) factorises into three linear factor and an irreducible cubic over
some Fp, then Galf must be one of A6, A5 or Z2

2 o Z4;

4. if two of 1, 2 and 3 hold simultaneously, Galf must be A6.
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Case 2: ∆(f) is not a square in Q. For simplicity’s sake, let rG denote
rG,F (f), the resolvent polynomial of f(x) with respect to a transitive subgroup
G of S6, where G is the stabilizer of a polynomial F ∈ Q[x1, .., x6]. The corre-
sponding polynomials F will be determined later. And assume all the resolvents
are separable. (If not, we can always try a different F ). With the help of The-
orem 1.14 and Figure 6, we can proceed in the following steps:

Figure 6: Structure of transitive subgroups of S6 consisting both odd and even
permutations

• Step 1: check whether rS3oZ2 , rS5 and rS4×Z2 has a root in Q.

By Theorem 1.14, only one of these five situations can occur:

(i) If none of the above three resolvents has a zero in Q, then Galf = S6;

(ii) If only rS5
has a zero in Q, then Galf = S5;

(iii) If both rS3oZ2 and rS4×Z2 or both rS3oZ2 and rS5 have a zero in Q, then
Galf is one of Z6, S3 or D6, we proceed to Step 2;

(iv) If both rS5
and rS4×Z2

have a zero in Q, then Galf is one of Z6, S3, D6

or Z2 ×A4, we’ll have to proceed to both Step 2 and 4;
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(v) If only rS3oZ2 has a zero in Q, then proceed to Step 3;

(vi) If only rS4×Z2
has a zero in Q, then proceed to Step 4.

• Step 2: check whether rZ6
and rS3

has a root in Q.

(i) If neither of these 2 resolvents has a zero in Q, then Galf = D6;

(ii) If rZ6
has a zero in Q, then Galf = Z6;

(iii) If rS3 has a zero in Q, then Galf = S3.

• Step 3: check whether rS2
3

and rZ3×S3
has a root in Q.

(i) If neither of these 2 resolvents has a zero in Q, then Galf = S3 o Z2;

(ii) If rS2
3

but not rZ3×S3
has a zero in Q, then Galf = S2

3 ;

(iii) If both resolvents have a zero in Q, then Galf = Z3 × S3.

Remark 5.5. Note that in this step we don’t need to consider Z6, S3 or D6,
because if Galf is one of these three groups, we would have situation (iii) in
Step 1. Similar result applies for Step 4.

• Step 4: check whether rS4
and rZ2×A4

has a root in Q.

(i) If neither of these 2 resolvents has a zero in Q, then Galf = S4 × Z2;

(ii) If rS4
has a zero in Q, then Galf = S4;

(iii) If rZ2×A4
has a zero in Q, then Galf = Z2 ×A4.

And of course, sometimes we can also use Dedekind’s Theorem 1.16 to make
this process faster. Again, with the help of Magma, we can find out that:

• S3 o Z2 contains all conjugacy classes except for (12345) and (1234);

• S5 contains all conjugacy classes except for (12), (123), (1234)(56) and
(123)(45);

• S4 × Z2 contains all conjugacy classes except for (123), (123)(45) and
(12345);

45



• S2
3 contains all conjugacy classes except for (12), (123)(45), (1234), (12345)

and (1234)(56);

• S4 contains all conjugacy classes except for (123), (123)(45), (1234), (12345)
and (1234)(56);

• Z2×A4
∼= 〈(135)(246), (14)(25), (15)(24)(36)〉 contains all conjugacy classes

except for (12), (123), (123)(45), (12345), (1234)(56) and (123456);

• Z3 × S3 only contains the classes e, (12)(34)(56), (123), (123)(456) and
(123456);

• Z6, S3 andD6 only contains the classes e, (12)(34), (12)(34)(56), (123)(456)
and (123456).

Thus, by the above discussion and Dedekind’s Theorem 1.16, we can make the
following useful information:

Corollary 5.2. Let f(x) be a monic, irreducible polynomial of degree 6 with
integer coefficient and

√
∆(f) /∈ Z. Then:

1. if f(x) factorises into four linear factors and an irreducible quadratic over
some Fp, then Galf must be one of S6, S3 o Z2, S4 × Z2 or S4;

2. if f(x) factorises into three linear factors and an irreducible cubic over
some Fp, then Galf must be one of S6, S3 o Z2, S2

3 or Z3 × S3;

3. if f(x) factorises into one linear factor and an irreducible quintic over
some Fp, then Galf must be S6 or S5;

4. if f(x) factorises into an irreducible quadratic and an irreducible quartic
over some Fp, then Galf must be one of S6, S3 o Z2 or S4 × Z2;

5. if f(x) factorises into one linear factor, an irreducible quadratic and an
irreducible cubic over some Fp, then Galf must be S6 or S3 o Z2.

