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Abstract

This thesis explores the possibility of solving Burgers’ equation with a model-free reservoir pre-
dictor: an echo state network. Two types of numerical experiments are performed. One simply
trains the network on spatial training data obtained through means of the finite volume method.
The other trains a network on the Fourier coefficients by applying the fast Fourier transform on
the spatial data. The underlying idea behind this is that due to the diffusion the higher frequency
components are less relevant and could be removed from the training data, meaning one would
see a decrease in computation time. The training of the Fourier coefficients performs significantly
worse than the training of the spatial data when the readout matrix is reservoir focused. But both
methods see an increase in performance when the readout matrix is input-focused.
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Chapter 1

Introduction

In fluid dynamics, the most important equations encountered are, without a doubt, the Navier-
Stokes equations. They provide a complete description of fluid flow and are used in a wide
variety of applications such as the modelling of oceans or the weather. Due to the complexity of
the equations, however, only few solutions are known and there are still many questions about
existence and smoothness. Therefore, almost always one has to resort to numerical methods to
obtain a solution. The most common approaches to obtain such a solution quite frequently rely
on a discretization of the equations.

Due to the non-linear convective term, the equations display chaotic-like behaviour. Small
variations can have a large impact on the final solution. To reduce the complexity of the system
a bit, but conserve this term, we consider Burgers’ equation. It is a simplified model of the
Navier-Stokes equations that is obtained by considering the non-forced equation and dropping
the pressure term. This results in the following model:

∂u
∂t

= −u · ∇u + µ∆u, (1.1)

where u(x, t) : [0, L]× (0, T] → R with u(x, 0) = u0(x), u(0, t) = u(L, t) and µ is the diffusion
coefficient. This equation, like the Euler equations, can be rewritten in terms of a conservation
law.

∂u
∂t

+∇ · F(u) = 0 (1.2)

This represents a wave equation with in this particular case, F(u) = − 1
2 u · u + µ∇u. [1]

In the simplified model the convective term is preserved and thus the system is a good testing
ground for numerical approximations. The usual manner in which this set of equations is solved,
is the finite volume method. A brief derivation of this method will be given in chapter 2. Spatial
discretization is done through this method and a time integration such as a Runge-Kutta method
is applied to obtain the approximate solution. However, often these methods require an increas-
ingly fine grid due to the non-linearity. The convective term transfers energy into smaller scales
over time, generating high wave frequency modes.[2] This can lead to aliasing, where a frequency
is too high to be captured on the grid because its wave-length is smaller than the distance between
two grid points

Therefore, we propose an alternate method of obtaining a solution. This method will make
use of reservoir computing. A so-called reservoir is created which has certain states that depend
on time. Then an input is mapped into the reservoir and combined with a state to produce a
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new state. This state will then be mapped to an output. During the learning phase the map
from the reservoir to the output is trained so that it will map a state to the correct output. When
the system has undergone sufficient learning, the output is coupled to the input to make an
autonomous system that produces a solution.

This procedure shall be applied to the one-dimensional Burgers’ equation which will act as a
testing ground to make a prediction what the ’gain’ in higher dimensions would be. Questions
that will be considered are:

• What is the complexity of the algorithm for the echo state network?

• Is it possible to train the network on only the Fourier coefficients within the inertial range of the
solution?

• How many accurate time steps can be obtained for a certain amount of training steps?

In chapter 2, an explanation of how the training data has been obtained will be given. Chapter
3 covers the explanation of how echo state networks work and its main property. This chapter
also discusses the complexity of the algorithm. In chapter 4 we discuss the setup of the network
and some basic examples. Then in chapter 5 we perform the actual experiments on the forced
Burgers equation. Finally we will discuss the results in chapter 6.
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Chapter 2

Training data

In order to obtain some data on which to train the network, we will apply the finite volume
method to Burgers’ equation and perform a time integration for a certain amount of steps using
the four-stage Runge-Kutta method. This method is convenient since we can choose its time step
in such a way that we always get stable solutions, i.e., we don’t have to deal with ’numerical
wiggle’ in our training data.

2.1 Finite volume method

Let Burgers’ equation be as defined in equation 1.2. Then bring the equation into an integral
form, yielding

∫
V

∂u
∂t

dV =
∫

V
(∇ · F(u))dV

=
∫

S
(F(u) · n)dS

(2.1)

The second equality in equation 2.1 follows from Gauss’ theorem.
Now we create a grid of N grid points in each dimension, where the distance between two

adjacent grid point is h (Note that in each dimension the distance could be taken differently, which
consists of equal lines/squares/cubes (1D/2D/3D). Then the volume V, the control volume, will
be defined as the volume around each grid point with its boundary halfway the grid points (see
figure 2.1).

Figure 2.1: Control volume in two dimensions.[3]
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In one dimension this looks like: V = {x ∈ R : xi−1/2 ≤ x ≤ xi+1/2} where h = L
N ,xj =

j−1
h ,1

j = 1, 2, . . . , N and xi+1/2 = xi+xi+1
2 . Continuing in one dimension leads us to uj := u(xj, t), which

we can substitute into equation 1.2 and integrate.

h
duj

dt
= F(uj+1/2)− F(uj−1/2) (2.2)

This follows from the fact that in one dimension the boundary of V is simply the collection of
the two boundary points. All that is left to do is to define the central average uj+1/2 =

uj+uj+1
2 and

define the central difference ∂u
∂x

∣∣∣
j+1/2

=
uj+1−uj

2 . Substituting these approximations in (3) gives:

h
duj

dt
= −1

2

[(
uj + uj+1

2

)2

−
(

uj + uj−1

2

)2
]
+

µ

h
[uj+1 − 2uj + uj−1], j = 1, 2, . . . , N. (2.3)

To deal with the grid points outside the grid we assume periodic boundaries: u0 = uN and
uN+1 = u1.

the obtained set of equation can then be rewritten as follows:

du
dt

= − 1
2h

[
(Mu) · (Mu)− (MTu) · (MTu)

]
+ Au. (2.4)

Where M ∈ RN×N and A ∈ RN×N are defined by

M =
1
2


1 1

1 1
. . . . . .

