
Cycle-Complete Graph Ramsey Numbers

Abstract

Given two graphs G and H, the Ramsey number R(G,H) is the smallest natural number N
such that every red/blue coloring of the edges of the complete graph KN contains a red copy
of G or a blue copy of H. The proofs for the following results will be given. The upper and

lower bounds of the symmetric Ramsey numbers are: 2
k
2 < R(k, k) < 4k−1 for k ≥ 3. The

main result is the upper bound of R(Cm,Kn): For all m ≥ 3 and n ≥ 2, the cycle-complete

graph Ramsey number R(Cm,Kn) satisfies R(Cm,Kn) ≤ d(m − 2)(n
1
k + 2) + 1e(n − 1),

where k = bm−1
2
c. Specifically for cycles of order 4 there is an upper bound: R(C4,Kn) <

c
(

n log(log(n))
log(n)

)2

, n→∞. Finally, there is an exact result: R(C9,K8) = 57.
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1 Introduction

1.1 Introduction to graph theory

In order to be able to understand the contents of this thesis, a basic understanding of graph
theory is required.

1.1.1 Graphs

Defining the basics of graph theory will be done by following the definitions of West [20].

Definition 1 A graph G(V,E) is a triple consisting of a vertex set V (G), an edge set E(G),
and a relation that associates with each edge two vertices (not necessarily distinct) called its
endpoints.

Figure 1 gives an example of a graph. When there is a graph, there is also a subgraph. It is
defined as follows:

Definition 2 A subgraph of a graph G is a graph H such that V (H) ⊂ V (G) and E(H) ⊂ E(G)
and the assignment of endpoints to edges in H is the same as in G.

If H contains all edges of G that join two vertices in V (H), then H is called the subgraph
“induced” by V (H). If W is a subset of V (G), then the subgraph of G induced by W will be
denoted 〈W 〉G, or 〈W 〉 in case there is no confusion about the larger graph. Figure 2 gives an
example of an induced subgraph from the graph in Figure 1. Throughout this whole thesis,
the number of vertices is assumed to be finite and the endpoints of an edge are assumed to
be distinct. This is the basic concept of a graph. A few more definitions regarding graphs are
necessary in order to elaborate on Ramsey theory.

1.1.2 Definitions

The following definition tells something about the relation between two vertices.

Definition 3 Two vertices are called adjacent when they are endpoints of an edge.

For example, in Figure 1, vertex 1 and vertex 2 are adjacent, but vertex 2 and vertex 4 are not
adjacent. The following definitions arise from the definition of adjacency.

Definition 4 A complete graph is a graph in which every pair of vertices is adjacent.

Definition 5 In a graph, a set of pairwise adjacent vertices is called a clique.

1 2

3 4 5

6 7

Figure 1: A graph

1 2

5

6

Figure 2: The subgraph induced by {1, 2, 5, 6}
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4 5

6 7

Figure 3: An induced subgraph of Figure 1
which is also a complete graph

2

3

7

Figure 4: An induced subgraph of Figure 2
which is also an independent graph

Definition 6 An independent set in a graph is a set of pairwise nonadjacent vertices.

For example, in Figure 1 the vertices 4, 5, 6 and 7 form a clique and the vertices 2, 3 and 7
form an independent set. In fact, as can be seen in Figures 3 and 4, a clique or an independent
set is an induced subgraph with a special property. The Figures 3 and 4 are subgraphs induced
by the graph in Figure 1. Figure 3 is a clique from the graph in Figure 1 and Figure 4 is an
independent set from the graph in Figure 1. The difference between a complete graph and
a clique is that a clique is an induced subgraph that is complete and a complete graph is a
property about the graph itself. Hence, in a complete graph, every induced subgraph is a clique.
Sometimes it is necessary to know whether or how it is possible to “walk” on a graph from one
vertex to the other. The next definition explains how to do that.

Definition 7 A path in a graph is given by a sequence of distinct vertices such that two vertices
are adjacent if and only if they are consecutive in the sequence.

Definition 8 A cycle is a path where the first vertex and the last vertex are adjacent.

So for example, in Figure 1 there is a path from vertex 5 to vertex 3 by following the path
(5,2,1,3) or (5,4,3) or (5,6,3). Moreover, there are a lot of cycles in this figure, for example, the
cycle (2,1,3,6,5,2). For now, these will be the most important definitions of graph theory.

1.2 Coloring of graphs

A very important aspect of Ramsey Theory is the coloring of a graph. To be precise, the edges
of a graph will be colored. This is defined as follows:

Definition 9 A k-coloring of a graph G(V,E) is a labeling f : E(G)→ S, where |S| = k.

The labels of the function f are colors, so in words, the edges of a graph G are each given one
color out of k. All edges of one color form a color class. In this thesis, only 2-colorings will
be used in order to make things not too complicated. Figure 5 gives an example of a red/blue
coloring of a graph with six vertices. After coloring a graph, one can look at specific properties
that the color classes have. For instance, one can check whether the red color class contains
any cycles or cliques.

1.3 Pigeonhole Principle

A result that will be used multiple times is the one of the pigeonhole principle. This is the
pigeonhole principle as stated in [20]:
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Theorem 1 If m objects are partitioned into n classes, then some class has at least dmn e
objects.

Proof : Assume for a contradiction that each class has at most dmn e − 1 objects. There are n
classes, so the total number of objects is n(dmn e − 1) < n · mn = m, but there were assumed to
be m objects, so that is a contradiction. Therefore, it does not hold that each class has at most
dmn e − 1 objects, and so some class has at least dmn e objects. �

The statement seems obvious, but it will be very useful in the upcoming proofs.

1.4 Probabilistic Method

A method that is considered as very powerful for solving problems in the field of discrete
mathematics is the probabilistic method. Paul Erdős was the first one to use and completely
master this method of proof. The method can be described in a very basic way as follows
[1]: “Trying to prove that a structure with certain desired properties exists, one defines an
appropriate probability space of structures and then shows that the desired properties hold in
the space with positive probability.” In other words, if the probability that an element from a set
satisfies a certain property is positive, then there must exist an element in the set that satisfies
this property. Otherwise, if none of the elements satisfy the property, then the probability that
such an element exists would be zero. In this thesis, the probabilistic method will be significant
in the proofs of some theorems.
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2 Theory

2.1 Notation

It is useful to have some agreement on the notation of different aspects. For the most part,
the notation as used in [9] will also be used in this thesis. When X is a set, the cardinality of
X is denoted by |X|. For example, if the graph in Figure 1 is called G, then |V (G)| = 7 and
|E(G)| = 13. In a graph G(V,E), |V (G)| is called the order and |E(G)| is called the size. A
cycle of order n will be denoted Cn, a complete graph of order n will be denoted Kn and a
path of order n will be denoted Pn.

The neighborhood of a set of vertices X is the set of all vertices of G that are adjacent to
at least one vertex of X and this will be denoted ΓG(X), or Γ(X). In case X consists of only
one vertex v, the neighborhood of v will be denoted ΓG(v), or Γ(v).

If x and y are two vertices of a graph G, the distance dG(x, y), or d(x, y), denotes the length
of the shortest path in G that connects x and y.

2.2 Ramsey Theory

In order to gain insight on Ramsey Theory, a nice example to start with is the “party problem”.
It helps to visualise how to approach the problems that will be dealt with.

Theorem 2 In any party of six people either three of them mutually know each other or three
of them mutually do not know each other [13].

The proof of this theorem can be found in [13]. In fact, the initial question was:

Question 1 How many people should attend a party in order to always have three people that
know each other or three people that do not know each other?

The answer that was found in Theorem 2 is thus: “Six”. This question can be turned into a
problem of graph theory by letting each person at the party represent a vertex. This gives us
a graph with six vertices. Imagine a party with Alice, Bob, Carol, David, Eve and Frank. Let
them represent the vertices A, B, C, D, E and F, respectively, in the graph in Figure 5. There
is a connection between any pair of people; either they do know each other, indicated by a blue
line, or they do not know each other, indicated by a red line. As expected, there are three
people that mutually know each other or three people that mutually do not know each other.
For example, in Figure 5, Alice, Bob and Eve know each other, but Alice, Carol and Frank do
not know each other. Another way to put this, is to ask for a red clique of order 3 or a blue
clique of order 3. Then the question would be:

B C

A D

F E

Figure 5
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Question 2 What is the minimal number of vertices n such that any 2-coloring of the edges of
a complete graph of n vertices will give either a red clique of order 3 or a blue clique of order
3.

There is yet another way to put this. Note that only one color can be assigned to one edge,
so when there appears a red clique of order r in a 2-colored graph, then those same r vertices
form an independent set in blue. Instead of looking for a red clique, one could also ask for a
blue independent set. Now question 2 can be changed into:

Question 3 What is the minimal number of vertices n such that any graph of n vertices has
either a clique of order 3 or an independent set of order 3.

Looking back to question 1, 2 and 3, they all have the same answer, namely: “Six”. The latter
formulation is the one that is used to formulate the definition of Ramsey numbers.

Definition 10 The Ramsey number R(n,m) is the smallest natural number N such that every
graph of order N contains either a clique of order n or a set of m independent vertices [15].

Definition 10 gives the definition of the classic Ramsey numbers. The example R(3, 3) = 6 has
already been given and is supported by Figure 5. Other examples are R(3, 4) = 9 from [14]
and R(4, 5) = 25 from [16]. Frank Ramsey showed in [18] that the Ramsey number R(n,m)
exists for every value of n and m. This was the ‘go’ for the search for Ramsey numbers. There
is no general formula that gives the value of R(n,m) or it has not been found yet. That means
that each Ramsey number has to be found separately. The number of different graphs of N

vertices is 2
N(N−1)

2 , so checking whether each of those graphs has a clique of order n or a set
of m independent vertices is exhausting. This is one of the main reasons why the search for
Ramsey numbers is so hard. For that reason, a lot of effort has been put into finding bounds
for Ramsey numbers. In [7], Erdős proved one of the first upper and lower bounds.

Theorem 3 Let k ≥ 3. Then 2
k
2 < R(k, k) < 4k−1.

This theorem ensures that the Ramsey number being sought for is always finite. Furthermore,
this lower bound shows that Ramsey numbers are increasing rapidly. Both bounds have not
been improved much over the past 70 years. The best upper bound so far is due to Conlon [6]

and the best lower bound is due to Spencer [19]. The results are [1 + o(1)]
√

2
e k2

k
2 ≤ R(k, k) ≤

(k − 1)−C
log(k−1)

log(log(k−1))
(

2k−2
k−1

)
. From Theorem 3 it follows that the Ramsey number R(n,m) is

also finite, but then the upper bound is given by the maximum of 4n−1 and 4m−1. In partic-
ular, if m ≤ n, then R(n,m) ≤ R(n, n) < 4n−1, where the first inequality follows from [13].
Similarly, when n ≤ m, R(n,m) is finite. Now the proof of Theorem 3 will be given, however
not exactly the same as in [7]. In the part on the lower bound, a modern variant of the proof
is given which can be found in [12] and the part on the upper bound is inspired by a proof in [10].

Proof : First prove the first inequality: 2
k
2 < R(k, k). Let N ≤ 2

k
2 . By letting the value

of N be lower than the lower bound of R(k, k), there will turn out to be a graph with N ver-
tices that contains neither a clique of order k nor an independent set of order k. In a graph of
N vertices, there are

(
N
2

)
ways of choosing a pair of vertices, so N contains possibly

(
N
2

)
edges.

A set of
(
N
2

)
elements has 2(N

2 ) subsets, therefore the number of different graphs of N vertices

is 2(N
2 ).

The next part of the proof is following the proof as stated in [12] and it involves the prob-
abilistic method. Let G be a graph of N vertices and assign to each edge a probability p = 1

2
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of being in E(G). There are
(
N
k

)
ways to choose k vertices out of N vertices. A graph with k

vertices is complete if all possible
(
k
2

)
= k(k−1)

2 edges are in E(G). Each edge has probability
1
2 of being in E(G), so a set of k vertices is complete with probability 2−

k(k−1)
2 . Similarly, a

graph with k vertices is independent with the same probability, since in that case, all possible(
k
2

)
= k(k−1)

2 edges are not in E(G) with probability 2−
k(k−1)

2 . However, there were
(
N
k

)
ways

to choose k vertices out of N vertices, so G contains a complete graph (or independent set) of

k vertices with probability
(
N
k

)
2−

k(k−1)
2 . Note that(

N

k

)
2−

k(k−1)
2 =

N !

k!(N − k)!
2−

k(k−1)
2

=
N(N − 1)(N − 2) · · · (N − (k − 1))

k!
2−

k(k−1)
2

<
N · · ·N
k!

2−
k(k−1)

2 =
Nk

k!
2−

k(k−1)
2

=⇒
(
N

k

)
2−

k(k−1)
2 <

Nk

k!
2−

k(k−1)
2 . (1)

Also, for N ≤ 2
k
2 and k ≥ 3 it holds that

2Nk ≤ 2(2
k
2 )k = 2

k2+2
2

= 2
k2−k+k+2

2 = 2
k2−k

2 2
k+2
2

≤ 2
k(k−1)

2 2d
k+2
2 e

= 2
k(k−1)

2 · 2 · · · 2

≤ 2
k(k−1)

2 · k · (k − 1) · (k − 2) · · · dk + 2

2
e

≤ 2
k(k−1)

2 · k!

=⇒ Nk

k!
<

1

2
· 2

k(k−1)
2 . (2)

So in the end, the following is obtained by combining the results in equations (1) and (2):(
N

k

)
2−

k(k−1)
2 <

Nk

k!
2−

k(k−1)
2 <

1

2
.

This means that the probability that G contains a complete graph or independent set of order k
is less than 1. Thus, the probability that G does not contain a complete graph or independent
set of order k is positive. Therefore, when N ≤ 2

k
2 , there must exist a graph G of order N

such that it contains neither a clique of order k nor a set of k independent vertices and hence
2

k
2 < R(k, k). This proves the lower bound.

For the upper bound, a result in [8] is used. The result in [8] states that R(k, k) ≤
(

2k−2
k−1

)
for k ≥ 3. The proof that is given in [8] is very involved and covers a lot of aspects that are
not covered in this thesis. Therefore, it is not suitable to present the full proof of this theorem
in the same way as in [8]. However, an alternative proof will be given which was inspired by
lecture notes of Fox [10]. First, show that R(n,m) ≤ R(n−1,m)+R(n,m−1) for all n,m ≥ 1.
To that end, let p = R(n − 1,m) + R(n,m − 1). The goal is to show that a graph of order p
always contains either a clique of order n or an independent set of m vertices. Take a vertex
v ∈ V (G). There are two cases to consider.
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1. v is adjacent to at least R(n− 1,m) vertices. Then those R(n− 1,m) vertices form either
a clique of order n − 1 or an independent set of order m. In case it contains a clique of
order n− 1, vertex v can be added to form a clique of order n, since v is adjacent to all
n− 1 vertices. Hence, in either case there is a clique of order n or an independent set of
m vertices.

2. v is not adjacent to at least R(n,m − 1) vertices. Then those R(n,m − 1) vertices form
either a clique of order n or an independent set of m− 1 vertices. In the latter case, the
vertex v and the m− 1 independent vertices form an independent set of m vertices, since
v is not adjacent to all m − 1 vertices. Hence, in either case there is a clique of order n
or an independent set of m vertices.

It follows that R(n,m) ≤ R(n − 1,m) + R(n,m − 1) for all n,m ≥ 1. Now induction will be
used to prove that R(n,m) ≤

(
n+m−2
n−1

)
for all n,m ≥ 1. Note that R(n, 1) = R(1, n) = 1

for all n ≥ 1, since a graph of one vertex always contains an independent set of one vertex
or a complete graph of one vertex. Furthermore, note that

(
x
0

)
=
(
x
x

)
= 1 for all x [11]. For

m = 1 and n = 1, it holds that R(1, 1) = 1 ≤ 1 =
(

0
0

)
. Suppose that R(n, 1) ≤

(
n−1
n−1

)
for

some n and show that R(n + 1, 1) ≤
(
n
n

)
. Then R(n + 1, 1) = 1 ≤ 1 =

(
n
n

)
. Now suppose that

R(1,m) ≤
(
m−1

0

)
for some m and show that R(1,m+ 1) ≤

(
m
0

)
. As before, it always hols that

R(1,m+1) = 1, hence R(1,m+1) = 1 ≤ 1 =
(
m
0

)
. It has been shown now that R(n, 1) ≤

(
n−1
n−1

)
for all n and R(1,m) ≤

(
m
0

)
for all m. It remains to show that when R(n,m − 1) ≤

(
n+m−3
n−1

)
and R(n − 1,m) ≤

(
n+m−3
n−2

)
hold for some n and m, it follows that R(n,m) ≤

(
n+m−2
n−1

)
. It

holds that

R(n,m) ≤ R(n− 1,m) +R(n,m− 1) ≤
(
n+m− 3

n− 2

)
+

(
n+m− 3

n− 1

)
=

(
n+m− 2

n− 1

)
,

where the last equality is a binomial identity which can be found in [11]. This shows that
R(n,m) ≤

(
n+m−2
n−1

)
for all n,m ≥ 1. Consider the case where n = m = k, then R(k, k) ≤

(
2k−2
k−1

)
as desired. The only thing that needs to be shown is that

(
2k−2
k−1

)
< 4k−1 for k ≥ 3. Note that(

2k−2
k−1

)
gives the number of subsets with k− 1 vertices and that it is less than the total number

of subsets which is 22k−2 = 4k−1. This shows easily that
(

2k−2
k−1

)
< 4k−1 for k ≥ 3.

Finally, the following inequalities are obtained for k ≥ 3:

R(k, k) ≤
(

2k − 2

k − 1

)
< 4k−1,

hence the desired upper bound is found. �

Looking back to the format of Question 2, the Ramsey number R(n,m) can be seen as the
smallest number N such that any red/blue coloring of the edges of a complete graph will either
contain a red clique of order n or a blue clique of order m. The notation R(Kn,Km) would
hence also be justified. The complete graph Kn contains any graph G of order ≤ n and the
complete graph Km contains any graph H of order ≤ m. So instead of looking for a red Kn or
a blue Km, one could also look for a red copy of G or a blue copy of H. This is the definition
of the graph Ramsey number [15]:

Definition 11 Given two graphs G and H, the Ramsey number R(G,H) is the smallest natural
number N such that every red/blue coloring of the edges of the complete graph KN contains a
red copy of G or a blue copy of H.
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With this definition, the Ramsey numbers of any two graphs can be considered. This thesis
focuses on the cycle-complete graph Ramsey numbers R(Cm,Kn). This is the smallest integer
N such that every red/blue coloring of KN contains a red cycle of order m or a blue clique
of order n. The definition of the cycle-complete graph Ramsey number will be used in the
following form:

Definition 12 The Ramsey number R(Cm,Kn) is the smallest positive integer N such that
every graph of order N contains either a cycle of order m or a set of n independent vertices.

2.3 An upper bound for R(Cm, Kn)

The first upper bound for the cycle-complete graph Ramsey number was

R(Cm,Kn) ≤ mn2

and was found in [4]. Later, Erdős et al. [9] gave an improvement of the results by proving
that for all m ≥ 3 and n ≥ 2, the cycle-complete graph Ramsey number R(Cm,Kn) satisfies

R(Cm,Kn) ≤ d(m − 2)(n
1
k + 2) + 1e(n − 1), where k = bm−1

2 c. In this section, an elaborate
proof of this upper bound will be presented. This will be done by means of some definitions
and a lemma after which the proof of the theorem will follow.

Before anything can be proven, a definition has to be introduced. It states a property that
is crucial for completing the upcoming proofs.

Definition 13 Let ` be a natural number. A graph G has property Π` if, for every independent
set X, |Γ(X)| ≥ `|X|.

In other words, if a graph G has property Π` then the neighborhood of every independent set
X contains more elements than ` times the number of elements of the set X. Erdős et al. [9]
used this property in the following lemma:

Lemma 1 Let G(V,E) be a graph of order at least (l + 1)(n − 1) which contains no set of n
independent vertices. Then G contains an induced subgraph 〈W 〉 which has property Π`.