Summarizing, we need 3 (when
√

∆(f) ∈ Z) + 9 (when
√

∆(f) /∈ Z) = 12
resolvent polynomials if Dedekind’s Theorem 1.16 doesn’t help. Define these
groups in Magma:

Q:=Rationals();

Z6:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,

0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0]>;

S3:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,

0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[0,0,0,1,0,0, 0,0,1,0,0,0,

0,1,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,1, 0,0,0,0,1,0]>;

Z3S3:=MatrixGroup<6,Q | [1,0,0,0,0,0, 0,0,0,0,0,1, 0,0,1,0,0,0,

0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,0,0,1,0,0, 0,0,0,0,1,0,

0,0,0,0,0,1,1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,0,0,0]>;

S4:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,
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0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[1,0,0,0,0,0, 0,1,0,0,0,0,

0,0,0,0,0,1, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,1,0,0,0]>;

Z2A4EVEN:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,

0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0], [0,0,0,1,0,0, 0,0,0,0,1,0,

0,0,1,0,0,0, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,0,0,0,1], [0,0,0,0,1,0,

0,0,0,1,0,0, 0,0,1,0,0,0, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1]>;

Z2A4ODD:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,

0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[0,0,0,1,0,0, 0,0,0,0,1,0,

0,0,1,0,0,0, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,0,0,0,1], [0,0,0,0,1,0,

0,0,0,1,0,0, 0,0,0,0,0,1, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,1,0,0,0]>;

S3S3:=MatrixGroup<6,Q | [1,0,0,0,0,0, 0,0,0,0,0,1, 0,0,1,0,0,0,

0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,0,0,0,1,0, 0,0,0,1,0,0,

0,0,1,0,0,0, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1], [0,0,0,1,0,0,

0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,0,0,0]>;

Z3Z3Z4:=MatrixGroup<6,Q | [1,0,0,0,0,0, 0,0,0,0,0,1, 0,0,1,0,0,0,

0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,0,0,0,1,0, 0,0,0,1,0,0,

0,0,1,0,0,0, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1], [0,1,0,0,0,0,

0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0, 0,0,0,1,0,0, 0,0,1,0,0,0]>;

Z2S4:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,

0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[0,0,0,0,1,0, 0,0,0,1,0,0,

0,0,1,0,0,0, 0,1,0,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1], [1,0,0,0,0,0,

0,1,0,0,0,0, 0,0,0,0,0,1, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,1,0,0,0]>;

A5:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,

0,0,1,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,0,0,1,0,0, 0,1,0,0,0,0,

0,0,1,0,0,0, 1,0,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,1,0]>;

S3wrZ2:=MatrixGroup<6,Q | [1,0,0,0,0,0, 0,0,0,1,0,0, 0,0,1,0,0,0,

0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1], [1,0,0,0,0,0, 0,0,0,0,0,1,

0,0,1,0,0,0, 0,1,0,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0], [0,0,0,1,0,0,

0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,0,0,0]>;

S5:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,

0,0,1,0,0,0, 0,0,0,0,1,0, 0,0,0,1,0,0],[0,1,0,0,0,0, 1,0,0,0,0,0,

0,0,0,1,0,0, 0,0,1,0,0,0, 0,0,0,0,0,1, 0,0,0,0,1,0]>;

and run the command

[#InvariantsOfDegree(G,d) : d in [1..12]];

for all of those groups G, the result is:

[ 1, 4, 10, 22, 42, 80, 132, 217, 335, 504, 728, 1038 ]

[ 1, 5, 10, 24, 42, 83, 132, 222, 335, 511, 728, 1047 ]

[ 1, 3, 6, 12, 20, 37, 56, 90, 133, 197, 276, 391 ]

[ 1, 3, 7, 13, 23, 41, 63, 98, 146, 210, 294, 408 ]

[ 1, 3, 6, 11, 18, 32, 48, 75, 111, 160, 224, 313 ]

[ 1, 3, 5, 10, 15, 29, 41, 68, 98, 147, 202, 291 ]

[ 1, 3, 5, 10, 15, 27, 38, 60, 84, 123, 166, 233 ]

[ 1, 3, 5, 10, 15, 26, 38, 59, 84, 121, 166, 230 ]
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[ 1, 3, 5, 10, 15, 27, 38, 60, 84, 122, 164, 229 ]

[ 1, 2, 4, 6, 10, 17, 24, 36, 53, 74, 102, 141 ]

[ 1, 3, 5, 10, 15, 26, 37, 57, 79, 113, 151, 207 ]

[ 1, 2, 3, 5, 7, 12, 15, 23, 31, 44, 57, 80 ]

For groups S2
3 and Z2

3 o Z4, the dimensions of their invariant spaces are repre-
sented by lines 7 and 8, which are very close to each other, hence it is especially
difficult to find their corresponding F and I took d = 20 for them. For the
remaining cases I took d = 6. For each group, I take a difference of two bases
in its invariant space. To ensure that the stabilizer of the chosen polynomial F
is really G, I first define G as a matrix group and then run the command

orb:=F^Sym(6);#orb;

