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Abstract

This paper begins by familiarizing the reader with some graph-theoretical con-
cepts which are necessary to understand the Poison Game. Following a natural
order, previous results on the aforementioned game (namely, a characterization of
the existence of semi-kernels) will then be discussed. These results will, in turn,
set the ground for the introduction of a new game (which will be referred to as
the Local Poison Game). Thereafter, original results on the Local Poison Game
(namely, a characterization of the membership to a semi-kernel) will be provided.
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1 Introduction

In mathematics, it is often the case that, once an object has been defined, and
rules regarding how this object interacts with others have been provided, patterns
arise. Thus, it shouldn’t come as a surprise to find that different games (which
boil down to different sets of rules) characterize different properties of the graphs
on which they are played.

Due to the fact that there exists a great variety of different games played on
graphs, it is easier to study them by grouping them into categories according to
the rules that define them[1]. Some popular categories are "Meet/Avoid" games,
"Sabotage" games, and "Travel" games. As seen in [4], some Meet/Avoid games
such as the Cops and Robber Game, are useful for characterizing the existence of
a certain type of structure in a graph called "corner", and a certain type of graph
called "dismantlable". Furthermore, Meet/Avoid games have real life applications
that range from the minimization of the required staff members to cover a certain
geographical area to the creation of popular arcade games such as Pac-Man[4].
In a similar fashion, "Sabotage" games are used to characterize the validity of
some first order logic statements[2], and have applications such as modeling the
learning process between a student and a teacher[10]1. This paper, however, will
focus on games that fall in the category of Travel games. In particular, a special
emphasis on a game known as the Poison Game, and a new variation of this game
which will be referred to as the Local Poison Game, will be made. As will be
discussed further on, such games have many different applications both within
academia (in other related branches of science such as, for example, computer
science) and outside academia (modelling real world scenarios2).

It may be important to note that Graph Theory is not the only field of study
concerned with the Poison Game (and its variations). In fact, whilst "Poison
Game" is the name used by authors who study the characterizations of this game
from a graph-theoretical point of view (such as [6] and [8]), there are other authors
(such as [11] and [13]) who prefer to use an abstract-argumentation-theoretical
point of view, and thus, refer to the "Poison Game" as the "Game for Credulous
Acceptance". In Abstract Argumentation Theory[11], a graph is known as an
argumentation framework, and the nodes in it represent represent bits of infor-
mation which are used as arguments. The directed arcs that go from one node to

1For more information on Meet/Avoid games, and Sabotage games, as well as their respective
characterizations, the reader may refer to Appendix D.

2For more information on the applications of the characterizations of Travel games, the
reader may refer to Appendix C.

1
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another, represent an attack relation that indicates which arguments may be used
as a counter-argument to another argument (i.e: Which arguments attack other
arguments.). Under this theory, the Game for Credulous Acceptance character-
izes the existence of a structure called "Credulously Admissible Argument". One
of the most important properties of such a structure is that (as a consequence of
the way it is constructed) it represents a set of arguments which, together, form
a coherent and strong idea[13].

Under a graph-theoretical approach, credulously admissible arguments are
known as semi-kernels, and it will be the main concern of this paper to show that
while the Poison Game characterizes existence, the Local Poison Game char-
acterizes membership to such structures. For convenience purposes, the graph-
theoretical approach will be used throughout; as well as some fundamental aspects
of notation as seen in [6] and [8].

Finally, most of the relevant concepts will be explained in the first sections of
this paper; however for more information on elementary graph theory the reader
may find it helpful to consult the first chapter of [3].

2



Rijksuniversiteit Groningen Víctor Guerrero Gutiérrez

2 Outline

This paper will begin by providing some elementary definitions which will allow
the reader to have a basic understanding of key concepts which will be frequently
referred to throughout the paper. After each definition, a graphical example and
a small description of it will be given.

Once the key concepts have been covered, previous results from [6] concerning
the Poison game will be explained. Once again, graphical examples will be given
in order to make the paper easier to follow.

Finally, original content will be presented. This will be done, first, by pro-
viding the reader with a few more definitions (and their corresponding examples)
and then by introducing the new game (the Local Poison Game). Lastly, results
related to this new game will be proved using the definitions that were previously
introduced and following similar proof structures as those seen in [6] and [13].

For a clearer, deeper, understanding of the Local Poison Game, and the graph-
theoretical concepts orbiting around it the reader may consult the Appendices.

- Appendix A contains an original result (Lemma A.1) regarding the relation
between strong node congruence and player A’s winning strategy.

- Appendix B Contains an important observation regarding chordless even
cycles and player A’s winning strategy.

- Appendix C provides the reader with an example of one of the possible
applications semi-kernels have when modeling real life scenarios.

- Appendix D gives a more detailed account (compared to that of the intro-
duction of this paper) on how other games characterize certain properties
of the graphs on which they are played.

3
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3 Elementary Definitions

The following section contains key concepts (some of which appear in [6] [8]) that
will be needed to understand the role that a certain type of structure (called
"semi-kernel") plays in determining the outcome of the Poison game.

The set of nodes in graph D will be referred to as V (D)3, and the set of arcs
as F (D). Since the direction of the arcs is relevant in this paper, ek = (xi, xj)

with i, j, k ∈ N will represent an arc that goes from node xi to node xj.

Definition 1 (Loop). A loop is an arc (ek) such that ek ∈ F (D) : ek = (xi, xi)

with xi ∈ V (D) and i, j, k ∈ N. In other words, it is an arc such that the node it
departs from is the same node it arrives to.

Example 1.1. Graphically, a loop looks like this:

xi

Figure 1

Definition 2 (Multiple Arcs). A graph D is said to have multiple arcs if:
∃ek, el, em, · · · ∈ F (D) : ek = el = em = · · · = (xi, xj) with xi, xj ∈ V (D) and
i, j, k, l,m, · · · ∈ N. In other words, if there exist several arcs that depart from
the same node (xi) and arrive to the same node (xj)4, these are called multiple
arcs.

Example 2.1. Figure 2 shows how multiple arcs look like:

xi xj

e1
e2

e3

e4
e5

Figure 2

3Empty graphs will not be discussed here. Thus, it shall be assumed that V (D) 6= ∅
throughout.

4Assuming that the starting node and the ending one are different (i.e: xi 6= xj)

4
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Remark. Note that although multiple arcs are not allowed in directed graphs,
the existence of an arc from node xi to node xj and an arc from node xj to node
xi is because the starting point and the ending one are different.

Definition 3 (Directed Graph). A directed graph is a graph with no loops and
no multiple arcs.

Example 3.1. The following is an example of a simple (finite) directed graph:

x1 x2

x3 x4

Figure 3

Definition 4 (Successor). A node xj is said to be the successor of a node xi if
∃ek ∈ F (D) : ek = (xi, xj) with xi, xj ∈ V (D) and i, j, k ∈ N. In other words,
node xj is said to be the successor of node xi if there exists an arc going from xi

to xj.

Example 4.1. For the graph in Figure 4, x2 is said to be the successor of x1

x1 x2

Figure 4

Definition 5 (Successors Set). The successors set Γ+
D of a subset Si of nodes in

graph D will be denoted by Γ+
D(Si), and will be defined by: Γ+

D(Si) = {xm ∈
V (D)|∃ek ∈ F (D) : ek = (xj, xm), xj ∈ Si}. In other words, set Γ+

D(Si) is defined
as the set of vertices in graph D for which there exists an arc going from any of
the nodes in Si to any other node in D.5

Example 5.1. Note that different subsets of graph D have different successors
sets. For graph D in Figure 5 it can be said that: S1 = {x4} =⇒ Γ+

D(S1) =

{x2, x3, x5, x6} while S2 = {x2, x3} =⇒ Γ+
D(S2) = {x1, x5, x6}.

5Note that although Γ+
D is defined on subsets Si, throughout this paper, if the subset (Si)

contains only one node (xn), then the following will be equivalent: Γ+
D(xn) = Γ+

D({xn}) =
Γ+
D(Si) for Si = {xn}.

5
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x1 x2

x3 x4

x5

x6

Figure 5

Definition 6 (Successors Sequence). A successors sequence (denoted by σi =

xj, xk, xl. . . . ), is an ordered list of nodes in graph D such that any element (e.g:
xk) listed immediately to the right of any other element (e.g: xj) is a successor
of the latter in graph D (i.e: node xk should be a successor of node xj in graph
D).

Remark. Note that successors sequences may be numbered by a sub-index; this
is because a graph D may have more than one successors sequence6. Also note
that a node may appear several times in a successors sequence.

Example 6.1. The following are successors sequences for the graph in Figure 6:

σ1 = x1, x2

σ2 = x1, x4, x6

σ3 = x2, x3, x4, x5, x3, x4, x6

x1 x2

x3 x4

x5 x6

Figure 6

6In fact, if graph D is finite there will be a finite number of successors sequences, but if
graph D is infinite it is possible for there to be uncountably many successors sequences.

6
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Definition 7 (Position). In the context of games played on graphs7, a successors
sequence may also be referred to as a position and will represent a (possibly par-
tial) run of a game on a given graph. Since a position is, essentially, a successors
sequence, it will be denoted by σjk. Thus, saying that it is player i’s 8 turn on
position σjk will mean that player i must select a successor of the last node in
σjk. By doing so, the state of the successors sequence σjk will change. As a conse-
quence, its upper index will shift from j to j + 1, and the node player i selected
will become the last node of position σj+1

k .

Remark. Observe that this notation emphasizes the fact that, in the context of
games played on graphs, a successors sequence σk is not something predetermined,
but rather something that is constructed as players take turns selecting nodes in
the graph. It is, therefore, quite convenient to have an upper index that allows
for distinctions between different states of the same successors sequence.

Example 7.1. Assume that a very simple game named G′ is played on the graph
D in Figure 7. This game (G′) will be defined on any finite non-cyclic graph D
and will consist of two players (named A and B) that take turns selecting nodes
in D. Player B will begin at whichever node happens to be labeled x1, and who-
ever selects a node for which there is no successor wins the game.

In this case, σ1
1 = x1 represents the first position for which it is player A’s turn.

Since there is only one option for player A to chose as a successor (namely, node
x2), by selecting it the state of the successors sequence σ1

1 = x1 will change to
σ2
1 = x1, x2. This new state represents a position in which it is player B’s turn. In

a similar fashion, since the only available option is node x3 by selecting it, player
B will update the successors sequence σ1 from σ2

1 = x1, x2 to σ3
1 = x1, x2, x3.

