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COMSOL Simulation of Mixing in a Petri 
Dish on a Shaker 

 

Abstract 

In this thesis, the behavior of a fluid in a Petri dish placed on a shaker is studied. In 
order to do this a simplification method was applied which is moving fame method 
where the coordinates system is binded to the Petri dish. This results in a periodic 
body forcing on the fluid in the Petri dish. Hereafter, this is implemented in 
COMSOL for the Burgers equation and a fluid with a free surface. For the Burgers 
equation, an analytic solution for the case where the nonlinear term is absent is 
given. This solution is replicated in the numerical solution of the Burgers equation 
for high viscosities. For the free surface fluid, we found that the moving mesh 
approach in COMSOL provided the best alternative. Finally, the mixing of a dilluted 
species in the fluid is considered which shows that shaking has a positive influence 
on reaching a homogeneous concentration of the species. 
 
Keywords: Shaker; Petri dish; Computational fluid dynamics; Moving frame 
method; Burgers equation; Moving mesh; COMSOL Multiphysics
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1 Introduction 

In order to mix in a laboratory environment, one generally chooses to use a shaker. 
One wants to know how the liquid behaves in the Petri dish when placed on such a 
shaker. To understand the mixing process, building a model that can describe and 
solve the fluid problem is needed. After successfully constructing the model, better 
suggestions for the mixing process through the shaker can be provided based on the 
model simulation results. Based on the behaviours of the liquid on the shaker, one 
can clearly know how the mixing goes over time. At the same time, one can also 
understand how various parameters affect the mixing process, such as the volume, 
density and viscosity of the liquid, the frequency, amplitude and direction of the 
shaker. Therefore, one can choose the shaker parameters suitably for one’s needs 
according to the simulation results. Of course, this model can also be applied to 
other fields by adapting the model. 

Generally speaking, fluid models are usually described by systems of partial 
differential equations. And there are many mature numerical methods for this, such 
as finite difference method, finite element method and finite volume method. At 
present, there are many widely used numerical simulation software that can realize 
the solution of the partial differential equations system. COMSOL Multiphysics is 
the simulation software used in this project. The target of this project is the 
oscillating fluid in a Petri dish on a shaker. There are currently many research 
projects on fluid simulation, but those that are specifically aimed at the research 
goal of this project have not been found. Therefore, the research of this project 
would add a case to the field of fluid modelling and simulation. 

There are many different types of laboratory shakers. Here, the reciprocating 
shaker is the research object of this project. For most reciprocating shakers, the 
oscillation can be represented by a trigonometric curve. In Chapter 2, the 
description of the shaker oscillation will be introduced together with the key 
research method of this project which is moving frame method. This method helps 
transform the problem from a moving boundary problem to a fixed boundary 
problem. In Chapter 3 and Chapter 4, the moving frame method will be 
implemented into the Burgers equation and COMSOL Multiphysics. As a simple 
case of analysis, the results of the transformed Burgers equation prove the 
feasibility of the method. In Chapter 5, one can see how to simulate the oscillating 
fluid model and fluid mixing model in COMSOL Multiphysics and how the fluid 
behaves. Finally, in Chapter 6, the results will be discussed and some conclusions 
will be drawn. 
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2 Moving frame method 

In this chapter, a coordinate transformation named moving frame method will be 
introduced. During the research process of this project, the moving frame method 
played a vital role. And after that the basic moving frame suitable for the research 
object of this project will be derived in this chapter. 

2.1 Moving frame attached to Petri dish 

In the general partial differential equation model, partial differential equation 
systems, the boundary conditions of the model and the initial conditions of the 
model are essential. In common fluid problems, we often encounter a type of 
problem, which contains a set of boundary conditions that change with time, such 
as ice melting problems, solid structure flow problems with moving structure, and 
the problem of oscillating fluid similar to the research target of this project, etc. 
Faced with such changes in boundary conditions, it is difficult to describe and solve 
the model with normal means. In order to solve this problem, we can consider a 
basic idea, which is to bind the coordinate system to the moving boundary. This 
kind of method can be called the moving frame method, which is a special form of 
the coordinate transformation method. 

In this project, the most common Petri dish is considered. The shaking mode of 
the shaker is reciprocating. Here we consider the general oscillation mode which 
can be represented by a trigonometric function. If the Petri dish placed on the 
shaker is regarded as a particle, its position on the x-axis is recorded as 𝑥(𝑡) in a 
Cartesian coordinate system, which is a function of time can be written as 𝑥(𝑡) =
𝑥(0) + 𝑎 𝑐𝑜𝑠 (𝜔𝑡), and the position of the particle on the y-axis and z-axis remains 

unchanged. In the general model building process, if the model only moves in one 
direction, one can first consider the simplified one-dimensional model in this 
direction. 

Here, one can assume that a time-varying line segment on the x-axis [0 +
𝑎 𝑐𝑜𝑠 (𝜔𝑡), 𝐿 + 𝑎 𝑐𝑜𝑠 (𝜔𝑡)] represents the fluid calculation domain we are studying, 
where L is the diameter of the Petri dish, the parameter 𝑎  is the oscillation 
amplitude of the shaker, 𝜔 is equal to the reciprocal of the oscillation frequency 
multiplied by 2𝜋 which also called angular frequency, then the endpoint of the line 

segment is the boundary of the model. Since the boundary and the entire calculation 
domain will periodically move with time, it is difficult to describe the fluid model by 
conventional means. It is not difficult to find that if we let 𝑥̃ = 𝑥 − 𝑎 𝑐𝑜𝑠 (𝜔𝑡), where 
𝑥 is a point in the calculation domain, then 𝑥̃ ∈ [0, 𝐿] is a point on a domain that 

does not move with time. Therefore, I chose the following transformation to convert 

the original coordinate system 𝑇 = (𝑥, 𝑡) to the relative coordinate system 𝑇̃ = (𝑥̃, 𝑡̃) 

which is a moving frame attached to the shaker that 
 𝑥̃ = 𝑥 − 𝑎 𝑐𝑜𝑠(𝜔𝑡) 

(2-1) 
 𝑡̃ = 𝑡 

The coordinate transformation method above is the basis of this project. It 
successfully converts the moving boundary and computing domain in the original 
problem into a fixed boundary and computing domain. 
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2.2 The Burgers equation in the moving frame 

In the field of computational fluid mechanics, the Burgers equation is one of the 
most commonly used nonlinear partial differential equations. Its form is not 
complicated, but it contains convection and diffusion terms. Therefore, it is widely 
used and is often used to simulate shock wave propagation and reflection. In order 
to better study the application of the moving frame method in computational fluid 
mechanics, here, we can assume that the fluid can be described by Burgers equation, 
and use this for preliminary calculation and analysis. 