The result returns a number, and will be |G| if Stab(F ) = G. As an example,
take G = Z6 and run the following:

Q:=Rationals();

G:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,

0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0]>;

inv:=InvariantsOfDegree(G,6);

n:=#inv;

F:=inv[n-7]-inv[n-5];

orb:=F^Sym(6);

#orb;

The result is 120, exactly the index of Z6. If the result is undesirable, we can
change the numbers n − 7 and n − 5 slightly and try again. The result can be
summarized below, where for each group G, an F such that Stab(F ) = G is
presented:

• Z6

x21x2x
2
4x6 − x21x2x4x5x6 + x21x3x

2
4x5 + x1x

2
2x3x

2
5 − x1x22x3x5x6 − x1x2x23x4x6 −

x1x2x3x
2
4x5 + x1x

2
3x5x

2
6 − x1x3x4x5x26 + x22x4x

2
5x6 + x2x

2
3x4x

2
6 − x2x3x4x25x6

• S3

x21x2x5x
2
6−x21x23x5x6−x21x3x4x25+x1x

2
2x

2
3x4−x1x2x23x25−x1x2x24x26−x22x3x4x26−

x22x
2
4x5x6 + x3x

2
4x

2
5x6

• Z3 × S3

−x21x2x3x4x6+x21x2x4x5x6−x1x22x3x4x5+x1x
2
2x3x5x6+x1x2x

2
3x4x6+x1x2x3x

2
4x5−

x1x2x3x5x
2
6−x1x2x4x25x6−x1x3x24x5x6+x1x3x4x5x

2
6−x2x23x4x5x6+x2x3x4x

2
5x6

• S4
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−x21x2x3x5x6+x21x2x
2
4x5−x1x22x3x4x6−x1x2x23x4x5−x1x2x4x5x26+x1x

2
3x4x

2
6−

x1x3x4x
2
5x6 + x22x3x

2
5x6 − x2x3x24x5x6

• Z2 ×A4 (subgroup of A6)

−x21x22x26 + x21x2x3x5x6 − x21x23x25 + x1x
2
2x3x4x6 + x1x2x

2
3x4x5 + x1x2x4x5x

2
6 +

x1x3x4x
2
5x6 − x22x23x24 + x2x3x

2
4x5x6 − x24x25x26

• Z2 ×A4 (not a subgroup of A6)

