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Abstract

The circle method was developed by Hardy & Littlewood in their attempts to apply analytic
function theory to Waring’s problem, which asks for the smallest integer s such that all sufficiently
large integers can be written as a sum of s kth powers. The method can be applied to problems of
an additive nature, and in particular the method was used to prove Goldbach’s weak conjecture
for sufficiently large integers. This was first done by Hardy & Littlewood, but they assumed the
generalised Riemann hypothesis; Vinogradov managed to use the method without this assumption
to prove the same result. This thesis, after introducing the main ideas behind the method and how
it works, explores how it can be applied to prove Vinogradov’s theorem, that the weak Goldbach
conjecture is true for all sufficiently large integers. Following this, there is a short look at how
the method can be applied to proving that all positive integers can be written as a sum of three
triangular numbers.
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Notation

There are various number theory related notations used in this thesis. This short section clarifies
what is meant by each of them.

(a, b) = gcd(a, b) = the greatest common divisor of a and b

Take any x ∈ R, then

bxc = the largest integer y such that y ≤ x
dxe = the smallest integer y such that y ≥ x
{x} = x− bxc = the non-integral part of x.

Oh-notation: This notation was developed to talk about what happens asymptotically, i.e. as
some term tends to infinity. Firstly there is big Oh notation: A(x) = O(B(x)) (read as A(x) is of
order (or big-Oh) B(x)) means explicitly that

∃c > 0 and some x0 such that |A(x)| ≤ c ·B(x) ∀x ≥ x0.

this is also written as A(x) � B(x), or B(x) � A(x). Moreover, if the constant c depends on
specific variables, for example N , the dependency is noted in a subscript, e.g.

A(x)� O(g(x))N .

Next there is small Oh notation. We write

f(x) = o(g(x))

to mean that

lim
x→∞

f(x)

g(x)
→ 0.

This is akin to saying that f(x) is of smaller order than g(x), and for example if we have

f(x) = g(x) + o(g(x)),

then the value of f(x) only depends on the first term asymptotically because the second term is
negligible.

For additional clarity, we note that throughout we have that

log = loge = ln .

Furthermore, in any case where we use an integer p, we are referring to a prime number p.

One function that will be seen is Euler’s totient function, φ(n), which gives for an input n the
number of positive integers less than n that are also coprime with n.
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Introduction

The circle method was first conceived in a paper by Hardy & Ramanujan, when attempting to apply
analytic function theory to Waring’s problem, between 1918-20 [Nat13], and Hardy & Littlewood
would go on to develop the method further [Vau97]. Since then, the method has been applied with
respectable success to number theoretic problems of an additive nature. This thesis will investigate
what the circle method is, and look in more detail at how it has been applied to two problems:
Waring’s problem and the Goldbach conjectures.

Waring’s problem itself can be stated as follows: for every positive integer k, show that a bound
B = g(k) exists such that every positive integer can be written as a sum of at most B kth powers
(i.e. n = ak1 +ak2 + · · ·+akB for all n ∈ Z>0 where ai ∈ Z≥0 for all i). For example, Lagrange’s four
square theorem states that every natural number can be written as the sum of four integer squares.
The problem then evolved over time to ask something slightly different; what is the smallest such
s = G(k) such that all sufficiently large integers can be written as a sum of s kth powers.

Most of what has been shown about Waring’s problem involves the circle method; however there is
still much to do. Only two cases of k in Waring’s modern problem (G(k)) have complete solutions.
This thesis will outline some of the contributions the method has had in solving Waring’s problem.

Goldbach’s conjectures state that all odd numbers larger than 5, and all even numbers larger than
2, can be written as a sum of at most three and two primes respectively. The circle method has
had a lot of success with the former conjecture, but the latter appears harder to work with. We
will see in this thesis how the method has been applied to the first conjecture in detail, and to the
second in less detail.

The circle method can be stated briefly as a series of steps:

• Construct a generating function that in some sense represents our problem, we will for ex-
ample use the generating function to find an expression for G(k).

• From this generating function, and some complex analysis, find an integral representation of
our desired function (e.g. G(k)).

• Separate this integral into the integral over the major (M) and minor (m) arcs; this in-
volves partitioning to be integrated over, where the partition is decided based on the specific
problem,

G(k) =

∫ 1

0

integrand dx =

∫
M

integrand dx+

∫
m

integrand dx

= main term + error term.

• Evaluate the value of the integral over major arcs (this will likely only be possible asymptot-
ically).

• Bound the minor arc such that its contribution is negligible compared to the major arc.

• If done successfully, the value of the sum of the integral over the major and minor arcs will
tell us something about our problem, e.g. that G(k) is positive for some k and therefore that
in this case Waring’s problem is true.
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In this investigation we will see some evidence supporting the claim that finding a small enough
bound for the minor arc is “the hardest part of the problem”. Yet even though one might struggle
trying to create this bound and question whether it is possible, numerical investigations often
support the belief that the minor arc contribution is negligible compared to the major arcs’
[MMTB06].
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Chapter 1

Preliminaries

1.1 Classical Vs Modern Waring’s Problem

“Every integer is a cube or the sum of two, three, ... nine cubes; every integer is also
the square of a square, or the sum of up to nineteen such; and so forth.”

(Waring — [War91], p. 336)

The nature of Waring’s problem has changed over time [VW02]. As can be inferred from the above
quote, when Waring first discussed the problem, the desire was to show that for every k ≥ 3 there
exists a number s such that all natural numbers can be written as a sum of at most s kth powers.
The interesting aspect of this question is the smallest such s that this is true for, but of course
prior to answering that it must be shown that such an s even exists.

It is handy to define the function g(k) := s for the smallest such s, for example Waring claimed
that g(3) = 9 and g(4) = 19. By 1900, it had only been shown that g(k) had a finite value for
finitely many cases [VW02]. Finally, in 1909, Hilbert proved that such a number s exists for all
k ≥ 3 [Hil09] via a combinatorial argument built upon various algebraic identities; this was a
significant step in the problem, but it provided a very poor upper bound for g(k). The next step
was to work on bringing the upper bound for g(k) down.

Upper bounds for g(k) were brought down for various cases by the mathematical community, but it
turns out that the value of g(k) is essentially decided by a few cases for (relatively) small integers.
In particular, take the integer

n = 2k

⌊(
3

2

)k⌋
− 1 < 3k.

This integer is strictly less than 3k, and therefore can only be written as a sum of kth powers of 1
and 2. It is this lower bound for g(k) that largely determines it. As a result, mathematicians also
began to ask the question of what happens if we ignore smaller integers, and we only care about
splittings into s integers that occur infinitely often?

Thus the modern form of Waring’s problem asks what s =: G(k) is the smallest integer such that
all sufficiently large integers are a sum of at most s kth powers of? So far, only two cases of this
have been solved, G(2) = 4 and G(4) = 16. Although no other cases have yet been fully solved,
there has been progress. For example Samir Siksek recently proved that G(k) ≤ 7 [Sik16]. He did
this without the circle method, but much of what has been shown for Waring’s problem in general
has relied in large part upon the circle method.
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1.2 Generating Functions

An essential first step to applying the circle method to any problem is creating a generating
function; this is a function that in some sense represents the problem. Some examples should serve
to make this meaning clear. A common first example is an identity of Euler’s [MMTB06].

Proposition 1.2.1. (Euler) We have as an identity of formal power series

1

(1− x)(1− x2)(1− x3) · · ·
=

∞∑
n=0

P (n)xn,

where P (n) is the partition function; i.e. the number of ways are there to write n as a sum
of positive integers. (we set P (0) = 1, and for example P (4) = 5 since 4 = 3 + 1 = 2 + 2 =
2 + 1 + 1 = 1 + 1 + 1 + 1).

For clarity, an “identity of formal power series” means that we are not considering convergence
properties or issues, but only that the coefficients of the corresponding powers of x on each side
are the same.

Proof. Let’s start with the left hand side and see how we can rewrite it,

1

(1− x)(1− x2)(1− x3) · · ·
=

1

1− x
1

1− x2

1

1− x3
· · ·

=

( ∞∑
a=0

xa

)( ∞∑
b=0

x2b

)( ∞∑
c=0

x3c

)
· · ·

= 1 +

∞∑
n=1

cnx
n.

We now want to show that cn = P (n) for all n ≥ 1. Let’s try to calculate cn from the product of
sums on the second line then. The first thing we notice is that all coefficients in the second line
are 1, and this makes the evaluation simpler. If we want to calculate cn then we get a contribution
of 1 from all combinations n = a + 2b + 3c + · · · , where a, b, c, ... ∈ Z≥0. Now notice that this is
actually just another way to state the definition of P (n). This is because a represents the number
of 1’s in the sum, b represents the number of 2’s in the sum, and so on.

The function on the left is what we would call the generating function because we can use it to find
a representation of P (n). At the moment it of course is representing P (n) for all n simultaneously,
but with some further manipulations (to be seen in future sections), we can extract P (n) for some
specific n.

We can generalise this type of relationship. Let A be a set of positive integers, and order the
elements increasingly so that (ai) enumerates them; e.g. (1, 3, 5, ...) is the odd numbers, (1, 4, 9, ...)
is the square numbers, etc.

Proposition 1.2.2. For any set A = (ai) as defined above, we have that

1

(1− xa1)(1− xa2)(1− xa3) · · ·
= 1 +

∞∑
n=1

K(n)xn,

where K(n) is the number of ways to write n as a sum of elements from A (repeats allowed).

The proof proceeds exactly as the previous one did. Now what if we wanted to find a function
that represents partitions where elements cannot be used more than once (i.e. write n as a sum of
unequal parts)? We would have to find a different type of generating function.

5
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Proposition 1.2.3. For any set A = (ai) as defined above, we have that

(1 + xa1)(1 + xa2)(1 + xa3) · · · = 1 +

∞∑
n=1

Q(n)xn,

where Q(n) is the number of ways to write n as a sum of unequal elements from A.

