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Abstract

In this thesis we begin with a brief review on Dark Matter and neutrino physics, which serves
as a broad introduction to the topic and what follows. In the main part of the thesis, we take a
closer look at a scenario where Dark Matter interacts weakly with neutrinos. More specifically,
Dark Matter is taken to be a Weakly Interacting Massive Dirac fermion, which interacts with
neutral leptons via a complex scalar mediator. Elastic scattering and self-annihilation of Dark
Matter are examined closely by construction and computation of Feynman diagrams, amplitudes,
and respective cross-sections of the interactions. The final parameter space of the model consists
of the masses of the newly introduced Dark Matter and mediator particles and the coupling
strength parameter of the interaction. The model is subsequently constrained by the most recent
cosmological observations and analysis of the Cosmic Microwave Background by the Planck
Collaboration. The parameter space is restricted greatly and the restrictions result in a model,
which fits very well with current expectations and predictions for Dark Matter interactions on
the scale of WIMPs. Possible signatures in direct and indirect detection are briefly discussed.
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Chapter I

Preliminaries

1 Introduction and Outline

In the last four decades, many scientists from all around the globe have joined forces to tackle
the so-called Dark Matter problem. Various indirect observational evidence suggest the fact that
an enormous matter-originating energy density should be present in the Universe. However, no
one has detected it directly even though it has been the centre of scientific attention for almost
half a century. Clearly, the theory of the Standard Model (SM) does not explain or describe the
observed reality in a complete way and a more general physical theory is necessary. Without
tests, which could prove it wrong, a theory is just a fictional story and this is where Dark Matter
causes significant problems – it is only confirmed to interact gravitationally so even though there
exist many theories and some are looking promising, conclusive proof for any of them has not
been found.

Another particle, which pulls Physics away from the Standard Model, is the neutrino. Despite
the Standard Model accommodating the neutrino, research from the past twenty years has shown
that it fails to describe fully the particle’s behaviour, which is mostly due to its extremely small
mass. Therefore, the neutrino is thought to be the link to a theory of Physics Beyond the
Standard Model, just like Dark Matter. These two links might be completely unrelated, but it
is worthy to consider the possibility where they are, in fact, related. The strongest motivation
for this comes from the likelihood that Dark Matter interacts approximately around the weak
scale and the Standard Model particle best known for only interacting weakly is the neutrino.
Neutrinos are extremely hard to detect and extract information from, but if they turn out to
interact with Dark Matter, their detection and subsequent information extraction could prove
crucial to the understanding of Dark Matter.

This thesis begins with an introductory review of Dark Matter and neutrinos, the main prop-
erties and discoveries related to them, how exactly their interaction could fit in the grand scheme
of things, and the mathematical tools necessary to examine them. In the main part of the thesis,
we consider a simplified model of Dark Matter, in which we allow it to interact weakly with
neutrinos. Moreover, we make a guess about the nature of Dark Matter by classifying it as a
Dirac fermion, which interacts with neutrinos via a complex scalar mediator. An elastic scat-
tering interaction of the two particles is studied in detail as well as an interaction where Dark
Matter annihilates into neutrinos. This model contains significant simplifications and assump-
tions. Nonetheless, we show how its general properties and how these properties could be tested
observationally. The crux of the philosophy of such simplified models is to extend the Standard
Model by just the bare minimum to accommodate Dark Matter and its possible interactions with
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2. Background on Dark Matter

Standard Model particles. This allows for a superficial study of general behaviour, from which
valuable conclusions could be made.

In today’s world, data collection is advancing with an exponential pace and it is thought that
with the rise of gravitational wave astronomy and neutrino astronomy, many theories of Dark
Matter will fall out or prove to give useful insights in the right direction. The ultimate goal for
this thesis is to examine one model and find out exactly what certain observations would mean
for it, how can it be confirmed to lead to something useful or conversely, how can it be shown
that the model is a very poor description of reality and others should not be wasting their time
on it in the future.

2 Background on Dark Matter

Dark Matter is a term which is loosely used to describe all matter in the Universe with unknown
and non-baryonic character. It is labelled as matter because its density follows an inverse cubic
scale law ρm ∝ a−3 (as opposed to radiation for which ρr ∝ a−4) and the term dark partially
refers to its observed lack of interaction with light and electromagnetic forces in general.

Evidence for the existence of Dark Matter was first found and considered by Kelvin and
Poincaré[1] in the late 19th and very early 20th century during their analysis of the Milky Way.
Later on, in 1922, Kapteyn hinted at the existence of more matter in galaxies based on stellar
velocity observations.[2] However, the first articles which led to serious considerations for the
existence of Dark Matter are considered to be those of Oort[3] and Zwicky.[4] Oort, who worked
in the steps of Kapteyn, observed the movement of stars around the Sun and found that their
velocities were significantly different from what one would expect based on the gravitational
forces of visible matter only. Similarly, Zwicky observed the dispersion velocities of individual
galaxies within the Coma cluster and concluded that they did not match theoretical predictions
based on the Virial theorem and gravitational potentials due to visible matter. For the next
3-4 decades these findings and the issue that they introduced stayed outside of the scientific
spotlight[5, 6] as they essentially came at the same time as the boom in Particle Physics.[7] It
was only in the 70’s when the field was re-introduced, mainly by the work of Rubin, Ford,[8] and
Freeman.[9] Subsequently, it was popularised by Rubin in her paper from 1980,[10] after which
the field really took off and started growing significantly.

2.1 Evidence for the Existence of Dark Matter

Nowadays, we have plenty of conclusive evidence on the existence of Dark Matter, which can be
loosely divided in three scales in the Universe. These are the galaxy scale, the galaxy cluster
scale, and the cosmological scale; the bottom-line is that without Dark Matter, the Universe
would not look like and behave in the way it is observed to.

On the scale of galaxies, the main mechanism through which the presence of Dark Matter is
surveyed is the construction and analysis of the so-called rotational curves. The aforementioned
works of Kelvin, Poincaré, Kapteyn, and Oort loosely fall in this category. Rotational curves
consider the circular velocity vr of astronomical objects (of mass m) as a function of the radial
distance r from the centre of the galaxy. If we consider large radial distances (so that the total
mass of the galaxy M is approximately constant), we can model the rotation of the galaxy by
equating the Newtoniana gravitational force to the centrifugal force, so that

aNewtonian gravity is perfectly reasonable to use on this energy scale and for this purpose
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(a) (b)

Figure 2.1: (a) Rotational curve of the Galaxy NGC 6503 is given by the solid line. The dashed
line represents the visible matter, the dotted represents the gas, and the dot-dash represents
the Dark Matter. Taken from Begeman et al, 1991 .[12] (b) Rough estimate for the density
distribution of Dark Matter in a Dark Halo of a spiral galaxy in dash-dot blue and the normalised
full expression as in Eq. (2.2) for the enclosed mass in orange. Note: r � rc is of particular
interest.
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However, observation shows that the rotational curves of most spiral galaxies stay rather
flat (See Fig. 2.1a). Not all spiral galaxies necessarily follow this flatness of the rotational
curve, but in all of them the velocities in the arms cannot be attributed only to gravitational
interaction with visible matter.[11] If we revisit Equation (2.1), but keep in mind that the mass
M has to grow with r, we can introduce a Dark Halo (i.e. a concentration of Dark Matter in a
spherical shell-like manner around a galaxy). An appropriate guess for the Dark Matter density
distribution[12] would be ρ(r) = ρ0(1 + (r/rc)

2)−1, which is plotted in Fig. 2.1b. Now, the
enclosed mass, in the limit of large radial distances, can be written like
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which is approximately linear in r in the limit where constant vr is observed. This can also be
seen in the plot of the full expression, which is presented in Fig. 2.1b. Substituting this M(r) in
Equation (2.1) indeed gives the desired result – a constant circular velocity. It should be pointed
out that this halo possesses a spherical symmetry, which might be confusing at first glance since
visible matter does not have that symmetry in the galaxy and is often observed to clutter in a disc.
As it will be discussed further on, unlike visible matter, Dark Matter does not interact nearly as
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Figure 2.2: Observation of the Bullet cluster 1E0657-558. The green contours represent mass
concentration from weak gravitational lensing. The blue, red, and yellow colours represent X-ray
emission intensity from intracluster plasma. Taken from Clowe, 2006 .[22]

much with itself as visible matter does, which allows it to preserve a spherical distribution. On
the other hand, visible matter dissipates energy through interaction, but has to conserve angular
momentum and so the formation of discs becomes favourable. Analysis and simulations confirm
this result.[13–15] There are many more ways to write down and scale the distribution in such a
Dark Halo, especially when it comes to different types and sizes of galaxies.[16] The theory of
Dark Halos agrees with experimental results from weak[17] and strong[18] gravitational lensing
and they all point out an expected abundance of Dark Matter mass of around 4-6 times more
than visible matter mass in galaxies.[6]

On the scale of galaxy clusters, one can find even more compelling evidence on the existence
of Dark Matter. The works of Zwicky and others who considered dispersion velocities of galax-
ies within clusters fall in this category.[19, 20] Colliding clusters seem to provide even stronger
evidence.[21] In particular, the collision of the Bullet cluster 1E0657-558 is thought to provide
direct empirical evidence for the existence of Dark Matter.[22] In the investigation of the clus-
ter collision, data from X-ray emission and gravitational lensing are simultaneously analysed.
The former shows an abundance of gas and visible matter, which seems to ’lag behind’ when
compared to evidence from the latter, which shows that the main concentrations of mass in the
cluster lie elsewhere (See Fig. 2.2). Analysis of this and similar clusters in general leads to
the conclusion that within galaxy clusters, Dark Matter is about 5 times more abundant than
visible matter.[23] Furthermore, an upper boundary for the self-interaction of Dark Matter in the
present-day Universe can be derived from those observations.[22]

The final and largest scale, on which evidence for Dark Matter exists, is the cosmological scale
and of particular interest are the Cosmic Microwave Background (CMB), Structure formation,
and the Baryon Acoustic Oscillations (BAO). The last in the list refers to the large scale structures
of baryonic matter in the present-day Universe and more specifically, the fluctuations in density
of that matter. These structures can be observed today and linked to the early Universe when
they were birthed by the clumping of Dark Matterb with baryons after recombinationc, which
subsequently leads to BAO in the expanding Universe. This effect has been measured precisely
and the conclusion is that it is in agreement with the prediction based on general Dark Matter
models.[25–28] If Dark Matter did not exist, visible matter would not form in galaxies and clusters

bAssuming that Dark Matter was already present at those times
cAn epoch taking place apprx. 370,000y after the Big-Bang, during which hydrogen atoms started forming.[24]
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(a) (b)