Here the Burgers equation in inertial Cartesian coordinate system 𝑇 = (𝑥, 𝑡) is 
considered on moving domain 𝑥 ∈ [0 + 𝑎 cos(𝜔𝑡) , 𝐿 + 𝑎 cos (𝜔𝑡)] which is  

 𝑢𝑡 = −𝑢𝑢𝑥 + 𝜇𝑢𝑥𝑥 + 𝑓(𝑥, 𝑡) (2-2) 

where 𝑥  represents the position on the x-axis, 𝑡  represents the time, and 𝑢  is a 
function of 𝑥 and 𝑡 representing the flow velocity of the fluid at the position 𝑥 and 
time 𝑡. The direction of the flow velocity is represented by its sign. And the function 
𝑓 is the source term of the velocity.  

Here the transformation (2-1) is applied into this equation. Based on this 
coordinate transformation, one can derive the following variables in the relative 

coordinate system 𝑇̃ = (𝑥̃, 𝑡̃): 

 𝑥 = 𝑥̃ + 𝑎 𝑐𝑜𝑠(𝜔𝑡̃), 
(2-3) 

 𝑡 = 𝑡̃. 

However, if one ignores its physical meaning and just treats the function 𝑢 as a 
mathematical symbol, this defaults to the equation 𝑢 = 𝑢̃, which will produce fallacy 

in actual situations. Because, the coordinate transformation of the moving frame 
used here will make the reference frame convert from the original inertial frame to a 
non-inertial frame. In the non-inertial system, the size and direction of the original 
motion physical quantity, such as velocity and acceleration, will be changed. This 
change on velocity can be derived from the coordinate transformation: 

 𝑢 =
𝑑𝑥

𝑑𝑡
=

𝑑[𝑥̃ + 𝑎𝑐𝑜 𝑠(𝜔𝑡̃)]

𝑑𝑡̃
=

𝑑𝑥̃

𝑑𝑡̃
− 𝑎𝜔 sin(𝜔𝑡̃) = 𝑢̃ − 𝑎𝜔 sin(𝜔𝑡̃). (2-4) 

According to the coordinate transformation method obtained in the previous 
section, it is easy to know that the relative coordinate system performs variable 
velocity movement relative to the original inertial reference system, and the point 
with zero velocity in the original coordinate system will have an additional velocity 
source in the relative coordinate system. The size of this extra velocity is the same as 
the velocity of the relative coordinate system moving relative to the original 
coordinate system, but the direction is opposite which is consistent with the 
phenomenon observed in (2-4). Here, 𝑎𝜔𝑠𝑖𝑛(𝜔𝑡̃)  is the inverse number of the 

movement velocity of the relative coordinate system relative to the original inertial 
system at time 𝑡 = 𝑡̃. And according to this, one can get the expressions in relative 

coordinate system: 

 

𝑢𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕[𝑢̃ − 𝑎𝜔 sin(𝜔𝑡̃)]

𝜕𝑥̃

𝜕𝑥̃

𝜕𝑥
+

𝜕[𝑢̃ − 𝑎𝜔 sin(𝜔𝑡̃)]

𝜕𝑡̃

𝜕𝑡̃

𝜕𝑥
          

=
𝜕𝑢̃

𝜕𝑥̃
= 𝑢̃𝑥 , 

(2-5) 

 

𝑢𝑥𝑥 =
𝜕2𝑢

𝜕𝑥2
=

𝜕2[𝑢̃ − 𝑎𝜔 sin(𝜔𝑡̃)]
𝜕𝑥̃2

𝜕𝑥̃

𝜕𝑥
+

𝜕2[𝑢̃ − 𝑎𝜔 sin(𝜔𝑡̃)]
𝜕𝑥̃𝜕𝑡̃

𝜕𝑡̃

𝜕𝑥

=
𝜕2𝑢̃

𝜕𝑥̃2
= 𝑢̃𝑥𝑥 . 
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Here, because the extra velocity term only depends on time 𝑡̃ , this term will 
disappear after derivation of 𝑥. And the derivation of time will have obvious changes 

which is  

 

𝑢𝑡 =
𝑑𝑢

𝑑𝑡
(𝑥(𝑡), 𝑡) =

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) +

𝜕𝑢

𝜕𝑥
(𝑥, 𝑡)

𝑑𝑥

𝑑𝑡
=

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥

=
𝜕(𝑢̃ − 𝑎𝜔𝑠𝑖𝑛(𝜔𝑡̃))

𝜕𝑡

+ (𝑢̃ − 𝑎𝜔𝑠𝑖𝑛(𝜔𝑡̃))
𝜕(𝑢̃ − 𝑎𝜔 𝑠𝑖𝑛(𝜔𝑡̃))

𝜕𝑥

=
𝜕𝑢̃

𝜕𝑡̃

𝜕𝑡̃

𝜕𝑡
− 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡̃) +

𝜕𝑢̃

𝜕𝑥

𝜕𝑥

𝜕𝑡̃

𝜕𝑡̃

𝜕𝑡

+ (𝑢̃ − 𝑎𝜔 𝑠𝑖𝑛(𝜔𝑡̃))
𝜕𝑢̃

𝜕𝑥

𝜕𝑥

𝜕𝑥

=
𝜕𝑢̃

𝜕𝑡̃
+ 𝑢

𝜕𝑢̃

𝜕𝑥
− 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡̃)

=
𝜕𝑢̃

𝜕𝑡̃
(𝑥, 𝑡̃) +

𝜕𝑢̃

𝜕𝑥
(𝑥, 𝑡̃)

𝑑𝑥

𝑑𝑡̃
− 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡̃)

=
𝑑𝑢̃

𝑑𝑡̃
(𝑥(𝑡̃), 𝑡̃) − 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡̃)                   

= 𝑢̃𝑡 − 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡̃). 