For example, we have that

(1 + x)(1 + x2)(1 + x3) · · · = 1 +

∞∑
n=1

q(n)xn,

where q(n) is the number of ways to write n as a sum of unequal positive integers.

Depending on the problem, we obviously need a different generating function. From the examples
so far, we may already have the sense that we can only create generating functions of an additive
or combinatorial nature.

6



Chapter 2

The Hardy-Littlewood Circle
Method

2.1 Initial Conditions

In this section we will elaborate on the details of the circle method as it was first employed by
Hardy & Littlewood, and then move on to a few important alterations that somewhat simplified
it. In order to do this, let’s first clearly define the function we want to evaluate.

Definition 2.1.1. rA,s(N) := the number of ways of writing N as a sum of s elements
from the set A.

Definition 2.1.2. Let A be any set of non negative integers, then f(z) :=
∑
a∈A

za is the

generating function of A.

Remark. The reader may be wondering about the radius of convergence of the generating
function; we can assume a radius of convergence of 1 if the set A is infinite, or ∞ if the set
is finite. However we are not actually concerned with these convergence issues, and we will
not expand on them. This is because, as we will shortly see, the alterations to the original
method remove these worries.

Remark. By taking A = K = {kth powers of non-negative integers}, we can formulate
Waring’s problem as ’what is the smallest s such that rK,s is at least 1 for all sufficiently
large integers?’. Moreover, by taking A = P the prime numbers and s ∈ {2, 3} we can
formulate the Goldbach conjectures.

The function rA,s is what we want to investigate, but so far we only have a descriptive definition
of it; ideally we want to be able to make it. Let’s see how our generating function achieves this.

Proposition 2.1.3.

f(z)s =

∞∑
n=0

rA,s(n)zn.

7
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Proof.

f(z)s =

(∑
a∈A

za

)s
=
∑
a1∈A

· · ·
∑
as∈A

za1+···+as

=

∞∑
n=0

rA,s(n)zn.

The reasoning behind the last inequality proceeds analogously to the explanation in the proof of
Proposition 1.2.1, although it should be relatively easy to see from the preceding line.

Notice that our function of interest is now a coefficient in a power series that we constructed from
our generating function. As such, it is possible to apply Cauchy’s integral formula to extract the
coefficient of interest (where γ is the unit circle oriented counter-clockwise),

rA,s(n) =
1

2πi

∫
γ

f(z)s

zn+1
dz.

Thus we have produced an integral representation of our function of interest, and if we can suf-
ficiently evaluate this integral our problem will be solved. This integral is evaluated over a circle
centred at the origin (and hence where the name ’circle method’ originates from). As mentioned
before, the interval of integration will be separated into two disjoint parts, the major arcs M, and
the minor arcs m := γ\M.

At this point some work must be carried out to determine where the integrand takes on large
values, and where it takes on smaller values. With this information at hand, it is possible to decide
how to pick the major arcs and thus partition the interval. After this, the contribution from the
major arcs would be investigated, and the contribution from the minor arcs would hopefully be
provably negligible due to cancellation from oscillations around the circle.

However, this is a good place to go into the alterations to the method that simplify it and remove
the convergence issues.

2.2 Vinogradov’s Alteration to the Method

Vinogradov noticed that if we wanted to study rA,s(n) we could restrict the generating function
to the finite sum

p(z) =
∑
a∈A
a≤n

za.

This would sidestep any question of convergence as well as remove unnecessary terms. We can
however go further still, and change the polynomial into a sum of complex exponentials using the
function e(α) := e2πiα (this function is commonly seen in number theory and has this compact
form as a result). Moreover, we will decide to fix the set A for pedagogical reasons; it is easier to
work under a specific example rather than a general one. Let A = K, which was the set of kth

powers on non-negative numbers (so for example if k = 3, then K = {0, 1, 8, 27, 64, ...}). Next we
will actually restrict K (and subsequently call it KN ) by only including all its elements a ∈ K
such that a ≤ N := bn1/kc. Now, take the function

F (α) =
∑
r∈KN

e(rkα)

=

N∑
t=0

e(tkα).

8
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Thus we see that

F (α)s =

(
N∑
t=0

e(tkα)

)s

=

N∑
t1=0

· · ·
N∑
ts=0

e((tk1 + · · ·+ tks)α)

=

sN∑
t=0

rKN ,s(t)e(tα).

This time Cauchy’s integral formula gives us a simple orthogonality relation,∫ 1

0

e(mα)e(−nα)dα =

{
1 if m = n

0 if m 6= n.
(2.1)

This gives us a different formula for our desired function for a fixed n,

rK,s(n) = rKN ,s(n) =

∫ 1

0

F (α)se(−nα)dα.

The first equality is hopefully clear; since KN contains all kth powers that do not exceed n, then
this set restriction does not affect the value of this function. This relation allows us to make the
changes Vinogradov added to remove convergence issues, whilst not losing any functionality of the
method.

We will continue with the formalism from Vinogradov for the rest of this paper for due to its
simplicity.

2.3 An Upper Bound for G(k)

Most of what is known about Waring’s problem has been achieved through the use of the circle
method [VW02]. Here we would like to note a few of these results.

The first explicit upper bound was achieved by Hardy and Littlewood, and it tells us that

G(k) ≤ (k − 2)2k−1 + 5.

This result was soon improved to give

G(k) ≤ (k − 2)2k−2 + k + 5 + bζkc,

where

ζk =
(k − 2) log 2− log k + log(k − 2)

log k − log(k − 1)
.

There is a table stating this bound over the years in [VW02] which we present here. It is interesting
to see how the bound is reduced over time, and the fact that when a new method is introduced it
takes time for the method to be used more effectively.

Author Bound
Vinogradov 32(k log k)2

Vinogradov k2 log 4 + (2− log 16)k, (k ≥ 3)
Vinogradov 6k log k + 3k log 6 + 4k, (k ≥ 14)
Vinogradov k(3 log k + 11)

Tong k(3 log k + 9)
Jing-Run Chen k(3 log k + 5.2)

Vinogradov 2k(log k + 2 log log k +O(log log log k))
Vaughan 2k(log k + log log k +O(1))
Wooley k(log k + log log k +O(1))

9
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2.4 Beyond Waring’s Problem

For completion further generalisations of Waring’s problem will be briefly presented. The first is
the Waring-Goldbach Problem, which is essentially the same as Waring’s problem, but the
difference being that we can only take kth powers of prime numbers; i.e. what is the smallest s
such that the equation below has a solution for all sufficiently large positive integers n?

n = pk1 + · · ·+ pks ,

where the pi are prime numbers.

Next is Waring’s problem for mixed powers. As the name suggests, this time around we are not
restricted to taking a single power but can study any combination of powers. For example, in a
recent paper Friedlander & Wooley shows that (under the assumption of two unproved conjectures)
“all large natural numbers n with 8 - n, n 6≡ 2 mod 3 and n 6≡ 14 mod 16 are the sum of 2
squares and 3 biquadrates” [FW13]. In general it is possible to take any combination of powers.
Of particular interest is this specific remark from this paper, “it is generally conjectured that,
whenever k−1

1 + · · · + k−1
s > 1, all large natural numbers n satisfying appropriate congruence

conditions should be representable in the form

xk11 + xk22 + · · ·+ xkss = n”.

Interestingly both known values of G(k) (G(2) = 4 and G(4) = 16) require their sum of reciprocals
to be larger than 1, being in fact 2 and 4 respectively. Looking at the congruence conditions, we
see that since every square is congruent to 0 mod 8, 1 mod 8 or 4 mod 8, we cannot make 7 mod 8
from a sum of three squares. As such, G(2) ≥ 4.

Lastly, Waring’s problem has been generalised to algebraic number fields; the circle method was
subsequently generalised to these fields too.

2.5 Conclusion for Waring’s Problem

As mentioned earlier, finding a value for G(k), the smallest number such that every sufficiently large
integer can be represented as a sum of at most s kth powers has only been found for two values of
k. This problem is not easy, but ”the bulk of what is known about G(k) has been obtained through
the medium of the Hardy-Littlewood method” [VW02]. We have exemplified what the generating
function for all forms of Waring’s problem would be, and found an integral representation for them
- but actually evaluating the integral and bounding the minor arcs is difficult.

10



Chapter 3

The Goldbach Conjectures

The Goldbach conjectures have their origin in correspondence between Goldbach and Euler in
1742. They can be stated as follows:

Conjecture 1. Weak Goldbach Conjecture All odd integers larger than 7 can be
expressed as the sum of at most three prime numbers. (Also known as the Ternary Goldbach
Conjecture)

Conjecture 2. Strong Goldbach Conjecture All even integers larger than 2 can be
expressed as the sum of two prime numbers. (Also known as the Binary Goldbach Conjec-
ture)

This section will explore in detail how the circle method has been applied to the weak Goldbach
conjecture. This will provide an extensive example of how the method can be applied, and provide
context for some of the complexities that arise from its use. For some more context, Hardy &
Littlewood used the circle method to show that all but finitely many many odd integers are the
sum of three primes - but they had to assume the generalised Riemann hypothesis (GRH) in order
to do so [KT04].

In 1937 I.M. Vinogradov proved an asymptotic formula showing that the weak conjecture is true
for all sufficiently large integers [Vin37] without relying on the GRH (the Siegel Walfisz theorem
can be used instead); it is this formula and its proof that we will be exposing. Following this, a
brief look at the method’s use in the strong conjecture will demonstrate that the circle method is
not always successful.

For clarity, everything that follows, up until the last section (section 3.9), is under the context of
the weak Goldbach conjecture.

3.1 Generating Function

As with every application of the circle method, we must start by representing the problem in a
generating function. For Goldbach, we will define the weighted generating function

FN (α) :=
∑
p≤N

log p · e(pα).

The weight is the value log p, and it is included as it makes some of the required derivations
simpler whilst not altering the method in essence; the weights can be removed later through

11
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partial summation. As we have seen before, we now have

R3(N) =

∫ 1

0

FN (α)3e(−Nα)dα,

where

R3(N) :=
∑

p1+p2+p3=N

log p1 log p2 log p3.

