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Abstract

Human drivers have a tendency to overreact to the behaviour of the predecessor, amplifying disturbances
leading to traffic congestion whereas autonomous vehicles can be controlled to attenuate such distur-
bances. Here, the stability properties of a human and autonomous model were studied separately before
interconnecting them, giving rise to a mixed traffic model. In particular, the notion of string stability
was used extensively and numerical simulations were performed to confirm the theoretical analysis. It
was found that 20% of vehicles on a roadway need to be autonomous, with the objective of maintaining
a time-headway of 2s, for string stability.
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1 Introduction
In this paper, the idea of improving traffic flow using autonomous vehicles will be explored. More specifically,
this will be achieved by first studying a vehicle model consisting of only human drivers followed by a model
of only autonomous drivers. From there, it will be studied how these two models can be interconnected to
obtain a mixed traffic model.

The motivation for studying this problem arises from the behaviour of human drivers that have the tendency
to overreact to the behaviour of the predecessor, amplifying small initial disturbances leading to “phantom”
traffic jams. Traffic jams are undesirable because they are a common source of accidents, increase fuel
consumption and reduce throughput.

The human vehicle model studied in this paper [1] captures this behaviour of amplifying disturbances and
this phenomenon will be studied using the concept of string stability. String stable behaviour refers to the
attenuation of disturbances in the upstream direction and this means that human vehicles are string unstable.

An example of string unstable behaviour is shown in figure 1. Here, the lead vehicle, vehicle 1, accelerates
from 20 m/s to 22 m/s introducing a disturbance, which is then amplified by the following vehicles.

Figure 1: String unstable behaviour [2]

Automated vehicles on the other hand can be controlled to reduce the effects of such disturbances. Automated
vehicles are vehicles equipped with wireless communications systems to provide real-time information of the
preceding vehicle such as velocity and acceleration.

The autonomous vehicle model introduced in [3], which is string stable, will be studied and interconnected
with the human vehicle model, to analyze how the evolution of disturbances is affected and whether au-
tonomous vehicles can be used to stabilize human traffic.
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2 Human vehicle model
In this section, the Optimum Velocity Model (OVM) proposed in [1] will be studied and adapted for this
paper. A common approach when studying traffic models is to assume that the behaviour of a specific vehicle
i is determined by the behaviour of the vehicle ahead of it, vehicle i− 1.

ẋ1

i = 1i = 2i = N

ẋ2

Figure 2: Notation used for the human vehicle model

The leading idea used for designing this model is that each vehicle has the objective to maintain its legal
velocity V (∆xi), which depends on the distance between itself and the vehicle ahead, ∆xi. This means
each vehicle accelerates or decelerates to maintain the legal velocity according to the motion of the previous
vehicle.

The differential equation which describes this model is

ẍi = a{V (xi−1 − xi)− ẋi}, 2 ≤ i ≤ N, (1)

where the following notation is used:

• xi for the position of vehicle i = 1, 2, ..., N where i = 1 and i = N represent the first and final vehicle
respectively;

• ∆xi = xi−1 − xi for headway, i.e., the distance between two successive vehicles;

• V (∆xi) for the legal velocity function;

• N for the total number of vehicles;

• a for the driver’s sensitivity.

Furthermore, this model has several simplifying assumptions:

• Vehicles are simply points i.e. have no length;

• All vehicles are governed by the same equation.

There are two important criteria the velocity function has to satisfy to reflect realistic driver behaviour.
The first one being that when headway decreases, velocity decreases to prevent collisions and the second
being when headway increases, velocity increases but remains below maximum legal velocity. This can be
mathematically written down as

• V (∆xi) is a monotonically increasing function;

• |V (∆xi)| has an upper bound, which will be denoted by V max.

Specifically, V max = lim∆xi→∞ V (∆xi). The velocity function suggested in [1] is

V (∆xi) = tanh (∆xi − 2) + tanh (2),

and is also shown in figure 3.
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Figure 3: The velocity function

2.1 State-space model
As each vehicle is governed by a second-order differential equation, a model of N vehicles is described by a
system of N second-order differential equations as

ẍ1 = a{vref − ẋ1},
ẍ2 = a{V (x1 − x2)− ẋ2},

... (2)
ẍN = a{V (xN−1 − xN )− ẋN}.

where vref is the reference velocity and can also be seen as the external input into the system. To solve this
system of ODEs numerically, the first step is to rewrite this system of second-order ODEs as a system of
first-order ODEs, which is done by introducing the variable ∆xi such that ∆ẋi = vi−1 − vi where vi = ẋi.
This gives the following 2N − 1 system of first order ODEs

v̇1 = a{vref − v1},
∆̇x2 = v1 − v2,

v̇2 = a{V (∆x2)− v2},
...

∆̇xi = vi−1 − vi,
v̇i = a{V (∆xi)− vi},

...

∆̇xN = vN−1 − vN ,
v̇N = a{V (∆xN )− vN},

Note that vref should be interpreted as the objective velocity the lead vehicle attains and now the complete
model is shown in figure 4. Observe that the lead vehicle, vehicle 1, has different dynamics than the rest of
the vehicles because it has no vehicle ahead of it to follow.
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This model (2) differs slightly from that in [1] as there a circular road was considered which meant that the
(N + 1)th vehicle was equal to the 1st whereas here a straight road is considered.

vref

i = 1i = 2i = N

V (∆x2)

Figure 4: Straight road model

To illustrate the properties of this model, several time simulations are performed. For these simulations, the
initial condition for velocity and spacing is chosen to be the equilibrium point corresponding to vref = 1.5.
The initial spacing is denoted as ∆xref and is given by

∆xref = V −1(1.5) ≈ 2.598

Note that the following condition is required to prevent “free-flow” traffic

vref < V max ≈ 1.964.

Free-flow traffic is the scenario where vehicle density is low enough such that all vehicles attain V max. This
also means perturbations introduced by the lead vehicle is not amplified by the following vehicles since the
spacing between the vehicles is large enough to dissipate the disturbance.

Furthermore, a perturbation is introduced by the lead vehicle in the interval t ∈ (40, 50) by adapting the
reference velocity vref to

vref = 1.5− 0.2 sin

(
(t− 40) · 2π

50

)
.

The results of these time simulations are shown in figures 5, 7 and 6. In all three figures, the perturbation
introduced by the lead vehicle can be seen growing across the following vehicles.

In figure 5, the trajectory of all vehicles are plotted. Note that the slope of each line is the velocity of the
corresponding vehicle, so a horizontal trajectory line implies v = 0. Observe that initially, all trajectories
are smooth implying constant velocity whereas towards the end, the perturbation has been amplified to an
extent that these vehicles have to slow down to v = 0.

In figure 6, the oscillation in velocity is growing across the string of vehicles. Recalling the notion of string
stability explained in the introduction and the observing the similarities with figure 1, this simulation shows
that the human model (2) is string unstable. This will be studied more formally in section 2.4.

In figure 7, time snapshots of the vehicle velocity for different vehicles is shown. Here, the oscillations in
velocity can also be seen growing with time to the extent that the vehicles are almost stationary.
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Figure 5: Trajectory of all vehicles, where each line represents the trajectory of a single vehicle. The
uppermost line represents the trajectory of the first vehicle

Figure 6: The time evolution of the velocities for different vehicles are shown
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Figure 7: Time snapshots of vehicle velocity as a function of vehicle index. Recall i = 1 is the lead vehicle

2.2 Linearizing the model
The system (2) is not linear due to the non-linear velocity function V (∆xi). Once linearized, the system can be
studied for its stability properties and eventually the string stability properties. From the Hartman-Grobman
theorem, the behaviour of the linearized system close to the equilibrium point is a good approximation of
the non-linear system. First, the state z is introduced

z =
[
v1 ∆x2 v2 . . . ∆xi vi . . . ∆xN vN

]
followed by the function F (z, vref )

F (z, vref ) =



a{vref − v1}
v1 − v2

a{V (∆x2)− v2}
...

vi−1 − vi
a{V (∆xi)− vi}

...

vN−1 − vN
a{V (∆xN )− vN}


where ż = F (z, vref ).
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Now, a constant input vref (t) = v̄ref is chosen and the corresponding equilibrium (z̄, v̄ref ) is determined by
solving F (z̄, v̄ref ) = 0. This results in vi = V (∆xi) = v̄ref for i = 1, . . . , N . Physically, this means that
the spacing between the vehicles is such that all vehicles travel at v̄ref , which is simply ∆x̄ref=V −1(v̄ref ).
Hence, the equilibrium point of this system is

z̄ = [v̄ref ∆x̄ref v̄ref x̄ref . . . ∆x̄ref v̄ref ]T .

Now, the dynamics of the system is rewritten in coordinates that measure the deviation from this equilibrium
point. The deviation from the equilibrium point z̄ will be denoted as z̃. Similarly, the deviation for the
nominal input v̄ref is introduced as

z̃(t) = z(t)− z̄, ṽref (t) = vref (t)− v̄ref .

