The application of enzyme engineering in the degradation of plastics

Towards sustainable recycling of PET by improved enzymes

Sabrina Krepel Master Biomolecular Sciences S3280837

History of plastics: moldable materials

Plastics: versatile and durable

- 359 million tons of plastics are produced every year
- Plastic materials are versatile and very durable

Millions of metric tons of plastic accumulates in the environment each year

Lackner, 2017

An additional threat: Microplastics

- Smaller particles are easily ingested by animals and fish
- Humans ingest microplastics via animal consumption

Lavender Law et al, 2014

Carbon polymer chains of varying lengths

- Cross-links can be added to increase strength
- Additives such as antioxidants, flame retardants add to the qualities of the material
- The degree of ordered regions is reflected in the degree of crystallinity

Incubation time (hours)

Tournier et al, 2020

Crystallinity of PET

Current recycling of plastics is not efficient enough

- Currently, there is still an increase in landfill waste
- Mechanical and chemical recycling methods produce toxic byproducts

 Polyethylene terephthalate (PET), mainly used in packaging, is one of the main contributors to waste

Biological degradation of PET by microorganisms

- Thermomonospora fusca was found to be able to degrade PET
- Hydrolases were responsible for this conversion

 Many other enzymes have been found to degrade PET in the last 20 years

Enzyme (if specified)	Source	Substrate	
TfH	Thermobifida fusca	Melt pressed PET from beverage bottle (10 % crystallinity)	
HiC	Thermomyces insolens	<i>lc</i> PET (7 % crystallinity), <i>bo</i> PET (35 % crystallinity)	
Thh_Est	Thermobifida halotolerans	PET film (properties not reported)	
LC-Cutinase	Metagenome from leaf branch compost	Amorphous PET film	
	Nocardia species	PET transparency sheets	
Tcur1278 Tcur0390	Thermomonospora curvata	Nanoparticles of <i>lc</i> PET film	
Cut190 (S226P/ R228S)	Saccharomonospora viridis	<i>lc</i> PET (6–7 % crystallinity) PET film for packaging (PET-S) (8.3 % crystallinity)	
	Comamonas testosterone F6.	Micro-size PET particles (23 % crystalli- nity)	
	Uncultured bacterium	Amorphous PET foil	
	Streptomyces species	Powdered PET from beverage bottle	
PETase	Ideonella sakaiensis 201-F6	<i>lc</i> PET (1.9 % crystallinity) and high crystallinity <i>hc</i> PET (commercial bottle)	

Papadoulou et al, 2019

Challenges in enzymatic PET degradation

			Specific activity
Enzyme	Organism of origin	Estimated Tm by DSF (°C) ± s.d.	(mg _{TAeq} .h ⁻¹ .mg _{enzyme} ⁻¹) ± s.d. 65°C
BTA-hydrolase 1	Thermobifida fusca	70.8 ± 0.0	2.76 ± 0.70
BTA-hydrolase 2	Thermobifida fusca	67.2 ± 0.3	2.10 ± 0.41
FsC	Fusarium solani pisi	56.2 ± 0.2	n. d.
Is-PETase	ldeonella sakaiensis 201-F6	46.4 ± 0.2	n. d.
LCC	Uncultured bacterium	84.7 ± 0.2	93.19 ± 0.29

- Low thermal stability if the enzyme
- Slow conversion rate
- Aspecificity in substrates
- Cost of production

Enzyme engineering

Tournier et al, 2020

Enzyme engineering

Example of random design: Thermostability improvement of a xylanase

- Xylanases can hydrolyse the biopolymer xylan, a principal component in hemicellulose
- Xylanases are used in food industry, animal feed production and other industries

Example of rational design of a PETase from *Ideonella sakaiensis*

- A PET-degrading enzyme of *Ideonella* sakaiensis lacked thermal stability
- By structural analysis, residues were selected to increase thermal stability

- Comparison with a homologue
- Replacement with compatible
 residues
- Hydrogen bonding

- Identify substrate binding subsites
- Replace hypothesized sterically hindering **arginine with alanine**

Increase in thermal stability

Combining rational and random engineering in a PETase

Leaf-branch compost cutinase	Enzyme
(LCC) was	BTA-hydrolase
subjected to	BTA-hydrolase
rational and	FsC
random	Is-PETase
engineering	

Enzyme	Organism of origin	Estimated Tm by DSF (°C) ± s.d.	(mg _{TAeq} .h ⁻¹ .mg _{enzyme} ⁻¹) ± s.d. 65°C
BTA-hydrolase 1	Thermobifida fusca	70.8 ± 0.0	2.76 ± 0.70
BTA-hydrolase 2	Thermobifida fusca	67.2 ± 0.3	2.10 ± 0.41
FsC	Fusarium solani pisi	56.2 ± 0.2	n. d.
Is-PETase	Ideonella sakaiensis 201-F6	46.4 ± 0.2	n. d.
LCC	Uncultured bacterium	84.7 ± 0.2	93.19 ± 0.29

Tournier et al, 2020

Specific activity

Substrate of LCC is amorphous (non-crystalline) PET, or Gf-PET

Activity improvement of LCC by semi-rational design Y95) 🖪 🖪 🖪 💽 🖸 🕓 🖪 🛛 F125

hydrophobic groove

T96M Y127G N246D N246M

F243I

F243W

Activity improvement of LCC by semi-rational design

Thermal stability improvement of LCC by rational design

- Divalent metal-binding sites in homologous PET-cutinase structures increase stability
- Addition of Ca²⁺-ions to LCC led to an increase in thermal stability

Divalent metal-binding sites: Three residues bind to metal-ions

Thermal stability improvement of LCC by addition of a disulfide bridge

- Mutation of two equivalent residues from homologous structures to cysteines
- These mutations create a stabilizing disulfide bridge

D238C/S283C

Thermal stability improvement of LCC by addition of a disulfide bridge

- Mutation of two equivalent residues from homologous structures to cysteines
- These mutations create a stabilizing disulfide bridge

D238C/S283C

Combining all improvements

Activity improvement

4 engineered LCC enzymes

Assessment of 4 engineered enzymes in bioreactor conditions

Engineered LCC outperforms other PETases to date

- Previously reported cultures and engineered PET-degrading enzymes require days to partly convert amorphous PET (Gf-PET)
- The engineered LCC variants convert 82-85% of PcW-PET in 15-20 h

The next step: are degradation products Ethylene glycol, Phosphorous Suitable for recycling?

PET

- Using common techniques, purified terephthalic acid produced by ICCG was used to produce commercial PET.
- Recycled PET-bottles had similar properties as newly synthesized PET

Conclusion

- Combining rational and random protein engineering resulted in an improved version of PET-degrading enzyme LCC
- Applying protein engineering techniques can help chemical processes to become sustainable

Questions?