(2-6) 

which is consistent with the equation observed in (2-4). Therefore, the expression of 
the Burgers equation in the relative coordinate system should be that 

 𝑢̃𝑡̃ = −𝑢̃𝑢̃𝑥 + 𝜇𝑢̃𝑥𝑥 + 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡̃), (2-7) 

on a fixed domain 𝑥̃ ∈ [0, 𝐿] . Here one can naturally let the source term 𝑓 =
𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡̃). And now the model has been transformed into the relative coordinate 
system. It is easy to represent the boundary conditions as 𝑢̃(0, 𝑡̃) = 𝑢(𝐿, 𝑡̃) = 0 and 
the initial condition as 𝑢(𝑥, 0) = 0 which means that in the relative reference the 

Petri dish would not moving anymore and the velocity at the boundary is zero 
because the wall of the Petri dish and the fluid oscillation will be reflected by the 
velocity source term which can also be seen as a time dependent body force. 
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3 Analytical solutions 

While experimenting with the transformed Burgers equation, one hopes to know the 
form of the analytical solution of the equation. But for the nonlinear Burgers 
equation studied here, it is too difficult to solve, and there is no good solution for 
the time being. So, one can chose to ignore the non-linear terms, and instead solved 
the main part of it to study the general form of the solution. When the influence of 
the nonlinear term is not significant, this solution can be regarded as the solution of 
the original equation. 

Here, only the Burgers equation after ignoring the nonlinear term in the relative 
coordinate system is considered which also called the one-dimensional non-
homogeneous heat conduction equation 

 𝑢𝑡 = 𝜇𝑢𝑥𝑥 + 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡), (3-1) 

on domain 𝑥 ∈ [0, 𝐿] , with boundary conditions 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0  and initial 

condition 𝑢(𝑥, 0) = 0.  

3.1 Separation of variables 

In order to solve this non-homogeneous equation, one can first consider the 
homogeneous equation that 

 𝑢𝑡 = 𝜇𝑢𝑥𝑥  (3-2) 

with boundary conditions 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0. Using the separation of variables 

method, one can get a general solution of this homogeneous equation. The process 
is as follows: 

Try solution 𝑢(𝑥, 𝑡) =  𝑓(𝑥)𝑔(𝑡), and one gets the equation that 
 𝑔′(𝑡)𝑓(𝑥) = 𝜇𝑓′′(𝑥)𝑔(𝑡), (3-3) 

which is equivalent to 

 
𝑔′(𝑡)

𝑔(𝑡)
= 𝜇

𝑓′′(𝑥)

𝑓(𝑥)
= 𝛼, (3-4) 

where 𝛼 is a constant. However, after trying 𝛼 = 0 and 𝛼 > 0, one can find that they 
both lead to a contradict situation 𝑢(𝑥, 𝑡) ≡ 0 which we do not want to see. Trying 
𝛼 < 0, one can get that 

 𝑔(𝑡) = 𝑐1𝑒𝛼𝑡 ≠ 0, 

(3-5) 
 𝑓(𝑥) = 𝑐2𝑐𝑜𝑠 (√

−𝛼

𝜇
𝑥) + 𝑐3𝑠𝑖𝑛 (√

−𝛼

𝜇
𝑥), 

which means that 

 𝑢 = 𝑐1𝑒𝛼𝑡[𝑐2𝑐𝑜𝑠 (√
−𝛼

𝜇
𝑥) + 𝑐3𝑠𝑖𝑛 (√

−𝛼

𝜇
𝑥)]. (3-6) 

And from the boundary condition 𝑢(0, 𝑡) = 0, one obtains 
 𝑐1𝑒𝛼𝑡[𝑐2 + 0] = 0, (3-7) 

but 𝑐1 = 0 leads to contradict situation  𝑢(𝑥, 𝑡) ≡ 0 which we do not want. So, trying  
𝑐2 = 0, one gets that 

 

𝑢 = 𝑐1𝑒𝛼𝑡[𝑐3 𝑠𝑖𝑛(√
−𝛼

𝜇
𝑥)]. (3-8) 
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From the other boundary condition 𝑢(1, 𝑡) = 0, one finds 
 

𝑐1𝑒𝛼𝑡[𝑐3𝑠𝑖𝑛(√
−𝛼

𝜇
𝑥)] = 0, (3-9) 

but 𝑐1 = 0 𝑎𝑛𝑑 𝑐3 = 0 both lead to contradict situation 𝑢(𝑥, 𝑡) ≡ 0 which we do not 

want. So, trying 𝑠𝑖𝑛(√
−𝛼

𝜇
) = 0  which means √

−𝛼

𝜇
= 𝑛𝜋 , one gets the nontrivial 

solution 

 𝑢 = 𝑐1𝑒−𝜇(𝑛𝜋)2𝑡[𝑠𝑖𝑛(𝑛𝜋𝑥)], (3-10) 

where 𝑐1 is an arbitrary constant and 𝑛 is an arbitrary integer. 

3.2 Variation of coefficients 

From the process in previous part, one can say that the general solution of the 
homogenous equation (3-8) is  

 𝑢ℎ = ∑ 𝑐𝑛𝑒−𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝑛𝜋𝑥)

∞

𝑛=1

. (3-11) 

Based on 𝑢ℎ , one can find the solution of the non-homogenous equation (3-7). 
Using variation of coefficients to get a particular solution by letting 𝑐𝑛 depending on 
𝑡, which can be noted as 𝑐𝑛(𝑡). Substituting 𝑢 = 𝑢ℎ into the above equation (3-7), 

one gets 

 

∑[
𝑑𝑐𝑛

𝑑𝑡
𝑒−𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝑛𝜋𝑥) + 𝑐𝑛(𝑡)

𝜕(𝑒−𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝑛𝜋𝑥))

𝜕𝑡
]

∞

𝑛=1

= ∑ 𝜇𝑐𝑛(𝑡)
𝜕2(𝑒−𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝑛𝜋𝑥))

