
UNIVERSIY OF GRONINGEN

ASTRONOMY BACHELOR PROJECT

The Cosmic Web:
Anisotropic Inflow along Filaments

Author
Carmen R. Hoek

Supervisor
Prof. dr. Rien van de Weijgaert

July 3, 2020



Abstract
Looking at the data from the NEXUS+ simulations we see many interesting patterns. We are
taking a special interest in the nodes. Firstly we will look at surface density patterns at different
distances from the center of the node. We make plots of the surface density projected on the sky.
Next, we look at the radial component of the velocity field and the momentum field in order to
determine inflow patterns around the nodes. We use spherical harmonics up to a degree of l = 2

to determine primary structures in the velocity field and momentum field.
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1 Cosmic Web & Cosmic Migration
1.1 What is the Cosmic Web?

Looking at the universe we find a lot of different kinds of structures, each at bigger scales. We
start from structures like our solar system and we grow further towards galaxies, like our Milky
Way, then groups of galaxies like the local group, clusters, and super clusters, but where does
structure end? We find a final scale of structure at the scale of super clusters and filaments, after
that there seems no structure to be found anymore, a phenomenon which is called the End of
Greatness (Kirshner, 2002).

Figure 1: The Cosmic Web: Millennium simulation (Springel et al., 2005)

The Cosmic Web structure is the result of primordial density fluctuations quickly following the
Big Bang. In order to describe the condensation of the gas, which starts the formation of struc-
ture, we need an approximation of the physical situation. In 1970, Zel’dovich published a paper
showing that when you take an ellipsoid of gas on a cosmological scale, you can approximate
the collapse of the region with a collapse happening along the short axis of the ellipsoid. If we
assume that the collapse happens before the recombination era, we can approximate that the
ellipsoid is large enough to set the pressure to zero and only consider the gravitational force.
Thus implies that the gas will collapse without any significant influence of the perturbation of
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the gas by outward pressure. This approximation is named after him and called the Zel’Dovich
approximation (Zel’Dovich, 1970).

The Cosmic Web is this largest scale structure we can find, the scales range from 30 to 200
megaparsecs (Mpc) (Carroll and Ostlie, 2014). The name, Cosmic Web comes from the web-like
structure we find at this scale created by a complex structure of filaments, nodes, walls, and voids.
An example of these structures is found in figure 2. The mass and volume distribution between
these structures is shown in figure 3. We will look at these terms in the next few sections.

1.2 Components of the Cosmic Web

1.2.1 Filaments

Filaments are the most outstanding features of the Cosmic Web, they form the spine of the entire
structure. Even in the primordial density field, the proto-filaments formed a very important part
of the primordial structure. When the non-linear evolution started, the filaments became even
more present (Van de Weijgaert and Bond, 2005).

The elongated structures form the highways in the Cosmic Web structure, they connect high-
density areas, like nodes, with each other and transport matter and galaxies between these re-
gions (van Haarlem and van de Weygaert, 1993). The location of the filaments between the
high-density regions make them look long and small, since they are constantly pulled towards
the nodes in each direction. On average filaments have sizes between 10 megaparsec and 100
megaparsec (Bharadwaj, Bhavsar and Sheth, 2004).

The filaments are mostly consisting of dark matter, and the galaxies are located along this mat-
ter. The galaxies give us an impression of the distribution of dark matter since it is reasonable to
assume that they follow a similar distribution. The filament are over dense regions. This implies
that the gravitational attraction in these regions slows down the expansion of the space, causing
them to expand slower than under-dense regions like voids (Van de Weijgaert and Bond, 2005).

We also find filaments in our local cosmic neighbourhood. The most prominent object is the
Perseus-Pisces filament , connecting Lanaikea (the local super cluster) to the Perseus-Pisces su-
per cluster. Other filaments in our local universe are found at scales from 10 megaparsec to 100
megaparsec, connecting super cluster such as the Great-Attractor (Lynden-Bell et al., 1988), the
Shapley Region (Shapley, 1930) (Proust et al., 2006) and the Vela super cluster (Courtois et al.,
2019).
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Figure 2: Structures In this figure we can see the different kinds of structures we find in the
cosmic web. (Aragon Calvo, 2007)

1.2.2 Walls

Walls within the Cosmic Web look slightly like filaments, but where the filaments are the high-
ways, the walls are more like the country side roads. Instead of connecting two high-density
regions with each other, walls mostly connect voids to filaments and sometime to nodes. They
also have a completely different shape compared to the filaments. They look like sheetlike mem-
branes and they surround the void regions, which is exactly why they are called walls.
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Figure 3: Mass and Volume fractions In this figure we find the mass distribution (left) and the
volume distribution (right) of the different types of structures in our universe. (Cautun et al.,
2014)

Figure 4: The structure of our local cosmic neighbourhood based on the 2df Redshift survey. We
can clearly see the Shapley region and the Sloan Great Wall. (Jones and van de Weygaert, 2014)

These structures are very hard to find. Filaments consist of a lot of very luminous galaxies, which
make them very easy to identify, but the walls consist mostly of small galaxy with a low luminos-
ity (Cautun et al., 2014). We also find walls consisting of super clusters. When we look at the
spacial structure outlined by these clusters we find flatted structures. These clusters are often
referred to as Great Walls. A particular outstanding great wall is the Sloan Great wall (Gott III
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et al., 2005), it is one of the largest structures known in our universe. The Sloan Great Wall was
discovered with the Sloan Digital Sky Survey. It is also shown in figure 4, which are the smoothed
results of the 2df Redshift survey (Jones and van de Weygaert, 2014) (Colless et al., 2001).

1.2.3 Nodes

Noes, often associated with cluster or super clusters are the high density regions of the Cosmic
Web. Using the gravitational instability theorem we see that structure started from small fluctua-
tions in the primordial density field and velocity perturbations (Peebles, 1980). These structures
started to grow when the universe started expanding because of the gravity field around the
structures. The higher-density regions started to attract more and more matter, forming even
higher densities in bigger structures.