So, once again, σ3
1 = x1, x2, x3 will then be a position in which it is player A’s

turn. The process will continue until player B wins the game by selecting node
x5. At this point, σ1 will cease to be a partial run of the game and will become
a complete one.

x1 x3 x5x2 x4

Figure 7

Definition 8 (Position Set). The position set for player i will be denoted by Σi,
and defined as: Σi = {σjk| it is player i’s turn on position σjk}. In other words, Σi

will consist of all the positions σjk for which it is player i’s turn.
7In particular, games that involve selecting successive nodes.
8Note that i represents any of the players in the game. For example, in a game with two

players (players A and B), it can be said that: i ∈ {A,B}.

7
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Example 8.1. Recalling positions σj1 from Example and Figure 7, it may be said
that:

ΣA = {σ1
1, σ

1
3}

ΣB = {σ2
1, σ

4
3}

Definition 9 (Independent Set). A subset Si of the nodes in D is an independent
set if: ∀xi ∈ Si then xi /∈ Γ+

D(Si) with Si ⊂ V (D). In other words, Si is an
independent set if no element of Si is contained in the successors set of Si.

Example 9.1. Sets S1 = {x1, x3, x5} and S2 = {x2, x4} form independent sets
for the graph in Figure 8.

x1

x2

x3

x4

x5

Figure 8

Definition 10 (Semi-kernel). A subset Si of the nodes in D is a semi-kernel if
Si is independent and ∀xm ∈ Γ+

D(Si)∃ek ∈ F (D) : ek = (xm, xj) with xj ∈ Si.
In other words, a semi-kernel is a subset Si of the nodes in D such that Si is
an independent set and for every node in the successors set of Si there is an arc
going from this node to any node in Si.

Example 10.1. Sets S1 = {x1, x3, x5} and S2 = {x2, x4, x6} are both semi-kernels
in the graph shown below.

x1

x2

x3

x4

x5

x6

Figure 9

Definition 11 (Strategy). A strategy for player i is a function such that:
fi : Σi −→ V (D). In other words, a strategy for player i is a function (fi) that
tells player i which node to select when it is his or her turn. The domain of fi is
defined on the set of all positions for which it is player i’s turn, and the co-domain
is defined on the set of nodes belonging to the graph on which the game is being
played.

8
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Example 11.1. Recalling game G′ presented in Example 7, and playing it on
graph D in Figure 10, it may be said that for position σ1

1 = x1 it is playerA’s
turn. Assume her strategy tells her to select node x3 (or, in mathematical terms:
fA(σ1

1) = x3). Thus, by doing so, σ1 is updated from σ1
1 = x1 to σ2

1 = x1, x3.
It will then be player B’s turn again, and, assuming that his strategy tells him
to select node x4 (or, in mathematical terms: fB(σ2

1) = x4), this node will then
be part of σ1. Finally, it will be player A’s turn on position σ3

1 = x1, x3, x4,
and assuming her strategy tells her to select node x5 (in mathematical terms:
fA(σ3

1) = x5), the game will come to and end and player A will be the winner.

x2

x6 x7

x1 x4x3 x5

Figure 10

Definition 12 (Winning Strategy). A winning strategy for player i is a strategy
fWi : Σi −→ V (D) such that it determines a successors sequence ending with a
win for player i regardless of the strategy of the other player. A node xm is said
to belong to player i’s winning strategy if: fWi (σjk) = xm for some position σjk.
In other words, xm belongs to player i’s winning strategy fWi if it is the result of
applying the winning strategy to a position σjk for which it is player i’s turn.

Remark. Note that the existence of a winning strategy for player i depends on
the graph and the game that will be played on it. A player may have more than
one winning strategy on a given graph, or may not have one at all.

Example 12.1. Assume that the simple game G′ is played on graph D in Figure
11. It is clear that node x3 doesn’t belong to player A’s winning strategy because
if she selects it, then that would allow player B to select node x5 and become the
winner (in mathematical terms: fWA (σ1

1) 6= x3 for σ1
1 = x1). On the other other

hand, it is clear that node x2 must belong to player A’s winning strategy, since
by selecting it she will force the successors sequence σ1 to end in a win for her
(in mathematical terms: fWA (σ1

1) = x2 for σ1
1 = x1). By selecting node x2, σ1 is

updated from σ1
1 = x1 to σ2

1 = x1, x2. Then, since node x4 is the only possible
successor to node x2 player B’s strategy will consist of selecting this node (in
mathematical terms: fB(σ2

1) = x4 for σ2
1 = x1, x2). As always, by selecting node

9
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x4, successors sequence σ1 will be updated from σ2
1 = x1, x2 to σ3

1 = x1, x2, x4.
Finally, player A’s winning strategy will tell her to select node x5 and end the
game. Thus, σ1 becomes a complete run of the game by being updated from
σ3
1 = x1, x2, x4 to σ4

1 = x1, x2, x4, x5. Player A is the winner, and the nodes that
belong to her winning strategy are x2 and x5.

x3x1

x4x2

x5

Figure 11

Example 12.2. Note, however, that if the initial setting changes, then player A
may no longer have a winning strategy. Such is the case of the graph D in Figure
12. Under this new configuration of the graph previously seen in Figure 11 the
only possible outcome results in player B winning the game. Since node x1 is
given as the initial setting and is not actually chosen by player B, it can only be
said that node x3 belongs to player B’s winning strategy.

x4x5

x1

x3

x2

Figure 12

10
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4 The Poison Game

Now that the ground has been set, the rules of the Poison Game will be intro-
duced. Although the rules as seen in [6] are the same, the presentation will be
slightly modified9, and the win/lose conditions from [11] will be used with the
intention of making the game easier to understand. As always, some graphical
examples will be provided afterwards.

Definition 13 (Poison Game). Given a directed graph D, the Poison Game on
graph D is defined by the following set of rules:

I. Players A and B take turns selecting consecutive nodes in D.

II. Player A makes the first move by selecting a node of her choice.

III. By selecting a node, player B poisons it. This means that player A cannot
select a node that has been selected by B in any previous turn.

IV. Player B wins if player A cannot select a node that succeeds the last node
chosen by B.

V. Player A wins in any other scenario.

Example 13.1. Assume the Poison Game is played on graph D in Figure 13,
and that player A begins by selecting node x1 (in mathematical terms: fWA (σ0

1) =

x1 for σ0
1 = ∅). Player B’s strategy will then consist of selecting node x2 (in

mathematical terms: fB(σ1
1) = x2 for σ1

1 = x1). Finally, player A’s (winning)
strategy will tell her to select node x3 and end the game (in mathematical terms:
fWA (σ2

1) = x2 for σ2
1 = x1, x2). So, in this run of the game, player A wins, and

nodes x1 and x3 belong to her winning strategy.

x2x1 x3

Figure 13

9Compared to that in [6].

11
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Example 13.2. However, if player A selects a different node for her first move,
it may be case that player B now has the winning strategy. Using the same graph
D from Figure 13, if player A selects node x2 on her first move (in mathematical
terms: fA(σ0

1) = x2 for σ0
1 = ∅), then player B’s winning strategy will tell him

to select node x3 and end the game (in mathematical terms: fWB (σ1
1) = x3 for

σ1
1 = x2). So, in this second run of the game, player B wins and only node x3

belongs to his winning strategy.

x1 x3x2

Figure 14

Example 13.3. Now consider graph D in Figure 15. Note that there are several
different successors sequences σi that could lead to the coloring seen on graph D.
However, assume that player A’s winning strategy tells her to select node x1 for
her first move. Player B’s strategy will then consist in selecting node x2. In turn,
player A’s winning strategy will drive her to select node x3; and, as a reply to
this, player B’s strategy will tell him to select node x6. Player A can select node
x3 again (since it belongs to her winning strategy), and player B can select node
x4 this time. Then, following her winning strategy, player A will select node x5
while player B’s strategy will tell him to select node x6 once more. Finally, player
A will select node x1. At this point it is safe to call the game to an end, since
all of the nodes have been selected and it is clear that no matter which node
player B selects, player A will always be able to select a successive node that
belongs to her winning strategy (i.e: the run for this game σ1 can be continued
indefinitely). So, just to recap, this particular run of the game should look like:
σ1 = x1, x2, x3, x6, x3, x4, x5, x6, x1, . . . . Player A has a winning strategy on this
graph, and the nodes belonging to it are x1, x3 and x5.

x2 x4x6

x1 x3 x5

Figure 15

Remark. Note that player A has a winning strategy in this graph no matter
which node she selects for her initial move. Under another run of the game,
nodes x2, x4 and x6 could have belonged to her winning strategy instead of nodes
x1, x3 and x5.

12
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Example 13.4. Considering the graph in Figure 16, player A decides not to
choose neither of the nodes x2 (because doing so would allow player B to select
node x3 and win the game) nor x4 (because this would invariably end with player
B selecting node x3 and thereby winning the game). So assume that player A’s
winning strategy tells her to select node x1 for her first move (i.e: fWA (σ0

1) = x1 for
σ0
1 = ∅). Player B’s strategy will then tell him to select node x2 (i.e: fB(σ1

1) = x2

for σ1
1 = x1). Observe that now, at position σ2

1 = x1, x2 player A can either
select node x4 or x3. Clearly, as explained earlier, node x4 does not belong to her
winning strategy; so player A decides to select node x3 and win the game (i.e:
fWA (σ2

1) = x3 for σ2
1 = x1, x2).

x4 x5

x2x1 x3

Figure 16

Example 13.5. For graph D in Figure 17 It doesn’t matter which node player A
selects for her first move, in the end two nodes will belong to player A’s (winning)
strategy, and two nodes will belong to player B’s strategy. The Poison Game can
have an infinite run in a graph D, thus it is considered a win for A.

x1 x3

x2

x4

Figure 17

Example 13.6. Unlike the situation in Figure 17, player A no longer has a
winning strategy for the graph in Figure 18 regardless of the node she selects
for her first move. In particular, assume player A’s strategy tells her to select
node x2 for her first move (i.e: fA(σ0

1) = x2 for σ0
1 = ∅). Then, due to a lack of

other options, player B’s winning strategy will tell him to poison node x3 (i.e:
fWB (σ1

1) = x3 for σ1
1 = x2). Both players will then continue to take turns selecting

13
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nodes until player A’s strategy tells her to select node x1 (i.e: fA(σ4
1) = x1 for

σ4
1 = x2, x3, x4, x5). At this point, player B’s winning strategy will tell him to

poison node x2. Note that this node had previously been selected by player A on
her first turn10 (i.e: fWB (σ5

1) = x2 for σ5
1 = x2, x3, x4, x5, x1). By poisoning node

x2, player A is rendered unable to select a successor, since the only successor for
node x2 is node x3 but the latter has already been poisoned by player B. Thus,
player B wins the game.

x2

x3

x5

x1

x4

Figure 18

Example 13.7. As a final example, imagine that graph D is as seen in Figure
19. Notice that this is an infinite graph for which each node xi has xi+1 as its
successor. In this graph, player A may select any node for her first move and
still have a winning strategy since she will always be able to select an unpoisoned
successor for any node poisoned by player B. In other words, player A has a
winning strategy because for any node xi that player B poisons in his turn,
player A will always be able to select node xi+1 due to the fact that the graph is
infinite.

x1 xn+1 xn+3xn xn+2. . . . . .

