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Abstract

A statistical pipeline for the analysis of incomplete data is theorised and applied, with missing data entries
substituted for using multiple imputation by chained equations (MICE). Bayesian Networks are constructed for
the purposes of multivariate analysis, and providing insight into conditional (in)dependencies between variables.
Partial correlation is used predominantly, as both an investigative and diagnostic tool. The theories explore
the merits of frequentists and Bayesian approaches, with the ensuing application conducted in a Bayesian
framework.

Acknowledgements

A special thank you to Prof.dr. Grzegorczyk for observing my interest in Bayesian statistics and suggesting
Bayesian Networks as supplementary analysis tool to multivariate statistics. Additionally for providing me with
tutelage and lecture notes on this topic, and aiding my understanding of MICE. Furthermore I extend gratitude
towards Prof.df. Krijnen for evaluating me on this project, and for being a continuous source of statistical
knowledge.



Contents

Introduction 1
Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Research question and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Theory 3
Multiple Imputation by Chained Equations (MICE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Univariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Multivariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Partial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Significance and effect size of partial correlation . . . . . . . . . . . . . . . . . . . . . . . . . 5
Bayes Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Bayesian Gaussian (Normal-Wishart) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Bayesian Dirichlet (Dirichlet-Multinomial) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Greedy Search Algorithm (GSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Model averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Application 12
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Initial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
MICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A MICE analysis 17

i



Introduction

It is interesting to investigate into the accruement of knowledge of Bachelor Mathematics students at the
Rijksuniversiteit Groningen (RuG). By examining the correlation between grades and a Bayesian Network is
proposed (a graph) to explain any causal relationships. It can be reasoned that grades are a reflection of
knowledge a student retains from the course, and further that higher grades amounts to a higher retention of
information. Most Bachelor Mathematics courses can be allocated by topic into subgroups of pure mathematics,
statistics, computer science, and physics. For example, as the courses Analysis, Group Theory, and Metric
Spaces are pure mathematics courses, it stands to reason that a student who achieves a high grade in one
of these courses will do so in the other two courses. As the courses are undertaken in the order above, is
there a causal relationship between the three courses, or is there an attributing variable. Figure 1a shows the
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dependency of these three courses according to their relation in time, and suggests that knowledge of Analysis
is crucial in understanding the content of Group Theory, however once Group Theory has been passed the
knowledge of Analysis is no longer directly utilised in Metric Spaces. In this case, the knowledge of Analysis is
absorbed or incorporated into the knowledge of Group Theory, that a student who passes Group Theory will
also pass Metric Spaces, despite having not passed Analysis. In terms of Bayes Rule,

P (A, GT, MS) = P (A) ⋅ P (GT ∣ A) ⋅ P (MS ∣ GT),

where ‘A’ is Analysis, ‘GT’ is Group Theory, and ‘MS’ is Metric Spaces. In Figure 1b, only if a student has
passed both Analysis and Group Theory with high grades is it expected for them to pass Metric Spaces also
with high grades, and therefore

P (A, GT, MS) = P (A) ⋅ P (GT)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P (A, GT)

⋅P (MS ∣ A, GT).

That is, the level of knowledge accrued in Analysis and Group Theory directly influences the grade of Metric
Spaces, and the distribution of grades in Analysis is independent of the grades of Group Theory. This suggests
that there is no overlap in knowledge between these two courses, however the unification of this knowledge
leads to a greater understanding of Metric Spaces. The last example in Figure 1c states that a high degree of
knowledge of the course Kaleidoscope Mathematics (‘KM’) is required to achieve high grades in both Analysis
and Group Theory, and that the grade of Metric Spaces depends only on the unification of knowledge of these
two courses.

P (KM, A, GT, MS) = P (KM) ⋅ P (A ∣ KM) ⋅ P (GT ∣ KM) ⋅ P (MS ∣ A, GT).

In order to construct a causal or predictive Bayesian Network, the data must be complete in that there must
be no missing values. These missing values must be treated with careful list-wise deletion or by imputing the
missing values using multiple imputation chained equations (MICE) [14]. The classification of missingness is
important in the assumptions of the MICE method; the common classifications are missing at random (MAR),
missing completely at random (MCAR), and missing not at random (MNAR). MAR or MCAR classified missing
values can be readily imputed as the reason for missingness is independent of the data, e.g. it is not dependent
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Literature Review Introduction

on the variable. For instance, a student who misses an exam due to weather can more accurately impute their
expected result from the data than a student who purposely missed the exam due their lack of preparation
(individual effects bias). Additionally, there may be a systematic reason for the missingness of a particular
variable, e.g. the course may be mandatory only for an unpopular minor and thus only a small subset of
students from the sample would have valid data entries. Missingness due to individual or systemic bias falls
under the MNAR classification and requires additional modelling assumptions.

Literature Review
Using Bayesian Networks to analyse students’ academic performance for predictive purposes is not unique, and
has previously been conducted by H. and K. Itoh, and K. Funahashi from the Nagoya Institute of Technology,
Japan [6, 7]. The purpose of these studies was to provide bachelor students with academic advice at the start
of their second year so that they might alter their learning techniques, improve their academic performance,
and prevent students from abandoning their studies. The authors developed a Bayesian network model for
forecasting course grades in the second year using the grades of first-year courses, compared the predictive
accuracy with a linear predictive model, and deduced the probability of a student requiring academic advice in
two different ways: deviation in grade-point-average (GPA) from the first to the second year, and deviation in
GPA with regards to specialised second-year courses.

This paper is written with the intent to be understood by any educator (inline with the purpose of the jour-
nal), and hence utilises simple language (jargon-less). The report would benefit greatly from a brief introduction
into the proposed benefits of a Bayesian framework and outlining the benefits of a posterior updating technique
for non-linear and non-normal data. It is not clear how the authors’ method could be implemented using other
data, as the report only discusses the merits of the method for their data, and thus it can be evaluated as a
limitation in itself, as this contradicts the purpose: real-life applicability. This project aims to remedy this by
defining the statistical methods in depth with the intent that such analyses and predictions can be replicated
on alternate data sets.

The theoretical framework for constructing a Bayesian Network using the GSA is outlined in Koski and
Noble’s book [9]. Chapters 1–5 of this book summarise (in part) the courses Statistical Reasoning, Stochastic
Models, and Statistics, which is assumed knowledge at this point. Chapter 6 is aptly named learning the
graph structure and provides a clear understanding of performing the GSA, which is referred to as the “K2
structural learning algorithm” in §6.3.3. Additionally, lecture notes and R codes from the course Statistical
Genomics, which teaches the use of Bayesian Networks and the GSA to provide probabilistic information on
gene expression, and will act as a supplementary learning tool to the book.

Numerous online resources exist for understanding how to properly implement MICE, and those which have
proved most knowledgeable and immediately instructive are authored by Prof. Dr. Stef van Buuren from
the Universiteit Utrecht [1, 14]. Moreover, the vignettes provide educational examples from which broadly
applicable methods are eventually drawn [15]. Great emphasis is placed on the validity of these sources due to
the authors’ expertise on MICE, and in particular that Prof. Dr. van Buuren is the author and maintainer of
the package mice.

Research question and problem statement
With regards to the previous research [6, 7], this thesis investigates the possibility of prescribing a global
statistical pipeline which analyses multivariate data sets for the purposes of constructing causal or predictive
Bayesian Networks. In particular, the attention of this problem is focused on the realistic setting of incomplete
data sets and if imputing the missing data can decently maintain the underlying conditional (in)dependencies.

The first chapter focuses on the theoretical framework for designing such a pipeline, which can be partitioned
into two phases. The first phase defines univariate and multivariate analysis techniques of the data frame, and
appropriately utilising the resulting statistics in the construction of the imputation procedure. In the second
phase, the mathematical reasoning for developing a Bayesian Network, and associated inferences, are outlined
in the context of continuous Gaussian or discrete Multinomial data types.