1 1
1 1

 A =
µ

h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2

 . (2.5)

2.2 Four-stage Runge-Kutta (RK4)

With the semi-discretization in equation 2.4 we can apply a time integration to obtain an approx-
imate solution. In this thesis the RK4 method will be deployed:

un+1 = un +
∆t
6
(K1 + 2K2 + 2K3 + K4),

K1 = f (tn, un),

K2 = f (tn +
∆t
2

, un +
∆t
2

K1),

K3 = f (tn +
∆t
2

, un +
∆t
2

K2),

K4 = f (tn+1, un + ∆tK3).

(2.6)

1Note that all xj’s lie in the interval [0, L). When both boundary points are taken as grid points, the power spectral
density will not tend to 0 for the higher frequencies, even though this is expected due to the diffusion.
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Where f is the right-hand side of the discretized equation 2.4 and ∆t is the size of the time step.
To prevent instability in the solution, one should maintain the following stability criterium.[4]

4
∆tµ
h2 ≤ δopt ≈ 1.6 (2.7)
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Chapter 3

Echo state networks

Reservoir computing is a branch of recurrent neural networks (RNNs). Its aim is to learn patterns
from a data set for a certain period of time, [−T, 0], in order to make predictions from t = 0
onwards. It does so by mapping an input into a ’reservoir’, which is a non-linear space containing
so-called states. After an input has been fed into the reservoir it is combined with a state and
a non-linear input function is applied to produce a new state. The states are then collected in
a matrix and a linear (feed-forward) readout is trained to map the states to the training output.
This is the general approach on reservoir computing, but there are a few branches. In this thesis
we consider echo state networks (ESN).

3.1 Training Wout

For a given amount of training inputs u(n) ∈ RNu , a corresponding output y(n) ∈ RNy is known.
Here n indicates the discrete time and it is assumed that it ranges from −T to 0 with a time step
of dt, so n = 1, 2, . . . , Td = T

dt .
Our network is centered around the idea of a reservoir. This reservoir contains the states

x(n) ∈ RNx which depend on time and are assumed to have memory, i.e., they depend on the
previous state. A current input is fed forward into the reservoir through the weight matrix
Win ∈ RNx×Nu which acts as an ’Input-to-reservoir coupler’[5]. The previously known output is
fed back into the reservoir through the weight matrix Wo f b ∈ RNx×Ny which acts as an ’output-to-
reservoir coupler’. The states also have internal connections which are described by the weight
matrix W ∈ RNx×Nx . All these connections are combined together with a bias term1, ξ1, to update
the states:

x(n + 1) = f
(

Winu(n + 1) + Wx(n) + Wo f by(n) + ξ1
)

(3.1)

The function f is the state unit’s non-linear output function that is applied element-wise.
This function turns the reservoir into a rich and diverse dynamical system. Throughout this
thesis we will use f = tanh(·). Based on the current input u(n + 1) and the state x(n + 1), one
would like to predict the output y(n + 1). This will be the done through the readout matrix
Wout ∈ RNy×(Nx+Nu) and the output unit’s output function fout. fout usually takes the form of the
identity or tanh. Thus, the output is

1This bias term can be separately scaled for each state and can be used to manually stress importance for a certain
component.
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y(n + 1) = fout(Wout

[
x(n + 1); u(n + 1)

]
. (3.2)

With these equations, we wish to train the readout matrix Wout such that it is able to map a
state from the reservoir to the correct output. This is done by first iterating equation 10 Td times
and storing all states at each time step. Then the matrix X containing all the states and the matrix
U containing all the inputs can be concatenated.

Xext =

[
x(1) . . . x(Td)
u(1) . . . u(Td)

]
∈ R(Nx+Nu)×Td .

Now equation (11) can be extended such that it covers all time steps.

Y = fout(WoutXext)

Solving for Wout often results in over-fitting when trying to apply the least squares method,
so it is customary to use Tikhonov regularization. In some cases taking Penrose’s pseudo-inverse
might be advantageous as well. The former approach gives the following expression for Wout:

Wout = f−1
out(Y)XT

ext

(
XextXT

ext + βI
)−1

(3.3)

where I ∈ RNx+Nu , and β ≥ 0. See Algorithm 1 for a general implementation of training Wout. It
is also useful to immediately after training apply the training data U to the readout matrix and
calculate the root mean squares error (RMSE) between the the obtained prediction and the actual
data Y.

RMSE =
1

Ny

Ny

∑
i=1

√√√√ 1
T

T

∑
n=1

(
yi(n)− ytarget

i (n)
)2

(3.4)

This error can be used as a reference point to increase the performance of the network by
trying to decrease it.

Once we have ’trained’ our read-out matrix, we can feed the reservoir new inputs and it
should give outputs based on patterns it established during the training phase.

3.2 Echo-state property

The main feature of an ESN is the echo-state property. This tells us that over time, the initial
conditions of the reservoir will fade and will no longer affect the states after a suffcient amount
of time has passed. After one has generated a multitude of states, one can throw away the
initial states and should end up with a reservoir that is independent of its initial condition. This
property is useful since it gives a certain degree of robustness to the network. Each time a new
network is initialized, it will keep giving a similar prediction. In this thesis the formal definition
from [6] is used.
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Figure 3.1: (a) Configuration of the reservoir in the training phase. (b) Reservoir configuration in the
prediction phase. This figure was taken from [5].