In other words, let G(V,E) be a graph with at least (l+1)(n−1) vertices such that there are no
n vertices that form an independent set. In that case, there is an induced subgraph 〈W 〉 which
has property Π`. This lemma will be proven by using contradiction following the proof as in [9].

Proof In order to arrive at a contradiction, assume that there is no induced subgraph of
G(V,E) that has property Π`. If W ⊂ V is any subset, then 〈W 〉 is an induced subgraph of
G. Since none of the induced subgraphs of G have property Π`, there exists an independent
set X ⊂W such that |Γ〈W 〉(X)| < `|X|.

Now, some sets will be defined. Start with the initial graph and vertex set, so define G1 = G
and W1 = V . The sets Wi+1 and Gi+1 will be defined recursively for i = 1, 2, .... Define
Gi+1 = 〈Wi+1〉 for i = 1, 2, ..., where Wi+1 still has to be determined. The set Wi+1 will be of
the form Wi+1 = Wi \Bi for some set of vertices Bi. Note that for every i, 〈Wi〉 is an induced
subgraph of G. Hence, for every i there exists an independent set Xi such that Xi ⊂Wi and

|ΓGi
(Xi)| < `|Xi|. (3)

Define Bi := Xi ∪ ΓGi
(Xi) where Xi is such an independent set. In other words, Bi consists

of every vertex in Xi together with every vertex in Gi that is adjacent to a vertex in Xi.

9



Summarized, Wi+1 = Wi \ (Xi ∪ ΓGi
(Xi)) and Gi+1 = 〈Wi+1〉. In the “worst” case, Xi is

chosen to consist of only one node, because a set consisting of one node is always independent.
Therefore, |Xi| ≥ 1 for i = 1, 2, ..., so |Wi| decreases strictly in every step. Furthermore, G is
a finite graph, so eventually there are no vertices left in Wi. That is, there exists a positive
integer M such that WM+1 = ∅. With this in mind, something can be said about the relation
between V and the sets Bi. Namely,

WM+1 = WM \BM

= (WM−1 \BM−1) \BM

= WM−1 \ (BM−1 ∪BM )

= ... = W1 \ ∪Mi=1Bi

= V \ ∪Mi=1Bi = ∅.

From the latter and the fact that Bi ⊂ V for all i it follows that

V =

M⋃
i=1

Bi. (4)

In every step, Wi+1 is obtained by subtracting Xi and its neighborhood from Wi. Recall that
Xi+1 ⊂Wi+1. That means that Xi+1 and Xi are disjoint sets of vertices; they have no vertices
in common. The sets Xi are independent and disjoint for all i, hence

X =

M⋃
i=1

Xi (5)

is an independent set in G(V,E). The set Xi is disjoint from its neighborhood ΓGi
(Xi) because

the neighborhood of Xi only contains vertices that are outside Xi. As a result, it holds that
|Xi ∪ ΓGi(Xi)| = |Xi| + |ΓGi(Xi)|. Recall equation (3), which gave a restriction to the way
that Xi was chosen. Adding the term |Xi| to both sides in equation 3 results in the following
equations:

|Xi|+ |ΓGi
(Xi)| < |Xi|+ `|Xi|

=⇒ |Xi ∪ ΓGi(Xi)| < (`+ 1)|Xi|

=⇒ |Bi| < (`+ 1)|Xi|

for i = 1, 2, .... Taking the union over the i’s on both sides and using the fact that the sets Xi

and Bi are disjoint for all i together with equations (4) and (5) gives

|V | < (`+ 1)|X|. (6)

By assumption, G contains no set of n independent vertices, so it should hold that |X| ≤ n−1,
but then G does not have at least (l + 1)(n − 1) vertices. Therefore, equation (6) contradicts
the assumption that there is no induced subgraph that has property Π`. Therefore, if G is a
graph of order at least (l + 1)(n − 1) which contains no set of n independent vertices, then G
contains an induced subgraph which has property Π`. �

Now that this lemma has been proven, there are two more definitions that need to be given.

Definition 14 A graph G is connected if it has a path from u to v for every u, v ∈ V (G).

10
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Figure 7: ...and a spanning tree

Definition 15 A spanning tree is a subgraph of G with vertex set V (G) that is connected and
contains no cycles.

A spanning tree consists thus of the same vertices as G, but perhaps not every edge in G so
that the spanning tree contains no cycles. An example of a graph and a spanning tree can be
found in Figures 6 and 7. These are all the requisites to give the proof of the following Theorem
from [9].

Theorem 4 For all m ≥ 3 and n ≥ 2, the cycle-complete graph Ramsey number R(Cm,Kn)

satisfies R(Cm,Kn) ≤ d(m− 2)(n
1
k + 2) + 1e(n− 1), where k = bm−1

2 c.

The proof given below follows the proof given by Erdős et al [9].

Proof Assume that G(V,E) is a graph of order (`+ 1)(n− 1) that contains no cycle of order
m and no set of n independent vertices. Then it is certain that R(Cm,Kn) > (` + 1)(n − 1).

The aim of the proof is to show that if ` ≥ d(m− 2)(n
1
k + 2)e, these assumptions about G lead

to a contradiction. So by assuming that R(Cm,Kn) > (d(m − 2)(n
1
k + 2)e + 1)(n − 1) and G

containing no cycle of order m and no set of n independent vertices, a contradiction will be
found and the conclusion will be that R(Cm,Kn) ≤ d(m− 2)(n

1
k + 2) + 1e(n− 1).

By Lemma 1, the graph G contains an induced subgraph H = 〈W 〉 which has property Π`.
Then again, since H is a subgraph of G, H also contains no cycle of order m and no set of n
independent vertices. From now on, graph G will not be considered anymore and only graph
H and its properties will be investigated. Let x be an arbitrary vertex of H. Assume that H
is connected. In case H were not connected, only the connected part that contains x would be
considered.

Define the length of the shortest path in H that connects two vertices u and v to be the

distance dH(u, v). Set k = b (m−1)
2 c and, for i = 1, 2, ..., k, define Ai = {v ∈ V | dH(x, v) = i}.

In other words, Ai represents the set of all vertices whose shortest distance to x is i. The set
Ai will be referred to as the ith level.

Now a spanning tree T and a total ordering for each of the sets Ai will be constructed. This is
done simultaneously by recursion. First, make an arbitrary ordering of the vertices of A1. Then
if the set Ai has already been ordered, the set Ai+1 is ordered in the following way. Let v be
an element in Ai+1. Create an edge in T by letting v ∈ Ai+1 be adjacent to the smallest vertex
w in Ai such that v and w are adjacent in H. This means that each vertex in Ai+1 is adjacent
to only one vertex in Ai. After this procedure, every element in Ai+1 is added to the spanning
tree T . The vertices in Ai+1 still need to be ordered. This is done in the following way. If
vertices y and z in Ai+1 are adjacent in T to vertices u and v in Ai, respectively, and if u < v,
then y < z. Now there is a spanning tree T and an ordering for each of the sets Ai. Figures
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6 and 7 give an example of a graph and a spanning tree of that graph which is obtained by
following the aforementioned procedure. For the sake of clearness, in Figure 7, the levels that
were obtained after labeling are A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6, 7, 8} and A4 = {9, 10, 11}.

Moving on, another definition has to be given. A sequence of vertices v1, v2, ..., vM in Ai

that satisfies v1 < v2 < · · · < vM will be called a monotonic sequence. If such a sequence forms
a path (v1, v2, ..., vM ) in 〈Ai〉H , then it will be called a monotonic path. Since H contains no
cycle of order m, there can be no monotonic path of order m − 1. In order to show this, let
P = (v1, ..., vm−1) be a monotonic path in 〈Ai〉 of order m− 1 and let

d∗ = max
j
dT (vj , vj+1) = dT (vs, vs+1).

In fact, it holds that dT (vr, vt) = d∗ for all r ≤ s and t ≥ s+ 1. Why is this true? The vertices
in P all lie on the same level Ai so they are mutually not adjacent in T . In order to measure the
distance dT (vj , vj+1) between to vertices in the path P , one has to move from vj along lower
levels to reach vj+1. Since vs and vs+1 give the length of the maximal distance in T , it holds
that dT (vr, vt) ≤ d∗ for all r ≤ s and t ≥ s+1. Suppose that in order to walk from vs to vs+1 in
T, one has to move to a vertex in level k at the lowest, say to vertex vk. At this point, define a
left branch and a right branch. The left branch is the path from vs to vk and the right branch is
the path from vk to vs+1. Those two branches together define the path that is taken to measure
the distance dT (vs, vs+1). The two branches do not have any vertices in common except for vk,
otherwise, there would have been a shorter path from vs to vs+1. Take r ≤ s and consider the
distance from vr to vs+1 in T. Since the vertices vr and vs in the path P are both in level i, it
takes just as much steps to walk from vr to vk as it takes to walk from vs to vk. Since r ≤ s, the
vertex vr cannot reach vertex vs+1 through a higher level than level k because of the ordering
of the sets Ai. If the path from vr would not have to go until the kth level to reach vs+1, it had
intercepted the right branch at a higher level than the kth level. However, that would mean
that r > s considering that each vertex in Ai+1 is adjacent in T to the least element of Ai to
which it is adjacent in H. Hence, in any case, the path from vr has to go through vk in order to
reach vs+1 causing dT (vr, vs+1) = d∗ for all r ≤ s. The same argument holds when considering
the distance from vs to vt for all t ≥ s+1, meaning that dT (vr, vt) = d∗ for all r ≤ s and t ≥ s+1.

Moreover, whatever the value of d∗ is, there exist vertices vr and vt for r ≤ s and t ≥ s + 1
such that the subpath (vr, vr+1, ..., vt) of P together with the path connecting vr and vt in
T , forms a cycle of order m. Here is why. In total, there are k levels of vertices constructed.

Recall that k = b (m−1)
2 c. In case the monotonic path P is located at the kth level, the value

of d∗ is at most 2 × b (m−1)
2 c. So in any case d∗ < m. Now back to the arbitrary case where

P is a monotonic path in 〈Ai〉. When taking the path (v1, ..., vm−1) together with the path
connecting v1 and vm−1 in T , there will be a cycle of order at least m. The order of a subpath
(vr, vr+1, ..., vt) together with the path connecting vr and vt in T is a cycle of order t− r+ d∗.
Since the value of d∗ is not changing when the value of r is being decreased or the value of t
is being increased, the order of the cycle can be increased or decreased by one integer at the
time. So when t− r+d∗ > m, just decrease t and/or increase r until the cycle has order m and
remove the corresponding vertices. When t− r+d∗ < m, increase t and/or decrease r until the
cycle has order m and select the corresponding vertices. However, by assumption, H contains
no cycle of length m, so 〈Ai〉 contains no monotonic path of order m− 1.

The next thing that will be proven is that 〈Ai〉 contains an independent set of at least d |Ai|
m−2e

vertices. For this purpose, assign to each vertex v in 〈Ai〉 as a label the order of the longest
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monotonic path in 〈Ai〉 which has v as its least element, that is, starting at vertex v. If two
vertices have the same label, they must be independent. Otherwise, when two vertices have
the same label and are adjacent, one of the two paths could be extended by the least vertex
of the two, but then the labels are not the same anymore. There is no monotonic path of
order m− 1, so the labels that can be assigned are the integers 1 to m− 2. An application of

the pigeonhole principle yields that at least d |Ai|
m−2e vertices have the same label and these are

necessarily independent.

Define Bi to be a maximal independent subset of Ai for i = 1, 2, ..., k and let ri = |Bi|
|Bi−1|

with |B0| = 1. Since H has property Π` and Bi is independent, it holds that |Γ(Bi)| ≥ `|Bi|
for i = 1, 2, ..., k. Furthermore, Bi is adjacent in H to vertices in Ai or to vertices in Ai+1 or

Ai−1. That is, Γ(Bi) ⊆ Ai−1 ∪ Ai ∪ Ai+1. Since d |Ai|
m−2e was the least order of an independent

subset in 〈Ai〉, it follows that |Bi| ≥ d |Ai|
m−2e for i = 1, 2, ..., k. Note that |Bi| ≥ d |Ai|

m−2e ≥
|Ai|
m−2

and thus (m− 2)|Bi| ≥ |Ai|. Then the following is obtained:

`|Bi| ≤ |Γ(Bi)|

≤ |Ai−1 ∪Ai ∪Ai+1|

= |Ai−1|+ |Ai|+ |Ai+1|

≤ (m− 2)|Bi−1|+ (m− 2)|Bi|+ (m− 2)|Bi+1|

≤ (m− 2)(|Bi−1|+ |Bi|+ |Bi+1|).

Rewriting this in terms of ri gives:

(m− 2)(|Bi−1|+ |Bi|+ |Bi+1|) ≥ `|Bi|

=⇒ |Bi−1|+ |Bi|+ |Bi+1| ≥
`

(m− 2)
|Bi|

=⇒ |Bi−1|
|Bi|

+
|Bi|
|Bi|

+
|Bi+1|
|Bi|

≥ `

m− 2

=⇒ 1

ri
+ 1 + ri+1 ≥

`

m− 2

=⇒ ri+1 ≥
`

m− 2
− 1− 1

ri
. (7)

The aim of the proof was to show that if ` ≥ d(m− 2)(n
1
k + 2)e, the assumptions about G lead

to a contradiction. If ` = d(m− 2)(n
1
k + 2)e, then equation (7) becomes

ri+1 ≥ n
1
k + 1− 1

ri
, i = 1, 2, ..., k − 1.

By the following induction argument it will follow that ri > n
1
k :

Base step: The vertex x can be seen as an independent set in H. Since H has property Π`, it

holds that |A1| = |Γ(x)| ≥ `|x| = `. Then it follows that r1 = |B1|
|B0| = |B1| ≥ d A1

m−2e ≥ d
`

m−2e =

d (m−2)(n
1
k +2)

m−2 e > n
1
k =⇒ r1 > n

1
k .

Induction hypothesis: Suppose that ri > n
1
k for some i = 1, ..., k − 1.
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Induction step: Show that ri+1 > n
1
k . ri+1 ≥ n

1
k + 1− 1

ri
> n

1
k + 1− 1

n
1
k
> n

1
k .

So by induction, ri > n
1
k for i = 1, 2, ..., k. Then it follows that

|Bk| = |
B1

B0
||B2

B1
| . . . |Bk−1

Bk−2
|| Bk

Bk−1
| = r1r2 . . . rk > n. (8)

Equation (8) tells that |Bk| is an independent subgraph of H with more than n vertices.
However, this contradicts the assumption that H contains no set of n independent vertices.
Therefore, if G is a graph of order d(m− 2)(n

1
k + 2) + 1e(n− 1), then it will always contain a

cycle of order m or a set of n independent vertices, that is;

R(Cm,Kn) ≤ d(m− 2)(n
1
k + 2) + 1e(n− 1). �

2.4 The special case of R(C4, Kn)

At the time that [9] was written, in 1978, not much was known about the specific case of
R(C4,Kn). However, Spencer and Erdős found an asymptotic bound for R(C4,Kn) which was
proven in [9]. It is a stronger statement than the one in Theorem 4 for m = 4.

Theorem 5 R(C4,Kn) < c
(

n log(log(n))
log(n)

)2

, n→∞.

The proof of this theorem is very long, so in order to keep oversight, a lemma will be proven
which will be used in the proof of Theorem 5.

Lemma 2 The function f(k) = kn
1
k is decreasing as long as k < log n.

Proof Compute the derivative of this function:

d

dk
f(k) =

d

dk
kn

1
k

= k
d

dk
n

1
k + n

1
k
d

dk
k

= k
d

dk
elog(n

1
k ) + n

1
k

= kelog(n
1
k ) d

dk
log(n

1
k ) + n

1
k

= kn
1
k
d

dk

1

k
log(n) + n

1
k

= −kn 1
k

1

k2
log(n) + n

1
k

= −n
1
k

k
log(n) + n

1
k

= n
1
k (−1

k
log(n) + 1).

Summarized, d
dkf(k) = n

1
k (− 1

k log(n) + 1). The function f(k) is decreasing when d
dkf(k) < 0,

so when n
1
k (− 1

k log(n) + 1) < 0. Compute for which values of k this holds:

n
1
k (−1

k
log(n) + 1) < 0
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=⇒ −1

k
log(n) + 1 < 0

=⇒ 1 <
1

k
log(n)

=⇒ k < log(n).

Indeed, the function f(k) = kn
1
k is decreasing as long as k < log n. �

Now the proof of Theorem 5 follows.

Proof Let G(V,E) be a graph of order R(C4,Kn+1) − 1 that contains no cycle of order 4
and no set of n + 1 independent vertices. Let v be a vertex that is isolated from G, that is, v
is not adjacent to any vertex in G. Then 〈V (G) ∪ {v}〉G forms a graph of order R(C4,Kn+1),
so it contains a set of n+ 1 independent vertices. That means that G, which does not contain
the vertex v, contains a set S of n independent vertices.

Let T = V \ S and define R(X) = Γ(X) ∩ S, for every X ⊂ T . For k = 0, 1, ..., n, define
Tk = {x | x ∈ T, |R(x)| = k} and let Nk = |Tk|. Since S is not part of a larger independent
set, it follows that N0 = 0. This becomes clear by the following argument. Take a vertex
v ∈ T0, then v is not adjacent to any vertex in S. Hence {v} ∪ S is a larger set of n + 1
independent vertex, but this is contradicting the assumption. Therefore, T0 = ∅ and N0 = 0.
Also, N1 ≤ 2n because of the following. Assume for a contradiction that N1 ≥ 2n+ 1. Since S
contains n vertices, it follows by applying the pigeonhole principle that there are three vertices
in T which are adjacent to the same vertex s in S. If two of these three vertices, say a and b,
are not adjacent to each other, then G has a set of n + 1 independent vertices by removing s
from S and adding the vertices a and b to S. Otherwise, when none of the three vertices are
independent of each other, they form a cycle of order 4 with the vertex s. Therefore, N1 ≤ 2n.
Note that when both vertices a and b in T are adjacent to both s and u in S, then G would
contain a cycle of order 4 by following the path (b, u, a, s, b). Hence it is not possible to have
two vertices in T that are adjacent to a common pair of vertices in S.

Take a vertex t ∈ Tk, then vertex t is adjacent to k vertices in S. From those k vertices,(
k
2

)
pairs of vertices can be made. As already mentioned before, if a vertex in T is adjacent

to a pair of vertices u, s ∈ S, then another vertex cannot be adjacent to both vertices of the
pair u, s, for then G would contain a cycle of order 4. That means that a vertex t ∈ Tk, takes

“possession” of
(
k
2

)
pairs of vertices. As a consequence, every vertex in

n⋃
k=m

Tk accounts for at

least
(
m
2

)
pairs of vertices in S. The set S contains n vertices, so there are in total

(
n
2

)
pairs of

vertices in S. Putting everything together; there are
(
n
2

)
pairs of vertices to possess in S and

one vertex in
n⋃

k=m

Tk possesses at least
(
m
2

)
pairs of vertices of S, hence the number of vertices

in
n⋃

k=m

Tk is at most
(
n
2

)
/
(
m
2

)
. In formulas;

n∑
k=m

Nk ≤
(
n
2

)(
m
2

) =
n(n− 1)

m(m− 1)
.

Keeping this in mind, something can be said about the order of the graph. Recall that the
order of the graph G is R(C4,Kn+1)− 1. The following is obtained:

R(C4,Kn+1)− 1 = |V |
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= |S|+ |T |

= n+ |
n⋃

k=1

Tk|

= n+ |T1|+ |
m⋃

k=2

Tk|+ |
n⋃

k=m+1

Tk|

≤ n+ 2n+ |
m⋃

k=2

Tk|+
n(n− 1)

m(m+ 1)

= 3n+

m∑
k=2

Nk +
n(n− 1)

m(m+ 1)
,

and hence

R(C4,Kn) < R(C4,Kn+1) ≤ 1 + 3n+

m∑
k=2

Nk +
n(n− 1)

m(m+ 1)
. (9)

Only a bound for
m∑

k=2

Nk still has to be realized. This is done by proving that if Nk is too large,

then there must exist a set A ⊆ S and an independent set C ⊆ 〈Tk〉 such that R(C) ⊆ A and
|C| > |A|. If this were true, then G would contain a set of at least n+ 1 independent vertices
by removing A from S and adding C to it.