How can we relate this new, weighted expression to rP,3(N) (recall that P denotes the set of prime
numbers)? Note that P needs to be specified in rP,s(N), but not in R3(N) because it is implicit
in its definition. We can relate these two functions rather trivially by

R3(N) ≤ (logN)3
∑

p1+p2+p3=N

1

= (logN)3rP,3(N).

This inequality may be crude, but for our purposes it is sufficient. Our hope is to show that R3(N)
is positive for all large enough inputs N - because if R3(N) is positive, then rP,3(N) must also be
positive. We will then be able to conclude that there is indeed a way to represent any large enough
natural number as a sum of three primes. This is because rP,3(N) must take integral values, so if
it is positive then it is at least 1 and if this means that there is at least one way to express N as
desired.

3.2 Evaluating FN(x)

In this section we will exemplify a tool that can be used to help bound our integral on the arcs,
namely finding the “average value” of |FN (x)|2. First note that

|FN (x)| =

∣∣∣∣∣∣
∑
p≤N

log p · e(px)

∣∣∣∣∣∣
≤
∑
p≤N

log p

≤ π(N) logN,

where π(N) is the prime counting function, giving the number of primes that are at most N . At
this point we can use the prime number theorem, which states that

π(N) =
N

logN
+ o(

N

logN
).

Rearranging this, we find that
π(N) logN = N + o(N) (3.1)

This allows us to conclude that

|FN (x)| ≤ N + o(N).

From here, do we expect the average value of |FN (x)|2 to be on the order of N2, or do we expect
it to be lower? We hope, and find, that the average value is lower - it is this fact that we can use
to help bound the minor arcs.

Lemma 3.2.1. The average value of |FN (x)|2 on the interval [0, 1] is N logN+o(N logN),
i.e. ∫ 1

0

|FN (x)|2dx ≤ N logN + o(N logN).

12
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Proof. The absolute value can be expressed as |FN (x)|2 = FN (x)FN (x), but in our case we have
that FN (x) = FN (−x); so we have that |FN (x)|2 = FN (x)FN (−x).∫ 1

0

|FN (x)|2dx =

∫ 1

0

FN (x)FN (−x)dx

=

∫ 1

0

∑
p≤N

log p · e(px)
∑
q≤N

log q · e(−qx)dx

=
∑
p≤N

∑
q≤N

log p log q

∫ 1

0

e((p− q)x)dx

=
∑
p≤N

log2 p

≤ logN
∑
p≤N

log p

≤ logN(N + o(N))

= N logN + o(N logN),

(3.2)

where in the fourth equality we have used the orthogonality relationship presented in Equation 2.1,
and in the second inequality we have used the prime number theorem as given by Equation 3.1
(since

∑
p≤N logp≤ logN

∑
p≤N 1 = logNπ(N)).

One of the things we did here that turns out to be powerful in a non-negligible number of situations,
is evaluate a function multiplied by its complex conjugate. This is far easier to work with than the
absolute value function. Next a remark is given on something that [MMTB06] highlights too, as
it is an interesting and important idea in what we are doing.

Remark. (Square root cancellation) The average value of the square of the absolute of our
function, N logN , is far lower than the theoretical maximum value of N2. We have, on
average, almost square root cancellation. In general, if we add together a ’random’ set of
numbers on the unit circle their average value will often be at most

√
N .

This would appear linked to random walk theory. In fact in d−dimensional space, the

expected value of the distance from the origin after N steps is
√

2N
d

Γ( d+1
2 )

Γ( d2 )
. If we were to

consider summing random numbers from the unit circle as a random walk in two dimensions
we would find an expected distance of

√
N · 0.8862.... But this would be ignoring the fact

that although we are in two dimensions, the numbers from the circle are not restricted to
two directions as in the random walk. Perhaps, in a sense, the infinite number of directions

they represent is analogous to taking d to be infinite. Given that
√

2N
d

Γ( d+1
2 )

Γ( d2 )
converges to

√
N (as d → ∞), perhaps there is the possibility that we can bound the average value of
|FN (x)|2 by

√
N .

3.3 Arc Selection

How do we decide how to separate the unit interval into the separate arcs? Since we are trying
to bound the integral over the minor arcs and show its contribution is negligible compared to the
major arcs’, we probably desire the major arcs to contain the regions of the unit interval where
our function FN is largest. It turns out that FN (x) is large when x = a

q under a few conditions on
a and q. We will be assuming these conditions on a, q for the remainder of this chapter.

Fix some B > 0, and let Q := logB N ; now fix some q ≤ Q and an a ≤ q such that (a, q) = 1.
Let’s now see how we can express our function; we will first separate the sum into a double sum

13
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over the congruence classes modq, and then simplify.

FN

(
a

q

)
=
∑
p≤N

log p · e
(
p
a

q

)

=

q∑
r=1

∑
p≡r mod q
p≤N

log p · e
(
ap

q

)

=

q∑
r=1

∑
p≡r mod q
p≤N

log p · e
(
ar

q

)

=

q∑
r=1

e

(
ar

q

) ∑
p≡r mod q
p≤N

log p

(3.3)

The next thing we need to do is evaluate the sum over p ≡ r mod q, and in order to do this we
make use of the Siegel-Walfisz theorem (see below). We can also see before that though that we
can ignore the case where (r, q) > 1. This is because if (r, q) = d > 1, we have that r = r′d, q = q′d
and p = r+ kq = d(r′+ kq′). However since p is prime, we must have that r′+ kq′ = 1. And since
r, q ≥ 1, and therefore that r′, q′ ≥ 1, we conclude that k = 0. Thus p = r is the only case in this
scenario. And if we only have a single case, but are looking at what happens asymptotically, this
single case represents a diminishing fraction of the cases as we increase N ; this case thus can be
seen as negligible.

Theorem 3.3.1. (Siegel-Walfisz) Take the non-negative integers a, q such that (a, q) = 1
and q ≥ 1. Then, for any C > 0 we have that∑

p≡a mod q
p≤N

log p =
N

φ(q)
+O

(
N

logC N

)
C

for all N ≥ 2.

Remark. Hardy & Littlewood in fact also proved Vinogradov’s theorem, but they did
it in 1923. However, their proof used an unproven assumption: the generalised Riemann
hypothesis [HL+23]. As such, what they had done was technically invalid (until GRH is
proved of course). By incorporating the Siegel-Walfisz theorem, Vinogradov avoided the
need to assume the GRH, and hence in a sense improved the effectiveness of the method.

Now if we take any C > 0, this theorem will let us simplify Equation 3.3 by simplifying the
innermost sum.

∑
p≡r mod q
p≤N

log p =
N

φ(q)
+O

(
N

logC N

)
.

Recall that q is at most logB N , so we have at least that

∑
p≡r mod q
p≤N

log p ≥ N

logB N
+O

(
N

logC N

)
.

This gives us some sense of the order of the two terms; at the moment it appears that if we want
our error term to be negligible compared to the main term, we only need C > B. We can now

14
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substitute this result into what we derived earlier to find that

FN

(
a

q

)
=

q∑
r=1

(r,q)=1

e

(
ar

q

)(
N

φ(q)
+O

(
N

logC N

))

=

q∑
r=1

(r,q)=1

e

(
ar

q

)
N

φ(q)
+O

(
qN

logC N

)

=
N

φ(q)

q∑
r=1

(r,q)=1

e

(
ar

q

)
+O

(
N

logC−B N

)
.

(3.4)

Provided that the sum of exponentials over r is not too small, our function is of order N/φ(q); and
if we take C > 2B, then the main term is far larger than the error term, and the main term itself
is large. We are now in a good position to define the arcs.

3.3.1 Major Arcs M

We have shown a condition to ensure that the value of FN (x) is large, so let’s use it. Take B > 0
and Q = logB N , (where we note that Q = O(N)). Taking q ∈ {1, 2, ..., Q} and a ∈ {1, 2, ..., q}
such that (a, q) = 1 define the set

Ma,q =

{
x ∈ [0, 1] :

∣∣∣∣x− a

q

∣∣∣∣ < Q

N

}
.

We also need to include ‘the end’ of the unit interval

E :=

[
0,
Q

N

)
.

Although the end just defined is not shown to be large by the previous subsection, it is not so hard
to do so using Equation 3.1,

FN (0) =
∑
p≤N

log p · e(2πi · 0 · x)

=
∑
p≤N

log p

≤ N + o(N).

Finally, define the major arc M as

M :=

Q⋃
q=1

q⋃
a=1

(a,q)=1

Ma,q

We should also include the end E , but it extends the length of derivation without contributing
much in the way of understanding the method. As such, we will simply ignore it; formally we
should have that M := E ∪

⋃Q
q=1

⋃q
a=1

(a,q)=1
Ma,q.

There are two important things to notice about the definition of the major arc. The first is, as
noted before, that we can apply the Siegel-Walfisz theorem to evaluate FN (aq ). The second is that

each interval around a
q is of length 2QN = 2 logB N

N . The importance of this is that as N tends to
infinity, the length of the interval tends to 0. Thus as N becomes large, the value of FN around a
point a

q becomes better understood because the value will be closer to FN (aq ).

15
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3.3.2 Minor arcs m

The minor arc is the complement of the major arc, so

m := [0, 1]\M.

As noted before, as N tends to infinity the intervals around each a/q tend to zero. As a result, as
N tends to infinity, the minor arcs will tend to containing almost all of the interval [0, 1]. If these
arcs have been constructed sufficiently well, the integral over the minor arcs should be negligible
compared to that from the major arcs due to cancellation in FN (x).

3.4 The Singular Series

Finally, we would like to evaluate the integral over the arcs, starting with the major arcs. We
currently have that ∫ 1

0

FN (x)3e(−Nx)dx =
∑

p1+p2+p3=N
p1,p2,p3≤N

log p1 log p2 log p3.