x−x31x34+x21x
2
2x3x4+x21x

2
2x5x6+x21x2x

2
3x6+x21x2x3x

2
5+x21x2x4x

2
6+x21x

2
3x4x5+

x21x3x5x
2
6+x21x4x

2
5x6+x1x

2
2x

2
3x5+x1x

2
2x3x

2
6+x1x

2
2x

2
4x6+x1x2x

2
3x

2
4+x1x2x

2
5x

2
6+

x1x
2
3x

2
5x6 + x1x3x

2
4x

2
5 + x1x

2
4x5x

2
6 − x32x35 + x22x

2
3x4x6 + x22x3x

2
4x5 + x22x4x5x

2
6 +

x2x
2
3x4x

2
5 + x2x3x

2
4x

2
6 + x2x

2
4x

2
5x6 − x33x36 + x23x

2
4x5x6 + x3x4x

2
5x

2
6

• S3 × S3

x71x
6
2x3x

5
4x6+x71x

6
2x4x5x

5
6+x71x

5
2x3x4x

6
6+x71x

5
2x

6
4x5x6+x71x2x3x

6
4x

5
6+x71x2x

5
4x5x

6
6+

x61x
7
2x

5
3x4x5 + x61x

7
2x3x

5
5x6 − x61x22x63x24x35x6 − x61x22x63x4x35x26 − x61x22x33x24x65x6 −

x61x
2
2x

3
3x4x

6
5x

2
6 − x61x2x63x24x35x26 + x61x2x

5
3x5x

7
6 − x61x2x33x24x65x26 + x61x2x3x

7
4x

5
5 +

x61x
5
3x

7
4x5x6+x61x3x4x

5
5x

7
6+x51x

7
2x

6
3x5x6+x51x

7
2x3x4x

6
5+x51x2x

6
3x

7
4x5+x51x2x3x

6
5x

7
6+

x51x
6
3x4x5x

7
6 + x51x3x

7
4x

6
5x6 − x31x22x63x24x65x6 − x31x22x63x4x65x26 − x31x2x63x24x65x26 −

x21x
6
2x

2
3x

6
4x5x

3
6−x21x62x23x34x5x66−x21x62x3x64x25x36−x21x62x3x34x25x66−x21x32x23x64x5x66−

x21x
3
2x3x

6
4x

2
5x

6
6 + x1x

7
2x

6
3x4x

5
5 + x1x

7
2x

5
3x

6
5x6 + x1x

6
2x

7
3x4x

5
6 − x1x

6
2x

2
3x

6
4x

2
5x

3
6 −

x1x
6
2x

2
3x

3
4x

2
5x

6
6 + x1x

6
2x

5
4x

7
5x6 + x1x

5
2x

7
3x

6
4x6 + x1x

5
2x4x

7
5x

6
6 − x1x

3
2x

2
3x

6
4x

2
5x

6
6 +

x1x2x
7
3x

5
4x

6
6+x1x2x

6
3x

5
5x

7
6+x1x2x

5
3x

7
4x

6
5+x1x2x

6
4x

7
5x

5
6+x1x

6
3x

7
4x

5
5x6+x1x

5
3x4x

6
5x

7
6+

x62x
7
3x

5
4x5x6+x62x3x4x

7
5x

5
6+x52x

7
3x4x5x

6
6+x52x3x

6
4x

7
5x6+x2x

7
3x

6
4x5x

5
6+x2x3x

5
4x

7
5x

6
6

• Z2
3 o Z4

−x61x52x33x4x25x36−x61x52x23x34x35x6+x61x
3
2x

4
3x

3
4x5x

3
6−x61x32x33x54x25x6−x61x32x23x4x35x56+

x61x
3
2x3x

3
4x

4
5x

3
6−x61x2x33x34x25x56−x61x2x23x54x35x36−x51x62x33x34x5x26−x51x62x3x24x35x36−

x51x
3
2x

3
3x

2
4x5x

6
6−x51x32x3x64x35x26−x51x22x33x64x5x36−x51x22x3x34x35x66+x41x

3
2x

6
3x

3
4x5x

3
6+

x41x
3
2x3x

3
4x

6
5x

3
6−x31x62x53x24x5x36+x31x

6
2x

3
3x

4
4x

3
5x6+x31x

6
2x

3
3x4x

3
5x

4
6−x31x62x3x34x55x26−

x31x
5
2x

6
3x

3
4x

2
5x6−x31x52x23x4x65x36+x31x

4
2x

3
3x

6
4x

3
5x6+x31x

4
2x

3
3x4x

3
5x

6
6−x31x32x63x4x25x56−

x31x
3
2x

5
3x

6
4x5x

2
6−x31x32x23x54x65x6−x31x32x3x24x55x66−x31x22x53x34x5x66−x31x22x3x64x55x36−

x31x2x
6
3x

5
4x

2
5x

3
6+x31x2x

3
3x

6
4x

3
5x

4
6+x31x2x

3
3x

4
4x

3
5x

6
6−x31x2x23x34x65x56−x21x52x63x4x35x36−

x21x
5
2x

3
3x

3
4x

6
5x6−x21x32x63x54x35x6−x21x32x33x4x65x56−x21x2x63x34x35x56−x21x2x33x54x65x36−

x1x
6
2x

5
3x

3
4x

3
5x

2
6−x1x62x33x24x55x36+x1x

3
2x

6
3x

3
4x

4
5x

3
6−x1x32x53x24x35x66+x1x

3
2x

4
3x

3
4x

6
5x

3
6−

x1x
3
2x

3
3x

6
4x

5
5x

2
6 − x1x22x53x64x35x36 − x1x22x33x34x55x66

• Z2 × S4

−x41x2x5 − x41x3x6 + x31x2x3x4 + x31x2x4x6 + x31x3x4x5 + x31x4x5x6 − x1x42x4 +
x1x

