
Random Walks : The Properties, Applications
and Methods of Analysis

Alexander Hill - Bachelor’s Thesis

1st Supervisor : Marco Grzegorczyk
2nd Supervisor : Wim Krijnen

University of Groningen
Mathematics
July 2020

Abstract

Random walks come in an array of interesting classes, each with unique
properties, applications and methods of analysis. This paper will provide
an analytical and numerical analysis of the different classes of random
walks, and study the relationships that connect them. This paper will in-
troduce and discuss the key concepts of simple random walks, Levy flights,
reinforced random walks, self-avoiding walks, and Brownian motion. Fol-
lowing this, new research results will be presented. First, an array of nu-
merical evidence will be introduced to support the Levy Flight Foraging
Hypothesis. Further to this, upper and lower bounds for the connective
constant of the Union Jack lattice will be implemented numerically. Addi-
tionally, a new method of analysis will be developed to study the Narrow
Escape Problem. Lastly, an extension to the reinforced random walks will
be constructed to link reinforced random walks to self-avoiding walks.

1

Contents

1 Introduction 4

2 Theory & Methods 8
2.1 Markovian Random Walks . 8

2.1.1 One Dimensional Simple Random Walks 8
2.1.2 Two Dimensional Simple Random Walks 14

2.1.2.1 The Monte-Carlo Method 15
2.1.2.2 The Method of Relaxation 15

2.1.3 Levy Flight . 15
2.2 Non-Markovian Random Walks 18

2.2.1 Reinforced Random Walks 18
2.2.2 Self-Avoiding Walks . 20

2.2.2.1 Lower Bounds for µ 23
2.2.2.2 Upper Bounds for µ 25

2.3 Brownian Motion . 26

3 Results & Simulations 28
3.1 Simple Random Walk . 28

3.1.1 One Dimensional Simple Random Walk 28
3.1.2 Two Dimensional Simple Random Walk 29

3.2 Levy Flight Foraging Hypothesis 32
3.2.1 Comparison with Simple Random Walk 33
3.2.2 Evolutionary Algorithm 34

3.3 Connective Constant of the Union Jack Lattice 36
3.3.1 Upper Bound . 36
3.3.2 Lower Bound . 37
3.3.3 Extrapolation . 37

3.4 Narrow Escape Problem . 38
3.4.1 Method . 39
3.4.2 Analysis . 40

3.5 Extension to Reinforced Random Walks 46
3.5.1 Definition . 46
3.5.2 Examples . 47

4 Conclusion 50

A Implementation 56
A.1 Simple Random Walk . 56
A.2 Levy Flight Foraging Hypothesis 62
A.3 Connective Constant of the Union Jack Lattice 69
A.4 Narrow Escape Problem . 76

2

List of Figures

1 Simple random walk on Z . 9
2 Finite 2D subset of Z2 with binary boundary points. 14
3 Levy flight paths on R2 with Cauchy distribution (left) and Levy-Smirnov distribution (right) 16
4 Simple 3-vertex graph analogous to Polya’s Urn . 20
5 The positions of 1000 simulated simple symmetric random walks (Sn) vs number of steps

(n), against y = C1
√
n and y = C2

√
n for C1 = 2.5, C2 = 1.25 to demonstrate Theorem (2.2) 28

6 Histogram of the final position (Sn) of 10,000 simple symmetric random walks after 1000
steps, against a Gaussian approximation . 29

7 Finite subsets of Z2 with assigned binary boundary points to model the Dirichlet Problem
associated with temperature diffusion - Scenario 1 (Left) & Scenario 2 (Right) 30

8 2D Numerical solution of the Dirichlet Problem defined in Section (2.1.2) associated with
temperature diffusion where color/height corresponds to heat - Scenario 1 (Left) & Scenario
2 (Right) . 31

9 Simulation examples of a foraging animal determined by a simple random walk (left) and a
Levy flight (right) searching for patches of food (displayed in green) 32

10 Histograms for survival rates of simulated animals foraging with various probabilistic dis-
tributions determining step-size (simple random walk, Cauchy-Levy flight, Gaussian-Levy
flight) . 33

11 Evolution of foraging animal through parameter space with Levy-coefficient on y-axis and
maximum step-size on x-axis, beginning with simple random walk and ending with Levy flight. 35

12 Levy-flight travel paths for the final generation of foraging animals generated by an evolu-
tionary algorithm designed to optimize search efficiency . 35

13 Two Dimensional Union Jack Lattice . 36
14 Upper & lower bounds for the connective constant of the Union Jack lattice, generated

by Alm’s Method (upper) and Keston’s Method of Irreducible bridges (lower), alongside
estimates of the connective constant and fitted extrapolated curves for the corresponding data 38

15 2D Example of the Discretisation of the Narrow Escape Problem, with a Brownian motion
on a continuous domain (left) converting to a corresponding simple random walk on a finite
square subset of Z2 (right) . 40

16 Log-Log plot of Expected escape time for a simple random walk in the Narrow Escape
Problem(E[Et]) vs resolution of the box (N) . 42

17 Probability density function for the escape time(Et) of a simple random walk in a box of
resolution N = 6, 8, 10 . 43

18 Cullen and Frey graph for the probability density function for the escape time(Et) of a simple
random walk in a box of resolution N = 3 . 43

19 Cullen and Frey graph for the probability density function for the escape time(Et) of a simple
random walk in a box of resolution N = 15 . 44

20 Kurtosis of probability density function of escape time(Et) vs resolution of box(N) & Skew-
ness of probability density function of escape time(Et) vs resolution of box(N) 44

21 Semi-Log Plot of probability density function of escape time(Et) against time (t) for resolu-
tion of box (N = 6, 8, 10) . 45

22 Regions of Influence on Z2 for ρ = 1, 2, 3 . 47
23 Five major classes of random walks and the relationships between them, including a new link

between reinforced random walks and self-avoiding walks introduced in Section (3.5) 49

3

1 Introduction

The random walk is one of the most fundamental models in probability the-
ory, demonstrating profound mathematical properties. It has a broad range of
applications in various scientific fields such as physics, chemistry and biology.
The history of random walks began in 1905, where Karl Pearson attempted to
model the random migration of mosquitoes in A Mathematical Theory of Ran-
dom Migration [1]. In ’Nature’, Pearson described the specific results he was
looking to demonstrate. The following week, Lord Rayleigh pointed out the
connection between Pearson’s problem of random mosquito migration, and the
mathematics behind sound vibrations [2, 3]. The underlying model both math-
ematicians were studying was the random walk.

Formally, a random walk is any process that follows a procession of random
steps in a mathematical space such as a lattice or graph. The direction and
magnitude of these steps can follow varying probabilistic distributions, leading
to interesting properties to study. Random walks can be found within diverse
areas of mathematics and science, from animal foraging and cell movement, to
ferromagnetism and long-chain polymers [4–7]. As a result of this, they are of
great interest to academics, with results in the field having countless initially
unforeseen applications.

The primary goal of this project is to provide a clear analysis of the statisti-
cal properties and theorems of different classes of random walks, through both
an analytical and a numerical lens. Additionally, the applications of random
walks shall be explored and the various methods of analysis will be discussed.
To achieve these goals, this paper will first introduce the different types of ran-
dom walk, alongside their properties and some key proofs. The paper will then
move on to a collection of new results in the field of random walks.

There are many different classes of random walk, with each class harboring
an extensive array of interesting properties and applications. Covering this ma-
terial in the necessary depth would be beyond the scope of this paper. For this
reason the Theory & Methods section will discuss a non-exhaustive selection of
random walks in order to provide a relevant, diverse and coherent analysis. Fur-
thermore, the properties, applications and methods of each class will be chosen
in order to emphasise the most interesting and significant aspects of that class.
The literature for each class will be given throughout this paper and in the bib-
liography, thus a deeper look into each class is possible for the curious reader.
The primary contribution to the Theory & Methods section will be the careful
selection of material across a range of literature, and constructing a system of
notation to bring it all together in a coherent and clear manner.

This paper will first discuss the random walks that take steps independently
to the path behind them, thus demonstrating the Markov Property. These walks
will be referred to as Markovian. Following this, the Non-Markovian walks will
be defined and explored. Below is a table of well studied random walks, cat-
egorised by discrete/continuous and Markovian/Non-Markovian. The classes
that will be discussed in this paper are denoted by a *.

4

Discrete Continuous

*Simple Random Walk *Brownian Motion
Markovian *Levy Flight Schramm–Loewner Evolution

Maximal Entropy RW

*Self-Avoiding Walk
Non-Markovian *Reinforced Random Walk

Loop-Erased Random Walk

We begin with the most elementary class of random walk, the simple random
walk. This walk serves as the basis upon which more complex walks can be
later defined. The simple random walk maintains a fixed step-size and acts in-
dependently of its previous steps, making it Markovian. Therefore, the simple
random walk can be modelled as a Markov chain, allowing for a stronger anal-
ysis than walks that cannot be modelled as so. In Random walks and electric
networks [8], the simple random walk and its properties are discussed in both
finite and infinite spaces, and will be the primary guide to this section of the
paper. Properties about the simple random walk will be explored, mainly fo-
cusing on the expected movement of the random walk as the number of steps n
increases. The rate of diffusion of the simple random walk in one dimension will
be demonstrated analytically, along with a few other key theorems. Addition-
ally, a particular focus will be given to the application of two dimensional simple
random walks in modelling the diffusion of temperature on a solid surface. To
achieve this, the Monte-Carlo method and the Method of Relaxation will be
introduced and then later compared in the Results & Simulations section. For
additional sources that covered the simple random walk and aided this section
see [9–14].

The step-size of a random walk can follow various distributions as opposed
to being fixed; with a heavy-tailed distribution we observe a random walk called
the Levy flight. The heavy tails of the distribution allow for large jumps to occur,
making the Levy flight suitable for modelling the movement of foraging animals
[4, 15–17]. The different types of Levy flight will be defined and key properties
will be discussed. The paper Introduction to the Theory of Lévy Flights [18] will
outline the theory for this class of random walks.

Following this, the Non-Markovian random walks will be discussed. The
reinforced random walk will be defined and it’s properties will be discussed.
The reinforced random walk is widely applied to probability theory, it correctly
models many systems such as Polya’s urn, which will be discussed in this sec-
tion [19]. The reinforced random walk is defined such that the probability of
traversing edges of a graph is dependent on the number of times it has been
traversed in the past. This can be done in many different ways, leading to in-
teresting recurrence properties. The primary source for this section will be the
paper Reinforced random walk [19].

The self-avoiding walk (SAW) will be the last of the Non-Markovian random
walks to be discussed. SAWs have the condition that a site, once visited, can
never be revisited. From a mathematical perspective, there is a lack of rigorous

5

analysis about the self-avoiding walk, many of its properties are conjectured
and then supported by numerical simulations, a notoriously unsatisfactory re-
sult for mathematicians [20]. SAWs are of considerable interest as they are
applicable to the research of many lucrative domains, such as long chain poly-
mers in Chemistry or the structure of DNA in Biology [6, 21]. Additionally,
the enumeration of SAWs of different lengths is a classic problem in combina-
torics, due to its surprising complexity [22, 23]. The book The Self-Avoiding
Walk [24] provides clear definitions of the self-avoiding walk and its properties,
and will thus be the primary guide to this section of the paper. The critical
exponents define the asymptotic behavior of SAWs, and will be introduced in
this section. The most sought-after and intriguing of the critical exponents is
the connective constant, denoted µ. The connective constant can be thought of
as the average number of possible edges the walker can traverse at each step of
a long walk. The connective constant is notoriously difficult to find analytically,
thus numerical methods have been developed to approximate it. The meth-
ods of finding upper bounds to the connective constant will be defined, such as
Alm’s method demonstrated in [25]. Then, the methods of determining lower
bounds will be defined including Keston’s method of irreducible bridges [26–28].

The final random walk to be discussed will be Brownian motion; the continuous-
time scaling limit of the random walk [29]. The definition of Brownian motion
will be given along with a construction of Brownian motion from a simple ran-
dom walk[30–32].

Following the theory and methods of the different classes, some new research
will be presented in the Results & Simulations section. This section intends to
advance forward from the known theory to bring new independent research to
the field of random walks. Firstly, the statistical properties of the simple random
walk will be validated through simulation. Properties include the expected dis-
tance of the walker from the origin after n steps and the asymptotic distribution
of the random walker’s final position. Following this, a numerical comparison
between the Monte-Carlo Method and the Method of Relaxation will be con-
ducted via direct simulation.

After this, the Lévy Flight Foraging Hypothesis will be discussed, and nu-
merical simulations will be conducted to test the hypothesis [4, 15–17]. The
Levy Flight Foraging Hypothesis states that animals have evolved to utilise the
Levy flight as a means of searching for food efficiently, as opposed to a sim-
ple random walk. By simulating a hungry animal searching blindly for food,
the simple random walk and the Levy flight will be compared as a searching
strategy. Additionally, an evolutionary algorithm will be applied that aims to
maximize the probability of survival of the foraging animal. This will demon-
strate the inherent advantage of the Levy flight as the animal will evolve from a
simple random walk into a Levy flight as generations pass. This will give strong
numerical evidence to support the hypothesis.

The methods of approximating the connective constant will be applied to
the Union Jack lattice. SAWs are directly linked to the Ising model of ferro-
magnetism [5, 33, 34]. As a result, the critical exponents of the self-avoiding
walk have a quantitative relationship with the parameters of the corresponding

6

Ising model [34], thus approximations of the former, lead to contributions in
the latter. The Union Jack lattice has indeed been studied in the field of fer-
romagnetism [35–38], but no computation of the connective constant has been
calculated. This thesis will finally provide an approximation for the connective
constant on this particular lattice, onto which further research can be made.

The Narrow Escape Problem will then be defined and discussed. The Narrow
Escape Problem describes a Brownian motion confined to a container, with a
small gap where it may escape. The problem is in finding the estimated time
until it gets out of the container. A new method of modelling the problem will
be introduced and analysed using the theory outlined in this paper.

To conclude the Results & Simulations section, this paper will construct an
extension to the class of reinforced random walks. This generalisation offers
a starting point for a more rigorous analysis of Non-Markovian walks such as
SAWs. In essence, the generalisation stems from the idea that reinforced ran-
dom walks can ’see’ the number of times each edge has been traversed in its
near vicinity, and makes choices accordingly to its predetermined function. This
paper will extend the ’reach’ of this reinforced walk, such that the probability
distribution is determined by edges that are further away than the regular case.
A reinforced random walk with (reach) ρ = 2 can ’see’ not only the edges con-
nected to its own vertex, but the edges connected to the vertices one step away
from itself. This paper will show that a particular case of the reinforced random
walk with ρ = 2 can be used to construct a new definition of the self-avoiding
walk, potentially allowing for a stronger analysis of its properties. This section
will focus on developing this new extension of reinforced random walk and for-
mulating a rigorous definition for future research to be done.

Lastly, this paper will discuss the implementation of the methods and simu-
lations outlined throughout the paper. This section will describe the strategy of
encoding different methods and the specific technical details required to produce
the given results. The raw code will be also added for clarity and transparency.

7

2 Theory & Methods

This section will bring together the relevant methods and properties across a
range of literature to give a clear and coherent overview of each class of random
walk. In order to do this, a large amount of notation had to be constructed and
edited in order to display all of the ideas in one consistent format. Almost all of
the theory in this section has re-written proofs and ideas in order to make the
necessary improvements/clarifications and ’glue it all together’. Before moving
onto the different classes, we must discuss the different domains that random
walks can take steps upon.

Random walks can take steps on a variety of different domains. A random
walk certainly exhibits vastly different behavior on a one-dimensional line as
it would on a torus. The most simple of these domains are simply connected
spaces such as R and R2. The notion of a graph is particularly useful to the
study of random walks;

Definition 2.1. A graph is a pair G = (V,E) where V is a set of vertices and
E is a symmetric subset of V × V, containing the set of edges. E is symmetric
iff (x, y) ∈ E ⇐⇒ (y, x) ∈ E.

Examples of graphs are Z and Z2 coupled with edges connecting each neigh-
bouring integer/co-ordinate. This paper will deal primarily with random walks
on graphs and simply connected spaces.

2.1 Markovian Random Walks

2.1.1 One Dimensional Simple Random Walks

The simple random walk, or drunkards walk, is a fundamental system in prob-
ability theory, with applications such as gambling and electric networks. The
simple random walk is particularly important because it forms the basis upon
which more complicated walks can be later defined. This section will demon-
strate some key theorems and properties about the simple random walk, which
will then be validated through numerical simulations in the Results & Simula-
tions section. Key information that will be covered is the expected position of
the walk, the distribution that governs this, and how this distribution evolves in
the limit. The following concepts draw upon the works of many authors [8–14].

To construct the simple random walk in one dimension, let X1, X2, . . . , Xn

denote independent and identically distributed random variables s.t.

Xi =

{
+1 with probability p
−1 with probability q

With p ∈ (0, 1) and q = 1− p. Let Sn denote the sum

Sn =

n∑
i=1

Xi .

8

The random variables Xi represent individual steps, and Sn represents the po-
sition of the walker after exactly n steps.

Figure 1: Simple random walk on Z

For simplicity, let the step-size of the random walker be 1, and let the origin
be S0 = 0.

The first question one might ask is what is the expected location of the simple
random walk after n steps?