𝜕𝑥2

∞

𝑛=1

+ 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡) 

(3-12) 

which is equivalent to 

 ∑
𝑑𝑐𝑛

𝑑𝑡
𝑒−𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝑛𝜋𝑥)

∞

𝑛=1

= 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡). (3-13) 

In order to make the two sides similar so that one can continue to calculate, one 
needs to find the sine expansion of 𝑓(𝑥) = 1, on domain [0, 1] which can be found by 
an odd extension of this function on the domain [−1, 1] in the way below: 

 𝑓(𝑥) = {
1,   𝑥 ∈ (0, 1],

0,   𝑥 = 0,
−1,   𝑥 ∈ [−1,0)

 (3-14) 

to satisfy the boundary conditions. According to Fourier expansion formula, one has 
that 

 𝑓(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑛 cos(𝑛𝜋𝑥)

∞

𝑛=1

+ 𝑏𝑛 sin(𝑛𝜋𝑥), (3-15) 

where 

 𝑎𝑛 = ∫ 𝑓(𝑥)𝑐𝑜𝑠 (𝑛𝜋𝑥)𝑑𝑥
1

−1

= 0, (3-16) 
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𝑏𝑛 = ∫ 𝑓(𝑥)𝑠𝑖𝑛 (𝑛𝜋𝑥)𝑑𝑥
1

−1

= ∫ 𝑠𝑖𝑛 (𝑛𝜋𝑥)𝑑𝑥
1

0

+ ∫ −𝑠𝑖𝑛 (𝑛𝜋𝑥)𝑑𝑥
0

−1

=
2(cos(0) − cos(𝑛𝜋))

𝑛𝜋
=

2 − 2(−1)𝑛

𝑛𝜋
. 

So, the equation (3-19) can be written as 

 

∑
𝑑𝑐𝑛

𝑑𝑡
𝑒−𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝑛𝜋𝑥)

∞

𝑛=1

= 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡) ∑
2 − 2(−1)𝑛

𝑛𝜋
𝑠𝑖𝑛 (𝑛𝜋𝑥)

∞

𝑛=1

. 

(3-17) 

Then, for each 𝑛 we have  

 
𝑑𝑐𝑛

𝑑𝑡
=

[2 − 2(−1)𝑛]𝑎𝜔2

𝑛𝜋
𝑒𝜇(𝑛𝜋)2𝑡 𝑐𝑜𝑠(𝜔𝑡). (3-18) 

Integrate on both sides and according to the partial integration method one can get 
that 

 

𝑐𝑛(𝑡) = ∫
[2 − 2(−1)𝑛]𝑎𝜔2

𝑛𝜋
𝑒𝜇(𝑛𝜋)2𝑡 𝑐𝑜𝑠(𝜔𝑡) 𝑑𝑡

=
[2 − 2(−1)𝑛]𝑎𝜔2

𝑛𝜋
(

1

𝜔
𝑒𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝜔𝑡)

+
𝜇(𝑛𝜋)2

𝜔2
𝑒𝜇(𝑛𝜋)2𝑡 𝑐𝑜𝑠(𝜔𝑡))

−
𝜇2(𝑛𝜋)4

𝜔2
∫

[2 − 2(−1)𝑛]𝑎𝜔2

𝑛𝜋
𝑒𝜇(𝑛𝜋)2𝑡 𝑐𝑜𝑠(𝜔𝑡) 𝑑𝑡

=
[2 − 2(−1)𝑛]𝑎𝜔2

𝑛𝜋
(

1

𝜔
𝑒𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝜔𝑡)

+
𝜇(𝑛𝜋)2

𝜔2
𝑒𝜇(𝑛𝜋)2𝑡 𝑐𝑜𝑠(𝜔𝑡)) −

𝜇2(𝑛𝜋)4

𝜔2
𝑐𝑛(𝑡). 

(3-19) 

So, one can derive that the coefficient 𝑐𝑛(𝑡) is given by 

 𝑐𝑛(𝑡) =
[2 − 2(−1)𝑛]

𝑛𝜋

𝑎𝜔3 sin(𝜔𝑡) + 𝑎𝜔2𝜇(𝑛𝜋)2 𝑐𝑜𝑠(𝜔𝑡)

𝜔2 + 𝜇2(𝑛𝜋)4
𝑒𝜇(𝑛𝜋)2𝑡 . (3-20) 

So far, one can say that the particular solution of equation (3-8) is that 

 

𝑢𝑝

= ∑ (
[2 − 2(−1)𝑛]

𝑛𝜋

∞

𝑛=1

∙
𝑎𝜔3 𝑠𝑖𝑛(𝜔𝑡) + 𝑎𝜔2𝜇(𝑛𝜋)2 𝑐𝑜𝑠(𝜔𝑡)

𝜔2 + 𝜇2(𝑛𝜋)4
𝑒𝜇(𝑛𝜋)2𝑡) 𝑒−𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝑛𝜋𝑥)

= ∑
[2 − 2(−1)𝑛]

𝑛𝜋
∙

𝑎𝜔3 𝑠𝑖𝑛(𝜔𝑡) + 𝑎𝜔2𝜇(𝑛𝜋)2 𝑐𝑜𝑠(𝜔𝑡)

𝜔2 + 𝜇2(𝑛𝜋)4

∞

𝑛=1

∙ 𝑠𝑖𝑛(𝑛𝜋𝑥) 

(3-21) 

One can add the solution of the homogeneous equations which arbitrary but fixed 
coefficients to find another particular solution. Finally, the general solution of the 
non-homogeneous equation (3-7) is given by 
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𝑢𝑔 = 𝑢𝑝 + 𝑢ℎ = ∑
[2 − 2(−1)𝑛]

𝑛𝜋

∞

𝑛=1

∙
𝑎𝜔3 𝑠𝑖𝑛(𝜔𝑡) + 𝑎𝜔2𝜇(𝑛𝜋)2 𝑐𝑜𝑠(𝜔𝑡)

𝜔2 + 𝜇2(𝑛𝜋)4
∙ 𝑠𝑖𝑛(𝑛𝜋𝑥)

+ ∑ 𝑐𝑛𝑒−𝜇(𝑛𝜋)2𝑡 𝑠𝑖𝑛(𝑛𝜋𝑥)

∞

𝑛=1

. 