Figure 2.3: (a) Depiction of the Planck satellite spacecraft. Taken from esa.int (b) Normalised
probability curves for the abundance parameters of visible matter (left) and Dark Matter (right).
Orange line is fit to data from 2018, while the blue line and blue-dotted are from the 2015 data
collection. Taken from Planck, 2018 [36]

due to the fact that these perturbations would not have had enough time to grow since visible
matter can interact with radiation. The very early Universe was radiation dominated,[29] which
signals that visible matter would be washed out and not allowed to cluster early on. However,
introducing Dark Matter, which is produced before the visible matter, creates ’potential wells’ in
which the visible matter can later collapse more easily and thus the structure formation process
is accelerated.[30]

Additionally, the CMB holds information that can be linked to the existence of Dark Matter
and careful analysis can even reveal the present day abundance of Dark Matter in the Universe.
The CMB was emitted shortly after the recombination epoch and it represents radiation emitted
from a nearly perfect black-body of temperature TCMB = 2.725K.[31] It is due to matter in
the Universe recombining and de-ionising, thus making the Universe transparent to radiation
for the first time. However, subtle anisotropies can be detected in the sky map of the CMB
when decomposed into a power angular spectrum. These take the form of equally spaced peaks
(See Fig. 1 from Planck, 2016 [32]), which can be linked to the presence of ordinary matter and
Dark Matter and their respective ratio of abundance in the period before the emission of the
CMB. The most recent and most precise data comes from the Planck satellite (Fig. 2.3a) in
2014-15.[32, 33] This leads to a composition of Dark Matter of ΩDMh

2 = 0.1187 ± 0.0017 and
composition of visible matter of ΩVMh

2 = 0.02214±0.00024 (Fig. 2.3b). Here h = 0.697±0.024
is the expansion rate of the Universe and Ωi = ρi

ρc
is the ratio of the energy density of the

respective component ρi (i is either Dark Matter, visible matter, or Dark Energy) to the total
energy density of the Universe needed for a spatially flat Universe ρc, which would also require∑

i Ωi ≈ 1.[34, 35] Thus, results from Planck are consistent with the theory of General Relativity
and the theory of Dark Matter and tie the two even closer together because the data analysis
gives

∑
i Ωi = 1.000± 0.005.[32] Additionally, the survey found that 4.84%± 0.1% of the content

of the Universe is visible matter, while 25.8% ± 1.1% is composed of Dark Matter and the rest
is taking the form of Dark Energy.[33]

In conclusion, due to its nature, the CMB holds the earliest and purest information about
the Universe. Features that appear in its detailed analysis can be explained very well with the
theory of Dark Matter and those are further in-line with other cosmological observations. On
the cosmological scale, we can see how the role of Dark Matter fits with the rest of the story
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of the Universe and provides crucial context for certain events and periods within that story.
Furthermore, cosmological observational data can be used to constrain any emerging Dark Matter
models, including the one which we consider in this thesis as we shall see in the sections to come.

2.2 Dark Matter Candidates

So far, we have examined the evidence for the existence of Dark Matter, which we linked to
the precise value for the abundance of Dark Matter in the Universe. Now, however, we have to
figure out what exactly this Dark Matter is and how did it end up in the Universe in such large
quantities.

First of all, it should be pointed out that many models consider the possibility that there is
no extra matter, but instead the theory of gravity has to be modified. One such example is the
Modified Newtonian Dynamics (MOND), which proposes that the Newtonian force be modified
in a way that at high accelerations a (relative to some a0) the theory reduces to the Newtonian
theory, but at low accelerations, corresponding to the edges of a galaxy, it converges to a result,
which satisfies the observed constant rotational velocity,[37] as discussed in the previous section

Fold = ma
MOND−−−−−→ Fnew = maµ( aa0 ),

∣∣∣∣∣µ(x)
x�1−−−→ 1

µ(x)
x�1−−−→ x

. (2.3)

This theory was designed as an empirical modification, which aims to fit with the observed
behaviour of spiral galaxies. However, the theory turned out to satisfy surprisingly well the
dynamics of many more systems within the galaxy scale. It is only at the scale of galaxy
clusters and beyond that the theory stops matching the observed reality.[38, 39] It should also
be pointed out that this theory is non-relativistic and there have been plenty of attempts to
adapt it to relativity such as Tensor–vector–scalar gravity (TeVeS), Generalized Einstein-Aether
theory (GEA), Bimetric MOND (BIMOND), etc. Many of those theories adapt well and provide
accurate description of the dynamics of clusters and even agree with evidence on Large Scale
Structure Formation, but none can account for the perturbations in the CMB angular power
spectrum,[38, 40] which leads us to believe with a rather large certainty that the Dark Matter
problem needs to be approached by an introduction of a new physical particle(s).

Before we start guessing what the nature of that particle is, it is useful to revise the main
properties that it must possess in order to fit with cosmological observations.[6]

I. It must be massive so that it interacts gravitationally, like observed.

II. It cannot interact strongly or electromagnetically. It could interact weakly, but the strength
of that interaction has to be bounded from above, as we will see later on.

III. It must be cold or warmd. These terms refer to the character of the particle in the framework
of Special Relativity. Cold means it is strictly non-relativistic and warm means it is cooling
down and roughly on the NR boundary. Hot Dark Matter has been excluded for the most
part due to analysis in Large Scale Structure formations.[41–43]

IV. The majority of Dark Matter has to be collisionless or nearly collisionless. The upper
boundary on self-interactions is derived from the Bullet cluster (Fig. 2.2).[22]

V. Dark Matter has to either be a stable particle or it has to have a lifetime larger than the
age of the Universe tDM � tU.

dOr at least the main component of Dark Matter must be cold/warm.[6]
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Since these properties are rather general, an endless sea of Dark Matter candidates can be
found. In this thesis we cover only the most fundamental and popular ones.

� Neutrinos

They are one of the most elusive and least-well understood particles of the Standard Model and
since in the last two decades it has been uncovered that neutrinos are massive particles, they
have been seriously considered for Dark Matter. This is largely due to their immense abundance
in the Universe and the fact that they only interact weakly (and gravitationally). Nowadays,
we have plenty of independent and conclusive evidence that Standard Model neutrinos cannot
be Dark Matter,[44] which leads us to the hypothesis of a new kind of neutrino called a sterile
neutrino.[45] Their only difference to SM neutrinos is that they do not participate in Standard
Model weak interactions. Searches for a sterile neutrino Dark Matter are currently still being
performed.[46]

� Axions

These particles were initially proposed in 1977[47] as a solution to the CP-symmetry violation
problem. When the Dark Matter field began expanding, they were also considered as a possi-
bility. Even though, there have been reports on indirect detection of such particles,[48] there is
no conclusive evidence for this theory to be approved. Furthermore, their density is very un-
predictable, which makes them hard to work around when considering them as a Dark Matter
candidate.[44]

� Super-symmetric particles

The theory of super-symmetry (SUSY) revolves around the very mathematically beautiful idea
that there is an additional symmetry between the two main classes of particles in the Universe
– fermions and bosons. This kind of theory can introduce a plenitude of new particles, some
of which have seen great interest when it comes to the search for Dark Matter.[49] The most
famous candidate is the lightest super-symmetric particle – the neutralino. Other candidates of
this sort include sneutrinos, gravitinos, axinos, etc. and are still viable candidates, which are
being researched.[44, 50,51]

� Macroscopic candidates

Since the beginning of the Dark Matter searches, macroscopic objects like primordial black holes
have been considered.[52] Even though on some mass ranges they have been disproved, they are
still a viable candidate, especially with the recent growth of gravitational wave astronomy.[6, 53–55]

� WIMPs

TheWeakly Interacting Massive Particles have been a great hit among physicists and astronomers
as a Dark Matter Candidate. This category is very large as the definition is very general and
many super-symmetric particles like the neutralino fall in this category. The reason why WIMPs
are so popular is the so-called WIMP Miracle. As shall be discussed during the rest of this sec-
tion, allowing Dark Matter to interact weakly with itself (annihilating) can be used to determine
an approximate scale on the strength of this interaction based on the abundance of Dark Matter
in the Universe and it falls precisely on the expected scale.[6, 44,56]
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This list is nowhere near complete and countless other theories for light boson Dark Matter,
superfluids, Little Higgs model, etc. exist. Some candidates have been dismissed and some
are looking very promising, but as of today, there is absolutely zero concrete evidence that can
point out that Dark Matter is a specific particle of a specific type. In this thesis, we will focus
specifically on WIMPs, as we want to examine their interaction with neutrinos. Inspired by the
Baryon asymmetry (significantly more abundant matter than anti-matter), asymmetric Dark
Matter has also been considered seriously.[44] However, in this thesis, for simplicity, we only
focus on symmetric WIMPs.