Definition 3.2.1. An ESN with reservoir states x(n) has the echo state property if for any compact
C ⊂ RNu , there exists a null sequence2 (δh)h=0,1,2,... such that for any input sequence (u(n))n=0,1,2,... ⊂ C
it holds that ||x(h)− x′(h)|| ≤ δh for any two starting states x(0), x′(0) and h ≥ 0.

Despite that the general setup is called echo state network, the echo state property is not
attained for arbitrary parameters. In the case of a regular ESN, this depends largely on the input,
for example, for non-zero inputs u(n) the echo state property is often attained for ρ(W) ≥ 1[8].
Since this requires manual tuning for which there are no formal guidelines, we will introduce a
slight variant on the ESN for which there is a sufficient and necessary condition for the echo state
property.

3.3 Leaky integration

A setup of an echo state network, is a so called leaky integrator. The idea being, that we can
adjust the network to train on very slow dynamics by ”leaking” a part of the previous state into
the next. The continuous-time dynamics of a leaky integrator are described by

ẋ =
1
c
(−αx + f (Winu + Wx + Wo f by + ξ1)), (3.5)

y = g(Wout[x; u]), (3.6)

where c > 0 is a global time constant, α > 0 is the reservoir neuron’s leaking rate, the function f is
a sigmoid function which is a bounded, differentiable real function that has a positive derivative
everywhere[9] and the function g is the output activation function.

Since we only have a discrete amount of time steps available from our training data, this
equation has to be discretized. In this thesis a simple Euler discretization with step-size δ is used.

x(n + 1) =
(

1− α
δ

c

)
x(n) +

δ

c
f
(

Winu((n + 1)δ) + Wx(n) + Wo f by(n)
)

, (3.7)

y(n) = g
(
Wout[x(n); u(nδ)]

)
. (3.8)

2A null sequence is a sequence that converges to 0 [7].
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This provides an altered update function from equation 9:

x̄(n + 1) = tanh
(

Winu(n + 1) + Wx(n) + Wo f by(n + 1)
)
+ ξ1,

x(n + 1) =
δ

c
x̄(n + 1) + (1− α

δ

c
)x(n).

(3.9)

By adjusting the leaking rate α, previous states will seep into the current state to prevent
drastic changes in the state such that the output will match the rate at which the dynamics of the
actual system change.

An advantage of using a leaky integrator ESN is that there is a sufficient and necessary con-
dition for the echo state property.[6]

Theorem 3.3.1. Assume a leaky integrator ESN according to equation 3.9, where the sigmoid f is the tanh
and the output function g is bounded (for instance, it is tanh), or there are no output feedbacks, that is,
Wo f b = 0. Let σmax be the maximal singular value of W. Then if |1− δ

c (α− σmax)| < 1 (where σmax is
the largest singular value of W), the ESN has the echo state property.

In other words, this conditions says that the leaking rate should always be bigger than the
square root of the spectral radius of WTW for the echo state property to hold. From this statement
together with the fact that α δ

C < 13, it is also immediately observed that for the property to hold,
δ and C do not require any additional restrictions. Thus they can be chosen in such a way that
δ
C = 1, eliminating them from the update function all together.

Remark. Although this property can be useful in some cases, often when the conditions are violated
the network still produces good predictions consistently. See for example the Lorenz example in Pathak’s
paper[5].

3”A neuron should not in a single update leak more excitation than it has”[10]
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Chapter 4

Setup of echo state network

4.1 Implementation of the setup

Now we can start applying echo state networks to the equation in question. The training data
throughout this thesis will be obtained through means of the finite volume method and the 4-
stage Runge-Kutta method as described in chapter 2. From this method, one should obtain two
matrices: a matrix containing solution u(n) where n = 1 . . . Td − 1, denote this U, and a matrix
containing solutions u where n = 2 . . . Td, denote this Y. The matrix U will act as the collection
of inputs for the network and Y will be the corresponding outputs. Namely, what we want to do
is to predict a next time-step based on the previous one: u(n + 1) = y(n).

The next step is to generate the weight matrices. Note that there is no need to generate Wob f
since u(n + 1) = y(n). This turns the update equation 3.1 into

x(n + 1) = f
(

Winu(n + 1) + Wx(n) + Wo f bu(n + 1) + ξ1
)

= f
((

Win + Wo f b

)
u(n + 1) + Wx(n) + ξ1

)
,

where we can treat Win + Wo f b as one weight matrix.
For the generation of Win the following two approaches were used throughout this thesis.

• Full: Randomly generate a matrix where each element is drawn from a uniform distribution
on the interval [−σ, σ].

• Sparse: Generate 1 value between −σ and σ in each row in a random column. A single
input will then excite a state instead of every input/output.

The weight matrix W is usually just defined in a sparse manner. Since the reservoir size is
often quite large for complicated tasks, we can’t generate a ’full’ weight matrix since it would
be computationally inefficient. Also, a lower sparsity often does not benefit the performance of
the network in terms of the training error[11]. In this thesis we define the sparsity of the matrix
in terms of the amount of entries per row, this value will be denoted by Epr. After randomly
generating the values for these entries, determine the absolute value of the maximum eigenvalue
and rescale W such that it has the chosen value of ρmax.