In order to calculate the value of this integral only over the major arcs, it is first necessary to
show that FN (x) ≈ FN (aq ) for x ∈ Ma,q. This can be done by finding the Taylor series, but it

may be simpler to instead find a non-constant function that agrees with FN (x) at x = a
q . To

begin with, we will do this via approximating FN (x)e(−Nx) around a/q simply by setting it to

FN

(
a
q

)
e
(
−N a

q

)
. This serves as a gentle introduction, and in later sections we will cover the

more accurate calculation.∫
M

FN (x)3e(−Nx)dx ≈
∫
M

FN

(
a

q

)3

e

(
−N a

q

)
dx

=

Q∑
q=1

q∑
a=1

(a,q)=1

∫ a
q+Q

N

a
q−

Q
N

FN

(
a

q

)3

e

(
−N a

q

)
dx

=
2Q

N

Q∑
q=1

q∑
a=1

(a,q)=1

FN

(
a

q

)3

e

(
−N a

q

)

In Equation 3.4 we found a value for FN (aq ) that we can make use of here. We will ignore the
lower order terms for heuristic purposes.

FN

(
a

q

)3

e

(
−N a

q

)
2Q

N
≈ 2Q

N

Q∑
q=1

q∑
a=1

(a,q)=1

 N

φ(q)

q∑
r=1

(r,q)=1

e

(
ar

q

)
3

e

(
−N a

q

)

=

2Q

Q∑
q=1

1

φ(q)3

q∑
a=1

(a,q)=1

 q∑
r=1

(r,q)=1

e

(
ar

q

)
3

e

(
−N a

q

)N2

We will be done if we can show that the factor that multiplies N2 is positive and large enough
such that it cannot be cancelled by the contribution from the integral over the minor arcs. A more
lengthy and detailed analysis of the integral over the major arcs, where we do not simply replace

FN (x)e(−Nx) with FN

(
a
q

)
e
(
−N a

q

)
will find a contribution of

S(N)
N2

2
+ o(N2),
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where

S(N) =

∞∑
q=1

µ(q)

φ(q)3

q∑
a=1

(a,q)=1

e

(
aN

q

)
,

and µ is the Möbius Function defined as

µ(q) :=


1 q = 1

(−1)k q = p1 · · · pk, where each prime pi is distinct

0 q has a prime squared as a factor.

Let’s now take a look at how to solve this integral more accurately, and prove the weak Goldbach
conjecture for sufficiently large integers.

3.5 The Singular Series of Vinogradov’s Thoerem

Theorem 3.5.1. (Vinogradov’s Theorem) There exists an arithmetic function S(N)
and positive constants c1 and c2 such that

c1 < S(N) < c2

for all sufficiently large, odd integers N , and

rP,3(N) = S(N)
N2

2 log3N

(
1 +O

(
log logN

logN

))

The arithmetic function S(N) is called the Singular Series (we will give a more formal definition
of this in Equation 3.7, for now we are just noting its name). Every application of the circle
method will result in such a series. From here, we would like to specifically show how we find the
contribution of

S(N)
N2

2
+ o(N2)

from the integral over the major arcs; namely, to prove the following theorem.

Theorem 3.5.2. For positive integers B,C and ε such that C > 2B, the integral over the
major arcs is∫

M

FN (α)3e(−Nα)dα = S(N)
N2

2
+O

(
N2

log(1−ε)B N

)
+O

(
N2

logC−5B N

)
= S(N)

N2

2
+ o(N2),

where the implied constants depend only on B,C and ε.

This will be done in accordance with how it is presented in [Nat13]. We derived in Equation 3.4
that

FN

(
a

q

)
=

N

φ(q)

q∑
r=1

(r,q)=1

e

(
ar

q

)
+O

(
N

logC−B N

)
.

Let us now define the Ramanujan sum

cq(N) :=

q∑
k=1

(k,q)=1

e

(
kN

q

)
.

17
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Lemma 3.5.3. We have the following properties of Ramanujan sums.

1.
cq(N) =

∑
d|(q,N)

µ
( q
d

)
d. (3.5)

2.
(q,N) = 1 =⇒ cq(N) = µ(q).

3. cq(N) is multiplicative, i.e.

(m,n) = 1 =⇒ cm(N)cn(N) = cmn(N).

Proof. 1. First note that

fd(n) =

d∑
v=1

e
(vn
d

)
=

{
d if d|n
0 if d - n.

The first case follows simply, because under this condition n/d is just an integer and therefore
e(vn/d) = 1 for all integers v. The result in the second condition follows from the fact if d 6 |n,

then (d, n) = k. From this we now have the sum
∑d′k
v=1 e(vn

′/d′); these are the d′th roots of
units, and we have k copies of each root. We know that the sum of each set is zero (because
they sum to the coefficient of xd

′−1 in xd
′ − 1). Another fact we will use is a property of the

Möbius function, namely that

∑
d|m

µ(d) =

{
1 if m = 1

0 if m > 1.

We will use these results in the following derivation.

cq(n) =

q∑
k=1

(k,q)=1

e

(
kn

q

)

=

q∑
k=1

e

(
kn

q

) ∑
d|(k,q)

µ(d)

=
∑
d|q

µ(d)

q∑
k=1
d|k

e

(
kn

q

)

=
∑
d|q

µ(d)

q/d∑
m=1

e

(
mn

q/d

)
=
∑
d|q

µ(d)fq/d(n)

=
∑
d|q

µ(q/d)fd(n)

=
∑
d|q
d|n

µ(q/d)d

=
∑
d|(n,q)

µ(q/d)d

2. This follows immediately from property 1.
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3. Since every congruence class relatively prime to mn can be written uniquely in the form
an+ a′m with 1 ≤ m, 1 ≤ a′ ≤ n, and (a,m) = (a′, n) = 1, then if we have that (m,n) = 1
we get that

cm(N)cn(N) =

m∑
a=1

(a,m)=1

e

(
aN

m

) n∑
a′=1

(a′,n)=1

e

(
a′N

n

)

=

m∑
a=1

(a,m)=1

n∑
a′=1

(a′,n)=1

e

(
(an+ a′m)N

mn

)

=

mn∑
a′′=1

(a′′,mn)=1

e

(
a′′N

mn

)

= cmn(N).

Putting this together, we have that

FN

(
a

q

)
=

N

φ(q)
cq(a) +O

(
N

logC−B N

)
=
µ(q)

φ(q)
N +O

(
N

logC−B N

)
,

(3.6)

since we are working under the assumption that (a, q) = 1.

Lemma 3.5.4. Continuing under the assumptions tat C > 2B > 0, we have that if
α ∈Ma,q and β = α− a/q, then

FN (α) =
µ(q)

φ(q)
u(β) +O

(
Q2N

logC N

)
and

FN (α)3 =
µ(q)

φ(q)3
u(β)3 +O

(
Q2N3

logC N

)
,

where u(β) :=
∑N
m=1 e(mβ).

Proof. Given α ∈Ma,q, we first note that α = a/q + β, and that |β| ≤ Q/N . Define

λ(m) :=

{
log p if m = p is prime

0 otherwise.
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Now we have

FN (α)− µ(q)

φ(q)
u(β) =

∑
p≤N

log p · e(pα)− µ(q)

φ(q)

N∑
m=1

e(mβ)

=

N∑
m=1

λ(m)e(mα)− µ(q)

φ(q)

N∑
m=1

e(mβ)

=

N∑
m=1

λ(m)e

(
ma

q
+mβ

)
−

N∑
m=1

µ(q)

φ(q)
e(mβ)

=

N∑
m=1

(
λ(m)e

(
ma

q

)
− µ(q)

φ(q)

)
e(mβ)

Let’s now take some 1 ≤ x ≤ N and define A(x),

A(x) :=
∑

1≤m≤x

(
λ(m)e

(
ma

q

)
− µ(q)

φ(q)

)

=
∑

1≤m≤x

λ(m)e

(
ma

q

)
− µ(q)

φ(q)
x+O

(
1

φ(q)

)

= Fx

(
a

q

)
− µ(q)

φ(q)
x+O (1)

= O

(
Qx

logC x

)
,

where the final equality follows from Equation 3.6. Next we will use partial summation (see
Theorem A.0.1 for more details) and the just derived result to see that

FN (α)− µ(q)

φ(q)
u(β) = A(N)e(Nβ)− 2πiβ

∫ N

1

A(x)e(xβ)dx

� |A(N)|+ |β|N ·max{A(x) : 1 ≤ x ≤ N}

� Q2N

logC N
,

where the last line follows in part from the fact that |β| ≤ Q/N . All it takes to conclude now is a
rearranging of this last equation; we find that

FN (α) =
µ(q)

φ(q)
u(β) +O

(
Q2N

logC N

)
as desired. The second statement in the lemma follows from this result.

We still need several results before we can prove Theorem 3.5.2. Let’s first define the measurement
‖α‖ := min{|n− α| : n ∈ Z} = inf{{α}, 1− {α}}.

Lemma 3.5.5. For all real numbers α and all integers N1 < N2, we have that

N2∑
n=N1+1

e(αn)� min{N2 −N1, ‖α‖−1}.

Proof. Reminding ourselves that |e(αn)| = 1 for all integers n, we have that∣∣∣∣∣
N2∑

n=N1+1

e(αn)

∣∣∣∣∣ ≤
N2∑

n=N1+1

1 = N2 −N1.
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Next, if α /∈ Z, then ‖α‖ > 0 and e(α) 6= 1. Using that the sum is also a geometric progression,
we can derive that ∣∣∣∣∣

N2∑
n=N1+1

e(αn)

∣∣∣∣∣ =

∣∣∣∣∣e(α(N1 + 1))

N2−N1−1∑
n=0

e(α)n

∣∣∣∣∣
= |e(α(N1 + 1))|

∣∣∣∣∣
N2−N1−1∑

n=0

e(α)n

∣∣∣∣∣
=

∣∣∣∣∣
N2−N1−1∑

n=0

e(α)n

∣∣∣∣∣
=

∣∣∣∣e(α(N2 −N1))− 1

e(α)− 1

∣∣∣∣
≤ 2

|e(α)− 1|

=
2

|e(α/2)− e(−α/2)|

=
2

|2i sinπα|

=
1

| sinπα|

=
1

sin(π‖α‖)

≤ 1

2‖α‖
,

where the second last line follows from looking at the four separate cases, and the last inequality
follows from the fact that if 0 < β < 1/2, we have that 2β < sin(πβ) < πβ. One result we will
need to use is the case of Waring’s problem for k = 1, which is solved exactly.