These regions evolved into galaxies, and the galaxies formed gravitational bound regions, called
clusters. These clusters formed even bigger structures, called super clusters. As we have seen
before, these super clusters are connected to each other by filaments. These filaments are also
the primary feeder of matter into the nodes. How this exactly happens in discussed in the next
section about cosmic flow (Kraljic et al., 2020). An example of a node in the Bolshoi Simulation
(Klypin, Primack and Cantalupo, N.d.) is shown in figure 5.

Figure 5: Node An example of a node in the Bolshoi simulation (Klypin, Primack and Cantalupo,
N.d.).
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Looking at the total cosmic web, nodes represent the rare events in the the matter distribution
on this scale (Van de Weijgaert and Bond, 2005). As can be seen in figure 3, the volume fraction
of the nodes is less than 0.1 percent, which implies that they are very rare. But looking at the
mass fraction of the nodes in figure 3, we find that 13 percent of all mass is contained within the
nodes, this again illustrates the high-density of the nodes compared to other components of the
cosmic web.

Our own galaxy is part of the local group, which is part of the Lanaikea Super Cluster, so the
Milky-Way lies within a node.

1.2.4 Voids

Voids form a prominent aspect of the Cosmic Web at the megaparsec scales if you look at the
volume distribution, but they are significantly less important when looking at the mass fractions.
In this way they are exactly opposite from nodes, which is a logical result since the voids are the
lowest density regions in our universe (van de Weygaert, 2014).

Voids are enormous regions which are almost empty, of sizes of 20 - 50 h−1 (Van De Weygaert
and Platen, 2011). In most cases they have a round shape and they are surrounded by sheet-like
structures as walls and filaments. If we use a void-based model of the evolution of the matter dis-
tribution at cosmological scale we see that voids locate the scale at which density perturbations
are decoupled from the Hubble flow (Van De Weygaert and Platen, 2011).

As voids evolve over time they are merging together to form even larger voids, but small voids
can also disappear in larger over-dense regions such as walls and filaments (Sheth and van de
Weygaert, 2004).

1.3 Anisotropy of the Cosmic Web Flow Field

The cosmic web is not a static structure, it evolves over time. In the early stages, there was
almost no structure, only on a very small scale, but over time the universe expands and the
small scale structure grows into a very complex multi-scale structure. Matter is distributed and
redistributed on a continuous base. This raises the questions: which path follows matter in this
time evolution and how can we find these patterns? The answer to this question lies in the
gravitational instability theorem (Zel’Dovich, 1970), (White and Silk, 1979), (Sheth, Mo and
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Tormen, 2001). This theory predicts mass flowing from voids towards nodes along walls and
filaments. As can be seen in figure 6 we find that the voids are losing mass over time where the
nodes are gaining mass. Most mass from the voids moves to the filaments and walls, from the
walls to the filaments, and from the filaments to the nodes. This can also be seen in figure 7
(Cautun et al., 2014).

(a) From right to left the density fraction contained
in the structure.

(b) From right to left the density fraction outflow to-
wards the structure. (Romano-Diaz and van de Wey-
gaert, 2007)

Figure 6: Density Density changes from z=0 to z=2. (Cautun et al., 2014)
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Figure 7: Density change Plots indicating the difference between z=2 (right) and z=0 (left).
(Cautun et al., 2014)

Any over-dense region, like walls and filaments, are constantly in motion as the result of the
competition between the binding force from self-gravity and the pulling force from the high-
density regions like nodes. In the event that the self-gravity force is smaller than the gravity
force from the high-density regions, which is often the case for walls and filaments, there will
be a net movement of particles in the direction of the node. This constant stream of particles is
called cosmic flow. The mechanism behind cosmic flow is also the reason for the elongated shape
of the walls and filaments.

These cosmic flow patterns are not only found in simulations, but also in our local universe.
The IRAS-PSCz catalog contains over 8500 galaxies and can be considered as a good overview
of the local cosmic neighbourhood. This data-set was used to determine the velocity field in the
local super-cluster, but also in the coma cluster, the sculptor void and the Perseus-Pisces & Cetus
wall (Romano-Diaz and van de Weygaert, 2007). The fields are shown in figure 7. If we look
at these plots we can clearly see the movement from lower density regions (blue) towards high-
density regions (red). We can also see the differences between the different kinds of structures,
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like we see a totally different pattern for the coma cluster compared to the Sculptor void.

Figure 8: Flow Streams Flow streams in our local universe based on the PSCz survey. (Romano-
Diaz and van de Weygaert, 2007)

It would be very interesting to expand the maps into a third dimension, in order to approach
the real situation. A really good example of such a three-dimensional velocity field is the map
of Laniakea, which is our local super cluster interacting with Perseus-Pisces (Tully, Courtois and
Sorce, 2016). The plot is shown in figure 9 together with an impression of the velocity field
around the Milky-Way.

If we look at this map we see the different colors of the lines in Laniakea and the lines in
Perseus-Pisces. In this plot, the black line indicates a negative flow and the red line indicate a
positive flow, so we see that matter from the local super cluster is moving towards Perseus-Pisces.
This is the reason we call the Perseus-Pisces cluster together with the Coma-cluster the Great
Attractor. If we now look at figure 10 we see the complete morphology of the shear velocity field
in our local cosmic neighbourhood (Hoffman et al., 2017).
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Figure 9: Models of Laniakea Impression showing data from the Laniakea super cluster (left)
and the flow lines from this cluster(right). left: (Tully et al., 2014), right: (Tully, Courtois and
Sorce, 2016)

Figure 10: 3D model A 3D model showing the morphology of the shear velocity in the cosmic
web. (Hoffman et al., 2017)

If we look at the most recent research we find the plots shown in figure 11. On the left side we
see a density plot with the movement direction of the matter of a region containing a couple of
nodes connected by filaments and walls. If we then look on the right side we see the streamlines
of the velocity plotted on the density field. If we firstly look at the nodes, we find that the matter
is mostly moving towards the nodes and that we find vorticity in these high-density region. We
almost not see streamlines moving away from the nodes.

If we then look at the lowest density regions in the plot we see that all streamlines are leaving
these regions, moving towards mostly walls and a couple of filaments. This means that matter
is leaving the voids via the walls and filaments. From the walls it moves mostly into the bigger
filaments, eventually reaching the nodes.

14



This plot describes exactly the results we want to find in this project. We will not look at a
complete field, but we will look at every node to determine the inflow regions and the outflow
regions.