In terms of z̃, the dynamics read

˙̃z(t) = ż(t) − 0 = F (z̄ + z̃(t), v̄ref + ṽref (t)).

This is just a restatement of the non-linear dynamics but now, assuming z̃ and ṽref are small, a Taylor series
approximation of F around (z̃, ṽref ) = (0, 0) can be used. Note this is equivalent to taking a Taylor series
approximation around (z, vref ) = (z̄, v̄ref ), which gives

˙̃z = F (z̄ + z̃, v̄ref + ṽref ) ≈ F (z̄, v̄ref ) +
∂F

∂z
(z̄, v̄ref )z̃ +

∂F

∂vref
(z̄, v̄ref )ṽref ,

where

∂F

∂z
=


∂f1

∂z1
. . .

∂f1

∂zn
...

. . .
...

∂fn
∂z1

. . .
∂fn
∂zn

 ,
∂F

∂vref
=


∂f1

∂vref
...

∂fn
∂vref


Note that F (z̄, v̄ref ) = 0 by definition of the equilibrium. Now, computing the matrix of partial derivatives
∂F/∂z and evaluating it at the equilibrium point gives

∂F

∂z
(z̄, v̄ref ) =



−a
1 0 −1
0 ab −a

1 0 −1
0 ab −a

. . .
. . .
1 0 −1
0 ab −a


where b =

d

dx
V (x)

∣∣
x=∆x̄ref

. (3)

Note that the matrix has a block lower triangular structure which will be useful later as it simplifies the
computation of the eigenvalues and also the inverse. As for ∂F/∂vref ,

∂F

∂vref
(z̄, v̄ref ) =

[
a 0 . . . 0

]T
.

Now, the output equation of the nonlinear system is chosen to be

y(t) = vi.

8



This output is chosen because it will be used to study string stability of the system. The output equation of
the linearized system is simply

ỹ(t) = y(t)− ȳ
= vi − vref
= ṽi(t)

= eT2i−1z̃(t),

where e2i−1 is the vector with a one in position 2i−1 and zero otherwise. The position of the one corresponds
to the position of ṽi in z̃(t). From here on forward, the linearized human vehicle model will be denoted as

ż(t) = Az(t) +B vref (t),

y(t) = Ciz(t). (4)

where A = ∂F/∂z(z̄, v̄ref ), B = ∂F/∂z(z̄, v̄ref ) and Ci = eT2i−1. Here, the notation is abused by removing
the tildes .̃ since only the linearized dynamics will be used unless mentioned otherwise.

In figure 8, time simulations of the linearized human vehicle model are performed with the same parameters
as with the non-linear model. Observe that the string unstable behaviour is still captured by this linearized
model, which means that perturbations are still amplified by the following vehicles.

Furthermore, it is important to keep in mind that the linearized human vehicle model describes the dynamics
of the deviation from the equilibrium point. This is reflected in figure 8 which shows the deviation from the
equilibrium velocity vref = 1.5.

Figure 8: Time evolution of the velocities of different vehicles with the linearized dynamics
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Furthermore, from the system matrix A in (3), observe that for 2 ≤ i ≤ N , the behaviour of vehicle i is
determined by vi−1. Hence, the linearized human vehicle model for an individual vehicle can be written as

Σi
H :



[
˙∆xi

v̇i

]
=

[
0 −1

ab −a

][
∆xi

vi

]
+

[
1

0

]
vi−1,

vi =
[
0 1

] [∆xi

vi

]
,

(5a)

for which the following notation will be usedz
H
i = AH zHi + BH uHi ,

yHi = CH zHi .

The lead vehicle has slightly different dynamics

Σ1
H :

{
v̇1 = −av1 + avref ,

v1 = v1,
(5b)

and this will be notated as z
H
1 = AH1 zH1 + BH1 uH1 ,

yH1 = CH1 zH1 .

Hence, interaction between the vehicles can be seen in figure 9.

vref
v1 v2 v3

Σ1
H Σ4

H
Σ3
HΣ2

H

Figure 9: The connection between human vehicles

Note that the system matrix A (3) can now also be written as

A =



AH1

BHCH1 AH

BHCH

BHCH AH


, (5c)

which will be useful for interconnecting different vehicles later on.
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2.3 Stability
The concept of stability plays an important role in systems theory because it characterizes the asymptotic
behaviour of systems. Given the homogeneous system

ż(t) = Az(t),

this system is asymptotically stable if every solution tends to zero for t→∞ for any initial condition z0 ∈ Rn

lim
t→∞

z(t) = 0 ∀ z0 ∈ Rn,

and this is true if and only if
σ(A) ⊂ C− = {z ∈ C

∣∣ Re(z) ≤ 0}, (6a)

where σ(A) is the set of eigenvalues of the system matrix A (5c). Looking at the matrix A, only the block
diagonal matrices have to considered for the computation of the eigenvalues. Note that the matrices on
the diagonal of (5c) consists of one 1 × 1 matrix and (N − 1) identical 2 × 2 matrices. Hence, σ(A) =
σ(AH1 ) ∪ σ(AH) ∪ . . . ∪ σ(AH) where

σ(AH1 ) = {−a} and σ(AH) =

{
1

2

(
−a±

√
a2 − 4ab

)}
Note that a is defined to be positive so σ(AH1 ) ⊂ C−. For σ(AH) ⊂ C−, it is required that a2 − 4ab < a2

which implies b > 0. Recalling that b is the derivative of the velocity function evaluated at ∆xref , this
condition translates to V ′(∆x) > 0 and note that this is always true since the V (∆x) is a monotonically
increasing function. Hence, the system is always asymptotically stable.

2.4 String Stability
In this section, the notion of string stability will be explained in detail and the results here can be used to
explain the observations from the numerical results in figures 5, 6, 7 and 8. String stability can be used to
study how the parameters of the traffic model affect the evolution of perturbations along a string of vehicles.
This will also be used to study the autonomous vehicle model later.

Definition 1 (Vehicle string stability): Consider a string of N ∈ N interconnected vehicles. This system
is string stable if and only if

‖vi(t)‖L2
≤ ‖vi−1(t)‖L2

, ∀t ≥ 0, 2 ≤ i ≤ N, (6b)

where vi(t) is the velocity of vehicle i; v1(t) ∈ L2 is a given input signal, and vi(0) = 0 for 2 ≤ i ≤ N . Also,
‖·‖L2

denotes the 2−norm and i the vehicle index with i = 1 indicating the lead vehicle. This definition
states ‖vi(t)‖L2

must decrease in the upstream direction [3]

To study string stability, first consider the transfer function Ti(s) from the input velocity v̂ref to output
velocity v̂i

v̂i(s) = Ti(s) v̂ref (s) i = 1, . . . , N,

where s ∈ C and v̂(s) denotes the Laplace transform of v(t). Now, dividing v̂i by v̂i−1 gives Γi(s) which is
the transfer function from the “input” velocity v̂i−1(s) to the “output” velocity v̂i(s), i.e.,

v̂i(s) = Γi(s)v̂i−1(s), 2 ≤ i ≤ N

The transfer function Γi can now be related to the definition of string stability. Rewriting the definition (6b)
as

sup
vi−1 6=0

‖vi(t)‖L2

‖vi−1(t)‖L2

≤ 1,
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note that the term on the left hand side is often referred to as the L2 system gain which is expressed in the
time domain. Assuming asymptotic stability, this expression is equivalent to the H∞ norm of the transfer
function Γi in the frequency domain [4]:

‖Γi(jω)‖H∞ = sup
vi−1 6=0

‖vi(t)‖L2

‖vi−1(t)‖L2

,

where Γi(jω) is evaluated along the imaginary axis. The notation j =
√
−1 is used to avoid confusion with

the vehicle indexing i. For scalar transfer functions, ‖Γi(jω)‖H∞ is equal to the supremum of |Γi(jω)| over
the frequency ω. Hence, the string stability condition reduces to checking whether the following inequality
is satisfied:

sup
ω
|Γi(jω)| ≤ 1, 2 ≤ i ≤ N. (6c)

2.4.1 Computing the transfer function Γi

To compute Γi(s), the transfer function Ti(s) from the input velocity vref to the output velocity vi needs to
be determined since Γi = Ti/Ti−1. Recalling the system of the human driven model (4), the transfer function
Ti is computed as

Ti(s) = Ci(sI −A)−1B.

Before computing the inverse, observe that (sI −A) has a lower block triangular structure so the inverse will
also be lower block triangular. Due to the form of the vectors B and Ci (4), only the element (2i − 1, 1) of
the matrix (sI −A)−1 needs to be computed for Ti, i.e.,

Ti = a
(
sI −A

)−1

2i−1,1
. (7)

This simplifies the computation of the transfer function. Now, the required values are computed. Let

(sI −A)(sI −A)−1 =


J1

K1 J2

K2 J2

. . . . . .
K2 J2




J−1

1

Q2 J−1
2

Q3 · J−1
2

... · ·
. . .