The subsequent chapter applies the theoretical techniques to a data set of student grades from the Bachelor
of Mathematics programme at the Rijksuniversiteit Groningen. The results of MICE and the Bayesian Networks
are then discussed, and future applications are contemplated with reference to the effects of the current COVID-
19 situation due to the online learning environment.
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Theory

With the purpose to ensure the validity of inferences, a solid foundation in the statistical methods utilised in
the R packages mice and bnlearn must be established. Additionally, the implementation in R of respective
measures are described with reference to their suitability for different data types or scenarios.

Multiple Imputation by Chained Equations (MICE)
To rectify the issues of MNAR, NA values in a set must be replaced with values which preserve the properties
of the (joint) distribution of the original set. Consider an n × p data frame, Y , then if only one variable of Y ,
Yj for some j ∈ {1, . . . , p}, contains NA values then univariate imputation methods are required. The complete
variables Y−j = Y ∖ Yj are utilised in the imputation of the incomplete variable Yj , however if more than one
variable is incomplete then multivariate imputations are required. To illustrate and identify the completeness
of variables, the influx and outflux are calculated (c.f. §4.1.3 [1]) and displayed using fluxplot() from the
mice package. Complete variables have influx equal to zero and outflux equal to one, and entirely incomplete
variables have influx equal to one and outflux equal to zero. The ideal situation for imputation of missing data
is for the outflux to be higher than the influx, and for the sum of influx and outflux to be equal to one, rather
than less than.

Univariate analysis
The reliability of the imputation depends not only on the predictor matrix, but also on the imputation methods
(c.f. Table 1, §3.1 [14]). Most imputation methods depend on the normal distribution, and therefore care
must be taken in ensuring correct classification of variable distributions. The Shapiro-Wilk test of normality
[10] can be implemented using the stat.desc() function from the pastecs package, where the assumption of
normality is rejected when the p-value (normtest.p) is less than a prescribed value, e.g. 0.05. In addition,
the function ggqqplot() from the package ggpubr displays the QQ-plots of each variable which illustrates
any deviation from normality, for example bimodal and skewed distributions. If a variable’s distribution is
significantly different from normal, then it is more appropriate to use predictive mean matching (PMM; pmm or
midastouch). Moreover, PMM methods are suitable for discrete or semi-continuous data as the imputations are
drawn from a subset of observed values, and therefore adhere to any rounding or interval-censoring of the data
(c.f. §3.7.3 [1]). The imputation method can be implemented globally (to all variables), e.g. meth = "pmm", or
individually selected for differing variable types, e.g. for two variables meth = c("pmm", "norm"). The pros
and cons of different methods are tabulated below.

Method Description Type Pros Cons
mean Mean imputation Univariate Simplicity

Unbiased for the mean (MCAR)
Underestimates the variance
Biases correlation to zero
Biased for the mean (MAR)
Alters the distribution

pmm Predictive Mean Matching
imputed value is taken from subset of observed values
whose predicted value is close to the predicted missing value

Multivariate Robust to data transformations
Implicit model - robust to misspecification
Not reliant on normality

midastouch Midas touch
Improved pmm

Multivariate Improvement on pmm for small samples

norm.predict Predictive imputation
(Bayesian linear regression)
imputation = prediction

Univariate Unbiased regression estimates (MAR)
Good approximation given by R2

Dependent on Normal distribution
Over-inflates correlations
Underestimates the variance
Harmful to statistical inference

norm.nob Predictive imputation
(Non-Bayesian linear regression)
imputation = prediction + noise

Univariate Preserves the original distribution and correlations Dependent on Normal distribution
Symmetric and constant error term restrictive

norm Bayesian Normal linear regression
imputation = prediction + noise + parameter uncertainty

Multivariate Preserves the original distribution and correlations Dependent on Normal distribution

norm.boot Calculated from bootstrap sample
imputation = prediction + noise + parameter uncertainty

Multivariate Preserves the original distribution and correlations Dependent on Normal distribution

Table 1
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Multiple Imputation by Chained Equations (MICE) Theory

The table includes only continuous variable imputation methods, however there exists imputation methods
suitable for discrete variable types, e.g. binary or multinomial (c.f. §3 [1]). A full list of imputation methods
available in the mice package is given in Table 6.1 from §6.3.1 of [1].

Multivariate analysis
In addition to the choice of univariate imputation method, predictors of imputations are selected to increase
accuracy. On the first run of mice, if the predictor matrix is not specified then each variable is used in the
prediction of every other variable. The predictor matrix is a p × p binary data matrix where a “1” in cell (i, j)
indicates that variable j is used in the prediction of variable i, and a “0” indicates it is not used, for i, j = 1, . . . , p
variables. If variable i is complete, then mice silently defines all entries in row i to be zero. The accuracy of
imputed values can be increased by carefully selecting predictor variables which are strongly associated by
altering the predictor matrix.

Measures of association identify the monotonic relationship between two variables and is dependent on the
variable type, the most relevant statistics of association are tabulated below. If two variables have a strong
monotonic relationship then there is an equally strong predictive ability of missing values, and consequently
should be selected as predictors for each other.

Statistic Pearson’s r Spearman’s ρ Kendall’s τ
Description Ratio of covariance to product of standard deviations

r = Cov (X,Y )√
Var (X)Var (Y )

measures linear relationship

Pearson’s r of ranked data
non-parametric (non-linear monotonic relationship)
greater suited for tied ranks than τ

non-parametric (ordinal relationship)
τ = nc − nd

n0
nc - number of concordant pairs
nd - number of discordant pairs
n0 = n(n − 1)/2

Table 2: Correlation statistics computed in R using correlation() from the correlation package, implemented with
meth = "auto", bayesian = TRUE, partial_bayesian = TRUE, partial = TRUE, and robust = TRUE [12].

These statistics of association are influenced by the underlying multivariate distributions and do not precisely
express the unique bivariate relationship. The partial correlation coefficient resolves the influence of other
variables in the bivariate relationship by regressing out the effects. The R package correlation contains the
correlation() function which gives the partial regression coefficients for all three methods listed in Table 2,
although the function allows for seven other main methods [12]. Additionally, this function allows the user to
compute zero-order and partial correlations under a Bayesian framework, which is beneficial for lower sample
sizes [3].

Partial Correlation

Consider a set of variables X, Y and Z = (Z1, Z2, . . . , Zk), then compute the residuals of the regression of X on
Z, and the residuals of the regression of Y on Z. The Pearson’s correlation coefficient of the pair of residuals
rδ,ε is the Pearson’s partial correlation between X and Y . In the simplest example take k = 1, δ ∶=X − (α + βZ)
to be the residuals from the regression of X on Z, and ε ∶= Y − (α∗ + β∗Z) the residuals from the regression of
Y on Z. The slope and intercepts of the regression line are computed as follows:

β = Cov (Z,X)
Var (Z)

, β∗ = Cov (Z,Y )
Var (Z)

, α = X̄ − βZ̄, and α∗ = Ȳ − β∗Z̄.

The covariance for the residuals δ and Y is determined as

Cov (δ, Y ) = Cov (X − (α + βZ) , Y ) = Cov (X,Y ) − βCov (Z,Y )

= Cov (X,Y ) − (Cov (Z,X)
Var (Z)

)Cov (Z,Y )

=
√
Var (X)Var (Y )

⎛
⎝

Cov (X,Y )√
Var (X)Var (Y )

− Cov (Z,X)√
Var (Z)Var (X)

⋅ Cov (Z,Y )√
Var (Z)Var (Y )

⎞
⎠

=
√
Var (X)Var (Y ) (rXY − rXZrY Z) .