Theorem 2.1. E[Sn] = n · (p− q)

Proof. An elementary result from probability theory states that ifX1, X2, . . . , Xn

are random variables then

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]

Therefore,

E[Sn] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] = n · E[X1]

Where the last equality is a result of X1, X2, . . . , Xn being identically dis-
tributed. This gives

E[Sn] = n · [(1) · p+ (−1) · q] = n · (p− q)

Remark. If p = q = 1/2, then we have that E[Sn] = 0, i.e. the expected position
of the walker will be at the origin for any number of steps n. This kind of simple
random walk is called a symmetric random walk.

Let us focus on the symmetric case. The probability distribution of the
expected position is centered at 0, but that does not imply that the walker is
always (or often) at 0, quite the contrary. As the number of steps increase, the
wider the probability distribution will be. For further insight into this, take the
mean-squared displacement,

S2
n =

(
n∑
i=1

Xi

)2

=

n∑
i=1

Xi

n∑
j=1

Xj =

n∑
i=1

X2
i +

n∑
i=1

n∑
j=1
j 6=i

XiXj (1)

9

Considering the final sum in Eq. (1), for i 6= j, we have

XiXj =

{
+1 with probability 1/2
−1 with probability 1/2

Which is a analogous to just another symmetric random walk! Thus applying
Theorem (2.1), we have

E

 n∑
i=1

n∑
j=1
j 6=i

XiXj

 = 0 . (2)

Additionally, X2
i = 1 for i = 1, 2, . . . , n. Therefore, with Eq.(2) and the linearity

of expectation,

E[S2
n] = E

 n∑
i=1

X2
i +

n∑
i=1

n∑
j=1
j 6=i

XiXj

 = n+ E

 n∑
i=1

n∑
j=1
j 6=i

XiXj

 = n

Implying that the expected distance from the origin is increasing with n. In
general, the ’speed’ at which a random walk travels away from the origin is
given by the parameter ν in the following equation

E[S2
n] ∝ n2ν (3)

Thus for the simple symmetric random walk we have demonstrated that ν = 1/2.
In Eq. (3), ν is called a critical exponent. A thorough explanation of the
critical exponents will be given in a later section dedicated to self-avoiding
walks. The above derivation for the mean squared distance from the origin
serves as preliminary insight for the following theorem, which will be proved
following [39–41].

Theorem 2.2. E [|Sn|] ∼
√

2n
π

Proof. First, we require the probability of arriving at a particular final position
Sn after n steps, P (Sn). Given n Bernoulli trials with probability p of success
and probability 1− p of failure, the probability of k successes is(

n
k

)
pk(1− p)n−k . (4)

To arrive at Sn, the walker must take exactly n+Sn
2 steps to the right and n−Sn

2
steps to the left. Then utilising Eq. (4) and setting p = 1

2 gives

P (Sn) =
1

2n

(
n

Sn+n
2

)
. (5)

Which is best visualised by the following table, which closely resembles Pascal’s
triangle [13].

10

n \ Sn -4 -3 -2 -1 0 1 2 3 4

0 1

1 1
2 0 1

2

2 1
4 0 2

4 0 1
4

3 1
8 0 3

8 0 3
8 0 1

8

4 1
16 0 4

6 0 6
16 0 4

16 0 1
16

Table 1: Probability table for different final positions (Sn) of a symmetric simple
random walk over a range of number of steps n

Note that if n is even, arriving at an odd final position Sn is impossible, and
vice versa. By definition,

E[|Sn|] =

n∑
Sn=−n,−(n−2),...

|Sn| · P (Sn) (6)

Subbing in Eq. (5) and expanding,

=
1

2n

n∑
Sn=−n,−(n−2),...

|Sn|n!(
n+Sn

2

)
!
(
n−Sn

2

)
!

(7)

For clarity, it is important to note that n is fixed, and the sum iterates over all
the possible final positions Sn, from −n to n. To evaluate this sum, we split
it into two cases, when n is even, and when n is odd. First, let n = 2p where
p ∈ N.

E[|Sn|] =
n!

2n

 −2∑
Sn=−2p,−2p−2,...

|Sn|(
2p+Sn

2

)
!
(

2p−Sn
2

)
!

+ 0 +

2p∑
Sn=2,4,...

|Sn|(
2p+Sn

2

)
!
(

2p−Sn
2

)
!


=
n!

2n

 −1∑
Sn=−p,−(p−1),...

|2Sn|(
2p+2Sn

2

)
!
(

2p−2Sn
2

)
!

+

p∑
Sn=1,2,...

|2Sn|(
2p+2Sn

2

)
!
(

2p−2Sn
2

)
!


=
n!

2n

[
2

p∑
Sn=1

2Sn
(p+ Sn)!(p− Sn)!

]

=
n!

2n−2

p∑
Sn=1

Sn
(p+ Sn)!(p− Sn)!

11

The sum can be solved analytically to give

p∑
Sn=1

Sn
(p+ Sn)!(p− Sn)!

=
1

2Γ(p)Γ(1 + p)
(8)

Where Γ(x) is the standard Gamma function defined by

Γ(n) = (n− 1)! . (9)

An important property of the Gamma function is that if n is a non-negative
integer, then [42]

Γ

(
1

2
+ n

)
=

(2n)!

4nn!

√
π =

(2n− 1)!!

2n
√
π (10)

Using this property and subbing p = n/2 into Eq. (8) and simplifying,

E[|Sn|] =
2√
π

Γ
(

1
2 + 1

2n
)

Γ
(

1
2n
) =

(n− 1)!!

(n− 2)!!
. (11)

Now let’s consider the case where n is odd. Let n = 2p− 1,

E[|Sn|] =
n!

2n

 −1∑
Sn=−(2p−1),−(2p−3),...

|Sn|(
2p−1+Sn

2

)
!
(

2p−1−Sn
2

)
!

+

2p−1∑
Sn=1,3,...

|Sn|(
2p−1+Sn

2

)
!
(

2p−1−Sn
2

)
!


=
n!

2n

 2p−1∑
Sn=1,3,...

2Sn(
2p−1+Sn

2

)
!
(

2p−1−Sn
2

)
!


=

n!

2n−1

 2p∑
Sn=2,4,...

Sn − 1(
2p−2+Sn

2

)
!
(

2p−Sn
2

)
!


=

n!

2n−1

[
p∑

Sn=1

2Sn − 1

(p+ Sn − 1)!(p− Sn)!

]

The sum can be solved analytically to give

p∑
Sn=1

2Sn − 1

(p+ Sn − 1)!(p− Sn)!
=

1

Γ(p)2
(12)

As before, using the property in Eq. (10), subbing in p = (n+ 1)/2 and simpli-
fying gives

E[|Sn|] =
n!

2n−1
[
Γ
(

1
2 + 1

2n
)]2 =

2√
π

Γ
(

1
2n+ 1

)
Γ
(

1
2n+ 1

2

) =
n!!

(n− 1)!!
. (13)

12

The next trick is realising that both the odd and even case can be expressed by
the same equation of p,

E[|Sp|] =
2√
π

Γ
(
p+ 1

2

)
Γ(p)

=
(2p− 1)!!

(2p− 2)!!
(14)

Now we can use the asymptotic expansion of the Gamma function [43], applied
to this ratio to get

Γ
(
p+ 1

2

)
Γ(p)

=
√
p

(
1− 1

8p
+

1

128p2
+ . . .

)
(15)

Subbing this into Eq. (14) and replacing p for n, we get

E[|Sn|] =

√
2n

π

(
1∓ 1

4n
+

1

32n2
± 5

128n3
− 21

2048n4
∓ . . .

)
(16)

where the top signs represents the case where n is even and the bottom signs
represent when n is odd. Therefore, for large n we obtain the desired result

E [|Sn|] ∼
√

2n

π
. (17)

This now gives a good idea of how far to expect the random walk to be from
the origin, which is extremely useful to know in practical settings. For example,
in Finance, it is clearly useful to investors to know the expected change of a
valuable stock price over a given time period.

To gain a deeper understanding of the distribution of Sn, consider its PDF
when n is very large. Recall the Central Limit Theorem (CLT):

Theorem 2.3. (Central Limit Theorem). Given an i.i.d. sequence (Xn, n ≥ 1)
with E [Xi] = µ, var [Xi] = σ2. For every constant a

lim
n→∞

P
(∑

1≤i≤nXi − µn
σ
√
n

≤ a
)

=

∫ a

−∞

1√
2π
e−

t2

2 dt

Thus a sequence of i.i.d. random variables will converge in distribution to
the normal distribution as n → ∞. Therefore, as the steps Xi are i.i.d., the
Central Limit Theorem can be directly applied to prove that the PDF of Sn in
a long walk tends to a particular Gaussian-like distribution

P (Sn = x) ≈ 2√
2nπ

e
−x2
2n . (18)

For large n Eq. (18) can be used to approximate P (Sn), which will be demon-
strated numerically in the Results & Simulations section. The step-by-step
derivation of Eq. (18) can be found in [44].

13

2.1.2 Two Dimensional Simple Random Walks

The simple random walk in two dimensions will be considered in this sec-
tion predominantly on finite graphs. The simple random walk on Z2 will be
briefly considered, before moving on to finite subsets of Z2. The application to
modelling diffusion via Dirichlet problems will be established, along with two
methods of finding solutions algorithmically. This will serve as preliminary the-
ory for a numerical comparison of these methods in the Results & Simulations
section.

The simple random walk on Z2 has four choices at every vertex, the ± x di-
rection, and the ± y direction. This process is analogous to two simple random
walks on Z where each step you flip a coin to determine which of the two walks
takes the next step. Thus the y co-ordinate follows the same behavior as the one
dimensional case with k steps, and the x co-ordinate follows the same behaviour
of a one-dimensional random walk of (n− k) steps, where the number of steps
in the y direction, k, follows a binomial distribution with p = 0.5. Therefore,
characteristics on Z2 are generally similar to the one-dimensional case, and thus
will not be discussed at length. For example, the expectation of the distance
from the origin can be calculated directly from Theorem (2.2) along with the
expectation for the number of successes of a symmetric binomial distribution
(which is n

2). This gives E [|Sn|] ∼ 2
√

n
π .

The simple random walk in two dimensions can also be constructed on R2

such that the direction of the steps are sampled from the uniform distribution on
[0, 2π). This type of random walk is called the Pearson-Rayleigh random walk
and certainly deserves a mention in this paper at the least. For an introduction
into the Pearson-Rayleigh random walk and its properties, see [45].

The simple random walk on a finite subset of Z2 is particularly useful in
modelling temperature gradients on finite domains [8]. To begin, take a finite
subset of Z2 and set boundary points as 1 or 0, as in the Figure (2) below.

Figure 2: Finite 2D subset of Z2 with binary boundary points.

Then take a simple random walker starting in the interior, taking steps until
it hits one of the absorbing boundary points. The expected value of the random
walk’s boundary point once it has finished is equivalent to the probability of it
finishing at a 1, denoting a win. As the boundary points are known, solving for
this probability is a Dirichlet problem, analogous to the diffusion of temperature
[8]. The sought-after probabilities p(x, y) can be shown to be a unique harmonic

14

solution to the Dirichlet problem, this proof uses the maximum principle and
can be found in [8]. To calculate p(x, y), there are two numerical methods, the
Monte-Carlo Method and the Method of Relaxation [8].

2.1.2.1 The Monte-Carlo Method

The Monte-Carlo method comprises of simulating a large number of simple
random walks, beginning at the different interior points, and estimating p(x, y)
as the ratio of successful random walks to the total number of random walks.
This method is guaranteed to converge to the true solution due to the Law of
Large Numbers. This method requires a large number of simulations and is thus
expected to be the less efficient method.

2.1.2.2 The Method of Relaxation

The next method of approximating p(x, y) is the Method of Relaxation. This
method takes advantage of the fact that our solution is harmonic, and thus has
the averaging property:

p(x, y) =
p(x+ 1, y) + p(x− 1, y) + p(x, y + 1) + p(x, y − 1)

4
. (19)

The algorithm takes a point in the interior, next to the boundary, and replaces
its value for the mean of the four points adjacent to it. The next step is to
chose a neighbouring point and do the same process, until all of the interior
points have been ’averaged’ exactly once. After the first iteration, the solution
will not be necessarily harmonic, but after many iterations, it approximately
demonstrates the averaging property and is consequently a good approximation
for p(x, y). The Method of Relaxation and the Monte-Carlo method will be
numerically tested and compared with regards to efficiency and reliability. For
more details on these methods, see [8].

2.1.3 Levy Flight

The Levy flight is a class of random walk that exhibits a heavy-tailed distri-
bution for the step-size, thus allowing for large spontaneous jumps to occur on
a connected domain such as R2 and R3. Figure (3) demonstrates typical paths
of two Levy flights on R2.

15

Figure 3: Levy flight paths on R2 with Cauchy distribution (left) and
Levy-Smirnov distribution (right)

Levy flights are applicable to many interesting fields, for example, the spread
of disease in a society can be accurately modelled, with infection via air travel
representing the characteristic large jumps. A key application of the Levy flight
is modelling the movement of foraging animals. The Levy Flight Foraging Hy-
pothesis states that natural selection has caused Levy flight behaviour in animals
due to its efficiency at search optimisation. This hypothesis will be tested nu-
merically in the Results & Simulations section. The theory in this section will
primarily draw upon the works of Dubkov [46] and Chechkin [18]. A Levy stable
PDF is defined by its characteristic function i.e its Fourier transform

pα,β(k;µ, σ) = F {pα,β(x;µ, σ)} =

∫ ∞
−∞

eikxpα,β(x;µ, σ)dx

= exp

[
iµk − σα|k|α

(
1− iβ k

|k|
ω(k, α)

)]
where

ω(k, α) =

{
tan(πα2) , if α 6= 1, 0 < α < 2
− 2
π ln |k|, if α = 1

The PDF is dependent on four parameters, α, β, µ, σ. α ∈ [0, 2] is the Levy
index, a measure of how heavy-tailed the distribution is. β ∈ [−1, 1] is the
skewness parameter, µ ∈ R is the shift parameter, and σ > 0 is the scale
parameter. The Levy index α and the skewness parameter β are the primary
parameters for the PDF, the former determines the asymptotic decay of the
distribution, whilst the latter determines the asymmetry of the distribution.
Both µ and σ can be removed with the correct shift and scale transformations
[18]

pα,β(x;µ, σ) = pα,β

(
x− µ
σ

; 0, 1

)

16

For the remainder of this section, let the PDF be denoted by pα,β(x). There are
only three cases where the PDF can be written in terms of elementary functions,
and thus these cases will be treated with additional importance in this section.
First, we have the Gaussian distribution where α = 2 and β arbitrary

p2(x) =
1√
4π

exp

(
−x

2

4

)
(20)

Secondly we have the Cauchy distribution, where α = 1 and β = 0

p1,0(x) =
1

π (1 + x2)
(21)

and lastly the Lévy-Smirnov distribution, with α = 1
2 and β = 1

p1/2,1(x) =

{ 1√
2π
x−3/2 exp

(
− 1

2x

)
, x ≥ 0

0, x < 0
(22)

Note. The normalisation constants are subject to change when implementing
the distributions numerically, due to constraints on the domain.

The Levy stable distributions are of particular interest as they demonstrate
clear asymptotic behavior. For β = 0, the Levy stable distributions are sym-
metric for all α. Taking an arbitrary symmetric Levy stable distribution, as x
becomes large we have [47]

pα,0(x) ≈ Cα
|x|1+α

(23)

where

Cα =
1

π
sin(

πα

2
)Γ(1 + α). (24)

Further to this, when 0 ≤ α < 2, the variance diverges as E[x2] = ∞, and
with α = 2 (the Gaussian distribution), the variance is finite [46]. When β 6= 0,
the distribution is named asymmetric, and with β = ±1 the distribution is called
extremal. With the Levy-Smirnov distribution being the only exception, the asym-
metric and extremal cases will be left untreated. For further reading of these cases,
see [18].

Another interesting heavy-tailed distribution also used for Levy flight simula-
tion is the Pareto distribution, defined as

pα,x0
(x) =

{
αxα0
xα+1 if x ≥ x0

0 if x < x0
(25)

Here α ∈ [0, 2] is similar to before, defining the rate at which the distribution
tends to 0, and x0 is simply the minimum possible step-size.

17

Remark. The non-zero component of the Pareto distribution with a scale and shift
transformation closely resembles the asymptotic behavior described in Eq. (23)
and thus providing insight into its appropriateness as a Levy flight distribution.

Through an extensive analysis of literature, the Levy flight is consistently de-
fined by either a Levy stable distribution(e.g. Gaussian/Cauchy/Levy-Smirnov)
or the Pareto distribution [18, 45, 46]. Therefore, these distributions will form the
basis of the analysis in the Results & Simulations section. Below is a table with a
quick summary of these four representative distributions.

Distribution Definition

Gaussian 1√
4π

exp (−x
2

4)

Levy-Stable Cauchy 1
π(1+x2)

Levy-Smirnov

{
1√
2π
x−3/2 exp

(
− 1

2x

)
, x ≥ 0

0, x < 0

Discontinuous Pareto

{
αxα0
xα+1 , x ≥ x0

0, x < x0

Table 2: Four Levy flight distributions and their respective definitions

Later in this paper, the corresponding Levy flights to these distributions will
be simulated and analysed with regards to optimal search efficiency, and thus
providing evidence for the Levy Flight Foraging Hypothesis.