Figure 11: Flow lines The field (left) and the field with flow lines (right) (Rieder, de Weijgaert
and Portegies-Zwart, 2020)
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2 Identifying the Cosmic Web
As seen in chapter 1, the universe is not uniform on a megaparsec scale. The matter and galaxy
distribution follow a complex inter-connected multi-scale structure. These complex structures are
found throughout the entire observable universe at different scales. The structure defines a com-
plicated special pattern, depicting a very rich geometry over multiple shapes and morphology’s
(Libeskind et al., 2018).

In order to improve the understanding of the Cosmic Web, there is need for a method able to
extract topological and morphological information from a data-set. (This could be the data from
a survey, or the results of a N-body simulation.) In the end we want to be able to classify the
data-points into components of the Cosmic Web (nodes, filaments, and walls). This is a major
challenge because of the complex, multi-scale patterns, the large asymmetries and a wide range
of densities.

In this project we are using the MMF/NEXUS method (Aragon-Calvo, van de Weygaert, Jones
and van der Hulst, 2007) (Cautun, van de Weygaert and Jones, 2013). This method is able to
analyse the geometrical properties of the structure as well as taking into account the multi-scale
nature of the cosmic web and analyze it.

2.1 A short introduction

There have been developed many methods, all working for different kinds of data. There have
been developed topological methods, which assess the Cosmic Web structures using the con-
nectivity and topological characteristics of the fields. A good example of such a method is the
DisPerSe method, developed by Sousbie (Sousbie, Pichon and Kawahara, 2011). This method
identifies topological features, so that they can be used to identify the full set of structural com-
ponents of the Cosmic Web. Another good example of a topological method is a void identifying
formalism. The method is based on the Watershed Transform (Kornilov and Safonov, 2018). This
transformation is used to identify under-dense regions such as voids. An implantation of this
method can be found in the ZOBOV formalism (Neyrinck, 2008) or in the Watershed Void Finder
formalism (Platen, van de Weygaert and Jones, 2008).

In 2010, Aragon-Calvo and others came up with an extension to this method called Spineweb
(Aragon-Calvo, Van De Weygaert and Jones, 2010). This method consists of an elaborate scheme
to identify various components on a purely topological basis. Spineweb is able to identify these
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characteristics around the voids found by applying the Watershed Transform on the density field.
The basic version only works on one scale, but the more elaborate version is able to implement a
multi-scale version of the algorithm (Aragon-Calvo et al., 2010) (Aragon-Calvo and Szalay, 2013).

Another group of methods are the so-called stochastic methods. These methods are based on
geometrical stochastic properties. A very good example of a formalism is the Bisous formalism
(Tempel, Stoica, Martinez, Liivamagi, Castellan and Saar, 2014). This method is able to identify
galactic filaments on a multi-scale level. It is based pm a Baysian sampling method which is used
to select certain geometrical structures, in this case galactic filaments. The Bisous method can be
applied to galaxy surveys like the Sloan Digital Sky Survey (SDSS) (Tempel, Tamm, Gramann,
Tuvikene, Liivamagi, Suhhonenko, Kipper, Einasto and Saar, 2014).

Another class of methods are the phase-space methods. These methods look at the phase-space
properties of evolving mass distributions. They are mostly used when studying the dynamical
properties of Cosmic Web formation. The method is based on the concept that the intrinsic veloc-
ity dispersion of matter is small in the very early universe. We can see this as the evolving spacial
mass distribution appearing to be a three-dimensional sheet folding itself into a six-dimensional
phase-space. A good example of this method are described by Abel et al. (Abel, Hahn and
Kaehler, 2012).

We have seen a lot of methods by now, however a large part of the methods fall into a differ-
ent category, namely the Geometric-Hessian based methods. These methods use the Hessian
matrix of the density, tidal, or velocity fields, in order to extract geometrical and morphological
information. An example of this method is the tidal classification method by Hahn et al. (Hahn
et al., 2007). This method is based on local-stability criteria for orbits of particles much like the
Zel’dovich approximation (Zel’Dovich, 1970) (White, 2014).

2.2 MMF/NEXUS method

The method we base our work on is MMF/NEXUS. MMF stand for Morphology Filter Formalism
and this method was developed by Aragon-Calvo in 2007 (Aragon-Calvo, van de Weygaert, Jones
and van der Hulst, 2007). The MMF/NEXUS method uses the Scale-Space point of view to look
at structure. It takes the multi-scale nature of the Cosmic Web into account by assessing each
point at different scales based on the Hessian of the field. It also has fully adaptive framework for
the classification of data based on local field, rather than only taking the global field into account.
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Figure 12: Blood vessels Blood vessels at different scales identified using a similar algorithm as
NEXUS. (Frangi et al., 1998)

At the same time, some morphological filters are used to classify each point as node, filament,
or wall. This results in a complete data-set with each data-point classified in one of the three
categories. This Space-Scale point of view is not new, it has previously been used in the medical
field, there an algorithm based on this principle was developed to identify a web of blood vessels
(Frangi et al., 1998). As we can see in figure 12 the blood vessels form a multi-scale structure
very similar to the cosmic web structures as can be seen in figure 13.

Figure 13: Scales As seen in this figure, the smaller the scale, the more details are visible.
(Aragon Calvo, 2007)

Although we can clearly see parallels between the two applications, the algorithm had to be
heavily altered to make it useful for cosmic applications. The NEXUS algorithm has an unique
approach to the multi-scale structure, where most Hessian-based methods are defined on one
particular smoothing scale, the NEXUS algorithm runs on multiple scales and selects the classifi-
cation of the most appropriate scale, which is determined for every point. The normal version of
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NEXUS uses a Gaussian smoothing filter at a lot of different scales, where the NEXUS+ formalism
uses a logarithmic Gaussian version. The difference between the two versions is very well shown
in figure 14.