2.3 Production Mechanisms

Now that we roughly know the most general properties that this particle(s) must have and
the abundance of it in the Universe, we must figure out how exactly all of that Dark Matter
came to be. One hypothesis is that certain interactions with extremely low strengths (possibly
with Standard Model particles as well) led to the gradual build-up of Dark Matter in the early
Universe up to the point where the temperature of the Universe was too low to sustain that
interaction.[57] This production mechanism is called freeze-in, as opposed to freeze-out. It is not
discussed in this thesis but is, nonetheless, a fully plausible theory and its downside is that it is
almost un-testable in particle detectors due to the low interactions with visible matter.[58] The
aforementioned freeze-out mechanism describes Dark Matter as a thermal relic, which was once in
equilibrium with the hot soup that the early Universe is (a thermal bath), but as the temperature
of the Universe dropped and the Universe expanded, it decoupled from the thermal bath. For
WIMPs, the exact temperature of decoupling is dependent on the Dark Matter mass. This
decoupling is governed by the Boltzmann transport equation, which in this particular scenario
may be written like[44, 59,60]

dn

dt
+ 3Hn = −〈σAvr〉

(
n2 − n2

eq
)
, (2.4)

where n is the Dark Matter number density, neq. the same density at equilibrium, H is the
Hubble parametere describing the expansion rate of the Universe, σA is the Dark Matter self-
annihilation cross-section, and vr is the relative velocity of a Dark Matter - anti-Dark Matter
pair. Combined, 〈σAvr〉 is the thermally averaged cross-section velocity product, which from
now on will be known as the thermally averaged annihilation cross-section and will be discussed
in detail in the following sections. The standard approach to simplify and solve the Boltzmann
equation is to introduce a co-moving number density parameter Y = n

s , where s = 2
45π

2g(T )T 3

is the entropy density (conserved in thermal equilibrium so that ṡ = −3Hs) and g – the number
of relativistic degrees of freedom; the mass-temperature ratio is x = m

T . Now, dY
dt = dY

dx
dx
dt and

ds
dt = ds

dx
dx
dt = −3Hs. Hence, in terms of the new parameters the Boltzmann equation (2.4) can

be written like

dY

dx
=

1

3H

ds

dx
〈σAvr〉

(
Y 2 − Y 2

eq.
)
. (2.5)

This equation can be solved numerically (Fig. 2.4) and the results show that an increas-
ing annihilation cross-section leads to a decrease in abundance. Additionally, the temperature

eThe value of the Hubble parameter, determined by Planck, 2018 is H = 67.66± 0.42 km
sMpc

[36]
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3. Background on Neutrino Physics

Figure 2.4: Numerical solution of the Boltzmann transport equation in the form of Eq. (2.5).
Taken from Gondolo and Gelmini, 2010 .[59]

of decoupling (which can be linked to a parameter xF at decoupling with a known range) de-
pends logarithmically on the Dark Matter mass only[60] and so these two can be linked with
the measured abundance of Dark Matter in the Universe to give an estimate for the annihila-
tion cross-section of 〈σAvr〉 ∼ 3 × 10−26 cm3

s . Surprisingly, this interaction strength is very well
positioned ’on the weak scale’, thus contributing to the aforementioned WIMP Miracle.

3 Background on Neutrino Physics

3.1 Brief History of the Neutrino and its Properties

The particle called neutrino was first postulated 90 years ago by Wolfgang Pauli in 1930 while he
was trying to explain conservation laws in beta decay. In 1956 Cowan and Reines performed the
first-ever successful detection of a neutrino, thus laying the grounds for further research.[61] Since
then, a lot has been accomplished in the field of lepton physics and with every answered question,
many more popped up. As of 2020, the neutrino, due to its elusive nature, is considered to be
one of the most mysterious and least well-understood particles in the Standard Model. However,
as such, the neutrino is also considered to potentially hide the key towards a new generation
physics, which usually bears the name New Physics, and immense efforts have been and are
being put towards the grasp of the nature of the neutrino.

The neutrino interacts only via the weak nuclear force and possibly also the gravitational
force, which is still under research. The carriers of the weak force are the W± and Z0 bosons,
which are responsible for the so-called charged current and neutral current interactions respec-
tively.[62] The interactions that are of particular interest in astronomy are those involved in the
production of cosmic neutrinos and those involved in their detection. However, interaction via
a non-force carrier particle, in analogy to pions carrying out the strong nuclear force, cannot be
excluded.[62]

Neutrinos are one of the most highly abundant particles in the Universe and they come
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Figure 3.1: A model depicting the fluxes of astrophysical neutrinos (in blue) as functions of
energy. Various neutrino detectors and their detection ranges are also shown in dashed light
blue. Taken from Sigl, 2006 .[64]

from many different sources and are available at many different energies. Significant neutrino
fluxes that reach and/or pass through our planet with cosmic origin can be divided into several
categories. There is a theoretical formulation and strong indirect evidence for the existence of a
thermal neutrino relic density in the form of cosmic neutrino background, present since the very
early Universe and produced in a similar fashion to the CMB. These neutrinos are everywhere
in the Universe and possess extremely low energies of the order of magnitude O(10−4eV). Next,
a significant number of neutrinos that enter the atmosphere of the Earth come from the Sun in
our solar system and are thus called solar neutrinos. These come from fusion reactions within
the Sun and are usually in the MeV energy range. The neutrinos in and above the GeV range are
called high energy neutrinos and these can only originate from cosmic sources where immensely
large amount of energy can be released.[63]

Several phenomena occur in the cosmos which are thought to produce high-energy neutrinos.
All of the ones discussed here are astrophysical sources, which are thought to act as particle
acceleration sites. The first and most popular ones are supernova remnants. This term represents
the propagating with high velocities matter, which is ejected from a supernova, after a massive
star’s ’death’. Cosmic rays energy spectrum data in combination with gamma ray data has
been used to show that supernova remnants are very likely to be a source of high energy cosmic
rays.[65] These cosmic rays are mainly consisting of protons, which can interact with matter
in/around the remnants or simply matter in the interstellar medium to produce other particles.
One of the most common products of a hadron reaction are the lightest mesons – the π± and
π0 mesons. While the latter can potentially decay to a neutrino and anti-neutrino pair, its
most likely decay channel is π0 Z0

−−→ 2γ. The charged pions, however, have most probable decay
channels π+ W+

−−→ µ+ + νµ and π− W−−−→ µ− + ν̄µ.[66] In this way we see that whenever there is
an emission of high energy cosmic rays, they are usually accompanied by high energy neutrinos
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and gamma rays – one motivation for multi-messenger astronomy. Furthermore, high energy
protons can interact with photons to produce neutrinos in their reaction.[67] A gamma ray can
interact with the proton and induce a decay of the proton and multiple decay channels can result
in the production of an (anti-)neutrino as an end-product. Gamma ray bursts are the most
energetic electromagnetic events observed in the Universe and are a perfect source to search for
such neutrinos, since they provide extremely intense and energetic photon fluxes. Gamma ray
bursts can be observed due to a variety of cosmological objects and events. One group of objects
that is of particular interest are the so-called active galactic nuclei, due to their ability to also
accelerate cosmic rays with very high energies in the first-order Fermi mechanism.[63] As galactic
nuclei have an enormous concentration of matter, it is very likely that Dark Matter is present in
large abundance in and around the galactic nucleus. This would mean that in these regions Dark
Matter-neutrino weak scattering would be much more likely to occur. The theoretical models
of these production mechanisms suggest varying fluxes with energy for each source. The most
common ones are depicted in figure 3.1. Due to these sources being present everywhere in the
Universe, it can be expected that astrophysical high energy neutrinos are isotropic, and this is
indeed the confirmed result.[68] In this thesis we play around with the possibility that neutrinos
are also produced via a Dark Matter annihilation χDM + χ̄DM −→ ν + ν̄ channel.

3.2 Neutrino Detection

Now that we have seen how high energy neutrinos are produced, it is time to turn our heads
towards detection, which is a very sophisticated task due to the extremely low interaction cross-
sections of neutrinos and their lack of electric charge. Additionally, in modern-day astronomy it
is not sufficient to simply detect the neutrino – if we want to extract information about its source
and possible interactions with Dark Matter it might have been part in prior to detection, we must
also measure additional properties like the direction of arrival, energy/momentum, etc, which
makes the task even harder. The volume necessary to count the extremely small probability
that a neutrino (especially on the high energy end of the spectrum) interacts with matter is
on the order of cubic kilometres and above. A relatively feasible way to detect a neutrino in
such a big volume is to put photodetectors in a huge volume of an approximately homogeneous
dielectric medium and turn the whole volume into one big Cherenkov detector. Such are the
IceCube facility, which uses Antarctic ice, and the ANTARES detector, which uses water from
the Mediterranean Sea. However, one of the key components for the emission of Cherenkov light
is to have a charged particle travel with relativistic velocity.[62] The high energy neutrinos travel
very fast, however, they are electrically neutral. Therefore, we have to look at a charged particle
that is produced due to a neutrino interaction.

Even though neutrinos can interact with other leptons, in the higher end of the energy spec-
trum (past GeV) neutrino-hadron interactions dominate.[69] Under a neutral current interaction,
only a hadronic shower is produced, the detection of which is quite hard and even more so in a de-
tection volume on the scale of cubic kilometres. Hence, good candidates for detection techniques
are charged current interactions, where the neutrino is ’transformed’ into a charged lepton. The
flavour of the charged lepton depends on the flavour of the incoming neutrino and thus electrons,
tauons and muons can be produced as a result of their respective neutrino interacting with a
hadron. However, these three leptons possess extremely different masses and lifetimes and not all
of them are as suitable for detection techniques as others. The most commonly used interactions
in detectors are depicted in Fig. 3.2. The main limitations of this Cherenkov detection are that
many other light sources can interfere with a measurement. Additionally, atmospheric neutrinos
and muons can also have sufficiently high energies to be detected in a Cherenkov counting ex-
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W±

n

νµ

p

µ−

W+

p

ν̄µ

n

µ+

Figure 3.2: Two of the most common muon (anti)neutrino - hadron interactions in a detector,
represented in Feynman diagrams on the nucleon scale.

periment.[64] The very nature of neutrinos makes them extremely hard to detect even in such
large volumes as in the IceCube detector. There are other ways to detect high energy neutrinos
as well (see figure 3.1), like the ANITA experiment, which detects radio pulses created during
interaction of neutrinos with the ice in Antarctica, but they have not proven to be as useful and
successful as the aforementioned two. As for lower energy neutrinos, they are also detectable by
Cherenkov detectors, but Scintillators, smartly designed Calorimeters, etc. can also be used for
detection.[69]

The same exact properties that make neutrinos hard to detect, also make them perfect for
interaction-less propagation and quick information delivery from the source. Unlike cosmic rays,
which are subject to electromagnetic forces during their galactic or extra-galactic propagation,
for the most part neutrinos travel in a straight line from the source until they are detected, thus
potentially providing crucial information about the source and the various physical processes
that might take place there.[67] Additionally, a possible interaction with Dark Matter, which
might have taken place close to the source, could potentially leave a signature on the neutrino
flux, even if ever so slightly. This is generally true up to an energy of 1017 eV, after which the
detection becomes almost impossible, due to small fluxes, but also energies so high start allowing
GZK-like resonances and thus a neutrino of this energy, if it exists, would seldom reach our
planet, let alone be detected.[65] Another possible neutrino production mechanism, which we
will discuss in the thesis, is present day WIMP Dark Matter annihilation into neutrinos, which
is thought to be likely to take place in massive stellar objects, with a lot of attention paid to the
Sun and solar neutrinos.[70]

Neutrino astronomy can be considered crucial to the understanding of the cosmos, and po-
tentially Dark Matter as well, especially when paired up with the detection of other messengers
in the new field of multi-messenger astronomy. As a result, neutrino astronomy has been growing
with a serious pace in the last decade and new telescopes like KM3NeT, P-ONE, and NESTOR
are under construction/further development and hold high hopes for the future of neutrino as-
tronomy.