The covariance for the pair of residuals δ and ε, σδε, is given by the formula

Cov (δ, ε) = Cov (X − (α + βZ) , Y − (α∗ + β∗Z))
= Cov (X,Y ) − βCov (Z,Y ) − β∗Cov (Z,X) + ββ∗Var (Z)
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Multiple Imputation by Chained Equations (MICE) Theory

= Cov (X,Y ) − (Cov (Z,X)
Var (Z)

)Cov (Z,Y ) − (Cov (Z,Y )
Var (Z)

)Cov (Z,X)

+ (Cov (Z,X)Cov (Z,Y )
Var (Z)2

)Var (Z)

= Cov (X,Y ) − Cov (Z,X)Cov (Z,Y )
Var (Z)

=
√
Var (X)Var (Y ) (rXY − rXZrY Z) .

The variances of the pair of residuals, σ2
δ and σ2

ε , are calculated using

Var (δ) = Cov (δ, δ) = Cov (X − (α + βZ) ,X − (α + βZ))
= Var (X) − 2βCov (Z,X) + β2Var (Z)

= Var (X) − 2(Cov (Z,X)
Var (Z)

)Cov (Z,X) + (Cov (Z,X)
Var (Z)

)
2

Var (Z)

= Var (X) − Cov (Z,X)2

Var (Z)
= Var (X)(1 − Cov (Z,X)2

Var (Z)Var (X)
)

= Var (X) (1 − r2XZ) ;

Var (ε) = Cov (ε, ε) = Cov (Y − (α∗ + β∗Z) , Y − (α∗ + β∗Z))

= Var (Y ) − 2β∗Cov (Z,Y ) − β∗2Var (Z)

= Var (Y ) − 2(Cov (Z,Y )
Var (Z)

)Cov (Z,Y ) − (Cov (Z,Y )
Var (Z)

)
2

Var (Z)

= Var (Y ) − Cov (Z,Y )2

Var (Z)
= Var (Y )(1 − Cov (Z,Y )2

Var (Z)Var (Y )
) = Var (Y ) (1 − r2Y Z) .

The correlation coefficient is the ratio of the covariance and standard deviations, and thus measures the degree
of association between two variables.

Ô⇒ rδε =
Cov (δ, ε)√

Var (δ)Var (ε)
= rXY − rXZrY Z√
(1 − r2XZ) (1 − r2Y Z)

.

The formula above is that of the partial correlation between X and Y in the case that k = 1, however if k > 1
then the formula can be determined.

Significance and effect size of partial correlation

The partial correlations provide information on the strength and direction of the unique relationship between
two variables. In the context of multiple regression, the significance of the strength of the unique relationship
can be factored into three levels: small, medium and large effect size (c.f. Case 1 §9 [2]). Partial correlations
with medium or large effect size are highlighted as potential predictors in imputation.

small medium large

pr2 = 0.02

1 + 0.02
pr2 = 0.15

1 + 0.15
pr2 = 0.35

1 + 0.35

Table 3: Effect size interval partitions for determining the significance of partial correlations at three levels: small,
medium and large [2].

In order to determine if there is a significant difference in partial correlation coefficients across imputation
methods, the statistics are transformed using the Fisher-Z transformation,

z̃ [rXY.Z] =
1

2
ln( 1 − rXY.Z

1 + rXY.m
) ,

5



Multiple Imputation by Chained Equations (MICE) Theory

where rXY.Z is the partial correlation between variables X and Y (partialling out the effects of variable set Z).
The underlying hypothesis that there is a significant difference in the population between two partial regression
coefficients is tested using

z = z̃(1) [rXY.Z] − z̃(2) [rXY.Z]√
1

n1−4 +
1

n2−4

∼ N (0,1),

where z̃(1) [rXY.Z] is the transformed statistic for population one with sample size n1, and z̃(2) [rXY.Z] is
the transformed statistic for population two with sample size n2 [11]. The hypothesis ρ(1)XY.Z = ρ(2)XY.Z is
rejected in favour of ρ(1)XY.Z ≠ ρ(2)XY.Z if the sample statistic computed above exceeds z∗α/2, where
P (∣Z ∣ > z∗α/2 ∣Z ∼ N (0,1)) = α is the accepted probability of a Type I error.

In order to test which imputation methods from a set of k are most suitable for a particular variable, pairwise
comparisons are required and therefore comparisons are made on the association confidence intervals. The
following represents the (1 − α)% confidence interval for the difference in the Fisher Z-transformed population
correlations denoted z̃(j) [ρXY.Z] − z̃(j′) [ρXY.Z], for some j ≠ j′ ∈ {1, . . . , k}:

z̃(j) [rXY.Z] − z̃(j′) [rXY.Z] ±
√

χ2
k−1 (1 − α)

√
1

nj − 4
+ 1

nk − 4
,

where χ2
k−1 (1 − α) is the 100 (1 − α) percentage point of a central chi-square distribution with (k − 1) degrees

of freedom. The upper bound UB and lower bound LB of the confidence interval for the transformed statistic
are computed using the equation above. The inverse transformation yields the (1 −α)% confidence interval for
the difference in the population correlations denoted ρ(j)XY.Z − ρ(j)XY.Z:

(1 − e
2⋅LB

1 + e2⋅LB
,
1 − e2⋅UB

1 + e2⋅UB
) .

Bayes Factor

The aforementioned methods for determining significance and effect size are not infallible as they assume
that the sample size of the data is “large enough” and that the Central Limit Theorem ensures the validity.
Furthermore, many assumptions of frequentist methods assert an underlying normal distribution of the data,
which is generally not true. For non-normal sample data with a small sample size, Bayesian methods for
analysing (partial) correlation are more appropriate.

Consider a set {X,Y,Z} of (non-normal) variables, then partial correlation can be treated as a parameter
of the joint distribution of all variables. A posterior probability model for the partial correlation, now treated
as a random variable dependent on some prior distribution with certain hyperparameters and also dependent
on the likelihood of the data. The null hypothesis H0 assumes that the partial correlation between X and Y
(with the effects of variable set Z removed) in the population is zero; the alternative H1 is that the variables
have a population partial correlation significantly different from zero. The null hypothesis is tested using Bayes’
Factor, which is defined as

BF10 ∶=
P (data ∣H1)
P (data ∣H0)

= P (H1 ∣data) P (H0)
P (H0 ∣data) P (H1)

.

A Bayes’ Factor greater than one indicates a greater likelihood of the data given the alternative hypothesis
and implies that the null hypothesis should be rejected in favour of the alternative (c.f. §1.7 [9]). This test
is implemented in R using the correlation function from the package correlation, with options method
= "auto", partial = TRUE, bayesian = TRUE, partial_bayesian = TRUE, and robust = TRUE [12]. The
correlation function supports the use of Pearson’s, Spearman’s and Kendall’s methods, as well as additional
types which are listed on CRAN. The option robust = TRUE rank-transforms the data prior to any computation
and when used in conjunction with method = "auto" ensures the correct method selection for any data type.
The correlation function allows two other methods of testing: probability of direction (p-direction) and region
of practical equivalence (ROPE). The p-direction test is most similar to the frequentists approach of hypothesis
testing except that 89% is a more stable acceptance region than 95%.
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Bayesian Network Theory

Bayesian Network
Bayesian Networks illustrate joint (conditional) probability models among variables in a given data sample.
The variables represent nodes in the network, with directed edges between the nodes displaying conditional
dependencies between the variables. The potential number of directed edges in a graph increases exponentially
as the number of nodes increases, and therefore it is useful to determine the likelihood of a particular graph
given the sample data input. The likelihood of the graph, P (graph ∣ data), is computed using Bayes’ Rule as
the posterior probability as is given below. The marginal likelihood, P (data ∣ graph), updates the prior belief,
P (graph), to reflect the true probability.

posterior
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P (graph ∣ data) = P (data, graph)

P (data)
=

marginal likelihood
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P (data ∣ graph) ⋅

prior
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P (graph)

P (data)
A graph of nodes connected by directed edges is a directed acyclic graph (DAG), and if some edges are

undirected then it is called a completed partially directed acyclic graph (CPDAG). Denote graph G in the set
of all possible graphs G, and data set D where Dj,i is the jth observation of node i (c.f. §2 [9]). If we consider
each graph to be equally likely then the prior belief is P (graph) = 1/ ∣G∣ where ∣G∣ is the total number of graphs
(c.f. §6 [9]). Noting that

P (data) ∶= ∑
G∈G

P (D,G) = ∑
G∈G

P (D ∣ G) ⋅ P (G),

i.e. the distribution of the data is independent of the graphs such that ∑G∈G P (D ∣ G) = 1, then it holds that

P (graph ∣ data)∝ P (data ∣ graph) = ∫ P (D ∣ q,G) ⋅ P (q ∣ G)dq,

where q is a vector of unknown parameters. It is assumed that the parameters qi in q are independent such that
P (q ∣ G) =∏n

i=1 P (qi ∣ G), then parameters depend only on the current node Xi and it’s parent nodes pa (Xi).