2.2 Non-Markovian Random Walks

2.2.1 Reinforced Random Walks

The first Non-Markovian random walk to be discussed is the reinforced ran-
dom walk (RRW). This type of walk is widely applied to probability theory, it
accurately models many systems such as Polya’s urn, which will be discussed in
this section [19]. The reinforced random walk is defined such that the probability
of traversing edges is dependent on the number of times it has been traversed
in the past. For example, a particular RRW may have a slight bias towards
edges it has already traversed, considering it a ’safer’ option. This section will
discuss the main types of RRW, along with key applications and properties. For
a deeper look into reinforced random walks, see [19].

Let the path of a reinforced random walk on graph G up to a time t be
denoted by a sequence of vertices x0, x1, . . . , xt where each xi is a neighbour of
xi+1, denoted xi ∼ xi+1. Define the number of traversals of an edge e up to

18

time t as N(e, t), specifically

N(e, t) = # {s : 1 ≤ s ≤ t, (xs−1, xs) = e} (26)

Let f : {0, 1, 2, . . .} → (0,∞) be a function denoting the reinforcement function
of the walk, then the transition probabilities are given by

P (xt+1 = x|x0, . . . , xt) =
f (N ((x, xt) , t))∑
y∼xt f (N ((y, xt) , t)

(27)

Where the denominator is simply a normalisation constant. The reinforcement
function f determines the behaviour of the RRW, the key types of RRW are as
follows:

(1) Once-reinforced random walks are defined by

fa(n) =

{
1 n = 0
1 + a n ≥ 1

(28)

Thus, edges which have already been traversed are given a (1 +a) times greater
weight when compared to untraversed edges, but the exact number of traversals
makes no difference.

(2) Linearly reinforced random walks are defined by f(n) = 1 + n. Therefore,
whenever the walker traverses an edge, its weight increases by 1.

(3) Strongly reinforced random walks are the class of RRW where f grows faster
than linear. For example, f(n) = 1 + n2.

These walks all have in common that subsequent traversals can only increase
the likelihood of future traversals. With the superlinear case (3), the walker is
likely to eventually get stuck on a single edge, forever boosting its weight and
making the relative weights of other neighbouring edges tend to 0. To better
understand this, let’s prove the claim

Theorem 2.4. Let G be an arbitrary graph, x0 a vertex of G and e an edge
connected to x0. Take a strongly reinforced random walk on G starting from x0

with reinforcement function 1 + n2. Then with positive probability the walker
gets stuck traversing e indefinitely i.e. for all t, x2t = x0 and x2t+1 is the other
vertex connected to e.

Proof. Let y be the other vertex connected by e. Let Es denote the event that
the walker has been stuck on e for all t ≤ s. Now, let’s calculate the probability
of Es+1 given Es. If Es is true, then N(e, s) = s, and N(ẽ, s) = 0 for any ẽ 6= e.
Therefore,

P(Es+1|Es) =
f(s)

f(s) + (deg xs − 1) f(0)
=

1 + s2

1 + s2 + (deg xs − 1)
≥ 1− C

s2
(29)

19

for some constant C given by the degrees of x0 and y. For Es to be true, Et
must also be true for all t ≤ s, thus using Eq. (29)

P (Es) =

s∏
t=1

P (Et|Et−1) ≥
s∏
t=1

(
1−

(
Ct
t2

))
≥ c > 0

The most significant application of reinforced random walks is in probability
theory, and to gain an insight into why this is, this next part of the section will
discuss its application to Polya’s Urn, which is a particularly nice example.
Polya’s Urn is an urn that contains white balls and black balls, and one at
a time, you take a ball out, inspect the colour, and then put two balls back
in of that same colour. As this process takes place, one colour will inevitably
become dominant, and this slight edge will keep growing indefinitely. Now take
a linearly reinforced random walk with reinforcement function f(n) = 2+n and
define G as 3 vertices in a line.

Figure 4: Simple 3-vertex graph analogous to Polya’s Urn

Then this is analogous to Polya’s Urn. When the RRW begins at the centre
of G, it is equally likely to go left or right, representing the equal probability of
choosing a black or white ball. Once the walker chooses left or right, its next
step is guaranteed to be going back to the centre. Thus the weight on this edge
has increases exactly by 2, however, the number of balls has only increased by
1. Therefore the weights of the edges in G correspond exactly to 2 times the
number of black and white balls. Thus a simple division by 2 gives you the num-
ber of black and white balls in the urn at any time t. Furthermore, a linearly
reinforced random walk on Z is analogous to a sequence of i.i.d Polya Urns, and
when G is a tree, you can couple the RRW to a sequence of multicoloured Polya
Urns [19]!

In the Results & Simulations section, this paper will introduce a generalisa-
tion to the set of reinforced random walk, allowing the reinforcement function
f to take further edges as inputs, and thus allowing for a stronger analysis.

2.2.2 Self-Avoiding Walks

The self-avoiding walk (SAW) is a random walk on a graph or lattice with
the strict condition that a site, once visited, can never be revisited. Much re-
search has been conducted on SAWs on particular lattices that appear in physics
and chemistry, such as the modelling of long-chain polymers on the honeycomb
lattice. The most prominent question, is how many n step SAWs are there?
The answer to this simple question has no exact formula, and it is generally
accepted that the difficulty of this problem is so immense, that it cannot be

20

solved by current theory and methods [24].
The asymptotic characteristics of SAWs are slightly less difficult to anal-

yse, with well established coefficients to quantify their behavior, depending on
the lattice. These coefficients are called the critical exponents. The critical
exponents quantify the behavior in the following equations:

cn ∼ Aµnnγ−1 (30)

and

E[S2
n] ∼ Bn2ν (31)

Where A,B are positive constants, and µ, γ, ν are critical exponents. The con-
stant ν determines the rate at which the random walk moves away from the
origin, and is strictly dependent on the lattice. It is conjectured that ν = 3/4
in two dimensions. Recall that for the simple random walk, ν = 1/2, this im-
plies that a SAW travels quicker than a simple random walk, which is intuitive
because a SAW cannot double back on itself. γ, is believed to be universal i.e.
it is independent of the lattice. γ not only characterises the long-term behavior
of cn, but it is a measure of the probability that two n step SAWs starting at
the same place are to intersect[24].

The most sought-after and intriguing of these coefficients is the connective
constant, denoted µ. The connective constant can be thought of as the average
number of possible edges the walker can traverse at each step of a long walk,
and has a direct relationship to the number of n step self-avoiding walks cn.
For example, when the self-avoiding walk on the one dimensional line Z takes a
step in one direction, it is now fixed to that direction indefinitely, and thus only
ever has one choice at any time, indicating that µ = 1. The connective constant
is unknown in almost all non-trivial lattices, with the only exception being the

honeycomb lattice, where µ =
√

2 +
√

2 [48]. This section will primarily discuss
the connective constant, proving its existence, constructing approximations, and
formulating the methods for upper and lower bounds.

Let cn be the number of n step self-avoiding walks, then the connective
constant is defined as follows,

Definition 2.2.

µ = lim
n→∞

c1/nn (32)

To prove that this limit exists, first notice that any SAW can be broken down
into two smaller SAWs - if the parent walk is self-avoiding, then its sub-walks
are certainly too. However, the converse is not always true, you cannot pair
together any two SAWs and guarantee that the resulting walk is also a SAW.
This leads to the following property

cn+m ≤ cn · cm for n,m ∈ N (33)

21

Taking the logarithm of both sides demonstrates that the sequence {log cn} is
subadditive:

log cn+m ≤ log cn + log cm (34)

The existence of the limit (32) is dependant upon this property, which will
become clear in the proof of the following lemma:

Lemma 2.5 (Fekete’s Lemma). Let {an}n≥1 be a sequence of real numbers

which is subadditive, i.e., an+m ≤ an+am. Then the limit limn→∞ n−1an exists
and is given by

lim
n→∞

an
n

= inf
n≥1

an
n

Proof. Let L be defined as

L = inf
n≥1

an
n

Let ε > 0, then by the definition of infimum ∃ n s.t.|ann − L| < ε. This directly
implies an < n(L+ ε). Let b = max1≤i<n ai. Take m ≥ n, let m = qn+ r with
0 ≤ r < n. Using the subadditivity property,

am = anq+r = an+n+···+n+r ≤ an + an + · · ·+ an︸ ︷︷ ︸
q times

+ar ≤ qan + b

Thus

am
m
≤ qan

m
+

b

m

<
qn(L+ ε)

m
+

b

m
→ L+ ε as m→∞

since qn/m→ 1 as m→∞. As ε was taken arbitrarily, we have

lim
n→∞

an
n

= L = inf
n≥1

an
n

.

Therefore, applying Lemma (2.5), the connective constant exists as the limit

of the sequence {c1/nn }. The approximations first calculated for µ were by using
computers to generate terms in this sequence. Due to the exponential nature of
cn, the enumeration of SAWs is certainly a challenge, and approximations of µ
converge very slowly.

The solution is to find upper and lower bounds for µ, confining the interval
to smaller and smaller lengths. This is much more effective than brute force
enumeration.

22

2.2.2.1 Lower Bounds for µ

There are several ways of constructing lower bounds for the connective con-
stant µ, both analytical and numerical. The most straightforward method,
is by finding subsets of SAWs. For example, take the walks that can only
move in one direction on the square lattice Z2, with dn representing the num-
ber of such n step walks. Then we have dn = 4 ≤ cn for all n > 1, which

gives µ = limn→∞ c
1/n
n ≥ limn→∞ d

1/n
n = limn→∞ 41/n = 1. This set of uni-

directional walks doesn’t come close to the full set of SAWs, and thus only a
weak lower bound; µ ≥ 1 is found, but this can be improved significantly.

A better subset is proposed in [49], where the SAW can no longer move in the
−x direction, but only in the ±y direction and the +x direction. Such a walk is
guaranteed to be self-avoiding as long as it doesn’t make immediate reversals.
Given the n step walks of this type, let the total number of walks ending in a
+x step denote an, and the total number of walks ending in a ±y denote bn.
Note that if the last step the walker took was a +x step, then its next step can
be either +x, +y, or −y. Whereas if the last step was a ±y, then it’s next step
must either be a +x or a ∓y. This leads to the following equations;

an+1 = an + bn,
bn+1 = 2an + bn

(35)

To analyse the asymptotic behavior of this system, assume an = Aλn and
bn = Bλn. The lower bound for µ is given by the largest root of the characteristic
polynomial of ∣∣∣∣ 1− λ 1

2 1− λ

∣∣∣∣ = 0

Which simplifies to λ2−2λ−1 = 0. Thus we obtain µ ≥ 1+
√

2 ≈ 2.414...Which
is already much closer to the current approximation of µ ≈ 2.638... This tech-
nique of finding subsets is a good starting point, but more effective methods
have been developed.

A more advanced method for constructing lower bounds is Keston’s Method
of irreducible bridges. This method was originally developed in Keston’s book
[50], however, the following theory will follow closer to Alm and Parviainen’s
paper on the same topic [26].

To apply this method, the notion of a bridge must be defined.

Definition 2.3. Given a fixed embedding of the lattice inZ2, let the coordinates
for a vertex v be denoted by (v(x), v(y)). A bridge of length n is a self-avoiding
walk such that

v0(x) < vi(x) ≤ vn(x), for i = 1, . . . , n− 1

A bridge is a type of SAW with the constraint that the ’furthest to the left’
point of the walk must be only at the origin, and the ’furthest to the right’
points must be at least at the last step of the walk. The convention is that

23

the first step for any bridge is in the +x direction. Let bn be the number of

n step bridges. Keston showed that limn→∞ b
1/n
n = µ. Bridges are a subset of

SAWs and thus bn ≤ cn for all n. Thus b
1/n
n ≤ µ. However, Keston realised a

better lower bound can be obtained by using irreducible bridges. An irreducible
bridge is a bridge that cannot be decomposed into two smaller bridges. Let an
denote the number of n step irreducible bridges, and denote B(x) and A(x) as
the generating functions for the corresponding sequences. Furthermore, Keston
demonstrated the relation

B(x) =
1

1−A(x)
(36)

With the result, astonishingly, that A(xc) = 1 ⇐⇒ xc = µ−1. Using this
relation, a lower bound can be constructed. If 0 ≤ ãn ≤ an and xc is the
solution to

∞∑
n=1

ãnx
n = 1, (37)

then x−1
c ≤ µ. In practice, if an is known for n = 1, . . . , N , then set ãn =

an for n ≤ N , and ãn = 0 for n > N , which clearly satisfies the condition
0 ≤ ãn ≤ an. Computing an directly is cumbersome, but thankfully, using Eq.
(36) and following Alm and Parviainen [26], the number of irreducible bridges
an, can be found easily by the number of bridges bn. First, let the number of
bridges of length n and span l be given by bn,l, and the number of irreducible
bridges of length n and span l be given by an,l, with generating functions Bl(x)
and Al(x). The span of a bridge is how far it has traversed along the x axis,
thus a bridge with span L, has the property: v0(x) = 0 and vn(x) = L. Clearly∑∞
l=1 an,l = an, and thus

∑L
l=1 an,l ≤ an for some maximum span L. Therefore,

for a maximum length N and maximum span L, the reciprocal of the solution
to

N∑
n=1

L∑
l=1

an,lx
n = 1 (38)

is a lower bound to µ. A bridge is either irreducible, or the concatenation of a
bridge with an irreducible bridge, this gives us that

Bl(x) = Al(x) +

l−1∑
k=1

Al−k(x)Bk(x) (39)

which leads to,

Al(x) = Bl(x)−
l−1∑
k=1

Al−k(x)Bk(x) (40)

Giving the generating functions Al(x) recursively for l = 1, . . . , L. Keston’s
method is particularly effective as it can be entirely encoded, and left to a

24

computer to find accurate lower bounds. For the implementation of Keston’s
method, see Section (A.3). Following this, this paper will discuss the methods
of finding upper bounds.

2.2.2.2 Upper Bounds for µ

Similarly to lower bounds, an upper bound can be found by finding supersets
to the set of SAWs. One such example is the set of simple random walks on Z2.
With every new step, a simple random walk always has 4 options, this gives the
upper bound of µ ≤ 4. Following the theory outlined in [25], Alm’s Method will
be formulated.

Two vertices of a lattice are considered to be of the same vertex class if one
can be mapped on the other by a translation of the lattice whilst preserving its
structure. For example, the Euclidean lattice only has one vertex class, and the
honeycomb lattice has two.

This method is applicable to any finitely generated lattice. Such lattices have
the following conditions

(i) There is a finite number,K0, of vertex classes.

(ii) The number of outgoing edges from any vertex is finite.

(iii) Each vertex can be connected to any other by a walk

Let ckn denote the number of n step self avoiding walks starting at a vertex of
class k, for k = 1, . . . ,K0. Let Cn denote the total number of walks,

Cn =

K0∑
k=1

ckn (41)

Furthermore, let γi(n) denote the individual SAWs of length n, where i =
1, . . . , Cn. Following this, let gij(m,n) with m < n denote the number of n
step SAWs that begin with γi(m) and end with a translation of γj(m). Further,
define the matrix

G(m,n) = (gij(m,n))Cm×Cm (42)

and let λ1(G(m,n)) denote the largest eigenvalue of G(m,n). Then finally, we
have

Theorem 2.6.

µ ≤ λ1(G(m,n))
1

n−m (43)

Proof. Take two self-avoiding walks of length n, one starting with γi(m) and
ending with γk(m), and the other starting with γk(m) and ending with γj(m).
These self-avoiding walks can be joined, with an overlap of m steps (because
of γk(m)), to form a new walk of length 2n − m = m + 2(n − m). This new

25

walk may not necessarily self-avoiding. However, as all the self-avoiding walks
of length 2n−m can be obtained in this way, we get

gij(m,m+ 2(n−m)) ≤
∑
k

gik(m,n)gkj(m,n) = (G2(m,n))ij

The same argument can be generalised to give

gij(m,m+ r(n−m)) ≤ (Gr(m,n))ij

Using the norm ‖G‖ :=
∑
i

∑
j gij ,

µ = lim
r→∞

‖G(m,m+ r(n−m)‖
1

m+r(n−m)

≤ lim
r→∞

‖Gr(m,n)‖
1

m+r(n−m)

= λ1(G(m,n))
1

n−m

as from [25] we have

‖Gr(m,n)‖ = C(λ1(1 + o(1))r

The optimal choice for a given n is m = n − 1, but the size of the matrix
G(m,n) is Cm × Cm, thus G quickly contains more information than available
in memory. Thus, it is better to choose the largest m possible for the given
memory storage, and increasing n. For the implementation of this method, see
Section (A.3).

2.3 Brownian Motion

Brownian motion is the continuous time analogue of the simple random walk.
In this section we will discuss the basic definition of Brownian motion, as well
as a construction of Brownian motion from a simple random walk [51].

Definition 2.4. The stochasic process B = {B(t), t ≥ 0} is a Brownian motion
if

1. B(0) = 0,

2. B(t) has independent increments, i.e. for all times 0 ≤ t1 ≤ t2 the incre-
ments B (t2)−B (t1) and B (t1)−B (t0) are independent random variables,

3. For all t ≥ 0 and h > 0, the increments B(t + h) − B(t) are normally
distributed with expectation zero and variance h,

4. With probability 1, the function t 7→ B(t) is continuous.

26

Brownian motion is the limit of the simple random walk where the step-size
is getting smaller, and the ’speed’ of the walk is increasing proportionally. To
demonstrate this, we will first show that

Bn(t) :=

∑
1≤i≤bntcXi
√
n

=
Sbntc√
n

(44)

satisfies all of the conditions (1-4) for Brownian motion when n → ∞. The
following lines of reasoning will develop upon Resnick’s book [51].