4 Computational Basics in Quantum Field Theory

4.1 Basics of Fields and Interactions

The accepted physical theory, which accommodates both Quantum Physics and Einstein’s Rel-
ativity, is known as Quantum Field Theory (QFT). As the name suggests, the theory does not
deal with particles and physical objects but instead it deals mainly with fields – particles arise
as natural ’ripples’ or combinations of excited states of fields. In analogy to classical mechanics,
the fields and their temporal and spatial evolution are governed by the variational principle of
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Figure 4.1: Example of a Feynman diagram for the kind of interactions that will be discussed
in the main section.

least action. Every scalar field φ in QFT has to obey the Klein-Gordon equation.

(∂µ∂
µ +m2)φ = 0 , (4.1)

where m is the rest mass of the field/particle. A Fourier transform motivates writing the general
field in a Fourier series-like fashion

φ(t,x) =

∫
d3p

(2π)3
√

2Ep

(
ap e

ip·x + a†p e
−ip·x

)
. (4.2)

The operators ap and a†p turn out to satisfy the creation/annihilation operators commutation
relation [ap, a

†
q] = (2π)3 δ(p−q) with each other and the commutation relations [H, a†p] = Ep a

†
p

and [H, ap] = −Ep ap with the normal-ordered Hamiltonian

H =

∫
d3p

(2π)3
Ep ap a

†
p , E2

p = p 2 +m2 . (4.3)

Thus, the zero-energy vacuum state |0〉 can be defined by ap|0〉 = 0 so that it is assigned zero
energy H|0〉 = 0 and the creation/annihilation operators can act on it like

a†p |0〉 = |p 〉 ap |p 〉 = |0〉 ap |0〉 = 0 (4.4)

to create/annihilate the state |p 〉. This is a momentum eigenstate, which represents a spatially
(and temporally) delocalised particle with a fixed momentum p. Moreover, so far, we have
considered a real scalar field. In this thesis we will work with a complex scalar field and a spinor
field, which have slightly different properties and operators, but the main ideas are the same.

If we now consider an interaction which converts an initial state |i〉 to a final state |f〉, we must
look into their ’overlap’ in order to determine the (quantum mechanical) probability amplitude
for the interaction to take place. Moreover, for the interactions discussed in this thesis we are
interested only in A + B → A + B elastic scattering or A + Ā → B + B̄ annihilation in the u-
or t- channels (See Fig. 4.1). In both cases, the amplitude can be written in the form of 〈i|S|f〉,
where S ∈ U(1) is the scattering matrix. This matrix can be very well approximated from the
Dyson series if the interaction is considered as a perturbation to the theory (as is allowed here
due to upper bounds on Dark Matter-neutrino interaction strengths).

S '
∞∑
n=0

(−i)n

n!

∫
d4x1 . . .

∫
d4xn T [H1 . . .Hn] , (4.5)
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where T is a time-ordering operator and H is Hamiltonian density – closely linked to the La-
grangian. Therefore, for an interaction Lagrangian of the form L = gφ2φM with all fields being
real scalar fields, one can construct a scattering scenario φφ → φφ as in Fig. 4.1. The initial
momentum eigenstate can then be written as |i〉 =

√
2Ep1

√
2Ep2 a

†
p1 a

†
p2 |0〉 and the final as

|f〉 =
√

2Ep1
′
√

2Ep2
′ a†p1

′ a
†
p2
′ |0〉.f Now, the diagram from Fig. 4.1 considers two distinct

vertices, which denote two different spacetime points x1 and x2. We can consider only the g2

term from the Dyson series and ignore the zeroth and first terms since we want actual scattering
to occur. This gives

〈f |S|i〉 ' −g
2

2

〈
f
∣∣ ∫ d4x1 d

4x2 T [φ2(x1)φM (x1)φ2(x2)φM (x2)]
∣∣ i〉 . (4.6)

Wick’s theorem[71] can be used to deal with the time-ordering operator and it gives rise to
contractions of the fields. The only one, which could remain is the contraction on the mediator
field, which gives rise to the Feynman propagator

∆F (x1 − x2) =

∫
d4k

(2π)4

ie−ik·(x1−x2)

k2 −M2
, (4.7)

where M and k are mass and 4-momentum of the mediatorg. In short, aside from showcasing
the role of the mediator in the interaction, the Feynman propagator also ’takes care’ of the
locality condition between the two vertices without caring about which one comes first on the
temporal axis. Further in the computation, if the fields and states are expanded in terms of
creation/annihilation operators (for fields as in Eq. (4.2)), one can start using their commutation
relations to ’push’ annihilation operators to act on the vacuum state, which results in a zero.
The additional term, which arises due to the commutation of the operators usually gives rise to
a delta function, which can be integrated. The full computation is way too long to be covered
here, but the main principles have been explained and they are applied numerous times until the
end result is reached.[72]

〈f |S|i〉 ' −g
2

2
〈0| (2π)4

k2 −M2
δ(4)(p1 + p2 − p′1 − p′2)|0〉 =

−g2 (2π)4

2(k2 −M2)
δ(4)(p1 + p2 − p′1 − p′2)

(4.8)

This expression is only valid for real scalar mediated real scalar-real scalar scattering. How-
ever, other variations of scattering (as we will see later) have to be computed in a very similar
fashion with the only difference being that the definitions of the fields change in terms of oper-
ators and sometimes there are additional objects like spinor representations or other operators
from the Lagrangian, which get translated to the final result. To reduce the length of the compu-
tation, the so-called Feynman rules[73] can be used to directly ’unpack’ the amplitude from the
diagram and the Lagrangian. Furthermore, it should be stated that the scattering amplitude can
be expressed like S = (2π)4δ(4)(pi−pf )M andM is known as the Feynman invariant amplitude.

The last step, which needs to be taken, is to make the link between a scattering amplitude and
a scattering cross-section, which is the actual physically measurable quantity. A cross-section σ
measures the probability that particles collide/interact when two beams cross or in an equation,
N = σF where N is the number of events per unit time and F is the particle flux. We have

fThe factors
√
2E arise from normalisation requirements of the states.

gThe momentum can be expressed in terms of the already known momenta due to conservation laws at the
vertices
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the possibility to compute a more useful and easier to work with quantity – the differential
cross-section, which considers all outcomes "differentially" and it can be written like

dσ =
Differential probability
Unit time×Unit flux

(4.9)

The differential probability per unit time T can be written in terms of the known probabilities,
the unit time T , the volume in which the interactions takes place V (defined by beam dimensions
in colliders usually), and an infinitesimal volume in momentum space for each final state like[72]

P =
|〈f |S|i〉|2

〈f |f〉〈i|i〉
1

T

∏
final states

V
d3p

(2π)3
= (4.10)

=
|M|2

T

(
(2π)4δ(4)(pi − pf )

)2 ∏
in. st.

(
1

2E(2π)3δ(3)(0)

) ∏
fin. st.

(
1

2E(2π)3δ(3)(0)
V

d3p

(2π)3

)
.

The expression at hand is quite lengthy, but it can be simplified by noting that the delta function
can be interpreted as the interaction volume for a single interaction[72] so that (2π)3δ(3)(0) = V
and (2π)4δ(4)(0) = V T . With that in mind, the expression can be simplified significantly to give

P =
|M|2

4Ep1Ep2V
(2π)4δ(4)(pi − pf )

2∏
i=1

(
d3p′i
(2π)3

1

2Ep′i

)
, (4.11)

and now the flux F can be written in terms of the incoming particles’ velocities and the afore-
mentioned volume like F = |v1−v2|

V . The final result for the differential cross-section follows from
substitution and we will see later on how we can reshape it further.

4.2 Some Useful Properties of Fermionic Fields

In the previous subsection, we saw that every field in QFT has to satisfy the Klein-Gordon
equation. In addition, there are fields corresponding to (anti)particles called fermions, which
have to satisfy an additional equation – the Dirac equation.

(i/∂ −m)ψ = 0 (4.12)

Here /∂ = γµ∂µ and γµ are the Dirac matrices (or gamma matrices), defined by the anti-

commutation relation {γµ, γν} = 2ηµν14. [η]νµ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 is the Minkowski metric.

These are the basic mathematical tools needed to work with fermionic fields. If we allow the
field to be written as ψ = u(p)e−ip·x or ψ = v(p)e+ip·x, then we can solve the Dirac equation
like[72]

us(p) =

[√
p · σ ξs√
p · σ̄ ξs

]
, vs(p) =

[ √
p · σ ηs

−
√
p · σ̄ ηs

]
;

σµ = (1, σi)

σ̄µ = (1,−σi)
, (4.13)

where σi ∈ C2×2 are the usual Pauli matrices and η, ξ ∈ C2 are spinors satisfying normalisation
η†,sηr = δr,s, ξ†,sξr = δr,s and therefore also

∑2
s=1 ξ

sξ†,s = 12. The r, s indices denote helicity
of the spinor. It turns out that unlike scalar fields, fermionic fields act a little differently under
Lorentz transformations and simply taking ψ†ψ does not produce an object, which is invariant
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under these transformations due to the nature of spinor representations. Instead, a Dirac conju-
gate (or adjoint) can be defined like ψ̄ = ψ†γ0 with the zeroth Dirac matrix and now the product
ψ̄ψ is indeed a Lorentz scalar. As a matter of fact, a few more Lorentz invariant objects can be
constructed in a similar way.[72] A very useful outer product of these spinors, which we will use
later on, is the following.

2∑
s=1

ūs(p)us(p) =
2∑
s=1

[√
p · σ ξ†, s

√
p · σ̄ ξ†, s

] [ 0 12

12 0

] [√
p · σ ξs√
p · σ̄ ξs

]
=

=

[
m12 p · σ
p · σ̄ m12

]
= /p+m14 Similarly,

2∑
s=1

vs(p)v̄s(p) = /p−m14 . (4.14)

We now know what condition the Dirac equation imposes on the spinor field so we can turn
back to the Klein-Gordon equation and its Fourier modes. This allows us to again write the
spinor field as a sum of plane waves and helicities. In this notation, we see how the current
(anti)particle creation and annihilation operators are associated with very specific spinors. It
should be noted that fermionic operators are anti-commuting, unlike bosonic ones.