Let x, y ∈ T , then, again, x and y cannot be adjacent to a common pair of vertices in S.
Therefore |R(x)∩R(y)| is either 0 or 1. Accordingly, each edge xy in 〈Tk〉 is classified as either
type 0 or type 1. Let Mk,0 denote the number of type 0 edges in 〈Tk〉 and let Mk,1 denote the
number of type 1 edges in 〈Tk〉. Moreover, let

Mk = Mk,0 +Mk,1. (10)

Let x be an arbitrary vertex in Tk and suppose that x is an endpoint of each of the following
edges in 〈Tk〉: {xy1},...,{xy`}. For i = 1, ..., `, the sets R(yi) are disjoint. Otherwise, when
there is a vertex s ∈ S such that s ∈ R(yi) and s ∈ R(yj) for some i, j, there appears a cycle of
order 4 by following the path (x, yi, s, yj , x). Thus, there are ` edges that have x as an endpoint
in 〈Tk〉 and each of those edges are adjacent to k vertices in S. That means that the vertex x
accounts for k` vertices in S that need to be mutually distinct, therefore k` ≤ n. Suppose now
that the edges {x, y1},...,{x, ym} are of type 1, that is, |R(x) ∩R(yi)| = 1 for i = 1, ...,m. The
vertices R(x)∩R(yi) are distinct for i = 1, ...,m. Otherwise, when there is a vertex s ∈ S such
that R(x)∩R(yi) = s = R(x)∩R(yj) for some i, j, there appears a cycle of order 4 by following
the path (x, yi, s, yj , x). Since x ∈ Tk, x is adjacent to k vertices in S, so to make sure that no
two vertices yi and yj are adjacent to the same vertex as x, the number of type 1 edges cannot
be more than k, hence m ≤ k. Summarized, there are two bounds; ` ≤ n

k and m ≤ k. From
those two bounds, the following two bounds on the numbers of edges are obtained:

Mk ≤ Nk
n

2k
(11)

Mk,1 ≤ Nk
k

2
, (12)

respectively.
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Figure 9
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Figure 10

It still has to be shown that there exists a set A ⊆ S and an independent set C ⊆ 〈Tk〉
such that R(C) ⊆ A and |C| > |A|. This is done with the help of the probabilistic method. It

will be shown that such A and C exist unless Nk <
5n2

kn1/k . Let Ω denote the sample space con-

sisting of all subsets of S. Assign the probability P (A) = p|A|(1− p)n−|A| to each A ⊆ S with
the value of p to be chosen later. Equivalently, each vertex in S has independent probability p
of belonging to A. Corresponding to each A ⊆ S, define B = {x | x ∈ Tk, R(x) ⊆ A} and let
C denote a maximal independent subset of B. Introduce the random variables XA = |A| and
XC = |C|. There are n vertices that could possibly belong to A and each vertex has probability
p of belonging to A, therefore the expected value of XA is E(XA) = np. The value of |C| is a bit
harder to find. However, a lower bound for |C| can be found to narrow down the possibilities.
For every edge that appears in 〈B〉, the size of the independent set C decreases with at most
1 vertex. This is explained with the help of Figures 8, 9 and 10. In Figure 8, the maximal
independent subset is the set itself, so it is of order 4. When, in Figure 9, one edge is added
to the graph, the maximal independent subset is decreased to order 3. When, in Figure 10,
a second edge is added to the graph, the maximal independent subset is still of order 3, so it
did not decrease. Therefore, for every edge in a graph, the order of the maximal independent
subset is decreased with at most one. The set C is a subset of B, so a lower bound for |C| is
obtained by subtracting the size of 〈B〉 from |B|. In formulas;

|C| ≥ |B| − |E(〈B〉G)|. (13)

The expected value of C is then also bounded from below by the expected value of the lower
bound for C.

For x ∈ B it holds that x ∈ Tk and R(x) ⊆ A. In other words, x is adjacent to k differ-
ent vertices in A, say s1, ..., sk ∈ A. Each si had probability p of belonging to A, so all of the
si together belong to A with probability pk. Therefore, x belongs to B with probability pk.
There are Nk vertices that could possibly belong to B and each vertex has probability pk of
belonging to B, so the expected value of |B| is Nkp

k. Moving on, the set 〈B〉 is a subset of
〈Tk〉, so it contains possibly Mk = Mk,0 + Mk,1 edges. First consider the Mk,0 edges of 〈Tk〉
which are of type 0. An edge xy, for x, y ∈ 〈Tk〉, is of type 0 when |R(x) ∩R(y)| is 0. Suppose
that x is adjacent to s1, ..., sk ∈ S and y is adjacent to u1, ..., uk ∈ S. Since xy is of type 0, the
si and the uj must be distinct for each i, j = 1, ..., k, that is; the si and uj together account
for 2k distinct vertices in S. The vertices x and y belong to B if each si and uj belong to A.
Every vertex in S has probability p of belonging to A, hence the si and uj , which account for
2k vertices, together belong to S with probability p2k. Altogether, the expected value of an
edge of type 0 in B is Mk,0p

2k. Secondly, consider the Mk,1 edges of 〈Tk〉 that are of type 1.
An edge xy, for x, y ∈ 〈Tk〉, is of type 1 when |R(x) ∩ R(y)| = 1. Suppose that x is adjacent
to s1, ..., sk ∈ S and y is adjacent to u1, ..., uk ∈ S. Since xy is of type 1, the si and the uj
must be distinct for each i, j = 1, ..., k, except for two vertices; one of the si is the same as one
of the uj . That is, the si and uj together account for 2k − 1 distinct vertices in S. Again,
the vertices x and y belong to B if each si and uj belong to A. However, in this case, the
vertices si and uj together account for 2k − 1 vertices in S, hence they all belong to A with
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probability p2k−1. Therefore, the expected value of an edge of type 1 in B is Mk,1p
2k−1. The

total number of edges in 〈B〉 is possibly Mk = Mk,0 +Mk,1, so the expected value of the size of
〈B〉 is Mk,0p

2k + Mk,1p
2k−1. Taking the expectation on both sides of equation (13), gives the

following lower bound for the expected value of |C|:

E(XC) ≥ Nkp
k −

(
Mk,0p

2k +Mk,1p
2k−1

)
. (14)

Using the bounds given in equations (11) and (12), together with the fact that p2k−1− p2k ≥ 0
this lower bound can be rewritten in the following way:

E(XC) ≥ Nkp
k −

(
Mk,0p

2k +Mk,1p
2k−1

)
(10)
= Nkp

k −
(

(Mk −Mk,1)p2k +Mk,1p
2k−1

)
= Nkp

k −Mkp
2k +Mk,1p

2k −Mk,1p
2k−1

= Nkp
k −Mkp

2k −Mk,1(p2k−1 − p2k)

(11),(12)
≥ Nkp

k −Nk
np2k

2k
−Nk

k(p2k−1 − p2k)

2

Nk

(
pk − np2k

2k
− k(p2k−1 − p2k)

2

)
.

This results in the following lower bound:

E(XC) ≥ Nk

(
pk − np2k

2k
− k(p2k−1 − p2k)

2

)
. (15)

Suppose that p ≥ k2

n+k2 , then it follows that k(p2k−1−p2k)
2 ≤ np2k

2k by the following calculations:

k

2
(p2k−1 − p2k) =

k

2
p2k(

1

p
− 1)

≤ k

2
p2k

(
n+ k2

k2
− 1

)

=
k

2
p2k n

k2

=
n

2k
p2k.

Indeed, k(p2k−1−p2k)
2 ≤ np2k

2k . By keeping this restriction on the value of p, equation (15) will
change into

E(XC) ≥ Nk

(
pk − np2k

k

)
.

Finally, set p = ( k
2n )

1
k . For all k ≥ 2 and n ≥ 1 it holds that ( k

2n )
1
k ≥ k2

n+k2 , so this choice of p
respects the previously made restriction.
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When filling in the value of p into the formulas for E(XC) and E(XA), the following comes out:

E(XC) ≥ kNk

4n
and E(XA) = n(

k

2n
)

1
k .

If E(XC) > E(XA), then G certainly contains a set of at least n+ 1 independent vertices. This
must not be the case, therefore holds that

kNk

4n
≤ n(

k

2n
)

1
k

and hence

Nk ≤
4n2

k
(
k

2n
)

1
k . (16)

This upper bound can be simplified by noting that (k
2 )

1
k < 5

4 for all k ≥ 1. This is calculated

as follows: Consider (k
2 )

1
k as a function of k and let f(k) = (k

2 )
1
k . Compute the derivative of

the function f(k):
d

dk
f(k) =

d

dk
(
k

2
)

1
k

=
d

dk
e

log

(
( k
2 )

1
k

)

= e
log

(
( k
2 )

1
k

)
d

dk
log

(
(
k

2
)

1
k

)
= (

k

2
)

1
k
d

dk

1

k
log(

k

2
)

= (
k

2
)

1
k

(
1

k

d

dk
log(

k

2
) + log(

k

2
)
d

dk

1

k

)
= (

k

2
)

1
k

(
1

k2
− log(

k

2
)

1

k2

)
=

1

k2
(
k

2
)

1
k

(
1− log(

k

2
)

)
.

The function attains its extrema when d
dkf(k) = 0. Note that 1

k2 6= 0 and (k
2 )

1
k 6= 0 for all

k ≥ 1 and compute for which values of k the extrema are attained:

d

dk
f(k) = 0

=⇒ 1

k2
(
k

2
)

1
k

(
1− log(

k

2
)

)
= 0

=⇒
(

1− log(
k

2
)

)
= 0

=⇒ log(
k

2
) = 1

=⇒ k

2
= e
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=⇒ k = 2e.

So the extremum of f(k) occurs at k = 2e and its value is f(2e) = 1.2019 < 5
4 . When looking

at the graph of f(k) in Figure 20 in the Appendix, one can see that this is indeed a maximum

and hence (k
2 )

1
k < 5

4 for all k ≥ 1. This changes equation (16) into

Nk <
5n2

kn
1
k

. (17)

Zoom in on the denominator of this upper bound of Nk. Consider kn
1
k as a function of k with

n fixed, that is; let f(k) = kn
1
k be a function. As already showed in Lemma 2, the function

f(k) is decreasing as long as k < log n. Let m < k < log n, then mn
1
m > kn

1
k , from which it

follows that 5n2

mn
1
m
< 5n2

kn
1
k

and hence Nm < Nk. This means that for m < log n it holds that

m∑
k=2

Nm = N1 +N2 +N3 + ...+Nm

< Nm +Nm +Nm + ...+Nm

= mNm =
5n2

n
1
m

.

After a lot of computations, a bound on
∑m

k=2Nm is finally found. Filling in this bound into
equation (9) which was found earlier, the following bound is obtained:

R(C4,Kn) < 1 + 3n+
5n2

n
1
m

+
n2

m2
,

where also the fact that n(n−1)
m(m+1) < n2

m2 is used. Finally, take m ∼ log n
2 log(log n) , then n2

m2 ∼
( 2n log(log n)

log n )2, therefore the bound

R(C4,Kn) < c(
n log(log n)

log n
), n→∞

is found, as desired. �

2.5 An exact result

At the end of their article [9], Erdős et al. conjectured that R(Cm,Kn) = (m−1)(n−1)+1 for
all m ≥ n ≥ 3 except m = n = 3. This conjecture has still not been proven so far. It has only
been verified for several cases for small values of n and m. In [2], this conjecture is verified for
m = 9 and n = 8. In particular, the following theorem has been proven [2]:

Theorem 6 R(C9,K8) = 57.

In the remaining part of this thesis, this theorem will be proven following the proof as presented
in [2]. They prove Theorem 6 by means of a sequence of 8 lemmas, so that will be done here
as well. In their proof however, they used the result from two theorems in [3] and it is used
in a lemma in [2] to show that certain induced subgraphs have to be complete. In order to
give the proof of these two theorems, another definition is needed. First, recall the definition
of connectedness: A graph G is connected if it has a path from u to v for every u, v ∈ V (G).
Then this is the definition of a component:
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Definition 16 Let G be a graph and let H be a subgraph of G such that H is connected and
H is not contained in any connected subgraph of G which has more vertices or edges than H
has. Then H is a component of G.

Theorem 7 Let G be a connected graph of order n ≥ 3 such that for any two non-adjacent
vertices x and y it holds that

|Γ(x)|+ |Γ(y)| ≥ k.
If k < n, then G contains a path of order k + 1. [3]

Proof : Let P = (x1, x2, ..., x`) be a longest path in G. Since this is the longest path, it should
not be possible to extend it by some vertex in the neighborhood of x1 or x`, hence the neighbors
of x1 and x` are vertices of P . If ` = n, then P is a path of order n, so it contains a path of
order k + 1, since k + 1 ≤ n and then the proof is done. Suppose that ` < n, then there is
no cycle of order `. To show this, let C` be a cycle of order `. Since ` < n, there is a vertex
w ∈ V (G) that is not in C`. The graph G is connected, so there is a path from w to a vertex x
in C` which has order ≥ 2. The path from w to x together with the `− 1 other vertices of C`

form a path of order > `, but the longest path should be of order `. Therefore, there is no cycle
of order ` in G. For that reason, the vertices x1 and x` in P are not adjacent. Furthermore,
let A = {xi ∈ V (P ) |x1xi+1 ∈ E(P )} and B = {xi ∈ V (P ) |xix` ∈ E(P )}. If xi ∈ A∩B, there
is a cycle (x1, x2, ..., xi, x`, x`−1, ..., xi+1, x1) which is of order `. Consequently, the sets A and
B are disjoint subsets of {x1, ..., x`−1}. Therefore,

k ≤ |Γ(x1)|+ |Γ(x`)| = |A|+ |B| ≤ `− 1.

Since G has a path of order ` and k + 1 ≤ `, G contains a path of order k + 1. �

Theorem 8 Let G be a graph of order n without a path of order k + 1, (k ≥ 1). Then

|E(G)| ≤ k − 1

2
n.

Further, equality holds if and only if its components are complete graphs of order k. [3]

Proof : Theorem 8 will be proven by applying induction on n and fixing the value of k. When
n ≤ k, then there will never be a path of order k + 1 in G because G does not have enough
vertices to make a path of order k+ 1. Then G can have as much edges a possible, that is, the
maximal number of edges is attained when G is a complete graph. A complete graph of order

n has
(
n
2

)
edges. So |E(G)| ≤

(
n
2

)
= (n−1)

2 n ≤ (k−1)
2 n as desired.

Assume now that n ≥ k + 1 and that the assertion holds for smaller values of n. If G is
disconnected, write G =

⋃r
i=1Gi where Gi are the components of G. Then the order of each

Gi is smaller than n, say the order of Gi is ni for each i. Clearly,
∑r

i=1 ni = n. Since the
assertion holds for smaller values of n, it holds that |E(Gi)| ≤ k−1

2 ni for all i. Then

|E(G)| =
r∑

i=1

|E(Gi)| ≤
r∑

i=1

k − 1

2
ni =

k − 1

2
n

as desired. If G is connected, then it contains no Kk+1 since it contains no path of order k+ 1.
Then by Theorem 7, for any vertex x in G, 2 · |Γ(x)| < k =⇒ |Γ(x)| < k

2 ≤
k−1

2 . Then G \ x
is a graph of order n− 1, so the assertion holds for the graph G \ x. Then

|E(G)| ≤ |Γ(x)|+ |E(G \ x)| < k − 1

2
+
k − 1

2
(n− 1) =

k − 1

2
.�
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Before going into the lemmas, a lower bound of R(C9,K8) will be given. To that end, let G be
a graph of order 56. In particular, let G be a graph that consists of 7 copies of a complete graph
of 8 vertices as presented in Figure 11, then G indeed has 7 · 8 = 56 vertices. The question
is whether this graph contains either a cycle of order 9 or an independent set of 8 vertices or
not. In Figure 11, within one complete component, the order of the largest cycle is 8, since
one complete component contains only 8 vertices. Obviously, there is no cycle touching two
different complete components because their vertices are not adjacent. Hence, G contains no
cycles of order 9. Within one complete component, all vertices are adjacent, so in order to
find an independent set in G, only one vertex can be picked from each complete component.
There are 7 complete components in G so the order of the largest independent set in G is 7,
thus there is no independent set of 8 vertices. Consequently, R(C9,K8) > 56 or R(C9,K8) ≥ 57.

The one definition that needs to be mentioned before being able to introduce the lemmas
is the following one [17]:

Definition 17 The degree of a vertex v in a graph G, deg(v), is the cardinality of the neigh-
borhood set Γ(v), that is, it is equal to the number of vertices that are adjacent to vertex v in
G.

Then the minimum degree of a graph, δ(G), is the minimum degree of its vertices. In the
upcoming proofs, a shorthand notation for a vertex and its neighborhood will be used. Define
Γ[u] := Γ(u) ∪ u.

Lemma 3 Let G be a graph of order ≥ 57 that contains neither a cycle of order 9 nor an
independent set of order 8. Then δ(G) ≥ 8.

Proof Suppose for a contradiction that δ(G) < 8. Then there is a vertex u in G with degree
less than 8. In that case, |Γ[u]| = |Γ(u) ∪ {u}| < 8 + 1 = 9, thus |V (G \ Γ[u])| ≥ 49. In [5],
the result R(C9,K7) = 49 is proved, so G \ Γ[u] contains an independent set of 7 vertices. The
vertices in the graph G\Γ[u] are not adjacent to u or its neighborhood, therefore the 7 vertices
in G\Γ[u] that form an independent set and the vertex u together form an independent set of 8
elements. By assumption, G contains no independent set of 8 vertices, so this is a contradiction.
Therefore, δ(G) ≥ 8. �

From now, G will always be a graph with minimum degree δ(G) ≥ 8 that contains neither
a cycle of order 9 nor an independent set of 8 vertices.
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Figure 11: Graph of order 56
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Lemma 4 If G contains K8, then |V (G)| ≥ 72.

Proof Let G be a graph that contains K8 and let U = {u1, ...u8} be the vertex set of the
complete graph K8 in G. Let R = G \U and define Ui = Γ(ui) ∩ V (R) for each 1 ≤ i ≤ 8. For
all 1 ≤ i ≤ 8 the vertex ui ∈ U is adjacent to the other 7 vertices of U and since δ(G) ≥ 8, ui
is also adjacent to at least one vertex outside of U , that is, ui is adjacent to at least one vertex
of R. Hence, Ui 6= ∅ for all 1 ≤ i ≤ 8.

Now show that Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 8. Take two vertices ui, uj ∈ U for some
1 ≤ i < j ≤ 8. Then there is a path of order 8 from ui to uj by walking along the remaining
6 vertices of U in any order. Let w ∈ Ui ∩ Uj , so that a path (ui, w, uj) arises. By “gluing”
together the path from ui to uj of order 8 and the path (ui, w, uj), there appears a cycle of
order 9, which is a contradiction. Therefore, Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 8.

Similarly, show that for all 1 ≤ i < j ≤ 8 and for all x ∈ Ui and y ∈ Uj , the edge xy is
not in E(G). Take two vertices ui, uj ∈ U for some 1 ≤ i < j ≤ 8. Then there is a path of
order 7 from ui to uj by walking along 5 of the remaining 6 vertices of U in any order. Let
x ∈ Ui and y ∈ Uj and suppose that xy ∈ E(G). There arises a path in G joining ui and uj ;
(ui, x, y, uj). By “gluing” together the path from ui to uj of order 7 and the path (ui, x, y, uj),
there appears a cycle of order 9, which is a contradiction. Therefore, for all 1 ≤ i < j ≤ 8 and
for all x ∈ Ui and y ∈ Uj , the edge xy is not in E(G).