Figure 14: Difference NEXUS/NEXUS+ In this figure we can see the difference between a Gaus-
sian filter (middle) and a log-Gaussian filter (right) compared to the input (left). (Cautun, van de
Weygaert and Jones, 2013)

The final outcome of the MMF/NEXUS formalism is a data-set, with every point sorted into one
of the components. The method under went a long evolution. The first version was published
in 2007 by Aragon-Calvo and others (Aragon-Calvo, van de Weygaert, Jones and van der Hulst,
2007) as described earlier and the first results were published (Aragon-Calvo, Jones, van de
Weygaert and van der Hulst, 2007). In 2010, the first two long articles were published using
this method. Aragon-Calvo and others did the first systematic study of the Cosmic Web using
MMF/NEXUS (Aragon-Calvo, Van DeWeygaert and Jones, 2010) and a study by Jones and others
discussing the galaxy alignments in the Cosmic Web based in the SDSS (Jones, Van De Weygaert
and Aragon-Calvo, 2010).

In 2013 the method was greatly improved and expanded (Cautun, van de Weygaert and Jones,
2013). In 2014, the first studies using the improvedmethod were published (Cautun et al., 2014).
A more recent study using the MMF/NEXUS formalism is done by Ganeshaiah Veena and other
about spin and shape alignments of halos in the Cosmic Web (Ganeshaiaha Veena et al., 2018).
But MMF/NEXUS is not just one single algorithm, there are a lot of different flavours, all work-
ing on the basis of different fields determined by physical characteristic. Some examples of these
fields are the density field, the shear velocity field, the shear tidal field and the gravity field. In
this project we use a version of MMF/NEXUS based on the density field.
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2.3 A general description of NEXUS+

The NEXUS and NEXUS+ algorithms are used to find, point-, line- and sheetlike structures in
the input field. In the case of the Cosmic Web, these structures will be the nodes, filaments, and
walls found in the input field. The NEXUS+ algorithm uses the following steps to identify the
components (Cautun, van de Weygaert and Jones, 2013):

1. Apply a Log-Gaussian filter to the field of width Rn

2. Compute the Hessian Matrix eigenvalues of the smooth field

3. Assign each point to a cluster, filament or wall component based on the eigenvalues

4. Repeat step 1 to 3 over a range of values for Rn in order to get a range of scales

5. Combining all values found on each scale and obtain scale-independent structure catego-
rization.

6. Using physical criteria to determine the detection threshold

A more elaborate description of each step is given below.

2.3.1 Step 1: Log-Gaussian filter

Suppose we have a field f, and now we want to filter the field with a logarithmic Gaussian filter
with a width of Rn. We first have to introduce a new variable g which is defined as the logarithm
of f as seen in equation 1.

g = log10 f (1)

and we will introduce the smoothed field on scale Rn as:

gRn(~x) =

∫
d3yg(~y)WG,Rn(~x, ~y) (2)

withWG,Rn the Gaussian filter of width Rn.

Using these equations we find that there are three steps needed to filter the field with a log-
arithmic Gaussian filter, namely:

1. Use equation 1 to calculate the logarithm of the original field.

2. Apply the Gaussian filter of width Rn to the field.
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3. Find the smoothed field of f by taking the exponential of g.

In order to make the calculations slightly simpler the Gaussian filter in applied in Fourier Space.
In practice, this means that:

gRn(~x) =

∫
d3k

(2π)3
e−k

2R2
n/2ĝ(~k)ei

~k·~x (3)

After this step we want to go back to the field f , and have it smoothed. This is obtained by taking
the exponential of the field g after the Gaussian filter:

fRn(~x) = CRn10gRn (4)

In this equation CRn is the multiplication factor needed to assure that the average of the field
stays constant under the calculations.

2.3.2 Step 2: Eigenvalues

The second step of the algorithm is the calculation of the eigenvalues of the Hessian. For the
smoothed field the Hessian is defined as:

Hij,Rn = R2
n

∂2fRn(~x)

∂xi∂yj
(5)

In Fourier Space this can be written as:

Ĥij,Rn(~k) = −kikjR2
nf̂Rn(~k) (6)

The eigenvalues of the Hessian are now given by:

det(HRn(~x)− λa,Rn(~x)) = 0 (7)

with eigenvalues: λ1 ≤ λ2 ≤ λ3.

2.3.3 Step 3: Assignment

Using these eigenvalues of the Hessian, we can assign every point to a specific characteristic,
namely cluster/node, filament, or wall. This is done using the constraints written in table 1. The
first step is to determine the category using the soft constraints. This can be done quantitatively
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Structure Soft Constraints Hard constraints
Cluster/node |λ1| ≈ |λ2| ≈ |λ3| λ1 < 0;λ2 < 0;λ3 < 0

Filament |λ1| ≈ |λ2| � |λ3| λ1 < 0;λ2 < 0

Wall |λ1| � |λ2|; |λ1| � |λ3| λ1 < 0

Table 1: Constraints to assign each point to a characteristic using the eigenvalues of the Hessian
given in equation 7

using equation 8 where we define I to be a relative strength in each category.

I =



∣∣λ3
λ1

∣∣ Cluster/Node∣∣λ2
λ1

∣∣Θ(1−
∣∣λ3
λ1

∣∣) Filament

Θ

(
1−

∣∣λ2
λ1

∣∣)Θ

(
1−

∣∣λ3
λ1

∣∣) Wall

(8)

We define:

Θ(x) = xθ(x) (9)

In which we define:

θ(x) =

1 if x ≥ 0

0 otherwise
(10)

which is also known as the step-function.

The strength I has a large value in the case that the structural constraints are largely validated
where the value is small if the constraints are not satisfied. We can introduce a similar scheme
for the hard conditions and multiplying the schemes, results in an accurate distribution of each
point with respect to the components. The so called structure signature is defined as:

S = I ×


|λ3|θ(−λ1)θ(−λ2)θ(−λ3) Cluster/Node
|λ2|θ(−λ1)θ(−λ2) Filament
|λ1|θ(−λ1) Wall

(11)

Where θ(−λa) incorporates the conditions in the third column of table 1. In figure 15 we see the
different types of structures identified using the algorithm.
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Figure 15: Results of NEXUS The different structures as identified by the algorithm. a) density
field, b) node, c) filament, d) wall (Cautun, van de Weygaert and Jones, 2013)

2.3.4 Step 4: A range of scales

In order to define the cosmic web over a range of structure scales, we have to repeat all of the
previous described steps for all scales. The smallest scale must be the scale at which the smallest
structures you want to define are found. It turns out that this is often the grid spacing of your
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input field. The hierarchy of the smoothing scales is taken to be:

Rn = (
√

2)nR0 (12)

In which R0 is the smallest structure scale. It is found that taking even smaller scales will not
result in significant changes (Sato et al., 1998). It is found that in order to detect the most promi-
nent features of the cosmic web we have to choose a value for R0 in the range 0.5 h−1 Mpc to 4
h−1 Mpc (Cautun, van de Weygaert and Jones, 2013).