(3-22) 

3.3 Results analysis 

One can see from the general solution (3-22) that when time 𝑡 is sufficiently big 𝑢ℎ 
will be very small which can be ignored. The other part 𝑢𝑝 is the main part and one 

can see that its period is 2𝜋/𝜔, its amplitude depends on the parameters 𝑎, 𝜔 and 𝜇. 
So, for large 𝑡 the solution behaves as 

 
𝑢𝑔 ~ ∑

4
(2𝑘 − 1)𝜋

∙
𝑎𝜔3 𝑠𝑖𝑛(𝜔𝑡) + 𝑎𝜔2𝜇((2𝑘 − 1)𝜋)2 𝑐𝑜𝑠(𝜔𝑡)

𝜔2 + 𝜇2((2𝑘 − 1)𝜋)4

∞

𝑘=1

∙ 𝑠𝑖𝑛((2𝑘 − 1)𝜋𝑥). 

(3-23) 

One can see that the coefficient for 𝑘 = 2 is 27 times smaller than the one for 𝑘 = 1. 

So, we will see merely the first term. Since, the coefficients decrease rapidly a good 
approximation for large 𝑡 and 𝜔 ≪ 𝜇𝜋2 is 

 𝑢𝑔 ~ 
𝑎𝜔2

𝜇
∙ 𝑐𝑜𝑠(𝜔𝑡) ∙ 𝑠𝑖𝑛(𝜋𝑥) (3-24) 

which shows that the period of the velocity is proportional to 2𝜋/𝜔 which is the 

same as the period of the forced oscillation and the amplitude is proportional to 
𝑎𝜔2/𝜇. This is an example of a forced oscillation, i.e. the period of the forcing 

function is returning in the solution. These characteristics will also be verified in 
numerical experiments. 
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4 Numerical results 

In this section, the software COMSOL Multiphysics is used to solve the transformed 
Burgers equation (2-7), derived in Section 2.2, numerically. One of the methods that 
one can use to solve a PDE by COMSOL is entering the weak form of the PDE. The 
Weak Form PDE module in COMSOL is a very powerful tool with the finite element 
method as its core algorithm. 

4.1 Model setup 

The weak form of the transformed Burgers equation (2-7) can be obtained by 
multiplying both sides of the equation by a test function 𝑣 and integrating over the 

domain. The expression is 

 0 = ∫(−𝑢𝑡 − 𝑢𝑢𝑥 + 𝜇𝑢𝑥𝑥 + 𝑎𝜔2 𝑐𝑜𝑠(𝜔𝑡))𝑣𝑑𝑆

 

𝛺

. (4-1) 

From this, one can get the weak expression required in COMSOL software, which 
can be expressed in the syntax of COMSOL software as 

 (-ut-u*ux+mu*uxx +a*om*om*cos(om*t))*test(u), (4-2) 

where test(u) represents the test function in COMSOL, the parameters 𝑎 and 𝜔 are 

the shaker parameter data obtained according to the shaking mode of the shaker, 
and the parameter 𝜇 is the viscosity of the fluid. After determining the parameters of 

the equation and adding a Dirichlet boundary condition at both sides, one can solve 
it directly in COMSOL. 

In the following experiments, the settings of the numerical method in COMSOL 
is not changed. The amount of the elements is 100 and the element shape order is 
quadratic. The number of degrees of freedom solved for is 201. The test space is the 
same as the search space which means that it is Galerkin approach. The time-
dependent solver is BDF. The tolerance is set to 0.0001. 

4.2 Effect of viscosity 

Firstly, the influence of the viscosity is studied here. Without loss of generality, in 
this experiment one can set the length of the Petri dish, that is, the length of the 
calculation domain to 𝐿 = 1, the shaker oscillation amplitude to 𝑎 = 0.01, and the 
angular frequency of the shaker oscillation to 𝜔 = 1.Here, the research target is 

water and related biological experiment liquids, so the viscosity coefficient should 
not be too big. At the same time, in order to ensure the accuracy of the calculation 
results and reduce the pressure of computer numerical calculation, the viscosity 
coefficient should not be too small. As one can see from Figure 4-1, by setting the 
viscosity 𝜇 = 10, one obtains a number of snapshots of the velocity in the fluid 

domain as shown in Figure 4-1 (left). Through the output function image and the 
animation in the software, we can see that the velocity curve is periodic in time. In 
order to study its periodicity, one can intercepted the velocity data of the point at 
𝑥 = 0.5. As shown in Figure 4-1 (right), the image clearly shows the periodicity. 
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Figure 4-1: Snapshots of velocity at different moments (left) and time evolution plot of velocity at the 

centre point (right) when the viscosity is 10 

 
As can be seen from Figure 4-1, the amplitude of the velocity at this point is 

about 0.0025, the period of the velocity curve is about 2𝜋, and the velocity curve is 

smooth. From these data, one can learn that, although the Burgers equation used in 
the calculations contains a nonlinear term, its effect on the velocity curve is not 
large. 

 
Figure 4-2: Time evolution plots of velocity with viscosities of 5 (left) and 0.025 (right) 

 
Subsequently, the viscosity 𝜇 is gradually reduced, and the output velocity at 𝑥 =

0.5 changes with time. The output results are shown in Figure 3-2. It can be seen 
from the figure that the period of the velocity curve has not changed, it is still 2𝜋, 

but the time from the beginning of the calculation to the curve entering the 
periodical range becomes longer and longer as the viscosity decreases, and the 
shape of the curve also becomes more and more complicated. It is worth noting that 
as the viscosity value decreases, the amplitude of the velocity curve increases in 
proportion. The relation between viscosity and amplitude is shown in Table 4-1. 