1. Bn(0) = 0 by definition.

2. Let t1 < t2 be fixed and consider

Bn (t1) =
Σ1≤i≤bnt1cXi√

n

and

Bn (t2)−Bn (t1) =

∑
bnt1c<i≤bnt2cXi

√
n

.

The two sums contain mutually exclusive subsets of the sequenceX1, X2,
and since the sequence is i.i.d., Bn (t1) and Bn (t2)−Bn (t1) are indepen-
dent.

3. By CLT, for every 0 < h ≤ t, the distribution of∑
bntc<i≤bn(t+h)cXi

σ
√
bn(t+ h)c − bntc

converges to the standard normal distribution as n → ∞. The difference
between bntc − bn(t+ h)c is at most 1 and becomes negligible as n→∞,
thus we write ∑

nt<i≤n(t+h)Xi

σ
√
nh

=
Bn(t+ h)−Bn(t)

σ
√
h

which implies Bn(t+ h)−Bn(t) converges in distribution to N
(
0, σ2h

)
4. Following the above reasoning, with a very small h the difference |Bn(t+
h) − Bn(t)| can become arbitrarily small as n → ∞ with probability 1.
Thus Bn(t) becomes a continuous function with probability 1 as n→∞.

Therefore, B := limn→∞Bn(t) is a Brownian motion. For a proof that this limit
exists, see [51]. This construction of Brownian motion from the simple random
walk will be used directly for the Narrow Escape Problem in the Results &
Simulations section.

27

3 Results & Simulations

This section will introduce a series of new results to the field of random
walks. Each subsection is intended as an advancement forward from the Theory
& Methods section, introducing new independent research. Each of the new
results will be followed by a discussion on the implications to the research, and
where necessary, future research projects to continue the work in this paper are
also proposed.

3.1 Simple Random Walk

3.1.1 One Dimensional Simple Random Walk

From Theorem (2.2) we have E [|Sn|] ∼
√

2n
π . In Figure (5) below we have

the paths of 1000 simple random walks on Z up to n = 1000.

Figure 5: The positions of 1000 simulated simple symmetric random walks
(Sn) vs number of steps (n), against y = C1

√
n and y = C2

√
n for C1 = 2.5,

C2 = 1.25 to demonstrate Theorem (2.2)

This supports Theorem (2.2) as Sn is clearly travelling away from 0 at a
rate proportional to

√
n. Additionally, Sn can be seen to be symmetrical about

x = 0, which supports the theory for when p = q = 1
2 . Figure (6) demonstrates

the histogram of Sn at n = 1000 against its Gaussian approximation:

28

150 100 50 0 50 100 150
Sn

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y
De

ns
ity

2
2n

e x2

2n

Figure 6: Histogram of the final position (Sn) of 10,000 simple symmetric
random walks after 1000 steps, against a Gaussian approximation

The data lines up very closely to the Gaussian-like distribution proposed
in Section (2.1.1). An interesting way to think of Figure (6) is that the curve
corresponds to the cross-section of n = 1000 in Figure (5).

Therefore we have shown that the theoretical properties of the simple random
walk on Z are well supported by numerical simulation.

3.1.2 Two Dimensional Simple Random Walk

To solve the 2D Dirichlet problem outlined in Section (2.1.2), there are two
numerical methods to approximate the solution, the Monte-Carlo method and
the Method of Relaxation.

For the Monte-Carlo method we can estimate the number of iterations n
required for a given accuracy of the approximation using the CLT. Recall that
the Monte-Carlo method solves the problem by simulating simple random walks
until they hit a boundary point, with some of the boundary points denoting a
success (1), and other boundary points denoting a failure (0). Let p be the
probability of success with q = 1 − p , and let p̂ be an estimator of p given by
the number of successes S(n) divided by the total number of iterations n. Then
by CLT we have

P

(
−a < S(n)− np

√
npq

< a

)
≈
∫ a

−a

1√
2π
e−

t2

2 dt (45)

29

Thus for roughly a 95% certainty we set a = 2

P

(
−2 <

S(n)− np
√
npq

< 2

)
≈ 0.95 (46)

rearraging gives

= P

−2 <
p̂− p√

p̄q
n

< 2

 (47)

= P

(
−2

√
pq

n
< p̂− p < 2

√
pq

n

)
(48)

≤ P

(
− 1√

n
< p̂− p < 1√

n

)
& 0.95 (49)

as
√
pq ≤ 1

2 .

Therefore, to get an accuracy of |p̂ − p| ≤ 0.01 with a confidence of 95%,
n = 10, 000 is required. To compare this against the Method of Relaxation, the
number of iterations n as well as the computing time t will be calculated and
compared. Two scenarios will be covered on an N ×N grid; a single boundary
point for success, analogous to a single flame applied to a surface, and an entire
edge of boundary points for success, analogous to a heat column applied to the
edge of a surface. These two scenarios are depicted in Figure (7).

Figure 7: Finite subsets of Z2 with assigned binary boundary points to model
the Dirichlet Problem associated with temperature diffusion - Scenario 1 (Left)

& Scenario 2 (Right)

Which yields the following solutions in Figure (8), with the height and color
representing the probability of success for the simple random walker.

30

Figure 8: 2D Numerical solution of the Dirichlet Problem defined in Section
(2.1.2) associated with temperature diffusion where color/height corresponds

to heat - Scenario 1 (Left) & Scenario 2 (Right)

The two methods yielded the following results across the two scenarios:

Method - Scenario Error Iterations Time (s)

Method of Relaxation - Scenario 1 0.000 056 6 100 0.5279

Monte-Carlo Method - Scenario 1 0.007 03 1000 72

Method of Relaxation - Scenario 2 0.000 069 8 200 0.635117

Monte-Carlo Method - Scenario 2 0.002 40 10 000 908

Table 3: Comparison of Method of Relaxation and Monte-Carlo method across
two scenarios with regards to Error, Iterations, and Time

The errors were found by calculating the difference between the numerical so-
lutions and the ’exact’ solution. The exact solution was generated by running
the Method of Relaxation over a huge number of iterations. Firstly, both meth-
ods successfully converged upon the correct solution displayed in Figure (8),
demonstrating that the methods work as expected. The Method of Relaxation
was able to achieve a significantly more accurate solution for both scenarios in a
fraction of the time it took the Monte-Carlo Method. This clearly demonstrates
that the Method of Relaxation was the more efficient algorithm, as expected.
Additionally, the errors of the Monte-Carlo method are consistent with the error
estimation derived previously in Eq. (49). This demonstrates that the numer-
ical simulations for the simple random walk in two dimensions also agree with
the theory. For details on the numerical implementation of these methods, see
Section (A.1).

31

3.2 Levy Flight Foraging Hypothesis

The Levy Flight Foraging Hypothesis states that animals have evolved to
utilise the Levy flight as a means of searching for food efficiently, as opposed
to a simple random walk. The classical approach to this topic is to track the
movement of foraging animals and comparing that to different models of Levy
flight. The goal of this section is to provide a statistical analysis of the Levy
Flight Foraging Hypothesis and consequently present some numerical evidence
to support the theory. This will be achieved by simulating the foraging paths
of animals when using different search strategies, and comparing their success
rates. First, a direct comparison will take place between the different types
of Levy flight defined in Section (2.1.3) and the simple random walk, and a
t-test will demonstrate the superiority of the Levy flight as a searching strategy.
Following this, an evolutionary algorithm will be formulated to simulate the
process of natural selection, thus showing the evolution from simple random
walks, to an optimised Levy flight search pattern.

The simulation consists of an ’animal’, beginning at (0, 0) on R2, taking steps
according to a pre-determined distribution(e.g. Levy flight or simple random
walk) and blindly searching for patches of ’food’ in the nearby area. After a
certain number of steps, if the animal has not reached any patches of food, it
passes away. If the animal finds multiple patches off food, it will be rewarded
for its accomplishment, but only one patch of food is required for survival. To
minimize the risk of bias, the size and location of food were randomised for
each individual simulation. For the technical details and implementation of this
simulation, see Section (A.2).

Figure 9: Simulation examples of a foraging animal determined by a simple
random walk (left) and a Levy flight (right) searching for patches of food

(displayed in green)

The above figure displays an example of a simple random walk and a Levy
flight searching for food (green circles). The characteristic jumps of the Levy
flight can be seen in the example on the right. Although it may seem intuitive

32

that these jumps will improve the search success for the animal, we must provide
a comparative numerical analysis to demonstrate it.

3.2.1 Comparison with Simple Random Walk

For a thorough comparison, the simple random walk will be tested against
the four key Levy flight distributions outlined in Section (2.1.3), the three Levy-
stable distributions (Gaussian, Cauchy and Levy-Smirnov) and the Pareto dis-
tribution. To estimate the survival rates of the different walkers, this paper will
use a Monte-Carlo approach. For each distribution, the animal will be simulated
over many iterations and the success rates will be recorded. Figure (10) shows
the histogram for the simple random walk and two of the Levy flight walks’
survival rates1.

Figure 10: Histograms for survival rates of simulated animals foraging with
various probabilistic distributions determining step-size (simple random walk,

Cauchy-Levy flight, Gaussian-Levy flight)

The mean survival rates for each walk clearly demonstrate the advantage
of following a Levy distribution, the values in order are given in the following
table:

1Only two Levy flight distributions were included in the histogram as all four distributions
diminished readability

33

Random Walk Mean Survival Rate

Pareto 0.6226
Cauchy 0.6210
Levy-Smirnov 0.6059
Gaussian 0.2927
Simple 0.1707

Table 4: Simulated survival rates of four Levy flights against the simple random
walk with regards to optimal search efficiency

Recall from Section (2.1.3) that the Gaussian distribution is given by the Levy
stable distribution with α = 2, making it the only distribution with finite vari-
ance in the group. This implies that the Gaussian distribution has the thinnest
tails, making it the least ’Levy-like’, and thus less optimal at searching. This
could explain why it under-performed compared to the other, thicker tailed dis-
tributions.

For each Levy distribution, a t-test gives the probability of getting this data
given that the simple random walk and the Levy flight have the same survival
rate to be < 10−16, thus beyond a reasonable doubt the Levy flight has the
advantage in search efficiency in this system.

3.2.2 Evolutionary Algorithm

To provide additional evidence towards the Levy Flight Foraging Hypothesis,
an evolutionary algorithm was employed to demonstrate that a simple random
walker over time will evolve into the more advantageous Levy flight. Evolution-
ary algorithms are a class of optimisation algorithm that takes inspiration from
biological evolution. The algorithm introduced in this paper aims to mimic the
biological process of natural selection: reproduction, mutation and selection.
The algorithm is designed such that each generation, small mutations occur to
the variables that govern the animals movement (Levy index α and maximum
step-size xM). Then, a large set of different mutations would be tested against
one another, with the most successful (using search efficiency as a measure of
success) of the mutations passing on its genes to the next generation. This
process is an example of stochastic gradient descent. For more details on this
evolutionary algorithm, see Section (A.2). Figure (11) demonstrates the path
of the walker through the parameter space as generations of this evolutionary
algorithm take place.

34

Figure 11: Evolution of foraging animal through parameter space with
Levy-coefficient on y-axis and maximum step-size on x-axis, beginning with

simple random walk and ending with Levy flight.

The animal begins as a simple random walk, with the maximum step-size
equal to 1 and a very low Levy-coefficient (10−3), and evolves into a Levy flight
(Levy-coefficient ≈ 1.5, maximum step-size ≈ 75) over the course of 5 genera-
tions. Figure (12) depicts the travel paths of the final Levy flight optimized for
survival.

Figure 12: Levy-flight travel paths for the final generation of foraging animals
generated by an evolutionary algorithm designed to optimize search efficiency

35

The travel paths in the above figure clearly demonstrate Levy flight behav-
ior, showing that indeed our optimised animal is governed by a Levy flight, as
opposed to the simple random walk it began with. Therefore this demonstration
provides further evidence towards the Levy Flight Foraging Hypothesis.

It should be noted that the simulations in this subsection only cover a cer-
tain range of possible scenarios for which the animals search for food. Thus
to continue the work in this section, a worthwhile place to begin would be to
increase the diversity of scenarios.

This evolutionary algorithm, along with the previous cross comparison achieves
the goal of providing substantial numerical evidence for the Levy Flight Foraging
Hypothesis from a probabilistic and statistical perspective.

3.3 Connective Constant of the Union Jack Lattice

Self-avoiding walks are directly linked to the Ising model of ferromagnetism[5,
33, 34]. As a result, the critical exponents defined in Section (2.2.2) have a quan-
titative relationship with the parameters of the corresponding Ising model [34],
thus approximations of the former, lead to contributions in the latter. The
Union Jack lattice has indeed been studied in the field of ferromagnetism [35–
38], but no computation of the connective constant has been calculated. Using
the methods described in Section (2.2.2), an approximation to the connective
constant of the Union Jack lattice will be found.

The Union Jack lattice is similar to the regular Z2 lattice, with the addition
of vertices in the set {(x, y) ∈ R2 | ∃ a, b ∈ Z s.t. x = a+ 0.5, y = b+ 0.5} and
the corresponding edges attaching to Z2. Figure (13) below depicts the Union
Jack lattice.

Figure 13: Two Dimensional Union Jack Lattice

3.3.1 Upper Bound

Using Alm’s method to find upper bounds, we get the following results in the
table below. Due to restraints on computational power2, the approximations
can only reach a certain level of accuracy. With additional resources, the code
in Section (A.3) can be used to find arbitrarily accurate approximations.

2Intel i5 4th-gen processor, approx. 4 core-hours

36

n \ m 1 2 3 4 5

2 5.391 65
3 5.181 24 5.017 54
4 5.063 15 4.919 82 4.845 36
5 4.978 91 4.855 16 4.792 84 4.7546
6 4.919 18 4.812 42 4.756 28 4.722 88 4.699 77

Table 5: Upper bounds for the connective constant of the Union Jack lattice
found by Alm’s method outlined in Section (2.2.2)

3.3.2 Lower Bound

Keston’s Method of Irreducible bridges was employed to find lower bounds
for µ. The enumeration of bridges up to 10 steps was possible given the compu-
tational resources, the table below gives these lower bounds. For details about
the implementation of Keston’s Method, see Section (A.3).

n x−1
c

2 3.0000
3 3.7440
4 3.9717
5 4.0401
6 4.0697
7 4.0987
8 4.1320
9 4.1641

10 4.1913

Table 6: Lower bounds for the connective constant of the Union Jack lattice
found by Keston’s Method of Irreducible Bridges outlined in Section (2.2.2)

3.3.3 Extrapolation

With the upper and lower bound values, an estimate for the connective con-
stant µ can be found. The upper and lower bounds will be fitted to appropriate
curves and an estimate for µ will be given by the average of the two bounds.
Without further data, the accuracy of the extrapolation is limited, and future
research on the Union Jack lattice can be done to improve the following approx-
imation. Figure (14) shows the increasing bounds along with the extrapolated
curves and the approximations for µ.

37

Figure 14: Upper & lower bounds for the connective constant of the Union
Jack lattice, generated by Alm’s Method (upper) and Keston’s Method of

Irreducible bridges (lower), alongside estimates of the connective constant and
fitted extrapolated curves for the corresponding data

The absolute bounds for µ achieved are 4.1913 ≤ µ ≤ 4.69977, thus giving
µ ≈ 4.4455. The error for µ is no greater than 0.25424, but by taking the
difference between subsequent approximations as an error estimate we get µ ≈
4.4455± 0.0062. However, the reliability of the extrapolation should not be left
unquestioned; the size of the interval between the upper and lower bound is still
quite large. The goal of producing an approximation to the connective constant
of the Union Jack lattice has certainly been met, however the accuracy of the
approximation should be improved in future research given greater computing
power.

3.4 Narrow Escape Problem

The Narrow Escape Problem concerns a Brownian motion confined to a
container, with a small gap where it may escape. The problem is in finding the
expected time that the Brownian motion escapes the container. This problem
is commonly applied in the containment of harmful gasses, allowing scientists
to minimise the probability of accidental escape within a reasonable timescale.
The standard approach to analyse the Narrow Escape Problem is by deriving
asymptotic equations of the Brownian motion in a container with a decreasing
escape point[52–54]. This section will formulate a new method of analysis for
the Narrow Escape Problem.

38

3.4.1 Method

This new method will demonstrate that it is possible to model the continu-
ous system by an analogous discrete system i.e Markov chain. To successfully
construct this discrete system, two conditions must be satisfied

(i) The scaling limit of the discrete approximation is a Brownian motion

(ii) The size of the escape point is tending to 0

So if we can construct a model that accounts for both of these limits, the prop-
erties of the Narrow Escape Problem can be analysed with the additional tool
set acquired from it being a Markov chain.

Consider a Brownian particle confined to a 2 dimensional box, with a nar-
row exit point somewhere on the edge of the box. This Brownian particle can
then be modelled as a simple random walk traversing through a lattice. The
Brownian particle bounces off the inside of container, thus the corresponding
lattice must have a reflecting boundary at all points, except at the narrow exit
point, where the vertex is absorbing (representing escape). As the structure of
the lattice can be taken arbitrarily, for simplicity, let the lattice be of the form
{(x, y) ∈ Z2 | 0 ≤ x, y ≤ N} i.e. an N ×N subset of the 2D Euclidean lattice.
We will see that by fixing the size of the box and taking N → ∞, the model
will satisfy (i)-(ii).