This step results in the results of the signature function given in equation 11 for each of the
chosen scales for each point on the grid.

2.3.5 Step 5: Combination

In order to get a scale-independent map of all characteristics we have to combine them in some
way where the strongest signature values are kept over a multi-scale combination. This map will
characterize for each point ~x if it is part of a cluster/node, filament or wall.

A structure of a given size will have the largest signature at the same smoothing scale as the
size of the structure. This means that we have to define the overall signature at a certain point
as the maximum signature at that point over all scales, as seen in equation 13.

S(~x) = max SRn(~x) (13)

A comparison between the original input field and the field created using the data from the
NEXUS algorithm is shown in figure 16.

2.3.6 Step 6: The Detection Threshold

The signature is the result of all detection’s in the field. This means that only part of the signature
is really structure, and the other parts are noise. In order to filter out the noise, the last part of the
algorithm involves the use of physical criteria to find a threshold to identify the valid structures
and get rid of the invalid detection’s. This means that all values larger than the threshold value
correspond to a real structure and all values lower than the threshold are noise. The threshold
value for clusters/nodes is found by setting the condition that the structures should be virialized,
where the threshold for filaments and walls is determined by the dependence of the mass on the
environmental mass.
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Figure 16: Comparison input and output A comparison between the input field (up) and the
field created using the NEXUS algorithm (down). (Cautun, van de Weygaert and Jones, 2013)
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In order to overcome the cross-contamination, meaning that for example, we identify a certain
point to be a filament and a wall at the same time, we set the condition that when a point is
previously identified a being part of as a cluster it cannot be identified as a filament, and when
a point is identified as a filament it cannot be identified as a wall. So we first identify all points
which are clusters, then the filaments and lastly the walls.
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3 Anisotropy of Cosmic Web flow field
3.1 Skyview

The goal eventually is to find the inflow along the filaments towards the nodes and classify it for
all nodes to determine the flow direction for the nodes. We do that by looking at sky plots of the
surface density projected on the sky, and we will do this following the method of (Rieder et al.,
2013). The sky plots will be similar to the ones shown in figure 17.

Figure 17: Mollweide plot of CVG Mollweide sky projection matter distribution around CGV
halos. (Rieder et al., 2013)

We will be specifically interested in the anisotropy of the plots and we would like to be able to
classify it. This is not a new problem. In 1986 Villumsen and Davis found the velocity fields as
shown in figure 18 around some nodes and tried to classify them. They came up with the idea
to use spherical harmonics to identify the patterns and this is exactly what we are going to do
(Villumsen and Davis, 1986).
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Figure 18: Velocity field around clusters Plots showing the velocity fields (indicated by arrows)
and the particle distribution around some nodes. (Villumsen and Davis, 1986)

3.2 Spherical Harmonics

Spherical harmonics are most often introduced in the field of quantum physics, where they cover
the angular dependence of the Laplacian operator. This angular dependence is given by:

Φ(φ)

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

Θ(θ)

sin2 θ

d2Φ(φ)

dφ2
+ n(n+ 1)Θ(θ)Φ(φ) = 0 (14)
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3.2.1 The azimuthal dependence

If we separate equation 14 into variable we find that the azimuthal dependence, that is the de-
pendence on φ, looks like the following equation:

1

Φ(φ)

d2Φ(φ)

dφ2
= −m2 (15)

This equation can be solved and we find the following exponential solutions:

Φ(φ) =

eimφe−imφ
(16)

We can check if these conditions satisfy the orthogonality condition:
∫ 2π

0
eim1φe−im2φdφ = 2πδm1m2 (17)

So the orthogonality condition is indeed satisfied. We can also use equation 17 to calculate the
normalization constant, and by allowing m to be positive or negative we find the following solu-
tion:

Φm =
1√
2π
eimφ (18)

3.2.2 The polar dependence

In order to find the polar dependence, so the θ dependence we need to rewrite equation 14
slightly. We can use equation 18 to obtain the following equation:

d2Φ(φ)

dφ2
= −m2 1√

2π
eimφ = −m2Φ(φ) (19)

Using this equation we can find the θ dependence of equation 14. This results in:

1

sin θ

d

dθ

(
sin θ

dΘ(θ)

dθ

)
+

[
n(n+ 1)− m2

sin θ

]
Θ(θ) = 0 (20)

This equation is equivalent to the associated Legendre equation which is given by:

29



1

sin θ

d

dθ

(
sin θ

dv

dθ

)
+

[
n(n+ 1)− m2

sin θ

]
v = 0 (21)

The solution of this equation is the associated Legendre functions of cos θ which gives Θ(θ) =

Pmn (cos θ). To include the negative values of m we use Rodrigue’s formula and we will end up
with the following definition for the polar dependence:

Pmn (cos θ) =
1

2nn!
(1− x2)m/2 d

m+n

dxm+n
(x2 − 1)n, −n ≤ m ≤ n (22)

Using the relations between this formula for positive and negative m and normalizing the equa-
tion 22 we obtain the following solution for the polar dependence:

Θm
n =

√
2n+ 1

2

(n−m)!

n+m)!
Pmn (cos θ) (23)

3.2.3 Spherical Harmonics Equation

In order to describe the complete angular dependence of the solutions of the Laplacian equations
we need to combine the azimuthal and the polar dependence. Using the orthonormal equation
given in equation 18 and equation 23 we find the following solution(Arfken and Weber, 2005):

Y m
n (θ, φ) ≡ (−1)m

√
2n+ 1

2

(n−m)!

n+m)!
Pmn (cos θ)eimφ (24)

The factor (−1)m is not needed, but it is allowed to add the term because equation 15 is linear
and homogeneous. The factor is added in most literature because it will result in alternating
solutions and this makes a lot of calculations easier. The first few spherical harmonics are shown
in figure 19.

