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Abstract

This thesis addresses the problem of clustering networks and data sets. Networks consist of
agents and links connecting the agents. Networks are used in many different fields of science
such as biology and social sciences. Clustering networks can be seen as making groups of agents
based on similarity. The goal of clustering networks is to improve interpretations and to facilitate
a way to make the analysis of big networks easier. Even though many different methods already
exist, this thesis explains a methodology based on opinion dynamics. This method relies on
every agent having an opinion, which will be updated at every time step. Due to convergence of
opinions, agents eventually form clusters. This methodology will be explained and substantiated
with mathematical proofs. Furthermore, simulations will be performed on specific examples to
understand the method. Finally, this method will be applied on an existing data set to see how
this method could be used in practice.
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1. Introduction

1.1 Graph theory

The famous Swiss mathematician Leonhard Euler posed a problem, which is now well-known.
This problem involves seven bridges in a city and the quest to find a route to cross all seven
bridges exactly once; the so-called Köningsberg Bridge Problem [13].

Figure 1.1: Köningsberg Bridge Problem [16]

Euler wrote an article on this problem in 1736, which is seen by many mathematicians as
the beginning of graph theory. Graphs, or in some articles and books referred to as networks,
can be defined as a visualization of vertices, also known as agents, and edges that join agents
together [15]. Graphs can represent any type of network, from small and simple ones to big
and complex ones. For example, graphs are found in the field of biology, when studying cellular
systems, interactions within proteins or metabolic systems [8]. However, not only in the field of
biology graphs are regularly used, but also social sciences and many other different fields. This
has led to an increasing interest in these complex networks; how does one look at a network
properly? What is the use of these networks? And are there ways to make interpretation of
these networks more easy and efficient?

1.2 Problem description

This last question has led to the idea of finding subgroups within a graph. Imagine having a
big data set, about which you need to draw a conclusion. If this big data set can be split up
in subgroups based on a particular characteristic, analyzing this set becomes a lot easier. The
problem addressed in this thesis is the problem of finding clusters in any graph, representing
any type of network. Roughly speaking, clusters can be defined as groups of vertices for which
the number of connections within this cluster is large compared to the number of connections
between different clusters [8, 14]. To illustrate the idea of finding clusters in networks, consider
any type of social media website such as Facebook or, more a professional one, LinkedIn. These
websites allow friends, families and colleagues to communicate over big distances or to share
their opinions, ideas and job vacancies with others. Anonymised data of these social websites
can be used to find for example groups of friends or families. In this case people and their user
pages, are considered as the agents and edges between agents can represent a friendship, following
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the same celebrities or a tag in the same photo, just to name some options. By means of an
algorithm, clusters of ’friendships’ within five different universities in the United States have been
found in [21]. Here connections represent a friendship and only friendships between students of
the same universities are taken into account. In this paper, the researchers determined to what
extent the demographic labels, that were included in the anonymised data, are in correspondence
with the clusters found by the algorithms. In Figure 1.2 the results haven been visualized. From
these figures it can be concluded that the clusters found are quite compatible with the housing
of the students.

(a) Visualization of network of friendships between
students at Caltech [8]. Every dot represents a user
page, and hence a student, and every visible line an
online friendship between two students.

(b) The different communities of the network [8]

Figure 1.2: The clusters of friendship networks of students at Caltech (with data used from
September 2005). The different colors and shapes represent the different dormitories of the
students.

This example shows that finding these clusters can benefit for example marketing companies,
knowing that it might not be necessary to approach every individual, but only a few of every
cluster. In the more advanced and technical cases, such as finding groups of related genes, the
results can be used to find which genes might be relevant for a disease, by extracting associations
between properties of the genes and the disease [8].

1.2.1 Existing clustering methods

Already in 1927, an article was published on finding groups of people in political bodies based on
their voting behaviour [18]. Later, in 1955, an article, written by R.S. Weiss and E. Jacobsen, was
published [12]. Weiss and Jacobsen studied workgroups within a government agency and made
subgroups by removing agents that were working with people of various workgroups [8]. This
concept of deleting connections to form groups formed a basis for the more modern algorithms
and methods of finding clusters.

Over the years many different methods appeared. A popular way of finding clusters is known
as the k-means clustering, which is a method to find partitions of sets [8]. This method uses
distances between agents to find clusters. An extension to the k-means clustering is the fuzzy
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k-means clustering, since it allows for points to belong to more than one partition. The fuzzy
k-means clustering is widely used in pattern recognition [8]. The disadvantage of these two
methods is that for them to work, the number of clusters needs to be determined beforehand.
Since this is in many different examples not possible, these methods can often not be used.

Another category of methods to find clusters is the so-called spectral clustering, which is
characterized by the use of eigenvalues of matrices associated to graphs. This spectral clustering
was first performed by W.E. Donath and A.J. Hoffmann and published in 19731. Donath and
Hoffman used eigenvectors of the adjacency matrix of the graph. Later, the use of the Laplacian
matrix was introduced by Miroshlav Fiedler, who used the algebraic connectivity of a graph G,
which is the second smallest eigenvalue of the Laplacian matrix of G [5–7]. In some literature
this is known as the Fiedler value, and its corresponding vector as the Fiedler Vector [20].

1.2.2 Opinion dynamics

In this thesis, a method for clustering described by Morărescu and Girard in [14] will be studied.
Their method uses opinion dynamics to solve the problem of a partition of a graph, and hence
finding clusters. They consider a graph in the original way; a set of agents and a set containing
edges connecting the agents. The core of their methodology relies on agents having evolving
opinions. Every agent i in V is assumed to have time dependent opinion and is denoted xi(t),
which makes the problem a discrete dynamical time system. An initial opinion is assigned
to every single agent and at every time-step their opinions are updated by taking a weighted
average of its own and its neighbors’ opinions. Finally, after sufficient number of time-steps, the
opinions of every agent will converge to a limit value. This limit is the also referred to as the
asymptotic opinion of an agent and will be further used in Chapter 2. If it turns out that two
agents converge to the same limit, they are considered to belong to the same cluster. Finding a
partition is characterized by the fact that an agent can only belong to one cluster.

1.2.3 Approach

In order to reach the goal of finding clusters, this dynamical system needs to be understood.
In this thesis the opinion dynamics model of Morărescu and Girard will be explained. With
the help of MATLAB, simulations of their model will be conducted. Finally, for certain cases,
the behaviour will be analyzed, explained and discussed, using eigenvalues and eigenvectors.
Furthermore, an application for customer services of this algorithm to a large data set, which
represents items that van be bought online, will be presented as well.

1I was not able to find their original article as a PDF file, but it was referred to in [8].
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2. Model description

The basic concept of opinion dynamics has been explained briefly in Subsection 1.2.2. Morărescu
and Girard implemented opinion dynamics in a discrete dynamical system, which eventually leads
to solution for the main problem of finding clusters in graphs. In this chapter the details of their
model will be explained, as well as background knowledge necessary to understand their model.

2.1 Preliminaries

In order to understand their model, some concepts from matrix theory will be explained first.
These concepts are used to prove important statements for this thesis.

Perron-Frobenius theorem

The Perron-Frobenius theorem, which was derived by Oscar Perron and later generalized by
Ferdinand Georg Frobenius, deals with positive matrices [17]. A matrix is called a positive
matrix, if it only has entries that are strictly positive. This theorem makes statements about
the eigenvalues of a matrix and special eigenvectors can be defined. However, if a matrix is non-
negative, with all entries non-negative, an additional property is needed for the Perron-Frobenius
theorem. Therefore, there are different theorems for positive and non-negative matrices.

For any square matrix A, the set σ(A) contains all eigenvalues of A and the spectral radius,

ρ(A) = max{|λ| |λ ∈ σ(A)},

is the maximum of all eigenvalues in absolute value.

Theorem 2.1.1. (Perron-Frobenius theorem [11,17])
If A is a positive matrix of size n× n, then

1. ρ(A) > 0, where ρ(A) is the spectral radius of A.

2. ρ(A) is a simple eigenvalue of A, hence has algebraic multiplicity equal to 1.

3. Any other eigenvalue λ of A is such that |λ| < ρ(A), which makes ρ(A) the eigenvalue of
maximum modulus.

4. There exist vectors x and y, both positive, called the right- and left-Perron vectors of A
satisfying Ax = ρ(A)x, AT y = ρ(A)y and xT y = 1.

If a matrix has entries equal to 0, which makes the matrix non-negative instead of positive,
an extra restriction on this matrix is needed in order to apply the Perron-Frobenius theorem.
The matrix must be irreducible as well. Matrix A is said to be irreducible if there does not exist
a permutation matrix P which can bring A into block upper triangular form [11].
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Theorem 2.1.2. (Perron-Frobenius theorem for non-negative, irreducible matrices [11])
If A is a square non-negative and irreducible matrix of size n× n, then

1. ρ(A) > 0.

2. ρ(A) is a simple eigenvalue of A, with algebraic and geometrically multiplicity equal to 1.

3. The eigenvalue λ = ρ(A) has a unique positive eigenvector. This unique positive eigenvec-
tor, for which holds that its components sum to 1 is called the right-Perron vector.

Furthermore, since a square non-negative matrix A is irreducible if and only if its transpose, AT ,
is irreducible, there must exist a positive left-Perron vector y as well. For this vector

yTA = yTρ(A)

must hold. Since the characteristic polynomials of A and AT are the same, their set of eigenvalues
must completely overlap. This implies that their spectral radii, ρ(A) and ρ(AT ), are equal to
one another.

Additionally, it is necessary to find a value for the spectral radius for these types of matrices.
A theorem for a upper and lower bound for the spectral radii for matrices have been stated in
the following theorem.

Theorem 2.1.3. (Spectral radius of matrix A [23])
If A is a non-negative matrix of size n× n, then

min
1≤i≤n

ri(A) ≤ ρ(A) ≤ max
1≤i≤n

ri(A)

where ri(A) =
∑n

j=1 aij is defined as the the sum of the elements of row i, for all 1 ≤ i ≤ n.
Moreover, if A is irreducible, then either min1≤i≤n ri(A) = ρ(A) or ρ(A) = max1≤i≤n ri(A) holds
if and only if r1(A) = · · · = rn(A).

Squeeze theorem

The squeeze theorem states that when a sequence is squeezed by two other sequences, for which
the limits are the same, the squeezed sequence must converge as well.

Theorem 2.1.4. (Squeeze theorem for convergent sequences [19])
Let (an)n∈N and (cn)n∈N be convergent sequences. If for all n ≥ n0, an ≤ bn ≤ cn and
limn→∞ an = limn→∞ cn = L holds, then (bn)n∈N must be convergent with limit L = limn→∞ bn.