Again, with the same reasoning, ΓR(Ui) ∩ ΓR(Uj) = ∅ for 1 ≤ i < j ≤ 8. Take two ver-
tices ui, uj ∈ U for some 1 ≤ i < j ≤ 8. Then there is a path of order 6 from ui to uj by
walking along 4 of the remaining 6 vertices of U in any order. Let w ∈ ΓR(Ui) ∩ ΓR(Uj) and
suppose that w is adjacent to x ∈ Ui and to y ∈ Uj , then the path (ui, x, w, y, uj) arises. By
“gluing” together the path from ui to uj of order 6 and the path (ui, x, w, y, uj), there appears
a cycle of order 9, which is a contradiction. Therefore ΓR(Ui) ∩ ΓR(Uj) = ∅ for 1 ≤ i < j ≤ 8.

Since Ui 6= ∅, it holds that |Ui| ≥ 1. Since Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 8, a vertex
x ∈ Ui is adjacent to only one vertex in U , namely to ui, so it is not adjacent to uj for all
j 6= i. Consequently, the vertex x must be adjacent to at least 7 vertices in R. Since x and
its neighborhood are included in Ui and its neighborhood, write x ∪ ΓR(x) ⊂ Ui ∪ ΓR(Ui) and
conclude that 8 = 1 + 7 ≤ |x ∪ Γ(x)| ⊂ |Ui ∪ Γ(Ui)|. Therefore

|Ui ∪ ΓR(Ui) ∪ {ui}| ≥ 9.

Since Ui ∩ Uj = ∅, ΓR(Ui) ∩ ΓR(Uj) = ∅ and ui 6= uj for all 1 ≤ i < j ≤ 8 it follows that
Ui ∪ ΓR(Ui) ∪ {ui} is disjoint from Uj ∪ ΓR(Uj) ∪ {uj} for all for all 1 ≤ i < j ≤ 8. Then the
following is obtained:

|V (G)| ≥ |
8⋃

i=1

(
Ui ∪ ΓR(Ui) ∪ {ui}

)
| ≥ 8 · 9 = 72.

So indeed, |V (G)| ≥ 72. �

Definition 18 A star graph is a tree consisting of one vertex adjacent to all others [20].

A star graph with n vertices will be denoted Sn.

Lemma 5 If G contains K8 \ S6, then G contains K8.
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Figure 12: Star graph on
a complete graph
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u8

Figure 13: Star graph removed
from a complete graph

Proof In Figure 12, a complete graph of order 8 is given and in particular, some of its edges
are colored red. Looking closer, one can see that the red edges together with the vertices
u3, u4, u5, u6, u7 and u8 form a star graph of order 6, i.e., S6. The graph K8 \ S6 is ob-
tained by removing the edges of S6 from the graph K8 as can be seen in Figure 13. Let
U = {u1, u2, u3, u4, u5, u6, u7, u8} be the vertex set of K8 \ S6. The induced subgraph of the
vertices {u1, u2, u3, u4, u5, u6, u7} form a complete graph of order 7. Without loss of generality,
assume that the edges u1u8 and u2u8 are in E(G), which is shown Figure 13. Let R = G \ U ,
i.e., the graph R is obtained by taking the graph G and removing the vertices of U and the
edges that have a vertex of U as its endpoint. Define Ui = Γ(ui) ∩ V (R) for each 1 ≤ i ≤ 8.
With the same reasoning as in Lemma 4, Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 8, however in this case,
it does not hold for i = 1 and j = 2, since there is no path in U of order 8 from u1 to u2.
When making a path of order 8 in U , every vertex of U has to be in the path. However, as can
be seen in Figure 13, u8 has to come after u1 and before u2, since u8 is not adjacent to any
other vertex in U . In this way, there is no path of order 8 that starts with u1 and ends with
u2. Therefore, “gluing” together a path in U joining u1 and u2 and a path (u1, w, u2) for some
vertex w ∈ U1 ∩ U2 will never result in a cycle of order 9. So Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 8
except possibly for i = 1 and j = 2.

Since K8 \ S6 contains a complete graph of order 7, there is, just as in Lemma 4, a path
of order 7 joining any two vertices of U . Therefore, it again holds for all 1 ≤ i < j ≤ 8 and for
all x ∈ Ui and y ∈ Uj , that xy /∈ E(G).

Again, ΓR(Ui) ∩ ΓR(Uj) = ∅ for all 1 ≤ i < j ≤ 8, since there is a path of order 6 joining
any two vertices of U .

In this lemma, it is necessary to consider another property of the sets ΓR(Ui) and ΓR(Uj).
In the graph K8 \ S6, there is a path of order 5 between any two vertices. Take two vertices
ui, uj ∈ U for some 1 ≤ i < j ≤ 8. A path of order 5 from ui to uj is made by walking along
3 of the remaining 6 vertices of U in any order. Let x ∈ ΓR(Ui) and y ∈ ΓR(Uj) and suppose
that xy ∈ E(G). Then there appears a path (ui, v, x, y, w, uj) where v ∈ Ui and w ∈ Uj are the
vertices that x and y are adjacent to, respectively. By “gluing” together the path from ui to
uj of order 5 and the path (ui, v, x, y, w, uj), there appears a cycle of order 9, which is a con-
tradiction. So for all 1 ≤ i < j ≤ 8 and for all x ∈ ΓR(Ui) and y ∈ ΓR(Uj), the edge xy /∈ E(G).
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Summarized:

1. Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 8 except possibly for i = 1 and j = 2.

2. xy /∈ E(G) for all 1 ≤ i < j ≤ 8 and for all x ∈ Ui and y ∈ Uj .

3. ΓR(Ui) ∩ ΓR(Uj) = ∅ for all 1 ≤ i < j ≤ 8

4. xy /∈ E(G) for all 1 ≤ i < j ≤ 8 and for all x ∈ ΓR(Ui) and y ∈ ΓR(Uj).

SinceG is assumed to have no independent set of 8 vertices, the maximal order of an independent
set is 7. As a result, at least five of the induced subgraphs 〈Ui ∪ ΓR(Ui)〉G are complete
for 3 ≤ i ≤ 8. In order to show this, assume that less than five of the induced subgraphs
〈Ui ∪ ΓR(Ui)〉G are complete for 3 ≤ i ≤ 8. From the summation above it follows that the
induced subgraphs 〈Ui ∪ΓR(Ui)〉G for 3 ≤ i ≤ 8 are mutually disjoint and not adjacent. When
picking elements to make an independent set, one for sure can select one vertex from each of
the subgraphs 〈Ui ∪ ΓR(Ui)〉G. This creates an independent set of 6 elements. Since less than
five of the subgraphs 〈Ui ∪ ΓR(Ui)〉G for 3 ≤ i ≤ 8 are complete, one can select at least two
more vertices for the independent set; one from each of the subgraphs that are not complete.
However, now there is an independent set of more than 7 elements, but that was assumed not
to be possible. Therefore, at least five of the induced subgraphs 〈Ui ∪ ΓR(Ui)〉G are complete
for 3 ≤ i ≤ 8. By assumption, δ(G) ≥ 8, that is, the degree of each vertex is greater than
8. Assume that k ∈ {3, ..., 8} is an integer such that the induced subgraph 〈Uk ∪ ΓR(Uk)〉G is
complete. Take a vertex x ∈ Uk, then x is adjacent to one vertex uk ∈ U and at least 7 other
vertices in 〈Uk ∪ ΓR(Uk)〉G. Since the latter is a complete induced subgraph, the vertex x and
its neighborhood ΓR(x) form a complete graph of order 8 in 〈Uk ∪ ΓR(Uk)〉G. Consequently,
the graph G contains a complete graph of order 8. �

Lemma 6 If G contains K7, then G contains K8 \ S6 or K8.

Proof Let G be a graph that contains K7 and let U = {u1, u2, u3, u4, u5, u6, u7} be the vertex
set of the complete graph K7. The sets R and Ui are the same as in the previous lemmas,
but now they are defined for 1 ≤ i ≤ 7, so define R = G \ U and Ui = Γ(ui) ∩ V (R) for each
1 ≤ i ≤ 7. For all 1 ≤ i ≤ 7 the vertex ui ∈ U is adjacent to the other 6 vertices of U and since
δ(G) ≥ 8, ui is also adjacent to at least two vertices outside of U , that is, ui is adjacent to at
least two vertices of R. Hence, Ui 6= ∅ for all 1 ≤ i ≤ 7. The rest of the proof is completed by
considering the following two cases:

1. Ui ∩ Uj 6= ∅ for some 1 ≤ i < j ≤ 7. Let w ∈ Ui ∩ Uj , then look back at Figure 13.
That figure represents the same situation as in this lemma, but with u8 = w. That is, the
vertices u1, ..., u7 in Figure 13 form a complete graph just as in this lemma and the vertex
u8 can be seen as the vertex w ∈ Ui ∩ Uj . Figure 13 shows a graph K8 \ S6, therefore in
this lemma G contains K8 \ S6.

2. Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 7. In this second case, the same reasoning as used in
lemma 4 can be applied here. Take any two vertices in U , then there is always a path of
order 5, 6 or 7 joining those two vertices. Then the same results follow as in lemma 4:

(a) xy /∈ E(G) for all 1 ≤ i < j ≤ 7 and for all x ∈ Ui and y ∈ Uj .

(b) ΓR(Ui) ∩ ΓR(Uj) = ∅ for all 1 ≤ i < j ≤ 7

(c) xy /∈ E(G) for all 1 ≤ i < j ≤ 7 and for all x ∈ ΓR(Ui) and y ∈ ΓR(Uj).

25



The maximal order of an independent set is 7, since G is assumed to have no independent
set of 8 vertices. By summation above, for all 1 ≤ i ≤ 7 the induced subgraphs 〈Ui ∪
ΓR(Ui)〉G are mutually disjoint and not adjacent. When picking elements to make an
independent set, one for sure can select one vertex from each of the subgraphs 〈Ui ∪
ΓR(Ui)〉G for 1 ≤ i ≤ 7. This creates an independent set of 7 vertices. This should be the
maximal order of an independent set, so it should not be possible to pick another vertex
from any of the subgraphs 〈Ui ∪ ΓR(Ui)〉G that is independent to any of the 7 previous
selected vertices. Therefore, the subgraphs 〈Ui ∪ ΓR(Ui)〉G are complete for 1 ≤ i ≤ 7.
By assumption, δ(G) ≥ 8, that is, the degree of each vertex is greater than 8. Take a
vertex x ∈ Ui for any 1 ≤ i ≤ 7, then x is adjacent to one vertex ui ∈ U and at least
7 other vertices in 〈Ui ∪ ΓR(Ui)〉G. Since the latter is a complete induced subgraph, the
vertex x and its neighborhood ΓR(x) form a complete graph of order 8 in 〈Uk∪ΓR(Uk)〉G.
Consequently, the graph G contains a complete graph of order 8.

In either of the two cases described above, the set G contains K8 \ S6 or K8, as desired. �

Lemma 7 If G contains K1 + P7, then G contains K7.

Before proving this fifth lemma in the sequence of eight lemmas, the meaning of K1 +P7 needs
to be illustrated. The graph K1 +P7 is obtained by adding an additional vertex to the path P7

and connecting this new vertex to each vertex of P7. An example is given in Figure 14, where
the vertices u2, u3, u4, u5, u6, u7, u8 are the vertices of the path P7 and the vertex u1 is adjacent
to each vertex of P7.

Proof : Let G be a graph that contains K1+P7. Define K1 = u1 and P7 = (u2, u3, u4, u5, u6, u7,
u8). By putting those together, define U = {u1, u2, u3, u4, u5, u6, u7, u8} as the vertex set of
K1 + P7. Again, let R = G \ U and Ui = Γ(ui) ∩ V (R) for each 1 ≤ i ≤ 8. Now two cases will
be distinguished: U4 ∩U6 = ∅ and U4 ∩U6 6= ∅. From either case it will follow that G contains
K7.

1. U4 ∩ U6 = ∅. By assumption, the degree of each vertex is greater than 8. Each vertex
ui ∈ U is adjacent to at most 7 other vertices in U for 1 ≤ i ≤ 8. For example, u1 is
adjacent to 7 vertices in U (namely to u2, u3, u4, u5, u6, u7, u8) and u3 is adjacent to
3 vertices in U (namely to u1, u2 and u4). Therefore, each vertex ui is adjacent to at
least one vertex in R, hence Ui 6= ∅ for all 1 ≤ i ≤ 8. By assumption, there should be
no cycle of order 9 in the graph G. Because of this, it holds that Ui ∩ Uj = ∅ for some

u1

u2

u3

u4

u5

u6

u7

u8

Figure 14: A graph K1 + P7
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2 ≤ i < j ≤ 8. Let ui, uj ∈ U for some 2 ≤ i < j ≤ 8. If there is a path of order 8 in
U from ui to uj , then Ui ∩ Uj must be empty. Otherwise, “gluing” together the path of
order 8 and the path (ui, w, uj) for w ∈ Ui ∩ Uj creates a cycle of order 9. The paths in
U of order 8 from ui to uj for 2 ≤ i < j ≤ 8 that can be made are:

• from u2 to u3: (u2, u1, u8, u7, u6, u5, u4, u3)

• from u2 to u4: (u2, u3, u1, u8, u7, u6, u5, u4)

• from u2 to u5: (u2, u3, u4, u1, u8, u7, u6, u5)

• from u2 to u6: (u2, u3, u4, u5, u1, u8, u7, u6)

• from u2 to u7: (u2, u3, u4, u5, u6, u1, u8, u7)

• from u2 to u8: (u2, u3, u4, u5, u6, u7, u1, u8)

• from u3 to u4: (u3, u2, u1, u8, u7, u6, u5, u4)

• from u3 to u8: (u3, u2, u1, u4, u5, u6, u7, u8)

• from u4 to u5: (u4, u3, u2, u1, u8, u7, u6, u5)

• from u4 to u6: (u4, u3, u2, u1, u8, u7, u6, u5)

• from u4 to u8: (u4, u3, u2, u1, u5, u6, u7, u8)

• from u5 to u6: (u5, u4, u3, u2, u1, u8, u7, u6)

• from u5 to u8: (u5, u4, u3, u2, u1, u6, u7, u8)

• from u6 to u7: (u6, u5, u4, u3, u2, u1, u8, u7)

• from u6 to u8: (u6, u5, u4, u3, u2, u1, u7, u8)

• from u7 to u8: (u7, u6, u5, u4, u3, u2, u1, u8).

For the pairs of vertices listed above, it holds that the corresponding sets Ui ∩ Uj

should be empty, for else there is a cycle of order 9. The remaining pairs of ver-
tices are (u3, u5), (u3, u6), (u3, u7), (u4, u7) and (u5, u7) and these pairs do not have
a path of order 8 in U joining them. Therefore, Ui ∩ Uj does not have to be empty for
(i, j) ∈ {(3, 5), (3, 6), (3, 7), (4, 7), (5, 7)}. This gives the following conclusion: Ui ∩Uj = ∅
for all 2 ≤ i < j ≤ 8 except possibly for (i, j) ∈ {(3, 5), (3, 6), (3, 7), (4, 7), (5, 7)}. In
contrary to paths of order 8, note that K1 + P7 contains a path of order 7 in U between
any two vertices ui and uj for 2 ≤ i < j ≤ 8. Therefore, if there is an edge xy ∈ E(G)
for x ∈ Ui and y ∈ Uj , a cycle of order 9 appears by “gluing” together the path in U
of order 7 from ui to uj and the path (ui, x, y, uj). This means that xy /∈ E(G) for all
2 ≤ i < j ≤ 8 and for all x ∈ Ui and y ∈ Uj . Similarly, there is a path of order 6
in U between any two vertices ui and uj for 2 ≤ i < j ≤ 8. Therefore, if there exists
w ∈ ΓR(Ui)∩ΓR(Uj), then there appears a path of order 9 by gluing together the path of
order 6 in U from ui to uj and the path (ui, x, w, y, uj), where x ∈ Ui and y ∈ Uj are such
that w is adjacent to x and y. Consequently, ΓR(Ui) ∩ ΓR(Uj) = ∅ for all 2 ≤ i < j ≤ 8.
Again, with the same reasoning, there is a path of order 5 in U between any two vertices
ui and uj for 2 ≤ i < j ≤ 8, so if there is an edge xy ∈ E(G) for x ∈ ΓR(Ui) and
y ∈ ΓR(Uj), then there appears a cycle of order 9 by gluing together the path of order
5 in U and the path (ui, v, x, y, w, uj) where v ∈ Ui and w ∈ Uj are adjacent to x and
y respectively. Therefore, xy /∈ E(G) for all 2 ≤ i < j ≤ 8 and for all x ∈ ΓR(Ui) and
y ∈ ΓR(Uj). Summarized, there are four properties:

(A) Ui∩Uj = ∅ for all 2 ≤ i < j ≤ 8 except possibly for (i, j) ∈ {(3, 5), (3, 6), (3, 7), (4, 7),
(5, 7)}
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(B) xy /∈ E(G) for all 2 ≤ i < j ≤ 8 and for all x ∈ Ui and y ∈ Uj

(C) ΓR(Ui) ∩ ΓR(Uj) = ∅ for all 2 ≤ i < j ≤ 8

(D) xy /∈ E(G) for all 2 ≤ i < j ≤ 8 and for all x ∈ ΓR(Ui) and y ∈ ΓR(Uj).

In contrary to the previous lemmas, the induced subgraphs 〈Ui ∪ ΓR(Ui)〉G and 〈Uj ∪
ΓR(Uj)〉G for 2 ≤ i < j ≤ 8 are not necessarily disjoint. As can be seen in the latter sum-
mation, Ui ∩ Uj does not have to be empty for (i, j) ∈ {(3, 5), (3, 6), (3, 7), (4, 7), (5, 7)},
hence for these pairs of (i, j) the subgraphs 〈Ui ∪ ΓR(Ui)〉G and 〈Uj ∪ ΓR(Uj)〉G do not
have to be disjoint. Looking closer to the pairs (3, 5), (3, 6), (3, 7), (4, 7), (5, 7), one can see
that either 3 or 7 appears in each of the pairs. If the vertices u3 and u7 are taking out of
consideration, then 〈Ui ∪ ΓR(Ui)〉G and 〈Uj ∪ ΓR(Uj)〉G are disjoint and not adjacent for
i, j = 2, 4, 5, 6, 8 and i < j. When picking elements to make an independent set, one for
sure can select one vertex from each of the subgraphs 〈Ui ∪ ΓR(Ui)〉G for i = 2, 4, 5, 6, 8.
This creates an independent set of five elements. The maximum order of an independent
set is 7, so at most two more vertices can be included in the independent set. This is only
satisfied when at least three of the five subgraphs 〈Ui ∪ ΓR(Ui)〉G for i = 2, 4, 5, 6, 8 are
complete.

Now two claims will be proven. The first claim is: |ΓR(Ui)| ≥ 7 and so |Ui ∪ ΓR(Ui)| ≥ 8
for i = 2, 8. Proof: As stated before U8 6= ∅, so |U8| ≥ 1. Let y ∈ U8 and y is adjacent to
x ∈ {u1, u2, u3, u4, u5, u6, u7}. As listed before, there are paths of order 8 in U between
any pair of vertices except for for (i, j) ∈ {(3, 5), (3, 6), (3, 7), (4, 7), (5, 7)}. Note that 8
does not occur in any of these pairs. Hence, there is a path of order 8 in U from any of
the vertices u1, u2, u3, u4, u5, u6, u7 to the vertex u8. If y is adjacent to ui for 1 ≤ i ≤ 7,
a cycle of order 9 arises by gluing together the path of order 8 in U from ui to u8 and
the path (u8, y, ui). This is a contradiction, so y is not adjacent to ui for each 1 ≤ i ≤ 7.
The vertex y is hence adjacent to only one vertex of U . Since δ(G) ≥ 8, y has to be
adjacent to at least 7 other vertices, so |ΓR(y)| ≥ 7, thus |{y} ∪ ΓR(y)| ≥ 8. Note that
{y} ∪ ΓR(y) ⊂ U8 ∪ ΓR(U8), which causes |U8 ∪ ΓR(U8)| ≥ 8. By symmetry of K1 + P7,
a similar argumentation using i = 2 gives the same result. Thus, |ΓR(Ui)| ≥ 7 and so
|Ui ∪ ΓR(Ui)| ≥ 8 for i = 2, 8.