Ô⇒ P (q ∣ G) =
n

∏
i=1

P (qi ∣Xi,pa (Xi))

Ô⇒ P (D ∣ G) = ∫ ⋯∫
n

∏
i=1

⎡⎢⎢⎢⎣

m

∏
j=1

P (Dj,i =Xi ∣ pa (Xi) =Dj,pa(Xi), qi) ⋅ P (qi ∣Xi,pa (Xi))
⎤⎥⎥⎥⎦
dq1 . . .dqn

=
n

∏
i=1
∫

m

∏
j=1

P (Dj,i =Xi ∣ pa (Xi) =Dj,pa(Xi), qi) ⋅ P (qi ∣Xi,pa (Xi))dqi.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ψi(pa(Xi),D{Xi},D{pa(Xi)})

This leads to the assertion that the posterior distribution is also dependent only on the current node Xi and
it’s parent nodes pa (Xi).

Ô⇒ P (graph ∣data) ∝
n

∏
i=1

Ψi (pa (Xi) ,D{Xi},D{pa(Xi)}).

The following sections outline the approach to Bayesian Network building algorithms under two different
model assumptions: Bayesian Gaussian and Bayesian Dirichlet models.

Bayesian Gaussian (Normal-Wishart) model
For the Bayesian Gaussian model, two model assumptions are imposed on the domain variables Xi, such that
X1, . . .Xn ∼ N (µ,Σ) are normally distributed with a vector of means µ and covariance matrix Σ =W −1, where
W is the precision matrix. Moreover the unknown parameters, µ and W , are distributed Normal-Wishart,
such that µ ∼ N (µ0, (νW )−1) and W ∼W (α,T0), where α > n + 1 is the degrees of freedom. The respective
distributions are given below, dependent on the hyperparameters µ0, ν, α, and T0.

f (µ,W ∣ µ0, ν, α, T0) = N (µ ∣ µ0, (νW )−1) ⋅W (W ∣ α,T0) ;

f (µ ∣ µ0, (νW )−1) = (2π)−n/2 (νW )1/2 exp
⎧⎪⎪⎨⎪⎪⎩

− (µ −µ0)T νW (µ −µ0)
2

⎫⎪⎪⎬⎪⎪⎭
;
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f (W ∣ α,T0) = c(n,α) ∣T0∣−α/2 ∣W ∣(α−n−1)/2 exp{
− trT0 ⋅W

2
},

where c(n, a) ∶= [2αn/2πn(n−1)/4
n

∏
i=1

Γ(α + 1 − i
2

)]
−1

.

As T0 and W are matrices, the operator ∣⋅∣ on these matrices is the determinant operator. Let Gc denote
the complete DAG, where each pair of nodes are connected such that all pairs of variables are stochastically
independent, there are no unconditional dependency relations, and there is maximal number of edges
n(n − 1)/2. Then the marginal likelihood of the data set D given the complete DAG Gc is

P (D ∣ Gc) = (2π)−nm/2 (
ν

ν +m
)
n/2 c(n,α)

c(n,α +m)
∣T0∣α/2 ∣Tm∣−(α+m)/2 ,

where Tm ∶= T0 +
m

∑
j=1
(Dj − D̄) (Dj − D̄)

T + ( νm

ν +m
)(µ0 − D̄) (µ0 − D̄)

T
.

Dj is the jth column of D, and D̄ = (D̄1, . . . , D̄n) is a vector of means, where D̄i = ∑m
j=1Di,j/m. The marginal

likelihood is now denoted the Bayesian Gaussian equivalence (BGe) score:

PBGe (D ∣ Gc) =
n

∏
i=1

P (D{Xi,pa(Xi)} ∣ Gc)
P (D{pa(Xi)} ∣ Gc)

.

Ô⇒ P (graph ∣ data)∝ PBGe (D ∣ Gc) .
The above relation is called the BGe score and is only valid under Bayesian Gaussian model assumptions;

the next section describes a scoring metric similar to the BGe under Bayesian Dirichlet model conditions.

Bayesian Dirichlet (Dirichlet-Multinomial) model
For the Bayesian Dirichlet model, different model assumptions are imposed and the marginal distribution is
dependent on the Dirichlet and Multinomial distributions. Given the value combinations j of its parent nodes in
{pa (Xi)}, each domain variable Xi is now Multinomial distributedM (θi,j,1, . . . , θi,j,r) such that ∑r

k=1 θi,j,k = 1,
and parameters θi,j,1, . . . , θi,j,r are Dirichlet distributed with hyperparameters αi,j,1 > 0, . . . , αi,j,r > 0. The joint
distribution of the parameters θi,j,k is

P (θi,j,1, . . . , θi,j,r) =
Γ (∑ri

k=1 αi,j,k)
∑ri

k=1 Γ (αi,j,k)
⋅

ri

∏
k=1

θ
αi,j,k−1
i,j,k .

Ô⇒ P (D ∣ G) = ∫ ⋯∫
n

∏
i=1

⎡⎢⎢⎢⎢⎢⎢⎣

P (qi ∣ pa (Xi))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Dirichlet

⋅
m

∏
j=1

P (Xi =Di,j ∣ pa (Xi) =Dpa(Xi),j , qi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Multinomial

⎤⎥⎥⎥⎥⎥⎥⎦

dq1 . . .dqn

= ⋯⋯⋯

=
n

∏
i=1

Ψi (pa (Xi) ,D{Xi},D{pa(Xi)}) =
n

∏
i=1

qi

∏
j=1

Γ (αi,j)
Γ (Ni,j + αi,j)

⋅
ri

∏
k=1

Γ (Ni,j,k + αi,j,k)
Γ (αi,j,k)

.

The nodes are indexed i ∈ {1, . . . , n}, the value combination of pa (Xi) are indexed j ∈ {1, . . . , qi}, the possible
realisations of Xi are indexed k ∈ {1, . . . , ri}, and the number of observations in D for which Xi = k are parent
nodes take the jth value combination is denoted Ni,j,k. The psuedocounts are calculated as αi,j,k = α/qiri, where
α is given, and αi,j = ∑ri

k=1 αi,j,k. The marginal likelihood is now denoted the Bayesian Dirichlet equivalence
(BDe) score:

PBDe (D ∣ G) = P (graph)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Uniform

⋅∫ P (D,θ (G) ∣ G)dθ (G) =
n

∏
i=1

qi

∏
j=1

Γ (αi,j)
Γ (Ni,j + αi,j)

⋅
ri

∏
k=1

Γ (Ni,j,k + αi,j,k)
Γ (αi,j,k)

Ô⇒ P (graph ∣ data)∝ PBDe (D ∣ G) .

In the following section an algorithm is described which determines the optimal graph structure using the
BDe/BGe score by iteratively selecting the graph which maximise this score.
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Greedy Search Algorithm (GSA)
Complex graphs tend to have greater likelihoods, but only for a particular parameter, and are therefore penalised
as this leads to lower marginal likelihoods. The Greedy Search Algorithm (GSA) reduces the number of G ∈ G
which are analysed by choosing only those which are neighbouring the starting graph. This is commonly referred
to as the maximum minimum hill climbing (MMHC) algorithm and is implemented in R using the hc() function
from the package bnlearn (c.f. §6.3.4 [9]; §4.1 [13]; [5]).