2.2 Fundamentals

In mathematical notation, a graph consisting of n agents is defined as G = (V,E). Here the sets
V = {1, 2 . . . , n} and E ⊆ V × V represent the set of agents and (initial) edges respectively [14].
In the methodology of Morărescu and Girard, the set E has some restrictions. First of all, the
set must be symmetric; (i, j) ∈ E if and only if (j, i) ∈ E for any i, j ∈ V . Being symmetric
implies that we deal only with undirected graphs, which means that that if agent i is connected
to agent j, the converse must be true as well. Secondly, E must also be anti-reflexive; (i, i) /∈ E
for any i ∈ V . The adjacency matrix of the graph G, A(G), is a matrix representation of the
graph. Since we are only dealing with undirected graphs, A(G) is symmetric and has elements
aij(G) equal to 1 if agent i and j are connected, 0 otherwise.
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Recall that the clustering is based on a dynamical system. At every time step every agent’s
opinion is updated by means of taking the weighted average

xi(t+ 1) =
n∑
j=1

pij(t)xj(t), (2.1)

which can be stated in matrix-vector form

x(t+ 1) = P (t)x(t). (2.2)

Here x(t) represents a vector containing the opinion of each agent; x(t) = [x1(t), x2(t), . . . , xn(t)]T ,
with x0 = x(0) representing the initial opinion vector. In the weighted average opinions of other
agents are taken into account for calculating the new opinion of agent i. However, not every
agent’s opinion is taken into account and hence not every element of P (t) is non-zero. However,
agent i will always take into account its own opinion. The meaning of an interacting neighbor
in this method is not the same as the meaning of a neighbor. At each time-step not only the
opinions are updated, but also the set of edges E(t) and hence the graph G(t) = (V,E(t)) are
updated. The set E(t) only contains (i, j) ∈ E for which holds that the difference between the
opinions of agent i and j is lower than a certain upper bound, which is called the confidence
bound. This means that the elements pij(t) are only non-zero if and only if j is either equal
to i or an interacting neighbor of agent i. In formal notation agent j is considered to be an
interacting neighbor of agent i at time t if j is an element of

Ni(t) = {j ∈ V | ((i, j) ∈ E) ∧ (|xi(t)− xj(t)| ≤ Rρt)}. (2.3)

with parameters ρ ∈ (0, 1) and R > 0. The area of confidence of agent i at time t can now
be defined as [xi(t) − Rρt, xi(t) + Rρt]. In order to simplify the equations, E(t) and G(t) are
denoted as being solely dependent on time t, even though they both actually depend on x(t).
Since every agent i ∈ V only interacts with agents that have an opinion contained in its own area
of confidence, matrix P (t) has to meet certain conditions. The first condition states that entries
pij(t) are only non-zero if and only if j is either equal to i or an element of Ni(t). Secondly an
assumption on the matrix P (t) is made;

Assumption 1. (Right-stochastic)
For all t ∈ N the following two statements hold:

1. pij(t) ∈ [0, 1] for all i, j ∈ V ;

2.
∑n

j=1 pij(t) = 1 for all i ∈ V .

The latter states that every row of the matrix P (t) sums to 1, which is also referred to as being
right-stochastic. Hence, Assumption 1 will be referred to as the right-stochasticity assumption
throughout this thesis. Again, P (t) and Ni(t) actually depend on x(t), but denoted to depend
solely on time for simplification. Rephrasing the restrictions on the matrix P (t), using (2.1) and
(2.3), one can state at every time, with t ∈ N, agent i collects opinions of its neighbors in the
graph G(t) = (V,E(t)) to determine the opinion for time t + 1. If the opinion of a neighbor j
differs less from agent i’s opinion than the given upper bound Rρt, agent i takes into account
agent j’s opinion and entry pij(t) will be non-zero. This process is repeated at every time step
and agent i will only take into account opinions of those agents whose opinion changes fast
enough to their own. In this process of converging opinions it is not possible to form new links;
the set of edges can only reduce in size and not increase.

As will be shown shortly, for every agent i ∈ V , the sequence (xi(t))t∈N converges. Using the
fact that agents only interact with one another if they are within each others confidence bound,
leads to an intuitive feeling that opinions come to an agreement no slower than O(ρt). This is
formulated in the following proposition, for which the proof can be found in Appendix A.

7



Opinion Dynamics in Spectral Clustering

Proposition 2.2.1. The sequence of non-negative real numbers (xi(t))t∈N is a convergent se-
quence. For this limit

lim
t→∞

xi(t) = x∗i

the following holds for all t ∈ N
|xi(t)− x∗i | ≤

R

1− ρ
ρt.

As a consequence of this constraint on the order of convergence, links will disappear in the
process. This means that, since the set of interacting neighbors change, the opinions of agents
that are not interacting with each other are likely to converge to different limits. The convergence
of opinions to different limits imply that the agents might not reach a global agreement, but only
a local one. Agreements between agents will eventually lead to the wanted community structure
within graphs.

Agents are considered to belong to the same cluster if these agents converge to the same
limit. The notion of two agents converging to the same limit is called asymptotic agreement and
will be used throughout this chapter.

Definition 2.2.1. Asymptotic agreement:
Any two agents i, j ∈ V are said to asymptotically agree if x∗i = x∗j .

Asymptotic agreement is obviously an equivalence relation, which is used to define a cluster.
Mathematically, C ⊂ V is called a cluster of graph G = (V,E) if all agents in C asymptotically
agree.

2.3 Asymptotic agreement and asymptotic connectivity

The goal of this section is to prove a relation between two agents that asymptotically agree and
these two agents being each other neighbors at all times. To achieve this goal, the set of edges
is partitioned into two subsets:

Ef = {(i, j) ∈ E | ∃T ∈ N such that∀ t ≥ T it holds that (i, j) /∈ E(t)}, (2.4)

which is the set of edges, for which it holds that the corresponding agents stop interacting with
each other within finite time. The set

E∞ = {(i, j) ∈ E | ∀ t ∈ N, ∃ s ≥ t with the property that (i, j) ∈ E(s)} (2.5)

has a corresponding graph G∞ = (V,E∞) and exists of combinations of agents which interact
with one another at any given time t ∈ N. The set E is by definition a finite set, and hence
so are Ef and E∞. The number of time steps for which two agents keep interacting with each
other, depends naturally on their opinion and hence Ef , E∞ and T depend on the initial opinion
vector x0. If there exists an edge joining two agents together in the asymptotic graph G∞, these
agents are said to be asymptotically connected. If two agents i and j are not asymptotically
connected, they are said to be asymptotically disconnected. Intuitively, there must be some kind
of relation for two agents between asymptotic connectivity and asymptotic agreement.
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2.3.1 Asymptotic connectivity implies asymptotic agreement

Morărescu and Girard formulated this intuitive relation in a proposition.

Proposition 2.3.1. Under the stochasticity assumption, asymptotic connectivity of any two
agents i, j ∈ V implies asymptotic agreement of these agents.

Proof. Take an arbitrary (i, j) ∈ E∞. By (2.5), there exists a sequence of non negative integers,
strictly increasing, (τk)k∈N, with the property that (i, j) ∈ E(τk) for all k ∈ N. In order to show
asymptotic agreement, the squeeze theorem will be used.
For any k ∈ N it holds that |xi(τk)−xj(τk)| ≤ Rρτk . Since (τk)k∈N and ρ ∈ (0, 1), it follows that

lim
k→∞

τk =∞

and hence that
lim
k→∞

ρτk = 0

which implies that (Rρτk)k∈N is a convergent sequence. The squeeze theorem implies

lim
k→∞

(xi(τk)− xj(τk)) = lim
k→∞

xi(τk)− lim
k→∞

xj(τk) = 0.

Recall that x∗i and x∗j are the limits of (xi(t))t∈N and (xj(t))t∈N respectively, hence agent i and
agent j must asymptotically agree, i.e.

x∗i = lim
t→∞

xi(t) = lim
k→∞

xi(τk) = lim
k→∞

xj(τk) = lim
t→∞

xj(t) = x∗j .

This proves the theorem.

2.3.2 Asymptotic agreement implies asymptotic connectivity

This relation between asymptotic connectivity and asymptotic agreement can be extended.
Namely, the converse of Proposition 2.3.1 can be proven as well, yet this proof is more de-
tailed and more difficult. However, the converse statement is not true for any initial opinion
vector x0. Imagine a disconnected graph G, where every agent has initially the same opinion.
Since all opinions are equal, they will all asymptotically agree. However, since a graph is dis-
connected if there is at least one agent for which there does not exist a path connecting it to
any other agent, there must be at least one agent that is asymptotically disconnected from the
rest of the agents. Hence, the converse of Proposition 2.3.1 can only be proven under additional
assumptions. Since these assumptions use many definitions and notation not used before, these
will be defined first.

If I = {v1, . . . , vn} is a subset of V , the set EI = E ∩ (I × I) contains the edges connecting
agents in I. Furthermore, the subscript I can also be used for the opinion vector x(t) and matrix
P (t). Namely, xI(t) = [xv1 , . . . , xvn ]T contains only the opinions of agents in the set I and has
length |I| and PI(t), which is generally not row stochastic, is a matrix of size |I| × |I| with
elements pvivj . If for any I ⊂ V , there does not exist an agent in I that is connected to an
agent in V \ I in G(t), then xI(t+ 1) = PI(t)xI(t) holds and PI(t) is an row stochastic matrix.
Moreover, if (I, EI) is a connected graph, then PI(t) is also irreducible.

A subgraph of G can be defined by a subset I of V with the corresponding set of edges EI .
A specific example of a subgraph is G′ = (I, E′). Here E′ ⊂ EI is defined as the symmetric
relation over I ⊆ V , (i, j) = (j, i). Since we only take into account undirected graphs, it is
always the case that if (i, j) is an element of EI , then (j, i) must be an element of this set as
well. The symmetric relation now implies that (i, j) is the same edge as (j, i) and hence the set
E′ has halve the number of elements compared with EI . A subgraph G of G is called a spanning
subgraph if this subgraph consists of all agents in G and the set of all spanning subgraphs of G
is denoted S(G).
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Going steps forward in time, the opinion vector x(t) is updated by taking the weighted
average as in (2.2). This implies that if matrix P (t) is invertible it is possible to go steps back
in time

x(t+ 1) = P (t)x(t),

= P (t)P (t− 1)x(t− 1),

...

x(t+ 1) = P (t)P (t− 1) . . . P (0)x0.

by setting x0 = P (0)−1P (1)−1 . . . P (t)−1x(t+ 1). This property makes it useful for matrix P (t)
to be invertible, which leads Morărescu and Girard to the following assumption

Assumption 2. The sequence of matrices (P (t))t∈N, satisfies the following two conditions:

1. For all t ∈ N, the matrix P (t) is invertible.

2. For any t ∈ N, the matrix P (t) depends on G(t), P (t) = P (G(t)) = P (Gt), and P (G′),
with G′ = (I, E′), is invertible.

Here, the first condition can be met by taking for example a strictly diagonally dominant matrix
P (t), which automatically implies that the matrix is invertible [4]1. A square matrix of size n×n
is called strictly diagonally dominant if for all i ∈ {1, 2, . . . , n} it holds that

|aii| >
n∑

j=1,j 6=i
|aij |.

The second condition follows from applying the first condition on the fact that P (t) = P (G(t)).
Using the former assumption a new set of matrices can be defined. The set

Qt = {P (G0)
−1P (G1)

−1 . . . P (Gt−1)
−1 |Gk ∈ S(G), 0 ≤ k ≤ t− 1} (2.6)

consist of multiplications of inverted matrices, which define steps back in time. Since it is known
that S(G) is a finite set, Qt must be a finite set too.

Moreover, in Proposition 2.2.1 is stated that the convergence of the agent’s opinions in the
set V can be no slower than O(ρ). The assumption has been made that this convergence is even
faster than O(ρ).

Assumption 3. (Fast convergence)
There exists ρ̂ < ρ, such that for all i ∈ V and any t ∈ N it holds that: |xi(t)− x∗i | ≤Mρ̂t

This assumption can be supported and confirmed by performing numerical experiments. Now,
under Assumption 1 and 2 and using Assumption 3, it can be shown that after a finite number of
time steps, the interactions between agents will no longer change, which is shown in Appendix A.

Lemma 2.3.2. Under Assumption 1 and 2, ∃T ′ ∈ N such that ∀ t ≥ T ′ it holds that G(t) =
G∞ = GC

Here, C = V \∼ = {[i] | i ∈ V } is the set containing all clusters. The set [i] contains all agents
j ∈ V that asymptotically agree with agent i. Using the former statements, the converse of
Proposition 2.3.1 can be stated.

1Farid refers to an article written by H. Rohrbach in 1931 for this statement, but since this article is writ-
ten in German, I chose to refer to this article.
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Theorem 2.3.3. Under Assumption 1, 2 and 3 it holds for almost all initial opinion vectors x0

that two agents, i, j ∈ V , asymptotically agree if and only if they are asymptotically connected.

The statement from Theorem 2.3.3 does not hold for any initial opinion vector. Take for example
an initial opinion vector where every agent has the same opinion, then this theorem is not likely
to be true. As another example, if the opinion of one agent differs a lot from all of the other
opinions, it is likely that this agent will end up without any interacting neighbors. If this
agent was initially connected to many other, this outcome is not likely to be correct and hence
Theorem 2.3.3 does not seem to hold.