ψ(x) =
∑
s

∫
d3p

(2π)3
√

2Ep

(
bsp u

s(p)e−ip·x + d†,sp vs(p)e+ip·x
)

(4.15)

5 Introduction to the Model and Motivation for It

In the last three decades very detailed and in-depth searches for Dark Matter have proven to
be in a sense futile. Even though new properties and relations of Dark Matter with the rest of
the Universe have been revealed and studied in detail, Dark Matter remains just as mysterious
nowadays as it was forty and more years ago, which may have been the cause of slight despair in
the field. Nevertheless, it is believed that the rise of multi-messenger astronomy and gravitational
wave astronomy could hold the key to tackling the Dark Matter problem in the near future.[74]

Even though collisionless Dark Matter has been the more popular topic in the past decades, there
is no concrete evidence for that, and we should still accept and consider the near-collisionless
scenario. Furthermore, Dark Matter has to have some interaction, in order to be produced in
the early Universe and it would be convenient if a similar interaction takes place today.[75]

In this thesis we want to study specifically the possible interactions of Dark Matter with
neutrinos. This is a sub-field of particular interest as Dark Matter has been hypothesised to be
a thermal relic of the early Universe, just like neutrinos. Also, both are thought to be present in
the cosmos with a relatively large density, thus making interactions between those two practically
mandatory should they be interacting in the first place. As mentioned above, in this thesis we
focus on the so-called Weakly Interacting Massive Particles as this is the most sensible way to
allow interactions of Dark Matter with neutrinos. Additionally, as also discussed above, new
generation of neutrino detectors are on the way and in general, neutrino astronomy has been
rapidly on the rise in the past decade. Therefore, if neutrinos do in fact interact with Dark
Matter, it is believed that detailed data collection and analysis of neutrino fluxes from different
sources could reveal crucial features about the nature of Dark Matter due to interaction beyond
the Standard Model. Even if a direct signature detection is not made, analysis of cosmological
neutrino behaviour can still be used to greatly cut through the parameter space of any theory
that includes Dark Matter-neutrino interactions, which can turn out to be a useful guidance
tool.[75] We will also see this discussed further with more concrete examples later on in the

17 Simplified Models for Dark Matter-Neutrino Interactions



5. Introduction to the Model and Motivation for It

Figure 5.1: A diagram depicting the most popular theories, proposed as solutions to the Dark
Matter problem. The region of this diagram in which this thesis focuses is circled in red. Original
image taken from Bertone, 2018 [74]

.

thesis. Another significant reason for the choice of neutrinos is that they have been linked to
beyond the Standard Model Physics, which Dark Matter has to fit in as well.[76] In other words,
the rest of the Standard Model particles are understood to a higher degree, which allows for a
more conclusive evidence on their lack of interaction with Dark Matter. Naturally, if one wants
to examine interactions between Dark Matter and neutrinos, an extension to the Standard Model
has to be made, which would accommodate them. This is precisely what the following chapter
treats.
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Chapter II

Construction and Main Analysis of a
Dark Matter Model

6 The Dirac Dark Matter Model

In order to examine the possibility where a neutrino can interact with Dark Matter, we need
to make use of a certain mathematics-based theory that will allow us to start from the most
basic descriptions of the particles and arrive at a measurable observable. In this case, the goal-
observable is a cross-section and the theory which we will use is Quantum Field Theory since
it allows us to examine relativistic Physics on the particle scale. The biggest distinction that
can be made between groups of particles in QFT is their intrinsic spin and how the particle is
represented based on that. We know that the spin of the neutrino is spin-1

2 as it is a lepton,[62]

but we do not know anything about the Dark Matter WIMP particle or the mediator particle
that mediates the interaction.

6.1 Components

We will now proceed to create a toy model, which will only take into account the three mentioned
particles only and exclude the rest of the Standard Model and non-SM particles and interactions
a. The choice that we make for the first particle in this model is to consider a fermionic spin-1

2
Dirac Dark Matter particle. This allows us to write down the Lagrangian (density) of the Dark
Matter as explained in Chapter I as

LDM = χ̄(x)
(
i/∂ −m

)
χ(x) , (6.1)

where m is the mass of the Dark Matter particle and

χ(t,x) =
∑
s

∫
d3p

(2π)3
√

2Ep

(
Bs

p U
s(p)e−ip·x +D†,sp V s(p)e+ip·x

)
χ̄(t,x) =

∑
s

∫
d3p

(2π)3
√

2Ep

(
B†,sp Ū s(p)e+ip·x +Ds

p V̄
s(p)e−ip·x

)
(6.2)

represent the Dark Matter field and its Dirac conjugate as a sum of plane waves. In this represen-
tation, the particle creation/annihilation operators are given by B and B† and the anti-particle

aOf course, the massive property of DM and the mediator signal for mixing with the Higgs boson, but it will
be ignored for the most part of the thesis.
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operators are D and D†. As previously covered, these can act on the vacuum state |0〉 to create or
annihilate a delocalised Dark Matter particle state with momentum p and spin s (up/down).[72]

B†,sp |0〉 = |p, s〉 Bp|0〉 = 0 D†,rp |0〉 = |p, r〉 Dp|0〉 = 0 (6.3)

U(p) and V (p) are the spinors corresponding to positive and negative frequency solutions of
the Dirac equation respectively. Now, the neutrino we will assume to be massless as it is in the
Standard Model and to be also a Dirac fermion (as opposed to Majorana fermion). We will also
stay away from neutrino flavours for simplicity even though the massless property of neutrinos
forbids mixing, which is in turn a slight simplification. Adding a flavour generally requires the
mediator to be flavoured as well, which does not necessarily change the general behaviour of the
model – it adds an additional complication at both direct and indirect detection.[77] Thus, we
can describe the neutrino very similarly to the Dark Matter particle by

Lneutrino = iν̄(x)/∂ ν(x);

ν(t,x) =
∑
s

∫
d3p

(2π)3
√

2Ep

(
bsp u

s(p)e−ip·x + d†,sp vs(p)e+ip·x
)
. (6.4)

and the respective Dirac conjugate can be constructed as in Eq. (6.2) but is not written explicitly.
We now need the final piece of the toy model – the mediator, which mediates the interaction.
We choose this mediator to be represented by a complex scalar field. As we did before for Dark
Matter and the neutrino, we now write the Lagrangian and the field

Lmediator = ∂µφ
0?∂µφ0 −M2φ0?φ0 . (6.5)

In this expression M is the mass of the mediator particle and the field is given by the following,
similarly to Eq. (4.2).

φ0(t,x) =

∫
d3p

(2π)3
√

2Ep

(
αp e

−ip·x + β†p e
+ip·x

)
. (6.6)

It should be noted that it this toy model we specifically choose a Dirac Dark Matter parti-
cle, a complex scalar mediator, and a massless neutrino. A finite combination of fields exists,
which will satisfy the Standard Model internal symmetries as we will see and this is only one of
them; arguably, it is a bit less mathematically challenging. The purpose of this model is not to
describe a complete theory of Dark Matter-neutrino interactions, but to examine the most basic
phenomenology and behaviour. In the ideal case, this analysis should provide a relatively strong
detection signature which, if detected, will hint at the fact that this model is going in the right
direction. Conversely, it could mean that this model is completely irrelevant and there is no
chance that Dark Matter can be actually described by a Dirac fermion. Many more possibilities
exist and can be explored, even though many of them will give similar behaviour of the model.[75]

6.2 Interaction Mechanism

Now that we have written down the separate components in a way that we can describe them
mathematically, it is time to consider the way in which they can interact so that we can see how
the different pieces fit together. We have to write an interaction Lagrangian, which includes all
three fields. In order for this Lagrangian to be valid, we need to make it abide by the fundamental
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internal gauge symmetry of the Standard Model: U(1)× SU(2)× SU(3). In particular, we are
interested in a exclusively weak interaction and the symmetry governing it will be U(1)×SU(2)L.
In the Standard Model, the neutrino transforms as a lepton doublet Lτ = (ν, l)L under SU(2)
transformations. Due to the charged lepton, this doublet brings a conserved charge under U(1)×
SU(2) transformations. Since we want the total charge in the Lagrangian to be zero to satisfy
this internal symmetry, we must promote either the Dark Matter field or the Mediator field to a
doublet. Promoting the Dark Matter to a doublet is possible and results in a lower bound on the
Dark Matter mass of a few GeV.[78, 79] What we choose is to promote the mediator to a doublet
for slightly simpler considerations by avoiding a two-particle Dark Matter model. This allows
us to write the mediator like φτ = (φ+, φ0), where now each doublet brings a weak hypercharge
and a weak isospin:

QνL = I3W +
YW
2

=
1

2
+

(−1)

2
= 0 ,

Q`L = I3W +
YW
2

= −1

2
+

(−1)

2
= −1 ,

Qφ+ = I3W +
YW
2

=
1

2
+

1

2
= 1 ,

Qφ0 = I3W +
YW
2

= −1

2
+

1

2
= 0 . (6.7)

Combined, the interaction Lagrangian is now safely invariant under the internal symmetries of
the standard model. This allows us to write it like

Lint. = −g χ̄PLLj(iσ2)jkφk + h.c. , (6.8)

where the j, k indices are contracted and σ2 =

[
0 −i
i 0

]
is the second Pauli matrix, which ensures

correct mixing of the doublets. Additionally, PL = 1
2(14 − γ5) is the left-handed projection

operatorb, which ensures the handedness of the neutrino is matched. Finally, g is the coupling
strength of the interaction. The Hermitian conjugate is added in the end to ensure L ∈ R.
Therefore, now we can write the complete Lagrangian of the toy model, which we constructed:

L = χ̄
(
i/∂ −m

)
χ+ iν̄ /∂ ν + ∂µφ

0?∂µφ0 −M2φ0?φ0︸ ︷︷ ︸
individual particle terms

+

−gχ̄PLνφ0 − gν̄PRχφ0†︸ ︷︷ ︸
neutrino interaction terms

+ gχ̄PL l φ
+ + g l̄ PRχφ

+ †︸ ︷︷ ︸
charged lepton int. terms

. (6.9)