3.3 Laplace Series

In a similar way as to how we can use the Fourier Series to write a formula as a series of infinitely
many terms in as many dimensions as you need we can use spherical harmonics to write a func-
tion as a sum of terms when it is defined on the surface of a sphere. This is called the Laplace
series and is defined by:

f(θ, φ) =
∑
m,n

amnY
m
n (θ, φ) (25)
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Figure 19: Spherical Harmonics Plots of the solutions of the first spherical harmonics(Spherical
Harmonics, N.d.)
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3.3.1 Inverse Spherical Harmonics

In order to find the value of amn or in later stages even Cl we need to define an inverse form.
This can be done taking the complex conjugate of equation 24. Taking the complex conjugate
can be done by setting m = −m in the original equation. This does result in a problem with the
Legendre polynomial (Harber, 2012).

The differential equation for the associated Legendre polynomials is dependent on m2, which
implies that the equation is not sensitive to the sign of m. As a result, we find that Pmn (x) must
be equivalent to P−mn (x), which means that the following equation must hold:

P−mn (cos θ) = (−1)m
(n−m)!

(n+m)!
Pmn (cos θ) (26)

rearranging the terms results in the following equivalence relation:

Pmn = (−1)m
(n+m)!

(n−m)!
P−mn (cos θ) (27)

If we use this relation we can write the complex conjugate as:

Y m∗
n = (−1)m

(n+m)!

(n−m)!
Y −mn =

√
2n+ 1

2

(n+m)!

(n−m)!
P−mn (cos θ)e−imφ (28)

We can write equation 25 in a continuous form, which results in:

f(θ, φ) =

∫ ∞
0

∫ n

−n
anmY

m
n dmdn (29)

If we multiply both sides by the complex conjugate given in equation 28 we obtain:

f(θ, φ)Y m∗
n =

∫ ∞
0

∫ n

−n
anmY

m
n Y m∗

n dmdn (30)

As a result of the orthonormal characteristics of Y m
n we find:

f(θ, φ)Y m∗
n =

∫ ∞
0

∫ n

−n
anmdmdn (31)

If we now define the equation at a specific point (m,n) and integrate over the solid angle we find:
∫ 2π

0

∫ π

0
f(θ, φ)Y m∗

n (θ, φ)dΩ = amn (32)
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Which can be written in a discrete form as:

amn =
2π∑
φ=0

π∑
θ=0

f(θ, φ)Y m∗
n (θ, φ) sin θ (33)

3.3.2 Power Spectrum coefficients

In order to find some quantitative results from the spherical harmonics analysis we can look at
the power spectrum. For every value of n we can calculate the sum of all spherical harmonics
coefficients for the different values of m contained within n. Using a generalization of Parseval’s
Theorem (Arfken and Weber, 2005) we find:

Cl(l) =
1

2l + 1

l∑
m=−l

|alm|2 (34)

To be consistent with notation we can define l = n.
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4 Methods and Formalism
In this section, we will discuss some of the methods used in the code.

4.1 Coordinate conversion

Figure 20: The definition of the spherical coordinates

The conversion between Cartesian coordinates and spherical coordinates can be written as:

r =
√
x2 + y2 + z2 (35)

θ = arccos
z√

x2 + y2 + z2
(36)

φ = arctan
y

x
(37)

All spherical coordinates (r, θ, φ) are defined in figure 20. We can also define the coordinate
transformation in vector form as seen in equation 38.

r̂

θ̂

φ̂

 =


sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0



x̂

ŷ

ẑ

 (38)

This equation can also be used to convert Cartesian vector components to spherical vector com-
ponents.
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4.2 Surface Density Plots

The first part of making surface density plots is the selection of nodes in the data. This is done
fairly easily by saving the indices of the matrix locations which have the presence of a node, which
is indicated by a 1 in the matrix for nodes. Thereafter we make use of the following method:

Method to make surface density plots

1. Select a node (This will be the center of the plot).

2. Choose a radius, and select a data-cube around the node with length 2 times the radius.

3. Define Cartesian coordinates for each grid-point in the data-cube and take the origin
to be the location of the selected node.

4. Convert all Cartesian coordinates to spherical coordinates using the method described
in section 4.1.

5. Filter the data by checking if the value for r is smaller than the selected radius and if
this is the case store the data. This will result in a sphere of data.

6. Plot the value of every point (1 or 0) in a θ versus φ plot with Mollweide projection,
we ignore the values of r.

7. Use the kernel density a to make a surface density plot of θ versus φ with Mollweide
projection.

aUsed the gaussian_kde function from the scipy.stats module.

This method is applied to the data set of only the filaments and a data set of all particles.

4.3 Velocity and Moment plots

Next to making surface density plots, we will also look at the radial velocity component of the
particles and this component multiplied with the density at each point. We do this using the first
5 steps of the method to make surface density plots and then we need to add some steps. These
steps are shown in the frame below:
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Method to make radial velocity and moment plots

1. Follow steps 1 till 5 from the method in section 4.2

2. Calculate at each data point the radial velocity component

3. Calculate at each data point the product of the density and the radial velocity compo-
nent.

4. Plot the radial velocity in a θ versus φ Mollweide projection plot. (This is done with a
red-blue color map in order to see red- and blue shift.)

5. Plot also the moment in a θ versus φ Mollweide projection plot.

These plots will be made with the density field and the velocity field instead of with the particle
data sets as done for the surface density plots.

4.4 Spherical Harmonics

The last part of the project consists of identifying spherical harmonics in the radial velocity plots
and the moment plots. We identify these multi-pole patterns using the Laplace series and the
inverse of the Laplace series. All mathematical background methods are described in section 3.
The algorithm to perform these calculations is quite simple. It follows the method described be-
low:

Method to calculate spherical harmonics of a field

1. First, we use the method described in section 4.3 to calculate the radial velocity- and
moment- field.

2. Using these fields we calculate the coefficients of the spherical harmonics for each co-
ordinate (θ, φ) using equation 33.

3. The calculations described in the previous step are done for all values of m such that
|m| ≤ l.

4. The coefficients found in the previous step are now used to calculate the spherical
harmonics for each coordinate (θ, φ) using the Laplace series as given in equation 25.