The second claim is: If there is i ∈ {4, 5, 6} such that |ΓR(Ui)| < 6, then |ΓR(Uj)| ≥ 6 and
so |Uj ∪ ΓR(Uj)| ≥ 7 for any j ∈ {4, 5, 6} with i 6= j. Proof: Assume that |ΓR(U4)| < 6.
By property (A) above, U4 ∩ Ui for all i ∈ {2, 3, 5, 6, 8}. Let y ∈ U4, then y is by defini-
tion adjacent to u4 and possibly also to u1 and u7. In order to show that |ΓR(U5)| ≥ 6,
assume that |ΓR(U5)| < 6. By property (A) above, U5 ∩ Ui = ∅ for i ∈ {2, 4, 6, 8}. Then
for w ∈ U5, by definition w is adjacent to u5 and possibly also to u1, u3 and u7. Since
δ(G) ≥ 8 and |ΓR(U5)| < 6, the vertex w should be adjacent to at least 3 vertices in U .
The vertex w is always adjacent to u5, so it has to be adjacent to at least two of u1, u3

and u7. Recall that y is adjacent to u4 and possibly also to u1 and u7 Now there are
three cases:

• If w is adjacent to u1 and u3, then (u2, u3, w, u5, u6, u7, y, u4, u1, u2) is a cycle of
order 9.

• If w is adjacent to u1 and u7, then (u2, u3, u4, y, u7, w, u5, u6, u1, u2) is a cycle of
order 9.

• If w is adjacent to u3 and u7, then (u2, u3, w, u7, u6, u5, u4, y, u1, u2) is a cycle of
order 9.
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Of course, if w is adjacent to all of u1, u3 and u7, then any of the paths given above
would give a contradiction. Therefore, w is adjacent to u5 and at most one of u1, u3 and
u7. Then w is adjacent to at most 2 vertices of U , and so it should be adjacent to at
least 6 vertices of R. This gives a contradiction, so |ΓR(U5)| ≥ 6. The claim has now
been proven for i = 4 and j = 5. Now continue with j = 6. Show that |ΓR(U6)| ≥ 6, by
assuming that |ΓR(U6)| < 6. By property (A) above, U6 ∩ Ui = ∅ for i ∈ {2, 4, 5, 7, 8}.
For w ∈ U6, w is adjacent u1, u3 and u6, since |ΓR(U6)| < 6 causes w to be adjacent to
at least 3 vertices of U . Then there is a path (u8, u7, y, u4, u3, w, u6, u5, u1, u8) which is a
cycle of order 9, a contradiction. This implies that w is adjacent to u6 and at most one
of u1 and u3. Then w should be adjacent to at least 6 vertices of R, hence |ΓR(U6)| ≥ 6.
This proves the claim for i = 4 and j = 6. By making use of the symmetry of K1 + P7

and using the same argument as above, but now for i = 6, it follows that if |ΓR(U6)| < 6,
then both |ΓR(U4)| ≥ 6 and |ΓR(U5)| ≥ 6. It remains to show the claim for i = 5
and j = 4, 6. When i = 5, |ΓR(U5)| < 6. By property (A) above, U5 ∩ Ui = ∅ for
i ∈ {2, 4, 6, 8}. Any y ∈ U5 is adjacent to u5 and it is possibly adjacent to u1, u3 and
u7. Assume for a contradiction that |ΓR(U4)| < 6. Since by property (A), U4 ∩ Ui = ∅
for all i ∈ {2, 3, 5, 6, 8}, a vertex w ∈ U4 is adjacent to u4 and possibly also to u1 and u7.
Noting that δ(G) ≥ 8 and |ΓR(U4)| < 6, w should be adjacent to all of u4, u1 and u7.
The cycle (u8, u7, w, u4, u3, u1, y, u5, u6) of order 9 appears, a contradiction. Therefore,
|ΓR(U4)| ≥ 6. This shows the claim for i = 5 and j = 4. Finally, let j = 6. Then, assume
again for a contradiction that |ΓR(U6)| < 6. Using the symmetry of K1 + P7 and the
same argumentation as above, the vertex w ∈ U6 is adjacent to u6 and possibly to u1,
u3. Then the path (u8, u7, y, u3, u4, u5, u6, w, u1, u8) of order 9 gives a contradiction, thus
|ΓR(U6)| ≥ 6. Finally, it follows that if there is i ∈ {4, 5, 6} such that |ΓR(Ui)| < 6, then
|ΓR(Uj)| ≥ 6 and so |Uj ∪ ΓR(Uj)| ≥ 7 for any j ∈ {4, 5, 6} with i 6= j.

The first claim was: |ΓR(Ui)| ≥ 7 and so |Ui ∪ ΓR(Ui)| ≥ 8 for i = 2, 8. The second
claim was: If there is i ∈ {4, 5, 6} such that |ΓR(Ui)| < 6, then |ΓR(Uj)| ≥ 6 and so
|Uj ∪ ΓR(Uj)| ≥ 7 for any j ∈ {4, 5, 6} with i 6= j. Together: the induced subgraphs
〈Ui ∪ΓR(Ui)〉G contain 7 vertices for at least for values of i ∈ {2, 4, 5, 6, 8}. By properties
(A), (B), (C) and (D), the induced subgraphs are disjoint and not adjacent. When pick-
ing elements to make an independent set, one for sure can select one vertex from each of
the subgraphs 〈Ui ∪ ΓR(Ui)〉G for i ∈ {2, 4, 5, 6, 8}. This creates an independent set of 5
elements. The maximal order of an independent set is 7, so it should not be possible to
pick one more vertex from each of the 5 subgraphs such that all vertices form an inde-
pendent set. One should be able to pick at most two more vertices from 〈Ui ∪ ΓR(Ui)〉G
for i ∈ {2, 4, 5, 6, 8}. Therefore, at least three of the induced subgraphs 〈Ui ∪ ΓR(Ui)〉G
for i ∈ {2, 4, 5, 6, 8} should be complete. Then at least two of them contain 7 vertices,
and so they contain a complete graph of order 7. Finally, G contains a complete graph
of order 7.

2. U4 ∩ U6 6= ∅. Let u9 ∈ U4 ∩ U6. Now redefine the sets U , R and Ui. To that end, let
U ′ = {u1, u2, u3, u4, u5, u6, u7, u8, u9}, R′ = G \ U ′ and U ′i = Γ(ui) ∩ V (R′). With the
existence of u9, some edges uiuj cannot be in G for some 2 ≤ i < j ≤ 9, since otherwise
there will be a cycle of order 9.

• When u2u9 ∈ E(G), (u2, u9, u6, u7, u8, u1, u5, u4, u3, u2) is a cycle of order 9.

• When u3u9 ∈ E(G), (u3, u9, u4, u5, u6, u7, u8, u1, u2, u3) is a cycle of order 9.

• When u5u9 ∈ E(G), (u2, u3, u4, u9, u5, u6, u7, u8, u1, u2) is a cycle of order 9.
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• When u7u9 ∈ E(G), (u2, u3, u4, u5, u6, u9, u7, u8, u1, u2) is a cycle of order 9.

• When u8u9 ∈ E(G), (u2, u3, u4, u9, u8, u7, u6, u5, u1, u2) is a cycle of order 9.

Therefore, u2u9, u3u9, u5u9, u7u9, u8u9 /∈ E(G). The vertices ui for i ∈ {2, 3, 5, 7, 8, 9}
are each adjacent to at most 3 vertices in U ′. Since δ(G) ≥ 8, each of the vertices ui for
i ∈ {2, 3, 5, 7, 8, 9} must be adjacent to at least 5 or 6 vertices in R′, thus |ΓR′(ui)| ≥ 1 and
so U ′i 6= ∅ for all i ∈ {2, 3, 5, 7, 8, 9}. There are 4 properties that are similar to properties
(A), (B), (C) and (D) above. The first one is: U ′i ∩ U ′j = ∅ for all i, j ∈ {2, 3, 5, 7, 8, 9}
and i 6= j. This will be shown pair by pair.

• When w ∈ U ′2 ∩ U ′3, (u2, w, u3, u4, u5, u6, u7, u8, u1, u2) is a cycle of order 9.

• When w ∈ U ′2 ∩ U ′5, (u2, u3, u4, u1, u8, u7, u6, u5, w, u2) is a cycle of order 9.

• When w ∈ U ′2 ∩ U ′7, (u2, u3, u4, u5, u6, u1, u8, u7, w, u2) is a cycle of order 9.

• When w ∈ U ′2 ∩ U ′8, (u2, u3, u4, u5, u6, u7, u1, u8, w, u2) is a cycle of order 9.

• When w ∈ U ′2 ∩ U ′9, (u2, u3, u4, u5, u1, u7, u6, u9, w, u2) is a cycle of order 9.

• When w ∈ U ′3 ∩ U ′5, (u3, u4, u9, u6, u7, u8, u1, u5, w, u3) is a cycle of order 9.

• When w ∈ U ′3 ∩ U ′7, (u3, u4, u9, u6, u5, u1, u8, u7, w, u3) is a cycle of order 9.

• When w ∈ U ′3 ∩ U ′8, (u3, u2, u1, u4, u5, u6, u7, u8, w, u3) is a cycle of order 9.

• When w ∈ U ′3 ∩ U ′9, (u3, u4, u5, u1, u8, u7, u6, u9, w, u3) is a cycle of order 9.

• When w ∈ U ′5 ∩ U ′7, (u5, u1, u2, u3, u4, u9, u6, u7, w, u5) is a cycle of order 9.

• When w ∈ U ′5 ∩ U ′8, (u5, u4, u3, u2, u1, u6, u7, u8, w, u5) is a cycle of order 9.

• When w ∈ U ′5 ∩ U ′9, (u5, u4, u3, u2, u1, u7, u6, u9, w, u5) is a cycle of order 9.

• When w ∈ U ′7 ∩ U ′8, (u7, u6, u5, u4, u3, u2, u1, u8, w, u7) is a cycle of order 9.

• When w ∈ U ′7 ∩ U ′9, (u7, u6, u5, u1, u2, u3, u4, u9, w, u7) is a cycle of order 9.

• When w ∈ U ′8 ∩ U ′9, (u8, u7, u6, u5, u1, u3, u4, u9, w, u5) is a cycle of order 9.

The second property is: xy /∈ E(G) for all i, j ∈ {2, 3, 5, 7, 8, 9} with i 6= j and for all
x ∈ U ′i and y ∈ U ′j . This holds by the following arguments:

• When x ∈ U2 and y ∈ U3, (u2, u1, u7, u6, u5, u4, u3, y, x, u2) is a cycle of order 9.

• When x ∈ U2 and y ∈ U5, (u2, u3, u4, u1, u7, u6, u5, y, x, u2) is a cycle of order 9.

• When x ∈ U2 and y ∈ U7, (u2, u3, u4, u5, u6, u1, u7, y, x, u2) is a cycle of order 9.

• When x ∈ U2 and y ∈ U8, (u2, u3, u4, u5, u6, u1, u8, y, x, u2) is a cycle of order 9.

• When x ∈ U2 and y ∈ U9, (u2, u3, u4, u5, u1, u6, u9, y, x, u2) is a cycle of order 9.

• When x ∈ U3 and y ∈ U5, (u3, u2, u1, u8, u7, u6, u5, y, x, u3) is a cycle of order 9.

• When x ∈ U3 and y ∈ U7, (u3, u2, u1, u4, u5, u6, u7, y, x, u3) is a cycle of order 9.

• When x ∈ U3 and y ∈ U8, (u3, u2, u1, u5, u6, u7, u8, y, x, u3) is a cycle of order 9.

• When x ∈ U3 and y ∈ U9, (u3, u4, u5, u1, u7, u6, u9, y, x, u3) is a cycle of order 9.

• When x ∈ U5 and y ∈ U7, (u5, u4, u3, u2, u1, u8, u7, y, x, u5) is a cycle of order 9.

• When x ∈ U5 and y ∈ U8, (u5, u4, u3, u2, u1, u7, u8, y, x, u5) is a cycle of order 9.

• When x ∈ U5 and y ∈ U9, (u5, u4, u3, u2, u1, u6, u9, y, x, u5) is a cycle of order 9.

• When x ∈ U7 and y ∈ U8, (u7, u6, u5, u4, u3, u1, u8, y, x, u7) is a cycle of order 9.

30



• When x ∈ U7 and y ∈ U9, (u7, u6, u5, u1, u3, u4, u9, y, x, u7) is a cycle of order 9.

• When x ∈ U8 and y ∈ U9, (u8, u7, u6, u5, u1, u4, u9, y, x, u8) is a cycle of order 9.

The third property is: ΓR′(U
′
i) ∩ ΓR′(U

′
j) = ∅ for all i, j ∈ {2, 3, 5, 7, 8, 9} with i 6= j.

• When w ∈ ΓR′(U
′
2) ∩ ΓR′(U

′
3), (u2, u1, u6, u5, u4, u3, x, w, y, u2) is a cycle of order 9

for x ∈ U ′3 and y ∈ U ′2 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
2) ∩ ΓR′(U

′
5), (u2, u3, u4, u1, u6, u5, x, w, y, u2) is a cycle of order 9

for x ∈ U ′5 and y ∈ U ′2 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
2) ∩ ΓR′(U

′
7), (u2, u3, u4, u5, u1, u7, x, w, y, u2) is a cycle of order 9

for x ∈ U ′7 and y ∈ U ′2 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
2) ∩ ΓR′(U

′
8), (u2, u3, u4, u5, u1, u8, x, w, y, u2) is a cycle of order 9

for x ∈ U ′8 and y ∈ U ′2 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
2) ∩ ΓR′(U

′
9), (u2, u3, u4, u1, u6, u9, x, w, y, u2) is a cycle of order 9

for x ∈ U ′9 and y ∈ U ′2 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
3) ∩ ΓR′(U

′
5), (u3, u2, u1, u7, u6, u5, x, w, y, u3) is a cycle of order 9

for x ∈ U ′5 and y ∈ U ′3 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
3) ∩ ΓR′(U

′
7), (u3, u2, u1, u5, u6, u7, x, w, y, u3) is a cycle of order 9

for x ∈ U ′7 and y ∈ U ′3 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
3) ∩ ΓR′(U

′
8), (u3, u1, u5, u6, u7, u8, x, w, y, u3) is a cycle of order 9

for x ∈ U ′8 and y ∈ U ′3 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
3) ∩ ΓR′(U

′
9), (u3, u2, u1, u7, u6, u9, x, w, y, u3) is a cycle of order 9

for x ∈ U ′9 and y ∈ U ′3 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
5) ∩ ΓR′(U

′
7), (u5, u4, u3, u1, u8, u7, x, w, y, u5) is a cycle of order 9

for x ∈ U ′7 and y ∈ U ′5 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
5) ∩ ΓR′(U

′
8), (u5, u4, u1, u6, u7, u8, x, w, y, u5) is a cycle of order 9

for x ∈ U ′8 and y ∈ U ′5 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
5) ∩ ΓR′(U

′
9), (u5, u1, u2, u3, u4, u9, x, w, y, u5) is a cycle of order 9

for x ∈ U ′9 and y ∈ U ′5 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
7) ∩ ΓR′(U

′
8), (u7, u6, u5, u4, u1, u8, x, w, y, u7) is a cycle of order 9

for x ∈ U ′8 and y ∈ U ′7 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
7) ∩ ΓR′(U

′
9), (u7, u8, u1, u3, u4, u9, x, w, y, u7) is a cycle of order 9

for x ∈ U ′9 and y ∈ U ′7 such that x and y are adjacent to w.

• When w ∈ ΓR′(U
′
8) ∩ ΓR′(U

′
9), (u8, u7, u6, u1, u4, u9, x, w, y, u8) is a cycle of order 9

for x ∈ U ′9 and y ∈ U ′8 such that x and y are adjacent to w.

The fourth property is: xy /∈ E(G) for all i, j ∈ {2, 3, 5, 7, 8, 9} with i 6= j and for all
x ∈ ΓR(Ui) and y ∈ ΓR(Uj).

• When x ∈ ΓR(U2) and y ∈ ΓR(U3), then (u2, u1, u5, u4, u3, w, y, x, v, u2) is a cycle of
order 9 where v ∈ U2 and w ∈ U3 are adjacent to x and y respectively.

• When x ∈ ΓR(U2) and y ∈ ΓR(U5), then (u2, u3, u4, u1, u5, w, y, x, v, u2) is a cycle of
order 9 where v ∈ U2 and w ∈ U5 are adjacent to x and y respectively.

• When x ∈ ΓR(U2) and y ∈ ΓR(U7), then (u2, u3, u4, u1, u7, w, y, x, v, u2) is a cycle of
order 9 where v ∈ U2 and w ∈ U7 are adjacent to x and y respectively.
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• When x ∈ ΓR(U2) and y ∈ ΓR(U8), then (u2, u3, u4, u1, u8, w, y, x, v, u2) is a cycle of
order 9 where v ∈ U2 and w ∈ U8 are adjacent to x and y respectively.

• When x ∈ ΓR(U2) and y ∈ ΓR(U9), then (u2, u1, u5, u4, u9, w, y, x, v, u2) is a cycle of
order 9 where v ∈ U2 and w ∈ U9 are adjacent to x and y respectively.

• When x ∈ ΓR(U3) and y ∈ ΓR(U5), then (u3, u2, u1, u6, u5, w, y, x, v, u3) is a cycle of
order 9 where v ∈ U3 and w ∈ U5 are adjacent to x and y respectively.

• When x ∈ ΓR(U3) and y ∈ ΓR(U7), then (u3, u2, u1, u6, u7, w, y, x, v, u3) is a cycle of
order 9 where v ∈ U3 and w ∈ U7 are adjacent to x and y respectively.

• When x ∈ ΓR(U3) and y ∈ ΓR(U8), then (u3, u1, u6, u7, u8, w, y, x, v, u3) is a cycle of
order 9 where v ∈ U3 and w ∈ U8 are adjacent to x and y respectively.

• When x ∈ ΓR(U3) and y ∈ ΓR(U9), then (u3, u4, u5, u6, u9, w, y, x, v, u3) is a cycle of
order 9 where v ∈ U3 and w ∈ U9 are adjacent to x and y respectively.

• When x ∈ ΓR(U5) and y ∈ ΓR(U7), then (u5, u4, u1, u8, u7, w, y, x, v, u5) is a cycle of
order 9 where v ∈ U5 and w ∈ U7 are adjacent to x and y respectively.

• When x ∈ ΓR(U5) and y ∈ ΓR(U8), then (u5, u1, u6, u7, u8, w, y, x, v, u5) is a cycle of
order 9 where v ∈ U5 and w ∈ U8 are adjacent to x and y respectively.

• When x ∈ ΓR(U5) and y ∈ ΓR(U9), then (u5, u1, u3, u4, u9, w, y, x, v, u5) is a cycle of
order 9 where v ∈ U5 and w ∈ U9 are adjacent to x and y respectively.

• When x ∈ ΓR(U7) and y ∈ ΓR(U8), then (u7, u6, u5, u1, u8, w, y, x, v, u7) is a cycle of
order 9 where v ∈ U7 and w ∈ U8 are adjacent to x and y respectively.

• When x ∈ ΓR(U7) and y ∈ ΓR(U9), then (u7, u6, u5, u4, u9, w, y, x, v, u7) is a cycle of
order 9 where v ∈ U7 and w ∈ U9 are adjacent to x and y respectively.

• When x ∈ ΓR(U8) and y ∈ ΓR(U9), then (u8, u1, u5, u6, u9, w, y, x, v, u8) is a cycle of
order 9 where v ∈ U8 and w ∈ U9 are adjacent to x and y respectively.