Proof of Theorem 2.3.3

The proof of Theorem 2.3.3 uses sets that have not yet been defined. To ensure compactness of
this proof, some notation and sets needed for the proof will be clarified first.

Naturally, the set V can be partitioned into subsets that have the property that no agent of
a subset is connected to an agent in another subset, which is necessary to prove Theorem 2.3.3.
This convention is equivalent to being a connected component. The set K(G′), which is defined
as the set containing the connected components of the graph G′, is hence a partition of V . To
be more precise, a set I ⊆ V is called a connected component of graph G′ if G′ = (I, E′) is a
connected graph, but there is no path joining any agent in I to any other agent outside of I.
The set

W(G′) = {(I, J)|(I ⊆ V ) ∧ (J ⊆ V ) ∧ (I 6= J) ∧ (I ∈ K(G′)) ∧ (J ∈ K(G′))} (2.7)

with G′ ∈ S(G), contains combinations of non-equal, non-empty subsets that are connected
components of G′.

First, assume that (I, J) is an element ofW(G′), where I and J are defined as {v1, v2 . . . , v|I|}
and {w1, w2 . . . , w|J |} respectively. Then by definition ofW(G′), I and J must be both connected
components of G′. By definition of being connected components of G′, none of the agents in I
is connected to an agent in J . This leads to P (t) being a block-diagonal matrix, consisting of
two irreducible parts, PI(G′) and PJ(G′). Hence, since P (t) is row-stochastic, these individual
blocks are row-stochastic as well. Since PI(G′) and PJ(G′) are irreducible matrices, it follows
from Theorem 2.1.2 that there must exist a right- and left-Perron vector. Let eI(G′) and eJ(G′)
be the left-Perron eigenvectors of PI(G′) and PJ(G′) respectively, implying that the Perron-
vectors satisfy the property that its elements sum to one. Furthermore, PI(G′) and PJ(G′) have
spectral radii, ρ(PI(G

′)) and ρ(PJ(G′)), equal to 1, by Theorem 2.1.3. This means

PI(G
′)T eI(G

′) = ρ(PI(G
′))eI(G

′) = eI(G
′)

eI(G
′)TPI(G

′) = ρ(PI(G
′))eI(G

′)T = eI(G
′)T

(2.8)

Next, define a vector cIJ in Rn with elements

cIJ,k =


cIJ,vk = eI,k if vk ∈ I
cIJ,wk

= −eJ,k ifwk ∈ J
0 otherwise

(2.9)

and a (n− 1)-dimensional subspace of Rn

HIJ(G′) = {x ∈ Rn|cIJ(G′)x = 0}

=

{
x ∈ Rn

∣∣∣∣ ∑
vk∈I

eI,kxk −
∑
wk∈J

eJ,kxk = 0

}
.

(2.10)

11
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In Equation 2.10, the elements eI,k denote the k’th element of the left-Perron eigenvector eI(G′).
Next, a countable union of (n− 1)-dimensional subspaces is defined;

X0 =
⋃
t∈N

( ⋃
G′∈S(G)

( ⋃
(I,J)∈W (G′)

( ⋃
Q∈Qt

QHIJ(G′)

)))
. (2.11)

Here, S(G) andW(G′), for any G′ in S(G), are finite sets. Moreover, N is infinite, yet countable.
Bogachev shows in [3] that there exists uncountable many sets with Lebesgue measure zero. He
also states that every countable set has a Lebesgue measure equal to zero. This implies that
QHIJ(G′) is a set with Lebesgue measure zero. Hence, X0 ⊂ Rn must be a set with Lebesgue
measure zero. Having a Lebesgue measure equal to zero, implies that when taking an arbitrary
vector in Rn the chance that this vector is an element of X0 is close to zero.

Finally, Theorem 2.3.3 can be proven. Take an arbitrary initial vector x0 in Rn and let i and j
be agents in V which asymptotically agree and are asymptotically disconnected. Theorem 2.3.3
will be proven by showing that the initial vector x0 must be an element of the set X0, with
Lebesgue measure zero.

Proof. Let I and J be connected components of G∞, with i and j, with the properties mentioned
before, being elements of I and J respectively. The asymptotic disconnectedness of i and j imply
that I and J are not the same sets end hence, by (2.7), that (I, J) ∈ W(G∞). Now, with T ′ as
in Lemma 2.3.2, we have that for all t ≥ T ′,

xI(t+ 1) = PI(G(t))xI(t) = PI(G
∞)xI(t) (2.12)

must hold. Again the Perron-Frobenius theorem implies that there exists a left Perron eigenvec-
tor, eI(G∞) corresponding to the simple eigenvalue of PI(G∞), ρ(PI(G

∞)) = 1, and that any
other eigenvalues of PI(G∞) have modulus smaller than one. Lemma 2.3.2 implies that when
two agents are interacting neighbors at time T ′, they will stay interacting neighbors and hence
for any t ≥ T ′ we have xI(t) = P t−T

′

I (G∞)xI(T
′). Now, by the Perron-Frobenius theorems, it

follows that
lim
t→∞

PI(G
∞)t = 1|I|eI(G

∞)T

implying
lim
t→∞

xI(t) = lim
t→∞

(PI(G
∞))txI(T

′) = (eI(G
∞)xI(T

′))1|I|, (2.13)

and, hence
x∗i = eI(G

∞)xI(T
′). (2.14)

Repeating the prior to J ⊆ V gives

lim
t→∞

xJ(t) = (eJ(G∞)xJ(T ′))1|J |, (2.15)

such that
x∗j = eJ(G∞)xJ(T ′). (2.16)

Agents i and j where chosen to asymptotically agree, which implies eI(G∞)xI(T
′) = eJ(G∞)xJ(T ′).

In (2.10) the set HIJ(G′) has been defined, from which it can be concluded that x(T ′) must be
an element of HIJ(G∞). Moreover,

x(T ′) = P (GT ′−1)x(T ′ − 1)

= P (GT ′−1)P (GT ′−2)x(T ′ − 2)

...

= P (GT ′−1)P (GT ′−2) . . . P (G0)x
0

(2.17)
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Here the notation GT ′−1 is the graph at time T ′ − 1. Using (2.17) and the fact that x(T ′) must
be an element of HIJ(G∞) it turns out that

x0 = P (G0)
−1P (G1)

−1 . . . P (GT ′−1)
−1x(T ′) ∈

⋃
Q∈Qt

QHIJ(G∞)

and hence that x0 ∈ X0, which is a set of Lebesgue measure zero.
In short recap, it has been proven that two agents that asymptotically agree, yet are asymp-

totically disconnected, have a corresponding arbitrary initial opinion vector. It followed that this
initial opinion vector must be an element of a set with Lebesgue measure zero. This implies that
for almost all initial opinion vectors x0 it must hold that asymptotically agreement of two agents
implies asymptotically connectivity, which proves Theorem 2.3.3.

2.4 Normalized Laplacian matrix

The model of Morărescu and Girard, which will be shown in the next section, belongs to the
category of spectral clustering, since the model uses the eigenvalues of the normalized Laplacian
matrix of the graph G. In this section it will be explained how the (normalized) Laplacian matrix
and their eigenvalues can be used to interpret graphs and to reformulate the main problem of
clustering.

Recall the multi-agent system G. Consider the adjacency matrix A(G) and the diagonal
matrix D(G). The elements on the diagonal of D(G) are equal to the degree of the agents, hence
this matrix is denoted D(G) = diag(d1, d2, . . . , dn). The Laplacian matrix of G,

L(G) = D(G)−A(G)

can be normalized. This normalization is not necessary, but Von Luxburg mentions several
arguments which support the use of the normalized Laplacian over the unnormalized for finding
clusters in [22]. Moreover, the normalized Laplacian matrix is less sensitive to the size of graph G
compared with the unnormalized Laplacian according to Morărescu and Girard. The normalized
Laplacian matrix of graph G, which is row-stochastic [8], is defined as

L(G) = D−
1
2 (G)L(G)D−

1
2 (G)

The elements of L(G) satisfy

Lij =


1, if i = j and di(G) 6= 0.

−1√
di(G)dj(G)

, if (i, j) ∈ E.

0, otherwise.

(2.18)

The eigenvalues of the (normalized) Laplacian matrix are used to measure connectivity of
a graph. This algebraic connectivity tells how well a graph is connected and is defined as the
second smallest eigenvalue of the L(G). This value reflects the number of agents that needs to
be removed from V to make the graph disconnected. Intuitively this implies, that the algebraic
connectivity and connectivity of a graph have a positive relation; if the former increases, so does
the density of the latter. For the second smallest eigenvalue of the normalized Laplacian matrix
the relation remains the same, even though this does not represent the algebraic connectivity
directly. Furthermore, this second smallest eigenvalue of the normalized Laplacian matrix gives
insight into graph G. For example,

µ2(L(G))


= 0 ifG has 2 distinct components.
= n

n−1 ifG is a complete graph.
∈ (0, 1] otherwise.

(2.19)
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For simplicity, the eigenvalues of L(G) are assumed to be ordered, µi(L(G)) ≤ µi+1(L(G)), with
µ1(L(G)) = 0 being the smallest eigenvalue. The set of eigenvalues of L(G) is contained in [0, 2]
and all eigenvalues are real. Morărescu and Girard defined a new measure of connectivity

µ2(P) = min
I∈P,|I|≥2

µ2(L(GI))

which represents the smallest second eigenvalue of the least connected subset of partition P =
{I1, I2, . . . , Ip}, with p being the number of clusters found. If this value turns out to be greater
than δ, the partition is valid, leading to a reformulation of the clustering problem.

Problem 1. Given a graph G = (V,E) and real number δ ∈ (0, 1], find a partition P of V . This
partition must satisfy µ2(P) > δ.

The larger δ is chosen, the more densely connected the clusters in the partition will be. Problem 1
has many different solutions, e.g the trivial partition P = {{1}, . . . {n}}, which depend on the
initial opinion vector.

2.5 Opinion dynamics model

Finally, the model of Morărescu and Girard, which leads to a solution of Problem 1, can be
formulated. The opinion dynamics model, with a decaying confidence bound and α ∈ (0, 12),
considered, is

xi(t+ 1) =

{
xi(t) ifNi(t) = ∅
xi(t) + α

|Ni(t)|
∑

j∈Ni(t)
(xj(t)− xi(t)) ifNi(t) 6= ∅

(2.20)

with Ni(t) as in (2.3). The dynamics (2.20) satisfies the weighted average as well as the properties
for pij . If Ni(t) 6= ∅, (2.20) can be rewritten by means of simple algebraic steps.

xi(t+ 1) = xi(t) +
α

|Ni(t)|
∑

j∈Ni(t)

(xj(t)− xi(t))

= xi(t) +
∑
j∈Ni

α

|Ni(t)|
xj(t)−

∑
j∈Ni(t)

α

|Ni(t)|
xi(t)

= xi(t)− αxi(t) +
∑

j∈Ni(t)

α

|Ni(t)|
xj(t)

= (1− α)xi(t) +
∑

j∈Ni(t)

α

|Ni(t)|
xj(t)

(2.21)

This leads to the conclusion that matrix P (t) has elements

pij(t) =

{
1− α if j = i
α

|Ni(t)| if j 6= i
(2.22)

for given Ni(t). This satisfy the condition that for any i and j in V it holds that pij is non-zero
if and only if j ∈ {i}∪{Ni(t)}. Since α is chosen to be in the open interval (0, 12), it follows that

pii(t) >
1

2

pij(t) =
α

|Ni(t)|

14
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Looking at every row of matrix P (t), this leads to

n∑
j=1,i 6=j

|pij | = α ∈
(

0,
1

2

)
.

From this it can be concluded that matrix P (t) is a strictly diagonally dominant and hence P (t)
must be invertible. Since P (t) = P (G(t)) by Assumption 2, it must also hold that matrix P (G′)
is an invertible matrix. This matrix can be written as P (G′) = I − αQ(G′), with I being the
identity matrix of size n× n and elements

Qij(G
′) =


1 if i = j and di(G′) 6= 0.
−1

di(G′) if (i, j) ∈ E′.
0 otherwise.