3
2x3x5+x1x

3
2x5x6+x1x2x

3
3x6+x1x2x3x

3
4+x1x2x3x

3
5+x1x2x3x

3
6+x1x2x

3
4x6+

x1x2x
3
5x6 − x1x43x4 + x1x

3
3x5x6 + x1x3x

3
4x5 + x1x3x5x

3
6 + x1x

3
4x5x6 − x1x4x45 −

x1x4x
4
6 − x42x3x6 + x32x3x4x5 + x32x4x5x6 − x2x43x5 + x2x

3
3x4x6 + x2x3x4x

3
5 +

x2x3x4x
3
6−x2x44x5+x2x4x

3
5x6−x2x5x46+x33x4x5x6−x3x44x6+x3x4x5x

3
6−x3x45x6

49



• A5

x41x
2
2 + x41x

2
3 + x41x

2
4 + x41x

2
5 + x41x

2
6 + x21x

4
2− x21x22x4x5− x21x2x3x24− x21x2x25x6 +

x21x
4
3 − x21x23x4x6 − x21x3x5x26 + x21x

4
4 + x21x

4
5 + x21x

4
6 − x1x22x3x25 − x1x22x24x6 −

x1x2x
2
3x

2
6−x1x23x24x5−x1x4x25x26+x42x

2
3+x42x

2
4+x42x

2
5+x42x

2
6+x22x

4
3−x22x23x5x6−

x22x3x4x
2
6 + x22x

4
4 + x22x

4
5 + x22x

4
6− x2x23x4x25− x2x24x5x26 + x43x

2
4 + x43x

2
5 + x43x

2
6 +

x23x
4
4 + x23x

4
5 + x23x

4
6 − x3x24x25x6 + x44x

2
5 + x44x

2
6 + x24x

4
5 + x24x

4
6 + x45x

2
6 + x25x

4
6

• S3 o Z2

x21x2x
2
3x5 − x21x2x3x4x6 + x21x2x3x

2
5 − x21x2x4x5x6 + x21x

2
3x4x5 + x21x

2
3x5x6 +

x21x3x4x
2
5 + x21x3x

2
5x6 − x1x

2
2x3x4x5 − x1x

2
2x3x5x6 + x1x

2
2x

2
4x6 + x1x

2
2x4x

2
6 −

x1x2x
2
3x4x6 +x1x2x

2
3x

2
5−x1x2x3x24x5−x1x2x3x5x26 +x1x2x

2
4x

2
6−x1x2x4x25x6 +

x1x
2
3x4x

2
5 + x1x

2
3x

2
5x6 − x1x3x

2
4x5x6 − x1x3x4x5x

2
6 + x22x3x

2
4x6 + x22x3x4x

2
6 +

x22x
2
4x5x6 + x22x4x5x

2
6 − x2x23x4x5x6 + x2x3x

2
4x

2
6 − x2x3x4x25x6 + x2x

2
4x5x

2
6

• S5

−x21x22x3x4−x21x22x3x5+x21x
2
2x3x6+x21x

2
2x4x5−x21x22x4x6−x21x22x5x6−x21x2x23x4+

x21x2x
2
3x5−x21x2x23x6+x21x2x3x

2
4−x21x2x3x25−x21x2x3x26−x21x2x24x5−x21x2x24x6−

x21x2x4x
2
5+x21x2x4x

2
6+x21x2x

2
5x6−x21x2x5x26−x21x23x4x5+x21x

2
3x4x6−x21x23x5x6−

x21x3x
2
4x5−x21x3x24x6+x21x3x4x

2
5−x21x3x4x26−x21x3x25x6+x21x3x5x

2
6+x21x

2
4x5x6−

x21x4x
2
5x6−x21x4x5x26+x1x

2
2x

2
3x4−x1x22x23x5−x1x22x23x6−x1x22x3x24+x1x

2
2x3x

2
5−

x1x
2
2x3x

2
6−x1x22x24x5+x1x

2
2x

2
4x6−x1x22x4x25−x1x22x4x26−x1x22x25x6+x1x

2
2x5x

2
6−

x1x2x
2
3x

2
4−x1x2x23x25+x1x2x

2
3x

2
6+x1x2x

2
4x

2
5−x1x2x24x26−x1x2x25x26+x1x

2
3x

2
4x5−

x1x
2
3x

2
4x6−x1x23x4x25−x1x23x4x26+x1x

2
3x

2
5x6−x1x23x5x26−x1x3x24x25+x1x3x

2
4x

2
6−

x1x3x
2
5x

2
6−x1x24x25x6−x1x24x5x26+x1x4x

2
5x

2
6−x22x23x4x5−x22x23x4x6+x22x

2
3x5x6+

x22x3x
2
4x5−x22x3x24x6−x22x3x4x25+x22x3x4x

2
6−x22x3x25x6−x22x3x5x26−x22x24x5x6+

x22x4x
2
5x6−x22x4x5x26−x2x23x24x5+x2x

2
3x

2
4x6+x2x

2
3x4x

2
5−x2x23x4x26−x2x23x25x6−

x2x
2
3x5x

2
6−x2x3x24x25−x2x3x24x26+x2x3x

2
5x

2
6−x2x24x25x6+x2x

2
4x5x

2
6−x2x4x25x26−

x23x
2
4x5x6 − x23x4x25x6 + x23x4x5x

2
6 + x3x

2
4x

2
5x6 − x3x24x5x26 − x3x4x25x26
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5.2 Reducible polynomials

• Case 1: the polynomial contains a linear factor.

As discussed in previous sections, this case is completely the same to one of the
situations we’ve already considered.

• Case 2: the polynomial factors into 3 irreducible polynomials of degree 2.