The network is now ready for use and all that is left to do is to tune the ’global parameters’
which are listed in table 4.1
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ρmax α β σ

ξ Nx Epr dt

Table 4.1: Global parameters

Algorithm 1: Algorithm for training Wout

Input: ρmax, β, α, Nx, x(1), Win,σ, ξ
Output: Wout
.......................................................Initialization

1: Set and scale U = [u(1) . . . u(Td)]
2: Set and scale Y = [y(1) . . . y(Td)]
3: Initialize W, Win

.......................................................Compute states
4: for i = 0 to Td do
5: x(i + 1) = f (Wx(i) + Winu(i + 1) + ξ1)
6: end for

.......................................................Compute Wout
7: X = [x(1) . . . x(Td)]
8: Xext = [X; U]

9: Wout = f−1
out(Y)XT

ext

(
XextXT

ext + βI
)−1

4.2 Complexity of the setup

To determine whether it is possible to improve on computational time compared to other methods
of solving the equation, it is useful to consider the complexity of our network. The general
algorithm is described in Algorithm 1. The two processes that dominate in the network is the
update equation for the states and solving for Wout.

The dimensions of all the matrices and vectors are given in table 1 below.
For all operations, the most basic algorithms will be considered. For example, taking an

inverse is considered to be O(n3) using Gauss-Jordan elimination rather than something like
O(n2.376) for the Coppersmith-Winograd algorithm.

Computing the T
dt = Td states as in Algorithm 1, line 5-7, requires the following operations.

• Multiplication of Wx(i): Epr · Nx. W is generated such that there are Epr entries per row.

• Multiplication of Winu(i + 1): Nx. In this thesis, Win is sparsely generated in such a way
that it has one entry per row.

• Multiplication of Wo f by(i) is not necessary as will be explained in the next chapter.

• Adding the terms together with ξ1 and applying f : 3N2
x .

Since this is done Td times, this yields a total number of Td(Epr + 4)Nx. This means that there
is linear relation between the time it takes to compute the states and the reservoir size.
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Algorithm 2: Algorithm for predicting td subsequent time steps on the time interval [0, t].
Input: Initial input û(1) with corresponding state x
Output: Predicted time-series: û(2) . . . û(td)
......................................................Initialization

1: Scale input û(1)
2: while i < td do

......................................................Predict time-steps
3: x = f (Wx + Winû(i) + ξ1)
4: û(i + 1) = fout(Wout[x; û(i)]
5: end while
6: Unscale output û(i) for i = 2 . . . td

For the computation of Wout, as described in Algorithm 1, line 10, the following operations
have to be carried out.

• Multiplying Xext and XT
ext: Td(Nx + Nu)2

• Adding βI: (Nu + Nx)

• Taking the inverse: (Nx + Nu)3

• Multiplying with XT
ext: Td(Nx + Nu)2

• Multiplying with f−1
out(Y): Ny(Nx + Nu)Td. Note that Ny = Nu for our purposes.

Combined with the earlier result, this accumulates to (Nx + Nu)(2Td(Nx + Nu)+ 1+(Nx + Nu)2 +
TdNu). This is a cubic relation with respect to Nxu = Nx + Nu when this value is large and a
quadratic one when it is small.

For the prediction phase, as described in Algorithm 2, there are 2 general operations that have
to be carried out t

dt = td times: the update equation and calculating y(n + 1). The number of
operations is as follows.

• Update equation as before: Epr · Nx + 4Nx.

• Multiplication of Wout

[
x(n + 1)
u(n + 1)

]
: Nu(Nx + Nu).

vector dimension
x Nx
u Nu
y Ny
ξ1 Nx

matrix dimension
Win Nx × Nu
W Nx × Nx

Wo f b Nx × Ny

Xext (Nx + Nu)× Td

Table 4.2: Vectors/matrices and their corresponding dimension.
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• Applying fout: Nu.

Together this adds up to td((Epr + 4 + Nu)Nx + Nu + N2
u). Just like calculating the states, this

expression is linear for small Nx and quadratic for large Nx.
In big-O notation these expressions are as follows:

• iterate over states: O(Td · Epr · Nx)

• calculate Wout: O(TdN2
xu + N3

xu)

• predict new outputs: O(td(Epr · Nx + N2
u))

In figure 3 the afore mentioned relations can be confirmed for ’small’ reservoir sizes. In the
left plot a linear relation between Nx and the time it takes to compute the training states can
be observed as expected. Similarly, a linear relation between Nx and the prediction time can be
observed in the right plot. The middle plot shows a somewhat quadratic plot.

As mentioned before, the most generic algorithms for all the computations have been taken.
Most programs will use more advanced arithmetic techniques than described here, thus one
can expect better performance than described here. However, this is a good basis to determine
computational efficiency since it will be an upper bound.

Figure 4.1: Time in seconds against the reservoir size. Td = td = 1000. For each reservoir size 20 trials were
performed. The red line goes through the median of each 20 trials and the error bars span the 1st and 3rd
quartile.
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Chapter 5

Initial parameter tests

To get an idea as to how the ESN interacts with our data from Burgers’ equation, two simple
problems will be considered where there is not yet a forcing term involved: a single traveling
wave and the diffusion of a ’random walk’. The former displays periodic behaviour over large
time periods which will be a nice start for configuring the network since an ESNs main strength
is replicating patterns. For the latter problem it is interesting to observe how the network deals
with collecting shocks in a solution and whether it can maintain the inertial range and dissipative
cutoff.

Figure 5.1: Contourplot of FVM solution (top), ESN solution (middle), difference of both solutions (bot-
tom). Note that the first color bar corresponds to both the top and middle graph.

5.1 Single wave

For the first initial test of the echo-state network on Burgers’ equation, we consider a single
decaying shock on the interval [0, 2π] as in [4]. The initial condition is given by

u(x, 0) =

{
exp (−(x− π)2), x ≤ π,
exp (−10−3(x− π)2), x > π

. (5.1)

• The diffusion constant µ = 10−3.

• The number of spatial grid points is N = 211
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• 1.6 · 105 time steps were applied with ∆t = 1.25 ∗ 10−3, where every hundreth solution was
stored as training data.