Figure 19

10To illustrate this, node x2 is depicted with a green filling and a red border.
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5 Results on the Poison Game

As seen in [6], this section will present results that explain the conditions under
which player A has a winning strategy when the Poison Game is played on a
graph (D). Before these results are presented, some more definitions shall be
provided:

Definition 14 (Path). If, given a successors sequence σi, it is the case that
∀xj, xk ∈ V (D) : σi = . . . , xj, . . . , xk, . . . and xj 6= xk, then successors sequence
σi is referred to as a path. In other words, if all the nodes that are part of a
successors sequence σi are different from one another, then σi may be referred to
as a path.

Example 14.1. Considering graph D in Figure 20, it may be said that σ1 =

x1, x2, x4, x5 and σ2 = x1, x3, x4 are paths because none of the nodes in them
appear more than once. However, successors sequence σ3 = x1, x2, x4, x5, x4, x5 is
not a path since nodes x4 and x5 appear more than once.

x1

x2

x3

x4

x5

Figure 20

Definition 15 (Outwardly Finite Graph). A graph is outwardly finite if there is
a finite number of successors for each of the nodes of the graph.

Example 15.1. It can be seen from graph D in Figure 21 that each of the nodes
has a finite number of successors. Namely: Γ+

D(x1) = {x2, x3} , Γ+
D(x2) = {x4}

, Γ+
D(x3) = {x2} ,and Γ+

D(x4) = {x2}. Thus, it can be said that graph D is an
outwardly finite graph.

x1

x2

x3

x4

Figure 21
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Definition 16 (Progressively Finite Graph). In a similar fashion, a graph is
called progressively finite if none of the nodes are the origin of an infinite path.

Example 16.1. Recall that a path is a successors sequence in which no node
appears more than once. Then, focusing on graph D in Figure 22, it becomes
evident that the longest paths that stem from node x1 are either σ1 = x1, x2, x3

or σ2 = x1, x3, x2
11. Similarly, the longest paths that stem from nodes x2 and x3

respectively are: σ3 = x2, x3 and σ4 = x3, x2. All of these paths are finite, hence
the graph in Figure 22 is progressively finite.

x1

x2

x3

Figure 22

Now that these additional definitions have been explained, the results ob-
tained by P.Duchet and H.Meyniel in [6] will be stated and a proof12 will be
provided.

Theorem 1 (Characterization of the Existence of Semi-kernels). Let D be a
progressively and outwardly finite graph. Player A has a winning strategy if and
only if D has a semi-kernel.

Proof. Since Theorem 1 involves an if and only if statement, both directions need
to be proved. The first half of this proof will show that the statement is true when
going from left to right. Naturally, the second half will show that the statement
is also true when going from right to left.

Left-to-Right: Assume that player A has a winning strategy. Assume also,
as expected, that she makes her first move on one of the nodes that belong to
her winning strategy. Now, notice that each time player A selects a node that
she had previously selected, player B has the opportunity to poison a different
successor. This, nonetheless does not represent an issue since it has been assumed
that player A has a winning strategy, meaning that she will always be able to

11Note that although there could be an infinite successors sequence which repeats nodes x2
and x3 indefinitely, this successors sequence cannot be considered a path since it constantly
repeats nodes.

12Following the proof in [6]
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select an unpoisoned13 successor of any node poisoned by player B during her
turn. These unpoisoned successors of the nodes selected by player B must be
independent because otherwise they could be poisoned by player B at some point
during the run of the game and this would contradict the assumption that player
A has a winning strategy. The set of independent nodes in D that are unpoi-
soned successors of the nodes selected by player B (in addition to the initial node
selected by player A) form a set which will be denoted by S (in mathematical
terms: S = {xn|xn is unpoisoned and ∀xn, xm ∈ S@el ∈ F (D) : el = (xn, xm)}).
Finally, notice that another consequence of player A having a winning strategy
is that all the successors of the nodes in the successors set of S must belong in
S since they must be independent and unpoisoned; otherwise A wouldn’t have a
winning strategy14.Therefore, the fact that A has a winning strategy implies the
existence of a semi-kernel in graph D.

Right-to-Left: Now assume that graph D has a semi-kernel, and player A
makes her first move on any of the nodes in this semi-kernel (which will be denoted
by S). Since player A selected a node in the semi-kernel S, then by definition, any
successor poisoned by B will not be in S since all of the nodes in the successors
set of S do not belong in S (in mathematical terms: ∀xj ∈ Γ+

D(S) =⇒ xj /∈ S).
Likewise, by definition, all the successors of the nodes in the successors set of S
will belong in S (in mathematical terms: ∀xi ∈ Γ+

D(xj) with xj ∈ Γ+
D(S) then

xi ∈ S). So no node in S can ever be poisoned by player B and A will have a
way of selecting a node in S each time B makes a move. Therefore, the existence
of a semi-kernel in graph D implies that player A has a winning strategy.

The Poison Game shows that, since player A is allowed to mark the beginning
of the game by selecting any node of her preference, the existence of a semi-kernel
in the directed graph on which the game is being played is enough to guarantee
that player A has a winning strategy. The game, thus, characterizes the existence
of semi-kernels in directed graphs. No attention is payed to the characterization
of the membership to semi-kernels since player A’s freedom of choice for her first
node determines whether or not the nodes she selects in future turns will belong
to a semi-kernel or not. In the following section, this possibility (namely, the
possibility of characterizing membership to semi-kernels) will be explored.

13If a node falls in the category of "unpoisoned" during a run of the Poison Game, then this
is because it was never selected by player B. In other words, such a node does not belong to
player B’s strategy. Thus it can be said that if node xm is unpoisoned this is the same as saying
that fB(σj

k) 6= xm for all positions σj
k.

14In mathematical terms: A has a winning strategy =⇒ ∀xn ∈ Γ+
D(S) then ∀xm ∈ Γ+

D(xn)
it will be the case that xm ∈ S
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6 The Local Poison Game

In this section, a variation of the Poison Game will be proposed. This variation
will have different rules to those of the Poison Game as seen in Section 4, but it
will attempt to maintain some essential aspects of the player’s allowed behavior.
After the rules have been provided, graphical examples will follow in order to give
the reader a better notion of how the new game works.

Definition 17 (Local Poison Game). Given a directed graph D, the Local Poison
Game on graph D is defined by the following set of rules:

I. A node, denoted by X, is given as the initial setting15.

II. Players A and B take turns selecting consecutive nodes on D.

III. Player B makes the first move by selecting a successor of node X.

IV. By selecting a node, player B poisons it. This means that player A cannot
select a node that has been selected by B in any previous turn.

V. Player B is allowed to backtrack16. By backtracking, player B ends a suc-
cessors sequence and begins a new one. The first node of the new successors
sequence is the node whose alternative successor is selected by B as a result
of backtracking.

VI. Player B wins if player A cannot select a node that succeeds the last node
chosen by B.

VII. Player A wins in any other scenario.

15Equivalently, it can be said that: σ1
1 = X is given as the initial position.

16Note that backtracking here means that player B is allowed to select a (possibly alternative)
successor of any of the nodes previously selected by A or a (possibly alternative) successor of
the initial node X.
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Example 17.1. The following is an example of the outcome of a run of the Local
Poison Game on graph D in Figure 23. Maintaining the color scheme used up
until now, nodes shaded in red were selected (poisoned) by player B, while nodes
shaded in green were selected by player A. The blank node (node X) is the one
given as the initial setting. There are several ways in which this outcome can be
reached; however, in order to illustrate the way backtracking works, this outcome
will be reached by using two successors sequences.

Since the initial node X is given, and (according to the game rules) player B
marks the beginning of the game by poisoning a successor of node X, it can then
be said that: fB(σ1

1) = x1 for σ1
1 = X. As with previous games, by poisoning

node x1 the state of σ1 will be updated from σ1
1 = X to σ2

1 = X, x1. Then,
player A’s winning strategy will tell her to select node x2 (i.e: fWA (σ2

1) = x2 for
σ2
1 = X, x1). Now, assume player B’s strategy tells him to poison node x7 (i.e:
fB(σ3

1) = x7 for σ3
1 = X, x1, x2), to which player A will respond by selecting

node x4 (i.e: fWA (σ4
1) = x4 for σ4

1 = X, x1, x2, x7). Naturally players B and
A will then select nodes x5 and x6 respectively. Thus, successors sequence σ1
should have the following shape at this point of the (partial) run of the game:
σ1 = X, x1, x2, x7, x4, x5, x6. However, since node x3 was never selected during this
partial run of the game, player B might backtrack in order to attempt to change
the outcome of the game. So assume, player B does backtrack, and by doing so,
he creates a new successors sequence σ2 and poisons an alternative successor of
node x2 (namely, node x3). This could be written as: fB(σ1

2) = x3 for σ1
2 = x2.

Player A’s winning strategy will then tell her to select node x4 once again (i.e:
fWA (σ2

2) = x4 for σ2
2 = x2, x3), and, naturally, the game will end with players

B and A selecting nodes x5 and x6 respectively. Thus, it can be said that this
particular outcome results from successors sequences σ1 = X, x1, x2, x7, x4, x5, x6

and σ2 = x2, x3, x4, x5, x6. This run of the game ends with player A being the
winner.