As one can see, this model does not forbid the interaction of Dark Matter with charged leptons,
which is not observed in the Universe.[80] This is partially due to the fact that Dirac Dark
Matter-charged lepton interactions produce effective electromagnetic coupling.[81] Hence, this
interaction channel has to be suppressed in some way and many possibilities exist, both by
introducing additional neutrino mixing, but also by introducing neutrino masses.[75, 82] In any
case, this issue is not discussed in this thesis for dealing with it requires abandoning the simplicity
of the model. Additionally, we know that Dark Matter is a stable (or with a long lifetime)
particle and therefore between the mediator and the Dark Matter, the Dark Matter particle
should be lighter. This prevents spontaneous decay of Dark Matter into the mediator. With
these considerations, the model allows for a multitude of interactions involving neutrinos:

bγ5 = iγ0γ1γ2γ3γ4 is known as the fifth Dirac matrix and it has the anticommutation relation {γ5, γµ} = 0

21 Simplified Models for Dark Matter-Neutrino Interactions



7. Dark Matter Scattering with Massless Neutrino

(1) Dark Matter scatters with a neutrino

(2) Mediator scatters with a neutrino

(3) Dark Matter scatter with a mediator

(4) Dark Matter pair annihilates into neutrino pair

(5) Mediator pair annihilates into neutrino pair

(6) Mediator pair annihilates into Dark Matter pair

(7) Mediator decays into a neutrino and a Dark Matter particle

(8) Inelastic scattering of Dark Matter and mediator into SM particles

We can make the reasonable assumption that the mediator is unstable and does not exist in large
quantities in the Universe. Thus, many of the items in the list are not worth examining because
they are completely irrelevant – they would occur extremely rarely (if at all) in the cosmos and
are thus undetectable anyways. (1) and (4) are of particular interest because they could be
involved in significant processes in the present-day and early Universe. (5) could potentially
be useful as well for examining the co-annihilation channels for the decoupling of Dark Matter
in the early Universe in the scenario where the mediator and Dark Matter masses are similar
M ∼ m,[44] but will not be discussed here.

It is worth mentioning that the scalar mediator could interact with the Higgs boson via a
scalar coupling of the form Lscalar = λsH

†Hφ†φ. Here, H is the Higgs doublet and λs is the
coupling of the scalar interactions. In this thesis, we consider λs = 0 in order to reduce the
model parameter space. A study that partly comprise the effect of the Higgs interaction can be
found in Vogl, 2014 [60] and Garny et al, 2015 [77] .

7 Dark Matter Scattering with Massless Neutrino

In this section we will consider the scattering mechanism χν → χν. The goal is to obtain a
Lorentz invariant amplitude for the interaction and then use the Golden rule for scattering to
compute a differential cross-section, which is then to be integrated to a full cross-section of the
interaction. We consider the following components.

� an in-going neutrino with momentum p1;

� an in-going Dark Matter fermion with momentum k1;

� an out-going neutrino with momentum p2;

� an out-going Dark Matter fermion with momentum k2.

7.1 Feynman Diagram and Amplitude

Considering the momenta of the particles, the interaction Lagrangian in Eq. (6.9) and the
Feynman rules,[73] we can draw the Feynman diagram for the interaction. This is depicted in
Figure 7.1.
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φ0 propagator−−−−−−→ −i
q2−M2 ; q = p1 − k2

χ: U(k1)

ν: u(p1)

ν: ū(p2)

χ: Ū(k2)

−ig∗PR

−igPL

Figure 7.1: Feynman diagram of Dirac DM scattered with a neutrino via a scalar mediator.

Now, using the rules for ’unpacking’ a Feynman diagram, we can compute the amplitude of
the interaction and write it like

M = |g|2 ūa(p2)P abR U
b(k1)

i

q2 −M2
Ū c(k2)P cdL u

d(p1) , (7.1)

where a, b, c, d = 1, 2, 3, 4 are the spinorial indices. From now on these index contractions will
be implied by square brackets to simplify notation. We can then proceed to find the Hermitian
conjugate of the amplitude and noting that

(ū PR U)† = U †P †R(u†γ0)† = U †PRγ
0u = ŪPLu ,

we can write

M† = −i |g|2

q2 −M2
[ū(p1)PRU(k2)]

[
Ū(k1)PLu(p2)

]
. (7.2)

In the next step we will find the invariant amplitude and average it over all possible spin con-
figurations |M|2 =

∑
spinsM†M. This is necessary because we are not considering a specific

experimental environment with prepared states. Namely, in the Universe all possibilities could
exist and should therefore all be considered. The matrix amplitude squared then reads

|M|2 =
1

4

|g|4

(q2 −M2)2

∑
sν ,sχ

[ū(p1)PRU(k2)]
[
Ū(k1)PLu(p2)

]
[ū(p2)PRU(k1)]

[
Ū(k2)PLu(p1)

]
.

The sum over the outer products can be handled elegantly. It is very handy to now use the
relations for the outer products of the spinors, as demonstrated in Eq. (4.14). It should be noted
that in the next step, traces start appearing due to contraction of spin indices from different
inner products of spinors with helicity operators.
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|M|2 =
|g|4

64(q2 −M2)2
Tr
[
�p1(1 + γ5)(�k2 +m)(1− γ5)

]
Tr
[
(�k1 +m)(1− γ5)�p2(1 + γ5)

]
=

|g|4

64(q2 −M2)2

{
Tr [�p1(�k2 +m)] +

���
���

���
�:odd γs

Tr
[
�p1γ

5(�k2 +m)
]
+

−(((((
((((Tr

[
�p1(�k2 +m)γ5

]
− Tr

[
�p1γ

5(�k2 +m)γ5
]}

×
{
Tr [(�k1 +m)�p2]−(((((

((((Tr
[
(�k1 +m)γ5

�p2

]
+((((

(((
((

Tr
[
(�k1 +m)�p2γ

5
]
− Tr

[
(�k1 +m)γ5

�p2γ
5
]}

=
|g|4

64(q2 −M2)2
{2Tr [�p1�k2]} {2Tr [�k1�p2]} =

|g|4

((p1 − k2)2 −M2)2
(p1 · k2)(k1 · p2),

where all traces of a product of odd number of gamma matrices vanish.[73] So far, we only
considered neutrino scattering with Dark Matter. Now, we will add also Dark Matter scattering
with an anti-neutrino. Even though the amplitude is not the exact same, the computation of
the averaged invariant amplitude gives an identical result. Summing the two probabilities, we
obtain a final expression for the Feynman invariant amplitude

|M|2 =
2|g|4

((p1 − k2)2 −M2)2
(p1 · k2)(k1 · p2) . (7.3)

7.2 Elastic Scattering Cross-section

Now that we know the amplitude of the interaction, we can move on and find the cross-section
and analyse it. Conservation of energy implies Ep1 +Ek1 = Ep2 +Ek2. This can be summarised
to conservation of 4-momentum. Additionally, here we consider a massless neutrino (or simply
UR pν � mν), so then Epi = |pi|. We proceed to consider the most general possible frame in
which the interaction takes place. Without loss of generality, we can align the z-axis with the
axis of movement of the incident DM particle (k1 = |k1|ẑ). Therefore,

kµ1 = Ek1(1, 0, 0, β)

pµ1 = Ep1(1, sin θ cosφ, sin θ sinφ, cos θ)

pµ2 = Ep2(1, sin θ′ cosφ′, sin θ′ sinφ′, cos θ′)

kµ2 = kµ1 + pµ1 − p
µ
2 , (7.4)

where the angles θ and φ are standard angles in spherical coordinates denoting the relative
incidence of the incoming neutrino ν(p1) with respect to the incoming Dark Matter particle
χ(k1). Similarly, θ′ and φ′ are angles at which the outgoing neutrino ν(p2) is scattered. Finally,
β = |k1|

Ek1
. And so, the scalar product in Eq. (7.3) can be simplified as follows

k1 · p2 = Ek1Ep2(1− β cos θ′)

p1 · k2 = p1 · k1 + p2
1 − p1 · p2 =

= Ep1Ek1(1− β cos θ)− Ep1Ep2(1− sin θ sin θ′ (cosφ cosφ′ + sinφ sinφ′)︸ ︷︷ ︸
cos(φ−φ′)

− cos θ cos θ′

︸ ︷︷ ︸
∆

).
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We use the notation from Ref.[75] and define µ = cos θ and from there we can also define
the angle-dependent variable ∆ = µµ′ +

√
1− µ2

√
1− µ′2 cos(φ − φ′). If we now consider the

Mandelstam variables

s = (k1 + p1)2 = E2
k1 + E2

p1 + 2Ek1Ep1 − E2
p1 sin2 θ − E2

p1 cos2 θ − E2
k1β

2 − 2Ep1Ek1β cos θ

= E2
k1(1− β2)︸ ︷︷ ︸

m2

+2Ep1Ek1(1− βµ)

and similarly for the other two variables (7.5)

u = (p1 − k2)2 = (p2 − k1)2 = m2 − 2Ek1Ep2(1− βµ′)
t = (p1 − p2)2 = −2Ep1Ep2(1−∆), (7.6)

an easy substitution can be made for a transition towards Mandelstam variables.

k1 · p2 =
m2 − u

2
and p1 · k2 =

s+ t−m2

2

=⇒ |M|2 =
|g|4

2(u−M2)2
(s+ t−m2)(m2 − u)

If we now eliminate one of these variables by using the standard property of Mandelstam variables
s+ t+ u = Σim

2
i = 2m2, we get

|M(u)|2 =
|g|4

2

(
u−m2

u−M2

)2

. (7.7)

Obtaining a differential cross-section expression

In the most general form, as derived in Eq.(4.11), the Golden rule for a scattering cross-section
of this interaction can be written as

dσsc. = |M|2 δ4(p1 + k1 − p2 − k2) d3p2d
3k2

64π2Ep2Ek2

√
(p1 · k1)2 −m2m2

ν︸ ︷︷ ︸
ξ

. (7.8)

Written in this way, it can be easily seen that ξ = (p1 · k1) = s−m2

2 , but also, it can be written
as ξ = |p1|Et, where Et = Ep1 + Ek1 = Ep2 + Ek2 is the total energy and is kept constant.
We will now switch to a centre-of-momentum frame to simplify calculation. This, of course,
would limit our result, but as we will see in the final expression, we will have only Lorentz
invariant variables, which would suggest that the differential cross-section is frame-independent
as it should be. Integrating over k2 is trivial as if we write p2 = −k2 and make Ek2 independent
of k2, we are left with integration of a 3-dimensional delta function, which gives simply identity:

dσsc. = |M|2 δ(Ep1 + Ek1 − Ep2 − Ek2) d3p2

64π2 .Ep2Ek2 ξ

If we take a look at the infinitesimal volume d3p2 in momentum space, we can rewrite it in terms
of the absolute momentum and an infinitesimal solid angle dΩ such that d3p2 = |p2|2 d|p2|dΩ.
Before integrating over |p2|, we must first look at the delta function as it is dependent on our
variable of interest:

δ[f(|p2|)] = δ[Et − |p2| −
√
|p2|2 +m2] =

δ[|p2| − |p0
2|]

|f ′(|p2|)||p2|=|p0
2|

= −Ek2 δ[|p2| − |p0
2|]

(|p2|+ Ek2)︸ ︷︷ ︸
Et

,
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where |p0
2| is the actual momentum of the outgoing neutrino and we can put it back to |p2| = Ep2

for simplicity. Hence,

dσsc. = −|M|2 Ep2 dΩ

64π2Et ξ
.