QN · · · J−1
2

 = I2N−1,

where

J1 = s+ a, K1 =

[
−1
0

]
, J2 =

[
s 1
−ab s+ a

]
, K2 =

[
0 −1
0 0

]
.

Note that J1 = sI −AH1 and J2 = sI −AH respectively. For i = 1, the transfer function is

T1 = a
(
J−1

1

)
1,1

=
a

s+ a
.

For the remaining transfer functions note that Ti = a(Qi)2,1 for i = 2, . . . , N so the matrices Qi are solved
giving the following recurrence relation:

Q2 = −J−1
2 K1J

−1
1 ,

Q3 = −J−1
2 K2Q2,

Q4 = −J−1
2 K2Q3,

...

QN = −J−1
2 K2QN−1.
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Generally, this can be written as

Qi = (−1)i−1 (J−1
2 K2)i−2 (J−1

2 K1J
−1
1 ), i = 2, . . . , N.

To obtain a general expression for Qi, first a general expression for (J−1
2 K2)i−2 with 3 ≤ i ≤ N is found as

(J−1
2 K2)i−2 =

(
−ab

s2 + as+ ab

)i−2 [
0 (s+ a)(ab)−1

0 1

]
.

To show that this is true, assume it holds for i− 2 = k. To show it holds for i− 2 = k + 1 as well, observe

(J−1
2 K2)k(J−1

2 K2) =

(
−ab

s2 + as+ ab

)k+1 [
0 (s+ a)(ab)−1

0 1

] [
0 (s+ a)(ab)−1

0 1

]
= (J−1

2 K2)i−2

To obtain Qi, (J−1
2 K2)i−2 is post-multiplied by (−1)i−1(J−1

2 K1J
−1
1 ) which gives

Qi = (−1)2i−2

(
ab

s2 + as+ ab

)i−1 [
0 (s+ a)(ab)−1

0 1

] [
(ab)−1

(s+ a)−1

]

=

(
ab

s2 + as+ ab

)i−1 [
0 (ab)−1

0 (s+ a)−1

]
. (8)

Note that this expression was derived only for 3 ≤ i ≤ N . Computing Q2 = J−1
2 K1J

−1
1 , it is observed that

(8) holds for i = 2 as well. Hence, using Ti = a(Qi)2,1 for 2 ≤ i ≤ N and observing that T1 = a/(s+ a), it is
obtained that

Ti(s) = Ci(sI −A)−1B

=
a

s+ a

(
ab

s2 + as+ ab

)i−1

, 1 ≤ i ≤ N. (9)

Now, the transfer function Γi(s) can be computed and checked to see whether the human-driven model is
string stable. In particular,

Γi(s) =
Ti(s)

Ti−1(s)
=

ab

s2 + as+ ab
, 2 ≤ i ≤ N.

For string stability, the condition (6c) has to be satisfied for i = 2, . . . , N and since Γi is independent of i, it
only needs to be checked once. Noting again that j =

√
−1, Γi can be written as

Γi(jω) =
ab

ab− ω2 + jaω

=
ab

ab− ω2 + jaω

(
ab− ω2 − jaω
ab− ω2 − jaω

)
=
{

(ab− ω2)− jaω
} ab

(ab− ω2)2 + (aω)2

Computing |Γ(jω)|,

|Γ(jω)| =
{

(ab− ω2)2 + (aω)2
}1/2 ab

(ab− ω2)2 + (aω)2

=
ab

{(ab− ω2)2 + (aω)2}1/2
,
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the supremum of |Γ(jω)| over ω is obtained by minimizing the denominator with respect to ω2

sup
ω
|Γ(jω)| = ab{(

ab−
(
ab− a

2

))2
+ a2

(
ab− a

2

)}1/2
.

For realistic parameter values a = 1 and b = 1− tanh(xref − 2)2 which were also used earlier,

sup
ω
|Γ(jω)| = 1.0478,

which means the human vehicle model is string unstable, which corresponds with the results of the simulations
in figures 5, 6 and 7.

A common way to study transfer functions is with a Bode plot and the bode plot for Γi is given in figure 10.
Here, the peak of the frequency-response plot is equivalent to the peak gain of the system. For a string-stable
vehicle model, this peak should be less than or equal to 1.

Figure 10: Bode plot of Γi.
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3 Autonomous vehicle model
In this section, the autonomous vehicle model introduced in [3] will be studied with the goal of interconnecting
it later on with the human vehicle model.

In [3], a controller is designed using wireless intervehicle communication to provide real-time information of
the preceding vehicle, in addition to the information obtained by Adaptive Cruise Control (ACC) sensors
such as radar. This set-up is shown in figure 11 and the resulting control system is called Cooperative ACC
(CACC). This control system was implemented on a test fleet of six passenger vehicles where the results
matched the theoretical analysis that the system was string stable.

The autonomous vehicles here have the objective to maintain a constant time-headway from the vehicle ahead
of it. Time-headway, h, is implicitly defined as

∆xr,i = hẋi, (10)

where ∆xr,i is the desired following distance. Observe that the desired following distance increases as the
velocity of the vehicle increases. Comparing this with the human vehicle model, recall that the objective of
the human vehicles was to maintain the legal velocity V (∆x).

The autonomous vehicle dynamics are described with the differential equation

ȧi = −1

τ
ai +

1

τ
ui, 2 ≤ i ≤ N,

where the vehicle model can be directly written as ˙∆xi
v̇i
ȧi

 =

 vi−1 − vi
ai

− 1
τ ai + 1

τ ui

 , 2 ≤ i ≤ N, (11)

with the following notation:

• xi for position of vehicle i;

• vi for velocity of vehicle i;

• ai for acceleration of vehicle i;

• ui for external input of vehicle i;

• τ for a time constant representing engine dynamics;

• h for time headway.

The external input ui should be interpreted as the desired acceleration and is designed in such a way that
the constant time-headway is achieved.

Figure 11: CACC-equipped string of vehicles. Here, di = ∆xi. [3]
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3.1 Control design based on error dynamics
As before, consider a string of N vehicles, with ∆xi the distance between vehicle i and the vehicle ahead of
it, vehicle i− 1.

v̇1

12N
v̇2

∆x2

Figure 12: Overview of notation used

The objective given to each vehicle is to follow the vehicle ahead of it at a desired distance ∆xr,i (10). This
spacing policy is chosen because it improves string stability [3]. Now, the spacing error is defined as

ei(t) = ∆xi −∆xr,i

= xi−1 − xi − hvi,

To design the controller ui in such a way that the error dynamics are stabilized, ei(t) is differentiated twice
with respect to time to introduce ui into the error dynamics. This leads to

d

dt
ėi(t) =

d

dt
(vi−1 − vi − hai)

ëi(t) = ai−1 − ai − hȧi

= ai−1 − ai +
h

τ
ai −

h

τ
ui.

Now, ui is chosen in such a way that the error dynamics is stabilized. Specifically,

ui =
τ

h

{
ai−1 − ai

(
1− h

τ

)
+ kpei + kdėi

}
, (12)

where kp and kd are constants with dimensions s−2 and s−1 respectively. This choice of ui cancels terms in
ëi, giving the expression

ëi = −kdėi − kpei.

Explicitly writing the error dynamics in matrix form,[
ėi
ëi

]
=

[
0 1
−kp −kd

] [
ei
ėi

]
,

the Routh-Hurwitz criterion can now be used to determine the stability of this system by checking the
coefficients of the characteristic polynomial∣∣∣∣ s −1

kp s+ kd

∣∣∣∣ = s2 + kds+ kp.

For quadratic polynomials, the Routh-Hurwitz criterion states that quadratic characteristic polynomials are
stable if and only if all coefficients are non-zero and have the same sign. Applying it here, the error dynamics
is stable if and only if kp, kd > 0.

16



3.2 State-space model
Having found a suitable controller ui which has been shown to stabilize the error dynamics, ui can now be
substituted into the vehicle model (11) to give the autonomous vehicle model

∆̇xi = vi−1 − vi,
v̇i = ai,

ȧi = kdvi−1 +
1

h
ai−1 + kpdi + αvi + βai.

where α = (−kd − kph) and β = (−1/h− kdh). From this, the autonomous vehicle model for 2 ≤ i ≤ N can
be written as

ΣiA :



 ˙∆xi

v̇i

ȧi

 =

 0 −1 0

0 0 1

kp α β


∆xi

vi

ai

+

 1 0

0 0

kd 1/h

[vi−1

ai−1

]
,

[
vi

ai

]
=

[
0 1 0

0 0 1

]∆xi

vi

ai

 ,
(13a)

for which the following shorthand notation will be usedz
A
i = AAzAi +BAuAi ,

yAi = CAzAi .

Considering a string of autonomous vehicles, it is clear from (13a) that the behaviour of vehicle i is determined
by both vi−1 and ai−1, for 2 ≤ i ≤ N . This is different from the human driven vehicles (5a), where there the
behaviour of vehicle i was determined only by vi−1.