5. Steps 2 to 4 are repeated to calculate the values of the spherical harmonics for different
values of l.
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6. There are Mollweide plots made for every value of l combined with the previous found
values, so for l = 1, the values for l = 0 and l = 1 are added.

7. Lastly, we also plot the residual function, which is the original field minus the found
spherical harmonics.
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5 Nodes and Filaments: The Sky view
This project consists of two main areas of focus. We will first discuss the surface density of the
particle part of the filament and the surface density of all the particles when they are projected
on the sky for different radii ranging from 5 Mpc to 25 Mpc at intervals of 5 Mpc.

In order to make the plots, we will look at all the nodes within the simulation. They are se-
lected using the method described in section 4. We find 909 nodes within the simulation, when
excluding the ones close to the edge of the simulation, to make sure that the amount of data is
the same in every direction. The nodes are shown in the 3D plot in figure 21.

Figure 21: Nodes A 3D plot of all nodes in the simulation excluding the ones close to the edge
of the data-box.

5.1 Mollweide plots

In order to show the patterns nicely, we make use of Mollweide plots. What essentially happens
is that all points are projected onto a sphere and then the sphere is projected in to 2 dimensions.
An example of the three-dimensional data and the resulting Mollweide plots is shown in figure
22 for two different radii.
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Figure 22: 3D vs Mollweide Three dimensional data set versus the mollweide projection for 5
and 10 Mpc

5.2 Surface Density

For each node, we selected data within a radius r and plotted the results in a Mollweide plot of
the surface density. From each of these plots, we also determined the kernel density and plotted
that as well for each radius. A couple of these plots for a node can be found in figures 23 and 24.
Other examples can be found in the appendix in section 8.1.
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(a) Plot for the all particles (left) and the filaments (right) at a distance of 5 Mpc

(b) Plot for the all particles (left) and the filaments (right) at a distance of 10 Mpc

(c) Plot for the all particles (left) and the filaments (right) at a distance of 15 Mpc

(d) Plot for the all particles (left) and the filaments (right) at a distance of 20 Mpc

(e) Plot for the all particles (left) and the filaments (right) at a distance of 25 Mpc

Figure 23: Surface Density plots of the surface density.
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(a) Plot for the all particles (left) and the filaments (right) at a distance of 5 Mpc

(b) Plot for the all particles (left) and the filaments (right) at a distance of 10 Mpc

(c) Plot for the all particles (left) and the filaments (right) at a distance of 15 Mpc

(d) Plot for the all particles (left) and the filaments (right) at a distance of 20 Mpc

(e) Plot for the all particles (left) and the filaments (right) at a distance of 25 Mpc

Figure 24: Surface Density plots of the Gaussian kernel surface density.
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We can calculate an average for the relative surface density for each of the nodes, with respect to
all particles and with respect to the particles within the filaments. The average values with their
standard deviation is shown in table 2.

Table 2: Table with the average values for the relative surface density

Distance Average for Standard deviation Average for Standard deviation
(Mpc) all particles all particles filament particles filament particles
5 0.743 0.100 0.387 0.114
10 0.445 0.063 0.143 0.034
15 0.364 0.054 0.102 0.021
20 0.327 0.050 0.088 0.018
25 0.307 0.046 0.080 0.015

This table clearly indicates that the most surface density is contained in the nodes, the further
we move outwards, the less the relative surface density becomes and we also see that the further
we move out, the smaller the contingent of the filaments is.

42



6 Filaments and Inflow
The second main focus was the determination of flow around the nodes. First, we calculate the
radial component of the velocity for every point and the momentum by multiplying the velocity
by the density field. For this part of the project, we looked at a distance of 10 Mpc in order to
have a contained data set which is still able to tell us something about the node.

6.1 Velocity and Momentum Plots

We first plotted the radial component of the velocity and the momentum. These plots are shown
for a couple of nodes in figure 28.

The plots on the right in figure 28 show the radial velocity field. The red in the figures indicate
a negative velocity component which means that the particles are moving away from the node.
The blue in the figures indicates a positive velocity, which means that the particles are moving
away from the node.

After this, we look at the density field times the radial component of the velocity. This can be
seen as the momentum of the particles and thus describe the inflow and outflow from the node.
The average inflow or outflow for each node is calculated of which an average and a standard
deviation is calculated. We find that on average for the radial velocity field the flow is positive,
namely: 63.5 ± 16.3 km/s. This means that the particles are moving towards the nodes as ex-
pected because of gravity. For the momentum flow, we also find a positive value, which makes
sense since the velocity component is positive. The value is found to be 215.2± 70.5 km/s/kg.

6.2 Spherical Harmonics

Lastly, we have looked at some analysis of the previous plots by determining the spherical har-
monics up to a degree of l = 2. We determined the average deviation from the original field and
determined which value or which combination of values of l described the original field best.
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Figure 25: Velocity and momentum field Plots for the logarithmic velocity and momentum field
at a distance of 10 Mpc.
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6.2.1 Monopole, dipole or tripole

For every node, we determined the classification into monopole, dipole, or tripole. This is done
by finding the classification with the smallest deviation with respect to the average of the field.
The classification can also be a combination of a monopole and a dipole or a monopole, dipole,
and tripole. The results can be found in table 3.

classification frequency percentage
monopole 0 0
dipole 28 4
tripole 247 38
monopole + dipole 27 4
monopole + dipole + tripole 343 53

Table 3: Classification of the nodes

6.2.2 Deviations

We also determined the best average deviation for all nodes. The results are shown in figure 26.
The values are relative, which means that we have divided the absolute deviation by the absolute
average of the field. We see that most fields have a relative average of 0.46, this means that the
fits are not perfect, but they are acceptable.

We can explain the large deviation by the fact that the plots are not symmetric in the positive
and negative values, which means that the absolute value of the maximum and minimum is not
the same, which implies that they cannot be described by a single amplitude. Adding the l = 3

plot will increase the accuracy of the classification of 8 percent of the nodes. Even adding more
spherical harmonics, such as l = 4 or even higher values for l will decrease the deviation, but the
overall patterns of the plots become clear from spherical harmonics up to a degree of l = 2.
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Figure 26: Uncertainties of deviation A histogram showing the average relative deviation of the
spherical harmonics from the mean original field

6.2.3 Plots of the spherical harmonics for some nodes

We have selected a couple of nodes to examine in detail. These two nodes have different classi-
fication. The first node we are gonna discuss is classified to be a dipole (l = 1).