Initiate: Start from an arbitrary graph G ∈ G. Set G1 = G.

Iterate: For i ∈ N , determine all N = N (Gi) neighbour graphs Gi,1, . . . ,Gi,N of Gi and compute their scores:
Score (Gi,k) = P (D ∣ Gi,k) ⋅ P (Gi,k).

if Score (Gi) ≥ Score (Gi,k) for k ∈ {1, . . . ,N}, then output Gi.
else Set Gi+1 = Gi,c, where Score (Gi,c) =maxk {Score (Gi,k)}.

To avoid getting stuck in local optima, initiate from different graphs. An alternative to assuming that each
graph is equally likely, i.e. P (G) = 1/ ∣G∣, is

P (G) = Z−n
n

∏
i=1
( n − 1
∣pa (Xi)∣

)
−1
, where Z ∶=

n−1
∑
j=0
(n − 1

j
)
−1
.

Ô⇒ Score (Gi)∝
j=1
∏
n

Ψj (pa (Xj ∣ Gi) ,D{Xj},D{pa(Xj)})( n − 1
∣pa (Xj)∣

)
−1
,

where Ψj is the Normal-Wishart (BGe) or Multinomial-Dirichlet (BDe). Other conditions imposed to limit ∣G∣:

• Limit the number of parent nodes such that nodes with more than the set threshold has prior probability
of zero.

• If all “best graphs” contain a particular edge, initiate from a graph containing this edge and set any graph
without this edge to have prior probability zero.

• Similarly, if all “best graphs” do not contain a particular edge, initiate from a graph without this edge
and set any graph with this edge to have prior probability zero.

As the correlation coefficient no longer gives direction (only strength of the relationship), we can regulate nodes
to determine causation. For example, for a particular set of nodes {A,B} prescribe high and low levels (each).
If we set A to low levels (inhibit A), and the scatter plot of A v.s. B shows a cluster, then A → B, i.e.
P (A,B) = P (A)P (B ∣ A). If the scatter plot does not resemble a cluster and instead resembles a line running
along the axis of B, then B → A, i.e. P (A,B) = P (B)P (A ∣ B). Apply an intervention vector V ∈ Rm, where
Vj is non-zero if an intervention is applied at observation j. Then D(i) is the matrix D without the columns
corresponding to the inventions affecting Xi, and

PBGe (D ∣ G) =
n

∏
i=1

P (D(i){Xi,pa(Xi)} ∣ Gc)

P (D(i){pa(Xi)} ∣ Gc)
,

where P (D(i){S} ∣ Gc) = (2π)−nSm(i)/2 ( ν

ν +m(i)
)
nS/2

c (nS , α)
c (nS , α +m(i))

∣T {S}0 ∣
α/2
∣T {S}

m(i),i∣
−(α+m(i))/2

,

T
{S}
m(i),i = T

{S}
0 +

m(i)

∑
j=1
(Dj(i) − D̄(i)) (Dj(i) − D̄(i))

T + ( νm(i)
ν +m(i)

) (µ0 − D̄(i)) (µ0 − D̄(i))
T
,

and D̄i(i) =
∑m(i)

j=1 D(i)i,j
m(i)

.

Each node which has been intervened must obtain two “dummy parent nodes”, then use the following algorithm
to transform the DAG to a CPDAG, and then remove the dummy variables/edges. This yields the CPDAG
of the intervened network. Interventions break equivalence classes, and all edges that touch intervened nodes
become compelled.
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The following algorithm transforms a DAG into a CPDAG.

order nodes: Provide a topological ordering of the nodes, such that a node is proceeded by it’s parent nodes
in the ordering, and any tie-breakers are broken by numerical/alphabetical sorting of the tied nodes.

order edges: for i = 0,1, . . . ,K, where K is the total number of edges. The lowest ordered node with an
unordered edge incident into it is denoted X. The highest order node with edge incident into X is
denoted Y . Then edge Y →X is ordered i.

label edges: After ordering the edges, proceed by labelling each (in order) edge as either “compelled” or
“reversible”. Denote x→ y the lowest order edge without a label.

for all edges w → x labelled “compelled”
if w is not a parent of y, label x→ y and every edge incident into y “compelled”.
else label w → y “compelled”.

if there exists an edge z → y with z ≠ x and z is not a parent of x, then label x → y and all unlabelled
edges into y “compelled”.

else label x→ y and all unlabelled edges into y “reversible”.

The GSA is useful if and only if D is a “large” data set (with respect to sample size), otherwise a “model
averaging” approach is more appropriate.

Model averaging
The model averaging approach initiates from a given DAG Gi, then I (Gi) = 1 if Gi contains a particular
directed edge and zero if it doesn’t. In a CPDAG, if an edge is bidirectional/undirected then also I (Gi) = 1.

P (A→ B ∣D) ∶= ∑
G∈G

P (G ∣D)I(G); I(G) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, A→ B or A↔ B

0, B → A

Ô⇒ estimator P̂ (A→ B ∣D) ∶= ∑
T
i=1 I (Gi)

T

T→∞ÐÐÐ→
consistency

P (A→ B ∣D)

The Markov Chain Monte Carlo (MCMC) sampling technique is used to generate the graphs G1, . . . ,GT for
some T ∈ N (c.f. §6.4 [9]; lecture notes [5]). A Markov Chain (MC) has 1-step memorylessness, that is the
probability of realisation at time t depends only on the realisation at time (t − 1) and is independent of the
realisations at times {1, . . . , t − 2}, such that

P (Xt = xt ∣Xt−1 = xt−1, . . . ,X1 = x1) = P (Xt = xt ∣Xt−1 = xt−1).

The MC is called homogeneous if there exists a transition matrix T (transition kernel), such that

Ti,j = P (Xt = j ∣Xt−1 = i) = P (Xt−1 = j ∣Xt−2 = i) = ⋅ ⋅ ⋅ = P (X2 = j ∣X1 = i).

T is called stochastic if the row sums or column sums total to one, and doubly stochastic if both the row and
column sums total to one. The initial probabilities {P (X1 = i) ∣ i ∈ S} together with the transition matrix T
fully define the distribution of the homogeneous MC, where S is the state space. Consider for some j ∈ S the
following:

P (X2 = j) =∑
i∈S

P (X2 = j ∣X1 = i) ⋅ P (X1 = i) =∑
i∈S

Ti,j ⋅ P (X1 = i)

P (X3 = j) = ∑
k∈S

P (X3 = j ∣X2 = k) ⋅ P (X2 = k) = ∑
k∈S

Tk,j ⋅∑
i∈S

Ti,j ⋅ P (X1 = i) =∑
i∈S

T 2
i,j ⋅ P (X1 = i)

⋮

Ô⇒ P (Xt = j) =∑
i∈S

T t
i,j P (X1 = i)

t→∞ÐÐ→ lim
t→∞

P (Xt = j) =∶ πj , j ∈ S.

The stationary distribution π ∶= (π1, . . . , πk), i.e. the limiting probability distributions of one-move transitions,
can be determined by solving πT = π or equivalently N (π (T − I)), for some discrete state space S = {1 . . . , k}.
In the context of Bayesian Networks, we have that πi = P (Gi ∣D), where the Gi are generated by the following
MCMC algorithm.

10



Bayesian Network Theory

Initialise: Start with an arbitrary DAG G; set G1 = G.

Iterate: For t = 1,2,3, . . . , T , a new DAG G∗ is proposed with probability Q (G,G∗) = 1/ ∣N(G)∣ if G∗ ∈ N(G)
or zero otherwise, where N(G) is the set of neighbour graphs (reachable from G with 1-edge moves).
Then Q (G,G∗) > 0 ⇐⇒ Q (G∗,G) > 0.
The new DAG G∗ is accepted with probability A (G,G∗), which are determined in order to satisfy the
equation of detailed balance:

T (G,G∗)
T (G∗,G)

= P (G∗ ∣D)
P (G ∣D)

Ô⇒ A (G,G∗) =min{1, P (G
∗ ∣D)

P (G ∣D)
⋅ ∣N(G)∣
∣N(G∗)∣

}.