(2.23)

In order to show that this opinion dynamics model will lead to a solution of problem 1, the
following lemma is used, for which the proof can be found in Appendix A.

Lemma 2.5.1. Let P be a partition of the set V and let I be an element of P, with |I| > 2.
Then λ is an eigenvalue of PI(GP) if and only if µ = 1−λ

α is an eigenvalue of L(GI).

Finally the problem of finding clusters can be solved, using this opinion dynamics model.
The solution is formulated in the following corollary.

Corollary 1. (Solution of problem 1)
Let ρ = 1 − αδ, then for almost all initial vectors x0 and under Assumption 3 the partition
found, using (2.20), is a correct solution of Problem 1.
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3. Simulations

In this chapter, simulations conducted with the use of MATLAB will be discussed. To verify
the model in Chapter 2, it will be tested on a problem with a known solution. Specifically, an
example from the article of Morărescu and Girard will be reproduced. Next, two simple test
cases will be considered to provide more insight in the clustering method.

3.1 Zachary Karate Club

Wayne Zachary illustrated in [24] a social network within a karate club. This network consists
of 34 members, who interacted with one another outside of club meetings and classes depicted
in Figure 3.1.

Figure 3.1: Network of the karate club [24]

In this figure, the dots, the agents, represent the 34 members of the club. An edge connecting
two agents represents the fact that these two members interacted with each other outside of the
club. The adjacency matrix, representing this network, is copied from [24] and is written out
in Listing C.1 in the Appendix. Variation of the parameters ρ, α and δ resulted in different
clusters and a different number of clusters. When simulating this example, a random initial
opinion vector is chosen with elements in the domain [0, 1]. The results show that not the same
partitions were formed for every initial opinion vector. The most frequently found clusters for
this example can be found in Figure 3.2. The results correspond to those of Morărescu and
Girard.
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(a) R = 10, α = 0.1, δ = 0.1 (b) R = 10, α = 0.1, δ = 0.2

(c) R = 10, α = 0.1, δ = 0.3 (d) R = 10, α = 0.1, δ = 0.4 (e) R = 10, α = 0.2, δ = 0.4

Figure 3.2: The clusters most frequently found for the Karate Club example with R = 10 and
for different values of α and δ.

Recall that every agent has an area of confidence in which the opinion of an interacting
neighbor should be. Since ρ is strictly smaller than 1, this area of confidence approaches zero,
when time increases. For numerical reasons it is not possible to have infinite number of time-
steps. Hence, a decision needs to be made on the value of ε, which will serve as restriction on
the number of time-steps. Whenever ρt is bigger than this ε, the opinions will no longer updated
and the process of removing edges is finished. Letting ε = 10−15 gave the desired results, when
comparing with the results of Morărescu and Girard. This restriction will be used for the rest of
the simulations conducted for this thesis.
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3.2 Two complete graphs

Recall the solution to the problem of finding clusters. Corollary 1 states that for almost any
initial opinion vector x0, the partition found is a correct solution to Problem 1. However, the set
of edges, E(t), does depend on the initial opinion vector. This triggered curiosity and lead to the
decision to look at what will happen if the initial opinions are decided in advance. What does
this mean for the final clusters; Are they decided in advance, is it possible to break them apart,
or could we even end up with one big cluster. To illustrate this problem, a network consisting of
8 agents is assumed, which can be divided in two complete subgraphs as below.

Figure 3.3: Network consisting of two complete subgraphs.

As mentioned, the initial opinion vector is no longer a random vector. Let the initial opinion
vector be such that the agents in both subgraphs have the same opinion, as in (3.2). Again the
program from Listing C.1 can be used, only with a different adjacency matrix, as in (3.1).

A =



0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0


(3.1) x0 =



0.5
0.5
0.5
0.5
0.55
0.55
0.55
0.55


(3.2)

Obviously, since the graph consists of two complete subgraphs disconnected from one another,
the agents only interact with the agents within their subgraph and hence their opinion should
not change. Testing this in MATLAB, gives indeed the predicted outcome. The final opinion
vector is equal to the initial one and has not changed in between.
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The next step is to add a link in this graph, to connect the two complete subgraphs, giving
the graph from Figure 3.4, with corresponding adjacency matrix as in (3.3).

Figure 3.4: Network of Figure 3.3 with an added link between agent 4 and 5.

A =



0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0


(3.3)

The idea is that adding this link will pull the two subgraphs together and that the opinions of
the agents will converge to some opinion between 0.5 and 0.55. Intuitively, this one extra link
is not likely to weigh up against the density of the agreement of opinions in the original two
subgraphs. Hence this link will fail in most of the tested cases, as is confirmed by simulation
results shown in Table 3.1.

α δ |P |
0.1 0.1 1
0.1 0.2 2
0.1 0.3 2
0.1 0.4 2
0.2 0.1 1
0.2 0.2 2
0.2 0.3 2
0.2 0.4 2

Table 3.1: Amount of clusters found for different values of α and δ.

Here P is equal to the partition of the set of agents and hence |P| is the number of clusters found.
This led to the idea of adding a weight to this extra link between agent 4 and 5. This added
weight can be seen as adding a second, third or even a fourth link between those two agents,
depending on the weight of this link.
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This weight, denoted as w45, changes the adjacency matrix (3.3). Now, the entries a45 and a54
will no longer be equal to 1, but equal to w45. If the link between the two subgraphs is stronger,
then this link will probably hold longer when increasing time. Moreover, the graph could even
stay one big cluster, even with increasing values of α and δ. Furthermore, this weighted link
changes the weighted average. Previously, α was divided by the number of neighbors of an agent,
Ni(t). However, if the weight of a link is bigger than one, this link has respectively more influence
on the weighted average than the other links. The model of Morărescu and Girard changes to

xi(t+ 1) =

{
xi(t) ifNi(t) = ∅
xi(t) + α∑

j∈Ni(t)
wij

∑
j∈Ni(t)

wij(xj(t)− xi(t)) ifNi(t) 6= ∅
(3.4)

where
∑

j∈Ni(t)
wij is equal to the sum of the weights of all neighbors of agent i at time t ∈ N.

When Ni(t) 6= ∅, the elements of matrix P (t) are equal to

pij(t) =

{
1− α if j = i

wijα∑
j∈Ni(t)

wij
if j 6= i

(3.5)

This result has been found using a similar derivation as in Section 2.5. In this case the matrix P (t)
is still strictly diagonally dominant and hence invertible. Furthermore, the matrix P (t) is still
row-stochastic. While experimenting in MATLAB, a third, intuitively not expected, possibility
for the final state appeared. The three possibilities that appeared can be found in the figure
below.

(a) Initial situation remains (b) Link disappears (c) Third unexpected option

Figure 3.5: Possibilities for the final state after adding a weighted link between agent 4 and 5

Thinking more about the dynamics when the weight of the link, between agents 4 and 5,
is increased, this third option does seem a likely possibility. If the link between agent 4 and 5
becomes really strong, it could result in a disproportionate convergence of opinions. The opinions
of agent 4 and 5 grow fast towards one another and at the same time distance themselves from
agents 1, 2, 3 and 6, 7, 8 respectively. This disproportionate convergence then results in the
third option, with them forming a separate cluster.

Since α not only influences the parameter ρ, but also the matrix P (t), it will be checked what
partitions are formed for constant values α, while varying the values of δ and w45. In Table 3.2
and Table 3.3 the number of clusters found for different weights and different values of δ have
been organized for α is equal to 0.1 and 0.2 respectively. The program used for these results can
be found in Listing C.2 in the Appendix.
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w45 δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3 δ = 0.35 δ = 0.4 δ = 0.45 δ = 0.5

1 1 2 2 2 2 2 2 2 2
1.5 1 1 2 2 2 2 2 2 2
2 1 1 1 2 2 2 2 2 2
2.5 1 1 1 2 2 2 2 2 2
3 1 1 1 1 2 2 2 2 2
3.5 1 1 1 1 2 2 2 2 2
4 1 1 1 1 3 3 3 3 3
4.5 1 1 1 1 3 3 3 3 3
5 1 1 1 1 3 3 3 3 3
5.5 1 1 1 1 1 3 3 3 3
6 1 1 1 1 1 3 3 3 3

Table 3.2: Number of clusters found for different values of δ and w45 with α = 0.1 and R = 10.

w45 δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3 δ = 0.35 δ = 0.4 δ = 0.45 δ = 0.5

1 1 2 2 2 2 2 2 2 2
1.5 1 1 2 2 2 2 2 2 2
2 1 1 1 2 2 2 2 2 2
2.5 1 1 1 2 2 2 2 2 2
3 1 1 1 2 2 2 2 2 2
3.5 1 1 1 1 2 2 2 2 2
4 1 1 1 1 3 3 3 3 3
4.5 1 1 1 1 3 3 3 3 3
5 1 1 1 1 3 3 3 3 3
5.5 1 1 1 1 1 3 3 3 3
6 1 1 1 1 1 3 3 3 3

Table 3.3: Number of clusters found for different values of δ and w45 with α = 0.2 and R = 10.

Looking at these tables, The first thing that stands out is that the tables are exactly the same.
This will be further addressed shortly, since this result was not expected. The results from the
tables can be explained with some intuition. It seems that δ = 0.15 can be seen as a threshold
for the link breaking between agent 4 and 5. Looking at the influence of δ on the process, this
makes sense. If δ increases, ρ = 1− αδ must decrease and the area of confidence of every agent
gets a lot smaller in shorter time. This means, that agent 4 and 5 must converge to one another
much faster in order to stay connected to each other. On the other hand, the w45 = 4 looks like
a threshold to end up with 3 clusters. The link between agent 4 and 5 only influences agent 4
and 5 directly, all of the other agents indirectly. The higher the weight of the link between agent
4 and 5, the more disproportionate the convergence will be. In other words, the higher the value
of w45, the faster agent 4 and 5 approach each other and the faster the difference between agent
4, 5 and their initial neighbors will grow respectively. Since it seems hold that the tables for
α = 0.1 and α = 0.2 are exactly the same, the same reasoning for Table 3.3 can be applied.

The observation that for α = 0.1 and α = 0.2 the tables completely overlap, was quite
unexpected. By looking in smaller steps in δ and w45, one can distinguish whether the outcome
of these tables are independent of α or weakly dependent on α. The tables in Chapter B show
that different number of clusters did occur for some combinations of δ and w45. This implies
that α has some influence forming a partition. However, this influence is only minimal since
most of the results still overlapped for α = 0.1 and α = 0.2. An explanation for this result could
a choice made earlier. It might be possible that applying the method for some time-steps extra,
some of the values in the tables will change. Since a precise restriction has not been established,
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the restriction on the time-steps might be the cause for the overlapping tables. However, since
α influences the area of confidence of every agent, this influences how fast a link will break. For
various results from Table 3.2 and Table 3.3, the number of time-steps have been found for which
all the links remain.

α δ w45 |P| Time-steps
0.1 0.2 1 2 638
0.2 0.2 1 2 313
0.1 0.3 3 2 623
0.2 0.3 3 2 302
0.1 0.4 6 3 404
0.2 0.4 6 3 194

Table 3.4: Number of time-steps for which no link breaks for different values of α and δ.