On the other hand, the lead vehicle introduces the perturbations so it has different dynamics. The dynamics
for the lead vehicle is chosen as

Σ1
A :



[
v̇1

ȧ1

]
=

[
0 1

0 −1/τ

][
v1

a1

]
+

[
0 0

0 1/τ

][
0

aref

]
,

[
v1

a1

]
=

[
1 0

0 1

][
v1

a1

]
,

(13b)

which will be notated as z
A
1 = AA1 zA1 + BA1 uA1 ,

yA1 = CA1 zA1 .

From equations (13a) and (13b), the system matrix A for the model of N autonomous vehicles can be written
as

A =



AA1

BACA1 AA

BACA

BACA AA


, (13c)
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and observe it is lower block triangular. Furthermore, the input matrix B, output matrix Ci and state vector
z are simply

B =
[
0 1/τ 0 . . . 0

]T
,

Ci = eT3i−2, (13d)

z =
[
(zA1 )T (zA2 )T . . . (zAN )T

]T
,

where the output is chosen to be vi. The resulting vehicle model can be written down as

ż(t) = Az(t) +Baref (t),

y(t) = Ciz(t). (14)

Note that this notation is the same as that used in section 2 for the human vehicle model. The remainder of
section 3 is dedicated to studying properties of the system (14) and it should be clear that any mention of
the matrices A,B or Ci correspond to these matrices and not that of the human vehicle model.

The interaction between the autonomous vehicles is illustrated in figure 13

aref
Σ1
A Σ4

A
Σ3
AΣ2

A

v1 v2 v3

a1 a2 a3

Figure 13: Connection between the autonomous vehicles

3.3 Numerical results
A time simulation of the model is performed to illustrate the properties of the autonomous vehicles. The
constants h, kd, kp and τ are the same as those use in [3].

In figure 14, observe that the perturbation introduced by the lead vehicle is attenuated by the following
vehicles i.e. it is not amplified. The reflects the string stable behaviour as expected from the autonomous
vehicles. Recall that for the human vehicle model, the initial perturbation was amplified by the following
vehicles as was observed in figure 8.

3.4 Linearization
Before continuing, recall that the goal is to interconnect this autonomous model with the linearized human
model derived in the previous section to give a mixed traffic model. The dynamics of the linearized human
model (5a) described the dynamics of the deviation from the equilibrium point.

The input of human vehicle ΣiH was ṽi−1, i.e. the deviation from the equilibrium velocity of vehicle i − 1.
Supposing that vehicle i − 1 is an autonomous vehicle, this autonomous vehicle should output ṽi−1 so that
the human vehicle can take that as an input.

Since the autonomous model is already linear, the linearized dynamics are equivalent to the current dynamics,
implying in the above example that ṽi−1 = vi−1 for autonomous vehicles. The same can be said for ∆xi−1

and ai−1.
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Figure 14: String stable behaviour shown by autonomous vehicles with time-headway h = 0.7s.

3.5 Stability
To study the stability of the system, recall the definition of stability (6a) introduced in section 2.3 Since the
system matrix A of the autonomous model is also lower block triangular, the approach to computing stability
is identical to that in the human model. The difference here is that the block diagonals consist of one 2× 2
matrix and (N − 1) identical 3× 3 matrices. Hence, σ(A) = σ(AA1 ) ∪ σ(AA) ∪ . . . ∪ σ(AA), where

σ(AA1 ) = {−1

τ
, 0} and σ(AA) =

{
− 1

h
, −h

2

(
kd ±

√
k2
d −

4kp
h

)}
.

First, note that the constants kp, kd, τ, h > 0 Hence, σ(AA1 ) ⊂ C−. For σ(AA) ⊂ C−, the condition k2
d −

4kp/h < k2
d has to be satisfied and this implies kp/h > 0, which is always true. Hence, σ(AA) ⊂ C− as well

and therefore σ(A) ⊂ C−. This means that the autonomous system is also asymptotically stable.

3.6 String stability of autonomous model
To study string stability, recall the definition of string stability (6b) and how it was applied for the human
driven model in section 2.4. Since the system matrix of the autonomous vehicle model also has a lower block
triangular structure, the approach is identical.

For the autonomous vehicle model, Ti(s) is the transfer function from the input acceleration âref to output
velocity v̂i

v̂i(s) = Ti(s) âref (s)

The transfer function is computed as

Ti(s) = Ci(sI −A)−1B
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where A, B and C are the system, input and output matrices of the autonomous model defined in (14). Note
again that (sI − A) has a lower block triangular structure so the inverse will also be lower block triangular.
Furthermore, due to the structure of B and Ci, only the element (3i − 2, 2) of the matrix (sI − A)−1 is
required for the transfer function corresponding to vehicle i, i.e.,

Ti =
1

τ

(
sI −A

)−1

3i−2,2
. (15)

Following the same procedure as before, let

(sI −A)(sI −A)−1 =


J1

K1 J2

K2 J2

. . . . . .
K2 J2




J−1

1

Q2 J−1
2

Q3 · J−1
2

... · ·
. . .

QN · · · J−1
2

 = I2N+1,

with

J1 =

[
s −1
0 s+ 1/τ

]
, K1 =

 −1 0
0 0
−kd −1/h

 , J2 =

 s 1 0
0 s −1
−kp −α s− β

 , K2 =

0 −1 0
0 0 0
0 −kd −1/h

 ,
where α = −(kd + kp · h) and β = −(1/h+ kd · h). For i = 1, the transfer function is

T1 =
1

τ

{
J−1

1

}
1,2

=
1

s(sτ + 1)
.

For 2 ≤ i ≤ N , using the relation for Qi derived in the human model, the remaining transfer functions can
now be written as

Ti =
1

τ

{
Qi

}
,2,2 i = 2, . . . , N,

where

Qi = (−1)i−1
(
J−1

2 K2

)i−2 (
J−1

2 K1J
−1
1

)
(16)

A general expression for
(
J−1

2 K2

)i−2 is found which holds only for i ≥ 4. Hence, T2 and T3 are worked out
manually. Beginning with T2 and T3,

T2 =
−1

τ

{
J−1

2 K1J
−1
1

}
2,2

=
1

(s)(sτ + 1)(hs+ 1)
,

and

T3 =
1

τ

{(
J−1

2 K2

) (
J−1

2 K1J
−1
1

)}
2,2

=
1

(s)(sτ + 1)(hs+ 1)2
,
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For i ≥ 4, the general expression obtained for (J−1
2 K2)i−2 is

(J−1
2 K2)i−2 =

(−1)i−2

(hs+ 1)i−2(s2 + hkds+ hkp)

0 h2(kp + kds) hs
0 h(kp + kds) s
0 h(kp + kds)s s2

 . (17)

This is shown to be true with an induction argument. Assume (17) holds for i− 2 = k where k ∈ N≥4, it is
shown to hold for i− 2 = k + 1 as well. This is done by post-multiplying (17) by (J−1

2 K2)

(J−1
2 K2)k(J−1

2 K2)

=
(−1)k

(hs+ 1)k+1(s2 + hkds+ hkp)2

0 h2(kp + kds) hs
0 h(kp + kds) s
0 h(kp + kds)s s2

0 −(kdh
2s+ kph

2 + hs2 + s) 1
0 −h(kp + kds) −s
0 −h(kp + kds)s −s2



=
(−1)k+1(s2 + hkds+ hkp)

(hs+ 1)k+1(s2 + hkds+ hkp)2

0 h2(kp + kds) hs
0 h(kp + kds) s
0 h(kp + kds)s s2


= (J−1

2 K2)k+1.

Observe that the matrix is independent of i. This expression can now be plugged back into Qi in (16) giving

Qi = (−1)i−1
(
J−1

2 K2

)i−2 (
J−1

2 K1J
−1
1

)

=
(−1)2i−2

(hs+ 1)i−1(s2 + hkds+ hkp)

h
2(kp + kds)/s hτ(s2 + hkds+ hkp)/(s(s+ τ))

h(kp + kds)/s τ(s2 + hkds+ hkp)/(s(s+ τ))

h(kp + kds) τ(s2 + hkds+ hkp)/(s+ τ))

 .
Hence, the transfer function Ti is given by

Ti(s) =
1

τ

{
Qi

}
2,2

=
1

s(s+ τ)(hs+ 1)i−1
.

Note that this expression for Ti also holds for i = 1, 2, 3 and thus this holds for 1 ≤ i ≤ N . Now, since the
transfer function is scalar, the condition for string stability (6c) can be checked. Note that Γi = Ti/Ti−1 is
independent of i and thus the condition only needs to be checked once. Recall that j =

√
−1

sup
ω

∣∣∣∣ Ti(jω)

Ti−1(jω)

∣∣∣∣ = sup
ω

∣∣∣∣ 1

hjw + 1

∣∣∣∣ = 1.

Hence, this model for autonomous vehicles is string stable.
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Figure 15: Bode plot of Γi.

The result that the autonomous model is string stable is reflected in figure 15 which has a peak of 1.
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4 Mixed-traffic model
In this section, the models of human and autonomous vehicles as studied in the previous chapters will be
interconnected to create a mixed-traffic model. This will be done by interconnecting the individual vehicle
dynamics, as illustrated in 16.