Theorem 3.5.6. (Waring’s problem for k = 1) Recall that r1,s(N) is the number of
ways to write N as a sum of s first powers, i.e. the number of s−tuples (a1, a2, ..., as) where
ai ∈ Z≥0 ∀i. Then define t1,s(N) to be the same thing, but with the added condition that
the powers must be of positive integers (i.e. not including zero; ai ≥ 1 ∀i). This new
function states the number of ways to split N into exactly s positive parts, whereas r1,s(N)
split it into at most s positive parts. Then,

t1,s(N) =

(
N − 1

s− 1

)
=

Ns−1

(s− 1)!
+O(Ns−2)

for all positive integers N .

Proof. Take N ≥ s. Note that
N = a1 + · · ·+ as ⇐⇒ N − s = (a1 − 1) + · · ·+ (as − 1),

i.e. N is a sum of s positive parts if and only if N − s is a sum of s non-negative parts. Hence,

t1,s(N) = r1,s(N − s).

We can now do the proof combinatorially. Take a string of binary digits of length N − 1, i.e. so
that we have a word of length N − 1 where each letter is either 0 or 1. We ensure that the word
has exactly N − s zeros, and exactly s− 1 ones. This is in fact a representation, as each zero can
be though of as contributing a value of one to the value of N , and each one can be though of as a
partition between ai and ai+1. For example, 00100, 01000 and 10000 are three ways to separate 4
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into two non-negative parts, corresponding to 2 + 2, 1 + 3, 0 + 4 respectively.
We can now assess how many permutations of this exist to determine the number of ways to
separate N − s into s non-negative parts, which as we just established will be akin to separating
N into s positive parts. From combinatorics, we take the fact that we have a word of length
N − 1 made from 2 letters where one letter occurs N − s times to conclude that the number of
permutations is

(N − 1)!

(N − s)!(s− 1)!
=

(
N − 1

s− 1

)
.

Lemma 3.5.7. Recalling the definition

u(x) =

N∑
m=1

e(mx),

we have that

J(N) :=

∫ 1/2

−1/2

u(x)3e(−Nx)dx =
N2

2
+O(N).

Proof. We have that

J(N) =

∫ 1/2

−1/2

u(x)3e(−Nx)dx

=

∫ 1/2

−1/2

N∑
m1=1

N∑
m2=1

N∑
m3=1

e((m1 +m2 +m3 −N)x)dx.

We recognise the integrand as an expression for writing N as a sum of three positive integers,
and thus by the previously established orthogonality relationship the integral along a unit (in this
case from −1/2 to 1/2 rather than from zero to one) will give a value of 1 for each instance of
(m1,m2,m3) such that m1 +m2 +m3 = N and 1 ≤ mi ≤ N . So by Theorem 3.5.6

J(N) = t1,3(N) =

(
N − 1

3− 1

)
=

(
N − 1

2

)
=
N2

2
+O(N).

We need one more result before we can derive the contribution from our function over the major
arcs in the case of Goldbach’s weak conjecture. This result lets us illustrate the singular series
more clearly. First, recall the Ramanujan sums

cq(N) =

q∑
a=1

(a,q)=1

e

(
aN

q

)
.

We can give a formal definition of the Singular Series,

S(N) :=

∞∑
q=1

µ(q)cq(N)

φ(q)3
. (3.7)
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Theorem 3.5.8. (Singular Series Convergence) The singular series S(N) converges
absolutely and uniformly, and has the Euler product

S(N) =
∏
p

(
1 +

1

(p− 1)3

)∏
p|N

(
1− 1

p2 − 3p+ 3

)
.

Also, there exist positive constants c1, c2 such that

c1 < S(N) < c2

for all positive integers N . Moreover, for any ε > 0,

S(N,Q) :=
∑
q≤Q

µ(q)cq(N)

φ(q)3
= S(N) +O(Q−(1−ε)),

where the implied constant depends only on ε.

Proof. Notice that

|cq(N)| =

∣∣∣∣∣∣∣
q∑
a=1

(a,q)=1

e

(
aN

q

)∣∣∣∣∣∣∣
≤

q∑
a=1

(a,q)=1

1

= φ(q),

implying that cq(N)� φ(q). By a theorem,

φ(q) > q1−ε

for any ε > 0 provided q is a sufficiently large integer; the interested reader should refer to Theorem
A.16 in [Nat13]. Thus we have that

µ(q)cq(N)

φ(q)3
� 1

φ(q)2
� 1

q2−ε .

Hence, the singular series converges absolutely and uniformly in N by the Weierstrass criterion for
uniform convergence. Furthermore,

S(N)−S(N,Q) =
∑
q>Q

µ(q)cq(N)

φ(q)3
�
∑
q>Q

1

φ(q)2
�
∑
q>Q

1

q2−ε �
1

Q1−ε ,

where the last manipulation follows from the fact that harmonic series converge when their inverse
power is more than 1. From Equation 3.5 it can be derived that cq(N) is a multiplicative function
of q, and (where p is prime)

cp(N) =

{
p− 1 if p divides N

−1 if p does not divide N

Now since the arithmetic function

µ(q)cq(N)

φ(q)3
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is multiplicative in q and µ(pj) = 0 for all j ≥ 2, it follows (from Theorem A.28 in [Nat13]) that
the singular series has the Euler product

S(N) =
∏
p

1 +

∞∑
j=1

µ(pj)cpj (N)

φ(pj)3


=
∏
p

(
1− cp(N)

φ(p)3

)
=
∏
p-N

(
1 +

1

(p− 1)3

)∏
p|N

(
1− 1

(p− 1)2

)

=
∏
p

(
1 +

1

(p− 1)3

)∏
p|N

(
1− 1

p2 − 3p+ 3

)
,

and so there exist positive constants c1, c2 such that

c1 < S(N) < c2

for all positive integers N .

We can briefly investigate the values of c1 and c2. Notice that in the product representation of
S(N), each term in the finite product on the right is less than 1. So if each term in this product
reduces the overall size of the whole product, by removing this finite product we have an upper
bound of S(N). Similarly, since each term in the first product is large than 1, each term increases
the overall size f the function. If we truncate this product to make it a finite product, we thus get
a lower bound on the size of S(N). For example, we then know that

∏
p|N

(
1 +

1

(p− 1)3

)(
1− 1

p2 − 3p+ 3

)
≤ c1 & c2 ≤

∏
p

(
1 +

1

(p− 1)3

)
.

Though of course, we could remove fewer terms to get a more accurate bound for these constants.

We are now in a position to prove Theorem 3.5.2, a detailed case of evaluating the integral over
the major arcs.

Proof. First note that the length of a single major arc Ma,q is Q/N if q = 1 and 2Q/N if q ≥ 2.
Using Lemma 3.5.4 we have that∫

M

(
FN (α)3 − µ(q)

φ(q)3
u

(
α− a

q

)3
)
e(−Nα)dα

=
∑
q≤Q

q∑
a=0

(a,q)=1

∫
Ma,q

(
FN (α)3 − µ(q)

φ(q)3
u

(
α− a

q

)3
)
e(−Nα)dα

�
∑
q≤Q

q∑
a=0

(a,q)=1

∫
Ma,q

Q2N3

logC N
dα

�
∑
q≤Q

q∑
a=0

(a,q)=1

Q3N2

logC N

≤ Q5N2

logC N

≤ N2

logC−5B N
.
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If we have that α = a/q + β ∈Ma,q, then as before |β| ≤ Q/N and

∑
q≤Q

q∑
a=0

(a,q)=1

µ(q)

φ(q)3

∫
Ma,q

u

(
α− a

q

)3

e(−Nα)dα

=
∑
q≤Q

q∑
a=0

(a,q)=1

µ(q)

φ(q)3

∫ a/q+Q/N

a/q−Q/N
u

(
α− a

q

)3

e(−Nα)dα

=
∑
q≤Q

µ(q)

φ(q)3

q∑
a=0

(a,q)=1

e(−Na/q)
∫ Q/N

−Q/N
u(β)3e(−Nβ)dβ

=
∑
q≤Q

µ(q)cq(−N)

φ(q)3

∫ Q/N

−Q/N
u(β)3e(−Nβ)dβ

= S(N,Q)

∫ Q/N

−Q/N
u(β)3e(−Nβ)dβ.

Next we want to use Lemma 3.5.5; if we have that |β| ≤ 1/2, then

u(β)� |β|−1

and ∫ 1/2

Q/N

u(β)3e(−Nβ)dβ �
∫ 1/2

Q/N

|u(β)|3dβ

�
∫ 1/2

Q/N

β−3dβ

<
N2

Q2
.

The last line follows from direct integration and bounding. In a similar manner,∫ −Q/N
−1/2

u(β)3e(−Nβ)dβ � N2

Q2
.

Making use of Lemma 3.5.7 in combination with the two results just derived, we find that∫ Q/N

−Q/N
u(β)3e(−Nβ)dβ =

∫ 1/2

−1/2

u(β)3e(−Nβ)dβ +O

(
N2

Q2

)
=
N2

2
+O(N) +O

(
N2

Q2

)
=
N2

2
+O

(
N2

Q2

)
.

From Theorem 3.5.8, we know that

S(N,Q) = S(N) +O

(
1

Q1−ε

)
.