In figure 27 we see the original radial velocity plot for a node. In figure ?? we find the plots for
l = 1. In figure 30 we find the plots for l = 2 and we find the residues for l = 1 and l = 2 in
figure 29.
’
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Figure 27: Radial velocity field The radial velocity field for a dipole node

’
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Figure 28: l = 1Plots of the radial velocity field for l = 1.

Figure 29: Residues The residues for the spherical harmonics of the radial velocity field.

’
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Figure 30: l = 2 Plots of the radial velocity field for l = 2.

The next node is classified as a tripole. In figure 31 we see the original radial velocity plot for
a node. In figure 32 we find the plots for l = 1. In figure 33 we find the plots for l = 2 and we
find the residues for l = 1 and l = 2 in figure 34.
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Figure 31: Radial velocity The radial velocity field for a dipole node

Figure 32: l = 1 Plots of the radial velocity field for l = 1.

’
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Figure 33: l = 2 Plots of the radial velocity field for l = 2.

Figure 34: Residues The residues for the spherical harmonics of the radial velocity field.
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Figure 35: Momentum field The original momentum field

Figure 36: Residues The residues for the spherical harmonics of the momentum field.

6.2.4 Momentum Field

In figure 35 we see the original momentum field plot for a node. In figure 37 we find the plots
for l = 1. In figure 38 we find the plots for l = 2 and we find the residues for l = 1 and l = 2 in
figure 36.
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Figure 37: l = 1 Plots of the momentum field for l = 1.

We see that the fit is not really good for the momentum field. This is most likely caused by
some very high values for the density at some spots in the data set which causes the spherical
harmonics to fail in the first few steps. This would be corrected by higher order approximations,
or it can be fixed by taking the density field and filter out the outliers.
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Figure 38: l = 2 Plots of the momentum field for l = 2.

’
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7 Overview and Summary
The cosmic web is the largest scale structure in our universe. At this scale, we find nodes, fil-
aments, walls, and voids. There has been done extensive research in this area, mostly relying
upon simulation data. This data can be processed using an algorithm called NEXUS. There are
two flavours of NEXUS, NEXUS, and NEXUS+. The main difference between these two is the
way they smoothed the field. Where NEXUS uses a Gaussian filter, NEXUS+ uses the logarithmic
version of the Gaussian filter and this results in a much better approximation of the real field,
where a lot more structured are preserved.

After using the steps described in section 2.3, we have a data-set divided into nodes, walls and
filaments. This data is used to make surface density sky plots around nodes at distances ranging
from 5 megaparsec up to 25 megaparsec, increasing 5 mega parsec per step. These plots are also
used to determine the Gaussian Kernel Density for each plot.

After all these steps we started looking at the velocity field, more precisely, the radial compo-
nent of the velocity field. This field tells us something about the inflow and outflow of particles.
We found that on average most particles were moving towards the node, which is expected based
on the mass distribution in the cosmic web. We also multiplied the velocity fields with the density
field around each node, in order to find the momentum flux, which tells us something about the
mass displacement around the nodes. It was not surprising that we also found a positive momen-
tum flux because of the positive radial velocity flow.

After this, we also looked at spherical harmonics. For each node we determined the best fit for
the velocity- and momentum field and classified them into categories based on the best fit value
for l. We found that most nodes can be classified as dipoles (l = 1). We also looked at an estimate
of the uncertainty of these fits and found that they were quite large. This is most probable caused
by the asymmetry of positive and negative values, but the overall pattern of the fits seem consis-
tent with the original field. The spherical harmonics components are shown for a couple of nodes.

The results could be greatly improved by making a few adjustments and doing a couple more
calculations. First of all, it would be interesting to look at some smaller scales. The simulation
used for these results was a 300×300×300 megaparsec box on a grid of 256×256×256. It would
be nice to take a smaller simulation or a bigger grid so that we would be able to look at scales
of 1 megaparsec instead of 10 megaparsec. Furthermore, it would also be interesting to look at
higher orders of l for the spherical harmonics, in order to residues the residue and uncertainty
and to find more subtle patterns in the flow around nodes.
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8 Appendix
8.1 Surface Density plots
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(a) Plot for the all particles (left) and the filaments (right) at a distance of 5 Mpc

(b) Plot for the all particles (left) and the filaments (right) at a distance of 10 Mpc

(c) Plot for the all particles (left) and the filaments (right) at a distance of 15 Mpc

(d) Plot for the all particles (left) and the filaments (right) at a distance of 20 Mpc

(e) Plot for the all particles (left) and the filaments (right) at a distance of 25 Mpc

Figure 39: plots of the surface density.
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(a) Plot for the all particles (left) and the filaments (right) at a distance of 5 Mpc

(b) Plot for the all particles (left) and the filaments (right) at a distance of 10 Mpc

(c) Plot for the all particles (left) and the filaments (right) at a distance of 15 Mpc

(d) Plot for the all particles (left) and the filaments (right) at a distance of 20 Mpc

(e) Plot for the all particles (left) and the filaments (right) at a distance of 25 Mpc

Figure 40: plots of the surface density.
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(a) Plot for the all particles (left) and the filaments (right) at a distance of 5 Mpc

(b) Plot for the all particles (left) and the filaments (right) at a distance of 10 Mpc

(c) Plot for the all particles (left) and the filaments (right) at a distance of 15 Mpc

(d) Plot for the all particles (left) and the filaments (right) at a distance of 20 Mpc

(e) Plot for the all particles (left) and the filaments (right) at a distance of 25 Mpc

Figure 41: plots of the surface density.
65



(a) Plot for the all particles (left) and the filaments (right) at a distance of 5 Mpc

(b) Plot for the all particles (left) and the filaments (right) at a distance of 10 Mpc

(c) Plot for the all particles (left) and the filaments (right) at a distance of 15 Mpc

(d) Plot for the all particles (left) and the filaments (right) at a distance of 20 Mpc

(e) Plot for the all particles (left) and the filaments (right) at a distance of 25 Mpc

Figure 42: plots of the surface density.
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