With a fixed box size, as the number of vertices increases, the lattice obtains
a finer ’resolution’ of the Brownian particles path it is approximating as the
vertices on the lattice are getting closer together. This causes the step size of
the simple random walk to decrease as N increases. From Section (2.3), we
have that as the step-size of the simple random walk tends to 0, in the limit we
obtain a Brownian motion. Therefore, as N → ∞, the discrete simple random
walk becomes a Brownian motion, demonstrating (i).

Further to this, with an increasing number of vertices, the relative ’size’ of
the single absorbing vertex also decreases. Therefore by taking the limit as
N →∞, we also obtain (ii). As both conditions are met we can conclude that
this discretisation successfully models the Narrow Escape Problem in the limit.
It is important to note that without the link between simple random walks and
Browinian motion described in Section (2.3), this new method would not be
possible.

The transformation between the continuous and discrete cases can be seen
in Figure (15).

39

Figure 15: 2D Example of the Discretisation of the Narrow Escape Problem,
with a Brownian motion on a continuous domain (left) converting to a

corresponding simple random walk on a finite square subset of Z2 (right)

3.4.2 Analysis

To begin the analysis of this model, we fix the starting position of the random
walk and the escape point to opposite ends of the lattice. This decision was made
to give the particle the ’worst-case scenario’, so that any other combination
would give a lower expected escape time. It also seems to be the most simple
choice for the starting point, as the ’centre’ of the lattice is sometimes ill defined
(N = 2, for example), and choosing a starting point near to the escape point is
against the point of the problem.

Let Et be the event of escape at time t, then the expected number of steps
for escape is given by

E[Et] =

∞∑
n=1

2n · P (E2n) (50)

As escape can only happen in an even number of steps due to the positions of
the starting/escape point. We begin with the most elementary case; N = 2.

For all t = 2n + 1, the walker has a 0.5 chance of escape, and a 0.5 chance
of returning to x0. Additionally, the event E2n can only happen if Et has not
already happened for any t < 2n. Thus we have

P (E2n) =
1

2
·
n−1∏
i=1

P (x2i = x0 | x2i−2 = x0) =
1

2
· 1

2n−1
=

1

2n
(51)

40

subbing into Eq. (50) gives

E[Et] =

∞∑
n=1

2n

2n
= 4 . (52)

Therefore for N = 2, the expected number of steps until escape is exactly 4.
Solving P (E2n) as a function of n analytically for N > 2 is a non-trivial task,
thus constructing a Markov chain allows for computation of P (E2n) as far as
needed, thus giving approximations for E[Et]. For example, take the transition
matrix from the Markov chain induced by the N = 2 system:

P =


1 0 0 0

0.5 0 0 0.5
0.5 0 0 0.5
0 0.5 0.5 0


P is constructed such that the escape point is the top row, and x0 is the bottom
row. Thus P (E≤2n) = (P 2n)4,1 i.e. the bottom-left entry of P 2n. Thus P (Et)
for t ≤ 2n can be retrieved recursively by this method. Then subbing these
values of P (Et) into Eq. (50) gives the desired approximations for E[Et]. Below
are the following approximations for E[Et] for N = 1, . . . , 16.

N E [Et]

2 4
3 18
4 44.57
5 85.45
6 141.94
7 215.05
8 305.65
9 414.45

10 542.10
11 689.17
12 856.16
13 1043.54
14 1251.73
15 1481.12
16 1732.02

Table 7: Expected escape time for a simple random walk in the Narrow
Escape Problem(E[Et]) vs resolution of the box (N)

41

This accelerated growth is not exponential, but follows a polynomial. This can
be seen by the Log-Log plot in Figure (16), where the data tends to a straight
line, a defining characteristic of monomials: singular term polynomials with
non-negative exponents e.g. 7x2.

Figure 16: Log-Log plot of Expected escape time for a simple random walk in
the Narrow Escape Problem(E[Et]) vs resolution of the box (N)

This leads to the following conjecture:

Conjecture 3.0.1. For large N,

E[Et] ∝ Nβ (53)

where 0 < β ∈ R .

Numerical estimates give

E[Et] ≈ 4N2.45. (54)

Finding the exact value for β would be of great value to the Narrow Escape
Problem and thus could be the basis for future research on this topic.

The PDF of Et is another key topic for analysis. In particular, the trend of
the probability distribution as N →∞ gives interesting insight into the Narrow
Escape Problem. Values of P (Et) were calculated via the Markov chain method
described above. Figure (17) gives plots of these PDFs for N = 6, 8, 10.

42

Figure 17: Probability density function for the escape time(Et) of a simple
random walk in a box of resolution N = 6, 8, 10

As one might expect, as N increases, the distribution flattens. A first glance
suggests the underlying distribution could be a gamma distribution, to examine
this, Cullen and Frey graphs come in particularly helpful. A Cullen and Frey
graph maps probability distributions onto the plane with kurtosis on the y axis,
and skewness on the x axis.

Cullen and Frey graphs3 are given below for N = 3 and N = 15

Figure 18: Cullen and Frey graph for the probability density function for the
escape time(Et) of a simple random walk in a box of resolution N = 3

3Generated via the fitdistrplus package in R.

43

Figure 19: Cullen and Frey graph for the probability density function for the
escape time(Et) of a simple random walk in a box of resolution N = 15

The Cullen and Frey graphs indicate that the underlying distributions are
similar to a gamma distribution, and are also in the close neighbourhood of
the exponential distribution. As N increases, the kurtosis and skewness of the
distribution become closer to those of the exponential distribution, 9 and 2
respectively. This can be seen directly in Figure (19) as the distribution is very
close to exponential. Figure (20) below demonstrates this trend.

Figure 20: Kurtosis of probability density function of escape time(Et) vs
resolution of box(N) & Skewness of probability density function of escape

time(Et) vs resolution of box(N)

This indicates that the asymptotic distribution of Et could be an exponential
distribution.

As a final topic of analysis, we take a look at the tails of the PDFs. After

44

a certain point, the PDF begins to exponentially decay, this can be seen in the
semi-log plot of the PDFs;

Figure 21: Semi-Log Plot of probability density function of escape time(Et)
against time (t) for resolution of box (N = 6, 8, 10)

The parameter of the exponential decay,

λN := lim
t→∞

P (Et+1)

P (Et)
(55)

increases with N , which provides insight into the how the system changes as
N increases. When N = 2, the probability of escape at time t + 1 is 0.5
times smaller than it is at time t, but with N = 3, the probability of escape is
approximately 0.873 times smaller at t+ 1 than it is at t. Thus the parameter
λN serves as a measure of the ease/difficulty at which the walker escapes the
box at each subsequent step.

The sequence {λN} is hard to find analytically, but the simple cases λ2,3 can
be found. For N = 2 we have from Eq. (51) that P (Et+1) = 0.5 · P (Et), which
immediately gives λ2 = 0.5. For N = 3, the sequence{

P (Et+1)

P (Et)

}
can be computed using a Markov chain to give

{1, 8

9
,

7

8
,

55

63
,

48

55
,

377

432
,

329

377
, . . .}

taking every other term gives

an+2

bn+2
=

8an − bn
9an − bn

45

thus solving

a

b
=

8a− b
9a− b

gives λ3 = φ+1
3 ≈ 0.873 where φ is the golden ratio. Exact values of λN for

N > 3 are unknown, but estimates give λN ∈ (0, 1) with λN < λN+1, however
this is only backed by numerical simulations. This analysis of λN gives further
insight into the Narrow Escape Problem; as N increases, the thicker the expo-
nential tail of the PDF gets, which further indicates that the asymptotic nature
of Et is exponential in some form.

In practice, the escape point has a finite length. For example, a gas atom in
a solid container has the narrow escape point of the microscopic cavity between
the atoms in the container. For a large N , Eq. (54) can be used to estimate the
expected time of escape, and an exponential distribution (for some exponential
parameter γ) can be used to estimate its PDF. To continue the research on this
problem from the perspective of the method described in this paper, accurate
estimates of β would provide a strong basis for practical applications. Addi-
tionally, a proof of the exponential nature of the asymptotic distribution of Et
would provide a solid backbone to the analysis of this section, as the analysis
is primarily numerical. Furthermore, a research into the behavior of λN in the
limiting case, λ∞ = 1, could be of great interest to the future research of the
Narrow Escape Problem.

3.5 Extension to Reinforced Random Walks

The reinforced random walk is a random walk that takes steps depending
on the number of times the adjacent edges have been traversed in the past. The
limitation to this definition is that the reinforcement function can only take
the edges directly attached to the current vertex into account. The motivation
behind the following extension is to extend the ’reach’ of the reinforcement
function, allowing for edges slightly further away to direct the path of the walk.

3.5.1 Definition

The reinforced random walk takes random steps on a graph G. If v1, v2 are
vertices in V connected by some edge e ∈ E then we write v1 ∼ v2. Similarly, if
two edges e1, e2 are connected by a vertex v, then write e1 ∼ e2. Additionally,
denote the reach of the reinforced random walk by ρ. The reach defines the
edges in E that act as inputs for the reinforcement function. First, we define
Yn ⊂ E as the set of edges n steps away from the current position x. Thus we
have

Yn := {yi ∈ E | ∃ z ∈ Yn−1 s.t. z ∼ yi and yi /∈ Y<n} (56)

Thus Yn is defined inductively as all of the new edges in E that can be reached
in one extra step from Yn−1. Following this, the region of influence is defined

46

as the union of Yi for i = 1, . . . , ρ for a walk with reach ρ. The first three Yi’s
in Z2 are displayed below in figure (22) to provide insight for Eq. (56)

Figure 22: Regions of Influence on Z2 for ρ = 1, 2, 3

The reinforcement function is determined by the number of traversals of

edges in
ρ⋃
i=1

Yi. Recall that the number of traversals of an edge e up to time t

is given by N(e, t), then we have

P ((xt+1, xt) = yi|x0, . . . , xt) =
f (N (yi, t) , N(Y2, t), . . . , N(Yρ, t))∑

y ∈ Y1
f (N (y, t) , N(Y2, t), . . . , N(Yρ, t))

(57)

For ρ = 1, this new definition reduces to the standard definition of the reinforced
random walk introduced in Section (2.2.1). To index Yn, define Yi,j as the edges
in Yi that stem from the edge yj ∈ Yi−1, this will allow for more flexibility in
the construction of reinforcement functions.

Increasing the reach of the reinforced random walk opens up new possibilities
for research. A brief exploration of the applications of reinforced random walks
with ρ = 2 will be given to provide insight into the importance of this extension.

3.5.2 Examples

The first application of the reinforced random walk with an extended reach
will be a demonstration that the self-avoiding walk can be defined as particular
case of the reinforced random walk with ρ = 2. To construct a self-avoiding
walk, we need a reinforcement function that assigns a 0 probability to traveling

47

along an edge which leads to a vertex already visited. If a vertex v has been
visited before, then there exists at least one edge e connected to v that has been
traversed before. Therefore, to remove the possibility of travelling to a vertex
already visited, the reinforcement function needs to assign a 0 probability to an
adjacent edge yi if there exists a y ∈ Y2,i with N(y, t) > 0. Thus

f(N(yi, t), N(Y2,i, t)) =

{
0 N(yi, t) +N(Y2,i, t) > 0
1 N(yi, t) +N(Y2,i, t) = 0

(58)

gives the desired result! In the event where all of the available edges give 0
probability, the self-avoiding walk has trapped itself and the process stops. By
replacing the 0 in Eq. (58) with a small number ε > 0 , we define the near
self-avoiding walk (NSAW):

f(N(yi, t), N(Y2,i, t)) =

{
ε N(yi, t) +N(Y2,i, t) > 0
1 N(yi, t) +N(Y2,i, t) = 0

(59)

The NSAW has similar behavior to the regular SAW, however, at each step,
there is a small probability of the NSAW disregarding the self avoiding property
and revisiting a vertex. Additionally, in the event that the NSAW is trapped,
all of the edges are assigned the same probability ε and it selects an edge with
equal probability and carries on as usual. Therefore the NSAW can be applied
in situations where the self-avoiding behavior is required, but the walk can con-
tinue indefinitely, unlike the SAW. The parameter ε ∈ [0, 1] can be used to alter
how self-avoiding the walk is: for ε = 0 we have the standard SAW, for ε = 1 we
have the simple random walk, and for ε ∈ (0, 1) we have an NSAW of varying
degrees of strength.

Other variations of the SAW can be designed by reinforced random walks
with ρ > 2. For example, with ρ = 3, the reinforcement function can be de-
signed such that the probability of taking an edge is inversely proportional to
the number of traversed edges in that general direction (up to 3 steps away).
This would mean the walker could avoid regions of its neighbourhood that have
been traversed more often, with the addition of the self-avoiding property. The-
oretically, this type of walk would have a much lower probability of self-trapping
and thus could be applied in situations where entrapment of the walk should
be avoided at all costs. With ρ = ∞, the reinforcement function can take into
account the entire path of walk and thus can be designed such that the self-
avoiding walk never traps itself. Reinforced random walks with ρ > 2 with this
self-avoiding behavior could be the basis for a new class of super-self-avoiding
walks.

The reinforced random walk with an extended reach can also by designed
to approximate an Eulerian path. An Eulerian path is a walk on a graph such
that every edge is travelled exactly once. To achieve this goal with a regular
reinforced random walk, the reinforcement function could be

f(N(yi, t)) =
1

N(yi, t) + 1
(60)

48

but this would not guarantee that it wouldn’t get trapped in the situation where
all possible edges have already been traversed, thus it is only an approximation.
This approximation can be improved with ρ = 2. The walk could take steps
in the direction where there are lesser travelled edges, for example with the
reinforcement function

f(N(yi, t), N(Y2,i, t)) =
1

N(yi, t) +N(Y2,i, t) + 1
(61)

With an ever further reach, the walker would be able to ’seek out’ the untraveled
edges in the graph.

To better understand the applications of this new generalized definition for
reinforced random walks, a full investigation would have to take place, which
is beyond the scope of this paper. Future research projects could study the
asymptotic behavior of the NSAW as ε → 0, or the practical applications of
the super-self-avoiding walk. The purpose of this section is primarily to develop
a new method of analysis for the reinforced random walk, and also the self-
avoiding walk. This new definition gives a different perspective into the study
of SAWs, which could allow for a more rigorous study of the walk in the future.
This new link between the reinforced random walk and the self-avoiding walk
can be seen in Figure (23) below:

Figure 23: Five major classes of random walks and the relationships between
them, including a new link between reinforced random walks and self-avoiding

walks introduced in Section (3.5)

49

4 Conclusion

Random walks come in an array of interesting classes, each with unique
properties, applications and methods of analysis. Through an extensive anal-
ysis of literature, it is clear that most papers and research projects concern
only one class of random walk, for example either reinforced random walks or
Levy flights, but never both. This makes sense as the mathematics behind the
different classes of random walks are vastly different, as can be seen in this
paper. However, this has lead to the study of random walks to be somewhat
fragmented between the different classes. The primary research goal of this pa-
per is to provide an analytical and numerical analysis on a diverse set of key
classes of random walks, bringing mathematical concepts from different authors
together into one paper. Following this, this paper aimed to utilise this broad
approach of analysis to bring new research results to the field.

The paper begins by presenting the key theories and concepts of five major
classes of random walk in the Theory & Methods section. First and foremost,
the goal of the Theory & Methods section was to provide a concrete introduction
to the mathematical material necessary to explore the new results introduced
later in the paper. In order to give a coherent and relevant overview of these
classes, there was a necessary process of collecting and refining a selection of
literature, and then constructing a consistent and intuitive system of notation
to bring the different concepts together into one format. Therefore, the largest
contribution to the Theory & Methods section was the rewriting of proofs and
ideas from different authors and piecing it all together with the right notation.

Following the Theory & Methods section, a series of new results are pre-
sented in the Results & Simulations section. The section begins with an array
of simulations regarding the simple random walk, in dimensions one and two.
The theorems regarding the one dimensional simple random walk were verified
through numerical simulation, and then the two methods of approximating the
2D Dirichlet Problem were simulated and compared with regards to accuracy
and efficiency. Following this, the paper discusses the Levy Flight Foraging Hy-
pothesis. The research goal in this subsection was to provide a new array of
numerical evidence to support the hypothesis. A simulation was constructed to
compare different search strategies of a foraging animal, and a direct comparison
yielded that all four of the chosen Levy flights had a higher survival rate than
the simple random walk it was competing against. Additionally, an evolutionary
algorithm was designed by considering a stochastic gradient descent inspired by
natural selection. This demonstrated that over the course of 5 generations, the
’animal’ would evolve away from the simple random walk, and towards the more
successful Levy flight, as the hypothesis predicts. Following this, the Union Jack
lattice was defined, and numerical methods of finding upper and lower bounds
were implemented to approximate its connective constant. The final approxima-
tion gives µ ≈ 4.45 which is the first known approximation for the Union Jack
lattice, despite its relevance in neighbouring fields. The next major result was
a new method of analysing the Narrow Escape Problem, which directly applies

50

the link between simple random walks and Brownian motion to formulate an
analogous discrete system. This discrete system was then modelled as a Markov
chain which allowed for direct approximations of the expected escape time (Et),
amongst other interesting results. Lastly, an extension to the class of reinforced
random walks was formulated by allowing the reinforcement function to take
further away edges into account. In particular, the research in this paper has
shown that there are many interesting results to be found by considering mul-
tiple different classes together. Firstly, the extension to the reinforced random
walks demonstrated that the self-avoiding walk can be redefined as a particular
case of the extended reinforced random walk, which consequently allows for an
entirely new perspective on the mathematics governing the self-avoiding walk.
The implications of this new definition can certainly form the basis of a new
research project on the topic. Secondly, the link between simple random walks
and Brownian motion allowed for the construction of a new method of analysis
for the Narrow Escape Problem, as presented in this paper. This further sup-
ports that there is much to be gained by analysing the field of random walks
from a broad perspective.