3.2.1 Eigenvalues of matrix P (t)

Another way of looking at the previous results, is looking at eigenvalues and eigenvectors of
the matrix P (t). Matrix P (t), also referred to as the update-matrix, only changes when a link
between agents disappears. This means that the eigenvalues and eigenvectors of matrix P (t) are
almost constant over time. Looking at the eigenvalues and -vectors of matrix P (0) corresponding
to the initial situation, when there is no link between agent 4 and 5, only two distinct eigenvalues
appear. This matrix can be found with only knowing the adjacency matrix and value of α, since
P (t) is independent of δ. In the initial situation the adjacency matrix is a block diagonal matrix,
since there is no link between agent 4 and 5. A block diagonal matrix has the property that its
set of eigenvalues is the union of the sets of eigenvalues of the block matrices on the diagonal.
In this specific case the set Ni(t) will not be empty for any i ∈ {1, 2, . . . , 8}, hence matrix P (t)
has elements as in (3.5). The matrix P (0) is of the form

P (0) =



1− α α
|N1(1)|

α
|N1(1)|

α
|N1(1)| 0 0 0 0

α
|N2(1)| 1− α α

|N2(1)|
α

|N2(1)| 0 0 0 0
α

|N3(1)|
α

|N3(1)| 1− α α
|N3(1)| 0 0 0 0

α
|N4(1)|

α
|N4(1)|

α
|N4(1)| 1− α 0 0 0 0

0 0 0 0 1− α α
|N5(1)|

α
|N5(1)|

α
|N5(1)|

0 0 0 0 α
|N6(1)| 1− α α

|N6(1)|
α

|N6(1)|
0 0 0 0 α

|N7(1)|
α

|N7(1)| 1− α α
|N7(1)|

0 0 0 0 α
|N8(1)|

α
|N8(1)|

α
|N8(1)| 1− α


(3.6)

Indeed, this is a block diagonal matrix and hence the eigenvalues of the two separate blocks will
determine the eigenvalues of P (0). We know that the matrix P (t) is a row stochastic matrix
at any given time. Since we have a block diagonal matrix, the blocks on the diagonal must be
row-stochastic as well. Since these blocks are irreducible and row-stochastic, it follows by the
Perron-Frobenius theorem that for each block λ = 1 is a simple eigenvalue of maximum modulus.
Moreover, since every agent has the same number of neighbors, the two blocks are the same. Thus
the eigenvalue of P (0) equal to 1 has algebraic multiplicity equal to 2. Actually, the algebraic
multiplicity of λ = 1 of P (t) corresponds to the number of clusters at any given time. However,
to go back to the situation with a link between the two complete graphs, the same results holds.
If this link breaks down or agent 4 and 5 form a separate cluster, the irreducible adjacency matrix
turns into a reducible one in block diagonal form. Recall the definition of irreducibility, which
also means that any agent can be reached, when starting form an arbitrary agent in the network.
This implies that once one or two links disappear, every block on the diagonal of matrix P (t)
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has eigenvalue equal to 1 with algebraic multiplicity 1. Hence, the algebraic multiplicity of P (t)
corresponds to the number of clusters at that time.

To summarize, the matrix P (t) gives conformation of the number of clusters we see at that
time. However, looking at the first matrix that is produced, P (0), might gives us an idea of what
will happen during the process. For this reason the choice has been made to look closer at the
first update-matrix. The matrix

P (0) =



1− α α∑n
j=1 a1j

α∑n
j=1 a1j

α∑n
j=1 a1j

0 0 0 0
α∑n

j=1 a2j
1− α α∑n

j=1 a2j
α∑n

j=1 a2j
0 0 0 0

α∑n
j=1 a3j

α∑n
j=1 a3j

1− α α∑n
j=1 a3j

0 0 0 0
α∑n

j=1 a4j
α∑n

j=1 a4j
α∑n

j=1 a4j
1− α α·w45∑n

j=1 a4j
0 0 0

0 0 0 α·w45∑n
j=1 a5j

1− α α∑n
j=1 a5j

α∑n
j=1 a5j

α∑n
j=1 a5j

0 0 0 0 α∑n
j=1 a6j

1− α α∑n
j=1 a6j

α∑n
j=1 a6j

0 0 0 0 α∑n
j=1 a7j

α∑n
j=1 a7j

1− α α∑n
j=1 a7j

0 0 0 0 α∑n
j=1 a8j

α∑n
j=1 a8j

α∑n
j=1 a8j

1− α


(3.7)

with aij elements of matrix A, has eigenvalues and eigenvectors obviously depending on α and
w45. It turns out that for any value of α and w45, the eigenvalues of P (0) follow a certain pattern,
in which the fourth up to and including the seventh eigenvalue are equal to one another, if the
eigenvalues are ordered in descending order. Assume that we have eigenvalues in descending
order, then the eigenvalues are of the following order;

1 = λ1 ≥ λ2 ≥ λ3 ≥ λ4 = λ5 = λ6 = λ7 ≥ λ8.

Hence, for any α there are five different eigenvalues; λ1 = 1 is always an eigenvalue due to the
Perron-Frobenius theorem, one eigenvalue with algebraic multiplicity 4 and three other distinct
eigenvalues. An increase of α, leads to a decrease of the eigenvalues that are not equal to 1.
Looking at the eigenvectors corresponding to the eigenvalues, there is a pattern as well. We will
only look at the eigenvectors corresponding to the eigenvalues with algebraic multiplicity 1. The
eigenvector corresponding to the simple eigenvalue equal to 1 is the constant eigenvector. The
numerical eigenvector actually had a maximum difference between elements of order O(10−15).
However, this must be due to numerical imprecision, since every P -matrix is row-stochastic
and hence P (0)1 = 1 must be true. This eigenvector represents the average behaviour of our
system. The other interesting eigenvectors are the eigenvectors corresponding to λ2, λ3 and λ8
respectively are of the form

u2 =



a
a
a
b
−b
−a
−a
−a


(3.8) u3 =



−c
−c
−c
d
d
−c
−c
−c


(3.9) u8 =



−e
−e
−e
f
−f
e
e
e


(3.10)

with |a| > |b|, |d| > |c| and |f | > |e| respectively for a small weight. These eigenvectors can be
verified analytically by means of simple steps. The goal of this subsection is to figure out what
these eigenvectors tell us about the dynamics and how they can be interpreted.

From the previous subsection it could be concluded that the value of α only had very little
impact on the final partition, but it did influence when a link gets lost. If α increases, the
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eigenvalues of P (0), except for the eigenvalue equal to one, all decrease in absolute value. Unfor-
tunately, the eigenvectors did not change with an increase of α, so the eigenvalues and -vectors
of P (0) can not be used to determine how fast a link will break. The next step was to look at
what happens to the eigenvalues and -vector when the value of w45 increases.

Recall the situation of two complete subgraphs, both consisting of four agents, that are
connected to one another via an extra link. This extra link can have a weight, w45, which means
that this weighted link increases the impact that the agents, connected by this link, have on
one another. Increasing w45 hence increases the attraction between agent 4 and 5 and also the
attraction between the two subgraphs. Keeping α constant, it turns out that increasing w45

decreases λ2 and λ8, but increases λ3. Based on observations of the change of eigenvectors in
combination with the knowledge on the influence of w45 on the process, we will explain the
meaning of these eigenvectors without convincing mathematical proof.

Looking at the second eigenvector, the absolute value of a increases whereas the absolute value
of b decreases when w45 increases. For a low value of w45, it holds that the absolute value of a is
strictly bigger than the absolute value of b. This implies that with w45 increasing, the difference
between a and b in absolute value increases as well. Due to the form of this eigenvector as in
(3.8), it is implied that the difference between the fourth and fifth element decreases, while the
difference between element 3 and 4 and between 5 and 6 increases. Based on these observations,
this second eigenvector represents how agent 4 and 5 pull away from the rest of the network.

The second interesting eigenvector is the third eigenvector. For this eigenvector it holds that
for a low value of w45, the absolute value of c is strictly smaller than the absolute value of d. If
the weight of the link between agent 4 and 5 increases, |c| increases, while |d| decreases. These
developments of c and d with w45 increasing, implies that there is no difference between the
fourth and fifth element of u3. However, the difference between element 3 and 4, and hence also
between element 5 and 6, decreases a little when w45 increases. From these observations, one
could say that (3.9) represents the need of the network to stay one cluster. The fact that the
difference between the inner two elements with the elements on the outside decrease, implies that
agent 4 and 5 pull the original two subgraphs harder towards one another with increasing value
of w45.

The last eigenvector, u8, has the property that with a small weight between agent 4 and 5,
|f | > |e| holds. When w45 increases, |f | increases and |e| decreases. Hence the difference between
element 4 and 5 increases. On the other hand, the difference between element 3 and 4, which is
approximately equal to the difference between element 5 and 6, stays almost constant, while w45

increases. These observations can link this eigenvector to the two original subgraphs we started
with, pulling away from one another.

To conclude this subsection, the eigenvalues of the first P -matrix can be linked to properties
of the dynamics. However, the hope was to gain insight on how these eigenvalues and eigen-
vectors could be used to predict which links are the weakest and would disappear first. In this
specific example it was clear in advance which links could disappear and which links would never
disappear. For this example it is possible to see which links are the weaker links that could
disappear. All of the eigenvectors corresponding to the eigenvalues of multiplicity 1 not equal
to one had the form that the inner two elements differ from the ones on the outside. Combining
this observation with the dynamical meaning of these eigenvectors, one could conclude that for
this specific example the eigenvectors can be used to find the weaker links. However, the repre-
sentations of these eigenvectors are based on observations. Moreover, it turned out that the final
partition formed depends heavily on the value of δ, while δ has no influence on the eigenvalues
or -vectors of P (0). Hence, it is not possible to state that these eigenvectors can predict which
exact links will disappear.
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3.3 Network of a line

For the second test to gain more intuition how this algorithm works, a different network is
considered. The network considered here, consists of 5 agents and 4 edges as Figure 3.6.

Figure 3.6: Network with 5 agents and 4 edges

The adjacency matrix corresponding to this network is the symmetrical tridiagonal matrix with
zero entries on the diagonal and 1’s on the off-diagonals;

A =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

. (3.11)

As we have seen before, the matrix P (t) is almost constant over time and only changes if
a link between two agents disappears. Also for this test case we look at matrix P (0), which is
given as

P (0) =


1− α α 0 0 0
1
2α 1− α 1

2α 0 0
0 1

2α 1− α 1
2α 0

0 0 1
2α 1− α 1

2α
0 0 0 α 1− α

. (3.12)

Using an eigenvalue decomposition of this matrix, this matrix can be rewritten in the following
form

P (0) = UΛU−1, (3.13)

with

U =
[
u1 u2 u3 u4 u5

]
, Λ =


λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

.

Here λi is the i’th eigenvalue of P (0) and ui its corresponding eigenvector. Now, we assume that
the matrix P (t) will not change over time at all. Using the weighted average and the eigenvalue
decomposition, the development of the opinion vector x(t) changes to

x(t+ 1) = Px(t) = P 2x(t− 1) = . . . = P t+1x0 = UΛt+1U−1x0. (3.14)
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The initial condition will be chosen in such a way that one particular eigenvalue in combina-
tion with its corresponding eigenvector characterises the development of the opinions and hence
the dynamics considered here. This eigenvalue is the eigenvalue that is closest to 1 in absolute
value. Assume we have ordered eigenvalues of the matrix P (0);

1 = λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5.

which makes the second eigenvalue the eigenvalue that is closest to 1. Now x0 needs to be chosen
such that U−1x0 = e2, with e2 being the second standard basis vector, leading for any t ∈ N to

x(t+ 1) = UΛt+1U−1x0 = UΛt+1e2 = u2λ
t+1
2 (3.15)

This second eigenvalue is also referred to as the slowest eigenvalue, since the limt→∞ λ
t
2 ap-

proaches zero the slowest, compared to the other eigenvalues. The initial opinion vector is now
equal to the eigenvector corresponding to this slowest eigenvalue and the opinions will not change
direction.

The eigenvector corresponding to this slowest eigenvalue has the form

u2 =


a
b
0
−b
−a

.
To look at what happens in this system, the program from Listing C.3 in the Appendix is used.
Even though the eigenvectors are independent of α, α does influence the matrix P , its eigenvalues
and hence the dynamics. To simplify the problem, we only want positive eigenvalues that are
not to close to zero, hence for the first test the choice has been made to set α = 0.1. If the
the chosen eigenvalue gets closer to zero, then the opinion vector reaches the zero vector faster,
however we want to check what happens to the links and hence delaying that all of the opinions
reach zero is preferable. To keep the parameters in all of the simulations as constant as possible,
the parameter R is set equal to 10. Since the clusters formed depend on the opinions and also
on the initial opinion vector, looking at this initial opinion vector gives an indication of what
will happen. In the initial opinion vector, u2, the difference in opinion between agent 3 and its
neighbors is initially the biggest. This gives the impression that the links connecting agent 3 to
its neighbors are the weakest links and are the most likely to disappear. Performing some tests
in MATLAB, this was indeed the case.