To finish the proof, we put all this together,∫
M

F (α)3e(−Nα)dα = S(N,Q)

∫ Q/N

−Q/N
u(β)3e(−Nβ)dβ +O

(
N2

logC−5B N

)
= S(N)

N2

2
+O

(
N2

Q1−ε

)
+O

(
N2

logC−5B N

)
= S(N)

N2

2
+O

(
N2

log(1−ε)B N

)
+O

(
N2

logC−5B N

)
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So even just to get an asymptotic formula for the integral over the major arcs took a lot of work;
yet there is still a lot more to do in order to give the proof of the weak conjecture for sufficiently
large integers. We must get an asymptotic formula for the integral over the minor arcs, and we
need to achieve this such that the contribution is negligible compared to the one just found.

3.6 Minor arcs’ Contribution

In order to derive the asymptotic estimate over the minor arcs, we need to first derive several
results. It has been mentioned a few times that bounding the integral over the minor arcs is the
hardest part, and the several lemmas that follow, which are required for the bound, are testament
to that.

3.6.1 An Exponential Sum Over Primes

Theorem 3.6.1. (Vinogradov) If ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

where a and q are integers such that 1 ≤ q ≤ N and (a, q) = 1, then

FN (α)�
(
N

q1/2
+N4/5 +N1/2q1/2

)
log4N.

This is the main result we want to achieve in this subsection. We do not want to deviate too much
from the circle method however, and the results required to prove this theorem (and the theorem
itself) are specific results needed to apply the circle method successfully in this case. Since these
results are not generally applicable with regards to the circle method, we will mostly just state the
results.

The proof of this theorem follows from several lemmas.

Lemma 3.6.2. (Vaughan’s identity) For u ≥ 1, let

Mu(k) :=
∑
d|k
d≤u

µ(d).

Let Φ(k, l) be an arithmetic function of two variables. Then∑
u<l≤N

Φ(1, l) +
∑

u<k≤N

∑
u<l≤Nk

Mu(k)Φ(k, l) =
∑
d≤u

∑
u<l≤Nd

∑
m≤Nld

µ(d)Φ(dm, l).

The next lemma we will prove. First, we remind the reader of the von Mangoldt Function,

Λ(l) =

{
log p if l = pk for some prime p and some integer k ≥ 1

0 otherwise.
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Lemma 3.6.3. For every real number α, we have that

FN (α) = S1 − S2 − S3 +O(N1/2),

where

S1 :=
∑

d≤N2/5

∑
l≤Nd

∑
m≤Nld

µ(d)Λ(l)e(αdlm),

S2 :=
∑

d≤N2/5

∑
l≤N2/5

∑
m≤Nld

µ(d)Λ(l)e(αdlm),

S3 :=
∑

k>N2/5

∑
N2/5<l≤Nk

MN2/5(k)Λ(l)e(αkl).

(Note that in the definition of S3, k only makes sense if k ≤ N3/5, since if larger than this
then l can take no value.)

Proof. We want to apply Lemma 3.6.2 with

u = N2/5,

and

Φ(k, l) = Λ(l)e(αkl).

The first term of the left hand side of the equality in Lemma 3.6.2 will then be∑
u<l≤N

Φ(1, l) =
∑

N2/5<l≤N

Λ(l)e(αl)

=

N∑
l=1

Λ(l)e(αl)−
∑

l≤N2/5

Λ(l)e(αl)

=
∑
pk≤N

(log p)e(αpk) +O(N2/5 logN)

=
∑
p≤N

(log p)e(αp) +
∑
pk≤N
k≥2

(log p)e(αpk) +O(N2/5 logN)

= FN (α) +O

 ∑
pk≤N
k≥2

log p

+O(N2/5 logN)

= FN (α) +O

∑
p2≤N

[
logN

log p

]
log p

+O(N2/5 logN)

= FN (α) +O
(
π(N1/2) logN

)
+O(N2/5 logN)

= FN (α) +O(N1/2),

where the second last equality follows from a theorem of Chebyshev (which states that there exist
positive constants c1, c2 such that

c1x ≤ ϑ(x) ≤ ψ(x) ≤ π(x) log x ≤ c2x, (3.8)

where ϑ(x) :=
∑
p≤x log p and ψ(x) :=

∑
pk≤x log p are types of prime counting functions). The

next term in the identity in Lemma 3.6.2 is∑
N2/5<k≤N

∑
N2/5<l≤Nk

MN2/5(k)Λ(l)e(αkl) =
∑

N2/5<k≤N3/5

∑
N2/5<l≤Nk

MN2/5(k)Λ(l)e(αkl) = S3.
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The final term is given by∑
d≤N2/5

∑
N2/5<l≤Nk

∑
m≤Nld

µ(d)Λ(l)e(αdlm)

=
∑

d≤N2/5

∑
l≤Nk

∑
m≤Nld

µ(d)Λ(l)e(αdlm)−
∑

d≤N2/5

∑
l≤N2/5

∑
m≤Nld

µ(d)Λ(l)e(αdlm)

= S1 − S2.

Putting all of this together, we have that(
FN (α) +O(N1/2)

)
+ (S3) = S1 − S2

according to the identity. The result follows trivially.

There are three more lemmas that are needed to prove Theorem 3.6.1; we state them here as one,
and prove it’s second statement.

Lemma 3.6.4. If ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

where 1 ≤ q ≤ N and (a, q) = 1, then

1. |S1| �
(
N
q +N2/5 + q

)
log2N.

2. |S2| �
(
N
q +N4/5 + q

)
log2N.

3. |S3| �
(

N
q1/2

+N4/5 +N1/2q1/2
)

log4N.

In order to prove the second result, we need an additional result. Under the conditions of
Lemma 3.6.4, we have that for any real number U ≥ 1, and positive integer N , we have that

∑
a≤k≤U

min

{
N

k
,

1

‖αk‖

}
�
(
N

q
+ U + q

)
log 2qU. (3.9)

Proof. If we have d ≤ N2/5 and l ≤ N2/5, then dl ≤ N4/5 follows naturally. Using the substitution
k = dl, we see that

S2 =
∑

d≤N2/5

∑
l≤N2/5

∑
m≤Ndl

µ(d)Λ(l)e(αdlm)

=
∑

k≤N4/5

 ∑
m≤Nk

e(αkm)


 ∑

k=dl
d,l≤N2/5

µ(d)Λ(l)

 .

Now since µ only takes values of {0, 1,−1}, it follows that∑
k=dl

d,l≤N2/5

µ(d)Λ(l)�
∑
k=dl

d,l≤N2/5

Λ(l) ≤
∑
l|k

Λ(l) = log k � logN.
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Using this, along with Equation 3.9 we can see that

S2 � logN
∑

k≤N4/5

∑
m≤N/k

e(αkm)

�
∑

k≤N4/5

min

{
N

k
, ‖αk‖−1

}
logN

�
(
N

q
+N4/5 + q

)
log2N.

Stringing all these results together in the right way will give a proof of Theorem 3.6.1.

3.6.2 Asymptotic Formula from the Minor Arcs

We will be ready to prove the asymptotic formula after we state one result from Dirichlet on
Diophantine approximation.

Theorem 3.6.5. (Dirichlet) Let α and Q be real numbers such that Q ≥ 1. There exist
integers a, q such that

1 ≤ q ≤ Q, (a, q) = 1,

and ∣∣∣∣α− a

q

∣∣∣∣ < 1

qQ
.

There are various proofs of this theorem, the interested reader can look at theorem 4.1 in [Nat13].
We are now ready.

Theorem 3.6.6. (Asymptotic Formula) For any B > 0, we have that∫
m

FN (α)3e(−αN)dα� N2

log(B/2)−5N
,

where the implied constant depends only on B.

Proof. Let α ∈ m = [0, 1]\M. By Theorem 3.6.5 we know that for any such real number α there
exists some fraction a/q ∈ [0, 1] where 1 ≤ q ≤ N/Q and (a, q) = 1 such that∣∣∣∣α− a

q

∣∣∣∣ ≤ Q

qN
≤ min

{
Q

N
,

1

q2

}
.

Now if q ≤ Q, then α ∈Ma,q ⊂M; but we specifically assumed that α /∈M. Thus we see that

Q < q ≤ N

Q
.

From the main theorem of the last subsection, Theorem 3.6.1 (and reminding ourselves of the
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condition that we are taking B > 0 and Q = logB N), we can do some manipulations to find that

F (α)�
(
N

q1/2
+N4/5 +N1/2q1/2

)
log4N

�

(
N

logB/2N
+N4/5 +N1/2

(
N

logB N

)1/2
)

log4N

� N

log(B/2)−4N
.

From the derivation in Lemma 3.2.1, we have that∫ 1

0

|F (α)|2dα� N logN.

Using this, we get that ∫
m

|F (α)|3dα� sup{|F (α)| : α ∈ m}
∫ 1

0

|F (α)|2dα

� N

log(B/2)−4N

∫ 1

0

|F (α)|2dα

� N2

log(B/2)−5N
.

3.7 Proof of the Asymptotic Formula

We have everything we need to prove Theorem 3.5.1, that Goldbach’s weak conjecture is true for
all sufficiently large integers. Let’s piece it together.

Theorem 3.7.1. (Vinogradov) Let S(N) be the singular series for the weak Goldbach
conjecture. Then for all sufficiently large, odd integers N and for all A > 0, we have that

R3(N) = S(N)
N2

2
+O

(
N2

logAN

)
,

where the implied constant depends only on A.

Proof. Using what we have shown in the previous sections, specifically Theorem 3.5.2 and The-
orem 3.6.6, we have that for any positive numbers B,C, ε such that C > 2B and ε < 1,

R3(N) =

∫ 1

0

FN (α)3e(−Nα)dα

=

∫
M

FN (α)3e(−Nα)dα+

∫
m

FN (α)3e(−Nα)dα

= S(N)
N2

2
+O

(
N2

log(1−ε)B N

)
+O

(
N2

logC−5B N

)
+O

(
N2

log(B/2)−5N

)
,

where the implied constants depend only on B,C, ε. Now take any A > 0, and let B = 2A + 10,
C = A+ 5B and ε = 1/2. This will give us

min{(1− ε)B,C − 5B, (B/2)− 5} = min{A+ 5, A,A} = A,
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and hence

R3(N) = S(N)
N2

2
+O

(
N2

logAN

)
.