 

Table 4-1: Experimental data of viscosity and amplitude changes 

 

Viscosity μ Ratio Reciprocal ratio Amplitude Ratio 

10 - - 0.000025 - 

5 0.5 2 0.00005 2 

1 0.2 5 0.00025 5 

0.5 0.5 2 0.0005 2 

0.1 0.2 5 0.0025 5 

0.05 0.5 2 0.0047 1.88 

0.025 0.5 2 0.0076 1.61 
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From the above experimental results, the lower the viscosity, the higher the 

amplitude of the velocity curve, and the relation between them can be 
approximately expressed as 𝐴~1/𝜇. When the viscosity becomes lower and lower, 

the velocity image will become more complicated, and the time required for the 
velocity curve to enter its periodic range will become longer and longer. This also 
shows the influence of the nonlinear term in the Burgers equation in the calculation 
is growing. And the time required for the speed curve to enter the periodic range is 
difficult to quantify, but from the image, the time required is roughly inverse 
proportional to the viscosity. 

4.3 Effect of angular frequency 

Here, the influence of the angular frequency is studied. One can follow the 
calculation in the previous part, fixed viscosity μ=0.5, and explore the effect on fluid 
velocity at x=0.5 by changing the angular frequency 𝜔 . Here, the experimental 

results are made for four different oscillation cycles, as shown in Figure 4-3. From 
top to bottom, from left to right, it is 𝜔 = 2, 1, 0.5, 0.1, that is, shaker oscillation 
period is 𝑇 = 𝜋, 2𝜋, 4𝜋, 20𝜋 in turn.  

 

 
Figure 4-3: Time evolution plots of velocity with ω values in the order of 2, 1, 0.5, and 0.1 

 
One can observe that the period of the velocity curve increases with the increase 

of the shaker oscillation period, while the amplitude decreases with the increase of 
the shaker oscillation period. Here, the data of the period and amplitude of the 
velocity curve changing with ω and oscillation period are shown in Table 4-2. 
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Table 4-2: Amplitude and period of function 𝑢(0.5, 𝑡) against 𝜔 

 

Angular 
frequency 

𝜔 

Square 
of ratio  

Period of 
shaker 

movement 
Ratio Amplitude Ratio Period Ratio 

2 - 𝜋 - 0.02 - 𝜋 - 

1 0.25 2𝜋 2 0.005 0.25 2𝜋 2 

0.5 0.25 4𝜋 2 0.0012 0.24 4𝜋 2 

0.1 0.04 20𝜋 5 0.00005 0.042 20𝜋 5 

 
Combining the experimental results in the previous part, one can see that the 

amplitude 𝐴 is also proportional to the square of the 𝜔 value to a certain extent, that 
is, 𝐴~𝜔2/𝜇 , which has an important guiding role in analytical solution to the 

Burgers equation. At the same time, we can also see that the longer the period, the 
smaller and smoother the velocity function curve amplitude. The experimental 
results are in line with the expectations, because in practice the smaller the angular 
frequency of the fluid oscillation the smaller the oscillation velocity, so the fluid 
oscillation will become relatively stable and slow. 
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5 Simulations  

In Chapter 2, a basic description of the fluid model to be studied in this project has 
been made. In this chapter, researches and discussions on how to simulate and 
calculate the oscillating fluid in COMSOL will be conducted. Subsequently, the 
results of different experiments conducted for different purposes will be displayed 
and discussed. 

5.1 Two-dimensional oscillating fluid modelling 

In this project, the research object is the oscillating fluid. When the Petri dish is 
placed on the shaker, the fluid in the Petri dish will oscillate due to the interaction 
between the Petri dish wall and the fluid during the oscillation of the Petri dish. 
Here one can ignore the specific shape of the Petri dish and only consider the x-axis 
direction where the Petri dish is reciprocating and the y-axis direction where the 
height of the liquid is located, thereby forming a two-dimensional model. 

5.1.1 Model setup 

Here, the main parameters of the fluid model studied are that the height of the 
liquid surface is 0.02 meters, and the diameter of the culture dish is 0.1 meters. The 

fluids studied are Newtonian fluids. The model uses a multi-phase laminar flow 
model and does not consider its heat transfer process. Therefore, the main 
equations used in COMSOL is 

 𝜌
𝜕𝒖

𝜕𝑡
+ 𝜌(𝒖 ∙ ∇)𝒖 = ∇ ∙ [−𝑝𝑰 + 𝑲] + 𝑭 + 𝜌𝒈, 

𝜌∇ ∙ 𝒖 = 0. 
(5-1) 

The sides and the bottom of the fluid are set as walls which cannot be penetrated or 
moved. The upper side of the fluid is set as a free surface and can move freely. In 
order to simulate reality, gravity will be set on the fluid. The remaining parameters 
of the fluid and shaker will be given in detail in the simulation experiments which 
will be set to different numbers for different reasons. 

In COMSOL, according to the powerful meshing function of the program itself, 
the domain is freely divided into triangular meshes. The initial mesh of the solution 
domain is shown in Figure 5-1, which is physics-controlled mesh and the element 
size is coarse which includes 1754 solution domain elements and 140 boundary 
elements. The geometry shape order is also quadratic. 
 

 
Figure 5-1: Initial meshing in COMSOL 
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Because the surface of the liquid is not constrained, the fluid domain is deformed 
greatly, and it is very irregular when the viscosity is low, so it is almost impossible to 
solve with the traditional fixed mesh. However, one can use the moving mesh 
technology to solve this problem. 

5.1.2 Moving frame in COMSOL 

After establishing the model in terms of geometry, one has to consider how to 
implement the oscillation of the fluid. In the initial model, the initial and boundary 
conditions of the fluid are default, and the default value is zero. Therefore, when no 
changes are made, the velocity field of the fluid will remain at zero. In order to 
achieve fluid oscillation, that is to say the reciprocating motion of the entire 
computing domain, we use the moving frame method introduced in Section 2.1. In 
order to make it possible to use the moving frame method in COMSOL software, we 
need to consider this method in combination with the modelling process and 
physical meaning of COMSOL software. 

Considering the most general oscillation mode mentioned in Section 2.1, if the 
Petri dish placed on the shaker is regarded as a particle, its position on the x-axis is 
marked as 𝑥(𝑡)  in a three-dimensional Cartesian coordinate system, which is a 
function of time. The expression can be written as 𝑥(𝑡) = 𝑐𝑜𝑠 (𝑡), while the position 

of the particle on the other axis remains unchanged. 
Here we have the coordinate transformation that 

 𝑥̃ = 𝑥 − 𝑎𝑐𝑜𝑠(𝜔𝑡), 

(5-2)  𝑦̃ = 𝑦, 

 𝑡̃ = 𝑡. 