X

x1 x3 x5

x7

x2 x4 x6

Figure 23
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As was done when presenting the Poison Game, a few more examples will be
discussed.

Example 17.2. Consider graph D in Figure 24 17. Notice that regardless, of
the node that is given as the initial setting, payer A will always have a winning
strategy because for each node that player B poisons, player A will always be
able to select an unpoisoned successor. As is the case with many of the examples
provided in this paper, there are several ways that the coloring in graph D can
be attained. Assume, however that it is the result of player B’s strategy telling
him to select node x3 as the successor of X (i.e: fB(σ1

1) = x3 for σ1
1 = X).

Then, player A’s winning strategy might tell her to select the initial node X (i.e:
fWA (σ2

1) = X for σ2
1 = X, x3)18. To avoid the pointlessness of selecting node x3

once again, assume player B’s strategy tells him to poison node x1 this time (i.e:
fB(σ3

1) = x1 for σ3
1 = X, x3, X). Finally, player A’s winning strategy will tell her

to select node x2 (i.e: fWA (σ4
1) = x2 for σ4

1 = X, x3, X, x1). At this point it is
safe to say the game has ended with player A being the winner because there are
no unselected nodes which player B might try to poison by backtracking in an
attempt to change the outcome of the game, and extending successors sequence
σ1 indefinitely will not provide any new information since player A will always
select either node X or x2 and player B will always select either node x1 or x3.

X

x1

x3

x2

Figure 24

Example 17.3. Now consider graph D in Figure 25, and notice that regardless
of the node that is given as the initial setting, it will not be player A who has
a winning strategy, but rather player B. So, assume that the top node of graph
D is given to be node X. Then, player B’s winning strategy will tell him to
poison node x1 (i.e: fWB (σ1

1) = x1 for σ1
1 = X), to which player A will respond by

selecting node x2 (i.e: fA(σ2
1) = x2 for σ2

1 = X, x1). Finally, player B’s winning
17Notice that it is, in fact, the same graph as the one in Figure 17 except that this time the

Local Poison Game is being played on it.
18A green border will be used to represent that node X was given as the initial setting and,

during the run of the game, was selected by player A.
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strategy will tell him to select node X (i.e: fWB (σ3
1) = X for σ3

1 = X, x1, x2)19.
This will put an end to the game since player A will be unable to select an
unpoisoned successor.

X

x1x2

Figure 25

Example 17.4. Finally, consider graph D in Figure 26. Notice that it is an
infinite graph, and, in a very similar fashion to what was seen in Figure 19,
player A will always have a winning strategy no matter which node is given as
the initial setting (node X). This is due to the fact that, since the graph is
infinite, for any node xi poisoned by player B in his turn, player A will always
be able to reply by selecting node xi+1.

x1 X xn xn+2xn+1 xn+3. . . . . .

Figure 26

Now that the rules of the Local Poison Game (and an a couple examples) have
been given, some related, useful definitions will be provided. These definitions
will be required in order to state and prove results related to the Local Poison
Game.

19Recalling Figure 24, a red border will be used to represent that node X was given as the
initial setting and, during the run of the game, was selected by player B.
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7 Further Definitions

Definition 18 (Cycle). Given a graph D, a cycle (denoted by Ci) is a subset
of the nodes in V (D) for which ∃σk that includes all the nodes in Ci, and has
the following form: σk = xi, . . . , xj : xi = xj and ∀xm, xn : xm 6= xi or xn 6= xi

then xm 6= xn. In other words, a cycle is a subset Ci of the nodes in the graph,
that can be represented by a successors sequence (that includes all the nodes
in Ci) in which the first node is equal to the last node and all other nodes are
different from one another (i.e: if the last node of the successors sequence is
omitted, a path is formed by all the other nodes in the successors sequence). In
Ci, the i indicates the number of nodes that are part of the cycle. Observe that
cycles can be even or odd depending on the number of nodes that constitute them.

Example 18.1. It may be said that the graph in Figure 17 and the one in Figure
27 are both even cycles. Successors sequence σ1 = x1, x2, x3, x4, x1 describes the
even cycle of the form C4 in Figure 17 20. Meanwhile, the graph in Figure 27
has two different even cycles. The first one, of the form C4, consists of nodes
x1, x2, x3 and x6 (This cycle can be described by the following successors sequence:
σ1 = x1, x2, x3, x6, x1). The second cycle, of the form C6, includes all the nodes
in the graph; and can be described by the following successors sequence: σ2 =

x1, x2, x3, x4, x5, x6, x1.

x1

x2 x3

x4

x5x6

Figure 27

Example 18.2. Similarly, the graph in Figure 18 and the one in Figure 28 are
both odd cycles. Successors sequence σ1 = x1, x2, x3, x4, x5, x1 describes the odd
cycle of the form C5 in Figure 18. Meanwhile, the graph in Figure 28 has two
different odd cycles. The first one, of the form C5, consists of nodes x1, x2, x3, x6
and x7 (This cycle can be described by the following successors sequence: σ1 =

x1, x2, x3, x6, x7, x1). The second cycle, of the form C7, includes all the nodes
in the graph and can be described by the following successors sequence: σ2 =

x1, x2, x3, x4, x5, x6, x7, x1.
20Note it is even because it is a cycle that consists of 4 nodes.
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x1

x2

x3

x4

x5

x6x7

Figure 28

Definition 19 (Chordless Cycle). A cycle Ci for which ∀xm ∈ Ci then |Γ+
D(xm)∩

Ci| = 1 is called a chordless cycle. In other words, if all of the nodes that form
part of the cycle Ci have only one successor within the cycle then the cycle is said
to be chordless. A chordless cycle may be denoted by: C−i .

Example 19.1. Graph D from Figure 17 is said to be a chordless even cycle
because all of the nodes in it have only one successor within the cycle, and the
cycle has an even number of nodes (namely 4). On the other hand, the cycle
that includes all the nodes from the graph in Figure 27 cannot be considered a
chordless cycle because node x3 has more than one possible successor in the cycle.

Example 19.2. In a very similar fashion, graph D from Figure 18 is said to
be a chordless odd cycle because all of the nodes in it have only one successor
within the cycle, and the number of nodes is odd (namely 5). Likewise, the cycle
that includes all the nodes from the graph in Figure 28 cannot be considered a
chordless cycle because node x3 has more than one possible successor in the cycle.

Definition 20 (Sequential Numbering). It is possible to take node X as a refer-
ence, and number the rest of the nodes in graph D with respect to it by following
a particular successors sequence σi. Such numbering will be referred to as se-
quential numbering, and will be done by assigning numbers of the form aσi (with
a, i ∈ N) to each of the nodes in the graph. This assignment will be denoted
by tuples of the form (xj, a

σi) where a indicates the number that node xi has
with respect to node X according to the successors sequence σi. Thus, under
successors sequence σi, number 1σi will be assigned to the successor of node X,
number 2σi will be assigned to the successor of the successor of node X, and so
on. Each time the same node (e.g: xj) appears in a given successors sequence
(σi) a new value of a will be associated to it, and with it a new tuple (xj, a

σi
k )

will be created.

Remark. Note that a node xi may be assigned different values of a under different
successors sequences (σi); and also note that it may take more than one successors
sequence to number all of the nodes in graph D with respect to node X.
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Example 20.1. Considering σ1 = X, x1, x2 and σ2 = X, x2 for the graph in
Figure 29 note that node x2 is assigned different a values under σ1 and σ2. Namely,
it can be said that: (x2, 2

σ1) and (x2, 1
σ2). Also note that for σ3 = X, x1, x2, x1, x2

nodes x1 and x2 are assigned different a values under the same successors sequence
σ3. Namely it can be said that: (x1, 1

σ3) and (x1, 3
σ3) hold for node x1 while

(x2, 2
σ1) and (x2, 4

σ1) hold for node x2.

X

x1

x2

Figure 29

Definition 21 (Sequential Numbering Set). The tuples generated when following
the sequential numbering process for a specific successors sequence σi may be
grouped together in a set which will be referred to as the sequential numbering
set of σi. This set will be denoted by Ni (where the i in the sub-index of N
must match that of σi). Note that if a node xj appears several times in the same
successors sequence σi, then all of the tuples generated by xj will form part of
the corresponding sequential numbering set of σi.

Example 21.1. Each successors sequence in graph D (pictured in Figure 30)
generates a sequential numbering set.

σ1 = X, x3, x4, x5, x6 =⇒ N1 = {(x3, 1σ1), (x4, 2σ1), (x5, 3σ1), (x6, 4σ1)}

σ2 = X, x3, x2, x5, x6, x5 =⇒ N2 = {(x3, 1σ2), (x2, 2σ2), (x5, 3σ2), (x6, 4σ2), (x5, 5σ2)}

σ3 = X, x1, x2, x4, x5, x6 =⇒ N3 = {(x1, 1σ3), (x2, 2σ3), (x4, 3σ3), (x5, 4σ3), (x6, 5σ3)}

X

x1 x2

x3 x4

x5 x6

Figure 30

24



Rijksuniversiteit Groningen Víctor Guerrero Gutiérrez

Definition 22 (Node Congruence). If aσim ≡ aσin ≡ 0 (mod 2) ∀aσim , aσin : (xj, a
σi
m),

(xj, a
σi
n ) ∈ Ni with xj fixed =⇒ xj is congruent to 0 (mod 2) under successors

sequence σi. In other words, a node xj is said to be congruent to 0 (mod 2)
under successors sequence σi if aσik ≡ 0 (mod 2) holds for all the values of aσik
that form tuples (xj, a

σi
k ) in the sequential numbering set of σi with a particular

(fixed) node xj. Abusing notation, this will be denoted by xσij ≡ 0 (mod 2).

Analogously, If aσim ≡ aσin ≡ 1 (mod 2) ∀aσim , aσin : (xj, a
σi
m), (xj, a

σi
n ) ∈ Ni with

xj fixed =⇒ xj is congruent to 1 (mod 2) under successors sequence σi. In other
words, a node xj is said to be congruent to 1 (mod 2) under successors sequence
σi if aσik ≡ 1 (mod 2) holds for all the values of aσik that form tuples (xj, a

σi
k ) in

the sequential numbering set of σi with a particular (fixed) node xj. Similarly to
the previous case, this will be denoted by xσij ≡ 1 (mod 2).