It would be intuitive to define the solid angle in terms of the already defined (in the incoming DM
frame) angles such that dΩ = sin θ′ dθ′dφ′, but that complicates the derivation so we will express
it in terms of the angle α between p1 and p2 and their azimuth β so that dΩ = sinαdα dβ. If
we take a look at the Mandelstam variable t, we can perform a substitution:

t = (p1 − p2)2 = 2|p1||p2|(cosα− 1) =⇒ dt = −2|p1||p2| sinαdα

=⇒ dσsc. = |M|2 dt

64π|p1|Et ξ
dβ

2π
= |M|2 dt

64πξ2
,

assuming that the differential cross-section is independent of the azimuth. We can now perform
one last substitution t −→ u and express ξ in terms of s. The desired result follows and is indeed
Lorentz invariant

dσsc.
du

=
−|M(u)|2

16π(s−m2)2
. (7.9)

It agrees with Eq. (B5) of Del Campo, 2017 .[75] For simplicity of computation, we further use
the change of variables

w = 1− u

m2
, dw = − du

m2
; y =

s−m2

m2
=

2Ep1Ek1

m2
(1− β cos θ) , (7.10)

and then express the differential cross-section as

dσsc.
du

= − |M(u)|2

16π(s−m2)2
⇒ dσsc.

dw
=

g4

32π

m2

y2

w2

(m2 −m2w −M2)2
. (7.11)

We are now fully set up to obtain the full cross-section by integrating over the newly defined w.
However, this task is not as easy as it might seem because the integration boundaries have to be
selected very carefully.

Integration boundaries

In order to obtain a cross-section, we must integrate over all possible outcomes in the parameter
space. Since the Feynman invariant amplitude is expressed in terms of the invariant u, it suffices
to integrate (7.11) over all possible values of w, which are determined by the physically allowed
values of the Mandelstam variables for the given configuration.

Locality condition

Due to locality of a momentum-product vector, in general, it is required that,[83][84]

stu ≥ as+ bt+ cu, (7.12)

where a, b, c ∈ R are constants, that depend solely on the mass of the scattered particles. For
the specific masses of this problem, we have that a = c = 0 and b = m4. Hence,

t(su−m4) ≥ 0

=⇒ I: t ≥ 0 and su ≥ 0 OR II: t ≤ 0 and su ≤ m4 .
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Figure 7.2: Mandelstam plane for Dirac DM and massless neutrino: Variables grow positive
towards the centre of the triangle. Only the region shaded in yellow is physically admissible.
Light-red region denotes {u < m2} ∩ {s > m2}.

4-vector condition

In general for any 4-momentum vectors pa and pb it holds that papb ≥ mamb but also (pa+pb)
2 ≥

(ma +mb)
2 and (pa − pb)2 ≤ (ma −mb)

2. In our u-channel, this translates to

t ≤ 0; s ≥ m2; u ≤ m2 .

These can also be deduced from eq. (7.5). Therefore, case II of the locality condition holds and
su ≤ m4. We can now start cutting into the Mandelstam plane (Fig. 7.2).

Final boundaries
t ≤ 0 requires that we stay down from the t = 0 line. In terms of the newly defined variable w,
this translates to

t ≤ 0 ⇐⇒ u+ s ≥ 2m2 ⇐⇒ m2(y + 1 + 1− w) ≥ 2m2 =⇒ w ≤ y .

u ≤ m2 and s ≥ m2 require that we stay in the light-red region of Figure 7.2, right of the
two dashed red lines. The final condition is that su ≤ m4. su = m4 defines a hyperbola in the
Mandelstam plane and the condition requires us to stay above it. Combined with t ≤ 0, it turns
out that these two conditions are stronger than u ≤ m2 and s ≥ m2, and define the ’allowed’
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yellow region in Figure 7.2. c In terms of w, this translates to

su ≤ m4 ⇐⇒ (y + 1)(1− w) ≤ 1 ⇐⇒ w(y + 1) ≥ y .

This allows for two different situations – positive or negative (y + 1). However, we have already
cut the Mandelstam plane in a way that excludes the region where y < −1 (corresponding to

s < 0). Therefore, we should only consider the case where y > −1 and so w ≥ y

y + 1
. Finally,

we reach the complete boundaries of integration: y
y+1 ≤ w ≤ y. Following this independent

derivation, the result agrees with the boundaries given in Del Campo, 2017 .[75]

Integration

Integration with the specified boundaries
∫ y

y
y+1

dσsc.
dw dw gives

σsc. =
|g|4

32πm4y2

{
m2y2

y + 1
− (m2 −M2)2

M2 +m2(y − 1)
− (y + 1)(m2 −M2)2

m2 −M2(y + 1)
+

+ 2(m2 −M2) ln

[
1 +

m2y2

M2(y + 1)−m2

]}
. (7.13)

Unit conversion

The computation so far has been done in the standard for QFT notation where ~ = c = 1.
However, now we want to measure the cross-section in SI units of cm2 and to input masses and
energies in units of eV. Therefore, the cross-section should be written as

σsc.[cm2] = 104 ~2c2

e2
× σsc.

[
1

kg2

]
,

where ~, c, and e are Planck’s constant, the speed of light in vacuum, and the elementary charge
respectively. This is done by simple dimensional analysis.

Limiting cases and asymptotic behaviour

Since the weakly interacting massive DM particle (WIMP) belongs to a category of DM models
known as cold DM, we can assume low velocities on average and hence also low 3-momentum.
This effect is especially true when the DM is compared to the ultra-relativistic neutrino. Hence,
it should be mostly the energy of the incoming neutrino that is varied as neutrinos of a wide
range of energies can be found in the cosmos. The point of comparison is the DM mass so that
in the low/high Ep1 limit we have Ep1 � m and Ep1 � m respectively. In the input parameter y
of equation (7.13), this translates to y � 1 and y � 1. In order to obtain simplified expressions
in those two limiting cases, we can take power series expansion in y or 1

y .

� Low-Ep1 limit: σsc. ≈ g4m2y2

32π(m2−M2)2
+ g4m2M2y2

16π(m2−M2)3
+O(y4)

� High-Ep1 limit: σsc. ≈ g4

32πm2y
+O( 1

y2
)

cWriting down the intersections of u = m2 and su = m4 gives only one solution (s = u = m2). Thus, the red
dashed line does not intersect the purple line ∀t < 0 and the yellow region remains uncut further.
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As for the asymptotic or ill-defined behaviour, one can see that there are 4 possible causes –
one for each term in eq. (7.13). The first three have to do with values where the denominator
goes to zero and the term explodes and the fourth has to do with the undefined region of the
logarithm. We can eliminate most of them by considering only the region of the parameter space
where y > 0 (by definition) and M > m (by stability of DM).

The first term in Eq. (7.13) is m2y2

y+1 and one can easily see that for positive y it has no
asymptotes.

The second term is (m2−M2)2

M2+m2(y−1)
. The term blows up when

m2(y − 1) +M2 = 0 =⇒ y = 1− M2

m2
. But we have y > 0 so for

this asymptote to be accessible, we must have 1− M2

m2
> 0 ⇐⇒ M2 < m2.

This is not allowed with the current restriction on the parameter space. Therefore, the asymptote
is inaccessible.

The third term is (y+1)(m2−M2)2

m2−M2(y+1)
and similarly to the second term, it blows up when

m2 −M2(y + 1) = 0 =⇒ y =
m2

M2
− 1. Again, y > 0 so for

the asymptote to be accessible, we must have
m2

M2
− 1 > 0 ⇐⇒ M2 < m2.

For the same reason as the second term, the third term is also inaccessible.
The log term is 2(m2−M2) ln

(
1 + m2y2

M2(y+1)−m2

)
. It cannot blow up to infinity for the same

reasons as the third term since the argument in the log has the same denominator. However,
one should also examine the region of the parameter space where the logarithm is undefined i.e.
argument lies on the real non-positive axis. Hence, the logarithm is undefined when

A(M,m, y)

B(M,m, y)
=
M2 +M2y −m2 +m2y2

M2(y + 1)−m2
< 0 =⇒

∣∣∣∣∣A > 0

B < 0
or

∣∣∣∣∣A < 0

B > 0

By looking at the mathematics for the third term, where B(M,m, y) is also found, one can
conclude that for y > 0 and M > m, B(M,m, y) > 0. Therefore, the logarithm is undefined
when

A(M,m, y) = M2 +M2y −m2 +m2y2

= m2

y +
M2 + |M2 − 2m2|

2m2︸ ︷︷ ︸
>0∀M,m,y>0


y +

M2 − |M2 − 2m2|
2m2︸ ︷︷ ︸

must be negative

 < 0 (7.14)

Since the second term has to be negative for the inequality to hold, it introduces an upper
boundary for the region in y where the logarithm is undefined (y < −M2+|M2−2m2|

2m2 ). Now the
question is whether this upper boundary lies before or after the zero in y. Hence, we must
examine |M2 − 2m2| ≶ M2. It turns out that for positive m and M and for M > m, it holds
that |M2 − 2m2| < M2 and so region where the logarithm is undefined lies completely in y < 0.
Therefore, for y > 0 and M > m, the logarithm is defined everywhere.
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φ0 propagator−−−−−−→ −i
q2−m2 ; q = k1 − p1

χ: U(k2)

χ̄: V̄ (k1)

ν: ū(p2)

ν̄: v(p1)

−ig∗PR

−igPL

Figure 8.1: Feynman diagram of Dirac DM annihilated into a neutrino and anti-neutrino via a
scalar mediator

An interesting limit to consider is the limit where the log term vanishes naturally from
equation (7.13). This happens when its argument is identity (i.e. m2y2

M2(1+y)−m2 ≈ 0) and could
simplify the expression and its computation greatly. This limit is reached either when y � 1 or
when m�M .