Interconnected :

uref Σ0 ΣHΣAΣH

v0 v1 v2

a0

a1
a2

ΣA

v3

a3

Figure 16: Interaction between different human and autonomous vehicles

Beginning with the lead vehicle, a choice has to be made between the lead vehicle in the human model (5b)
and the autonomous model (13b). Recall that the lead vehicles have different dynamics than the following
vehicles and therefore it will not be counted as a “human” or “autonomous” vehicle since it is a control vehicle.

Hence, the indexing of the vehicles is changed such that the lead vehicle has index i = 0, followed by N
vehicles. This means there are now N + 1 vehicles, where the lead vehicle is the controlled vehicle which
introduces perturbations. The dynamics of the lead vehicles are recalled as

Human :

Σ0
H =


v̇0 = −a v0 + a vref ,[
v0

a0

]
=

[
1

−a

]
v0 +

[
0

a

]
vref ,

Autonomous :

Σ0
A =



[
v̇0

ȧ0

]
=

[
0 1

0 −1/τ

][
v0

a0

]
+

[
0

1/τ

]
aref ,

[
v0

a0

]
=

[
1 0

0 1

][
v0

a0

]
.

Note that originally, when the human model was derived, only vi was given as an output. However for
interconnection, the human vehicles ΣH also need to output ai since if vehicle i+1 is an autonomous vehicle,
it requires ai as an input. This is easily done by adding a0 = v̇0 to the output equations.

This introduces a feedthrough matrix into the dynamics of the human lead vehicle which complicates com-
putations of the transfer functions. Therefore, the lead vehicle from the autonomous model Σ0

A is chosen as
the lead vehicle in the interconnected model.

The system, input and output matrices of the lead vehicle Σ0
A be denotated as AA0 , BA0 , CA0
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As for the following vehicles, recall that the individual dynamics in both the human model (5a) and au-
tonomous model (13a) are identical for 1 ≤ i ≤ N . These dynamics are recalled as

Human :

ΣiH =



[
˙∆xi

v̇i

]
=

[
0 −1

ab −a

][
∆xi

vi

]
+

[
1 0

0 0

][
vi−1

ai−1

]
,

[
vi

ai

]
=

[
0 1

ab −a

][
∆xi

vi

]
,

Autonomous :

ΣiA =



 ˙∆xi

v̇i

ȧi

 =

 0 −1 0

0 0 1

kp α β


∆xi

vi

ai

+

 1 0

0 0

kd 1/h

[vi−1

ai−1

]
,

[
vi

ai

]
=

[
0 1 0

0 0 1

]∆xi

vi

ai

 .
Here, ΣiH is also adjusted to output ai which is done by adding v̇i = ab∆xi − avi to the output equations.
Furthermore, the input of the human vehicle has also been adapted to include ai−1 even though this is not
used by the human vehicle. This is clear from the input matrix. The system, input and output matrices
will be denoted as AH , BH , CH and AA, BA, CA for the human and autonomous systems respectively. Also,
recall that α = (−kd − kph) and β = (−1/h− kdh).

The visual representation of these individual vehicle dynamics are given in figure 17.

vi−1

ΣiH

vi−1 vi

ΣiA

Human :
Autonomous :

ai−1 ai

vi

ai

Figure 17: Comparison of input-output between human and autonomous vehicles

4.1 State-space Model
Now, starting with an example, suppose vehicle i − 1 is a human vehicle and following it, vehicle i is an
autonomous vehicle. Recalling the notation used for the matrices (AA, BA, CA and so forth), the dynamics
of vehicle i can be written as ∆̇xi

v̇i
ȧi

 = AA

∆xi
vi
ai

+BACH
[
∆xi−1

vi−1

]
,

= AA

∆xi
vi
ai

+BA
[
vi−1

ai−1

]
.
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Similarly, if vehicle i− 1 was autonomous and vehicle i human, the dynamics of vehicle i would be

[
˙∆xi
v̇i

]
= AH

[
∆xi
vi

]
+BHCA

∆xi−1

vi−1

ai−1

 ,
= AH

[
∆xi
vi

]
+BH

[
∆xi−1

vi−1

]
.

Hence, given an arbitrary string of vehicles such as

aref → A0 → H1 → H2 → A3 → H4 → . . . , (18)

the dynamics of this system can be written as

ż(t) =



AA0

BHCA0 AH

BHCH AH

BACH AA

BHCA AH

. . . . . .





zA0

zH1

zH2

zA3

zH4

...


+



BA0

0

0

0

0

...


aref ,

where zi refers to the state vector of the system Σi. Note that the dynamics are stable, σ(A) ⊂ C−, because
the spectrum of this system matrix is simply the union of the spectra of the matrices on the diagonal. Recall
that it has been shown in section 2.3 and 3.5 that the eigenvalues of these diagonal matrices are in C−.

4.2 Numerical Results
Here, the numerical implementation is similar as before and the code is attached in the appendix 6.7, 6.8.
Note that the linearized dynamics of the human model are used instead of the non-linear dynamics. The
approach used here is that given a vector such as

[
1 0 0 1 0 . . .

]T , the numerical model creates a
system of ODEs where value 1 corresponds to an autonomous vehicle and value 0 corresponds to a human
vehicle. For example, the input above corresponds to vehicle string (18).

Here, four figures are showing the numerical results. Note that the velocity of the lead vehicle is increased from
1.5 to 1.75. This input is different than in the previous sections because this allows for better interpretation
of the plots in the mixed-traffic case. It is easier to distinguish between human and autonomous vehicles.

In figure 18, 20 human vehicles are modelled, without any autonomous vehicles. This is the test case to check
that the string unstable behaviour of the human model is still shown. The maximum velocity attained here
is 1.8917.

In figure 19, there are 4 autonomous vehicles and 16 human vehicles, with the autonomous vehicles evenly
spread between the human vehicles. Observe that the maximum velocity attained is lower than in figure 18.
The maximum velocity attained here is 1.7739.

In figure 20, all inputs are kept the same as in figure 19 except for time-headway, h is increased from 2 to 3.
Note that this makes a noticeable difference in the behaviour of the vehicles. The maximum velocity attained
here is 1.7500.

In figure 21, all inputs are kept the same as in figure 19 except the arrangement of the vehicles The maximum
velocity attained here is 1.7739. Note that this is the same as in figure 19.
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Figure 18: 20 human vehicles. Max velocity 1.8917

Figure 19: 16 human and 4 autonomous vehicles with h = 2. Max velocity 1.7739
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Figure 20: 16 human and 4 autonomous vehicles with h = 3. Max velocity 1.750

Figure 21: 16 human and 4 autonomous vehicles with h = 2. Max velocity 1.7739
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4.3 String stability
To study string stability, transfer functions will be used as before but a slightly different approach will be
used this time. Instead of computing (sI −A)−1, the transfer functions of the individual vehicle subsystems
Σ0
A, ΣiH and ΣiA for 1 ≤ i ≤ N will be used.

From this, the transfer function matrix of an arbitrary string of vehicles can be determined. Denoting
ϕi =

[
vi ai

]T ,
ϕi(s) =


G0(s) aref if i = 0,

GH(s) ϕi−1(s) if i human and i ≥ 1,

GA(s) ϕi−1(s) if i autonomous and i ≥ 1,

where GH(s) and GA(s) is the transfer function matrix of ΣiH and ΣiA respectively and note that these
matrices are dimension 2× 2. G0(s) is the transfer function matrix of Σ0

A with dimension 2× 1.

Interconnected :

aref Σ0
A Σ3Σ2Σ1

ϕ0 ϕ1 ϕ2

Σ4

ϕN

Figure 22: Σi is either a human or autonomous vehicle and ϕi =
[
vi ai

]T
Using this, the transfer function matrix of an arbitrary string of vehicles can be easily computed. This is
illustrated with an example. Consider the following string of vehicles

aref → A0 → H1 → H2 → A3 → H4

The output can simply be given by

ϕ4(s) = GH GA GH GH G0 aref ,

where GH GA GH GH G0 is the transfer function matrix from aref to ϕ4. Pre-multiplying this expression by[
1 0

]
gives v4. Using this approach, vi(s) can easily be obtained and hence string stability can be studied

as before.