This way we can use time-steps in the ESN method of dt = .125 and the FVM training data still
has the accuracy of a method with a time step equal to 1.25 · 10−3 so that we obtain a stable
solution.

With this training data, the network has been trained for 12800 time steps on the interval
[−1600, 0]. Then from t = 0 onward, the output will be connected to the input in order to predict
the solution for the remaining 3200 time-steps, i.e., t ∈ [dt, 400].

The most important global parameters in the ESN have been configured as in table 5.1:

Parameter Value Parameter Value
Nx 3000 β 10−6

dt 0.125 EpR 150

ρ 0.6 fout id
ξ 0.3 σ 4

Table 5.1: Parameters used to obtain the results shown in figure 5.1

As predicted the network was able to pick up on the periodicity in the training data and was
able to produce a solution which retained the general shape of the solution. However, from visual
inspection of figure 5.1 it can be seen that the diffusion rate is not exactly matched. It appears
that the network wants to flatten the solution faster than the actual FVM solution. The choice of
β has a strong influence in this matter. If β is chosen as small as possible the solution matches
the diffusion rate the best.

Although for small β’s the readout matrix should be more accurate, it is not always possible
to choose β = 0 since it is not unusual for the matrix XextXT

ext to be singular. In this case, there
is a danger of overfitting. This is the main reason why Tikhonov regularization is widely used
throughout the literature.

5.2 Random walk

Secondly, lets consider the initial velocity profile of a random walk as defined in [4].

u(x, 0) =
1
10

Re

 N/2−1

∑
k=−N/2

ckeikx

 , with ck ∼ N(0, k−2) (5.2)

The training data again has N = 211 spatial grid points with a diffusion of µ = 10−3. 1.6 · 106

time steps have been applied where every thousandth time step has been stored. The network
parameters have been chosen similarly as before.
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Parameter Value Parameter Value
Nx 3000 β 10−10

dt 1
160 EpR 190

ρ 0.4 fout tanh
ξ 0 σ 1

Table 5.2: Parameters used to obtain the results shown in figure 5.1

Figure 5.2: Contour plot of the ’true’ solution, the predictive solution and the difference, respectively.

The network has been trained from T = −8 until t = 0. The network is expected to match
the diffusion rate as in the previous case and decay at the same rate as the ’true’ solution, but
will probably not be able to deal with all the shocks that occur in the solution. This is confirmed
by figure 5.2. After about 250 time steps, the difference between the FVM solution and the
ESN prediction increases rapidly. From this figure it is not immediately clear what is actually
happening. Figure 5.3 clarifies what is happening. The network has interpreted the shocks as
as a sort of noise and the prediction starts oscillating around the ’true’ solution. This can be
properly observed in the power spectral density at 2 different time steps. The higher frequency
are severely overestimated and are now dominating in the prediction. This only becomes worse
over time.
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Figure 5.3: Predictions and power spectral densities at 2 arbitrary time steps.
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Chapter 6

Numerical Results

In this section we will apply echo state networks to the forced Burgers equation. By taking
a specific forcing term, turbulent-like behaviour can be induced. In 3-dimensional problems
turbulent behaviour is very common, therefore we would like to model similar behaviour in our
test problem in the hope that we can extend the results to multiple dimensions.

In the next two sub-chapters we will consider the forced Burgers equation, ut = −uux +xx
+ f (x, t), where the forcing term f is f (x, t) = sin(2πx). This forcing term also keeps the space
average of the solution constant.

Two approaches will be applied to solve the equation. The first one will simply involve feeding
the network the raw training data as obtained from our FVM method. The second method will
make use of the Fourier transform. We will obtain the Fourier coefficients of the solutions at each
time step and then train the network on these.

The advantage of using the second method to predict subsequent time steps is that the due
to the dissipation in the solution, the higher frequencies play less of a role. You can then for
example train the network on only the first 50 coefficients out of a 100 and ’throw away’ the rest.
This could potentially save a lot of computation time when you are working with bigger systems
in more dimensions.

6.1 Raw training data

Consider the forced Burers’ equation as described above with the initial condition1 u(x, 0) = 1.
The diffusion constant is taken to several orders smaller than in the test problems: µ = 10−6. The
domain, [0, 1), will be divided into N = 300 grid-points. Using a time step of ∆t = 10−3, 2 · 105

time steps are obtained of which the first 4 · 104 are used for training.

Parameter Value Parameter Value
Nx 3000 β 10−8

dt 0.001 EpR 8

ρ 1.6 fout tanh
ξ 0 σ 1

Table 6.1: Parameters used to obtain the results shown in figure 6.1

1Thus the spatial expectation of u(x, t) will be 1 for all t.
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A network is initialized with the parameters as described in table 6.1. From a visual inspection
of figure 6.1 it appears as if the climate has been sufficiently replicated for a large portion of the
time steps.

To establish when the predictions are no longer ’accurate’, two errors will be defined. One
that is based on the exact difference between the FVM solution and the predicted ESN solution.
The first error, the NRMSE, determines for how long the prediction matches the solution ’exactly’:

E(t) =
||u(t)− utarget(t)||

||u(t)|| . (6.1)

The norm || · || is the regular 2-norm, u(t) denotes the prediction and utarget(t) denotes the FVM
solution that we are trying to predict.