The research in this paper though innovative, is not as extensive as it could
be. First, the animal foraging simulation for the Levy Flight Foraging Hypoth-
esis demonstrates the desired results in only one system. To combat this, the
layout of food was randomised each iteration, showing that regardless of where
the food is, the Levy flight still has the best chance of discovering its location.
To improve the results in the future, more complex simulations could be de-
veloped, perhaps including a notion of different terrains and natural landmarks
such as rivers and mountains. This would make the simulations more realistic
and thus offer more reliable results. Second, the analysis of the new method of
studying the Narrow Escape Problem is primarily numerical, and thus future
research could focus on the method from a more analytical perspective, giving
a stronger understanding of the numerical results and why they occur. Another
minor limitation regards the connective constant of the Union Jack lattice. Al-
though the methods of constructing upper and lower bound were successfully
implemented, the accuracy could be improved with the use of stronger compu-
tational resources (it is not uncommon for connective constant approximations
to utilise high-end supercomputers). Lastly, the extension to the reinforced ran-
dom walks offers a wealth of new potential research on the topic, future research
could focus on developing the exact implications of this new extension, and in
particular, what can be learnt about the self avoiding walk by considering it
from this new perspective.

Through the development of new results, this paper has opened up various
new avenues for potential research projects to take place in the future, possi-
bly sparking a new front of research on the topic, bringing different classes of
random walk together into one broad and diverse field.

51

References

[1] Karl Pearson and John Blakeman. A mathematical theory of random mi-
gration, volume 1. Dulau and Company, 1904.

[2] Lord Rayleigh. Xii. on the resultant of a large number of vibrations of the
same pitch and of arbitrary phase. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 10(60):73–78, 1880.

[3] John William Strutt and Baron Rayleigh. The theory of sound. Dover,
1945.

[4] Nicolas E Humphries and David W Sims. Optimal foraging strategies: Lévy
walks balance searching and patch exploitation under a very broad range
of conditions. Journal of theoretical biology, 358:179–193, 2014.

[5] BK Chakrabarti and S Bhattacharya. Study of an ising model on a self-
avoiding-walk lattice. Journal of Physics C: Solid State Physics, 16(29):
L1025, 1983.

[6] John Michael Hammersley. Long-chain polymers and self-avoiding random
walks. Sankhyā: The Indian Journal of Statistics, Series A, pages 29–38,
1963.

[7] Fateme Safaeifard, Seyed Peyman Shariatpanahi, and Bahram Goliaei. A
survey on random walk-based stochastic modeling in eukaryotic cell migra-
tion with emphasis on its application in cancer. Multidisciplinary Cancer
Investigation, 2(1):1–12, 2018.

[8] Peter G Doyle and J Laurie Snell. Random walks and electric networks,
volume 22. American Mathematical Soc., 1984.

[9] David Aldous and James Fill. Reversible markov chains and random walks
on graphs, 1995.

[10] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data
science. Cambridge University Press, 2020.

[11] Geoffrey Grimmett and Dominic Welsh. Probability: an introduction. Ox-
ford University Press, 2014.

[12] Russell Lyons and Yuval Peres. Probability on trees and networks, vol-
ume 42. Cambridge University Press, 2017.

[13] Hannelore Lisei Mihai Iancu. Properties of random walks in dimension one,
2017.

[14] Nolan Outlaw. Markov chains, random walks, and card shuffling, 2016.

52

[15] Nicolas E Humphries, Henri Weimerskirch, Nuno Queiroz, Emily J
Southall, and David W Sims. Foraging success of biological lévy flights
recorded in situ. Proceedings of the National Academy of Sciences, 109
(19):7169–7174, 2012.

[16] Marina E Wosniack, Marcos C Santos, Ernesto P Raposo, Gandhi M
Viswanathan, and Marcos GE da Luz. The evolutionary origins of lévy
walk foraging. PLoS computational biology, 13(10):e1005774, 2017.

[17] Arild O Gautestad and Atle Mysterud. The lévy flight foraging hypothesis:
forgetting about memory may lead to false verification of brownian motion.
Movement Ecology, 1(1):9, 2013.

[18] Alexei V Chechkin, Ralf Metzler, Joseph Klafter, Vsevolod Yu Gonchar,
et al. Introduction to the theory of Lévy flights. Wiley Online Library, 2008.

[19] Gady Kozma. Reinforced random walk. arXiv preprint arXiv:1208.0364,
2012.

[20] Brian Hayes. Computing science: How to avoid yourself. American Scien-
tist, 86(4):314–319, 1998.

[21] Michaël Bon, Davide Marenduzzo, and Peter R Cook. Modeling a self-
avoiding chromatin loop: relation to the packing problem, action-at-a-
distance, and nuclear context. Structure, 14(2):197–204, 2006.

[22] Iwan Jensen. Enumeration of self-avoiding walks on the square lattice.
Journal of Physics A: Mathematical and General, 37(21):5503, 2004.

[23] EJ Janse van Rensburg. Approximate enumeration of self-avoiding walks.
Algorithmic Probability and Combinatorics, 520:127–151, 2010.

[24] Neal Madras and Gordon Slade. The self-avoiding walk. Springer Science
& Business Media, 2013.

[25] Sven Erick Alm. Upper bounds for the connective constant of self-avoiding
walks. Combinatorics, Probability and Computing, 2(2):115–136, 1993.

[26] Sven Erick Alm and Robert Parviainen. Bounds for the connective constant
of the hexagonal lattice. Journal of Physics A: Mathematical and General,
37(3):549, 2004.

[27] Yuxuan Chen. Senior Thesis.

[28] Iwan Jensen. Improved lower bounds on the connective constants for two-
dimensional self-avoiding walks. Journal of Physics A: Mathematical and
General, 37(48):11521, 2004.

[29] Frank B Knight. On the random walk and brownian motion. Transactions
of the American Mathematical Society, 103(2):218–228, 1962.

53

[30] Prof. Yuh-Dauh Lyuu. Brownian Motion as Limit of Random Walk. Na-
tional Taiwan University, 2014.

[31] Prof. David Gamarnik. Brownian motion: Introduction.

[32] Peter Mörters and Yuval Peres. Brownian motion, volume 30. Cambridge
University Press, 2010.

[33] Michael E Fisher and David S Gaunt. Ising model and self-avoiding walks
on hypercubical lattices and” high-density” expansions. Physical Review,
133(1A):A224, 1964.

[34] Gordon Slade. Self-avoiding walk, spin systems and renormalization. Pro-
ceedings of the Royal Society A, 475(2221):20180549, 2019.

[35] TC Choy and RJ Baxter. Spontaneous magnetizations of the ising model
on the union jack lattice. Physics Letters A, 125(8):365–368, 1987.

[36] Vincent Mellor. Numerical simulations of the ising model on the union jack
lattice. arXiv preprint arXiv:1101.5015, 2011.

[37] Adam Lipowski. Mixed-spin ising model with four-spin interaction. Physica
A: Statistical Mechanics and its Applications, 248(1-2):207–212, 1998.

[38] FY Wu and KY Lin. Ising model on the union jack lattice as a free fermion
model. Journal of Physics A: Mathematical and General, 20(16):5737, 1987.

[39] Eric W Weisstein. Random walk–1-dimensional. https://mathworld. wol-
fram. com/, 2002.

[40] Branko Grünbaum. Projection constants. Transactions of the American
Mathematical Society, 95(3):451–465, 1960.

[41] Hermann König, Carsten Schütt, and Nicole Tomczak-Jaegermann. Projec-
tion constants of symmetric spaces and variants of khintchine’s inequality.
Journal für die reine und angewandte Mathematik, 1999(511):1–42, 1999.

[42] NIST Digital Library of Mathematical Functions Equation 5.5.5.
https://dlmf.nist.gov/5.5iii, Release 1.0.27 of 2020-06-15. URL https:

//dlmf.nist.gov/5.5#iii. F. W. J. Olver, A. B. Olde Daalhuis, D. W.
Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain, eds.

[43] Ronald L Graham, Donald E Knuth, Oren Patashnik, and Stanley Liu.
Concrete mathematics: a foundation for computer science. Computers in
Physics, 3(5):106–107, 1989.

[44] Kai Nordlund. Basics of monte carlo simulations.
http://beam.helsinki.fi/ knordlun/mc/mc7nc.pdf, 2006.

54

https://dlmf.nist.gov/5.5#iii
https://dlmf.nist.gov/5.5#iii

[45] David P. Goldenberg. Physical principles in biology. University of Utah,
2019.

[46] Alexander A Dubkov, Bernardo Spagnolo, and Vladimir V Uchaikin. Lévy
flight superdiffusion: an introduction. International Journal of Bifurcation
and Chaos, 18(09):2649–2672, 2008.

[47] Harry Pollard et al. The representation of ê{−x̂\lambda}
asalaplaceintegral. Bulletin of the American Mathematical Society, 52
(10) : 908−−910, 1946.

[48] Hugo Duminil-Copin and Stanislav Smirnov. The connective constant of the
honeycomb lattice equals 2+ 2. Annals of Mathematics, pages 1653–1665, 2012.

[49] Michael E Fisher and MF Sykes. Excluded-volume problem and the ising model
of ferromagnetism. Physical Review, 114(1):45, 1959.

[50] Harry Kesten. On the number of self-avoiding walks. Journal of Mathematical
Physics, 4(7):960–969, 1963.

[51] Sidney I Resnick. Adventures in stochastic processes. Springer Science & Busi-
ness Media, 1992.

[52] Zeev Schuss, Amit Singer, and David Holcman. The narrow escape problem
for diffusion in cellular microdomains. Proceedings of the National Academy of
Sciences, 104(41):16098–16103, 2007.

[53] Habib Ammari, Josselin Garnier, Hyeonbae Kang, Hyundae Lee, and Knut
Sølna. The mean escape time for a narrow escape problem with multiple switch-
ing gates. Multiscale Modeling & Simulation, 9(2):817–833, 2011.

[54] David Holcman and Zeev Schuss. Stochastic narrow escape in molecular and
cellular biology. Analysis and Applications. Springer, New York, 2015.

[55] Youcef Saad. Numerical methods for large eigenvalue problems. Manchester
University Press, 1992.

55

A Implementation

There are four key sections where code was employed to implement the
methods discussed in this paper. For each section, the coding strategy and
technical details will be discussed, following closely by the raw code, which is
included for clarity and transparency. All of the key concepts and methods are
provided below, however, the non-essential and/or non-enlightening code will
not be included in this section to maintain a level of relevance. The reader is
encouraged to implement the code themselves to gain a deeper understanding
of the systems. To implement the methods, the programming language Python
was used on an IDE (Integrated Development Environment) called Spyder. It
should also be noted that the raw code has been slightly edited for readability,
however, it is not perfect and some parts may not be intuitive for the reader.
All of the following code is completely original and not taken from existing
literature or online databases.

A.1 Simple Random Walk

The simple random walk is the easiest of the random walks to implement, as
it requires no additional constraints or distributions to govern the movement.
This subsection will describe the method of simulating the simple random walk
numerically in dimensions one and two. Following this, the Monte-Carlo method
and the Method of Relaxation will be described and the corresponding code will
be provided.

To construct the simple random walk, one must first design a function that
takes the current location of the walker as input, takes a single step from a set
of finite options, then reports back the new location. In the code below, this
function will be named ’take a step’. The next stage is to construct a for-loop
to allow the walker to take a large number of steps, and then store the positions
in an array, which will be named ’pos track’.

Below is the code for the simulation of simple random walks of dimension
one and two:

Simple Random Walk Dimension 1 :

1 # 1D - simple random walk

2

3 import numpy as np

4 import random

5

6 def take_a_step(position):

7

8 #walker takes a single step

9

10 steps = [[-1] ,[1]]

11 new_step = np.array(random.choice(steps))

12 position = position + new_step

56

13

14 return position

15

16

17 x = np.array ([0]) #origin

18 N = 1000 #number of steps

19

20

21 #tracking position

22 pos = x

23 pos_track = x

24 for i in range(0,N):

25 pos = take_a_step(pos)

26 pos_track = np.vstack ((pos_track ,pos))

Simple Random Walk Dimension 2 :

1 #2D simple random walk - square lattice

2 import numpy as np

3 import random

4 from matplotlib import pyplot as plt

5

6 x = np.array ([0 ,0])

7 N = 100

8

9

10 def take_a_step(position):

11

12 #walker takes one step

13

14 steps = [[-1,0],[1,0],[0,1],[0,-1]]

15 new_step = np.array(random.choice(steps))

16 position = position + new_step

17

18 return position

19

20

21 #taking N steps and tracking position

22

23 pos = x

24 pos_track = x

25 for i in range(0,N):

26 pos = take_a_step(pos)

27 pos_track = np.vstack ((pos_track ,pos))

28

29 #plotting result

30 pt = pos_track

31 plt.figure(figsize = (6,6))

32 for i in range(1,len(pt[: ,0])):

33 plt.plot([pt[i-1,0],pt[i,0]] ,[pt[i-1,1],pt[i,1]], color = ’k’)

57

34 plt.axis(’equal ’)

35 plt.grid(color=’k’, linestyle=’--’, linewidth =0.5, alpha = 0.4)

36 plt.show()

In Section (2.1.2) the Monte-Carlo method and the Method of Relaxation was
introduced to approximate the solution to the 2D Dirichlet Problem. Recall
that the Monte-Carlo method comprises of simulating a large number of simple
random walks beginning at the different interior points, and estimating p(x, y)
as the ratio of successful random walks to the total number of random walks.
The Method of Relaxation consists of averaging neighbouring interior points in
a a particular way in order to approximate p(x, y), for the full definition see
Section (2.1.2.2). These two methods were implemented numerically and the
code can be seen below with comments to guide the reader through the lines of
code:

Monte Carlo Method:

1 #Simulating and Analysing the Monte -Carlo Method for 2D Dirichlet Problem

2

3 import numpy as np

4 import time

5 import random

6 from tqdm import tqdm

7 from matplotlib import pyplot as plt

8 from matplotlib import cm

9 from matplotlib.ticker import LinearLocator , FormatStrFormatter

10 from mpl_toolkits.mplot3d import Axes3D

11

12 a = 17 #length of grid

13 b = 17 #width of grid

14 N = 10000 #maximum number of steps walks may take before deletion

15 its = 100 #number of random walk per starting position of grid

16

17 x_0s = np.zeros (((a-2)*(b-2) ,2))

18 p_x = np.zeros((a-2,b-2,its))

19 successes = np.zeros ((a-2,b-2))

20

21 #building co -ordinate system

22 for i in range(a-2):

23 for j in range(b-2):

24 x_0s[(b-2)*i+j,0] = i

25 x_0s[(b-2)*i+j,1] = j

26

27

28 def take_a_step(position):

29

30 #walker takes a step

31

32 steps = [[-1,0],[1,0],[0,1],[0,-1]]

33 new_step = np.array(random.choice(steps))

58

34 position = position + new_step

35

36 return position

37

38

39 #setting up for -loop to find average time to reach accurate solution

40 dum = 10

41 tic = time.time()

42 for p in tqdm(range(dum)):

43 for j in tqdm(range(its)):

44 for k in range((a -2)*(b -2)):

45 success = 0

46 pos = np.array ([x_0s[k,0],x_0s[k ,1]])

47

48 #scenario 1 below - uncomment to use!

49 # ===

50 # for i in range(0,N):

51 # pos = take_a_step(pos)

52 # if pos[0] == -1 or pos[0] == a-2 or pos[1] == b-2 :

53 # break

54 # if pos[1] == -1 and pos[0]<a-3:

55 # break

56 # if pos[1] == -1 and pos[0] == a-3:

57 # successes[int((k-np.mod(k,b -2))/(b-2)),np.mod(k,b-2)] =

58 #successes[int((k-np.mod(k,b -2))/(b-2)),np.mod(k,b-2)] + 1

59 # break

60 # ===

61

62 #scenario 2 below - uncomment to use!