Here, the transfer functions matrices G0(s), GH(s) and GA(s) are given, which read

G0(s) = CA0 (sI −AA0 )−1BA0

=

1 0

0 1

s −1

0 s+
1

τ

−1 0

1

τ



=


1

s(sτ + 1)

1

sτ + 1

 ,
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and

GH(s) = CH(sI −AH)−1BH

=

[
0 1
ab −a

] [
s 1
−ab s+ a

]−1 [
1 0
0 0

]

=
ab

s2 + as+ ab

[
1 0
s 0

]
,

GA(s) = CA(sI −AA)−1BA

=

[
0 1 0
0 0 1

] s 1 0
−ab s −1
−kp −α s− β

−1  1 0
0 0
kd 1/h


=

1

(hs+ 1)(s2 + ζ)

[
ζ s
ζs s2

]
,

where ζ = hkp+hkds. Since powers of GH and GA will appear when computing the transfer function matrix
of arbitrary strings of vehicles, general expressions are found for (GH)k and (GA)k, k ∈ Z≥1, as

(GH)k =

(
ab

s2 + as+ ab

)k [
1 0
s 0

]k

=

(
ab

s2 + as+ ab

)k [
1 0
s 0

]

=

(
ab

s2 + as+ ab

)k
MH ,

(GA)k =
1

(hs+ 1)k(s2 + ζ)k

[
ζ s
ζs s2

]k

=
(s2 + ζ)

(hs+ 1)k(s2 + ζ)k

[
ζ s
ζs s2

]k−1

...

=
(s2 + ζ)k−1

(hs+ 1)k(s2 + ζ)k

[
ζ s
ζs s2

]

=

(
1

hs+ 1

)k
1

(s2 + ζ)

[
ζ s
ζs s2

]

=

(
1

hs+ 1

)k
MA,

where MH and MN are terms independent of k, given by

MH =

[
1 0
s 0

]
, MA =

1

(s2 + ζ)

[
ζ s
ζs s2

]
.

Furthermore, in the derivation of (GA)k, it was used that[
ζ s
ζs s2

]2

= (s2 + ζ)

[
ζ s
ζs s2

]
.

Now, observe that these expressions can be used to compute the transfer function Ti for homogeneous strings
of vehicles i.e. purely human or autonomous with a lead control vehicle Σ0

A, defined such that

vi(s) = Ti(s) aref where i = 0, 1, . . . , N.

Determining vi(s) for both the human and autonomous vehicles, it is obtained that

vHi (s) =
[
1 0

]
(GH)i G0 aref

=
aref

s(sτ + 1)

(
ab

s2 + as+ ab

)i
,

vAi (s) =
[
1 0

]
(GA)i G0 aref

=
aref

s(sτ + 1)

(
1

hs+ 1

)i
.
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In particular, recall that Γi(s) = vi/vi−1 and computing this for both the human and autonomous case gives
the same expression as derived in section 2.4, 3.6.

Now, the transfer function matrices of arbitrary strings of vehicles will involve multiplying GH by GA and
vice versa. Hence, the matrices MH and MA are studied and the following properties are obtained

MHMA = MA, MAMH = MH , (MH)i = MH , (MA)i = MA. (19)

Furthermore,

MHG0 = G0 = MAG0. (20)

Now, consider an arbitrary string of N + 1 vehicles ending with a human vehicle. The transfer function
matrix from aref to ϕN is given by

GHGAGAGHGH . . . G0 =

(
ab

s2 + as+ ab

)nH
(

1

hs+ 1

)nA

MHMAMAMHMH . . . G0

where nH and nA denote the number of human and autonomous vehicles respectively up to and including
vehicle N . Recall that the lead vehicle is neither human nor autonomous. Using the properties of MH ,MA

in (19), (20), the sequence of matrices MHMAMAMHMH . . . G0 simply reduces to G0

To prove this, observe that any sequence of MA and MH ending with G0 can be reduced to following six
cases:
Case 1 :

MAMHMAMH . . . G0 = (MAMH)kG0

= (MH)kG0

= MHG0

= G0.

Case 2 :

MAMHMAMH . . .MAG0 = (MAMH)kMAG0

= (MH)kMAG0

= MHMAG0

= MAG0

= G0.

Case 3 and Case 4 are identical to the first two, only MH needs to be replaced with MA and vice versa.
Case 5 and Case 6 are the simplest cases, which are already given in (20). Hence, the transfer function
from aref to vi for a heterogeneous (human and autonomous) string of vehicles reduces to a product of scalar
functions

Ti(s) =

(
ab

s2 + as+ ab

)nH
(

1

hs+ 1

)nA [
1 0

]
MHMAMAMHMH . . . G0

=

(
ab

s2 + as+ ab

)nH
(

1

hs+ 1

)nA [
1 0

] 
1

s(sτ + 1)

1

sτ + 1


=

(
ab

s2 + as+ ab

)nH
(

1

hs+ 1

)nA 1

s(sτ + 1)
(21)
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where

nH = number of human vehicles up to and including ith vehicle

nA = number of autonomous vehicles up to and including ith vehicle
a = driver’s sensitivity from human model

b = V ′(x)
∣∣
x=∆xref

from human model

h = time-headway from autonomous model
τ = time constant for engine dynamics from autonomous model

Observe that this means

Γi(s) =
vi
vi−1

=


ab

s2 + as+ ab
if vehicle i = human

1

hs+ 1
if vehicle i = autonomous

(22)

Note that these expressions are the same as derived in the previous sections for the human and autonomous
model. This implies that the transfer function from vi−1 to vi (22) depends only on the type of vehicle i.

However, the overall transfer function from aref to vi (21) depends on how many of each type of vehicle is
present up to vehicle i.

To study the effects of introducing autonomous vehicles into a string of human vehicles, the transfer function

Ψi(s) =
vi
v0
, 1 ≤ i ≤ N,

is introduced.

5 Results of Mixed Traffic Model
When studying string stability for the purely human or autonomous models, it was sufficient to study how a
particular vehicle i responded to the behaviour of its predecessor i− 1 since all vehicles were identical. This
was done by studying the transfer function Γi in (22).

To study how the introduction of autonomous vehicles affects the string stability properties of a human
vehicle string, the definition of string stability (6b) is adapted, giving

‖Ψi(jω)‖H∞ = sup
ω

∣∣∣∣ Ti(jω)

T0(jω)

∣∣∣∣ = sup
ω

∣∣∣∣( ab

(jω)2 + ajω + ab

)nH
(

1

hjω + 1

)nA
∣∣∣∣ = max

v0 6=0

‖vi(t)‖L2

‖v0(t)‖L2

≤ 1. (23)

From this, it can be studied whether the perturbation introduced by vehicle i = 0 has been attenuated or
amplified by a platoon of nH human and nA autonomous vehicles.

In other words, this condition says that the velocity attained by vehicle i is not amplified beyond the velocity
of the lead vehicle. To study this, ‖Ψi‖ is computed for the time-headways h = 1, 1.5, 2. In tables 1 to 3, a
string of 10 vehicles is considered. Beginning with only human vehicles, a human vehicle is replaced with an
autonomous vehicle until ‖Ψ10‖ = 1.0. As per definition, this means that the string of 10 vehicles is string
stable.
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nA ‖Ψ1‖ ‖Ψ2‖ ‖Ψ3‖ ‖Ψ4‖ ‖Ψ5‖ ‖Ψ6‖ ‖Ψ7‖ ‖Ψ8‖ ‖Ψ9‖ ‖Ψ10‖
0 1.048 1.098 1.15 1.205 1.263 1.323 1.386 1.452 1.522 1.594

1 1.0 1.0 1.019 1.059 1.106 1.156 1.209 1.266 1.326 1.388
2 1.0 1.0 1.0 1.008 1.038 1.077 1.122 1.17 1.222
3 1.0 1.0 1.0 1.0 1.002 1.025 1.057 1.097
4 1.0 1.0 1.0 1.0 1.0 1.0 1.016
5 1.0 1.0 1.0 1.0 1.0 1.0

Table 1: h = 1

nA ‖Ψ1‖ ‖Ψ2‖ ‖Ψ3‖ ‖Ψ4‖ ‖Ψ5‖ ‖Ψ6‖ ‖Ψ7‖ ‖Ψ8‖ ‖Ψ9‖ ‖Ψ10‖
0 1.048 1.098 1.15 1.205 1.263 1.323 1.386 1.452 1.522 1.594

1 1.0 1.0 1.0 1.003 1.031 1.071 1.115 1.164 1.216 1.272
2 1.0 1.0 1.0 1.0 1.0 1.0 1.006 1.031 1.064
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2: h = 1.5

nA ‖Ψ1‖ ‖Ψ2‖ ‖Ψ3‖ ‖Ψ4‖ ‖Ψ5‖ ‖Ψ6‖ ‖Ψ7‖ ‖Ψ8‖ ‖Ψ9‖ ‖Ψ10‖
0 1.048 1.098 1.15 1.205 1.263 1.323 1.386 1.452 1.522 1.594

1 1.0 1.0 1.0 1.0 1.0 1.002 1.031 1.068 1.111 1.158
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3: h = 2. For A = 2, ‖Ψ12‖ > 1

5.1 Discussion
From the “Highway Design and Traffic Safety Engineering Handbook [5]”, the time headway that drivers
should obey is based on the reaction time of drivers, and this varies between 1s and 2s. This implies
that h = 2 is a reasonable time-headway for the autonomous vehicles to follow and does not introduce
large following distances between the vehicles. For example, driving at 100 km/h with a headway of 2s
means the following distance should be 55.56 m. Hence, several numerical simulations are performed for
h = 2 to compare with the results of table 3. Note that the linearized human vehicle model was used for
interconnection.