Finally, If ∃aσin , aσim such that (xj, a
σi
n ), (xj, a

σi
m) ∈ Ni for a fixed xj and aσin 6≡

aσim ≡ 1 (mod 2) or aσin 6≡ aσim ≡ 0 (mod 2) =⇒ node xj is incongruent under
successors sequence σi. In other words, if a node xj appears in several tuples
(xj, a

σi
k ) ∈ Ni, and neither aσi ≡ 0 (mod 2) nor aσi ≡ 1 (mod 2) holds for all

the aσi values in the tuples, then xj will be called an incongruent node under
successors sequence σi. This will be denoted by: xσij 6≡ 0 (mod 2) and xσij 6≡ 1

(mod 2).

Example 22.1. According to the successors sequences σi provided below (which
correspond to the graph in Figure 31), it can be said that node xσ11 ≡ 1 (mod
2) because the tuples in which x1 appears are (x1, 1

σ1) and (x1, 3
σ1); and in both

cases it can be seen that 1σ1 ≡ 1 (mod 2) and 3σ1 ≡ 1 (mod 2) respectively.
Likewise it can be said that node xσ12 ≡ 0 (mod 2). However, it must be noted
that node x2 is an incongruent node under successors sequence σ2 because it
appears in two tuples (namely (x2, 2

σ1) and (x2, 5
σ1)), and clearly 5σ1 6≡ 2σ1 ≡ 0

(mod 2).

σ1 = X, x1, x2, x1, x2, x3 =⇒ N1 = {(x1, 1σ1), (x2, 2σ1), (x1, 3σ1), (x2, 4σ1), (x3, 5σ1)}

σ2 = X, x1, x2, x4, x5, x2 =⇒ N2 = {(x1, 1σ2), (x2, 2σ2), (x4, 3σ2), (x5, 4σ2), (x2, 5σ2)}

X x1 x2 x3

x4 x5

Figure 31
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Definition 23 (Strong Node Congruence). If for every possible σi it holds that
aσim ≡ aσin ≡ 0 (mod 2) ∀aσim , aσin : (xj, a

σi
m), (xj, a

σi
n ) ∈ Ni with xj fixed =⇒ xj

is strongly congruent to 0 (mod 2). In other words, a node xj is said to be
strongly congruent to 0 (mod 2) if aσik ≡ 0 (mod 2) holds for all values of aσik that
form tuples (xj, a

σi
k ) in the sequential numbering sets of all possible successors

sequences σi. Analogously, node xj may be said to be strongly congruent to 1

(mod 2). These two cases will be denoted by xj
s≡ 0 (mod 2) and xj

s≡ 1 (mod
2) respectively.

Example 23.1. Due to the form that graphD from Figure 32 has, it is impossible
for any of the nodes in it to be incongruent under any possible successors sequence
σi. It is also impossible for any of the nodes in it to be simultaneously congruent
to 0 (mod 2) under a successors sequence σi and congruent to 1 (mod 2) under
another successors sequence σj. Thus, after inspecting the nodes, it can be said
that x1

s≡ 1 (mod 2) , x2
s≡ 1 (mod 2) , and x4

s≡ 1 (mod 2); while x3
s≡ 0

(mod 2). Two examples of successors sequences (σ1 and σ2) as well as a graphical
representation of graph D are provided below.

σ1 = X, x1, x3, x4, x3, x4 =⇒ N1 = {(x1, 1σ1), (x3, 2σ1), (x4, 3σ1), (x3, 4σ1), (x4, 5σ1)}

σ2 = X, x2, x3, x4 =⇒ N2 = {(x2, 1σ2), (x3, 2σ2), (x4, 3σ2)}

X

x1

x2

x3 x4

Figure 32

Definition 24 (Set S∗i ). Let D be a graph. If player A has a winning strategy
on graph D under the Local Poison Game, then set S∗i will be defined as:

S∗i =
{
xn | xn = X or fWA (σjk) = xn

}
21

21In other words, for node to belong in the set S∗
i it is necessary for the node to be equal to

node X or to be a node such that it belongs to player A’s winning strategy.
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Now, the construction of set S∗i is a task which will depend on both players22,
and will be done as follows:

Given an initial node X ∈ V (D), player B will begin by selecting (poisoning)
a successor of such a node (i.e. he must select a node xm such that fB(σ1

1) = xm

for σ1
1 = X). Player B’s selection of a successor of node X will give player A a

non-empty23 successors set (namely, Γ+
D(xm)) from which, in turn, she shall select

a node. Player A’s role in the construction of set S∗i will then consist of selecting
a node xn such that: fWA (σ2

1) = xn for σ2
1 = X, xm . The node (xn) that player A

selects according to this criterion will form part of set S∗i 24. Thus, At this point,
set S∗i should consist of the following nodes: S∗i = {X, xn}. Players A and B

will then continue to take turns selecting successive nodes in D, and the process
that was just explained will repeat itself. That is, every time player B poisons a
node xm (meaning fB(σjk) = xm for some position σjk) then player A will select a
node xn ∈ Γ+

D(xm) such that fWA (σj+1
k ) = xn. Finally, each time player A selects

a node according to this criterion, the node will become part of set S∗i .

On a finite graph D this process will continue until player B is unable to poi-
son a successor of the node selected by A, or until both players fall in an chordless
even cycle (C−2n : n ∈ N)25. In either case, the game is called to an end (with
A being the winning player), and with it the construction process of set S∗i also
comes to an end.

Remark. Notice that player B backtracking does not affect the construction of
set S∗i in any way. It is for this reason that σjk was used in the paragraph above.

Example 24.1. Notice that player A has a winning strategy on graph D in
Figure 33. The construction of two different sets S∗1 and S∗2 for this graph will
now be explained:

22Following [13].
23If it were empty, then A wouldn’t be able to select a successor and the game would im-

mediately come to an end with player B being the winner. This contradicts the definition’s
requirement of A having a winning strategy.

24Definition 24 requires player A to have a winning strategy. Note that having one implies
that A will always be able to select a successor of any node poisoned by player B. Therefore,
the existence of a node xn such that it is a successor of node xm, and it belongs to player A’s
winning strategy is guaranteed by the requirements of the definition.

25See Definition 19 and Examples 19.1, and 19.2 as well as Appendix B.
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x6

x9

x3

x5

X x1

x2

x7

x8x4

x10

x11

Figure 33

- Constructing Set S∗1: Begin by noticing that that, by definition, X ∈ S∗1 .
Also notice that Γ+

D(X) = {x1, x2}. Now assume that player B selects node
x1 as the successor of node X. This will give player A a set of the form
Γ+
D(x1) = {x3, x4} from which she must select a successor. Observe that

node x3 is strongly congruent to 0 (mod 2)26 but it is not part of player A’s
winning strategy (i.e: fWA (σ2

1) 6= x3 for σ2
1 = X, x1) because selecting it as a

successor of node x1 would then allow player B to select node x6 and win the
game. This implies that fWA (σ2

1) = x4 for σ2
1 = X, x1 because by selecting

node x4 player A will force player B poison either of the nodes x7, x8 or x5
during his turn, and, in any of these cases, this would determine a successors
sequence ending in a win for A27. By selecting node x4, according to the
aforementioned criterion, this node will now form part of set S∗1 (which at
this point of the construction process should consist of the following nodes:
S∗1 = {X, x4}). Since Γ+

D(x4) = {x7, x8}, it may be assumed that player B
selects node x7 as the successor of node x4 leaving player A node x10 as the
only option to choose as a successor of node x7. Finally, notice that since
node x10 is definitely in player A’s winning strategy because it determines
a win for player A (and passes the strong congruence test from Lemma
A.1 in Appendix A), then is must also be part of set S∗1 . Considering the
scenario in which payer B decides not to backtrack, the game comes to an
end with player A being the winner and set S∗1 having the following form:
S∗1 = {X, x4, x10}

26i.e: x3
s≡ 0 (mod 2).

27Notice that Lemma A.1 from Appendix A can be used to test whether or not a node really
belongs in player A’s winning strategy. In light of the fact that node x4 determines successors
sequences that end in a win for A then one might assume that it belongs to player A’s winning
strategy. Lemma A.1 states that if a node is part of player A’s winning strategy, then that
node must be strongly congruent to 0 (mod 2). Since node x4 is strongly congruent to 0 (mod
2) it is safe to conclude that it is indeed part of player A’s winning strategy.
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- Constructing Set S∗2: As in the first scenario, notice that, by definition,
X ∈ S∗2 . Now, if instead of selecting node x1 as the successor of node X
player B selects node x2 this will leave player A with a set of the form:
Γ+
D(x2) = {x4, x5} from which she shall select a successor. Notice that

node x5 does not really belong to her winning strategy because although
it may appear to force both players into a chordless even cycle of the form
C2 (which implies a win for player A) node x5 doesn’t pass the strong
congruence test from Lemma A.1 in Appendix A28. Thus, player A will
select node x4 as the successor of node x2. Note that, for the same reasons
as those in the construction of set S∗1 , node x4 belongs player A’s winning
strategy, and thus, belongs in set S∗2 . This will leave player B with a set of
the form Γ+

D(x4) = {x7, x8} from which to select a successor. Without loss
of generality, assume he selects node x8 and by doing so he leaves player
A with the only option of selecting node x11 as the successor. Since node
x11 determines a successors sequence ending in a win for player A’s and
it passes the strong congruence test from Lemma A.1 this node will form
part of set S∗2 . At this point, set S2 will consist of the following nodes:
S∗2 = {X, x4, x11}. Now, if player B decides to backtrack and select node
x1, player A will again select node x4 as its successor (for the same reasons
mentioned in the construction of set S∗1). Assuming player B decides to
select node x7 this time, in an attempt to have a different outcome, player
A will only be left with the possibility of selecting node x10. For the same
reasons presented when A selected node x11, node x10 will also be part of
set S∗2 . Finally, the game comes to an end with player A being the winner,
and set S∗2 consisting of the following nodes: S∗2 = {x4, x10, x11}.

28For a concrete example that shows that it doesn’t belong in player A’s winning strategy
consider successors sequence σm = X,x2, x5, x9, x5 is followed first. then, player B backtracks
and forces the following successors sequence: σm = X,x1, x4, x5. Finally, player A is rendered
unable to select a successor for node x5 since x9 has already been poisoned by player B.
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8 Results on the Local Poison Game

This section contains original results concerning the Local Poison Game. The
proofs for the statements made here will use some of the definitions from Sections
3 and 7, as well as the rules for the Local Poison Game seen in Section 6.