In the end there are 4 properties:

(A1) U ′i ∩ U ′j = ∅ for all i, j ∈ {2, 3, 5, 7, 8, 9} and i 6= j.

(B1) xy /∈ E(G) for all i, j ∈ {2, 3, 5, 7, 8, 9} with i 6= j and for all x ∈ U ′i and y ∈ U ′j .
(C1) ΓR′(U

′
i) ∩ ΓR′(U

′
j) = ∅ for all i, j ∈ {2, 3, 5, 7, 8, 9} with i 6= j.

(D1) xy /∈ E(G) for all i, j ∈ {2, 3, 5, 7, 8, 9} with i 6= j and for all x ∈ ΓR(Ui) and
y ∈ ΓR(Uj).

Since the maximum order of an independent set is 7, at least five of the induced subgraphs
〈U ′i ∪ ΓR′(U

′
j)〉G for i ∈ {2, 3, 5, 7, 8, 9} are complete graphs. It remains to find out which

of the induced subgraphs have at least 7 vertices. Let w ∈ U ′i for some i ∈ {2, 5, 8, 9}.
By property (A1), w is adjacent to only one vertex in U ′, namely ui. This implies that
|ΓR′(w)| ≥ 7, by recalling that δ(G) ≥ 8. Since ΓR′(w) ⊂ U ′i ∪ ΓR′(U

′
i), it follows that

|U ′i ∪ ΓR′(U
′
i)| ≥ 7 for each i ∈ {2, 5, 8, 9}. Therefore, at least three of the induced

subgraphs 〈U ′i ∪ΓR′(U
′
i)〉G for i ∈ {2, 3, 5, 7, 8, 9} contain a complete graph of order 7 and

so G contains a complete graph of order 7. �

Lemma 8 If G contains K1 + P6, then G contains K1 + P7 or K7.

Proof : Consider K1+P6, where K1 = u1 and P6 = (u2, u3, u4, u5, u6, u7). The graph of K1+P6

is presented in Figure 15. Let U = {u1, u2, u3, u4, u5, u6, u7}, R = G\U and Ui = Γ(ui)∩V (R)
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for each 1 ≤ i ≤ 7. Each vertex ui ∈ U is adjacent to at most 6 other vertices in U for 1 ≤ i ≤ 7.
However, since δ(G) ≥ 8, each vertex ui ∈ U must also be adjacent to at least 2 vertices that
are not in U for each 1 ≤ i ≤ 7. That is, ui ∈ U is adjacent to 2 vertices in R and therefore
|Ui| ≥ 2 for all 1 ≤ i ≤ 7. There are two cases to consider: Ui ∩ Uj = ∅ for all 2 ≤ i ≤ 7 and
Ui ∩ Uj 6= ∅ for all 2 ≤ i ≤ 7.

1. Ui ∩Uj = ∅ for all 2 ≤ i ≤ 7. Also for this lemma, in some cases it might not be possible
to have an edge xy ∈ E(G) for x ∈ Ui and y ∈ Uj . When there is an edge xy ∈ E(G) for
x ∈ Ui and y ∈ Uj , then there is a path of order 4 given by (ui, x, y, uj). In that case, it
should not be possible to form a path of order 7 in U from ui to uj , for else there is a
cycle of order 9. Here is a list of all the paths of order 7 between vertices ui and uj for
2 ≤ i < j ≤ 7:

• from u2 to u3: (u2, u1, u7, u6, u5, u4, u3)

• from u2 to u4: (u2, u3, u1, u7, u6, u5, u4)

• from u2 to u5: (u2, u3, u4, u1, u7, u6, u5)

• from u2 to u6: (u2, u3, u4, u5, u1, u7, u6)

• from u2 to u7: (u2, u3, u4, u5, u6, u1, u7)

• from u3 to u4: (u3, u2, u1, u7, u6, u5, u4)

• from u3 to u7: (u3, u2, u1, u4, u5, u6, u7)

• from u4 to u5: (u4, u3, u2, u1, u7, u6, u5)

• from u4 to u7: (u4, u3, u2, u1, u5, u6, u7)

• from u5 to u6: (u5, u4, u3, u2, u1, u7, u6)

• from u5 to u7: (u5, u4, u3, u2, u1, u6, u7)

• from u6 to u7: (u6, u5, u4, u3, u2, u1, u7)

Hence, for the pairs of vertices ui and uj listed above the edge xy should not be in
E(G) for x ∈ Ui and y ∈ Uj . In particular, xy /∈ E(G) for all x ∈ Ui and y ∈ Uj

and for all 2 ≤ i < j ≤ 7 except possibly for (i, j) ∈ {(3, 5), (3, 6), (4, 6)}. The next
argumentation shows that ΓR(Ui) ∩ ΓR(Uj) = ∅ for all 2 ≤ i < j ≤ 7. If there would
exist a w ∈ ΓR(Ui)∩ΓR(Uj) for some 2 ≤ i < j ≤ 7, then there is a path of order 5 given
by (ui, x, w, y, uj), where x ∈ Ui and y ∈ Uj such that x and y a both adjacent to w. In
that case, it should not be possible to have a path of order 6 in U from ui to uj , for else

u1

u2

u3

u4u5

u6

u7

Figure 15: A graph K1 + P6
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there is a cycle of order 9 in G. However, there is in fact a path of order 6 between any
2 vertices ui and uj for all 2 ≤ i < j ≤ 7 by the following list:

• from u2 to u3: (u2, u1, u6, u5, u4, u3)

• from u2 to u4: (u2, u1, u7, u6, u5, u4)

• from u2 to u5: (u2, u3, u1, u7, u6, u5)

• from u2 to u6: (u2, u3, u4, u1, u7, u6)

• from u2 to u7: (u2, u3, u4, u5, u6, u7)

• from u3 to u4: (u3, u1, u7, u6, u5, u4)

• from u3 to u5: (u3, u2, u1, u7, u6, u5)

• from u3 to u6: (u3, u2, u1, u4, u5, u6)

• from u3 to u7: (u3, u2, u1, u5, u6, u7)

• from u4 to u5: (u4, u3, u1, u7, u6, u5)

• from u4 to u6: (u4, u3, u2, u1, u7, u6)

• from u4 to u7: (u4, u3, u2, u1, u6, u7)

• from u5 to u6: (u5, u4, u3, u1, u7, u6)

• from u5 to u7: (u5, u4, u3, u2, u1, u7)

• from u6 to u7: (u6, u5, u4, u3, u1, u7)

Therefore, there must not exist a vertex w ∈ ΓR(Ui) ∩ ΓR(Uj) for some 2 ≤ i < j ≤ 7,
since otherwise there would be a cycle of order 9. That means that ΓR(Ui)∩ ΓR(Uj) = ∅
for all 2 ≤ i < j ≤ 7. Furthermore, it holds that xy /∈ E(G) for all 2 ≤ i < j ≤ 7 and for
all x ∈ ΓR(Ui) and y ∈ ΓR(Uj). This will be shown by a similar argumentation as before.
When there is an edge xy ∈ E(G) for x ∈ ΓR(Ui) and y ∈ ΓR(Uj), then there is a path
of order 6 given by (ui, v, x, y, w, uj) where v ∈ Ui and w ∈ Uj are adjacent to x and y
respectively. Since the graph G does not contain any cycles of order 9, there must be no
paths of order 5 in U from ui to uj for 2 ≤ i < j ≤ 7. However, it turns out that there
actually is a path of order 5 between any pair of vertices ui and uj for 2 ≤ i < j ≤ 7, by
the following list:

• from u2 to u3: (u2, u1, u5, u4, u3)

• from u2 to u4: (u2, u1, u6, u5, u4)

• from u2 to u5: (u2, u1, u7, u6, u5)

• from u2 to u6: (u2, u1, u4, u5, u6)

• from u2 to u7: (u2, u1, u5, u6, u7)

• from u3 to u4: (u3, u1, u6, u5, u4)

• from u3 to u5: (u3, u2, u1, u6, u5)

• from u3 to u6: (u3, u2, u1, u7, u6)

• from u3 to u7: (u3, u4, u5, u6, u7)

• from u4 to u5: (u4, u1, u7, u6, u5)

• from u4 to u6: (u4, u3, u1, u7, u6)

• from u4 to u7: (u4, u3, u2, u1, u7)
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• from u5 to u6: (u5, u4, u1, u7, u6)

• from u5 to u7: (u5, u4, u3, u1, u7)

• from u6 to u7: (u6, u5, u4, u1, u7)

Therefore, there is a path of order 5 between any pair of vertices ui and uj for 2 ≤ i <
j ≤ 7. That means that if for x ∈ ΓR(Ui) and y ∈ ΓR(Uj), the edge xy would be in E(G),
then there is a cycle of order 9 combining the path of order 5 in U from ui to uj with
the path (ui, v, x, y, w, uj) where v ∈ Ui and w ∈ Uj are adjacent to x and y respectively.
Hence xy /∈ E(G) for all 2 ≤ i < j ≤ 7 and for all x ∈ ΓR(Ui) and y ∈ ΓR(Uj). In the
end, the following results are obtained:

(A) xy /∈ E(G) for all x ∈ Ui and y ∈ Uj and for all 2 ≤ i < j ≤ 7 except possibly for
(i, j) ∈ {(3, 5), (3, 6), (4, 6)}.

(B) ΓR(Ui) ∩ ΓR(Uj) = ∅ for all 2 ≤ i < j ≤ 7.

(C) xy /∈ E(G) for all 2 ≤ i < j ≤ 7 and for all x ∈ ΓR(Ui) and y ∈ ΓR(Uj).

Since G does not contain an independent set of 8 vertices, the order of the maximal
independent set is 7. Now try to construct an independent set. By the results (A), (B)
and (C) above, it holds for some 2 ≤ i < j ≤ 7 that the induced subgraph 〈Ui∪ΓR(Ui)〉G
is disjoint from and not adjacent to 〈Uj∪ΓR(Uj)〉G. Property (A) says that some of those
induced subgraphs may not be disjoint or not adjacent. It says that xy can be in E(G)
for x ∈ Ui and y ∈ Uj for (i, j) ∈ {(3, 5), (3, 6), (4, 6)}. Looking closer to those pairs of i
and j one can see that either 3 or 6 appears in each pair. Therefore, when 3 and 6 are
taken out of consideration, then for i = 2, 4, 5, 7, the induced subgraphs 〈Ui ∪ ΓR(Ui)〉G
are disjoint and nonadjacent from each other. Now pick one vertex from each induced
subgraph 〈Ui ∪ ΓR(Ui)〉G for i = 2, 4, 5, 7. Then this forms an independent of 4 vertices
since the induced subgraphs are disjoint and not adjacent to each other. It should not be
possible to pick one more vertex from each of the induced subgraphs 〈Ui ∪ ΓR(Ui)〉G for
i = 2, 4, 5, 7 such that all vertices are adjacent to each other, because that would make a
set of 8 independent vertices. When picking one more vertex from each induced subgraph
〈Ui ∪ ΓR(Ui)〉G for i = 2, 4, 5, 7, then this forms a set of 8 vertices. However, this set of
8 elements should not be independent, therefore, at least one of the induced subgraphs
〈Ui ∪ ΓR(Ui)〉G for i = 2, 4, 5, 7 should be complete. Say, 〈Uk ∪ ΓR(Uk)〉G is complete for
some k = 2, 4, 5, 7. Let x ∈ Uk. The vertex x is adjacent to uk ∈ U and possibly also to
u1, and so x is adjacent to at least 6 vertices in R, since δ(G) ≥ 8. Then |ΓR(x)| ≥ 6,
thus |{x} ∪ ΓR(x)| ≥ 7 and so |〈Uk ∪ ΓR(Uk)〉G| ≥ 7. That means that G contains a K7.

2. Ui ∩ Uj 6= ∅ for some 2 ≤ i < j ≤ 7. Let u8 be a vertex in G such that u8 ∈ Ur ∩ Us.
Now redefine the sets U , R and Ui. To that end, let U ′ = {u1, u2, u3, u4, u5, u6, u7, u8},
R′ = G \U ′ and U ′i = Γ(ui)∩ V (R′). For 2 ≤ i ≤ 8, each vertex ui ∈ U ′ is adjacent to at
most 7 other vertices in U ′. However, since δ(G) ≥ 8, each vertex ui ∈ U ′ must also be
adjacent to at least one vertex in R′, hence U ′i 6= ∅ for all 2 ≤ i ≤ 8. For each pair (r, s),
that is for u8 ∈ Ur ∩ Us, the following properties will be shown for some set J :

(A1) U ′i ∩ U ′j = ∅ for all i, j ∈ J .

(B1) xy /∈ E(G) for all i, j ∈ J and for all x ∈ U ′i and y ∈ U ′j .
(C1) ΓR′(U

′
i) ∩ ΓR′(U

′
j) = ∅ for all i, j ∈ J .

(D1) xy /∈ E(G) for all i, j ∈ J and for all x ∈ ΓR(Ui) and y ∈ ΓR(Uj).
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By now, it must be clear that when assuming that properties (A1), (B1), (C1) and (D1)
do not hold, the existence of paths in U ′ of order 8, 7, 6 and 5, respectively, between
vertices ui and uj causes G to contain cycles of order 9. This is due to the fact that if
properties (A1), (B1), (C1) and (D1) do not hold, then there are paths of order 3, 4, 5 and
6, respectively, from ui to uj through R′. For each pair (r, s), where r, s ∈ {2, 3, 4, 5, 6, 7}
and r 6= s, properties (A1), (B1), (C1) and (D1) will be proven.

• Let (r, s) = (6, 7) and J = {2, 4, 5, 8}. Then u8 ∈ U6∩U7. The following table shows
that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.

(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(2, 4) (u2, u3, u1, u7, u8, u6, u5, u4) (u2, u1, u7, u8, u6, u5, u4) (u2, u1, u7, u6, u5, u4) (u2, u1, u6, u5, u4)
(2, 5) (u2, u3, u4, u1, u7, u8, u6, u5) (u2, u3, u1, u7, u8, u6, u5) (u2, u1, u7, u8, u6, u5) (u2, u1, u7, u6, u5)
(2, 8) (u2, u3, u4, u5, u6, u1, u7, u8) (u2, u3, u4, u5, u1, u7, u8) (u2, u3, u4, u1, u7, u8) (u2, u3, u1, u7, u8)
(4, 5) (u4, u3, u2, u1, u7, u8, u6, u5) (u4, u3, u2, u1, u7, u6, u5) (u4, u3, u2, u1, u6, u5) (u4, u3, u2, u1, u5)
(4, 8) (u4, u3, u2, u1, u5, u6, u7, u8) (u4, u3, u2, u1, u6, u7, u8) (u4, u3, u2, u1, u7, u8) (u4, u5, u6, u7, u8)
(5, 8) (u5, u4, u3, u2, u1, u6, u7, u8) (u5, u4, u3, u2, u1, u7, u8) (u5, u4, u3, u1, u7, u8) (u5, u4, u1, u7, u8)

• Let (r, s) = (2, 3). The graph in Figure 15 is symmetric, so since properties (A1),
(B1), (C1) and (D1) hold for (r, s) = (6, 7) and J = {2, 4, 5, 8}, they also hold for
(r, s) = (2, 3) and J = {4, 5, 7, 8}

• Let (r, s) = (5, 7) and J = {2, 4, 6, 8}. Then u8 ∈ U5∩U7. The following table shows
that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.

(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(2, 4) (u2, u3, u1, u6, u7, u8, u5, u4) (u2, u3, u1, u7, u6, u5, u4) (u2, u1, u7, u6, u5, u4) (u2, u1, u6, u5, u4)
(2, 6) (u2, u3, u4, u1, u7, u8, u5, u6) (u2, u3, u1, u7, u8, u5, u6) (u2, u1, u7, u8, u5, u6) (u2, u3, u4, u5, u6)
(2, 8) (u2, u3, u4, u5, u6, u1, u7, u8) (u2, u3, u4, u5, u1, u7, u8) (u2, u3, u4, u1, u7, u8) (u2, u3, u1, u7, u8)
(4, 6) (u4, u3, u2, u1, u5, u8, u7, u6) (u4, u3, u1, u7, u8, u5, u6) (u4, u3, u2, u1, u7, u6) (u4, u3, u2, u1, u6)
(4, 8) (u4, u3, u2, u1, u5, u6, u7, u8) (u4, u3, u2, u1, u6, u7, u8) (u4, u3, u2, u1, u7, u8) (u4, u5, u6, u7, u8)
(6, 8) (u6, u5, u4, u3, u2, u1, u7, u8) (u6, u5, u4, u3, u1, u7, u8) (u6, u5, u4, u1, u7, u8) (u6, u5, u1, u7, u8)

• Let (r, s) = (2, 4). The graph in Figure 15 is symmetric, so since properties (A1),
(B1), (C1) and (D1) hold for (r, s) = (5, 7) and J = {2, 4, 6, 8}, they also hold for
(r, s) = (2, 4) and J = {3, 5, 7, 8}.

• Let (r, s) = (4, 7) and J = {2, 5, 6, 8}. Then u8 ∈ U4∩U7. The following table shows
that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.

• Let (r, s) = (2, 5). The graph in Figure 15 is symmetric, so since properties (A1),
(B1), (C1) and (D1) hold for (r, s) = (4, 7) and J = {2, 5, 6, 8}, they also hold for
(r, s) = (2, 5) and J = {3, 4, 7, 8}.
• Let (r, s) = (3, 7) and J = {2, 4, 6, 8}. Then u8 ∈ U3∩U7. The following table shows

that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
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(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(2, 5) (u2, u3, u1, u6, u7, u8, u4, u5) (u2, u3, u4, u1, u7, u6, u5) (u2, u3, u1, u7, u6, u5) (u2, u1, u7, u6, u5)
(2, 6) (u2, u3, u1, u7, u8, u4, u5, u6) (u2, u1, u7, u8, u4, u5, u6) (u2, u3, u1, u4, u5, u6) (u2, u3, u4, u5, u6)
(2, 8) (u2, u3, u1, u7, u6, u5, u4, u8) (u2, u3, u4, u5, u1, u7, u8) (u2, u3, u4, u1, u7, u8) (u2, u3, u1, u7, u8)
(5, 6) (u5, u1, u2, u2, u4, u8, u7, u6) (u5, u4, u3, u2, u1, u7, u6) (u5, u4, u3, u2, u1, u6) (u5, u4, u3, u1, u6)
(5, 8) (u5, u4, u3, u2, u1, u6, u7, u8) (u5, u4, u3, u1, u6, u7, u8) (u5, u4, u1, u6, u7, u8) (u5, u1, u6, u7, u8)
(6, 8) (u6, u5, u4, u3, u2, u1, u7, u8) (u6, u5, u4, u3, u1, u7, u8) (u6, u5, u4, u1, u7, u8) (u6, u5, u1, u7, u8)

ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.

(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(2, 4) (u2, u1, u5, u6, u7, u8, u3, u4) (u2, u3, u8, u7, u6, u5, u4) (u2, u1, u7, u6, u5, u4) (u2, u1, u6, u5, u4)
(2, 6) (u2, u3, u8, u7, u1, u4, u5, u6) (u2, u3, u8, u7, u1, u5, u6) (u2, u3, u1, u4, u5, u6) (u2, u3, u4, u5, u6)
(2, 8) (u2, u1, u7, u6, u5, u4, u3, u8) (u2, u1, u6, u5, u4, u3, u8) (u2, u1, u5, u4, u3, u8) (u2, u1, u4, u3, u8)
(4, 6) (u4, u5, u1, u2, u3, u8, u7, u6) (u4, u1, u2, u3, u8, u7, u6) (u4, u3, u2, u1, u7, u6) (u4, u3, u1, u7, u6)
(4, 8) (u4, u5, u6, u7, u1, u2, u3, u8) (u4, u5, u6, u1, u2, u3, u8) (u4, u5, u1, u2, u3, u8) (u4, u1, u2, u3, u8)
(6, 8) (u6, u5, u4, u3, u2, u1, u7, u8) (u6, u5, u4, u3, u1, u7, u8) (u6, u5, u4, u1, u7, u8) (u6, u5, u1, u7, u8)

• Let (r, s) = (2, 6). The graph in Figure 15 is symmetric, so since properties (A1),
(B1), (C1) and (D1) hold for (r, s) = (3, 7) and J = {2, 4, 6, 8}, they also hold for
(r, s) = (2, 6) and J = {3, 5, 7, 8}.