Even though the value of α is set to be fixed at first, the parameter ρ = 1 − αδ is still a
free variable. For different values of ρ it has been checked whether or not any links get lost.
For α = 0.1 this slowest eigenvalue is equal to λ2 ≈ 0.97071. After some trial and error tries,
the domain for ρ, containing the critical value of ρ for which the links connecting agent 3 to its
neighbors will be lost is [0.967, 0.968]. If these links have disappeared, there will be three instead
of only one cluster as final situation.
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Figure 3.7: The three clusters after the disappearance of the links connecting agent 3 to its
neighbors.

In the figure below it has been checked for 100 different values of ρ inside this domain whether
or not the links eventually disappeared. In this first test α is set to be equal to 0.1.

Figure 3.8: Number of clusters formed for different values of ρ with α = 0.1

Even though it is nice to know that the critical value for ρ in this case is approximately equal to
0.96782, this does not tell us much about its relation to the considered eigenvalue. Next, since
only α influences the value of the eigenvalues, for different values of α, the first ρ for which no
link gets lost has been found. To plot the following results the program in Listing C.4 from the
Appendix has been used. The correlation between the parameters α and λ2 is a negative linear
correlation, as can be seen in the following figure. The decrease of the slowest eigenvalue λ2 is
proportional to α.
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Figure 3.9: Relation between value of α and the slowest eigenvalue λ2

The next step is to find a critical value of ρ for different values of the slowest eigenvalue.
This critical value of ρ is defined as the the smallest value of ρ for which no link will be lost.
In Figure 3.10 the slowest eigenvalue has been plotted against the critical value of ρ and the
corresponding value of δ.

(a) Relation between λ2 and critical value of ρ (b) Relation between λ2 and critical value of δ

Figure 3.10: Relation between λ2 and critical values of ρ and δ

From Figure 3.10(a) it can obviously be concluded that there is a linear relation between
the slowest eigenvalue and the critical value for ρ which is the first value of ρ for which no
links disappear. Since there is also a linear relation between α and λ2, there must be a linear
relation between the value of α and the critical value of ρ as well. Due to the definition of
ρ = 1− αδ, it follows that with increasing value of λ2, or decreasing value of α, in combination
with all of the linear relations, the value of the critical δ, corresponding to the critical ρ, should
be approximately constant. This is indeed the case as can be seen in Figure 3.10(b). However,
if λ2 approaches one, which is equivalent to α approaching zero, the value of the critical value
of δ starts to fluctuate significantly. When α approaches zero, there might not be enough points
in the domain of ρ in which the critical value of ρ is found. This could explain the more chaotic
behaviour of the plot when λ2 approaches 1.
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This result is not an obvious result, since in this method, the area of confidence of the agents
decreases exponentially.
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4. Illustrative Example

As a final visualization of this methodology, a data set found on the internet will be used to
perform this method on. This data set is found on GitHub on [1] used for recommender systems.
Recommender systems are widely used in society. These systems are based on preferences of
real people who rate and write comments on any type of product online. Websites like Netflix
use these systems to advertise the right movies and series to the right people. Ratings specify
one’s preferences and if one liked a specific series in the category ’English costume drama’, this
user probably also like other series or movies from this category. Some feedback systems are less
explicit; websites like Amazon.com also use the act of buying an item as sign of approval of that
item [2]. The advantage of collecting data this way is that it does not require any work of the
customer. Whether or not it is ethically correct to collect data of users without them knowing
it is a totally different question, which is outside the scope of this thesis.

With this feedback system, the recommendation analysis is based on interactions between
items and users, since the interests of the past function as proper indication of choices in the
present and the future. Choices of users can be combined as a basis of the recommender system;
buying an item in combination of the rating and comments of this item is another way to build
a recommender system. However, there are many more characteristics that can be taken into
account. For example users can leave comments to read for perspective buyers. These comments
can be liked by other users, leaving a sign to new buyers that those comments were useful in their
choice of buying. In this way recommender system can filter the ratings or comments. If a user
gets many likes on his or her comment, their rating and view of an item is probably trustworthy
and hence the website can recommend the right items to perspective buyers to increase their
sales. The methodology of Morărescu and Girard is not able to cluster on many characteristics.
Nevertheless, in the way of defining the link between agents, it will be possible to cluster a big
data set of items on some characteristics. In order to show this, a big data set will be analyzed.
This set contains items, which can be bought on Amazon.com, such as songs or albums. Every
item in this set has a certain ASIN-number and will function as agents in the network. This
ASIN number is a unique number assigned to an item that can be bought. Furthermore, in this
data set many characteristics are taken into account. For example, categories of genres, whether
or not the item belongs to the category of baby products, is it an item connected to Easter, is it
a piece of clothing and many other characteristics Amazon.com uses for their items. Obviously,
since all of the items considered are songs or albums, the only characteristics these items have
are whether or not they belong to a category of music, if it is an album and whether or not it
is vinyl or a CD. Since we already know that the algorithm of Morărescu and Girard works, the
only things necessary to cluster this set is to define when two items are linked and to make the
adjacency matrix after the set has been imported into MATLAB.

The decision has been made to look at the number of overlapping characteristics between the
items. The weight of the link between two agents is equal to the number of characteristics these
items have in common. The way adjacency matrix has been formed is defined in the MATLAB
program stated in Listing C.5. Testing the clusters for only 100 out of 6931 items with α = 0.1
and δ = 0.1 a very chaotic output appeared.
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Figure 4.1: Clusters of first 100 items with α = 0.1 and δ = 0.1

From previous tests and results, it became clear that increasing the values of α and δ, more
links are likely to disappear when applying this method. However, even increasing these two
values give a similar chaotic output. Looking at the data set and hence the corresponding
adjacency matrix this chaotic output makes sense. It turns that there are some characteristics
that almost all of the items have. This lead to the decision of redefining when there exists a
link between two agents. Hence, we will consider the case that there exists a link between two
agents if they have at least four characteristics in common and that the weight of this link will
be equal to the number of characteristics they have in common. If a cluster will be formed, in
this cluster there must be agents that have at least four characteristics in common. For items in
another clusters the same holds. The idea is now, that items from different clusters have none, or
at most a few characteristics in common. In theory, these clusters could be used to recommend
items. If a prospective buyer looks at an item, the items belonging to the same cluster could be
items that this user likes as well. Testing this new definition of a link for the same 100 items as
before had a more clear output as can be seen below.

(a) α = 0.1 and δ = 0.1 (b) α = 0.1 and δ = 0.4

Figure 4.2: Clusters found when there exists a link between two agents if they have at least
four characteristics in common.
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The higher the value of δ, the more clusters will form, which are more dense than the ones
found for δ = 0.1. With this restriction the clusters are more organised and can indeed be useful
to recommend items. This is a plot for only the first 100 items. In Figure 4.3, the adjacency
matrix for the first 1000 items has been formed and clustered by means of this algorithm.

Figure 4.3: Clusters formed out of the first 1000 items with α = 0.1 and δ = 0.4.

However, in the plots in Figure 4.2 and in Figure 4.3 there are still many items contained in
each cluster. If the definition of a link is even more strict, it is most likely that more and smaller
clusters appear. In Figure 4.4 below a link between two agents exists if those two agents have at
least six characteristics in common.

(a) Cluster for the first 100 items of the data set with α = 0.1 and
δ = 0.4

(b) Cluster for the first 1000 items of the data set with α = 0.1
and δ = 0.4

Figure 4.4: Clusters of the data set. Here a link between two agents exists if those two agents
have at least 6 characteristics in common. The results are plotted with α− 0.1 and δ = 0.4

As can be seen in the figures, the outcomes remain chaotic, even when a link has a more strict
definition. Therefore, the methodology of Morărescu and Girard may not be the best choice of
clustering method for recommendation systems with data sets this big.
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5. Discussion

The article written by Morărescu and Girard, which was the main article for this thesis, ex-
plained the use of opinion dynamics in their methodology very well. The text was written
clearly, and proofs haven been repeated, after learning more about background theorems such
as the Perron-Frobenius theorem. However, while writing this thesis, some problems came up.
When simulating one of the examples used to illustrate their methodology, it seemed that some
information was missing. When simulating the example of the Karate club, it turned out that
there was no clear restriction on the number of time-steps for which their simulation was still
reliable and accurate. Eventually a substantiated choice for this restriction was made, which is
also used in all of the other simulations in this research. Furthermore, in their results of this
specific example it became clear that out of 1000 tries, not always the same clusters appear.
Why this happens, could be due to some instability of the method. Performing the model on
more examples could give more insight into why or when this happens.
Secondly their method belongs to the category of spectral clustering. In their article, the eigen-
values of the normalized Laplacian matrix of a partition is used to define a new measure of
connectivity. This measure is used to determine if a partition is a correct solution to the prob-
lem of finding clusters and to say something about the density of the clusters. In this thesis,
no research has been done on this part of the method. However, this could be an interesting
approach to look at this methodology. It is already known that the higher this value of connec-
tivity, the more densely connected these clusters are. The article implies that when clusters are
more densely connected these clusters are automatically more stable, since the link are less likely
to be removed. This stability could also be an interesting topic of research.

5.1 Further research

Some possibilities for further research have been mentioned already. However, the list of options
for further research is not done. A different way of determining the competence of this method-
ology is looking at the computational effort of this algorithm. The advantage of this method is
that it is not necessary to know the number of clusters in advance. Nevertheless, since Morărescu
and Girard defined a dynamical system, MATLAB has to perform many calculations. But, there
are more methods and algorithms that have this same advantage. For example, the method of
Girvan and Newman, who focus on the least central links [9,10]. What is the advantage of using
the methodology of Morărescu and Girard over for example that of Girvan and Newman?
Furthermore, Morărescu and Girard mention that it is possible to define how well a partition
reflects the community structure of a graph using modularity of partitions. This modularity
uses the degree of agents and the predicted number of edges between two agents. Furthermore,
it measures how well a partition reflects community structure of graphs. Hence, the higher the
modularity, the better the community structure of a graph is reflected. However, modularity is
not able to capture clusters of different sizes [14]. Hence, conducting research to find methods
to check the stability of partitions, is very useful.
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6. Conclusion

The intention of this thesis was to understand the methodology, the model and the mathematical
proofs behind the model from the article of Morărescu and Girard. Their model relies on opinion
dynamics, which induces a dynamical discrete-time system, and its goal is to form clusters in
networks. The method has been explained and theorems and statements, substantiating the
method, have been proved. The mathematics in their article was written clearly and well-
explained.
Secondly, based on their article, two test cases have been formulated which have been used to
develop intuition on what this algorithm does. On these specific cases, tests have been conducted
to compare observations on the network with specific eigenvalues and eigenvectors. Based on a
specific example, the behaviour of the links have been connected to the eigenvectors corresponding
to the first matrix representing how the initial opinions would be updated. Furthermore, the
impact of a weighted link on this network has been explained. For the second test case, the
dynamics were manipulated by a choice of initial opinions, in order to find a critical value of ρ.
This critical value of ρ represents the smallest value of ρ, for which no links in the test case were
broken. This value has been compared to the eigenvalue characterising the dynamics of opinions
and a linear relation has been found.
Finally, to illustrate the algorithm on a existing example, a data set found online has been
converted to an input for the algorithm. This data set has been clustered based on different
restrictions. These clusters could be used in simple recommendation systems of online web shops
such as Amazon.com or streaming services like Netflix or HBO.
This method is probably not the best method to use on big data sets, since it is not able to
cluster on multiple characteristics. However, for smaller examples this methods works quite well.
Converting this problem into a dynamical system seems to work nicely to reformulate and solve
the problem of clustering.
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A. Appendix: Proofs

A.1 Proof of Proposition 2.2.1

Proposition 2.2.1 states that every agents’ opinion will converge to a asymptotic opinion. More-
over, if agents will come to an agreement this agreement will be reached no slower than O(ρt).