Draw p ∈ Uni(0,1) and accept G∗ if p ≤ A (G,G∗), then G2 = G∗; reject if p > A (G,G∗), then G2 = G.

Burn-in phase: Generate G1, . . . ,GT and discard the first 10 000 or so. This is done in order to reach the
stationary distribution π.

Thinning: As neighbour graphs are too similar (auto-correlation), select only every nth realisation, e.g. n =
10,100,1000.

This method is implemented with the gs() function in the package bnlearn, and visualisations of the
graphs generated by gs() or hc() can be implemented in R using the packages Rgraphviz and lattice, which
utilises the strength.plot() function to illustrate arc direction and strength (with respect to conditional
dependency).1 The following section demonstrates the use of both functions.

1These functions have been programmed to an online webtool which allows the user to demonstrate the different methods for
sample or user-uploaded data [4].
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Method

First exam
grade present

2015-16
or prior Omit

2016-17 Calculus
1 grade Omit

Linear
Algebra
1 grade

Omit

Calculus
2 grade Omit
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to Cohort
2016-17

Number of grade entries Omit

Allocated to
reduced set
of Cohort
2016-17

2017-18 Calculus
1 grade Omit

Linear
Algebra
1 grade

Omit

Calculus
2 grade Omit

Allocated
to Cohort
2017-18

Number of grade entries Omit

Allocated to
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of Cohort
2017-18
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Absent
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Absent
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Absent

Present

≤6

≥7

Absent
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Absent
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≤6

≥7

Figure 2: Decision tree for sorting stu-
dents into their respective cohorts.

Inputting the data in R into a data frame requires some knowledge of the
merge function, which merges columns by a reference column containing
the person identifiers and omits rows which are not common between the
merging data frames. After merging the data frames, omitted rows are
included by inserting NAs in the respective columns to ensure the included
row has the correct dimension. Furthermore any rows with only NAs are
removed, as these represent students who enrolled for the course but did
not sit any exams and are redundant in the analysis. This constitutes
the master data frame, containing all exam grades (first and resit) and
from all available years.

There is evidence in the data of several students attempting the exam
of any particular course over many years. Therefore the yearly exam
grade data sets contain unwanted error noise due to correlation, and we
can represent the grades as a fixed or random effects model:

yit =Xitβ + αi + uit,

students i = 1, . . . , n, time periods t = 1, . . . , T,

where yit is the grade of student i at time t for some course, Xit is the
row-vector of previously recorded course grades, β is the column vector
of parameters, αi is the unobserved individual effects parameter, and
uit is the error term. Consequently, the data is split by starting year
cohorts into cohorts 2016-17 and 2017-18, and only the maximum grade
over all years is considered for the analysis to reduce the correlation due
to students taking the exam, for any course, more than once. The split
into cohorts is achieved by recording the year for which each student
number first appears as the respective starting year in that a student
whose first grade appears in 2016-17 is sorted to this cohort, and any
students present in 2015-16 are omitted. Similarly, any student numbers
present in 2016-17 data, or prior, are omitted from the 2017-18 cohort.
Finally, any students whose first grade entry appears in 2018-19 or later
are omitted from the 2017-18 cohort.

Next, the maximum of the first and resit exams is selected as the
final exam grade per year (per student), and this constitutes the final
grade data frame and contains many missing values (MNAR). Courses
taken at the beginning of year one have fewer missing values than later
courses, which may be attributed to students abandoning their studies or
that these elementary mathematics courses are offered to students from
other programmes. The set of first-year courses are Calculus 1, Linear
Algebra1, Calculus 2, Computer-Aided Problem Solving (CAPS), Linear
Algebra 2, Analysis and Probability Theory, and the set of second-year
courses are Ordinary Differential Equations (ODE), Statistical Reason-
ing, Statistics, Complex Analysis and Numerical Mathematics 1.

In order to reduce the number of missing values, students who achieve
a grade in Calculus 1 and 2, and Linear Algebra 1 are omitted. The maximum grade per student, per course,
over all years is calculated and the student must have a grade entered for these three courses to not be omitted.
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The resulting cohort data frames contain comparatively less missing values, however both contain over 40%
MNAR, and further reduction is required. The second reduction function omits any students with less than
seven grade entries, in order to isolate the students who achieved a positive Binding Study Advice (BSA). The
missing data patterns indicate that there remain few students with incomplete grade lists, and the percentage
of MNAR now lies comfortably between 9-15% for either cohort.

(a) Missing data patterns for cohort 2016-17 after the second reduc-
tion. There are 21 complete cases, and 25 cases in which only one
grade entry is missing.

(b) Missing data patterns for cohort 2017-18 after the
second reduction. There are 24 complete cases, and 18
cases in which only one grade entry is missing.

Figure 3: Missing data patterns for cohorts 2016-17 after the second reduction described in Fig. 2.

Initial analysis
Prior to imputation of the missing data, the univariate and multivariate statistics are computed to determine
appropriate imputation methods and predictor matrices. The distributions of the course grade data exhibit
bimodal behaviour, with the lower peak density hovering around a grade of 4 and the higher peak density
around 7. Indeed the assumption that the course grade data is normal has been violated (Shapiro-Wilk test
statistic W ; p-value < 0.05), and similar observations can be made from the QQ-plots of residuals. Therefore
analysis of each imputation method is conducted to determine the most appropriate method for each course.

To refine the prediction process, the partial regression correlation coefficients are recorded in Table 4a with
small, medium or large significance indicated (c.f. [2] §9.2.2). The coefficients are calculated using Spearman’s
ρ technique, in that the data is transformed to ranked data and then the Pearson’s correlation coefficient is
computed on the residuals of the ranked data, after the effects of all other variables have been regressed out.
As the grades are rounded between 1 and 10 to the nearest 0.5, the data are semi-continuous and additionally
contains tied ranks. Therefore Spearman’s method is more suitable than Kendall’s or Pearson’s method [8].

With reference to the graphs in Fig. 1, it is known that an edge exists between two nodes if the variables
indicated by the nodes are correlated. In order to preserve the conditional dependency, those cells containing
medium or large significance in Table 4 are selected to be predictors with a “1” entered in each respective cell
for the predictor matrix.
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Table 4: Partial regression correlation coefficients prj with significance of effect size given by asterisks (small * (pr2j ≤
0.024); medium ** (pr2j ≤ 0.1176); large *** (pr2j ≤ 0.538)).

(a) Partial regression correlation coefficients for cohort 2016-17.

Calc1 LinAlg1 Calc2 CAPS LinAlg2 Analysis ProbThry ODE StatReas Stats Complex
Calc1

LinAlg1 0.155*
Calc2 0.122* 0.057*
CAPS 0.053* -0.146* 0.291*

LinAlg2 -0.267* 0.184* 0.326* 0.183*
Analysis 0.08* 0.137* -0.225* -0.101* 0.414**

ProbThry -0.032* 0.23* 0.025* -0.184* 0.356* -0.246*
ODE -0.288* 0.125* 0.235* 0.025* -0.225* 0.389** -0.165*

StatReas 0.186* -0.352* 0.102* 0.032* 0.026* 0.134* 0.106* 0.113*
Stats 0.11* 0.082* -0.217* 0.014* 0.375** -0.364** -0.067* 0.314* 0.102*

Complex 0.156* 0.301* 0.007* 0.095* -0.247* -0.052* 0.074* 0.078* 0.187* 0.287*
NumMat1 0.345* -0.472** -0.016* -0.124* 0.461** -0.058* -0.022* 0.34* -0.271* -0.241* 0.406**

(b) Partial regression correlation coefficients for cohort 2017-18.