Let f(x) = g(x)h(x)j(x) where g(x), h(x), j(x) are irreducible quadratics, and
let Lf denote the splitting field of a polynomial f over Q. As g, h, j are irre-
ducible quadratics, we know Lg, Lh, Lj are generated by attaching one of the

zeros to Q, or, equivalently, by attaching
√

∆ to Q. Thus, two of Lg, Lh, Lj , say

Lg and Lh, are actually the same extension, if and only if
√

∆(g) = q
√

∆(h)

for some q ∈ Q, which is equivalent to say
√

∆(g)
√

∆(h) ∈ Q. Now sup-
pose Lg and Lh define different extension, we want to consider whether the

remaining Lj is a subfield of L = Lg ∪ Lh = Q(
√

∆(g),
√

∆(h)). By previous

discussion, if
√

∆(g) = q
√

∆(j) or
√

∆(h) = q
√

∆(j) then Lj is certainly a
subfield of L, so let’s also assume this does not hold. Note that a basis for L is{

1,
√

∆(g),
√

∆(h),
√

∆(g)
√

∆(h)
}

, so if Lj is a subfield of L, then there must

exist a, b, c, d ∈ Q such that

a+ b
√

∆(g) + c
√

∆(h) + d
√

∆(g)
√

∆(h) =
√

∆(j)

By the assumption that
√

∆(j) is not a rational multiple of
√

∆(g) or
√

∆(h),
we have that b = c = 0, and by similar method in case 3 in Section 3.2, we have
that Lj is a subfield of L if and only if

√
∆(g)

√
∆(h)

√
∆(j) ∈ Q.

Summarizing:

1. If the product of every pair of
√

∆(g),
√

∆(h),
√

∆(j) is in Q, then Gf ∼=
S2

2. If
√

∆(g)∆(h)∆(j) ∈ Q or precisely one pair of
√

∆(g),
√

∆(h),
√

∆(j)
has its product in Q, then Gf ∼= S2 × S2

3. Otherwise, Gf ∼= S2 × S2 × S2

• Case 3: the polynomial factors into 2 irreducible polynomials, one is of
degree 2, the other is of degree 4.

Let f(x) = g(x)h(x), where g(x), h(x) are monic, irreducible polynomials of
degrees 2 and 4 respectively. Then the question is whether the zeros of g(x) are
contained in the splitting field of h(x). Suppose it does, let Lg and Lh be the
splitting field over Q of g and h respectively, we have:

2 = |Galg| = [Lg : Q] =
|Lh : Q|
|Lh : Lg|

=
|Galh|

|Galh(Lh/Lg)|
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note that h must not have a zero in Lg. Suppose it does, then 0 cannot be its
zero so it has two or four zeros in Lg because it is of even degree, Having four
zeros in Lg means |Galh| = 2, impossible; having two zeros in Lg means Galh is
V4 ∼= Z2×Z2, so it factors into two quadratic polynomials over Q, contradiction
to the assumption that it is irreducible. Thus Galh(Lh/Lg) must be a transitive
subgroup of S4, and this means Galh, being a transitive group itself, contains
a transitive subgroup having index 2. From previous discussions on transitive
subgroups of S4, we see that only S4 (having A4 as subgroup of index 2) and
D4 (having Z4 or V4 as subgroup of index 2) satisfy this. Thus, if Galh is not S4

or D4, then the zeros of g(x) cannot be contained in the splitting field of h(x)
and thus Galf = Galh × Z2, i.e. one of A4 × Z2, V4 × Z2 and Z4 × Z2.
Now suppose Galh is either S4 or D4, note that in both cases ∆(h) is not a
quare in Q. We would like to know when zeros of g(x) are contained in the
splitting field of h(x). If this happens, then Galf = Galh = S4 or D4, which
have orders 24 and 8. We know a zero of h(x) must generate a subfield of degree
4, thus, the quadratic subfield must be generated by both

√
∆(h) and a zero

of g(x), equivalently
√

∆(g), thus we must have
√

∆(g) = q
√

∆(h) for some

q ∈ Q, which is equivalent to say
√

∆(g)
√

∆(h) ∈ Q.
Summarizing case 3:

(i) If Galh = S4 or D4 and
√

∆(g)
√

∆(h) ∈ Q, then Galf = Galh;

(ii) If Galh = S4 or D4 and
√

∆(g)
√

∆(h) /∈ Q, then Galf = Galh × Z2;

(iii) If Galh is neither S4 or D4, then Galf = Galh × Z2.

• Case 4: the polynomial factors into 2 irreducible polynomials of degree 3.

Let f(x) = g(x)h(x), where g(x), h(x) are monic, irreducible, cubic polynomi-
als. Note that if g, h define the same extension, i.e. Lg = Lh, then the problem
reduces to the case of irreducible polynomial of degree 3, which has been dis-
cussed. Thus we only consider Lg 6= Lh. By previous discussions in Section 2.1,

we know both Lg and Lh satisfy L = Q(α,
√

∆) where α is a zero, and [L : Q] = 3

if
√

∆ ∈ Q or 6 otherwise. Thus if both
√

∆(g) and
√

∆(h) are not in Q, then

Lg and Lh have a common subfield of degree 2 if and only if
√

∆(g) = q
√

∆(h)

for some q ∈ Q, which is equivalent to say
√

∆(g)
√

∆(h) ∈ Q. Next, note that
Lg and Lh have a common subfield of degree 3 if and only if there exists an
isomorphism