• Let (r, s) = (2, 7) and J = {4, 5, 6, 8}. Then u8 ∈ U3∩U7. The following table shows
that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.

(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(4, 5) (u4, u3, u1, u2, u8, u7, u6, u5) (u4, u3, u2, u1, u7, u6, u5) (u4, u3, u2, u1, u6, u5) (u4, u3, u2, u1, u5)
(4, 6) (u4, u5, u1, u3, u2, u8, u7, u6) (u4, u1, u3, u2, u8, u7, u6) (u4, u3, u2, u1, u7, u6) (u4, u3, u1, u7, u6)
(4, 8) (u4, u3, u2, u1, u5, u6, u7, u8) (u4, u3, u2, u1, u6, u7, u8) (u4, u3, u2, u1, u7, u8) (u4, u5, u6, u7, u8)
(5, 6) (u4, u5, u1, u2, u3, u8, u7, u6) (u4, u1, u2, u3, u8, u7, u6) (u4, u3, u2, u1, u7, u6) (u4, u3, u1, u7, u6)
(5, 8) (u5, u4, u3, u2, u1, u6, u7, u8) (u5, u4, u3, u1, u6, u7, u8) (u5, u4, u1, u6, u7, u8) (u5, u1, u6, u7, u8)
(6, 8) (u6, u5, u4, u3, u2, u1, u7, u8) (u6, u5, u4, u3, u1, u7, u8) (u6, u5, u4, u1, u7, u8) (u6, u5, u1, u7, u8)

• Let (r, s) = (5, 6) and J = {2, 4, 7, 8}. Then u8 ∈ U5∩U6. The following table shows
that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.

• Let (r, s) = (3, 4). The graph in Figure 15 is symmetric, so since properties (A1),
(B1), (C1) and (D1) hold for (r, s) = (5, 6) and J = {2, 4, 7, 8}, they also hold for
(r, s) = (3, 4) and J = {2, 5, 7, 8}.

• Let (r, s) = (4, 6) and J = {2, 5, 7, 8}. Then u8 ∈ U4∩U6. The following table shows
that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.
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(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(2, 4) (u2, u3, u1, u7, u6, u8, u5, u4) (u2, u3, u1, u7, u6, u5, u4) (u2, u1, u7, u6, u5, u4) (u2, u1, u6, u5, u4)
(2, 7) (u2, u3, u4, u5, u8, u6, u1, u7) (u2, u3, u4, u5, u8, u6, u7) (u2, u3, u4, u5, u6, u7) (u2, u1, u5, u6, u7)
(2, 8) (u2, u3, u4, u5, u1, u7, u6, u8) (u2, u3, u4, u5, u1, u6, u8) (u2, u3, u4, u5, u6, u8) (u2, u3, u4, u5, u8)
(4, 7) (u4, u3, u2, u1, u5, u8, u6, u7) (u4, u3, u2, u1, u5, u6, u7) (u4, u3, u2, u1, u6, u7) (u4, u3, u2, u1, u7)
(4, 8) (u4, u3, u2, u1, u7, u6, u5, u8) (u4, u3, u2, u1, u7, u6, u8) (u4, u3, u2, u1, u7, u8) (u4, u1, u7, u6, u8)
(7, 8) (u7, u1, u2, u3, u4, u5, u6, u8) (u7, u1, u2, u3, u4, u5, u8) (u7, u1, u3, u4, u5, u8) (u7, u1, u4, u5, u8)

(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(2, 5) (u2, u3, u4, u8, u6, u7, u1, u5) (u2, u3, u4, u1, u7, u6, u5) (u2, u3, u1, u7, u6, u5) (u2, u1, u7, u6, u5)
(2, 7) (u2, u3, u4, u8, u6, u5, u1, u7) (u2, u1, u3, u4, u5, u6, u7) (u2, u3, u4, u5, u6, u7) (u2, u1, u5, u6, u7)
(2, 8) (u2, u3, u4, u5, u1, u7, u6, u8) (u2, u3, u4, u5, u1, u6, u8) (u2, u3, u4, u5, u6, u8) (u2, u1, u3, u4, u8)
(5, 7) (u5, u1, u2, u3, u4, u8, u6, u7) (u5, u4, u3, u2, u1, u6, u7) (u5, u4, u3, u2, u1, u7) (u5, u4, u3, u1, u7)
(5, 8) (u5, u4, u3, u2, u1, u7, u6, u8) (u5, u4, u3, u1, u7, u6, u8) (u5, u1, u2, u3, u4, u8) (u5, u1, u3, u4, u8)
(7, 8) (u7, u1, u2, u3, u4, u5, u6, u8) (u7, u1, u3, u4, u5, u6, u8) (u7, u1, u2, u3, u4, u8) (u7, u1, u3, u4, u8)

• Let (r, s) = (3, 5). The graph in Figure 15 is symmetric, so since properties (A1),
(B1), (C1) and (D1) hold for (r, s) = (4, 6) and J = {2, 5, 7, 8}, they also hold for
(r, s) = (3, 5) and J = {2, 4, 7, 8}.

• Let (r, s) = (3, 6) and J = {2, 5, 7, 8}. Then u8 ∈ U3∩U6. The following table shows
that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.

(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(2, 5) (u2, u3, u8, u6, u7, u1, u4, u5) (u2, u3, u4, u1, u7, u6, u5) (u2, u3, u1, u7, u6, u5) (u2, u1, u7, u6, u5)
(2, 7) (u2, u3, u8, u6, u5, u4, u1, u7) (u2, u1, u3, u4, u5, u6, u7) (u2, u3, u4, u5, u6, u7) (u2, u1, u5, u6, u7)
(2, 8) (u2, u3, u4, u5, u1, u7, u6, u8) (u2, u3, u4, u5, u1, u6, u8) (u2, u3, u4, u5, u6, u8) (u2, u1, u7, u6, u8)
(5, 7) (u5, u4, u1, u2, u3, u8, u6, u7) (u5, u4, u3, u2, u1, u6, u7) (u5, u4, u3, u2, u1, u7) (u5, u4, u3, u1, u7)
(5, 8) (u5, u4, u3, u2, u1, u7, u6, u8) (u5, u4, u3, u1, u7, u6, u8) (u5, u6, u1, u2, u3, u8) (u5, u1, u2, u3, u8)
(7, 8) (u7, u6, u5, u4, u1, u2, u3, u8) (u7, u1, u3, u4, u5, u6, u8) (u7, u6, u1, u2, u3, u8) (u7, u1, u2, u3, u8)

• Let (r, s) = (4, 5) and J = {2, 6, 7, 8}. Then u8 ∈ U4∩U5. The following table shows
that for all i, j ∈ J with i < j, there are paths of order 8, 7, 6 and 5 between vertices
ui and uj . Since there cannot be cycles of order 9 in G, the properties (A1), (B1),
(C1) and (D1) must hold.

It has finally been shown that properties (A1), (B1), (C1) and (D1) hold for each pair
(r, s) and some J ⊂ {2, 3, 4, 5, 6, 7, 8} with |J | = 4.

In case the vertex u8 ∈ Ur ∩ Us for (r, s) ∈ {(2, 3), (3, 4), (4, 5), (5, 6), (6, 7)} and u8 is
adjacent to u1, then the vertices of U ′ form a K1 +P7. For example, when u8 ∈ U4 ∩U5,
then there is a path of order 7, namely, (u2, u3, u4, u8, u5, u6, u7) and every vertex ui for
i ∈ {2, 3, 4, 5, 6, 7, 8} is adjacent to u1, so that gives a K1 + P7, where K1 = u1 and
P7 = (u2, u3, u4, u8, u5, u6, u7). Hence, the proof is done because there is a K1 +P7 in G.
When this is not the case, the following shows that there is a K7 in G. Try to construct
an independent set. Whatever the value of (r, s), properties (A1), (B1), (C1) and (D1)
show that the induced subgraph 〈U ′i ∪ ΓR′(U

′
i)〉G is disjoint from and not adjacent to
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(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(2, 6) (u2, u3, u4, u8, u5, u1, u7, u6) (u2, u3, u4, u5, u1, u7, u6) (u2, u3, u4, u5, u1, u6) (u2, u3, u4, u5, u6)
(2, 7) (u2, u3, u4, u8, u5, u6, u1, u7) (u2, u3, u4, u8, u5, u6, u7) (u2, u3, u4, u5, u6, u7) (u2, u1, u5, u6, u7)
(2, 8) (u2, u3, u4, u1, u7, u6, u5, u8) (u2, u3, u4, u1, u6, u5, u8) (u2, u3, u4, u1, u5, u8) (u2, u3, u4, u5, u8)
(6, 7) (u6, u5, u8, u4, u3, u2, u1, u7) (u6, u5, u4, u3, u2, u1, u7) (u6, u5, u4, u3, u1, u7) (u6, u5, u4, u1, u7)
(6, 8) (u6, u7, u1, u2, u3, u4, u5, u8) (u6, u7, u1, u2, u3, u4, u8) (u6, u1, u2, u3, u4, u8) (u6, u1, u3, u4, u8)
(7, 8) (u7, u6, u5, u1, u2, u3, u4, u8) (u7, u6, u1, u2, u3, u4, u8) (u7, u1, u2, u3, u4, u8) (u7, u1, u3, u4, u8)

〈U ′j ∪ ΓR′(U
′
j)〉G for i, j ∈ J with i 6= j, where, again, |J | = 4. Pick one vertex from

each induced subgraph 〈U ′i ∪ ΓR′(U
′
i)〉G for i ∈ J . Then this forms an independent of

4 vertices since the induced subgraphs are disjoint from and not adjacent to each other.
It should not be possible to pick one more vertex from each of the induced subgraphs
〈U ′i ∪ ΓR′(U

′
i)〉G for i ∈ J such that all vertices are adjacent to each other, because that

would make a set of 8 independent vertices. When picking one more vertex from each
induced subgraph 〈U ′i ∪ΓR′(U

′
i)〉G for i ∈ J , then this forms a set of 8 vertices, therefore,

at least one of the induced subgraphs 〈U ′i ∪ΓR′(U
′
i)〉G for i ∈ J should be complete. Since

δ(G) ≥ 8, this complete graph contains K7.

Therefore, in both cases, G ends up having either a K7 or a K1 + P6. �

Lemma 9 If G contains K6, then G contains K1 + P6 or K7.

Proof : Let G be a graph that contains K6 and let U = {u1, u2, u3, u4, u5, u6} be the vertex
set of the complete graph K6. Define R = G \ U and Ui = Γ(ui) ∩ V (R) for each 1 ≤ i ≤ 6.
Take any vertex ui ∈ U , then ui is adjacent to the 5 other vertices in U , so since δ(G) ≥ 8, ui
is also adjacent to at least 3 vertices of R, that is |Ui| ≥ 3 for 1 ≤ i ≤ 6. The rest of the proof
is completed by considering the following two cases:

1. Ui ∩ Uj 6= ∅ for some 1 ≤ i < j ≤ 6. Let w ∈ Ui ∩ Uj for some 1 ≤ i < j ≤ 6. The
graph K6 is a complete graph, so the vertex ui is adjacent to all the other vertices of
U and ui is also adjacent to w. Together, ui is adjacent to 6 vertices. Those 6 vertices
form a path of order 6 in the following way: start the path with vertex w, let the second
vertex be uj and let vertices 3 through 6 be the remaining vertices of U in any order.
This creates the following path: (w, uj , uj1 , uj2 , uj3 , uj4) where uj , uj1 , uj2 , uj3 , uj4 ∈ U .
Since u1 is adjacent to every vertex in the path, this forms a K1 +P6 where K1 = u1 and
P6 = (w, uj , uj1 , uj2 , uj3 , uj4). Then the proof is finished for this case.

2. Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 6. This case is continued by considering two subcases.

2.1. xy /∈ E(G) for all 1 ≤ i < j ≤ 6 and for all x ∈ Ui and y ∈ Uj . The graph K6 is
complete so for every two vertices ui, uj ∈ U with 1 ≤ i < j ≤ 6, there is a path of
order 6 in U from ui to uj by walking along the 4 remaining vertices of U . Then
the path looks like this: (ui, ui1 , ui2 , ui3 , ui4 , uj) where all vertices in the path are
distinct vertices in U . If there would be a vertex w ∈ ΓR(Ui) ∩ ΓR(Uj), then there
is the following path from ui to uj : (ui, x, w, y, uj) where w is adjacent to x ∈ Ui

and to y ∈ Uj . The two paths (ui, ui1 , ui2 , ui3 , ui4 , uj) and (ui, x, w, y, uj) together
form a cycle of order 9 in G. This is a contradiction, hence ΓR(Ui) ∩ ΓR(Uj) = ∅.
Similarly, between any two vertices ui, uj ∈ U with 1 ≤ i < j ≤ 6, there is a path
of order 5 in U from ui to uj by walking along 3 of the 4 remaining vertices of U .
Then the path looks like this: (ui, ui1 , ui2 , ui3 , uj) where all vertices in the path are
distinct vertices in U . Let x ∈ ΓR(Ui) and y ∈ ΓR(Uj) and suppose that xy ∈ E(G).
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(i, j) path of order 8 path of order 7 path of order 6 path of order 5
(3, 4) (u3, u2, u8, u7, u1, u6, u5, u4) (u3, u2, u8, u7, u1, u5, u4) (u3, u2, u1, u6, u5, u4) (u3, u1, u6, u5, u4)
(3, 5) (u3, u2, u8, u7, u1, u4, u6, u5) (u3, u2, u8, u7, u1, u4, u5) (u3, u2, u1, u6, u4, u5) (u3, u2, u1, u6, u5)
(3, 6) (u3, u2, u8, u7, u1, u4, u5, u6) (u3, u2, u8, u7, u1, u5, u6) (u3, u2, u1, u4, u5, u6) (u3, u2, u4, u5, u6)
(3, 7) (u3, u4, u5, u6, u1, u2, u8, u7) (u3, u4, u5, u6, u2, u8, u7) (u3, u5, u6, u2, u8, u7) (u3, u4, u5, u8, u7)
(3, 8) (u3, u4, u5, u6, u2, u1, u7, u8) (u3, u4, u5, u6, u1, u7, u8) (u3, u4, u5, u1, u7, u8) (u3, u4, u5, u7, u8)
(4, 5) (u4, u3, u2, u8, u7, u1, u6, u5) (u4, u2, u8, u7, u1, u6, u5) (u4, u3, u2, u1, u6, u5) (u4, u2, u1, u6, u5)
(4, 6) (u4, u3, u2, u8, u7, u1, u5, u6) (u4, u2, u8, u7, u1, u5, u6) (u4, u3, u2, u1, u5, u6) (u4, u3, u2, u1, u6)
(4, 7) (u4, u5, u6, u1, u3, u2, u8, u7) (u4, u5, u6, u1, u2, u8, u7) (u4, u5, u6, u2, u8, u7) (u4, u5, u2, u8, u7)
(4, 8) (u4, u5, u6, u3, u2, u1, u7, u8) (u4, u5, u6, u3, u1, u7, u8) (u4, u5, u6, u1, u7, u8) (u4, u5, u6, u2, u8)
(5, 6) (u5, u4, u3, u2, u8, u7, u1, u6) (u5, u3, u2, u8, u7, u1, u6) (u5, u4, u3, u2, u1, u6) (u5, u3, u2, u1, u6)
(5, 7) (u5, u4, u3, u6, u1, u2, u8, u7) (u5, u4, u3, u1, u2, u8, u7) (u5, u4, u3, u2, u8, u7) (u5, u4, u2, u8, u7)
(5, 8) (u5, u4, u3, u6, u2, u1, u7, u8) (u5, u4, u3, u6, u1, u7, u8) (u5, u4, u3, u1, u7, u8) (u5, u4, u3, u2, u8)
(6, 7) (u6, u5, u4, u3, u1, u2, u8, u7) (u6, u5, u4, u3, u2, u8, u7) (u6, u4, u3, u2, u8, u7) (u6, u3, u2, u8, u7)
(6, 8) (u6, u5, u4, u3, u2, u1, u7, u8) (u6, u5, u4, u3, u1, u7, u8) (u6, u5, u4, u3, u2, u8) (u6, u5, u4, u2, u8)
(7, 8) (u7, u1, u6, u5, u4, u3, u2, u8) (u7, u1, u5, u4, u3, u2, u8) (u7, u1, u4, u3, u2, u8) (u7, u1, u3, u2, u8)

Figure 16

Then there is path of order 6 from ui to uj , namely (ui, v, x, y, w, uj) where v ∈ Ui

and w ∈ Uj are adjacent to x and y respectively. The two paths (ui, ui1 , ui2 , ui3 , uj)
and (ui, v, x, y, w, uj) together form a cycle of order 9 in G. This is a contradiction,
hence xy /∈ E(G) for all 2 ≤ i < j ≤ 6 and for all x ∈ ΓR(Ui) and y ∈ ΓR(Uj).
It follows that each of the induced subgraphs 〈Ui ∪ ΓR(Ui)〉G is disjoint and not
adjacent for 1 ≤ i ≤ 6. Since the order of an independent set in G is maximal 7,
at least five of the induced subgraphs 〈Ui ∪ ΓR(Ui)〉G for 1 ≤ i ≤ 6 are complete.
It remains to show that one of those complete induced subgraphs contains at least
7 vertices. To that end, let x ∈ Ui for some 1 ≤ i ≤ 6. Since Ui ∩ Uj = ∅ for all
1 ≤ i < j ≤ 6, x is adjacent to ui ∈ U and to no other vertices in U . Then x is
adjacent to at least 7 vertices of R, since δ(G) ≥ 8. That means that |ΓR(Ui)| ≥ 7
for all 1 ≤ i ≤ 6 and so |〈Ui ∪ ΓR(Ui)〉G| ≥ 7 for all 1 ≤ i ≤ 6. And so, G contains
K7.

2.2. xy ∈ E(G) for some 1 ≤ i < j ≤ 6 and for some x ∈ Ui and y ∈ Uj . Without
loss of generality, assume that u7u8 ∈ E(G) for u7 ∈ U1 and u8 ∈ U2. Then
(u1, u7, u8, u2) is a path in G. Redefine the sets U , R and Ui in the following way.
Define U ′ = {u1, u2, u3, u4, u5, u6, u7, u8}, R′ = G \U ′ and U ′i = Γ(ui)∩ V (R′). The
following 4 properties will be shown:

(A) U ′i ∩ U ′j = ∅ for all 3 ≤ i < j ≤ 8.

(B) xy /∈ E(G) for all 3 ≤ i < j ≤ 8 and for all x ∈ U ′i and y ∈ U ′j .
(C) ΓR′(U

′
i) ∩ ΓR′(U

′
j) for all 3 ≤ i < j ≤ 8.

(D) xy /∈ E(G) for all 3 ≤ i < j ≤ 8 and for all x ∈ ΓR′(U
′
i) and y ∈ ΓR′(U

′
j).

These properties hold because there are paths of order 8, 7, 6 and 5 between any
two vertices ui and uj for 3 ≤ i < j ≤ 8 which is shown in the table in Figure
16. If the properties (A), (B), (C) and (D) were assumed not to be true, then
there would be paths of order 3, 4, 5 and 6, respectively, between vertices ui and
uj for 3 ≤ i < j ≤ 8 and then in all four cases, there would be a cycle of order
9 in G. The induced subgraphs 〈U ′i ∪ ΓR′(U

′
i)〉G are disjoint and not adjacent for

3 ≤ i ≤ 8. Since the order of an independent set in G is maximal 7, at least five of
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the induced subgraphs 〈U ′i ∪ ΓR′(U
′
i)〉G are complete. It remains to show that one

of those complete induced subgraphs contains at least 7 vertices. To that end, let
x ∈ U ′i for some 3 ≤ i ≤ 8. Since U ′i ∩ U ′j = ∅ for all 3 ≤ i < j ≤ 8, x is adjacent
to ui ∈ U ′ and to no other vertices in U ′. Then x is adjacent to at least 7 vertices
of R′, since δ(G) ≥ 8. That means that |ΓR′(U

′
i)| ≥ 7 for all 3 ≤ i ≤ 8 and so

|〈U ′i ∪ ΓR′(U
′
i)〉G| ≥ 7 for all 3 ≤ i ≤ 8. And so, G contains K7.