Proof. Take i ∈ V and t ∈ N. Now using (2.1), the fact that elements pij are only non zero if
and only if j ∈ {i} ∪ {Ni(t)} and Assumption 1,

|xi(t+ 1)− xi(t)| =

∣∣∣∣∣
(

n∑
j=1

pij(t)xj(t)

)
− xi(t)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

pij(t)(xj(t)− xi(t))

∣∣∣∣∣
=

∣∣∣∣∣ ∑
j∈Ni(t)

pij(t)(xj(t)− xi(t))

∣∣∣∣∣
≤

∑
j∈Ni(t)

pij(t)|xj(t)− xi(t)|.

Here, the second equality holds since matrix P (t) is right stochastic and hence
∑n

j=1 pij = 1.
Next, from the definition of the confidence neighborhood Ni(t) it follows that

|xi(t+ 1)− xi(t)| ≤
∑
j∈N

pij(t)Rρ
t.

Assumption 1 implies that for all t ∈ N

|xi(t+ 1)− xi(t)| ≤ (1− pii(t))Rρt ≤ Rρt.

Now, take t, τ both in N, then

|xi(t+ τ)− xi(t)| ≤
τ−1∑
k=0

|xi(t+ k + 1)− xi(t+ k)| ≤
τ−1∑
k=0

Rρt+k

leading to

|xi(t+ τ)− xi(t)| ≤
R

1− ρ
ρt(1− ρτ ) ≤ R

1− ρ
ρt

by taking τ to∞ in the right hand side. Since the parameter ρ is chosen to be in the open interval
(0, 1), it follows that (xi(t))t∈N is a Cauchy sequence in R and hence a convergent sequence.
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A.2 Proof of Lemma 2.3.2

Lemma 2.3.2 states that under Assumption 1 and Assumption 3 there exists a T ′ ∈ N such that
for all t ≥ T ′ it holds that G(t) = G∞ = GC . To show this lemma it is useful to look at the
definitions of these graphs. Since G(t) = (V,E(t)), G∞ = (V,E∞) and GC = (V,EC), proving
Lemma 2.3.2 is equivalent to proving

E(t) = E∞ = EC (A.1)

for all t ≥ T ′, which will be done in three steps:

1. E(t) ⊆ E∞ for all t ≥ T ′;

2. E∞ ⊆ EC ;

3. EC ⊆ E(t) for all t ≥ T ′;

Proof. Let (i, j) ∈ E(t), with t ≥ T ′, and take T1 ≥ T , where T is as in (2.4). Then for all t ≥ T1
it is trivial that (i, j) ∈ E∞. Hence, it holds that E(t) ⊆ E∞.
Take (i, j) ∈ E∞, which implies that agents i and j are asymptotically connected. Now Propo-
sition 2.3.1 says that agents i and j must asymptotically agree and hence that x∗i = x∗j . By the
definition of EC it can be concluded that (i, j) ∈ EC , which proves E∞ ⊆ EC . To show the last
step, let (i, j) ∈ EC , which means by definition that agents i and j must asymptotically agree.
For all t ∈ N the following inequalities can be used.

|xi(t)− xj(t)| = |xi(t)− x∗i + x∗i − x∗j + x∗j − xj(t)|
≤ |xi(t)− x∗i |+ |x∗i − x∗j |+ |x∗j − xj(t)|
= |xi(t)− x∗i |+ |xj(t)− x∗j |
≤ 2Mρ̂t.

(A.2)

In the final step of (A.2) the fast convergence assumption, Assumption 3, has been used. Knowing
that ρ̂ < ρ, lead to the statement that ∃T2 ∈ N such that for all t ≥ T2 it holds that 2Mρ̂t ≤ Rρt.
Form this we can conclude that for all t ≥ T2 it holds that (i, j) ∈ E(t) and hence that EC ⊆ E(t).

Now, taking T ′ = max{T1, T2}, in combination with the above inclusions will prove (A.1)
and hence Lemma 2.3.2.
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A.3 Proof of Lemma 2.5.1

Lemma 2.5.1 states a relation between the eigenvalues of PI(GP) and L(GI).

Proof. Let PI(GP) = I − αQ(GI) with elements Qij(GI)

Qij(GI) =


1 if i = j and di(GI) 6= 0.
−1

di(GI)
if (i, j) ∈ EI .

0 otherwise.

In order to prove the lemma two new matrices will be introduced.

Rij(GI) =


1√

di(GI)
if i = j and di(GI) 6= 0.

−1
di(GI)

√
dj(GI)

if (i, j) ∈ EI .

0 otherwise.

(A.3)

Dij(GI) =

{√
di(GI) if i = j.

0 otherwise.
(A.4)

The products of the two matrices in (A.3) and (A.4) lead to

L(GI) = D(GI)R(GI)

Q(GI) = R(GI)D(GI)

and hence L(GI) and Q(GI) have the same set of eigenvalues; σ(L(GI)) = σ(Q(GI)). This
leads to

σ(PI(GP)) = 1− α · σ(Q(GI))

σ(PI(GP)) = 1− α · σ(L(GI))

σ(L(GI)) =
1− σ(PI(GP))

α

(A.5)

implying λ ∈ σ(PI(GP)) if and only if µ = 1−λ
α ∈ σ(L(GI))
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B. Appendix: Tables

w45 δ = 0.25 δ = 0.26 δ = 0.27 δ = 0.28 δ = 0.29 δ = 0.3

4.5 1 1 1 1 3 3
4.6 1 1 1 1 3 3
4.7 1 1 1 1 2 3
4.8 1 1 1 1 1 3
4.9 1 1 1 1 1 3
5.0 1 1 1 1 1 3
5.1 1 1 1 1 1 3
5.2 1 1 1 1 1 3
5.3 1 1 1 1 1 3
5.4 1 1 1 1 1 1
5.5 1 1 1 1 1 1

Table B.1: Number of clusters found for different values of δ and w45 with α = 0.1 and R =
10.

w45 δ = 0.25 δ = 0.26 δ = 0.27 δ = 0.28 δ = 0.29 δ = 0.3

4.5 1 1 1 1 3 3
4.6 1 1 1 1 3 3
4.7 1 1 1 1 3 3
4.8 1 1 1 1 1 3
4.9 1 1 1 1 1 3
5.0 1 1 1 1 1 3
5.1 1 1 1 1 1 3
5.2 1 1 1 1 1 3
5.3 1 1 1 1 1 2
5.4 1 1 1 1 1 3
5.5 1 1 1 1 1 1

Table B.2: Number of clusters found for different values of δ and w45 with α = 0.2 and R =
10.
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C. Appendix: MATLAB Programs

Matlab program to simulate opinion dynamics model from [14]

1 clear all
2 close all
3 A = [0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 ;
4 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 ;
5 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 ;
6 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
7 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
8 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
9 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
10 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
11 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 ;
12 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ;
13 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
15 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
16 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ;
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ;
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ;
19 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
20 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ;
22 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ;
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ;
24 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ;
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 ;
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 ;
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 ;
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 ;
30 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 ;
31 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 ;
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 ;
33 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ;
34 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 ;
35 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 ;
36 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 ]; %Adjacency

matrix
37 d = 0.1; %Parameter \delta
38 R = 10; %Parameter R
39 a = 0.2; %Parameter \alpha
40 r = 1-a*d; %Parameter \rho
41
42 for t = 1:80000
43 if r^t<=1e-15 %Find tend for MATLAB's accuracy
44 break
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45 end
46 end
47 tend = t;
48
49 X(:,1) = rand(length(A),1); %Initial opinion vector
50 for t = 1:tend %Time-loop
51 M = zeros(length(A));
52 P = zeros(length(A));
53 for i = 1:length(A) %Loop over every individual column
54 for l = 1:length(A) %Check which agents exchange opinion
55 if l~=i && A(l,i)==1 && abs(X(i,t) - X(l,t))<=R*r^t %N_i(t)
56 M(l,i) = 1;
57 else
58 M(l,i) = 0;
59 end
60 end
61 colsumM = sum(M);
62 N(i,t) = colsumM(i); %#agents interacting with i at time t
63 end
64 for n = 1:length(A) %Filling matrix P(t) at time t
65 if N(n,t)==0 %If i has no interacting neighbors
66 P(n,n) = 1; %x_i(t+1) = x_i(t)
67 else %If i has interacting neighbors
68 P(n,n) = 1 - a; %p_{ii} = 1-a
69 for b = 1:length(A)
70 if M(n,b)==1 && b~=n %If j is interacting neighbor of i
71 P(n,b) = a/N(n,t); %p_{ij} = a/(N_i(t))
72 elseif M(n,b)==0 && b~=n
73 P(n,b) = 0;
74 end
75 end
76 end
77 end
78 X(:,t+1) = P*X(:,t); %Weighted average: x(t+1)=P(t)x(t)
79 end
80 G = graph(M); %Graph of final adjacency matrix M
81 plot(G,'NodeLabel',{},'MarkerSize',12) %Plot the final state
82
83 conn = conncomp(G)'; %Find which agent belongs to which

cluster
84
85 I1 = [];
86 I2 = [];
87 for i = 1:length(conn)
88 if conn(i)==1 %Create G_{I_1}
89 I1 = [I1 i];
90 elseif conn(i)==2 %Create G_{I_1}
91 I2 = [I2 i];
92 end
93 end
94
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95 for k = 1:length(I1)
96 for l = 1:length(I1)
97 if k==l
98 M1(k,l)=0;
99 elseif k~=l && A(I1(k),I1(l))==1 %Make E_{I_1}
100 M1(k,l)=1;
101 end
102 end
103 end
104
105 for k = 1:length(I2)
106 for l = 1:length(I2)
107 if k==l
108 M2(k,l)=0;
109 elseif k~=l && A(I2(k),I2(l))==1 %Make E_{I_2}
110 M2(k,l)=1;
111 end
112 end
113 end
114
115 G1 = graph(M1); %G_{I_1}
116 L1 = laplacian(G1); %L(G_{I_1})
117 D1 = diag(degree(G1));
118 NLM1 = (D1^(-0.5))*L1*(D1^(-0.5)); %Normalized Laplacian
119 e1 = sort(eig(NLM1));
120 m1 = e1(2); %2nd smallest eigenvalues of

normalized Laplacian matrix
121
122 G2 = graph(M2); %G_{I_2}
123 L2 = laplacian(G2); %L(G_{I_2})
124 D2 = diag(degree(G2));
125 NLM2 = (D2^(-0.5))*L2*(D2^(-0.5)); %Normalized Laplacian
126 e2 = sort(eig(NLM2));
127 m2 = e2(2); %2nd smallest eigenvalues of

normalized Laplacian matrix
128
129 m = min([m1 m2]); %Algebraic connectivity according to

Morarescu and Girard
130 logical(m>d)

Listing C.1: Simulation program
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Matlab program to find the amount of clusters that arise for different values of
α, δ and w45.