63 # ===

64 # for i in range(0,N):

65 # pos = take_a_step(pos)

66 # if pos[0] == -1 or pos[0] == a-2 or pos[1] == b-2 :

67 # break

68 # if pos[1] == -1:

69 # successes[int((k-np.mod(k,b -2))/(b-2)),np.mod(k,b-2)] =

70 #successes[int((k-np.mod(k,b -2))/(b-2)),np.mod(k,b-2)] + 1

71 # break

72 #

73 # p_x[:,:,j] = successes /(j+1)

74 # ===

75

76 toc = time.time()

77 print(f’Time Elapsed : {(toc -tic)/dum}’)

78

79 #Plotting solution

80

81 fig = plt.figure(figsize = (8,6))

82 ax = fig.gca(projection =’3d’)

83

59

84 X = np.arange(0, b-2, 1)

85 Y = np.arange(0, a-2, 1)

86 X, Y = np.meshgrid(X, Y)

87 Z = p_x [: ,: ,9000]

88

89

90 surf = ax.plot_surface(X,Y,Z, cmap=cm.coolwarm ,

91 linewidth=0, antialiased=False)

92

93 fig.colorbar(surf , shrink =0.5, aspect =5)

94

95 plt.show()

Method of Relaxation:

1 #Simulating and Analysing the Method of Relaxation for 2D Dirichlet Problem

2

3 import numpy as np

4 from tqdm import tqdm

5 from matplotlib import pyplot as plt

6 from matplotlib import cm

7 import time

8 from matplotlib.ticker import LinearLocator , FormatStrFormatter

9 from mpl_toolkits.mplot3d import Axes3D

10

11 #setting up for -loop to find average time to reach accurate solution

12 dum = 10

13 tic = time.time()

14 for i in tqdm(range(dum)):

15

16

17 a = 17 #length of grid

18 b = 17 #width of grid

19 its = 200 #number of iterations

20 p_x = np.zeros((b,a,its))

21 x_coords = np.linspace(0,a-1,a)

22 y_coords = np.linspace(0,b-1,b)

23 graph = np.zeros ((a*b,2))

24

25 #generating 2D graph

26 for j in range(0,a):

27 for i in range(0,b):

28 graph[a*i+j,0] = x_coords[j]

29 graph[a*i+j,1] = y_coords[i]

30

31 #Building the set of edges via finding closest neighbours of each vertex

32 neighbours = []

33 g = graph

34 for k in range(a*b):

35 neighbours.append(np.array(np.where(abs(g[k,1]-g[: ,1])+ abs(g[k,0]-g[: ,0]) <1.1))[0])

60

36 neighbours[k] = np.delete(neighbours[k], np.where(neighbours[k] == k), axis =0)

37

38 vals = np.zeros((a*b,1))

39 scenario = 16 #for scenario 1 set equal to 2, for scenario 2 set equal to 16

40 vals[: scenario] = 1

41

42 #finding interior of graph i.e. where the walker may walk

43 interior = []

44 for i in range(a*b):

45 if len(neighbours[i]) == 4:

46 interior.append(i)

47

48 #approximating p(x,y) over many iterations

49 for i in range(its):

50 for k in range(len(vals)):

51 if k in interior:

52 vals[k] = np.mean(vals[neighbours[k]])

53 p_x[int((k-np.mod(k,a))/(a)),np.mod(k,a),i] = vals[k]

54 if i > 0:

55 errorest = (np.abs(p_x[:,:,i]-p_x[:,:,i -1]). sum ())/15**2

56 p_x1 = p_x[1:-1,1:-1]

57

58 #neatening solution

59 p_x = p_x[1:-1,1:-1]

60

61 toc = time.time()

62 print(f’Time Elapsed : {(toc -tic)/dum}’)

63

64 #plotting solution of 2D Dirichlet Problem via Method of Relaxation

65

66 fig = plt.figure(figsize = (8,6))

67 ax = fig.gca(projection =’3d’)

68

69 Y = np.arange(0, b-2, 1)

70 Y = -1* Y

71 X = np.arange(0, a-2, 1)

72 X,Y = np.meshgrid(X, Y)

73 Z = np.transpose(p_x[:,: ,99])

74

75 surf = ax.plot_surface(X,Y,Z, cmap=cm.coolwarm ,

76 linewidth=0, antialiased=False)

77

78 fig.colorbar(surf , shrink =0.5, aspect =5)

79 plt.show()

61

A.2 Levy Flight Foraging Hypothesis

To provide evidence to the Levy Flight Foraging Hypothesis, a simulation
was constructed to test different search strategies. This subsection will first
describe the method of constructing a Levy flight numerically, before moving
onto the technical details of the animal foraging simulation. Following this, the
evolutionary algorithm will be described. All of the necessary code will also be
provided after each explanation.

To implement a Levy flight one first has to build a function that returns
a sequence of Levy flight steps, which consists of implementing the Levy PDF
numerically, and then sampling the step-sizes from this distribution. Addition-
ally, as the step-size and direction are in polar co-ordinates, one needs to write
a function that converts polar co-ordinates into Cartesian co-ordinates in order
to plot the final travel path. These two functions are named ’take levy steps’
and ’polar to cart’. Lastly, one needs to track the positions of the flight path
after each step. The code for this implementation can be seen below:

Levy Flight Implementation:

1 #Simulating the Levy flight

2

3 import numpy as np

4 from matplotlib import pyplot as plt

5

6 x = np.array ([0 ,0]) #origin

7 N = 2000 #number of steps

8

9 def polar_to_cart(r,theta):

10

11 #Converts polar coordinates to cartesian coordinates

12

13 z = r * np.exp(1j * theta)

14 x_coord = np.real(z)

15 y_coord = np.imag(z)

16 return np.array ([x_coord , y_coord])

17

18 def take_levy_steps(x_0 ,N,L):

19

20 #takes a sequence of N levy steps from one of 3 Levy stable pdfs

21

22 t = np.linspace (0.51 ,50 ,10*N)

23

24 if L == 1: # L v y -Smirnov distribution

25 s = (1/np.sqrt (2*np.pi))*(t -0.5)**(-3/2)*(np.exp (-1/(2*(t -0.5))))

26

27 if L == 2: # Cauchy distribution

28 s = (1/np.pi)*(1/(0.01+(t -1)**2))

29

30 if L == 3: # Gaussian distribution

62

31 s = (1/np.sqrt (2*np.pi))*(np.exp(((t -1)**2)/ -2))

32

33

34 #sampling distribution

35 stepsizes = np.random.choice(t,size = N, p = s/s.sum())

36 directions = np.random.uniform(low = 0, high = 2*np.pi , size = N)

37 steps = polar_to_cart(stepsizes , directions)

38 pos_track = x_0

39 pos = x_0

40

41 #tracking position

42 for i in range(0,N):

43 pos = pos + steps[:,i]

44 pos_track = np.vstack ((pos_track ,pos))

45 return pos_track

46

47

48 #plotting travel path

49 pos_track = take_levy_steps(x,N,2)

50 fig = plt.figure(figsize = (6,6))

51 plt.plot(pos_track [:,0], pos_track [:,1], color = ’k’, linewidth = 1)

52 plt.axis(’equal ’)

53 plt.scatter ([-1,2],[-0.7,4], color =’white ’)

54 plt.grid(color=’k’, linestyle=’--’, linewidth =0.5, alpha = 0.4)

55 plt.show()

Now using this code we can start to build the animal foraging simulation. This
simulation works by tracking the position of a Levy flight, and recording the
number of times it finds ’patches of food’. The patches of food are given as 2
dimensional circles that are randomised each iteration with respect to location
and size in order to reduce the risk of bias. In the simulation there are exactly
4 patches of food, where the location of the centre of the circles are drawn from
a uniform distribution from [−100, 100], and the size of the circles are drawn
from a uniform distribution from [5, 20]. The difficulty of finding food can be
varied greatly by editing the frequency and size of the circles, which would offer
an equally valid simulation.

Another important technical detail is that a cost function (proportional to
distance) was implemented to limit the total amount of movement the walker
can make. Without this cost function, the random walker will happily take only
large steps to maximise the chance of success, which is unrealistic as animals
cannot travel at such speeds for long periods.

Randomising the location and size of the food allows the simulation to cover
a wider range of situations, however, more could be added to the simulation
to increase the reliability of the results. To improve this simulation in a future
research project, a first step would be to cover a greater array of different sce-
narios for the walkers to travel upon.

The following code below demonstrates the implementation of this sim-

63

ulation, and also computes survival rates for different combinations of levy-
coefficient and maximum step size (producing the background of Figure (11)):

Levy Flight Foraging Simulation:

1 #Levy Flight Foraging Hypothesis Simulation

2 #computing survival rates over a large parameter space

3

4 import numpy as np

5 from matplotlib import pyplot as plt

6

7 def take_levy_steps(x_0 ,N,b,m,max_energy):

8

9 # x_0 : Initial Position

10 # N : Number of Steps

11 # b : Levy coefficient

12 # m : Maximum step -size

13 # max_energy : maximum energy of animal

14

15

16 # defining heavy tailed pdf using levy -coefficient and max step -size

17 t = np.linspace (0.51 ,m,10*N)

18 s = (1/np.pi)*(1/((b)+(t -1)**2))

19

20 #sample from pdf

21 stepsizes = np.random.choice(t,size = N, p = s/s.sum())

22 directions = np.random.uniform(low = 0, high = 2*np.pi, size = N)

23

24 #polar to cartesian conversion

25 steps = polar_to_cart(stepsizes , directions)

26 pos_track = x_0

27 pos = x_0

28 cost = np.zeros(N)

29

30 #tracking position

31 for i in range(0,N):

32 pos = pos + steps[:,i]

33 pos_track = np.vstack ((pos_track ,pos))

34 cost[i] = (b)**0.5*(steps[0,i]**2 + steps[1,i]**2)**0.5

35 if cost.sum() > max_energy:

36 break

37

38 return pos_track

39

40 def polar_to_cart(r,theta):

41

42 #converting polar coordinates to cartesian coordinates

43

44 z = r * np.exp(1j * theta)

45 x_coord = np.real(z)

64

46 y_coord = np.imag(z)

47

48 return np.array([x_coord , y_coord])

49

50

51 #%%

52

53 b_s = np.logspace (-5,4,50) #range of levy coefficients to test

54 m_s = np.linspace (2 ,300 ,50) #range of max step sizes to test

55 b_vs_m = np.zeros ((50 ,50))

56

57 #initialising simulation

58 x_0 = np.array ([0 ,0])

59 N = 500

60 max_energy = 750

61 its = 100

62

63 #finding survival rates of every combination of b vs m

64 for i in range (0 ,50):

65 for j in range (0 ,50):

66 for n in range(0,its):

67 pos_track = take_levy_steps(x_0 ,N,b_s[i],m_s[j],max_energy)

68

69 f = np.random.uniform(low = -100,high = 100, size = 8)

70 food = np.array ([[f[0],f[1]] ,[f[2],f[3]] ,[f[4],f[5]] ,[f[6],f[7]]])

71 r = np.random.uniform(low = 5,high = 20, size = 4)

72 pt = pos_track

73 for k in range (4):

74 if (((pt-food[k ,:])[: ,0]**2+(pt-food[k ,:])[: ,1]**2)**0.5). min()<r[k]:

75 b_vs_m[i,j] = b_vs_m[i,j] + 1

76

77 b_vs_m = b_vs_m/its

78

79 #plotting contour plot of survival rates over different levy coefficients and

80 #maximum step sizes

81

82 b_s = np.logspace (-5,4,50)

83 m_s = np.linspace (2 ,300 ,50)

84

85 fig1 , ax2 = plt.subplots(constrained_layout=True)

86

87 CS = ax2.contourf(m_s ,

88 b_s ,

89 b_vs_m ,

90 10,

91 cmap=’viridis ’,

92 levels = 7,

93 extent =[2 ,300 ,0.0001 ,10] ,

94 vmin=0,

95 vmax =0.8)

65

96 cbar = fig1.colorbar(CS)

97 plt.yscale(’log ’)

98 plt.xscale(’log ’)

99 plt.ylabel (" l v y -coefficient ")

100 plt.xlabel (" Maximum Stepsize ")

101 cbar.ax.set_ylabel(’Survival Rate ’)

102 plt.scatter (2.12 ,0.001 , color = ’k’, marker = ’x’)

103

104 plt.show()

To finish this subsection we will discuss the implementation of the evolutionary
algorithm used in Section (3.2.2). The evolutionary algorithm designed is a type
of stochastic gradient descent algorithm. It should be noted that this algorithm
was not developed following any existing literature, but developed originally by
using the concept of natural selection as inspiration.

The algorithm works by first considering the Levy-coefficient and maximum
step-size of the current animal, and generating an array of 25 combinations of
Levy-coefficient and maximum step-size that closely resemble the current ani-
mal. These new combinations represent the new mutations within the animals
offspring. The next step is to test each of the 25 combinations and recording
the survival rates for each one in an array. The most successful of the mutations
’passes on its genes’ and the process begins again. An additional feature added
to the algorithm was a form of fine-tuning such that if all of the new mutations
were less optimal than the previous generation, the diversity of mutations is
reduced i.e. the following sets of mutations form a tighter grid of the parameter
space (Levy-coefficient vs max step size). The code to implement this evolu-
tionary algorithm is given below alongside comments to describe the individual
packets of code:

Evolutionary Algorithm for Levy Flight Foraging Hypothesis:

1 #Evolutionary Algorithm for Levy Flight Foraging Hypothesis

2

3 import numpy as np

4 from matplotlib import pyplot as plt

5

6 def polar_to_cart(r,theta):

7

8 #Converts polar coordinates to cartesian coordinates

9

10 z = r * np.exp(1j * theta)

11 x_coord = np.real(z)

12 y_coord = np.imag(z)

13 return np.array ([x_coord , y_coord])

14

15 def take_levy_steps(x_0 ,N,b,m,max_energy):

16

17 #take a sequence of levy steps

66

18

19 #sample from heavy tailed distribution

20 t = np.linspace (0.51 ,m,10*N)

21 s = (1/np.pi)*(1/((b)+(t -1)**2))

22 stepsizes = np.random.choice(t,size = N, p = s/s.sum())

23 directions = np.random.uniform(low = 0, high = 2*np.pi , size = N)

24 steps = polar_to_cart(stepsizes , directions)

25

26 #tracking position

27 pos_track = x_0

28 pos = x_0

29 cost = np.zeros(N)

30 for i in range(0,N):

31 pos = pos + steps[:,i]

32 pos_track = np.vstack ((pos_track ,pos))

33 cost[i] = (b)**0.5*(steps[0,i]**2 + steps[1,i]**2)**0.5

34 if cost.sum() > max_energy:

35 break

36

37 return pos_track

38

39 b = 0.001 #starting levy coefficient

40 m = 2 #starting maximum step -size

41 d1 = 10 #gradient descent factor in b-axis

42 d2 = 5 #gradient descent factor in m-axis

43 maxit = 3 #number of iterations/’generations ’

44 N = 500 #max number of steps

45 max_energy = 750 #max energy

46 x_0 = np.array ([0 ,0]) #origin of walk

47 its = 250 #number of simulations for each proposed mutation

48 trace = np.zeros((maxit ,2)) #this was used to create the travel path of the evo alg.

49

50 for n in range(maxit):

51

52 #construct 25 nearby mutations in parameter space

53 #note : diversity of mutations depend directly on d1 & d2 , see below

54

55 trace[n,:] = [m,b]

56 success_rates = np.zeros ((5 ,5))

57 b_s = np.array ([(1/ d1)*b ,0.5*(((1/ d1)*b)+b),b ,0.5*((d1*b)+b),b*d1])

58 m_s = np.array ([(1/ d2)*m ,0.5*(((1/ d2)*m)+m),m ,0.5*((d2*m)+m),m*d2])

59

60 #simulate each mutation over many iterations to approximate survival rate

61 for i in range (5):

62 for j in range (5):

63 for n in range(0,its):

64 #find travel path

65 pos_track = take_levy_steps(x_0 ,N,b_s[i],m_s[j],max_energy)

66

67 #constructing randomised food patches

67

68 f = np.random.uniform(low = -100,high = 100, size = 8)

69 food = np.array ([[f[0],f[1]] ,[f[2],f[3]] ,[f[4],f[5]] ,[f[6],f[7]]])

70 r = np.random.uniform(low = 5,high = 20, size = 4)

71

72 #if the animal hits the food , mark as success

73 pt = pos_track

74 for k in range (4):

75 if (((pt-food[k ,:])[: ,0]**2+(pt-food[k ,:])[: ,1]**2)**0.5). min()<r[k]:

76 success_rates[i,j] = success_rates[i,j] + 1

77 success_rates[i,j] = success_rates[i,j]/its

78 print(b,m)

79 print()

80 print(success_rates)

81 print()

82

83 #the most optimal mutation ’passes on its genes ’

84 b = b_s[np.where(success_rates == success_rates.max ())[0][0]]

85 m = m_s[np.where(success_rates == success_rates.max ())[1][0]]

86 print(’------------’)

87

88

89 #if all of the new mutations were less optimal than the previous generation ,

90 #the below code reduces the diversity of mutations to be closer to the previous

91 #generation

92

93 if np.where(success_rates == success_rates.max ())[0][0] == 2:

94 d1 = 1+0.5* np.abs(d1 -1)

95

96 if np.where(success_rates == success_rates.max ())[1][0] == 2:

97 d2 = 1+0.5* np.abs(d2 -1)

98

99 #plotting the travel path of the evolved animal

100 for u in range (50):

101

102 #plotting travel path

103 pos_track = take_levy_steps(np.array ([0,0]) ,500 ,b,m ,750)

104 f = np.random.uniform(low = -100,high = 100, size = 8)

105 food = np.array ([[f[0],f[1]] ,[f[2],f[3]] ,[f[4],f[5]] ,[f[6],f[7]]])

106 r = np.random.uniform(low = 5,high = 20, size = 4)

107

108 fig , ax = plt.subplots(figsize = (6 ,6))

109

110 #plotting food

111 for i in range (4):

112 circle2 = plt.Circle ((food[i,0],food[i,1]), r[i], color=’green ’, alpha = 0.5)

113 ax.add_artist(circle2)

114

115 ax.set_xlim ((-100, 100))

116 ax.set_ylim ((-100, 100))