In both subcases, G contains K7. Hence, Ui ∩ Uj = ∅ for all 1 ≤ i ≤ 6 implies that G
contains K7.

Finally, from both cases it follows that G contains either K1 + P6 or K7. �

Lemma 10 If G is a graph of order ≥ 57, then G contains K1 + P6 or K6.

Proof : Let G be a graph of order ≥ 57. Assume for a contradiction that G contains neither
K1 + P6 nor K6. This lemma will be proven by means of three claims.

The first claim is: |Γ(u)| ≤ 28 for any u ∈ V (G). Proof: In order to arrive at a contradiction,
suppose that |〈ΓG(u)〉G| ≥ 29 for some vertex u. Recall the following set: Γ[u] := Γ(u) ∪ u.
Figures 17 and 18 show an example of the induced subgraphs of the neighborhood of u, includ-
ing u and excluding u respectively. Figure 18 shows that the neighborhood of u consists of 4
components: G1 = {u1, u8}, G2 = {u2}, G3 = {u3, u4, u5, u6} and G4 = {u7, u9, u10}.

Define the induced subgraph of the neighborhood of u as follows: let u be any vertex, then
〈ΓG(u)〉G =

⋃r
i=1Gi where Gi is a component for each i. The goal is now to consider the

case where 〈ΓG(u)〉G has minimum number of independent vertices and then try to show that
the order of the largest independent set is still greater than or equal to 8 (while the maximum
number of independent vertices was assumed to be smaller than 8). To that end, suppose
that 〈ΓG(u)〉G has minimum number of independent vertices. This hold when 〈ΓG(u)〉G has a
maximum number of edges. At this point, Theorem 8 will be used. The number of edges in
〈ΓG(u)〉G is maximal if the equality holds in the theorem. Then Theorem 8 implies that the
components of 〈ΓG(u)〉G must be complete graphs, so Gi is complete for each i. Assume for a
contradiction that 〈ΓG(u)〉G contains a path of order 6: P6. Since each vertex in the path is in
the neighborhood of u, each vertex in the path is adjacent to u. However, this creates a K1 +P6

in G where K1 = u which was assumed not to be possible. Therefore, 〈ΓG(u)〉G contains no
P6. The components Gi contain hence no P6. Since the Gi are complete for all i and contain

u

u1

u2

u3

u4u5

u6

u7

u9

u10

u8

Figure 17: 〈Γ[u]〉G

u1

u2

u3

u4u5

u6

u7

u9

u10

u8

Figure 18: 〈Γ(u)〉G
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no P6, Gi must be a complete graph of order at most 5 for all i. Suppose Gi is a complete
of order 5. The vertex u is adjacent to every vertex in Gi, since Gi is in the neighborhood of
u. Therefore, 〈Gi ∪ u〉G form a complete graph of order 6, a K6, in G which was assumed not
to be possible. Thus, Gi must be a complete graph of order at most 4. It was assumed that
|〈ΓG(u)〉G| ≥ 29. This is only possible if 〈ΓG(u)〉G contains:

• 7 tetrahedrons and an isolated vertex; 7× 4 + 1 = 29 or

• 6 tetrahedrons, a triangle and a K2; 6× 4 + 3 + 2 = 29 or

• 6 tetrahedrons and 2 triangles; 6× 4 + 2× 3 = 30 ≥ 29.

In any of these cases, there are at least 8 components in G, so there is an independent set of
at least 8 vertices. This is a contradiction and therefore, |Γ(u)| ≤ 28 for any u ∈ V (G).

Let α(G) denote the order of the largest independent set in G. The second claim is: α(G) = 7.
Proof: By assumption, |V (G)| ≥ 57 and G contains no C9. In [5], the result R(C9,K7) = 49
is proved, so when the order of a graph is ≥ 49, there will always be a cycle of order 9 or
an independent set of 7 vertices. In this lemma, |V (G)| ≥ 57 and G contains no C9, hence
α(G) ≥ 7. However, G has no set of 8 independent vertices, therefore α(G) ≤ 7. The results
α(G) ≥ 7 and α(G) ≤ 7 together give the result α(G) = 7.

The second claim assures thatG has an independent set of 7 vertices. Let u1, u2, u3, u4, u5, u6, u7

be 7 independent vertices in V (G). Recall that Γ[u] := Γ(u) ∪ u. Set Γi[ui+1] = Γ[ui+1] \(⋃i
j=1 Γ[uj ]

)
for 1 ≤ i ≤ 6. In the same way, set Γi(ui+1) = Γ(ui+1) \

(⋃i
j=1 Γ(uj)

)
for

1 ≤ i ≤ 6. Now let A =
⋃6

i=1 Γi[ui+1], B =
⋃6

i=1 Γi(ui+1) and β = α(〈B〉G).

The third claim is: |Γ(u1)∪B| ≥ 50. Proof: Suppose for a contradiction that |Γ(u1)∪B| ≤ 49.
Then

|Γ[u1] ∪A|

= |Γ(u1) ∪B ∪ {u1, u2, u3, u4, u5, u6, u7}|

= |Γ(u1) ∪B|+ |{u1, u2, u3, u4, u5, u6, u7}| ≤ 49 + 7 = 56,

so |Γ[u1] ∪A| ≤ 56. It follows that

|G \ (Γ[u1] ∪A)| ≥ 57− 56 = 1.

Note that R(C9,K1) = 1, then consider the graph G\(Γ[u1]∪A) which is obtained by removing
the vertices Γ[u1]∪A from the graph G. The graph G\ (Γ[u1]∪A) contains none of the vertices
ui for all 1 ≤ i ≤ 7 and also no vertices of the neighborhoods of ui for all 1 ≤ i ≤ 7. Therefore,
G \ (Γ[u1] ∪ A) contains a vertex, say u8, which is not adjacent to ui for all 1 ≤ i ≤ 7. Then
{u1, u2, u3, u4, u5, u6, u7, u8} forms an independent set in G. This means that α(G) ≥ 8, but
that is a contradiction. Therefore, |Γ(u1) ∪B| ≥ 50.

Up to now, the following three claims have been proved:

1. |Γ(u)| ≤ 28 for any u ∈ V (G).

2. α(G) = 7.

3. |Γ(u1) ∪B| ≥ 50.
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Since |V (G)| ≥ 57, by Lemma 3, δ(G) ≥ 8. It follows from Claim 1 that 8 ≤ |Γ(u1)| ≤ 28. In
Claim 3 it has been shown that |Γ(u1) ∪ B| ≥ 50. If |Γ(u1)| = r, then |B| ≥ 50 − r. Now a
similar argumentation as in Claim 1 will be used to prove that α(〈Γ(u1)〉G ≥ d r4e.

Assume that |Γ(u1)| = r. Let 〈Γ(u1)〉G =
⋃r

i=1Hi where Hi is a component for each i. Con-
sider the case where 〈Γ(u1)〉G has minimum number of independent vertices and look whether
the order of the largest independent set is still greater than or equal to 8. The graph 〈Γ(u1)〉G
has minimum number of independent vertices when 〈Γ(u1)〉G has a maximum number of edges.
By Theorem 8 it holds that the number of edges in 〈Γ(u1)〉G is maximal if the equality holds
in the theorem. Then Theorem 8 implies that the components of 〈Γ(u1)〉G must be complete
graphs, so Hi is complete for each i. With the same reasoning as before, Gi cannot contain
a P6, so Gi must have at most 5 vertices. However, Gi cannot be a complete graph of order
5, so Gi is a complete graph of order at most 4. The number of components Hi is minimal
when the Hi are all tetrahedrons for all i. In that case, the number of components is d r4e and
so α(〈Γ(u1)〉G) = d r4e. The latter holds when the number of components Hi is minimal, so in
general α(〈Γ(u1)〉G) ≥ d r4e. Since |Γ(u1)| = r and |B| ≥ 50− r, α(〈B〉G) ≥ d 50−r

4 e. Recall that
8 ≤ r ≤ 28. When 8 ≤ r ≤ 21, d 50−r

4 e ≥ 8, thus α(G) ≥ 8, a contradiction. This means that
r cannot take values from 8 to 21 and therefore 22 ≤ |Γ(u1)| ≤ 28. This will be separated into
three cases.

1. 22 ≤ |Γ(u1)| ≤ 25. As shown above, when |Γ(u1)| = r, then α(〈Γ(u1)〉G) ≥ d r4e and
β = d 50−r

4 e. Then 22 ≤ r ≤ 25 implies that d r4e ≥ 6, so α(〈Γ(u1)〉G) ≥ 6. Also, for those
values of r, d 50−r

4 e ≥ 7, so β ≥ 7. Then, 〈B〉G has an independent set of 7 vertices. All
those 7 vertices are not adjacent to vertex u1, so they together form a set of 8 independent
vertices of G and that is a contradiction.

2. |Γ(u1)| = 26. From Claim 3, |Γ(u1)∪B| ≥ 50, it follows that |B| ≥ 24. In this case, r = 26,
so with the same reasoning as above, α(〈Γ(u1)〉G) ≥ d 26

4 e = 7 and β ≥ d 50−26
4 e = 6. This

value of β will be split into two cases.

2.1. β ≥ 7. Then, 〈B〉G has an independent set of 7 vertices. All those 7 vertices are not
adjacent to vertex u1, so they together form a set of 8 independent vertices of G and
that is a contradiction.

2.2. β = 6. Write the set B as B = Γ1(u2)∪ Γ2(u3)∪ Γ3(u4)∪ Γ4(u5)∪ Γ5(u6)∪ Γ6(u7).
The graphs 〈Γi(ui+1)〉G for 1 ≤ i ≤ 6 have minimum number of independent vertices
when each 〈Γi(ui+1)〉G has a maximum number of edges. By Theorem 8 it holds
that the number of edges in 〈Γi(ui+1)〉G is maximal if the equality holds in the
theorem. Then Theorem 8 implies that the components of 〈Γi(ui+1)〉G must be
complete graphs. Each 〈Γi(ui+1)〉G for 1 ≤ i ≤ 6 cannot contain a P6 because
otherwise, that P6 would form a K1 + P6 with K1 = ui+1, so the order of each
component of 〈Γi(ui+1)〉G is at most 5. Also, 〈Γi(ui+1)〉G cannot contain a K5

because otherwise, K5 and ui+1 together form a K6. Therefore, the components of
〈Γi(ui+1)〉G are complete graphs of order at most 4. Since |B| ≥ 24 and α(〈B〉G) = 6,
each subgraph 〈Γi(ui+1)〉G must consist of one tetrahedron. Also, |Γ(u1)| = 26, so
Γ(u1) has minimal number of components when it has 6 tetrahedrons and one K2.
This situation is given in Figure 19. Define 〈Γ(u1)〉G =

⋃r
i=1 Ji where Ji is a

component for each i. Define Ji for 1 ≤ i ≤ 6 to be the tetrahedrons in 〈Γ(u1)〉G
and define J7 to be the K2 in 〈Γ(u1)〉G. Now there are two subcases.

2.2.1. There exists a vertex a1 ∈
⋃6

i=1 Γi(ui+1) that is not adjacent to at least one
vertex of each Ji for 1 ≤ i ≤ 7. Say, a1 is not adjacent to xi ∈ Ji for each
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Figure 19

1 ≤ i ≤ 7. All components are independent, therefore the xi are independent
for all 1 ≤ i ≤ 7. Also, a1 is not adjacent to xi for all 1 ≤ i ≤ 7. Then
{x1, x2, x3, x4, x5, x6, x7, a1} is an independent set in G of 8 elements, which
means that α(G) ≥ 8. And that is a contradiction.

2.2.2. For each vertex of
⋃6

i=1 Γi(ui+1) there is 1 ≤ i ≤ 7 such that this vertex is adja-
cent to all vertices of Ji. Take two vertices from the same subgraph 〈Γi(ui+1)〉G
for some 1 ≤ i ≤ 6. Say, a1, a2 ∈ 〈Γ1(u2)〉G as in Figure 19.

• When both a1 and a2 are adjacent to all vertices of the same component
Ji for 1 ≤ i ≤ 6, then there is a cycle of order 9 by starting at a1, walking
along the vertices of Ji and u1, then going to a2, walking along the remaining
vertices of 〈Γ1(u2)〉G and going back to a1.

• When both a1 and a2 are adjacent to the vertices of the component J7 =
〈{x7, x8}〉G, then there is aK1+P6 by lettingK1 = a1 and P6 = (x7, x8, a2, ai1 , ai2 , u2),
where ai1 and ai2 are the remaining two vertices of 〈Γ1(u2)〉G.

• When a1 is adjacent to all vertices of Ji and a2 is adjacent to all vertices of
Jk for some 1 ≤ i < k ≤ 6, then there is a cycle of order 9 by starting at a1,
walking along two vertices of Ji, then going to u1, then walking along two
vertices of Jk, then walking to a2, then to u2 and then back to a1.

• When a1 is adjacent to all vertices of Ji for some 1 ≤ i ≤ 6 and a2 is
adjacent to the vertices of J7 = 〈{x7, x8}〉G, then there is a cycle of order 9
by starting at a1, then walking along all 4 vertices of Ji, then going to u1,
then walking along x7 and x8, then going to a2 and finally back to a1.

So in all possible ways of letting vertices of
⋃6

i=1 Γi(ui+1) be adjacent to all vertices
of some component Ji, there will be a K1 + P6 or a cycle of order 9 and that is a
contradiction. That means that when β = 6, there is a contradiction.

For all possible values of β, there is a contradiction, so |Γ(u1)| 6= 26

3. |Γ(u1)| = 27. From Claim 3 it follows that |B| ≥ 23. Here r = 27, so α(〈Γ(u1)〉G) ≥ 7
and β ≥ 6. Then this can again be split into two cases.

3.1 β ≥ 7. With the same reasoning as before, 〈B〉G has an independent set of 7 vertices.
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All those 7 vertices are not adjacent to vertex u1, so they together form a set of 8
independent vertices of G and that is a contradiction.

3.2 β = 6. This situation is the same as in Figure 19 but then both 〈Γ6(u7)〉G and J7

are triangles. Then the same reasoning as in subcases 2.2.1 and 2.2.2 will give the
same result for this case. Namely, there will always be a K1 +P6 or a cycle of order
9 and that is a contradiction.

All possible values of β give a contradiction, so |Γ(u1)| 6= 27.

4. |Γ(u1)| = 28. From Claim 3 it follows that |B| ≥ 22. Here r = 28, so α(〈Γ(u1)〉G) ≥ 7
and β ≥ 6. Then this can again be split into two cases.

4.1 β ≥ 7. With the same reasoning as before, 〈B〉G has an independent set of 7 vertices.
All those 7 vertices are not adjacent to vertex u1, so they together form a set of 8
independent vertices of G and that is a contradiction.

4.2 β = 6. This situation is the same as in Figure 19 but then J7 is a tetrahedron, just like
the other components of 〈Γ(u1)〉G and 〈Γ6(u7)〉G is a K2. Then the same reasoning
as in subcases 2.2.1 and 2.2.2 will give the same result for this case. Namely, there
will always be a K1 + P6 or a cycle of order 9 and that is a contradiction.

All possible values of β give a contradiction, so |Γ(u1)| 6= 28.

From Claim 1 is follows that |Γ(u1)| ≤ 28. However, for all possible values of |Γ(u1)|, there
follows a contradiction by using the assumption that G contains no K1 +P6 nor K6. Therefore,
if G is a graph of order ≥ 57, then G contains K1 + P6 or K6. �

Finally, all lemmas have been proven, so all requisites are available to prove Theorem 6:

Theorem 6 R(C9,K8) = 57.

For the sake of clarity, here are the 8 lemmas stated together:
Lemma 3 Let G be a graph of order ≥ 57 that contains neither a cycle of order 9 nor an
independent set of order 8. Then δ(G) ≥ 8.
Lemma 4 If G contains K8, then |V (G)| ≥ 72.
Lemma 5 If G contains K8 \ S6, then G contains K8.
Lemma 6 If G contains K7, then G contains K8 \ S6 or K8.
Lemma 7 If G contains K1 + P7, then G contains K7.
Lemma 8 If G contains K1 + P6, then G contains K1 + P7 or K7.
Lemma 9 If G contains K6, then G contains K1 + P6 or K7.
Lemma 10 If G is a graph of order ≥ 57, then G contains K1 + P6 or K6.

Next, the proof of Theorem 6 is given:

Proof It was already established that R(C9,K8) ≥ 57. Now show that R(C9,K8) ≤ 57.
To that end, suppose that G is a graph of order 57 that contains neither a cycle of order 9 nor
an independent set of 8 vertices. Then by Lemma 3, δ(G) ≥ 8, which was assumed to hold in
Lemmas 6, 7, 8, 9 and 10. By Lemma 10, G contains K1 + P6 or K6. This gives two cases:

• In case G contains K1 + P6, Lemma 8 implies that G contains K1 + P7 or K7. When G
contains K1 + P7, Lemma 7 tells that G contains K7. So G will always contain K7.
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• In case G contains K6, Lemma 9 implies that G contains K1+P6 or K7. When G contains
K1 + P6, Lemma 8 tells that G contains K1 + P7 or K7. If G contains then K1 + P7,
Lemma 7 implies that G contains K7. So G will always contain K7.

In either case, G will contain a complete graph K7. Moving on, G having a K7 means that G
contains K8 \ S6 or K8 by Lemma 6. If G contains K8 \ S6, then by Lemma 5, G contains K8.
Hence, in any case, G contains K8. Finally, by Lemma 4, |V (G)| ≥ 72. This is a contradiction,
since by assumption, |V (G)| = 57. Therefore, if G is a graph of order 57, then G contains
either a cycle of order 9 or an independent set of 8 vertices. This means that R(C9,K8) ≤ 57.
Together with the result R(C9,K8) ≥ 57, the conclusion is that R(C9,K8) = 57. �
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3 Conclusion and discussion

A lot of different aspects of Ramsey Theory have been covered in this thesis. After giving all
the necessary information about Graph Theory, the basics of Ramsey Theory were introduced.
Then, Theorem 3 was introduced [7]: Let k ≥ 3. Then 2

k
2 < R(k, k) < 4k−1. This theorem

shows that the symmetric Ramsey number is bounded from below and from above. All Ramsey
numbers are hence always finite and increase rapidly when increasing k.

After that, Theorem 4 was proven [9]: For all m ≥ 3 and n ≥ 2, the cycle-complete graph Ram-

sey number R(Cm,Kn) satisfies R(Cm,Kn) ≤ d(m− 2)(n
1
k + 2) + 1e(n− 1), where k = bm−1

2 c.
That theorem can be considered as the main theorem in this thesis. It gives one of the first
upper bounds for cycle-complete graph Ramsey numbers and it has not been improved signifi-
cantly since [19], [6].

Thereafter, an upper bound regarding the special case of cycles of order 4 is proven in Theorem

5 [9]: R(C4,Kn) < c
(

n log(log(n))
log(n)

)2

, n → ∞. It shows how the cycle-complete graph Ramsey

numbers behave asymptotically when considering cycles of order 4 and letting n go to infinity.

Finally, the exact calculation of a specific Ramsey number was given in Theorem 6: R(C9,K8) =
57. This theorem gives a very nice picture of what a derivation of a Ramsey number looks like
when an exact answer is found instead of only bounds from above and below.
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5 Appendix

The graph in Figure 20 shows that the extreme value that was computed in Section 2.4 is
indeed a maximum.

Figure 20
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