Theorem 2 (Characterization of Membership to a Semi-kernel on a Finite Graph).
Let D be a finite graph and X ∈ V (D). Then, player A has a winning strategy
under the Local Poison Game starting at node X if and only if node X is in a
semi-kernel.

Proof. Since this theorem consists of an if and only if statement, the proof will
consist of two parts29. Firstly, the statement from left to right will be proved by
contradiction. Naturally, a proof for the statement from right to left will follow.

Left-to-Right: Let X ∈ S∗i with S∗i as in Definition 2430. Now, assume
that player A has a winning strategy, and S∗i is not a semi-kernel. Notice that
if set S∗i is not a semi-kernel, it can either be because there exists a node in the
successors set of S∗i such that there is no arc from that node to any other node
within S∗i 31, or because S∗i is not independent32. Both cases will now be analyzed:

Case 1: If there does not exist an arc from a node xm in the successors set of
S∗i to a node xn in S∗i this can either be because of one of the following scenarios:

I. xm ∈ Γ+
D(S∗i ) and Γ+

D(xm) = ∅. Or, in other words, for xm in the successors
set of S∗i , the successors set of xm is empty. In this case, it is clear that the
reason why there is no arc from xm to a node that belongs in the set S∗i
is because xm has no successors to start with. This implies that player A
will not be able to select a successor of node xm and will therefore lose the
game.

II. By backtracking33, or because xm ∈ C−2n+1 (i.e: xm belongs in a chordless
odd cycle)34 all of the possible successors of xm have been poisoned by B.

29The reader should be familiar with this proof structure since it has already been used to
present results on the Poison Game in Theorem 1 in Section 5.

30Note that it can also be the case that S∗
i = {X} (i.e: It could be the case that S∗

i only
contains one node, namely, node X).

31This will be referred to as Case 1. In mathematical terms, this case can be expressed as:
∃xm ∈ Γ+

D(S∗
i ) : @ek ∈ F (D) such that ek = (xm, xn) for some xn ∈ S∗

i .
32This will be referred to as Case 2. Note that this case requires set S∗

i to have at least two
nodes (i.e: |S∗

i | ≥ 2). In mathematical terms, Case 2 can be expressed as: ∃xm, xn ∈ S∗
i :

xn ∈ Γ+
D(xm).

33For an example, see Figure B.2 in Example B.2 (Appendix B).
34For an example, see Figure 25 in Example 25 (Section 6).
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As in the previous scenario, this implies that player A will not be able to
select a successor of node xm and will therefore lose the game.

It is clear that, in both scenarios, the game ends in a win for player B. This,
however, contradicts the initial assumption that player A has a winning strategy.
Therefore, it is impossible that a node xm as described in Case 1 exists.

Case 2: If set S∗i is not independent, then it must be the case that some node
xn in S∗i is a successor of another node xm which is also in S∗i . Now, recall that
the graph D on which the game is being played is a finite graph. This implies
that set Γ+

D(xn) must be finite and, therefore, either of the two possible scenarios
that follow apply to it:

I. Γ+
D(xn) = ∅. Or, in other words, node xn has no successors. Notice that,

by Definition 24, nodes xm and xn must be selected by player A during
the run of the game. Then, at some point, by backtracking, player B can
poison node xn and win the game since player A will not be able to select
a successor (because there are none).

II. Γ+
D(xn) 6= ∅. Or, in other words, node xn has one or more successors. Since

ΓD(xn) is necessarily finite, it can be said that node xn has k successors.
Once again, notice that by Definition 24, nodes xm and xn must be selected
by player A during the run of the game. Then, player B needs to backtrack
at most k−1 times in order to poison all the successors of node xn. Finally,
if this were not enough to render player A unable to select a successor,
player B may backtrack one more time and poison node xn. By doing this,
player A will inevitably be unable to select a successor because they have
all been previously poisoned.

As in Case 1, it is clear that, in both scenarios, the game ends in a win for
player B. Once again, this contradicts the initial assumption that player A has a
winning strategy. Therefore, it is impossible that nodes xm and xn as described
in Case 2 exist.

Since Case 1 and Case 2 are incompatible with the initial assumption of
player A having a winning strategy, a contradiction has been reached. Thus, it
cannot be the case that set S∗i is not a semi-kernel. Therefore, if player A has a
winning strategy, this implies that node X is in a semi-kernel.
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Right-to-Left: Let X ∈ Si for Si ⊂ V (D)35, and let Si be a semi-kernel. By
Definition 10 set Si must be independent. Thus: ∀xm ∈ Γ+

D(Si) =⇒ xm /∈ Si. In
particular, any node xm that is a successor of node X is not in Si (so whichever
node xm player B poisons in his first move will not be in Si). Furthermore,
Definition 10 states that ∀xm ∈ Γ+

D(Si)∃xn ∈ Γ+
D(xm) : xn ∈ Si. In particular,

this implies that all the successors of node X have, in turn, a successor belonging
to Si. So no matter which node xm player B poisons in his first move, there will
always a a successor (xn) of xm in Si that player A will be able to select as a
reply. At this point, the successors sequence of the nodes selected by players A
and B should have the following form: σ1 = X, xm, xn. Finally, notice that since
Si is a semi-kernel, then any successor of node xn that is poisoned by player B
will, in turn have a successor in Si that player A will be able to select. Thus,
the game will result in a win for player A. So, indeed, if node X belongs in a
semi-kernel player A has a winning strategy.

Recalling Theorem 1, it is important to note that the conditions36 required for
it are weaker when compared to those required for Theorem 2. As a consequence
of this, Theorem 1 is valid for infinite graphs while Theorem 2 is only valid for
finite graphs. Thus, as a next step, Theorem 2 shall be reformulated under these
same weaker conditions in order to generalize its application to infinite graphs.

35Note that it can also be the case that Si = {X} (i.e: It could be the case that Si only
contains one node, namely, node X).

36Namely, the conditions that: 1. Graph D must be outwardly finite, and 2. Graph D must
be progressively finite.
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Theorem 3 (Characterization of Membership to a Semi-kernel). Let D be an
outwardly and progressively finite graph, and let X ∈ V (D). Then, player A has
a winning strategy under the Local Poison Game starting at node X if and only
if node X is in a semi-kernel.

Proof. Similarly to what was done in the proof for Theorem 2, this proof will
consist of two parts. The first of these will show that the statement holds from
left to right, while the second will show that the statement holds from right to left.

Left-to-Right: Let X ∈ S∗i with S∗i as in Definition 2437. Now, assume that
player A has a winning strategy, and S∗i is not a semi-kernel. Following a similar
reasoning to the one in the proof for finite graphs, if set S∗i is not a semi-kernel,
it can either be because there exists a node in the successors set of S∗i such that
there is no arc from that node to any other node within S∗i

38, or because S∗i is
not independent39. Both cases will now be analyzed:

Case 1: If there does not exist an arc from a node xm in the successors set of
S∗i to a node xn in S∗i this can either be because of one of the following scenarios:

I. xm ∈ Γ+
D(S∗i ) and Γ+

D(xm) = ∅. Or, in other words, for xm in the successors
set of S∗i , the successors set of xm is empty. In this case, it is clear that the
reason why there is no arc from xm to a node that belongs in the set S∗i
is because xm has no successors to start with. This implies that player A
will not be able to select a successor of node xm and will therefore lose the
game.

II. Since D is an outwardly finite graph, all of the nodes in V (D) have a finite
successors set. Thus, in particular, Γ+

D(xm) must be finite. So suppose that
by backtracking40, or because xm ∈ C−2n+1 (i.e: xm belongs in a chordless
odd cycle)41 all of the possible successors of xm have been poisoned by B.
As in the previous scenario, this implies that player A will not be able to
select a successor of node xm and will therefore lose the game.

37Note that it can also be the case that S∗
i = {X} (i.e: It could be the case that S∗

i only
contains one node, namely, node X).

38This will be referred to as Case 1. In mathematical terms, this case can be expressed as:
∃xm ∈ Γ+

D(S∗
i ) : @ek ∈ F (D) such that ek = (xm, xn) for some xn ∈ S∗

i .
39This will be referred to as Case 2. Note that this case requires set S∗

i to have at least two
nodes (i.e: |S∗

i | ≥ 2). In mathematical terms, Case 2 can be expressed as: ∃xm, xn ∈ S∗
i :

xn ∈ Γ+
D(xm).

40For an example, see Figure B.2 in Example B.2 (Appendix B).
41For an example, see Figure 25 in Example 25 (Section 6).
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It is clear that, in both scenarios, the game ends in a win for player B. This,
however, contradicts the initial assumption that player A has a winning strategy.
Therefore, it is impossible that a node xm as described in Case 1 exists.

Case 2: If set S∗i is not independent, then it must be the case that some node
xn in S∗i is a successor of another node xm which is also in S∗i . Now, recall that
the graph D on which the game is being played is an outwardly and progressively
finite graph. In particular, this implies that the set Γ+

D(xn) must be finite and,
all of the nodes in Γ+

D(xm) are the origin of finite paths that end in a win for
player A. Therefore, either of the two possible scenarios that follow apply to
node xn ∈ Γ+

D(xm):

I. Γ+
D(xn) = ∅. Or, in other words, node xn has no successors. Notice that,

by Definition 24, nodes xm and xn must be selected by player A during
the run of the game. Then, at some point, by backtracking, player B can
poison node xn and win the game since player A will not be able to select
a successor (because there are none).

II. Γ+
D(xn) 6= ∅. Or, in other words, node xn has one or more successors. Since

ΓD(xn) is necessarily finite because D is outwardly finite, it can be said
that node xn has k successors. Once again, notice that by Definition 24,
nodes xm and xn must be selected by player A during the run of the game.
Then, all player B needs to do is backtrack at most k − 1 times in order
to poison all the successors of node xn. Finally, if this were not enough to
render player A unable to select a successor, player B may backtrack one
more time and poison node xn. By doing this, player A will inevitably be
unable to select a successor because they have all been previously poisoned.

As in Case 1, it is clear that, in both scenarios, the game ends in a win for
player B. Once again, this contradicts the initial assumption that player A has a
winning strategy. Therefore, it is impossible that nodes xm and xn as described
in Case 2 exist.