ϕ : Q[x]/(g)→ Q[x]/(h), x 7→ ax2 + bx+ c

for some a, b, c ∈ C. Equivalently, g(x) must be sent to 0, i.e. g(ax2+bx+c) = 0
mod h. Let g(x) = x3 + a2x

2 + a1x+ a0 and h(x) = x3 + b2x
2 + b1x+ b0 (the
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fact that they are monic follows from f is monic and Lemma of Gauss). Then:

g(ax2 + bx+ c) =a3x6 + 3a2bx5 + (3ab2 + 3a2c+ a2a2)x4 + (b3 + 6abc+ 2aba2)x3

(3ac2 + b2a2 + 3b2c+ 2aca2 + aa1)x2

(3bc2 + 2bca2 + ba1)x+ ca1 + a0 + c3 + c2a2

On the other hand, let q(x) = q3x
3 + q2x

2 + q1x+ q0 ∈ Q[x] be arbitrary. Then:

h(x)q(x) =(x3 + b2x
2 + b1x+ b0)(q3x

3 + q2x
2 + q1x+ q0)

=q3x
6 + (q2 + b2q3)x5 + (b1q3 + q1 + b2q2)x4 + (b0q3 + b2q1 + q0 + b1q2)x3

+ (b0q2 + b2q0 + b1q1)x2 + (b1q0 + b0q1)x+ b0q0

Thus if there exists q3, q2, q1q0 ∈ Q making the above two expressions equal,
then Lg and Lh have a common subfield of degree 3.
Summarizing case 4:

(i) If Lg, Lh don’t have a common cubic subfield and both
√

∆(g),
√

∆(h) ∈
Q (so their product is also in Q) then Galf ∼= A3 ×A3;

(ii) If Lg, Lh don’t have a common cubic subfield and precisely one of
√

∆(g),√
∆(h) lies in Q (so their product is not in Q), then Galf ∼= S3 ×A3 ;

(iii) If Lg, Lh don’t have a common cubic subfield, neither of
√

∆(g),
√

∆(h)
lies in Q and their product is not in Q, then Galf ∼= S3 × S3;

(iv) If Lg, Lh don’t have a common cubic subfield and neither of
√

∆(g),
√

∆(h)
lies in Q, but their product is in Q, then again Galf ∼= S3 ×A3;

(v) If Lg, Lh have a common cubic subfield, then Galf is one of S3×Z2, A3×Z2

and S3, depending whether they have and share a common quadratic
subfield or not.

5.3 Examples

Since in this section, the resolvents are generally of much higher degrees and
have much more coefficients than in previous cases, I would like to determine the
Galois group of a polynomial by a different way using Magma, without having
to compute the coefficients of the resolvent explicitly. But essentially we are
still using the facts we obtained about resolvents.

Example 5.1. Let’s construct a monic, irreducible polynomial f(x) of degree
6 in Z[x] that has Z6 as Galf . By Theorem 1.14, this happens if and only if we

can construct a separable of degree |S6|
|S3| = 120. The idea is the following:

• Step 1. Take a polynomial F ∈ Q[x1, .., x6] such that Stab(F ) = Z6

I take h(x1, .., x6) to be:
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inv:=InvariantsOfDegree(Z6,5);

h:=inv[41]-inv[40];

• Step 2. Take a polynomial f(x) whose Galois group to be determined.

Based on Example 2.3, I’m guessing that the minimal polynomial of ε+ 1
ε could

have its Galois group isomorphic to Z6, where ε is the 2 · 6 + 1 = 13-th root of
unity. The minimal polynomial can be determined to be f(x) = x6 + x5− 5x4−
4x3+6x2+3x−1. (Many ways to do that, I used WolframAlpha by simply typing
in −(−1)(1/13)+1/(−(−1)(1/13)) and the result displays its minimal polynomial,
among other things). Its discriminant is 371293 = 135, thus Galf cannot be a
subgroup of A6 so it could be Z6, hence at least we didn’t make a mistake from
the beginning.

• Step 3. Obtain the splitting field K of f in the form of K = Q(a), and
the 6 different zeros of f(x)

Here we already have it: a = ε+ 1
ε , and the other roots are obtained by repeat-

edly squaring and subtracting 2 (again, compare Example 2.3). But for other
functions we might still need to do this again.

• Step 4. Obtain different σih(x1, .., x6), where σi are representatives S6/Z6;

Since the index of Z6 is 120, we should obtain 120 different σih here.

• Step 5. Evaluate those σih(x1, .., x6) at the zeros of f(x).