Calc1 LinAlg1 Calc2 CAPS LinAlg2 Analysis ProbThry ODE StatReas Stats Complex
Calc1

LinAlg1 -0.414**
Calc2 0.531*** 0.515***
CAPS -0.218* -0.213* 0.563***

LinAlg2 0.213* 0.126* -0.092* 0.056*
Analysis 0.032* -0.029* 0.016* 0.21* 0.315*

ProbThry 0.27* 0.509** -0.318* 0.073* -0.217* 0.269*
ODE 0.388** 0.639*** -0.475** 0.145* -0.295* 0.233* -0.722***

StatReas -0.074* -0.195* 0.277* -0.468** 0.051* 0.065* 0.101* 0.138*
Stats -0.025* -0.049* -0.094* 0.349* 0.164* -0.063* 0.265* 0.27* 0.157*

Complex 0.528*** 0.256* -0.3* 0.205* 0.181* -0.337* 0.029* -0.02* 0.163* -0.06*
NumMat1 -0.397** -0.305* 0.177* 0.067* 0.189* 0.027* 0.329* 0.304* 0.123* -0.036* 0.189*

MICE
Referring to Fig. A.1, the flux plots display obvious differences between the cohorts. For the 2016-17 flux plot,
the incomplete variables Analysis, LinAlg2 and CAPS will be most informative in the imputation of the other
incomplete variables. Whereas for cohort 2017-18, additionally ODE and ProbThry are useful. The completeness
of Calc1, LinAlg1 and Calc2 for both cohorts asserts their usefulness in the imputation of incomplete variables
which have significant partial correlation. The initial runs of mice on either cohort are implemented with m =
5 imputations, a global midastouch or pmm method and without a predictor matrix input. The subsequent runs
of mice are implemented with a predictor matrix which is dependent on the findings of the partial correlation
and flux plot analyses. For example, no predictors are chosen for variable Stats in cohort 2017-18 when the
decision is solely based on the significance of partial regression coefficients (c.f. Table 4b). However there are
small partial correlations between Stats and CAPS, ProbThry and ODE, and the fluxes of CAPS, ProbThry and
ODE nearly sum to one. Therefore we may manually alter the predictor matrix for cohort 2017-18 so that CAPS
and ODE are used in the prediction of Stats. The final predictor matrices and post-MICE partial correlation
tables are supplied in Appendix A.

Bayesian Network
After imputing the cohort data sets using the PMM and Midastouch methods, and using the altered predictor
matrices, the GSA is employed using hc() and the outputs are presented in Fig. 4. With regards to Figs. 4a
and 4b, the conditional probabilities between the (original) cohort data sets are dissimilar, for example the
direction of the arc between Calc1 and Complex is reversed. Moreover the graph skeletons (CPDAG with
undirected edges) are dissimilar. Therefore it cannot be concluded that individual effects of the data set have
been adequately accounted for using the selection criteria outlined in Fig. 2.

Comparisons of Figs. 4a, 4c and 4e show that there are also different conditional dependencies and different
skeletons. It can be anticipated that there are minor differences between the original and imputed data Bayesian
Networks, with the best method displaying the highest similarity to the original data Bayesian Network. An
examination of Figs. 4b, 4d and 4f yields interesting results: the skeletons for PMM and Midastouch imputed
data are similar, and the CPDAG for the Midastouch imputed data resembles closely the time-linear organisation
of the courses in the programme. The differences in the three Bayesian Networks (within each cohort) can be
attributed to the use of a global imputation method. A potential solution to this problem could be to permutate
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Method Application

the two imputation methods across all variables and determine the vector of imputation methods, e.g. c("pmm",
"midastouch", "pmm"), which minimises the difference between the original and the imputed data set graphs.

(a) Bayesian Network for the original 2016-17 cohort data (list-
wise deletion).

(b) Bayesian Network for the original 2017-18 cohort data (list-
wise deletion).

(c) Bayesian Network for the PMM imputed 2016-17 cohort
data.

(d) Bayesian Network for the PMM imputed 2017-18 cohort
data.
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Discussion Application

(e) Bayesian Network for the Midastouch imputed 2016-17 co-
hort data.

(f) Bayesian Network for the Midastouch imputed 2017-18 co-
hort data.

Figure 4: Bayesian Networks for the cohort 2016-17 and 2017-18 data sets, and the post-MICE data sets using methods
PMM and Midastouch.

Discussion
The results of the previous section illustrate the requirement in science for repeatability and testability when
constructing a global solution. The statistical pipeline as currently described does not ensure accurate interpre-
tation of the course data results to which it is applied, and improvements are proposed for the selection criteria
(Fig. 2) and MICE implementation.

It may be prudent to further reduce the sample size to students who have received passing grades in all
first-year courses to ensure a unimodal distribution of these variables. Furthermore, any students of this new
subset with a failing grade in second-year courses could be omitted, or alternatively their value could also
be imputed. A suitable transformation of these first-year courses could remodel the variables to satisfy the
Gaussian model assumption. Imputation under the Gaussian model may yield Bayesian Networks with a more
accurate demonstration of the population variable interactions. Moreover, this may yield similar results between
cohorts.

Efforts to permutate the PMM and Midastouch methods across all variables resulted in R crashing, which
may be attributed to approach to coding scripts being somewhat ad-hoc. Future research could be conducted
on the validity of a function with permutates appropriate imputation methods and confirms said validity by
making graph comparisons to the graph of the original data set.

Future corrections to the statistical pipeline can also be proposed in analysing the differences in student
grades for an online learning environment. Currently the COVID-19 pandemic has imposed a demand for a
transition from on-campus to online learning, and the sudden change has resulted in an abnormal examination
environment. Indeed the examination procedures are course dependent and not yet uniformly prescribed across
programmes or faculties. An appropriate use of the corrected statistical pipeline may allow for differences in
grade distributions to be easily identified, such as lower mean and mode values, or different (co)variances in the
sample. Thus allowing for any corrections to the raw data to ensure that students’ grades are not (negatively)
affected by the change in examination environment.
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Appendix A

MICE analysis

The missing data patterns allow the computation of influx and outflux which provide insight into appropriate
predictor matrices (c.f. §4.1.3 [1]). The influx is the ratio of the sum of variable pairs (Xi,Xk), with Xi missing
and Xk observed, to the total number of observations. The outflux is analogously defined as the ratio of the
sum of variable pairs (Xi,Xk), with Xk missing and Xi observed, to the total number of observations.

For two variables with the same influx, the variable with higher outflux is more useful for imputing the other
variables as it is better connected to the data. Analogously, for two variables with the same outflux, the variable
with the higher influx is more useful for imputation. Therefore variables which lie on or near the y = 1 − x line
are most useful for imputing the other variables.

The flux plots below display which variables are most useful in the imputation of other incomplete variables
for the cohorts 2016-17 and 2017-18 data. It is useful to restrict the set of potential predictors to those which
lie on or near to the dotted line. For instance, for both cohorts, if the variable which is being imputed is not
significantly (partially) correlated to either Complex, Stats, or NumMat1, it may be beneficial to exclude them
from the set of predictor variables.

(a) Flux plot of cohort 2016-17 data. Calc1, LinAlg1 and Calc2
are complete, and have outflux equal to one and influx equal to
zero. These three variables as well as Analysis and LinAlg2 are
the most useful variables, in terms of missingness, to impute
the other incomplete variables.

(b) Flux plot of cohort 2017-18 data. Calc1, LinAlg1, Calc2,
Analysis and LinAlg2 are complete, and have outflux equal to
one and influx equal to zero. These five variables as well as
CAPS and ProbThry are the most useful variables, in terms of
missingness, to impute the other incomplete variables.

Figure A.1: Flux plots of cohort data sets, where complete variables have outflux equal to one and influx equal to zero.
Variables which are most useful, in terms of missingness, for the imputation of other variables are displayed close to the
y = 1 − x dotted line.
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MICE analysis

After carefully considering the partial correlations and flux plots, the following predictor matrices are gen-
erated and utilised in the second run of MICE.