Since Case 1 and Case 2 are incompatible with the initial assumption of
player A having a winning strategy, a contradiction has been reached. Thus, it
cannot be the case that set S∗i is not a semi-kernel. Therefore, if player A has a
winning strategy, this implies that node X is in a semi-kernel.
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Right-to-Left: Let X ∈ S+
i for Si ⊂ V (D)42, and let Si be a semi-kernel.

Then, following a similar reasoning to the one seen in the proof for Theorem 2,
since Si is a semi-kernel this implies that ∀xm ∈ Γ+

D(Si) =⇒ xm /∈ Si and
∀xm ∈ Γ+

D(Si)∃xn ∈ Γ+
D(xm) : xn ∈ Si. In particular, this implies that no matter

which node player B selects as a successor of nodeX on his first turn, the node will
not belong in set Si. Furthermore, it will necessarily be the case that whichever
node player A selects as a reply to player B’s first move, this node will be in the
set Si. Note now that this scheme can be repeated infinitely many times, since
set Si being a semi-kernel implies that player B can never poison nodes within
the semi-kernel and it also implies that whenever player B selects a node in the
successors set of Si player A will always be able to select a successor of this node
such that it belongs to set Si. Therefore, if node X belong in a semi-kernel Si
this implies that player A has a winning strategy.

42Note that it can also be the case that Si = {X} (i.e: It could be the case that Si only
contains one node, namely, node X.)
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9 Conclusion

The Local Poison Game receives its name from the fact that a node must be
given in order for the game to be played. Although this detail may not appear to
change the player experience drastically when comparing the Local Poison Game
to its predecessor43, the fact is that this variation, in conjunction with player
B’s possibility to backtrack, are enough to provide a completely different set of
information concerning a given graph.

Unlike in The Poison Game, the existence of a semi-kernel in a graph on which
the Local Poison Game will be played is no longer enough to guarantee that player
A has a winning strategy. This is due to the fact that player A no longer has
control over which node will mark the beginning of the game, and, therefore, has
no control over the type of set to which the nodes in her strategy will belong
to. Thus, when it is said that the Local Poison Game is a characterization of
membership to semi-kernels, what is meant is that it provides information on
the existence of a winning strategy for player A as a function of the initial node
belonging to a semi-kernel.

In a broader context, this change of settings in the (initial) Poison Game
might have several applications in fields related to abstract argumentation the-
ory. It is not hard to imagine a scenario (e.g: a debate or a legal trial) in which
two players (e.g: two teams in a debate club or two groups of lawyers in a court)
start a point that was not chosen by either of them and try to provide arguments
[13] that render the other unable to provide a valid reply. In such cases, the
win/lose nature of the possible scenarios demands that the game end at some
point. However, under more abstract scenarios related to theoretical aspects of
Computer Science or Artificial Intelligence, the possibility of infinite runs of the
Local Poison Game may have more relevance, as it may shed light on e.g: the
possible states of a computer program when undergoing a certain process that
complies with a specific set of conditions.

43i.e: The Poison Game
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A Winning Strategies and Strong Congruence

This appendix contains an original result which derives from Definition 12, Defi-
nition 23, and Definition 24. The small result, presented in the form of a lemma,
states that if a node belongs to player A’s winning strategy under the Local Poi-
son Game, it must then be the case that such a node is strongly congruent to 0
(mod 2).

Lemma A.1. Let D be a directed graph, and X ∈ V (D). If player A has a
winning strategy on graph D under the Local Poison Game starting at X ∈ V (D),
then:

∀xn : fWA (σjk) = xn =⇒ xn
s≡ 0 (mod 2)

Proof. According to rules of the Local Poison Game1, σ1
1 = X is given as the

initial setting. Then, according to Definition 20, number 1σ1 will be assigned to
the node xm that player B selects as a successor of X because fB(σ1

1) = xm for
σ1
1 = X =⇒ σ2

1 = X, xm =⇒ (xm, 1
σ1) 2. As a consequence of this, whichever

node xn player A selects as a successor of the xm poisoned by player B, it will nec-
essarily be the case that number 2σ1 will be assigned to it because fWA (σ2

1) = xn

for σ2
1 = X, xm =⇒ σ3

1 = X, xm, xn =⇒ (xn, 2
σ1) 3. Now, since it has been

assumed that payer A has a winning strategy, this means that she will always be
able to select an unpoisoned successor for any node poisoned by player B during
his turn. In particular, this implies that, under successors sequence σ1, any node
xm poisoned by player B will be such that: xσ1m ≡ 1 (mod 2), and any successive
node xn selected by player A as a reply will be such that xσ1n ≡ 0 (mod 2) 4.

Notice that, according to the rules of the Local Poison Game5, if player B
decides to backtrack at some point of the game and start a new successors se-
quence σ2, then σ2 will be of the form: σ2 = xn, xm, . . . where, by definition, xn
is either node X or a node which was previously selected by player A, and xm is
the (possibly) alternative successor of node xn that will be poisoned by player B
as a result of backtracking. Observe that, under this new successors sequence, it
is the case that xσ2n ≡ 0 (mod 2) and xσ2m ≡ 1 (mod 2) for the first two nodes in
σ2. Then, since player B’s decision to backtrack doesn’t affect player A’s winning
strategy6 player A will still be able to always select an unpoisoned successor for

1In particular, Rule I. in Definition 17 contained in Section 6.
2Notice that xm ≡ 1 (mod 2).
3Likewise, notice that xn ≡ 0 (mod 2).
4This follows from the fact that the first node xm selected a successor of X is congruent to

1 (mod 2), the fact that both players take turns selecting successive nodes, and the fact that
player A has a winning strategy.

5In particular, Rule V. in Definition 17 contained in Section 6.
6This follows from Definition 12.
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any node that player B poisined during his turn. In particular, this implies that
under any successors sequence σk started as a consequence of player B backtrack-
ing (e.g: σ2), it will be the case that any node xm poisoned by player B will be
such that: xσkm ≡ 1 (mod 2), and any successive node xn selected by player A as
a reply will be such that xσkn ≡ 0 (mod 2).

So, in summary, it can be said that ∀xn : fWA (σjk) = xn =⇒ xσkn ≡ 0 (mod 2).
Or, in other words, if given a position σjk a node xn belongs to player A’s win-
ning strategy it must then be the case that xn is congruent to 0 (mod 2) under
successors sequence σk.

Now suppose that ∃xn : fWA (σjk) = xn =⇒ xσkn ≡ 0 (mod 2) but xσln ≡ 1 (mod
2). Or, in other words, suppose that there exists a node xn that belongs to player
A’s winning strategy under successors sequence σk such that xn is congruent to
0 (mod 2) under σk but, at the same time, node xn is congruent to 1 (mod 2)
under another successors sequence σl. Notice then that if players A and B run
successors sequence σk first, node xn will be selected by player A (by hypothesis).
This means that player B is allowed to backtrack and poison all of the successors
of node xn, after which player B may backtrack once again to force both players
into following successors sequence σl. Recall that (by hypothesis): xσln ≡ 1 (mod
2). This implies that under σl player B poisons node xn, and since all the suc-
cessors of node xn have already been poisoned, player A will lose the game. This
clearly contradicts the initial assumption that player A has a winning strategy.
Thus, it is impossible for such a node xn to exist.

Therefore: ∀xn : fWA (σjk) = xn =⇒ xn
s≡ 0 (mod 2). Or, in other words, if a

node xn is such that it belongs to player A’s winning strategy under successors
sequence σk, then it must be the case that xσin ≡ 0 (mod 2) under all possible
successors sequences σi 7. Following Definition 23 this is equivalent to saying that
node node xn is strongly congruent to 0 (mod 2).

Example A.1. Consider graph D in Figure A.1. Note that player A has a
winning strategy under the Local Poison Game for this graph. Now, assume
that: fB(σ1

1) = x2 for σ1
1 = X. Player A can then select either node x3 or x4.

Notice that, node x4 may appear to be a good option for player A, since it would
lead both players to fall in a chordless even cycle of the form C2 and this would
imply a win for player A. Nonetheless, player A must follow her winning strategy,

7This includes successors sequence σk
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and the fact that node x4 is congruent to 0 (mod 2) under successors sequence
σ1 = X, x2, x4, x6, x8 but congruent to 1 (mod 2) under successors sequence σ2 =

X, x1, x3, x4, x6 means that x4 is not strongly congruent to 0 (mod 2) and therefore
fB(σ1

1) 6= x2
8. Thus, the option of selecting node x4 is discarded by player A.

This implies that fWA (σ2
1) = x3 for σ2

1 = X, x2 must be the case because by
selecting it player A forces a successors sequence that ends in win for her (namely
σ1 = X, x2, x3, x5, x7). Finally, note that nodes x3 and x7 both belong in player
A’s winning strategy, and as a consequence, x3

s≡ 0 (mod 2) and x7
s≡ 0 (mod 2).

X

x4

x1

x2

x5

x6

x3

x7x8

Figure A.1

8This is due to the fact that if successors sequence σ1 is followed first, player B may backtrack
(as soon as player A selects node x8) and poison node x1. This would force player A to select
node x3, and this, in turn would allow player B to poison node x4 rendering player A unable
to select any successor since node x6 has already been poisoned.

39



Rijksuniversiteit Groningen Víctor Guerrero Gutiérrez

B Chordless Even Cycles

Assuming that the Local Poison Game is being played, the sentence "falling in
a chordless even cycle" refers to a scenario in which players A and B take turns
selecting nodes that form part of a chordless even cycle (C−2n : n ∈ N) an indefinite
number of times. Examples of such scenarios will now be provided:

Example B.1. Graph D in Figure B.1 depicts a case in which players A and B
take turns selecting successive nodes until player B poisons node xk. At this point,
player A’s winning strategy tells her to select node xk+1 because not doing so will
determine a successors sequence ending in a win a for player B 1. By selecting
this node, player A has entered a chordless even cycle (C−4 ) that stems from node
xk. Player B will then be forced to poison node xk+2 to which player A will reply
by selecting node xk+3. Finally, player B’s strategy will tell him to select node xk
once again. Nonetheless, player A’s winning strategy will not have changed, thus
in order avoid the successors sequence that guarantees a win for B she decides to
select node xk+1 again. In this way, players A and B will find themselves taking
turns selecting nodes from the chordless even cycle C−4 that stems from node xk.
Note that player B cannot change the situation by backtracking, since by doing
so he can only select alternative successors to nodes previously selected by player
A, but due to the graph’s shape, there are no alternative successors to nodes
previously selected by player A. Thus, since A will continue to force both players
into C−4 every time B selects node xk it can be said that both players have fallen
in an even chordless cycle, and, therefore, the game ends in a win for player A2.