The second error, the NRMSLE, will determine for how long the the prediction resembles the
’climate’ of the solution. Considering that due to the chaotic-like behaviour of Burgers’ equation
any error will increase exponentially, the idea of a correct ’climate’ is more interesting. The error
to determine whether it is in the right ’climate’ is given by

Ê(t) =
|| log(û(t) + 1)− log(ûtarget(t) + 1)||

|| log(ûtarget(t) + 1)||
. (6.2)

Here, û(t) denotes the power spectral density of u(t). Using this error, one can also assess
whether the small scales have been properly replicated, since the PSD starts decreasing exponen-
tially for the higher frequencies. After these errors pass a certain threshold, all future predictions
will be considered invalid. The threshold for E(t) will be set to 0.05 and the threshold for Ê(t)
will be set to 0.4.

In the case of the network corresponding to figure 6.1, the solution matches ”exactly” for
261 time steps and the climate is successfully replicated for approximately 16275 time steps.
Using a reservoir to predict an exact solution is definitely not feasible. Having used a variety
of parameters shows that the network can only give an ’exact’ solution (using the error criterion
from equation 6.1) up to about 1200 time-steps. However, recreating the ’climate’ of the solution
can be done in a successful fashion. With the given example, we obtained ’accurate’ time steps
with a ratio of 1:3 with respect to the amount of training steps we had to take.

This solution of the network however, has an interesting feature, namely the output and the
input have been scaled with a scaling constant s = 3 · 10−3. This has a huge impact on the training
of Wout. The scaling pushes the reservoir away in the calculation of Wout, which causes that the
inputs determine the next time step rather than the states. This seems to be the reason why the
solution predicted by the ESN appears to be a steady state. Whereas the FVM solution smooths
out as the higher frequency components diffuse over time, the prediction stays relatively constant.

Another initialization of a network, produces a reservoir that has more impact on the predic-
tion of the next time step. Instead of scaling the data by 10−3, the data has been shifted such
that the mean of the new data is 0. The parameters that were used for this reservoir are given in
table 6.2. In contrast to the network that was dominated by the output, this reservoir can produce
significantly more ’exact’ time steps, up to approximately 2965. However, the climate is quickly
lost in the solution (after 5894 time steps). The higher frequency components do not diffuse in
the reservoir but instead get amplified over time as can be seen in figure 6.3. A way to increase
the duration of valid predictions for this particular problem is by recognizing that during the first
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Figure 6.1: Results corresponding to table 6.1 (left) Contourplots on the time interval [0, 1]. Top panel:
FVM solution. Middle panel: ESN prediction. Bottom panel: difference between the two. The gray line
indicates when the E(t) ≥ 0.05. (right) Countourplots on the time interval [0, 160]. Top panel: FVM
solution. Bottom panel: ESN prediction.

10000 time steps of the solution the ’climate’ is still being generated. In other words, it takes a
while before the forcing term and the convection reach a sort of equilibrium before the ’climate’
is constant. By discarding these time steps the network will no longer be influenced by the initial
start up of the solution and it can produce more accurate time steps. This can be seen in figure
6.6 in chapter 5.3.

Parameter Value Parameter Value
Nx 1000 β 10−4

dt 0.001 EpR 50

ρ 0.2 fout id
ξ 0.3 σ 1

Table 6.2: Parameters used to obtain the results shown in figure 6.3

Figure 6.2: Contourplot of network where the reservoir is not pushed away. (top) FVM solution on the
time interval [0, 10]. (bottom) ESN prediction on the time interval [0, 10].

21



Figure 6.3: The situation at the moment that Ê(t) > 0.4. (left) FVM solution and ESN prediction at t=5.894.
(right) PSD of the FVM solution and the ESN prediction at t=5.894.

6.2 Fourier coefficients

Now the same problem will be tackled but now by using the Fourier transform on the training
data and feeding the obtained coefficients to the network. As mentioned before, due to the
diffusion the higher frequency components will tend to 0 and will thus have little to no impact
on the overall shape of the solution. Therefore, if one can determine the inertial range2 of the
solution, it is possible to discard all the coefficients outside the inertial range. If the inertial range
is small, this could potentially reduce the computational time by a lot.

We start off by training all the coefficients corresponding to the positive wave modes. These
coefficients contain all the information with respect to the solution. This is because the solution is
real which implies that the Fourier spectrum is conjugate even. So, we can simply train one half
of the coefficients and use the symmetry to immediately obtain the other half of the coefficients
as well.

The coefficients are fed into the network using the ’global parameters’ as in table 6.3. Note
that the coefficients can have an imaginary part, therefore the real and the imaginary part have to
be split and be fed into the network independently. If one feeds the coefficients into the network
as complex numbers, then the activation function f will no longer ’squash’ the numbers between
the values -1 and 1 but instead it will produce unbounded complex numbers3. So rather than
training 150 inputs, we are actually training 300 inputs. So right now there is no difference in the
amount of inputs compared to training the network on the raw data.

Parameter Value Parameter Value
Nx 3000 β 10−6

dt 0.001 EpR 18

ρ 1.8 fout tanh

Table 6.3: Parameters used to obtain the results shown in figure 6.4

2The Fourier spectrum of solutions of Burgers’ equation follow a power law, u ∝ k−a, up until the point where the
diffusion takes over at the higher frequencies. The range in where the spectrum follows this power law is called the
inertial range.

3even though the states are now complex and no longer bounded, the network can still accurately predict subse-
quent time steps for particular network settings. It is unclear why this is the case.
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Figure 6.4: Results corresponding to table 6.3 where we train the network on the the Fourier coefficients of
the positive wave modes. (top) Contourplot of the FVM solution and the ESN solution. The vertical line
indicates at which time-step the normalized error passes the threshold. (bottom-left) The FVM and ESN
solution of the first time-frame after the threshold has been passed. (bottom-right) Power spectral density
of FVM and ESN solution at the first time-frame after threshold has been passed.