And considering the physical meaning of the velocity field, which is mentioned in 
Section 2.2, one can get from (2-4) that 

 𝑢̃ = 𝑢 + 𝑎𝜔 sin(𝜔𝑡̃). (5-3) 

Furthermore, from (2-6) we can see the acceleration component on the x-axis is 

 𝑢̃𝑡 = 𝑢𝑡 + 𝑎𝜔2𝑐𝑜𝑠(𝜔𝑡). (5-4) 

The y component of velocity, does not change which is  

 𝑣̃ = 𝑣. (5-5) 

From the expressions above, one can see that this coordinate transformation 
only affects the component of each physical quantity on the x-axis that contains the 
term for the derivative of each order with respect to time, including displacement, 
velocity, and acceleration and so on. Then, to apply this coordinate transformation 
method, it is only necessary to change these affected terms in the differential 
equations used in the model. The easiest way to change all its equations is to change 
the acceleration component on the x-axis of all objects to the original formula plus a 
velocity source term which is  

 𝑓 = 𝑎𝜔2𝑐𝑜𝑠(𝜔𝑡̃). (5-6) 

Here, the simplest and most direct way to apply this source term to all objects in 
COMSOL is to modify its gravity acceleration equation. Therefore, this velocity 
source term is added to the original static model and the acceleration of gravity is 
changed into  

 𝑔̃ = 𝑔 + (
𝑓

0
) = (

𝑎𝜔2𝑐𝑜𝑠(𝜔𝑡)

−10
). (5-7) 

In this way, one can successfully implement the original static fluid model into a 
model that reciprocates along the x-axis with time in COMSOL. The physical 
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quantities involved will be displayed as values in a relative coordinate system that is 
stationary relative to the Petri dish.  

To consider the situation in three-dimensional space, assuming that the Petri 
dish is a rectangular parallelepiped, in an ideal situation, its fluid motion can be 
fully demonstrated by the two-dimensional model. Considering that the shape of 
the Petri dish is a cylinder, the behaviours of the fluid in the Petri dish will be plane 
symmetric about the z-axis and the x-axis of the motion axis, so the study of the 
three-dimensional model is not very necessary for this subject. Of course, according 
to the method used here, it is very easy to change the model to a three-dimensional 
model, but for the sake of reducing the runtime, only two-dimensional scenarios are 
simulated here. 

Considering that the research objective of this subject is very specialized, one 
can expand the method. One can use this method to simulate any fluid oscillating 
physical scenario, that is, changing the gravity acceleration equation. For example, 
we often consider the behaviours of the fluid in the box during the tilting of the box, 
such as the tilting of the oil tank, water tank and test tube. In this situation, one 
finds a corresponding coordinate transformation method according to its tilting and 
shaking mode, and transform the original coordinate system into a relative 
coordinate system that shakes together with the cabinet. Then, add the 
corresponding difference term to the gravity acceleration equation of the model to 
complete the simulation of the scenario. In addition, there are many other 
application scenarios such as drum mixers and washing machines. 

5.2 Results and analysis 

In the previous section, the research method on this project and the actual 
simulation operation in COMSOL software have been introduced. According to the 
methods mentioned above, several simulation experiments, by changing the 
corresponding parameters of the model for several different purposes, are 
conducted. Here, some simulation experiments will be explained in detail, and the 
simulation results will be shown and analysed. 

5.2.1 Velocity field 

Firstly, one would like to study the velocity field of this oscillating fluid. The model 
building process is shown in the previous part. Here, one can set the fluid material 
to standard water, which is a low-viscosity fluid whose viscosity is 𝜇 = 0.001 and 

will have unstable results when the oscillation frequency is too high. Therefore, the 
shaker shaking parameter is set to 𝜔 = 5, which means the shaking period is 2𝜋/5 

seconds, and the shaking amplitude is set to a=0.01, which means that the 
maximum deviation distance of the culture dish is 1 centimetre. As shown in Figure 

5-2, the fluid has obvious undulations under the action of oscillation, which shows 
the velocity of the fluid at times 𝑡 = 0.2, 0.5, 0.8, 1.2𝑠 from top to bottom, from left to 

right. It can be seen that the undulation of the fluid is periodic to some extent. It 
should be noted that the velocity here is the one in the relative coordinate system. 
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Figure 5-2: Images of fluid velocity distribution at time 0.2, 0.5, 0.8, 1.2 seconds 

 
One finds that the place with the highest fluid surface height is the place with the 

fastest fluid velocity, which is a kind of water wave moving with time. One knows 
from the Section 5.1.2 that the accelerations due to the extra body force term is 
𝑎𝜔2𝑐𝑜𝑠(𝜔𝑡) = 0.1351, −0.2003, −0.1634, 0.2400 𝑚/𝑠2  at time 𝑡 = 0.2, 0.5, 0.8, 1.2 𝑠 , 

from top to bottom, from left to right in the Figure 5-2. The period of the 
acceleration due to the extra body force term is 2𝜋/5 ≈ 1.26𝑠, so one can notice that 

there is a certain degree of periodicity from 0.2 seconds to 1.2 seconds which is 
about 0.8 period. It is foreseeable that after a period of time, the fluid velocity field 
will enter a completely periodic state. 
 