X xi xk xn

xk+2

xj xm

xk+1xk+3

. . . . . .

Figure B.1

1The graph in Figure B.1 shows the case in which node xk has another successor besides
node xk+1. However, it could very well be the case that xk doesn’t have any successors at
all other than xk+1 or indeed has multiple successors other than xk+1 but they all determine
successors sequences that guarantee a win for player B. Other possibilities are not considered
here because this appendix is dedicated to scenarios in which both players fall in a chordless
even cycle.

2Note that any chordless even cycle C−
2n : n ∈ N works (e.g: C−

2 , C
−
10 or even C−

1762 all work
equally well).
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Example B.2. Note that it is of great importance that the cycle be chordless.
Graph D in Figure B.2 depicts a case (very similar to the one seen in Figure B.1)
in which players A and B take turns selecting successive nodes until player B
poisons node xk. As explained before, player A’s strategy will tell her to enter
the even cycle (C4) that stems from node xk because not doing so would determine
a successors sequence that guarantees a win for player B. However, things are
very different this time because the cycle is not chordless. Once player A has
selected node xk+1, player B’s winning strategy will tell him to poison node xk+2

to which player A will respond by selecting node xk+3. At this point, player B’s
winning strategy will tell him to backtrack and poison node xk+3 since it is an
alternative successor of xk+1. By doing so, player A will be impeded to select
an unpoisoned successor, and the game will immediately come to and end with
player B being the winner. Thus, if player A is to have a winning strategy as a
consequence of falling in an even cycle (C2n) stemming from a node in the graph,
it must be the case that such a cycle is chordless.

X xi xk xn

xk+2

xj xm

xk+1xk+3

. . . . . .

Figure B.2

Example B.3. Note, also, that player A’s decision to enter the even cycle is
crucial. Without it, both players might only enter it a finite number of times, or
might not even enter it at all. Graph D from Figure B.3 depicts a case in which
players A and B take turns selecting successive nodes until player A selects node
xj. At this point, player B’s winning strategy will tell him to avoid entering
the chordless even cycle C−4 stemming from node xj and instead poison node xk
because by doing so he will determine a successor sequence that will end in a
win for him. Thus, if player A is to have a winning strategy as a consequence
of falling in a chordless even cycle (C−2n) stemming from a node in the graph, it
must be the case that such a cycle stems from a node poisoned by player B, and
not from a node selected by player A.

X

xj+1

xj+2

xj+3

xi xk xnxj xm. . . . . .

Figure B.3
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C Some Applications of Semi-kernels

As mentioned in [5] and [1], semi-kernels have a wide variety of applications.
Some of the most theoretical range from game theory (positional, coopertaive
and combinaorial games [5]), to mathematical logic[11] and graph colorings [9].
However, "real world" applications can also be found [1], some of these range
from argumentation, computation (search problems), social networks, and arti-
ficial intelligence to warfare. The following is a brief description of such sort of
application.

C.1 Service Locations

Following [7] it is possible to think of a map as a directed graph in which the
nodes represent cities , and the (directed) arcs represent highways connecting
any two cities. Note that this reasoning can be applied on different scales. That
is, instead of having cities on the map of a country or a map containing several
countries, one could have locations within a certain city, and the arcs between
such locations could be streets instead of highways.

Paris

Brussels

Amsterdam

Zurich

Munich

Berlin

Prague

Vienna

Bruges

Strasbourg

Cologne

Leipzig

Salzburg

Figure C.1
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Example C.1. For this particular example, imagine a car rental company desires
to know where would it be convenient to have service points given the map model
(graph) seen in Figure C.1. One possible solution would be to find a semi-kernel
in the given graph. This happens to be an efficient solution due to the fact
that having service centers on the nodes belonging to a semi-kernel guarantees
that it will be possible for potential customers to have access to the company’s
service because they either live in a city with a service point or they live in a
city connected to one with a service point. It also ensures that the company
will not waste money in more service points than necessary because the nodes in
a semi-kernel are independent (or, in other words, having service points in the
nodes that belong to a semi-kernel guarantees that the company will not waste
money on having two service points in cities which are connected to one another).
Thus, for the very simple graph seen in Figure C.1, it is quite clear that it would
be convenient to have service points in the cities which have airports in them1, or
possibly even at the airports themselves. This would allow potential customers
to rent a car once their plane has landed and to return it at the same airport (or
at any other airport) once their trip has come to an end.

Although the idea of finding efficient locations for a car rental company to
have service points may be profitable for some, it is, nonetheless, a rather frivolous
activity. However, the same sort of reasoning may be applied with more noble
intentions such as finding efficient locations to build hospitals, schools, or public
transport stations so that the inhabitants of a city always have access to these
basic needs. In fact, according to [7], it may even be possible 2 to fix restrictions
on the maximum and minimum distance between any two service points belonging
to a semi-kernel.

1Cities with airports are symbolized by airplanes in the graph. Also note this is a simplified
version of a real map which has been adapted to fit this example.

2With the aid of some additional concepts to the ones that have been discussed in this paper.
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D Other Games on Directed Graphs

Although the Poison Game, and the Local Poison Game, are the main focus of
this paper, it is important to mention the role that other games play in the char-
acterization of some game theoretic notions. Although there is a wide range of
different types of games, and variations on them, the following are brief explana-
tions on some of the most known examples.

D.1 The Cops and Robbers Game

Following [4], the Cops and Robbers Game is played on reflexive graphs1 with
no multiple arcs2. There are two players: the cops and the robber (Note that
although there may be more than one cop, they are all controlled by one player;
thus they count as a single set accounted for by such a player). The game be-
gins with the cops (denoted by C) selecting a node of their preference in the
first move. The cops and the robber (denoted by R) then take turns selecting
successive nodes in the graph3. The cops win, if at least one of them is able to
capture the robber (i.e: occupy the same vertex as the robber) in a finite number
of rounds. Intuitively, the robber wins if he can avoid being captured indefinitely.

This game falls within the category of the Meet/Avoid games mentioned
in [1], and, in particular, it is considered a vertex-pursuit game. According to
Nowakowski, Winkler and Quilliot [4], this game characterizes the existence of a
certain structure (a corner) on finite graphs. A brief outline of this characteriza-
tion will now be provided4.

Definition D.1 (Corner). Vertex xi ∈ V (D) is said to be a corner If ∃xj :

Γ+
D(xi) ∪ {xi} ⊆ Γ+

D(xj) ∪ {xj}.

Example D.1. For the graph seen in Figure D.1, it can be said that node x2 is
a corner because Γ+

D(x2) ∪ {x2} ⊆ Γ+
D(x3) ∪ {x3}

1This means that every vertex in the graph has at least one loop.
2Although they are allowed, they make no difference when the game is played. This is is

assumed, for simplicity purposes, that the graph on which the game will be played contains no
multiple arcs.

3Note that since the graph is reflexive, it is possible for either of the player to "pass" or
"stay still" during his or her turn.

4The reader might find it useful to notice that instead of using the notation introduced
in [4], the characterization will be explained using the same notation that has been appeared
throughout this paper.
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x1

x2

x3

x4

x5

Figure D.1

Definition D.2 (Dismantlable). A graph is dismantlable if there exists a se-
quence of deleting corners that reduces the graph to a single vertex. Or, in other
words, if by deleting the corners of the graph one at a time, the graph can be
reduced to a single vertex, then it is said that the graph is dismantlable.

Example D.1. Any tree is a dismantlable graph since all leafs5 are corners. For
the graph seen in Figure D.2 is is possible to begin by deleting node x5 (since it
is a corner), and then proceed by deleting nodes x1, x4 and x6 since they are all
corners. Finally, it could be possible to delete either node x2 or x3 since the have
become corners after deleting the other nodes. Thus the graph has been reduced
to a single node and, as a consequence, it can be called a dismantlabele graph.

x1 x2 x3

x4

x5

x6

Figure D.2

Theorem D.1 (Characterization of Dismantlable Graphs). Given a finite graph
D, Cops have a winning strategy if and only if graph D is dismantlable.

Although a proof for this theorem escapes the scope of this appendix6, special
attention should be payed to the fact that the Cops and Robbers Game is, ac-
tually, a way of distinguishing graphs that can be reduced to a single node from
those that can’t.

5A leaf is a node in a tree with degree 1. The reader may refer to the first chapter of [3] for
more information on these concepts.

6For a complete proof of this theorem and other related lemmas the reader may refer to the
second chapter in [4].
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D.2 Sabotage Games

Typically, sabotage games consist of two players out of which (following [12]) one
is known as the Runner (denoted by R) and the other as the Blocker (denoted by
B). The runner’s goal is to travel between two given nodes in the graph, while
the blocker’s goal is to prevent this from happening. Normally, the way in which
B prevents R from arriving to the given node is by deleting arcs in the graph.

According to [2], since sabotage games satisfy the three conditions in Zermelo’s
Theorem7, it can be said that sabotage games are determined (i.e: It must be the
case that one of the two players has a winning strategy given an initial setting an
a graph). However, unlike with other games played on graphs, it is particularly
difficult to compute the final outcome; this is due to the fact that every time
blocker makes a move (i.e: every time blocker deletes an arc from the graph), the
graph’s structure changes. As a consequence of the graph structure modifying
nature of these games, they have been found to be useful in the evaluation of First
Order Logic statements on structures that change under evaluation8. The use of
graphs in the evaluation of logic statements is known as logical model checking,
and the way it is done is by conceiving the graph as a set (domain) of arcs and
allowing existential quantifiers to run over them. The existence of an edge may
be cancelled if such an edge is selected by B. This leads to a characterization of
the following form: Player R has a winning strategy if and only if the first order
logic formula obtained from the graph modified by both players evaluates to true9.

Besides logical model checking, sabotage games may also be used to model
learning processes [10](where a Learner and a Teacher interact), as well as traffic
networks and border control [12].

7Zemerlo’s Theorem says that every finite two player zero-sum game is determined.
8An example of a fact that might change when inspected is the classical quantum mechanics

problem that arises when trying to determine the position of an atom.
9See [2] (page 270) for more information.
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