Again the inputs have been scaled by the scaling constant 10−3. From figure 6.4 it can be
observed that this gives a similar result as in figure 6.1. In chapter 6, the discussion, we shall
go deeper into why these networks, which are mainly input driven, seem to perform better than
those who rely more on the reservoir.

Due to the diffusion in the dynamics, the coefficients of the higher frequency modes tend
to 0. They play less of a role in the overall shape of the solution. Therefore, it might be a
viable option to discard them and train the network on merely the lower frequency modes. Our
network will take less inputs, which means the reservoir size can be chosen smaller, increasing
the computational efficiency. This time the input shall not be scaled by 10−3 in order to get a
better idea as to how effective the reservoir itself actually is. Instead the data will again only be
shifted so that its mean is 0. Figure 6.5 shows that the network produces about the same amount
of valid time steps when training 30 coefficients as when all coefficients are trained. Ergo, it is
definitely beneficial to train only the coefficients which are within the inertial range instead of all
of them. There is however an obvious problem with this approach. Training the readout matrix
where the input is not dominating gives significantly fewer valid time steps. If we compare figure
6.4 to figure 6.2, we see that we get 10 times the amount of ’exact’ time steps and about 3 times
the amount of time steps that resemble the correct ’climate’.
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Parameter Value Parameter Value
Nx 1000 β 10−5

dt 0.001 EpR 50

ρ .9 fout id
ξ 0.3 σ 0.3

Table 6.4: Parameters used to obtain the results shown in figure 6.5

Figure 6.5: Contourplots of ESN predictions using the parameters of table 6.4. (top) trained on 30 co-
efficients. (bottom) trained on 150 coefficients. In for both panels the first vertical line indicates when
E(t) > 0.05 and the second one indicates Ê(t) > 0.4.

6.3 Comparing results

To get a clearer overview of the networks that were used in the previous sub-chapter, we iterate
the networks over different reservoir size. For each reservoir size the network is reran 20 times
and the median, the 1st quartile and the 3rd quartile are calculated. Figure 6.6 corresponds to the
training of the spatial data with the parameters of table 6.2. Figure 6.7 & 6.8 correspond to the
training of the first 150 coefficients and the first 30 coefficients respectively, with the parameters
from table 6.4.

It can immediately be observed that the training of the spatial components performs signifi-
cantly better even though all networks were trained on the same amount of time steps. Whereas
in figure 6.6 we see that the valid time increases when the reservoir size gets larger, in the other
two figures this is definitely not the case. For the ’exact’ valid time, the median just shifts around
the 300 a bit, and for the valid time of the climate the amount of time steps obtained becomes un-
stable for larger reservoir sizes. The choice of parameters does not appear to be the problem here.
Rather, I expect that the problem has to do with the scaling of the data. In figure B.1 in chapter
B of the appendix, the correlation and covariance matrices of the Fourier coefficients are plotted
for time intervals of 104. Only the coefficients of adjacent wavenumbers appear to be somewhat
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correlated. This could be a reason why the network is unable to pick up on any patterns. Also
there does not seem to be a concrete relation between the real and imaginary part. This could
however be potentially resolved by training 2 separate networks, each one focusing on either the
real parts or the imaginary part since those do have internal correlations.

When we take a look at the time it takes to perform Algorithm 1 (bottom left plot) and
Algorithm 2 (bottom middle plot), we notice a few things. First of all, the training time for
training 300 inputs is approximately the same as for 60 inputs. This is to be expected since these
are relatively small reservoir sizes thus computing Wout does not take more than a second. The
main influence comes from calculating the states. Recall that these do not depend on the size of
the input since Win is defined in a sparse way such that there is one entry in every row, and there
are Nx rows. Ergo, no matter how many inputs we have, the training time will always be the
same for a fixed Nx.

Secondly, when comparing figure 6.7 to figure 6.8 one can see that the prediction time in-
creases by 2 times the amount when the input increases by 5 times the amount. The input size is
relatively small compared to the reservoir size, since the complexity is quadratic in both compo-
nents, the reservoir will dominate in the expression and overshadow Nu. In these results however
we see barely any change in the quality of the solution, so it is still worth to only use 60 inputs to
decrease the computational effort.

Figure 6.6: Boxplots of various statistics plotted against the reservoir size. For each Nx the 20 different
networks were initialized with the parameters of table 6.2 and were trained on the interval [−3 · 10−4, 0].
The predictions were made on the interval [0, 4 · 104]. The red line is drawn through the median of the
statistics. The vertical lines span the 1st and 3rd quartiles.
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Figure 6.7: Boxplots of various statistics plotted against the reservoir size. For each Nx the 20 different
networks were initialized with the parameters of table 6.4 and were trained on 150 coefficients on the
interval [−3 · 10−4, 0]. The predictions were made on the interval [0, 104]. The red line is drawn through
the median of the statistics. The vertical lines span the 1st and 3rd quartiles.

Figure 6.8: Boxplots of various statistics plotted against the reservoir size. For each Nx the 20 different
networks were initialized with the parameters of table 6.4 and were trained on 30 coefficients on the
interval [−3 · 10−4, 0]. The predictions were made on the interval [0, 104]. The red line is drawn through
the median of the statistics. The vertical lines span the 1st and 3rd quartiles.
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Chapter 7

Discussion & conclusion

In terms of accuracy, when using a mainly reservoir-focused network where the states contribute
the same amount as the previous input, it was observed that training the network on spatial
data gives a much better quality of prediction than when training the real and imaginary parts
of the Fourier coefficients. However, when the data is scaled in such a way that in computation
of Wout is mainly dependent on the previous on the input, we see that that both methods dras-
tically increase their validity of the ’climate’ (At the cost of the ’exact’ validity). Our method
has transformed into something that resembles dynamic mode decomposition (DMD)[12]. The
difference here, however, is that subsequent flow fields u(n) and u(n + 1) have an extra linear
term in their relation: u(n + 1) = A12u(n) + A11x(n + 1). Note that Wout =

[
A11 A12

]
and that(

A11x(n + 1)
)

i <<
(

A12u(n)
)

i implying u(n + 1) ≈ A12u(n + 1). A few things to note here are:

• Some additional experiments show that this relation does not seem to work when we dis-
card the states all together.