If the number of different outcome equals 120, then the resolvent is separable;
moreover, if in these outcomes we can found a rational number, then by Theorem
1.14 Galf ∼= Z6.
Summarizing, we can achieve this by the following command in Magma:

Q:=Rationals();P<x>:=PolynomialRing(Q);

f:=x^6+x^5-5*x^4-4*x^3+6*x^2+3*x-1;

Z6:=MatrixGroup<6,Q | [0,0,0,0,0,1, 1,0,0,0,0,0, 0,1,0,0,0,0,

0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0]>;

inv:=InvariantsOfDegree(Z6,5);

h:=inv[41]-inv[40];

orb:=h^Sym(6);

#orb;

K<a>:=SplittingField(f);

rt:=Roots(f, K);

PK<x1,x2,x3,x4,x5,x6>:=PolynomialRing(K,6);

zeroes:=[ rt[i][1] : i in [1..6]];

#{Evaluate(PK!G,zeroes) : G in orb};

{Evaluate(PK!G,zeroes) : G in orb}
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The result contains 2 numbers and a list. The first number is the number of
different σih(x1, .., x6), if it is less than the index of the transitive subgroup G
we are considering, then Stab(h) 6= G so we need to try a different h. The
second number is the number of different σih(x1, .., x6), xi 7→ ai, i.e. the zeros
of the resolvent. If this number is not equal to the index, then we also need to
try a different h(x1, .., x6). Assume both numbers are equal to the index, in the
list, see if there is a rational number in it, if there is then Galf is conjugate to
a subgroup of G by Theorem 1.14; if not, either try a different h(x1, .., x6) or
Galf is not conjugate to a subgroup of G.
In our case, both numbers are 120 and there is a number 13 in the list, thus
Galf ∼= Z6.

Example 5.2. Let f(x) = x6 + 2x5 + 3x4 + 5x3 + 8x2 + 13x + 21, ∆(f) =
−60209295851 = −41 · 113 · 12995747 which is not a square in Q, thus Galf
cannot be a subgroup of A6. Furthermore, we have:

f(x) =x(x5 + 2x4 + 2x2 + 2x+ 1) mod 3

=(x+ 7)
(
x2 + x+ 6

) (
x3 + 11x2 + 4x+ 9

)
mod 17

By Corollary 5.2 (3) and (5), Galf ∼= S6.

Example 5.3. Let f(x) = x6 + 2x5 + 3x4 + 5x3 + 8x2 + 13x + 21, ∆(f) =
−13424896 = −(3664)2 which is not a square in Q. Hence Galf is not a subgroup
of A6. Using similar method in Example 5.1 by changing the 2nd to 5th lines
to this:

f:=x^6 + x^5 - 3*x^4 - 2*x^3 - 3*x^2 + x + 1;

Z2S4:=MatrixGroup<6,Q | [0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0,

0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0],[0,0,0,0,1,0, 0,0,0,1,0,0,

0,0,1,0,0,0, 0,1,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,1],[1,0,0,0,0,0,

0,1,0,0,0,0, 0,0,0,0,0,1,0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,1,0,0,0]>;

inv:=InvariantsOfDegree(Z2S4,5);

h:=inv[13]-inv[14];

Both numbers in the result are 15, which is equal to the index of Z2 × S4, thus
Galf is conjugate to a transitive subgroup of Z2×S4. Furthermore, f(x) = (x2+
24x+1)(x4+6x3+26x2+6x+1) mod 29, thus by Corollary 5.2, Galf ∼= Z2×S4

Example 5.4. Let f(x) = x6 − 24x4 + 21x2 + 9x+ 1, ∆(f) = 13775482161 =
312 · 72 · 232, thus Galf is a subgroup of A6. Moreover:

f(x) =(x+ 1)(x5 + x4 + x3 + x2 + 1) mod 2

=(x+ 5)3(x3 + 6x2 + 6) mod 7

Thus, Galf ∼= A6 by Corollary 5.1 (4).

55



References

[1] David Cox. Galois Theory. Wiley, 2012.

[2] Henri Cohen. A Course in Computational Algebraic Number Theory.
Springer, 1996.

[3] Serge Lang. Algebra, revised third edition. Springer, 2000.

[4] Michael Artin. Algebra, second edition. Prentice-HaIl, Inc., 1991.

[5] Arturas Dubickas. Polynomials irreducible by eisenstein’s criterion. Appli-
cable Algebra in Engineering, Communication and Computing, 2003.

[6] David S. Dummit and Richard M. Foote. Algebraic algebra, third edition.
Wiley, 2004.

[7] M. Fried and S. Friedland. A discriminant criteria for reducibility of a
polynomial. Israel Journal of Mathematics, 54(25-32), 1986.

[8] Serge Lang. Algebraic number theory, second edition. Springer, 1994.

[9] S. P. Novikov B. A. Dubrovin, A. T. Fomenko. Modern Geometry, Methods
and Applications, Part I. Springer, 1984.

[10] Derek F. Holt. Enumerating subgroups of the symmetric group. Contem-
porary Mathematics, 2009.

56