With this preliminary reorganising of what we already know, we are sufficiently ready to state the
proof of Theorem 3.5.1. We restate the theorem here for the reader’s benefit.

Theorem 3.7.2. (Vinogradov’s Theorem) There exists an arithmetic function S(N)
and positive constants c1 and c2 such that

c1 < S(N) < c2

for all sufficiently large, odd integers N , and

rP,3(N) = S(N)
N2

2 log3N

(
1 +O

(
log logN

logN

))

Proof. We want to bound R3(N) above and below; let’s start with an upper bound.

R3(N) =
∑

p1+p2+p3=N

log p1 log p2 log p3

≤ log3N
∑

p1+p2+p3=N

1

= rP,3(N) log3N.

Let’s define rδ(N) as the number of representations N = p1 + p2 + p3 such that pi ≤ N1−δ for
some i, with the additional condition that 0 < δ < 1/2. This leads us to

rδ(N) ≤ 3
∑

p1+p2+p3=N

p1≤N1−δ

�
∑

p1≤N1−δ

 ∑
p2+p3=N−p1

1


≤

∑
p1≤N1−δ

∑
p2<N

1


≤ π(N1−δ)π(N)

� N2−δ

log2N
.

Next for the lower bound,

R3(N) ≥
∑

p1+p2+p3=N

p1,p2,p3>N
1−δ

log p1 log p2 log p3

≥ (1− δ)3 log3N
∑

p1+p2+p3=N

p1,p2,p3>N
1−δ

1

≥ (1− δ)3 log3N(rP,3(N)− rδ(N))

� (1− δ)3 log3N

(
rP,3(N)− N2−δ

log2N

)
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where the last line follows from the prior result. This last derivation also allows us to see that

(1− δ)−3R3(N) +N2−δ logN � (log3N)rP,3(N). (3.10)

Now if we take 0 < δ < 1/2, we get that

0 < (1− δ)−3 − 1 =
1− (1− δ)3

(1− δ)3
≤ 8

(
1− (1− δ)3

)
< 24δ.

From Theorem 3.7.1 and Theorem 3.5.8, we have that R3(N) � N2. Using this, as well as the
upper bound for the first inequality, and Equation 3.10 for the second, we get

0 ≤ (log3N)rP,3(N)−R3(N)�
(
(1− δ)−3 − 1

)
R3(N) + (logN)N2−δ

� δR3(N) + (logN)N2−δ

� δN2 + (logN)N2−δ

= N2

(
δ +

logN

Nδ

)
.

this is all dependent on 0 < δ < 1/2, and let’s maintain this while choosing

δ =
2 log logN

logN
.

Then we get that

δ +
logN

Nδ
=

2 log logN

logN
+

logN

log2N
� log logN

logN
,

and by inserting this result into the previous one, we find that

0 ≤ (log3N)rP,3(N)−R3(N)� N2 log logN

logN
.

By rearranging this result, and then applying Theorem 3.7.1, we ge that

(log3N)rP,3(N) = R3(N) +O

(
N2 log logN

logN

)
= S(N)

N2

2
+O

(
N2

logAN

)
+O

(
N2 log logN

logN

)
= S(N)

N2

2

(
1 +O

(
log logN

logN

))
.

Once we remove the log3N , we will be done,

rP,3(N) = S(N)
N2

2 log3N

(
1 +O

(
log logN

logN

))
.

3.8 Summary for Weak Goldbach

We have gone through Vinogradov’s impressive proof of the asymptotic formula for the weak
Goldbach conjecture, and this provides an impression of how difficult it can be to apply the circle
method; the method can tell us a lot when applied successfully, but that doesn’t mean it can tell
us everything. It would feel natural to conclude from this exposition that Vinogradov had proved
the weak Goldbach conjecture, but, alas, this was not sufficient. We know that R3(N) > 0 for
large enough N , but we would like to have a specific bound B such that R3(N) > 0 for all N ≥ B.

32



Errol D.G. Drummond The Circle Method

Unfortunately, when a bound was eventually identified from the inner workings of the proof, it
turned out to be far too large to check all the remaining cases computationally. Allegedly Vino-
gradov’s student K.G Borozdkin found a bound of ee

16.038 ≈ 3315

= 314,348,907 in his unpublished
PhD thesis (apparently this bound was also presented at a conference in the 1950’s, but finding
an actual reference for either of these resources has been unsuccessful). If we assume this bound
to have been found, it represents a number with at least 4, 008, 660 digits; perhaps now it is clear
why it is too large. For further success with this approach, the bound would have to be improved
significantly.

In 1989 J.-R. Chen and T. Wang improved the bound to 3.33 ·1043,000 [CW89], and in 2002 M.-Ch.
Liu and T. Wang improved it significantly further to 2 · 101346 [LW02]. For context of scale, there
have been 1030 picoseconds since the assumed beginnings of the universe, and there are predicted
to be around 1080 protons (the Eddington number) in our observable universe. There was still
some way to go to refine the bound to something manageable.

Finally, in a preprint by the Peruvian mathematician Harald Helfgott, the bound was brought
down to 1027 [Hel13]. Given that the conjecture had already been checked for all integers less than
8.875 · 1030, this could be the final step of the proof. Having first been conjectured in 1742, the
question may finally have a valid verification (that is of course if and when the proof is accepted
in a peer-reviewed mathematics journal, although in the years since Helfgott’s preprint no major
errors have yet been found).

We note that Helfgott managed to reduce the bound by using “the close relation between the
circle method and the large sieve”. Taking some ideas from an optimised large sieve for primes,
and applying those ideas to the circle method, yielded enough of a gain. So even if the circle method
doesn’t result in a complete proof in the beginning, it can be optimised to improve the bound until
it is sufficient. Helfgott is in the process of writing a book for the purpose of providing a peer-
reviewed form of the proof to anybody interested. The book explains the analytical techniques
used along the way, a large part of this is of course the circle method - the book is currently
projected to be five hundred pages [Hel].

3.9 The Strong Goldbach Conjecture

Having finalised a proof of Goldbach’s weak conjecture, what can we say about the strong one; how
far has the circle method taken us to proving its validity? There appears to be very little literature
on the application of the circle method on the strong Goldbach conjecture, which indicates that
there has not been much success. What can be demonstrated is that if we approach it in the same
way as has been done for the weak conjecture, the minor arc is not sufficiently well bounded.∣∣∣∣∫

m

FN (x)2e(−Nx)dx

∣∣∣∣ ≤ ∫ 1

0

|FN (x)|2dx

≤ N logN + o(N logN),

by Lemma 3.2.1. However, it turns out that this is the same order as we expect to see from the
integral over the major arcs. There may yet be hope for the future, as it may be possible to bound
the integral over the minor arcs more significantly. Notice that we do not need to bound∫ 1

0

|FN (x)|2dx,

but instead we have to bound the oscillating function∣∣∣∣∫
m

FN (x)2e(−Nx)dx

∣∣∣∣ .
As such, the oscillations likely result in significant cancellation, and this hypothesis can be given
extra weight through numerical calculations. As a final remark, note what happens when we input
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an even integer into the singular series, using a representation of the singular series that was found
during the proof of Theorem 3.5.8,

S(2N) =
∏
p

(
1− cp(2N)

φ(p)3

)
=

(
1− c2(2N)

φ(2)3

)∏
p
p 6=2

(
1− cp(2N)

φ(p)3

)

=

(
1− 1

13

)∏
p
p 6=2

(
1− cp(2N)

φ(p)3

)

= 0 ·
∏
p
p 6=2

(
1− cp(2N)

φ(p)3

)
= 0.

The third equality follows from a fact about Ramanujan sums, namely that

cp(k) =

{
p− 1 if p|k
−1 otherwise.

Thus S(N) = 0 for all even N , and the contribution to the integral from the major arc is zero
(according to the asymptotic formula we put a lot of work into finding). In some sense, the Singular
Series ‘knows’ that the Goldbach conjecture is hard.
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Chapter 4

Integers as sums of three
Triangular Numbers

4.1 A theorem of Gauss

The purpose of this chapter is to see how what has been so far can be applied to another problem,
and to see what kind of difficulties arise and how quickly. As a bachelor thesis primarily devoted
to learning what the circle method is, it makes sense to include a short section at the end seeing
what can be done with the method to reinforce learning.

Following an in depth look at the circle method via its involvement in Vinogradov’s theorem, we
would like to see how we could apply the method to a theorem of Gauss; that every positive integer
is a sum of three triangular numbers (including t0 = 0).

Theorem 4.1.1. Defining the Triangular Numbers

T :=

{
k(k + 1)

2
: k ∈ Z≥0

}
,

we have that

rT,3(n) ≥ 1

for all n ∈ Z≥0.

Proof. The first part of this proof would be to show that all positive integers m of the form

m ≡ 3 mod 8

can be written as a sum of three square numbers. As this proof is only secondary to the topic of
this thesis, we will assume this part of the proof; the interested reader can for instance look at
[Ank57], or at a proof of Legendre’s three square theorem.

Take any positive integer n, then by above we have that

8n+ 3 = (2x+ 1)2 + (2y + 1)2 + (2z + 1)2

where x, y, z ∈ Z≥0. Due to the congruence conditions, we must have that each square is odd,
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hence the form of each square. Manipulating this, we find that

8n+ 3 = 4x2 + 4x+ 4y2 + 4y + 4z2 + 4z + 3

8n = 4x2 + 4x+ 4y2 + 4y + 4z2 + 4z

n =
x(x+ 1)

2
+
y(y + 1)

2
+
z(z + 1)

2
.

So n can be represented as a sum of three triangular numbers.