117 ax.plot(pos_track [:,0],

68

118 pos_track [:,1],

119 color = ’k’,

120 linewidth = 1.1,

121 linestyle = ’dashed ’)

122 #ax.axis(’equal ’)

123 ax.grid(color=’k’, linestyle=’--’, linewidth =0.5, alpha = 0.4)

124 plt.show()

A.3 Connective Constant of the Union Jack Lattice

This section will first demonstrate the method of implementing a self-avoiding
walk numerically, before moving onto the methods of constructing upper and
lower bounds of the connective constant outlined in Section (2.2.2). Coding the
self-avoiding walk can be done by simply adding the self-avoidance constraint
to the simple random walk code. This constraint in pseudo code is ’If the co-
ordinate of the next step exists in the array of already traversed co-ordinates,
try a new step’. The code for this is given below:

Simulating the Self-Avoiding Walk:

1 #Simulating a self -avoiding walk on 2D square lattice

2

3 import numpy as np

4 import random

5 from matplotlib import pyplot as plt

6

7 def take_a_step(position):

8

9 #walker takes a step

10

11 steps = [[-1,0],[1,0],[0,1],[0,-1]]

12 new_step = np.array(random.choice(steps))

13 new_pos = position + new_step

14

15 return new_pos

16

17

18 N = 30 #number of steps

19

20 steps_til_trap = np.array ([])

21 for j in range (0,1): #this line allows for multiple SAWs to be produced at once

22

23 x = np.array ([[0 ,0]])

24 pos = x

25 pos_track = x

26 a = 0

27 for i in range(0,N):

28 pos = pos_track [-1,:]

29 pos = take_a_step(pos)

69

30

31 #SELF - AVOIDANCE CONSTRAINT

32 if np.any(np.all(pos_track == pos ,axis = 1) == True):

33 continue

34 else:

35 pos_track = np.vstack ((pos_track ,pos))

36

37 plt.figure(figsize = (6,6))

38 for i in range(1,len(pos_track [: ,0])):

39 plt.plot([pos_track[i-1,0],

40 pos_track[i,0]],

41 [pos_track[i-1,1],

42 pos_track[i,1]],

43 color = ’k’,

44 linewidth = 2.5)

45 plt.axis(’equal ’)

46 plt.grid(color=’k’, linestyle=’--’, linewidth =0.5, alpha = 0.4)

47 plt.show()

Moving onto the method of finder upper and lower bounds for the connective
constant of the Union Jack lattice, Keston’s Method of Irreducuble bridges can
be found in depth in Section (2.2.2.1), and Alm’s Method can be found in depth
in Section (2.2.2.2). The implementation of these methods required closely fol-
lowing the literature and making the necessary adjustments for the change in
lattice. In particular, the Union Jack lattice has two vertex classes (see Section
(2.2.2.2) for the definition) which meant that the construction of G(m,n) re-
quired the enumeration of self-avoiding walks starting at both of the different
vertex classes. This means that the implementation displays a more ’compli-
cated’ example of Alm’s method, compared to the Euclidean lattice for example.
It should also be noted that the code below does not explicitly demonstrate the
final step of Keston’s Method, which was computed manually for simplicity. To
calculate the largest eigenvalue of G(m,n) in Alm’s method, the Power Method
was implemented (see lines 98-109)[55].

The code for Alm’s Method and Keston’s Method of Irreducible bridges is
given below:

Keston’s Method of Irreducible Bridges:

1 #Kestons Method of Irreducible Bridges Applied to the Union Jack Lattice

2

3 import numpy as np

4 from matplotlib import pyplot as plt

5 from tqdm import tqdm

6

7 def take_a_step_bridges(saws):

8

9 #This function returns the bridges of a given length on the Union Jack Lattice

10

11 if saws[0,0,0] == 0:

70

12 x_0 = 0.5

13 else:

14 x_0 = 1

15

16 new_saws = np.array ([[[]]]);

17 for i in tqdm(range(0,saws.shape [0])):

18 if np.floor(saws[i,-1,0]) - saws[i,-1,0] == 0:

19 steps = [[0,1],

20 [1,0],

21 [0,-1],

22 [-1,0],

23 [0.5 ,0.5] ,

24 [0.5,-0.5],

25 [-0.5,-0.5],

26 [-0.5 ,0.5]]

27 for j in steps:

28 new_pos_ij = np.array([saws[i,-1] + j])

29 if np.any(np.all(saws[i,:]== new_pos_ij ,axis =1)== True) or new_pos_ij [0][0] < x_0:

30 continue

31 else:

32 new_walk_ij = np.append(saws[i,:], new_pos_ij ,axis = 0)

33 new_walk_ij = np.array([new_walk_ij])

34 if new_saws.shape [2] == 0:

35 new_saws = new_walk_ij

36 else:

37 new_saws = np.append(new_saws , new_walk_ij ,axis = 0)

38 else:

39 steps = [[0.5 ,0.5] ,

40 [0.5,-0.5],

41 [-0.5,-0.5],

42 [-0.5 ,0.5]]

43

44 for j in steps:

45 new_pos_ij = np.array([saws[i,-1] + j])

46

47 if np.any(np.all(saws[i,:]== new_pos_ij ,axis =1)== True) or new_pos_ij [0][0] < x_0:

48 continue

49 else:

50 new_walk_ij = np.append(saws[i,:], new_pos_ij ,axis = 0)

51 new_walk_ij = np.array([new_walk_ij])

52 if new_saws.shape [2] == 0:

53 new_saws = new_walk_ij

54 else:

55 new_saws = np.append(new_saws , new_walk_ij ,axis = 0)

56 c_n = int(new_saws.shape [0])

57 return new_saws ,c_n

58

59 #%%

60

61 N = 4 #length of bridge

71

62 b_n = [] #array to store the number of brigdes of length n

63 b_n_l = np.zeros((N,2*N))

64

65 #enumarating brigdes beginning at vertex class 0

66 for n in range(1,N):

67 new_saws = np.array ([[[0 ,0] ,[1 ,0]]])

68 for i in range(0,n):

69 new_saws ,c_n = take_a_step_bridges(new_saws)

70

71 K = []

72 new_bridges = new_saws

73 for k in range(0,new_saws.shape [0]):

74 if np.any(new_saws[k,:n+1,0] > new_saws[k,n+1 ,0]):

75 K = np.append(K,k)

76

77 new_bridges = np.delete(new_bridges ,K,0)

78 for i in range(0, new_bridges.shape [0]):

79 b_n_l[n,int(2* new_bridges[i,n+1,0]-1)] = b_n_l[n,int(2* new_bridges[i,n+1 ,0]) -1]+1

80

81 b_n = np.append(b_n ,new_bridges.shape [0])

82

83 b_n1 = []

84 b_n_l1 = np.zeros((N,2*N))

85

86 #enumarating brigdes beginning at vertex class 1

87 for n in range(1,N):

88 new_saws1 = np.array ([[[0 ,0] ,[0.5 ,0.5]]])

89 for i in range(0,n):

90 new_saws1 ,c_n1 = take_a_step_bridges(new_saws1)

91

92 K1 = []

93 new_bridges1 = new_saws1

94 for k in range(0, new_saws1.shape [0]):

95 if np.any(new_saws1[k,:n+1,0] > new_saws1[k,n+1 ,0]):

96 K1 = np.append(K1 ,k)

97

98 new_bridges1 = np.delete(new_bridges1 ,K1 ,0)

99 for i in range(0, new_bridges1.shape [0]):

100 b_n_l1[n,int (2* new_bridges1[i,n+1 ,0]) -1]= b_n_l1[n,int (2* new_bridges1[i,n+1 ,0]) -1]+1

101 b_n1 = np.append(b_n1 ,new_bridges1.shape [0])

102

103

104 b_n_l2 = b_n_l + b_n_l1

105

106 #summing the bridges of span l and similar length n

107 sums = np.zeros((b_n_l2.shape [0] ,1))

108 for i in range(b_n_l2.shape [0]):

109 sums[i] = b_n_l2[i,:]. sum()

72

Alm’s Method:

1 #Alms Method of Finding Upper Bounds Applied to the Union Jack Lattice

2

3 #PLEASE NOTE : lines 78 and 91 in the code have been edited for

4 # display purposes , a simple re -edit will make the

5 # code once again usable for general use

6

7 import numpy as np

8 from matplotlib import pyplot as plt

9 from tqdm import tqdm

10

11 def take_a_step(current_walks):

12

13 #This function enumarates the number self -avoiding walks of a given length

14

15 new_valid_walks = np.array ([[[]]]);

16 for i in range(0, current_walks.shape [0]):

17 if np.floor(current_walks[i,-1,0]) - current_walks[i,-1,0] == 0:

18 steps = [[0,1],

19 [1,0],

20 [0,-1],

21 [-1,0],

22 [0.5 ,0.5] ,

23 [0.5,-0.5],

24 [-0.5,-0.5],

25 [-0.5 ,0.5]]

26 for j in steps:

27 new_pos_ij = np.array([current_walks[i,-1] + j])

28 if np.any(np.all(current_walks[i,:] == new_pos_ij ,axis = 1) == True):

29 continue

30 else:

31 new_walk_ij = np.append(current_walks[i,:], new_pos_ij ,axis = 0)

32 new_walk_ij = np.array([new_walk_ij])

33 if new_valid_walks.shape [2] == 0:

34 new_valid_walks = new_walk_ij

35 else:

36 new_valid_walks = np.append(new_valid_walks , new_walk_ij ,axis = 0)

37 else:

38 steps = [[0.5 ,0.5] ,

39 [0.5,-0.5],

40 [-0.5,-0.5],

41 [-0.5 ,0.5]]

42

43 for j in steps:

44 new_pos_ij = np.array([current_walks[i,-1] + j])

45

46 if np.any(np.all(current_walks[i,:] == new_pos_ij ,axis = 1) == True):

47 continue

48 else:

73

49 new_walk_ij = np.append(current_walks[i,:], new_pos_ij ,axis = 0)

50 new_walk_ij = np.array([new_walk_ij])

51 if new_valid_walks.shape [2] == 0:

52 new_valid_walks = new_walk_ij

53 else:

54 new_valid_walks = np.append(new_valid_walks , new_walk_ij ,axis = 0)

55 c_n = int(new_valid_walks.shape [0])

56 return new_valid_walks ,c_n

57

58

59 def generate_G(n,m,new_walks0 ,new_walks0_m ,new_walks1 ,new_walks1_m , F_m):

60

61 #This function generates the G matrix described in Alms Method

62

63 num00 = int(c_n0[m-1]) #number of m-walks starting at node 0

64 num01 = int(c_n0[N-1]) #number of N-walks starting at node 0

65 num10 = int(c_n1[m-1]) #number of m-walks starting at node 1

66 num11 = int(c_n1[N-1]) #number of N-walks starting at node 1

67 num20 = int(c_n0[m-1] + c_n1[m-1]) #number of m-walks starting at either node

68 G = np.zeros((num20 ,num20))

69

70

71 #finding number of n-step walks starting with a particular m-step walk and

72 #ending with a translation of another m-step walk for a vertex class 0

73

74 for k in range(0,num01):

75 for j in range(0,num00):

76 if np.all(new_walks0[k,:m+1,:] == new_walks0_m[j,:m+1 ,:]):

77 for i in range(0,num20):

78 if np.all(new_walks0[k,N-m:,:]- new_walks0[k,N-m,:]+np.abs(np.floor(

79 new_walks0[k,N-m,:])- new_walks0[k,N-m ,:])== F_m[i,:m+1 ,:]):

80 G[j,i] = G[j,i] + 1

81 break

82 break

83

84 #finding the number of n-step walks starting with a particular m-step walk and

85 #ending with a translation of another m-step walk for a vertex class 1

86

87 for k in range(0,num11):

88 for j in range(0,num10):

89 if np.all(new_walks1[k,:m+1,:] == new_walks1_m[j,:m+1 ,:]):

90 for i in range(0,num20):

91 if np.all(new_walks1[k,N-m:,:]- new_walks1[k,N-m,:]+np.abs(np.floor(

92 new_walks1[k,N-m,:])- new_walks1[k,N-m,:]) == F_m[i,:m+1 ,:]):

93 G[j+num00 ,i] = G[j+num00 ,i] + 1

94 break

95 break

96 return G

97

98 def power_method(G,n):

74

99

100 #This function utilises the power method of finding the largest

101 #Eigenvale of a matrix

102

103 G = np.matrix(G)

104 v_k = np.matrix(np.random.rand(G.shape [1]))

105 for i in range(0,n):

106 G_k = v_k*G

107 alpha_k = G_k.max()

108 v_k = G_k *(1/ alpha_k)

109 return alpha_k

110

111 #%%

112

113 N_max = 5 #N-step walks to enumarate

114 M_max = 3 #M-step walks to enumarate

115

116 mu = np.zeros((N_max+1,M_max +1))

117 for b in tqdm(range (2 ,5)):

118 for c in range (1,3):

119 if c < b:

120 N = b #N steps

121 m = c

122 new_walks0 = np.array ([[[0 ,0]]])

123 new_walks1 = np.array ([[[0.5 ,0.5]]])

124 c_n0 = np.zeros(N)

125 c_n1 = np.zeros(N)

126

127 for i in range(0,N):

128 new_walks0 ,c_n0[i] = take_a_step(new_walks0)

129 if i == m-1:

130 new_walks0_m = new_walks0

131

132 for i in range(0,N):

133 new_walks1 ,c_n1[i] = take_a_step(new_walks1)

134 if i == m-1:

135 new_walks1_m = new_walks1

136

137 F_m = np.append(new_walks0_m ,new_walks1_m , axis = 0)

138

139 G = generate_G(N,m,new_walks0 ,new_walks0_m ,new_walks1 ,new_walks1_m , F_m)

140

141 beta = 0 # shift coefficient for power method

142 mu[N,m] = power_method(G - beta*np.identity(G.shape [1]) ,20)**(1/(N-m))

75

A.4 Narrow Escape Problem

The new method of analysis for the Narrow Escape Problem developed in
Section (3.4) required the numerical construction of a Markov chain in order to
compute the PDF, CDF and expectation of the escape time Et. The implemen-
tation of this follows simple steps:

1. Construct system of vertices

2. Construct system of edges

3. Calculate transition matrix P

4. Calculate E(Et) from Eq. (50) and method described in Section (3.4.2)

These steps can be seen in the following code:

Narrow Escape Problem Analysis:

1 #Finding the expected escape time for the Narrow Escape Time by modelling as

2 #a Markov chain

3

4 import numpy as np

5 from tqdm import tqdm

6 from matplotlib import pyplot as plt

7

8 n = 5 #width/length of grid i.e. resoulation of discrete approximation

9

10 #constructing system of vertices

11 x_coords = np.linspace(0,n-1,n)

12 y_coords = np.linspace(0,n-1,n)

13 transition_matrix = np.zeros ((n**2,n**2))

14 graph = np.zeros((n**2 ,2))

15

16 for j in range(0,n):

17 for i in range(0,n):

18 graph[n*j+i,0] = x_coords[i]

19 graph[n*j+i,1] = y_coords[j]

20

21

22 #constructing set of edges and transition matrix

23 for k in range(n**2):

24 neighbours=np.array(np.where(abs(graph[k,1]- graph [: ,1])+ abs(graph[k,0]- graph [: ,0]) <1.1))[0]

25 neighbours = np.delete(neighbours , np.where(neighbours == k), axis =0)

26 d = len(neighbours)

27 for l in neighbours:

28 transition_matrix[k,l] = 1/d

29

30 transition_matrix [0,:] = np.zeros ((1,n**2))

31 transition_matrix [0,0] = 1

32

76

33

34 #calculating pdf ,cdf and expectation for time of escape E_t

35 its = 1000 #up to 2*its steps

36 cdf = np.zeros ((its ,1))

37 pdf = np.zeros ((its ,1))

38 ratio_termdif = np.zeros ((its -2 ,1))

39 expectation = 0

40

41 for i in range(its):

42 tmatrix = np.matrix(transition_matrix)**(2*i+2*(n-1))

43 cdf[i] = tmatrix[n**2-1,0]

44

45 for i in range(its -1):

46 pdf[i+1] = cdf[i+1]-cdf[i]

47 pdf[0] = cdf[0]

48

49 for i in range(its -2):

50 ratio_termdif[i] =pdf[i+1]/ pdf[i]

51

52 for i in range(its):

53 expectation = expectation + (2*i+2*(n-1))* pdf[i]

77

	Introduction
	Theory & Methods
	Markovian Random Walks
	One Dimensional Simple Random Walks
	Two Dimensional Simple Random Walks
	The Monte-Carlo Method
	The Method of Relaxation

	Levy Flight

	Non-Markovian Random Walks
	Reinforced Random Walks
	Self-Avoiding Walks
	Lower Bounds for
	Upper Bounds for

	Brownian Motion

	Results & Simulations
	Simple Random Walk
	One Dimensional Simple Random Walk
	Two Dimensional Simple Random Walk

	Levy Flight Foraging Hypothesis
	Comparison with Simple Random Walk
	Evolutionary Algorithm

	Connective Constant of the Union Jack Lattice
	Upper Bound
	Lower Bound
	Extrapolation

	Narrow Escape Problem
	Method
	Analysis

	Extension to Reinforced Random Walks
	Definition
	Examples

	Conclusion
	Implementation
	Simple Random Walk
	Levy Flight Foraging Hypothesis
	Connective Constant of the Union Jack Lattice
	Narrow Escape Problem