1 clear all
2 close all
3 A = [0 1 1 1 0 0 0 0 ; 1 0 1 1 0 0 0 0 ;
4 1 1 0 1 0 0 0 0 ; 1 1 1 0 0 0 0 0 ;
5 0 0 0 0 0 1 1 1 ; 0 0 0 0 1 0 1 1 ;
6 0 0 0 0 1 1 0 1 ; 0 0 0 0 1 1 1 0 ]; %Adjacency matrix
7
8 R = 10; %Parameter R
9 a = 0.1; %Parameter \alpha
10
11 W = zeros(length(A));
12
13 weights = [1:0.5:6]; %Vector of weights
14 delta = [0.1:0.05:0.5]; %Vector of different \delta's
15 C = zeros(length(weights),length(A));
16 clusters = [weights'];
17
18
19 X(:,1) = [0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.55]'; %Initial opinion vector
20 for d = 1:length(delta)
21 r(d) = 1-a*delta(d);
22 for t = 1:6000
23 if r(d)^t<=1e-15 %Find tend for MATLAB's accuracy
24 break
25 end
26 end
27 tend = t;
28
29 for w = 1:length(weights) %Weight-loop
30 A = [0 1 1 1 0 0 0 0 ; 1 0 1 1 0 0 0 0 ;
31 1 1 0 1 0 0 0 0 ; 1 1 1 0 weights(w) 0 0 0 ;
32 0 0 0 weights(w) 0 1 1 1 ; 0 0 0 0 1 0 1 1 ;
33 0 0 0 0 1 1 0 1 ; 0 0 0 0 1 1 1 0 ];
34
35 for t = 1:tend %Time-loop
36 M = zeros(length(A));
37 P = zeros(length(A));
38 for i = 1:length(A) %Loop over every individual column
39 for l = 1:length(A) %Check which agents exchange

opinion
40 if l~=i && A(l,i)~=0 && abs(X(i,t) - X(l,t))<=R*r(d)^t %N_i(t)
41 M(l,i) = A(l,i);
42 else
43 M(l,i) = 0;
44 end
45 end
46 colsumM = sum(M);
47 W(i,t) = colsumM(i); %Sum of weights
48 end
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49
50 for n = 1:length(A) %Filling matrix P(t) at time t
51 if W(n,t)==0 %If i has no interacting neighbors
52 P(n,n) = 1; %x_i(t+1) = x_i(t)
53 else %If i has interacting neighbors
54 P(n,n) = 1 - a; %p_{ii} = 1-a
55 for b = 1:length(A)
56 if M(n,b)~=0 && b~=n %If j is interacting neighbor of i
57 P(n,b) = (M(n,b)*a)/W(n,t); %p_{ij} = w*a/(sum(weights))
58 elseif M(n,b)==0 && b~=n
59 P(n,b) = 0;
60 end
61 end
62 end
63 end
64 X(:,t+1) = P*X(:,t); %Weighted average: x(t+1)=P(t)x(t)
65 end
66
67 G = graph(M); %Graph of final adjacency matrix M
68 C(w,:) = conncomp(G); %Finds which agent belongs to

which cluster
69 end
70 clusters = [clusters max(C,[],2)];
71 end
72 clusters;
73 Table = array2table(clusters, 'VariableNames', {'weight', 'delta = 0.1', 'delta = 0.15

', 'delta = 0.2', 'delta = 0.25','delta = 0.3', 'delta = 0.35', 'delta = 0.4', '
delta = 0.45', 'delta = 0.5'})

Listing C.2: Program to produce a table with amount of clusters arisen
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Matlab program to plot ρ against number of clusters found

1 clear all
2 close all
3 format long
4 A = [0 1 0 0 0 ; 1 0 1 0 0 ; 0 1 0 1 0 ; 0 0 1 0 1 ; 0 0 0 1 0]; %Adjacency Matrix
5
6 R = 10; %Parameter R
7 a=0.1; %Parameter \alpha
8 n = 100; %Number of points in linspace
9 rho = linspace(0.967,0.968,n); %Parameter \rho
10
11 wtot = sum(A,2); %Find #neighbors of every agent
12 P = eye(size(A))+ a*inv(diag(wtot))*(A - diag(wtot)); %Matrix P(0)
13 [u,d] = eig(P); %Eigenvectors & eigenvalues
14 [d, ind] = sort(diag(d), 'descend'); %Sort eigenvalues in descending order
15 u = u(:, ind); %Sort eigenvectors in same order
16
17 e2 = [0 1 0 0 0]'; %2nd standard basis vector
18 X(:,1) = u*e2; %Initial opinion vector
19
20 clusters = [];
21 Rho = [];
22 TRUE = zeros(size(A));
23 T = [];
24
25 for r = 1:length(rho)
26 Rho = [Rho ; rho(r)];
27 for t = 1:6000
28 if rho(r)^t<=1e-15 %Find tend for MATLAB's accuracy
29 break
30 end
31 end
32 tend = t;
33 for t = 1:tend %Time-loop
34 for k = 1:size(A)
35 for l = 1:size(A)
36 if A(k,l) ==1 && abs(X(k,t)-X(l,t))<=R*rho(r)^t %Check difference in

opinion
37 TRUE(k,l) = 1; %If within area of confidence, then

there is an edge connecting those agents
38 else
39 TRUE(k,l) = 0;
40 end
41 end
42 end
43 T = [T TRUE];
44 if TRUE(3,:)==zeros(1,5) %If links around agent 3 break
45 break %The time-loop stops
46 end
47
48 X(:,t+1) = u(:,2)*(d(2)^t); %Update of opinions
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49 end
50 clusters= [clusters ; max(conncomp(graph(TRUE)))];
51 end
52 L = [Rho clusters];
53 Table = array2table(L, 'VariableNames', {'\rho', 'clusters found'})
54 figure
55 scatter(L(:,1),L(:,2),80,'g','filled') %Plot \rho against #clusters found
56 xlabel('\rho')
57 ylabel('Number of clusters found')
58 set(gca,'Fontsize',28)

Listing C.3: Program to plot ρ against number of clusters
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Program to plot critical values of ρ and δ against parameters α and λ2, for which
no link disappears

1 clear all
2 close all
3 format long
4 A = [0 1 0 0 0 ; 1 0 1 0 0 ; 0 1 0 1 0 ; 0 0 1 0 1 ; 0 0 0 1 0]; %Adjacency Matrix
5
6 R = 10; %Parameter R
7 alpha = linspace(0,0.5); %Linspace for parameter \alpha
8
9 Rho = [];
10 for a = 1:length(alpha) %Loop over \alpha
11 Alpha=alpha(a); %Parameter \alpha
12 rho = linspace(0.7,1.0,1000); %Linspace for parameter \rho
13
14 wtot = sum(A,2); %Find #neighbors of every agent
15 P = eye(size(A))+ Alpha*inv(diag(wtot))*(A - diag(wtot)); %Matrix P(0)
16 [u,d] = eig(P); %Eigenvectors & eigenvalues
17 [d, ind] = sort(diag(d), 'descend'); %Sort eigenvalues in descending order
18 u = u(:,ind); %Sort eigenvectors in same order
19
20 e2 = [0 1 0 0 0]'; %2nd standard basis vector
21 X(:,1) = u*e2; %Initial opinion vector
22
23 TRUE = zeros(size(A));
24
25 for r = 1:length(rho) %Loop over all values of \rho
26 for t = 1:6000
27 if rho(r)^t<=1e-15 %Find tend for MATLAB's accuracy
28 break
29 end
30 end
31 tend = t;
32 for t = 1:tend %Time-loop
33 for k = 1:size(A)
34 for l = 1:size(A)
35 if A(k,l) ==1 && abs(X(k,t)-X(l,t))<=R*rho(r)^t %Check

difference in opinion
36 TRUE(k,l) = 1; %If k in area of confidence of l, then

there is an edge connecting those agents
37 else
38 TRUE(k,l) = 0;
39 end
40 end
41 end
42 if TRUE(3,:)==zeros(1,5) %If links around agent 3 break
43 break %The time-loop stops
44 end
45
46 X(:,t+1) = u(:,2)*(d(2)^t); %Update of opinions
47 end
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48
49 if max(conncomp(graph(TRUE)))==1 %If #clusters found is equal to 1
50 break %The loop over \rho stops
51 end
52
53 end
54 Rho = [Rho rho(r)]; %Add critical value of \rho
55 end
56
57 for h = 1:length(alpha)
58 K = eye(size(A))+ alpha(h)*inv(diag(wtot))*(A - diag(wtot));
59 val = sort(eig(K),'descend');
60 lambda(h) = val(2); %lambda_2 for all values of alpha
61 delta(h) = (1-Rho(g))/alpha(g); %corresponding critical \delta to

critical \rho and \alpha
62 end
63 scatter(alpha,lambda,80,'g','filled') %Plot \lambda_2 as

function of \alpha
64 xlabel('value of \alpha')
65 ylabel('value of \lambda_2')
66 set(gca,'Fontsize',28)
67
68 figure
69 scatter(alpha,Rho,80,'g','filled') %Plot critical \rho as function of \

alpha
70 xlabel('value of \alpha')
71 ylabel('value of \rho')
72 set(gca,'Fontsize',28)
73
74 figure
75 scatter(lambda,Rho,80,'g','filled') %Plot critical \rho as function of \

lambda_2
76 xlabel('value of \lambda_2')
77 ylabel('value of \rho')
78 set(gca,'Fontsize',28)
79
80 figure
81 scatter(lambda,delta,80,'g','filled') %Plot corresponding critical \delta as

function of \lambda_2
82 xlabel('value of \lambda_2')
83 ylabel('value of \delta')
84 set(gca,'Fontsize',28)

Listing C.4: Program to find relations between parameters
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Program to build adjacency matrix from the data set

1 clear all
2 close all
3
4
5 T = readtable('amazon_music_metadata.csv'); %Importt data set
6 A = table2array(T(1:end,3:end)); %Convert table to matrix
7 H = zeros(size(A,1),size(A,2));
8 E = zeros(size(A,1));
9 for i = 1:size(A,1) %Loop over all items
10 for j = 1:size(A,2) %Loop over all characteristics
11 if A(i,j)==1 %If item i has characteristic j
12 for q = 1:size(A,1) %Loop over all items
13 if q==i
14 H(q,j)=0;
15 elseif A(q,j)==1 && q~=i %If item q has the same characteristic
16 H(q,j)=1; %H(q,j)=1
17 end
18 end
19 elseif A(i,j)== 0 %If item i does not have characteristic j
20 for e = 1:size(A,1)
21 H(e,j) = 0; %j'th column of H is zero
22 end
23 end
24 end
25 S = sum(H,2); %Column vector with sum of each row
26 for w = 1:size(A,1) %Loop over all items
27 if S(w)>=4 %If item i en w have 4 or more

characteristics in common as restriction
28 E(i,w) = S(w); %E(i,w)=#in common = weight of link
29 else
30 E(i,w) = 0;
31 end
32 end
33 end
34 E; %Adjacency matrix
35
36 d = 0.4; %Parameter \delta
37 R = 10; %Parameter R
38 a = 0.2; %Parameter \alpha
39 r = 1-a*d; %Parameter \rho
40
41 for q = 1:8000
42 if r^q<=1e-15
43 break
44 end
45 end
46 tend = q;
47
48 X(:,1) = rand(length(E),1); %Initial opinion vector
49 for t = 1:tend %Time-loop
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50 M = zeros(length(E));
51 P = zeros(length(E));
52 for i = 1:length(E) %Loop over every individual column
53 for l = 1:length(E) %Check which agents exchange opinion
54 if l~=i && E(l,i)~=0 && abs(X(i,t) - X(l,t))<=R*r^t %N_i(t)
55 M(l,i) = E(l,i);
56 else
57 M(l,i) = 0;
58 end
59 end
60 colsumM = sum(M);
61 N(i,t) = colsumM(i); %#agents interacting with i at time t
62 end
63 for n = 1:length(E) %Filling matrix P(t) at time t
64 if N(n,t)==0 %If i has no interacting neighbors
65 P(n,n) = 1; %x_i(t+1) = x_i(t)
66 else %If i has interacting neighbors
67 P(n,n) = 1 - a; %p_{ii} = 1-a
68 for b = 1:length(E)
69 if M(n,b)~=0 && b~=n %If j is interacting neighbor of i
70 P(n,b) = (M(n,b)*a)/N(n,t); %p_{ij} = a/(N_i(t))
71 elseif M(n,b)==0 && b~=n
72 P(n,b) = 0;
73 end
74 end
75 end
76 end
77 X(:,t+1) = P*X(:,t); %Weighted average: x(t+1)=P(t)x(t)
78 end
79 G = graph(M); %Graph of final adjacency matrix M
80 plot(G,'NodeLabel',{},'MarkerSize',12) %Plot clusters

Listing C.5: Making adjacency matrix from the data set
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