4.2 Setup

We can take either the unweighted generating function

fN (x) :=
∑
t∈TN

e(tx),

where TN is the set of triangular numbers that are at most N , or the weighted version

FN (x) :=
∑
t∈TN

log t · e(tx).

If we look at the cubes of these two, we find

fN (x)3 =

3N∑
n=0

rTN ,3(n)e(nx),

FN (x)3 =

3N∑
n=0

R3(n)e(nx),

where

R3(n) :=
∑

t1+t2+t3=n
t1,t2,t3∈TN

log t1 log t2 log t3.

Finally, application of our orthogonality relationship gives

rTN ,3(n) =

∫ 1

0

fN (x)3e(−nx)dx

R3(n) =

∫ 1

0

FN (x)3e(−nx)dx.

Note that we once again have that

R3(n) ≤ (logN)3rTN ,3(n),

and therefore that

R3(n) =⇒ rTN ,3(n) ≥ 1.

4.3 Large FN(x)?

In order to select the arcs we need to have some idea of where FN (x) (or fN (x)) is large. How
are we to determine this? The manipulations used in our exploration of Vinogradov’s theorem
involved manipulating the generating function such that it was a multiple of the sum of the log
of primes up to some point; because then we could apply the Siegel-Walfisz theorem. However we
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are working with the set of triangular numbers, not primes; so perhaps this isn’t a viable strategy
here.

Let’s blindly try the same approach and see where it leads us.

FN

(
a

q

)
=
∑
t∈T

log t · e
(
t
a

q

)

=

q∑
r=1

∑
t≡r mod q
t≤N

log t · e
(
ar

q

)

=

q∑
r=1

e

(
ar

q

) ∑
t≡r mod q
t≤N

log t.

This is familiar, but the Siegel Walfisz theorem tells us about the distribution of primes in congru-
ence classes, not of triangular numbers. Perhaps there are other things we can try however. First
note that if the largest triangular number is at most N , and it is of the form t = z(z + 1)/2, we
have that

z(z + 1)

2
≤ N

z2 + z ≤ 2N

z2 + z − 2N ≤ 0

=⇒ z =
−1 +

√
1 + 8N

2
≈
√

2N,

since z must be positive, and when N is large the last approximation is very close to the true value.
Now we can try to rearrange what we had.

FN

(
a

q

)
=
∑
t∈T

log t · e
(
t
a

q

)
≈

∑
1≤z≤

√
2N

log

(
z(z + 1)

2

)
· e
(
tz
a

q

)

=
∑

1≤z≤
√

2N

(log(z) + log(z + 1)− log(2)) e

(
tz
a

q

)

=
∑

1≤z≤
√

2N

log(z)e

(
tz
a

q

)
+

∑
1≤z≤

√
2N

log(z + 1)e

(
tz
a

q

)
− log(2)

∑
1≤z≤

√
2N

e

(
tz
a

q

)

The hope here was to create a sum of the form
∑

1≤z≤
√

2N log z = log(b
√

2Nc!), and then to use
Stirling’s approximation. However due to each log z being multiplied by a member of the unit
circle, this is clearly not possible.

It would appear that for this application, it would be wiser to use the unweighted generating
function. Moreover, taking an approach similar to that taken for Goldbach’s problem doesn’t seem
a natural choice; the problem we are tackling now takes, in some sense, all nonnegative integers as
its primary set, but Goldbach’s problem takes prime numbers. As such, it would likely be more
fruitful to approach the problem in the way Waring’s problem was approached as it is a more
similar problem.

We can get a feel for how Waring’s problem is approached by reviewing the methods used in
[Vau97] to show that G(k) ≤ 2k + 1. The proof of this around the same length as the proof of
Vinogradov’s theorem, so there are many results found along the way. Here are two of the first
results used in this proof.
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Theorem 4.3.1. (Weyl) Let

T (φ) =

Q∑
x=1

e(φ(x)),

where φ is an arbitrary arithmetical function. Then

|T (φ)|2
j

≤ (2Q)2j−j−1
∑
|h1|<Q

· · ·
∑
|hj |<Q

Tj ,

where

Tj =
∑
x∈Ij

e(∆j(φ(x);h1, ..., hj))

and ∆j is the jth iterate of the forwards difference operator, and the intervals Ij =
Ij(h1, ..., hj) (possibly empty) satisfy

I1(h1) ⊂ [1, Q], Ij(h1, ..., hj) ⊂ Ij−1(h1, ..., hj−1).

Theorem 4.3.2. (Weyl’s inequality) Suppose that (a, q) = 1,

|α− a/q| ≤ 1

q2
, φ(x) = αxk + αqx

k−1 + · · ·+ αk−1x+ αk

and

T (φ) =

Q∑
x=1

e(φ(x)).

Then

T (φ)� Qq+ε(q−1 +Q−1qQ−k)1/K ,

where K = 2k−1.

Since these theorems take in arbitrary arithmetical functions, there is hope we could apply them
in our scenario. Firstly, we can write our generating function in a different form,

fN (x) =
∑
t∈TN

e(tx)

≈

√
2N∑
k=1

e

(
k2 + k

2
x

)

=

√
2N∑
k=1

e

(
k2

2
x

)
e

(
k

2
x

)
.

This looks a little close to the desired form in the theorems above, but there is still more to do.
Perhaps a future thesis could attempt to see how the method could be applied to this problem
with more success.

4.4 Summary

Clearly problems applying the method arise very quickly. Creating an integral representation is
easy to do for any problem of an additive nature, but the following step of determining where the
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integrand is large is certainly difficult. Visual software graphing the integrand could be useful in
developing a picture of the integrand, but even that could only do so much to determine specific
input values to sequester enough of the large parts of the function to leave only a minor quantity
for the minor arcs.

The message however is clear: application of the circle method is probably never going to be
straightforward. There will be a lot of difficulty doing any more than just representing the problem
through a generating function; and the more progress is made, the harder the tasks are that need
to be done next.

It would be of great interest to see how users of the method discovered where to set the major arcs;
was there some general approach they used, more trial and error, or some level of understanding
that indicated to them what to try.
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Conclusion

It has been just over one hundred years since the inception of the circle method; we have explored
what the method is, how it was first discovered, and seen a detailed application of it to Vinogradov’s
theorem. The method applies analytic function theory to show that relationships of an additive
nature hold (or do not hold) asymptotically. The method has seen successive improvements in
effectiveness and generalisation as it has been moulded to attack different problems.

It’s effectiveness is best seen by the fact that it has contributed the most to solving Waring’s
problem, and has also seen considerable success in attacking all Waring-type problems, as well as
to the weak Goldbach conjecture. The exposition of it being used to prove Vinogradov’s theorem
does also highlight the fact that is is not a simple method to use. In order to prove Vinogradov’s
theorem it was necessary to prove several other results beforehand. An exposition is one thing,
but applying the method in a novel way without knowing what results could be of use and will be
needed is far more difficult.

The final chapter looking at how the method can be applied to representing positive integers as
triangular numbers demonstrates that even far before the ‘hardest part’ of the method (bounding
the minor arcs), problems arise quickly; how does one even determine how to partition the unit
interval?

Continuing the dialogue of this report, one might be inclined to look in more detail at how the
circle method was applied to Waring’s problem, or a variant of Waring’s problem, and highlight the
differences in approach that the two problems required from the method. Following this, it would
be useful to see if any of those insights suggest what might be the best strategy to employ to apply
the method successfully to representing positive integers as sums of three triangular numbers.
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Appendix A

Partial Summation

Theorem A.0.1. Partial Summation Take two arithmetic functions, f(n) and u(n).
Define the sum function

U(t) =
∑
n≤t

u(n).

Let a, b be nonnegative integers with a < b. Then we have that

b∑
n=a+1

u(n)f(n) = U(b)f(b)− U(a)f(a+ 1)−
b−1∑

n=a+1

U(n)(f(n+ 1)− f(n)).

Let x, y be real numbers such that 0 ≤ y < x. If f(t) is a function with a continuous
derivative on the interval [y, x], then∑

y<n≤x

u(n)f(n) = U(x)f(x)− U(y)f(y)−
∫ x

y

U(t)f ′(t)dt.

In particular, we have that∑
n≤x

u(n)f(n) = U(x)f(x)−
∫ x

1

U(t)f ′(t)dt.

Proof. The first part follows simply from evaluating the sum,

b∑
n=a+1

u(n)f(n) =

b∑
n=a+1

(U(n)− U(n− 1))f(n)

=

b∑
n=a+1

U(n)f(n)−
b−1∑
n=a

U(n)f(n+ 1)

= U(b)f(b)− U(a)f(a+ 1)−
b−1∑

n=a+1

U(n)(f(n+ 1)− f(n)).

Now if we take a continuously differentiable f(t) on [y, x], we have that

f(n+ 1)− f(n) =

∫ n+1

n

f ′(t)dt,
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and

U(n)(f(n+ 1)− f(n)) =

∫ n+1

n

U(t)f ′(t)dt.

Letting a = byc, and b = bxc, we get that

∑
y<n≤x

u(n)f(n) =

b∑
n=a+1

u(n)f(n)

= U(b)f(b)− U(a)f(a+ 1)−
b−1∑

n=a+1

U(n)(f(n+ 1)− f(n))

= U(x)f(b)− U(y)f(a+ 1)−
b−1∑

n=a+1

∫ n+1

n

U(t)f ′(t)dt

= U(x)f(x)− U(y)f(y)− U(x)(f(x)− f(b))− U(y)(f(a+ 1)− f(y))−
∫ b

a+1

U(t)f ′(t)dt

= U(x)f(x)− U(y)f(y)−
∫ x

y

U(t)f ′(t)dt.

The last result follows from the fact that if f(t) is continually differentiable on [1, x], then∑
n≤x

u(n)f(n) = u(1)f(1) +
∑

1<n≤x

u(n)f(n)

= u(1)f(1) + U(x)f(x)− U(1)f(1)−
∫ x

1

U(t)f ′(t)dt

= U(x)f(x)−
∫ x

1

U(t)f ′(t)dt.
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