In figure 23, the control vehicle is followed by 10 human vehicles and the initial perturbation is amplified by
the following vehicles. This corresponds with the results obtained in the chapter 2, where the human vehicle
model was shown to be string unstable.

In figure 24, an autonomous vehicle is introduced after the control vehicle in position i = 1. Observe that
the amplification of the perturbation is clearly reduced compared to figure 23 but it is still string unstable.
From table 3, ‖Ψ10‖ = 1.158 for nA = 1.

In figure 25, another autonomous vehicle is introduced in position i = 2. Here, the initial perturbation is
clearly attenuated and this reflects the result in table 3 where ‖Ψ10‖ = 1.0 for nA = 2.

In figure 26 and 27, three of the ten vehicles are autonomous, but are arranged differently. In figure 26, the
first three vehicles after the control vehicle are autonomous whereas in figure 27, the autonomous vehicles
are spread evenly though the human vehicles. Note that both these figures represent string stable behaviour.
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Figure 23: String unstable

Figure 24: String unstable
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Figure 25: String stable

Figure 26: String stable
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Figure 27: String stable

Furthermore, observe that the transfer function Ψi used in definition (23) is simply a product of scalar
functions. This implies that the positions of the autonomous vehicles in the string of mixed vehicles is not
important for string stability, only the ratio between human and autonomous vehicles.

However, consider a string of 100 vehicles where the first 80 vehicles are human vehicles followed by 20
autonomous vehicles. This scenario would allow the perturbations to grow through the human vehicles
before being attenuated by the autonomous vehicles, which is clearly undesirable since the disturbance is
first amplified by 80 vehicles. Instead, it would be better to have the autonomous vehicles evenly spread out
through the human vehicles.

Another alternative would be to restrict the number of consecutive human vehicles in a string to 10 for
example. This would prevent the perturbations from growing out of hand. This could also be done by
enforcing a maximum deviation from the equilibrium velocity for a string to be considered string stable.

From the values computed in table 3, 1 autonomous vehicles should be able to attenuate perturbations in a
string of 5 vehicles. This implies that 20% of vehicles on a roadway need to be autonomous for perturbations
to be reduced.

In figures 28 and 29, the numerical simulations are performed for a string of 600 vehicles, with the autonomous
vehicles evenly spread throughout the human vehicles. Observed that for 20% autonomous vehicles, string
stable behaviour is observed whereas for 14.3% autonomous vehicles, string unstable behaviour is observed,
as expected from the values in table 3.
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Figure 28: 600 vehicles, where 1 in 5 are autonomous i.e. 20.0%. Only a selection of vehicles are plotted

Figure 29: 600 vehicles, where 1 in 7 are autonomous i.e. 14.3%. Only a selection of vehicles are plotted
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5.2 Limitations
First of all, the road segment considered has a fixed amount of vehicles and there are no vehicles entering
or leaving the road. Furthermore, this model is based on a one-lane road and no consideration is made for
vehicles overtaking one another.

It is also assumed that a “human” vehicle communicates with an “autonomous” vehicle to transmit information
regarding its velocity and acceleration. However, the human vehicle does not necessarily need to have
wireless communication hardware. Instead, this information could also be determined using the sensors of
the autonomous vehicle. A time-lag for determining and processing this information would have to be taken
into consideration when designing the controller of the autonomous vehicle.

Besides that, the behaviour of all the vehicles on the highway are described by two vehicle models. In reality,
this is of course different since an older person may have different reaction times to a younger person, implying
a different constant a in the human model. Similarly, different autonomous vehicles would also have different
time constant τ for the engine dynamics.

5.3 Conclusion
String stability is an essential requirement to prevent perturbations from being amplified in a string of
vehicles. It has been shown that, theoretically and with numerical simulations, that the human vehicle model
[3] is indeed string unstable whereas the autonomous vehicle model [3] is string stable.

Interconnecting both these models, it was found that for a time-headway h = 2, 20% of vehicles in a
mixed traffic model need to be autonomous for the traffic to be stabilized i.e. for perturbations to be
attenuated. Note that this will improve traffic flow on roadways leading to decreased fuel consumption and
traffic accidents.

However, more restrictions should be imposed on the current definition of string stability for mixed traffic
(23) to bound how large a disturbance can be amplified and still be considered string stable. Furthermore,
the current limitations mentioned in 5.2 can be looked into and improved upon.

37



6 Appendix

6.1 ODE3_straight_road.m

1 function dwdt = ODE3_straight_road(t,w,a, N, vref)
2 dwdt = zeros(2*N,1);
3 for i = 1:N
4 %first half of system
5 dwdt(i) = w(i+N);
6
7 %second half of system
8 deltaX = w(i+1)-w(i);
9 if i == N
10 dwdt(i+N) = a*( vref - w(i+N) );
11 %%% the if-statement below enters the perturbation.
12 Tstart = 40;
13 Tend = 50; %consider tgrid
14 if t>Tstart && t< Tend
15 dwdt(i+N) = a*( vref - 0.2*sin( (t-Tstart)*2*pi/Tend ) - w(i+N) );
16 end
17 else
18 dwdt(i+N) = a*(tanh(deltaX-2) + tanh(2) - w(i+N) );
19 end
20
21 end
22 end

6.2 runscript_Straight_Road.m

1 %%%%%%%%%%%%%%
2 %runscript for ODE3_straight_road
3 %%%%%%%%%%%%%%
4 clear all
5 close all
6
7 vref = 1.5;
8 xref = atanh(vref-tanh(2))+2;
9
10 N = 100; %number of vehicles
11 a = 1; %driver sensitivity
12 tgrid = [1 : 1 : 160]; %check time when perturbation entered
13
14 %%% initial condition %%%
15 initialPosition = zeros(N,1);
16 initialVelocity = vref*ones(N,1);
17 for i = 1:N
18 initialPosition(i) = xref*i;
19 end
20 initialCond = [initialPosition; initialVelocity];
21
22 options= odeset('AbsTol',1e-9,'RelTol',1e-9); %reduce numerical error
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23 [t, w] = ode45(@(t,w) ODE3_straight_road(t,w,a,N, vref), tgrid, ...
24 initialCond, options);
25 %each row in w corresponds to solution at time t in corresponding row
26
27 figure
28 for i = 1:1:N
29 hold on
30 plot(tgrid, w(:,i))
31 end
32 axis([50 160 150 500])
33 pbaspect([1 1 1])
34 title(['Trajectory of all vehicles (\Delta x_{int}=',num2str(xref),', N=',num2str(N),') '])
35 xlabel('Time')
36 ylabel('Distance')
37
38 figure
39 for i = 10:30:160
40 hold on
41 txt = ['time = ',num2str(i)];
42 plot([N:-1:1], w(i, (N+1):2*N), 'DisplayName', txt )
43 end
44 pbaspect([1 1 1])
45 title(['Velocity vs Vehicle Index snapshots (\Delta x_{int}=',num2str(xref),') '])
46 xlabel('Vehicle index')
47 ylabel('Velocity')
48 legend('Location','southeast')
49 legend show
50
51 figure
52 txt = ['Vehicle i = ',num2str(1)];
53 plot(tgrid, w(:,2*N), 'DisplayName', txt )
54 for i = 96:-5:70
55 hold on
56 txt = ['Vehicle i = ',num2str(N+1-(i))];
57 plot(tgrid, w(:,N+i), 'DisplayName', txt )
58 end
59 pbaspect([1 1 1])
60 title(['Velocity vs Time (\Delta x_{int}=',num2str(xref),') '])
61 xlabel('Time')
62 ylabel('Velocity')
63 legend('Location','southeast')
64 legend show

6.3 ODE_Bando_Linearized.m
1 function dwdt = ODE_Bando_Linearized(t,w,N,xref)
2 vinput = 0;
3 if t>40 && t <50
4 vinput = -0.2*sin( (t-40)*2*pi/50 );
5 end
6
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7 %%% Linearized BANDO %%%
8 a = 1;
9 b = 1-tanh(xref-2)^2;
10 Ab = [0 -1; a*b -a];
11 Bb = [1 0 ; 0 0];
12 Cb = [0 1; a*b -a];
13
14 %%% intialization %%%
15 dwdt = zeros(1+2*(N-1),1);
16
17 %%% vehicle 1 %%%
18 dwdt(1) = -a*w(1) + a*vinput;
19
20 %%% vehicle 2 %%%
21 vehicle_2 = Ab * [w(2) ; w(3)] + Bb*Cb*[0;w(1)] ;
22 dwdt(2) = vehicle_2(1);
23 dwdt(3) = vehicle_2(2);
24
25 %%% vehicle 3 to N %%%
26 for i = 4:2:2*(N-2)
27 vehicle_i = Ab * [w(i) ; w(i+1)] + Bb*Cb*[w(i-2);w(i-1)];
28 dwdt(i) = vehicle_i(1); %%% \dot{\Delta x}
29 dwdt(i+1) = vehicle_i(2); %%% \dot{v}
30 end
31
32 end