• Since inputs and outputs are now significantly smaller than 1, the function fout = tanh
basically acts as the idenity function. The output is now just an actual linear combination

of the states and the input: y(n) = u(n + 1) = Wout

[
x(n + 1)

u(n)

]
.

Rather than scaling the input, we can also just manually choose f to be the identity. Then
we can rewrite the linear readout expression as u(n + 1) = A12u(n) + A11x(n + 1). This can be
considered a special form of DMD, namely DMD with control [13], where the control comes from
the reservoir.

To come back to the problem of training on the Fourier coefficients, the problem might lie in
the dynamics of the input. As you can see in figure A.2 in chapter A, the coefficients of different
wavenumbers evolve at different speeds over time. Due to the internal connections within the
states, these rates of evolution are mixed up and ’dissappear’ into the new dynamics of the
reservoir. Since the connections in the reservoir are random, we can not choose α such that each
state matches the dynamics of one the inputs/outputs. It might be possible through means of a
time-scaling constant, to line up the different dynamics in order to improve the performance of
the network trained on Fourier coefficients.

In terms of time, echo state networks are rather efficient. For reservoir sizes of order 103 the
training time has an approximate linear relation with the reservoir size. Similarly for the predic-
tion phase there is a linear relation when Nx is small. If we want to consider higher dimensional
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problems, for example Navier-Stokes in 3 dimensions, then the number of inputs will increase
significantly. For example if we discretize the grid in 300 grid points in each direction then we
obtain 27 · 106 grid points in total. In order to obtain accurate predictions, Nx will have to be of a
similar order. Since the complexity for large reservoir sizes is not that much of an improvement
on than that of the FVM method, for example. However, we do know that for smaller input size
we can take smaller reservoir size. One could divide all the grid points in different overlapping
groups of nu by nu by nu, where nu << Nu. Then for each of these groups a network is trained
to predict the time evolution. This way the computation time is kept down. This approach has
already been somewhat successfully deployed for the one dimensional Kuramoto-Shivashinky
equations [14] and given the success of our spatial training, it could perhaps be deployed for our
purposes.

To continue this research, one could look into training different representations of the data,
such as the polar coordinates of the Fouier coefficients. The radii of these can be rather success-
fully trained, but the problem is in the angle. Due to the fact that Matlab continues at −π after
π has been passed, this data has a lot of discontinuities which the network can not deal with.
By constructing an algorithm that extends the interval [−ππ] to an interval big enough so that
it covers all jumps, the data can be reprocessed into continuous curves such that the network is
able to train on the data.
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Chapter A

Fourier coefficients: time evolution

Figure A.1: Time evolution of the real and imaginary part of three Fourier coefficients on the time interval
[0, 80]. The first two figures correspond to the 10th wavenumber. The 3rd and 4th figure correspond to the
50th wavenumber. The last two figures correspond to the 100th wavenumber. In each case the left figure is
the real part and the right figure is the imaginary part.
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Figure A.2: The same time evolutions as in figure A.1, but zoomed in on the time interval [40, 41].
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Figure A.3: Contourplot of the real part (left) and the imaginary part (right) of the Fourier coefficients on
the time interval [0, 80]
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Chapter B

Covariance and correlation matrices

Figure B.1: The upper 20 plots show the correlation between the Fourier components of the solution of
the forced burgers equation and the lower 20 plots show the covariance between those components. The
coefficients have been split into a real and imaginary part. 1 through 150 indicates the real parts and 151

through 300 indicates the imaginary parts. Vertical and horizontal lines are NaN values.
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Figure B.2: This figure shows the same statistic as in figure B.1 expect that only the real and imaginary part
of the first 10 wave numbers is shown. 1 through 10 indicates the real parts and 11 through 20 indicates
the imaginary parts.
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[8] Mantas Lukoševičius. A practical guide to applying echo state networks. In Neural networks:
Tricks of the trade, pages 659–686. Springer, 2012.

[9] Jun Han and Claudio Moraga. The influence of the sigmoid function parameters on the
speed of backpropagation learning. In International Workshop on Artificial Neural Networks,
pages 195–201. Springer, 1995.

[10] Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Center for Infor-
mation Technology GMD Technical Report, 148(34):13, 2001.

[11] Adrian Millea. Explorations in echo state networks. PhD thesis, Faculty of Science and Engi-
neering, 2014.

[12] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal
of fluid mechanics, 656:5–28, 2010.

36



[13] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with
control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

[14] Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free predic-
tion of large spatiotemporally chaotic systems from data: A reservoir computing approach.
Physical Review Letters, 120, 01 2018.

[15] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37.
Springer Science & Business Media, 2010.

[16] Jaideep Pathak, Alexander Wikner, Rebeckah Fussell, Sarthak Chandra, Brian R Hunt,
Michelle Girvan, and Edward Ott. Hybrid forecasting of chaotic processes: Using machine
learning in conjunction with a knowledge-based model. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 28(4):041101, 2018.

[17] Wybe Rozema. Low-dissipation methods and models for the simulation of turbulent subsonic flow.
PhD thesis, PhD thesis, University of Groningen, 2015.

[18] Afroza Shirin, Isaac S Klickstein, and Francesco Sorrentino. Stability analysis of reservoir
computers dynamics via lyapunov functions. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 29(10):103147, 2019.

37