> pred_cohort1617
Calc1 LinAlg1 Calc2 CAPS LinAlg2 Analysis ProbThry ODE StatReas Stats Complex NumMat1

Calc1 0 0 0 0 0 0 0 0 0 0 0 0
LinAlg1 0 0 0 0 0 0 0 0 0 0 0 1
Calc2 0 0 0 0 0 0 0 0 0 0 0 0
CAPS 0 0 1 0 0 0 0 0 0 0 0 1
LinAlg2 0 0 0 0 0 1 0 0 0 1 0 1
Analysis 0 0 0 0 1 0 0 1 0 1 0 0
ProbThry 0 1 0 0 1 1 0 1 0 0 0 0
ODE 0 0 1 0 1 1 0 0 0 1 0 0
StatReas 0 1 0 0 0 0 0 1 0 0 1 1
Stats 0 0 0 0 1 1 0 0 0 0 0 0
Complex 0 1 0 0 1 0 0 0 0 1 0 1
NumMat1 0 1 0 0 1 0 0 0 0 0 1 0
> pred_cohort1718

Calc1 LinAlg1 Calc2 CAPS LinAlg2 Analysis ProbThry ODE StatReas Stats Complex NumMat1
Calc1 0 1 1 0 0 0 0 1 0 0 1 1
LinAlg1 1 0 1 0 0 0 1 1 0 0 0 0
Calc2 1 1 0 1 0 0 0 1 0 0 0 0
CAPS 0 0 1 0 0 0 0 0 1 0 0 0
LinAlg2 0 0 0 0 0 0 0 0 0 0 0 0
Analysis 0 0 0 0 0 0 0 0 0 0 0 0
ProbThry 0 1 0 0 0 0 0 1 0 0 0 0
ODE 1 1 1 0 0 0 1 0 0 0 0 0
StatReas 0 1 1 1 0 0 0 0 0 1 1 0
Stats 0 0 0 1 0 0 1 1 0 0 0 0
Complex 1 1 1 0 0 1 0 0 0 0 0 0
NumMat1 1 1 0 0 0 0 1 1 0 0 0 0

Convergence and fit of the imputations may be studied using the stripplot(), plot(mice.mids()) and
densityplot() commands available from the package mice [15].

(a) Comparison of original (black line)
and imputed data distributions using
the PMM (red line) and Midastouch
(green line) methods.

(b) Convergence of means and standard
deviations of the Midastouch imputed
data sets. The absence of a distinct
pattern indicates convergence of the it-
erations.

(c) Strip plot for the 2016-17 cohort
imputed data using the Midastouch
method; the blue coloured points are the
original data values and the red points
are the imputed values.

Figure A.2: Examples of the use of the stripplot(), plot(mice.mids()) and densityplot() commands for imputation
convergence analysis.

We are primarily concerned with the effect of the imputations on the partial correlations, as this will in turn
effect the conditional (in)dependencies. The underlying null hypothesis is that the partial correlations for the
imputed data set do not significantly differ from the partial correlations for the original data set.
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MICE analysis

Table A.1: Partial correlation coefficients for the imputed data cohorts 2016-17 and 2017-18 for Midastouch and PMM
methods.

(a) Partial correlation coefficients for cohort 2016-17 with the Midastouch imputation method.

Calc1 LinAlg1 Calc2 CAPS LinAlg2 Analysis ProbThry ODE StatReas Stats Complex
Calc1

LinAlg1 0.177*
Calc2 0.171* 0.105*
CAPS 0.071* -0.137* 0.31*

LinAlg2 0.064* 0.273* 0.292* -0.124*
Analysis 0.157* 0.211* -0.218* 0.246* 0.295*

ProbThry -0.2* 0.058* 0.036* 0.105* 0.06* 0.285*
ODE -0.114* 0.072* 0.199* 0.095* -0.03* 0.388** -0.191*

StatReas 0.04* -0.321* 0.282* -0.175* -0.11* 0.261* 0.101* 0.106*
Stats 0.137* 0.425** -0.055* 0.086* -0.068* -0.275* 0.119* 0.318* 0.195*

Complex 0.031* 0.323* -0.143* 0.12* 0.094* -0.122* -0.109* 0.008* 0.499** -0.114*
NumMat1 0.061* -0.524*** 0.172* -0.096* 0.131* 0.137* 0.095* 0.118* -0.423** 0.237* 0.528***

(b) Partial correlation coefficients for cohort 2016-17 with the PMM imputation method.

Calc1 LinAlg1 Calc2 CAPS LinAlg2 Analysis ProbThry ODE StatReas Stats Complex
Calc1

LinAlg1 0.255*
Calc2 0.134* 0.064*
CAPS 0.128* -0.05* 0.274*

LinAlg2 0.039* 0.279* 0.246* -0.126*
Analysis 0.163* -0.006* 0.039* 0.137* 0.275*

ProbThry -0.163* 0.032* 0.085* 0.111* 0.043* 0.261*
ODE -0.083* 0.106* 0.277* -0.02* -0.023* 0.252* -0.121*

StatReas 0.016* 0.103* -0.243* 0.212* 0.095* -0.176* -0.086* 0.517***
Stats 0.002* 0.246* -0.079* 0.039* 0.14* -0.084* 0.05* 0.156* 0.07*

Complex 0.176* 0.014* 0.098* -0.001* -0.052* 0.145* -0.052* -0.051* 0.194* 0.208*
NumMat1 0.085* -0.305* -0.069* 0.114* 0.189* -0.091* -0.012* 0.33* -0.335* 0.056* 0.313*

(c) Partial correlation coefficients for cohort 2017-18 with the Midastouch imputation method.

Calc1 LinAlg1 Calc2 CAPS LinAlg2 Analysis ProbThry ODE StatReas Stats Complex
Calc1

LinAlg1 0.042*
Calc2 0.45** 0.108*
CAPS -0.256* 0.092* 0.416**

LinAlg2 0.325* 0.178* -0.153* 0.297*
Analysis -0.061* -0.054* 0.311* -0.083* 0.174*

ProbThry 0.183* 0.144* -0.15* 0.148* -0.001* 0.152*
ODE 0.556*** 0.192* -0.233* 0.002* -0.145* 0.113* -0.117*

StatReas 0.143* 0.229* -0.072* 0.002* -0.2* 0.087* -0.259* -0.216*
Stats -0.004* 0.139* -0.009* 0.244* -0.035* 0.015* 0.043* 0.289* 0.189*

Complex 0.172* 0.047* -0.101* 0.144* -0.063* 0.303* 0.104* -0.094* 0.054* -0.155*
NumMat1 -0.096* -0.382** 0.139* 0.075* 0.187* -0.004* 0.454** 0.277* 0.414** 0.095* 0.086*

(d) Partial correlation coefficients for cohort 2017-18 with the PMM imputation method.

Calc1 LinAlg1 Calc2 CAPS LinAlg2 Analysis ProbThry ODE StatReas Stats Complex
Calc1

LinAlg1 0.151*
Calc2 0.421** 0.059*
CAPS -0.263* 0.055* 0.45**

LinAlg2 0.381** 0.083* -0.151* 0.292*
Analysis -0.027* -0.064* 0.205* 0.083* 0.168*

ProbThry 0.198* -0.017* -0.083* 0.137* 0.101* 0.187*
ODE 0.261* 0.091* -0.133* 0.075* -0.027* 0.12* -0.098*

StatReas -0.084* 0.077* 0.1* -0.059* 0.01* 0.227* 0.037* 0.346*
Stats 0.113* 0.032* -0.148* 0.313* -0.158* -0.273* 0.199* 0.263* 0.182*

Complex 0.261* -0.045* -0.005* -0.136* -0.158* 0.35* -0.069* -0.1* 0.125* 0.205*
NumMat1 -0.161* 0.027* 0.09* 0.127* 0.233* -0.029* 0.062* 0.031* -0.034* 0.202* 0.267*
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