6.4 runscript_Bando_Linearized
1 clear all
2 close all
3
4 N = 30; % number of vehicles
5 tgrid = [1 : 1 : 160];
6 initialCond=zeros(1+(N-1)*2,1);
7 % note all initialCondition is zero bc this is dynamics of the
8 % deviation from equilibrium.
9
10 vref = 1.5;
11 xref = atanh(vref-tanh(2))+2;
12
13 options= odeset('AbsTol',1e-9,'RelTol',1e-9);
14 [t, w] = ode45(@(t,w) ODE_Bando_Linearized(t,w,N, xref), tgrid, ...
15 initialCond, options);
16
17 txt = ['Vehicle i = ',num2str(1)];
18 plot(tgrid, 1*1.5+w(:,1), 'DisplayName', txt )
19 counter = 2;
20 for i = 3 : 2 : 2*N+1
21 hold on
22 if mod(counter,5)== 0
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23 txt = ['Vehicle i = ',num2str(counter)];
24 plot(tgrid, 1*1.5+w(:,i), 'DisplayName', txt )
25 end
26 counter = counter + 1;
27 end
28 axis([0 160 1.25 1.7])
29 pbaspect([1 1 1])
30 title(['Velocity vs Time, Linearized Dynamics'])
31 xlabel('Time')
32 ylabel('Velocity')
33 legend('Location','southeast')
34 legend show

6.5 ODE_Ploeg_Only.m

1 function dwdt = ODE_Ploeg_Only(t,w,N,h)
2 aref = 0;
3 if t>=10 && t <= 20
4 aref = -0.2*(2*pi/20)*cos(2*pi*(t-10)/20);
5 end
6
7 %%% PLOEG %%% constants from ploeg paper
8 h = h;
9 tau = 0.1;
10 kp = 0.2;
11 kd = 0.7;
12 alpha = -kd - kp*h;
13 beta = -1/h -kd*h;
14 Ap = [0 (-1) 0; 0 0 1; kp alpha beta];
15 Bp = [1 0; 0 0; kd 1/h];
16 Cp = [0 1 0; 0 0 1];
17
18 dwdt = zeros(2+3*N,1);
19
20 %%% lead vehicle %%%
21 dwdt(1) = w(2);
22 dwdt(2) = (-1/tau)*w(2) + (1/tau)*aref;
23
24 %%% vehicle 2 to N %%%
25 j = 3;
26 for i = 2:N
27 Cw = Cp*[0; w(j-2); w(j-1)]; %note first can be zero since unused
28 vehicle_i = Ap*[w(j) ; w(j+1); w(j+2)] + Bp*Cw;
29 dwdt(j) = vehicle_i(1);
30 dwdt(j+1) = vehicle_i(2);
31 dwdt(j+2) = vehicle_i(3);
32 j = j + 3;
33 end
34 end
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6.6 runscript_Ploeg_Only

1 %%% autonomous only model %%%
2 clear all
3 close all
4
5 h = 0.7; % time headway
6 N = 30; % number of autonomous vehicles
7 a = 1; % driver sensitivity
8 tgrid = [1 : 1 : 100]; % check time when perturbation entered
9 initialCond=zeros(2 + N*3 , 1);
10 % note all initialCondition is zero bc this is dynamics of the
11 % deviation from equilibrium.
12
13 options= odeset('AbsTol',1e-9,'RelTol',1e-9);
14 [t, w] = ode45(@(t,w) ODE_Ploeg_Only(t,w,N,h), tgrid,initialCond, options);
15
16 %%% PLOT %%%
17 txt = ['Vehicle i = ',num2str(1)];
18 plot(tgrid,1.5 + w(:,1), 'DisplayName', txt )
19 j = 3; %position of Delta_x_i in state vector
20 counter = 1;
21 for i = 2:N
22 hold on
23 if mod(i,5) == 0
24 txt = ['Vehicle i = ',num2str(i)];
25 plot(tgrid, 1.5 + w(:,j+1), 'DisplayName', txt )
26 end
27 j = j + 3;
28 counter = counter + 1;
29 end
30 pbaspect([1 1 1])
31 title(['Velocity vs Time, Autonomous model (h=',num2str(h),')'])
32 xlabel('Time')
33 ylabel('Velocity')
34 legend('Location','east')
35 legend show

6.7 ODE_interconnected_new.m

1 function dwdt = ODE_interconnected_new(t,w,N, ploeg_location, N_ploeg,h)
2 aref = 0;
3 if t>=10 && t <=15
4 aref = 0.05;
5 end
6
7 %%% BANDO %%%
8 N_bando = N - 1 - N_ploeg;
9 xref = atanh(1.5-tanh(2))+2;
10 a = 1;
11 b = 1-tanh(xref-2)^2;
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12 Ab = [0 -1; a*b -a];
13 Bb = [1 0 ; 0 0];
14 Cb = [0 1; a*b -a];
15
16 %%% PLOEG %%% constants from ploeg paper
17 h = h;
18 tau = 0.1;
19 kp = 0.2;
20 kd = 0.7;
21 alpha = -kd - kp*h;
22 beta = -1/h -kd*h;
23 Ap = [0 (-1) 0; 0 0 1; kp alpha beta];
24 Bp = [1 0; 0 0; kd 1/h];
25 Cp = [0 1 0; 0 0 1];
26
27 dwdt = zeros(2+N_bando+3*N_ploeg,1);
28
29 %%% lead vehicle i=0 in paper %%%
30 dwdt(1) = w(2) ;
31 dwdt(2) = (-1/tau)*w(2) + (1/tau)*aref;
32
33 %%% vehicle 1 to N_ploeg + N_bando %%%
34 j = 3; %% j = 3
35 for i = 2:N
36 previous_vehicle_type = ploeg_location(i-1);
37 current_vehicle_type = ploeg_location(i) ;
38
39 if previous_vehicle_type == 0
40 Cw = Cb*[w(j-2); w(j-1)];
41 else
42 Cw = Cp*[0 ; w(j-2); w(j-1)];
43 end
44
45 if current_vehicle_type == 0
46 vehicle_i = Ab*[w(j) ; w(j+1)] + Bb*Cw;
47 dwdt(j) = vehicle_i(1);
48 dwdt(j+1) = vehicle_i(2);
49 j = j + 2;
50 else
51 vehicle_i = Ap*[w(j) ; w(j+1); w(j+2)] + ...
52 Bp*Cw;
53 dwdt(j) = vehicle_i(1);
54 dwdt(j+1) = vehicle_i(2);
55 dwdt(j+2) = vehicle_i(3);
56 j = j + 3;
57 end
58 end
59 end

6.8 runscript_interconnected_new
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1 %%% this is the interconnected model with autonomous first vehicle
2 clear all
3 close all
4
5 h = 2; %ploeg spacing
6
7 % number of vehicles of each type
8 N_ploeg = 4;
9 N_bando = 16;
10 N = N_ploeg+ N_bando +1 ;
11
12 % location of the autonomous vehicles, 1 = present
13 ploeg_location = zeros(N,1);
14
15 % This must always be one since "lead" vehicle from ploeg model
16 % This is important for the dynamics of the second vehicle in
17 % ODE_interconnected_new since that depends on what vehicle i-1 is.
18 ploeg_location(1) = 1;
19
20 % Now, free to decide from 2 ... N if autonomous or not
21 % Consider N_ploeg
22 ploeg_location([2 7 12 17]) = 1;
23
24 a = 1; % driver sensitivity
25 tgrid = [1 : 1 : 150]; % check time when perturbation entered
26 initialCond=zeros(2 + (N_bando)*2 + N_ploeg*3 , 1);
27 % note all initialCondition is zero bc this is dynamics of the
28 % deviation from equilibrium.
29
30 options= odeset('AbsTol',1e-9,'RelTol',1e-9);
31 [t, w] = ode45(@(t,w) ODE_interconnected_new(t,w,N,ploeg_location, N_ploeg,h)...
32 , tgrid,initialCond, options);
33
34 %%% PLOT %%%
35 txt = ['Control, i = ',num2str(0)];
36 plot(tgrid, 1.5+w(:,1), 'DisplayName', txt )
37 j = 3; %position of Delta_x_i in state vector
38 for i = 2:N
39 hold on
40
41 if ploeg_location(i) == 0
42 txt = ['Human, i = ',num2str(i-1)];
43 else
44 txt = ['Auto, i = ',num2str(i-1)];
45 end
46 plot(tgrid, 1.5 + w(:,j+1), 'DisplayName', txt )
47
48 %update j to position of Delta_x_{i+1} in state vector
49 if ploeg_location(i) == 0
50 j = j + 2;
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51 else
52 j = j + 3;
53 end
54 end
55 pbaspect([1 1 1])
56 axis([0 100 1.5 1.8])
57 title(['Velocity vs Time, Interconnected Dynamics (h=',num2str(h),')'])
58 xlabel('Time')
59 ylabel('Velocity')
60 legend('Location','east')
61 %legend show
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