 
Figure 5-3: Moving grid at 0.5 seconds (left) and fluid velocity field image (right) 

 
As shown in Figure 5-3, the left picture shows the instantaneous mesh division 

at a time of 0.5 seconds. The moving mesh technology provides a powerful help for 
simulating the free liquid surface motion of fluids. The figure on the right shows us 
the direction and the size of the velocity vector of the fluid at time 0.5 seconds. This 
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vector diagram combined with the velocity size distribution diagram of Figure 5-2 
gives a good impression of the velocity field distribution of the fluid over time. One 
knows from Section 5.1.2 that the extra acceleration due to the extra body force 
term will reach the maximum value at time 𝑡 = 0.63 𝑠. Therefore, before this, when 
the time 𝑡 = 0.5 𝑠, the fluid will still tend to the left side of the Petri dish, and due to 

inertia and gravity, the fluid on the left side of the Petri dish will return after 
reaching its highest point. At 𝑡 = 0.5 𝑠, a convective water wave appeared in the 

centre of the Petri dish to the left. 
In order to be able to more clearly see the image of the relationship between the 

speed of the fluid and the time, one can intercept two data points in the centre of the 
fluid calculation domain and the centre of the right boundary of the calculation 
domain, and output the data for different viscosities and angular frequencies which 
shown in Figure 5-4 and Figure 5-5 images of velocity varying with time.  

Here the upper blue curve is the cut point data of the centre point of the 
calculation domain which is (0.05, 0.01), and the lower green curve is the cut point 

data of the centre point of the right boundary of the calculation domain which is 
(0.1, 0.01).  

 
Figure 5-4: Time evolution plots of velocity with the viscosity μ=0.001 and the angular frequency ω=5 

(left) and ω=1 (right) 

 

 
Figure 5-5: Time evolution plots of velocity with the angular frequency ω=5 and the viscosity μ=0.001 

(left) and μ=0.1 (right) 

 
One can see that the velocity of the data cut point on the right boundary is 

significantly smaller than the velocity of the data cut point at the centre of the 
calculation domain. This is because the fluid at the boundary cannot move along the 
x-axis direction because it is close to the inner wall of the culture dish. Therefore, its 
speed is only determined by the speed component in the y-axis direction, so the 
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overall speed is lower than the speed at the centre. One can see that clearly from 
Figure 5-6. 
 

 
Figure 5-6: Time evolution plots of velocity in x-axis direction (left) and y-axis direction (right) at the 

centre cut point of the right boundary (0.1, 0.01) with ω=5 and μ=0.001 

 
From Figures 5-4 and 5-5, one can see many patterns. First of all, if the 

frequency of shaking of the shaker is reduced by a factor 5, the velocity of the fluid 
will be greatly reduced. It can be seen that the highest peak is reduced from 0.028 
to 0.0008, which is realistic. When the flow is relatively small, the movement of the 
fluid is very peaceful. However, due to the low viscosity of the fluid, considering the 
reflection of the water wave in the Petri dish, the velocity field change will be 
relatively irregular. Secondly, if the viscosity of the fluid is increased, it will make 
the entire oscillating process gentler and more regular. Its peak does not change, 
but after a period of time, the fluid oscillating movement becomes relatively regular, 
and its periodicity becomes more and more apparent.  

5.2.2 Concentration distribution 

Since the shaker is mainly used to mix, one would also like to see the concentration 
distribution in this oscillating fluid. Based on the previous model, the Transport of 
Diluted Species module is used here. In order to study the concentration 
distribution, a new geometry is built here. The small 0.01*0.01 square area in the 
upper middle is the initial position of the dilute solution, and its concentration is set 
here to 10 mol/m^3 as shown in Figure 5-7. In theory, the final concentration in the 
entire area will reach 0.5 mol/m^3. 
 

 
Figure 5-7: Initial mesh (left) and initial concentration distribution (right) 
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In order to see more clearly that the change of the concentration, one can set a cut 
point and output here the concentration. Here, the point (0.02, 0.01) is chosen. As 
shown in Figure 5-8, the fluid is set as water whose density 𝜌 is 1000 and viscosity 𝜇 
is 0.001, the oscillation amplitude 𝑎 is set to 0.01 and the diffusion coefficient 𝐷 is 
set to 1 × 10−5. For angular frequency is zero and five, one can get those two images. 

 
Figure 5-8: Concentration change at point (0.02,0.01) in the case where the shaker does not oscillate and 

only diffuses (left) and in the case where the shaker is oscillating with angular frequency ω=5 (right) 

 

The diffusion process is affected by oscillation which is faster when the shaker is 
oscillating, but here the impact is not very obvious. In order to study how will 
different angular frequency affect the concentration contribution the angular 
frequency is set to 5 and 10 here with the smaller diffusion coefficient 1 × 10−9 

which will reduce the impact of diffusion, as shown in Figure 5-9. 

 
Figure 5-9: Concentration change at point (0.02,0.01) where the shaker is oscillating with angular 

frequency ω=5 (left) and ω=10 (right) 

 
One can see from the Figure 5-9 that the concentration goes way faster with higher 
angular frequency. The point where the concentration curve disappears is that the 
fluid has left this point due to oscillation. 
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6 Discussion and Conclusions 

At the beginning of the research, the moving frame method was studied, discussed 
and combined with the actual situation of this project. The moving frame method 
has been applied to the Burgers equation and the oscillating fluid model. In the 
subsequent COMSOL model establishment and analysis of experimental results, the 
numerical solution of the transformed Burgers equation was analysed in various 
aspects, and one of the analytical solutions was given for the linear case where the 
nonlinear term is omitted from the equation which fits well with the numerical 
results for relatively high viscosity. The simulation of two-dimensional oscillating 
fluid is also practical for studying the oscillating fluid behaviour. 

The research of this project shows that the moving frame method of coordinate 
transformation is very effective for the simplification of a differential model whose 
boundary conditions change regularly. It is worth noting that the physical meaning 
of each symbol must be fully considered while performing moving frame coordinate 
transformation.  

The experimental results show that the characteristics of the solution of the 
transformed Burgers equation. When the viscosity is not very low, the amplitude of 
the velocity of the oscillating fluid is proportional to the reciprocal of the viscosity 
and also the square of the ω value, which can be expressed as 𝐴~𝜔2/𝜇. And its 
period is proportional to 𝜔 can be expressed as 𝑇~2𝜋/𝜔. The experimental results 

also show that the fluid in the Petri dish on a periodically oscillating shaker is 
relatively disordered at the initial stage, and the degree of disorder is proportional 
to the reciprocal of viscosity. After a period of time, the fluid will enter a periodic 
movement. 

Finally, the research of this project provides direction guidance and method 
innovation for the research of related topics, and there is still a lot of work to be 
done to quantify the more specific characteristics. 
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