8 Dark Matter Annihilation to Neutrinos

If we consider the full elastic scattering cross-section as in Eq. (7.13), we notice that despite
being well-defined and well-behaving, it is an intimidating function with quite a few inde-
pendent parameters. After making a smart approximation, which revolves around the idea
that Dark Matter is cold-ish, we can reduce the system’s parameter space. It comes from
y =

2Ep1Ek1
m2 (1 − β cos θ) ≈ 2Ep1

m , which eliminates the θ-dependence and the dependence on
Dark Matter momentum. This is equivalent to saying that the Dark Matter particle is station-
ary at interaction, which would not be far from the truth, considering the ultra-relativistic nature
of the neutrino. In this section and the following chapter, we aim to reduce the parameters to
3 by imposing an additional condition – the correct abundance of Dark Matter in the Universe.
Here, we begin by examining in detail the Dark Matter self-annihilation, which governs the de-
coupling in the early Universe, which in turn governs the abundance as discussed in Chapter
I.

8.1 Feynman Diagram and Amplitude

By the same interaction Lagrangian (6.9), one can also consider an interaction χχ̄ → νν̄ where
DM annihilates into neutrinos. The Feynman diagram of this interaction is presented in Figure
8.1.
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Variable Definition Full expression Approx. in v up to O(v4)

s (k1 + k2)2 4E2
k 4m2 + 4m2v2

t (k1 − p1)2 2Ek|k1| cos θ − E2
k − |k1|2 −m2 + 2m2 cos θv − 2m2v2 + 2m2 cos θv3

u (k1 − p2)2 −2Ek|k1| cos θ − E2
k − |k1|2 −m2 − 2m2 cos θv − 2m2v2 − 2m2 cos θv3

Table 8.1: Mandelstam variables for DM annihilation into neutrinos. Approximation is made by
expanding in power series around v = 0.

Therefore, the Feynman invariant amplitude can be written like

M = i [ū(p2)PR U(k2)]
g2

q2 −M2

[
V̄ (k1)PL v(p1)

]
M† = −i [v̄(p1)PR V (k1)]

g2

q2 −M2

[
Ū(k2)PL u(p2)

]
, (8.1)

and therefore, summing over final spin configurations and averaging over initial spins gives

|M|2 =
1

4

∑
sν , sχ

M†M

=
|g|4

64(q2 −M2)2
Tr
[
�p1(1 + γ5)(�k1 −m)(1− γ5)

]
Tr
[
(�k2 +m)(1− γ5)�p2(1 + γ5)

]
=

g4

((k1 − p1)2 −M2)2
(k2 · p2) (p1 · k1), (8.2)

similarly to the calculation for scattering presented in the previous question. From now on the
calculations will be made in the centre-of-momentum frame s.t. k1 = −k2 and p1 = −p2 and
all energies of the particles are equal. This makes most sense so that one can easily obtain an
expression for the relative velocity of the incoming DM particles. If the DM particles initially
travel on the z-axis, then the polar angle θ can be the angle at which the anti-neutrino is emitted.
The Mandelstam variables in this frame can be found in Table 8.1.

We can now rewrite the amplitude by substituting the 4-vector invariant products with
Mandelstam variables:

(p1 · k1) = (p2 · k2) = E2
k − Ek|k1| cos θ =

m2 − t
2

=⇒ |M|2 =
g4

4

(
t−m2

t−M2

)2

(8.3)

8.2 Annihilation Cross-section

Again, we start from a general expression for a reaction of the kind 1 + 2 −→ 3 + 4:

dσA = |M|2 δ
4(k1 + k2 − p1 − p2) d3p1d

3p2

64π2Ep1Ep2
√

(k1 · k2)2 −m4︸ ︷︷ ︸
2Ek|k1|

(8.4)

Similarly to what is done above, we proceed to integrate over d3p1 without problems, then obtain
a factor of 1

2 when reworking the delta function to integrate over d|p2|. Keeping in mind that
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all energies are equal gives the differential cross-section:

dσA = |M|2 |p1|2

64πEp1Ep2Ek|k1|
dΩ

4π
= |M|2 1

64πEk|k1|
dΩ

4π
= |M|2 1

16πs

Ek
|k1|

dΩ

4π

We can now write d |k1|
Ek

= v = vr
2 , where vr is the relative velocity between the DM particles.

This gives a general frame-independent expression:

dσA vr = |M|2 1

16πs

dΩ

4π
(8.5)

We can then move on to rewriting the last line in terms of v and then proceed to expand
in the non-relativistic limit v � 1. Doing so (intermediate expression in appendix) and then
integrating the expression over the solid angle gives

dσA vr = g4

(
−2m2(1 + v2) + 2m2v(1 + v2) cos θ

)2
256πm2(1 + v2) (−(m2 +M2)− 2m2v2 − 2m2v(1 + v2) cos θ)2

sin θ dθ dφ

4π

=⇒ σA vr = g4 m2

64π(m2 +M2)2︸ ︷︷ ︸
a ∈ R++

+ g4 −m6 − 3m4M2 +m2M4

48π(m2 +M2)4︸ ︷︷ ︸
b ∈ R

v2 +

+ g4 49m10 + 140m8M2 + 186m6M4 − 140m4M6 + 5m2M8

960π(m2 +M2)6︸ ︷︷ ︸
d ∈ R++

v4 +O(v6) (8.6)

Taking the thermal average for σA vr at the time of the freeze-out gives 〈σA vr〉 = a + 9
4bv

2 +
135
32 dv

4, which is now to be compared to the value that gives the correct thermal relic abun-
dance. That is 〈σA vr〉 ≈ 3 × 10−26 cm3

s , 〈σA vr〉 ≈ 6 × 10−26 cm3

s , or 〈σA vr〉 ≈ 9 × 10−26 cm3

s for
a constant, v2 -dependent, and v4-dependent σA vr respectively.[85] With this, the mathematical
development of the model ends. We have now arrived at a place where we have an approxi-
mate mathematical expression of a measured observable. The exact substitution and further
development are left for the following chapter.

9 Co-annihilation Channels

The model, as governed by the Lagrangian in Eq. (6.9), introduces two new ’dark’ particles – a
mediator and a Dark Matter particle. As discussed already, the Dark Matter particle has to be
(nearly) stable and this is why by imposing the condition M > m: we forbid Dark Matter decay
being the lightest particle of the new physics content. On the contrary, the mediator can decay,
and the decay channel is φ→ χν. In the limit of M � m, the mediator decouples from the ther-
mal bath a lot earlier than Dark Matter. Even if there was some significant number density of
the mediator, after decoupling it quickly decayed into Dark Matter, thus injecting more particles
in the Dark Matter population (assumed to be in thermal and kinetic equilibrium). In this way,
the mediator abundance is negligible at Dark Matter decoupling and it plays no significant role.
However, in the limit ofM ∼ m, the two particles decouple almost simultaneously. Even though,
again, after decoupling the mediator would decay to Dark Matter, the presence of another dark

dExpanding in m and v gives |k1|
Ek

= mv√
1−v2

1√
m2v2

1−v2 +m2
= v
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Figure 9.1: Feynman diagrams of two interactions, which could take place at Dark Matter
decoupling and must be considered in the mass degenerate limit. On the left, a mediator pair
annihilates into neutrinos. On the right, Dark Matter and a mediator co-annihilate into Standard
Model particles

particle with large energy density at decoupling requires the consideration of additional annihi-
lation and co-annihilation channels.[86] These can be quite complicated to compute and account
for many more interactions that must be considered. Two of these interactions are represented
in Figure 9.1, which showcases the most basic (co-)annihilation interactionse. These two and
any additional interactions come with their own definitive properties and interaction strengths,
thus providing new annihilation cross-sections, which must be accounted for. Mathematically
and more in general, the effective annihilation cross-section can be written like

σeffv =
∑
i, j

ninj
(Σknk)2

σijv , (9.1)

where the number densities n are taken at equilibrium and the summation is over all relevant
(co-)annihilation interactions that participate in the freeze-out.[60] The relative particle velocity
v can be considered to be the same for all interactions as the Dark Matter and the mediator
are very similar in mass and in kinetic equilibrium at decoupling. As the number densities of
non-relativistic objects in equilibrium with a thermal bath are related to the masses, and the
temperature at decoupling by a Boltzmann distribution like ni ∝ (miT )3/2 exp (−mi/T ), in the
mass-degenerate limit, one can expand Eq. (9.1) so that the effective cross-section is of the form

σeffv = σAv + σχφv e
−M−m

T + σφφv e
−2M−m

T , (9.2)

where σAv is the already computed Dark Matter self-annihilation cross-section as in Eq. (8.6).
The following two terms correspond to co-annihilation and mediator self-annihilation cross-
sections respectively. The latter two are strongly suppressed in the non-degenerate-in-mass limit
M−m� T by exponential factors but become relevant and thermally accessible onceM−m . T .
As will be discussed more in Section 11.2, there is a rough lower limit on the temperature of
decoupling of Dark Matter of around T & O(MeV), and therefore, the co-annihilations should
be considered only for dark particle mass differences on and below the MeV scale.

This subtopic, however, is not studied in detail in this thesis and the following discussion is
only meant to demonstrate superficially how the problem could be approached. The Dark Matter
annihilation cross-section as in Eq. (8.6) can be expressed for simplicity as σAv = g4

m2Cχχ, where

eIt should be noted that mediator annihilations into Dark Matter are irrelevant as they do not change the
total number density of dark particles.
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Cχχ is a dimensionless constant, which depends solely on mass and temperature ratios. Even
though the full computation for co-annihilation and mediator annihilation are not performed, one
can expect that they can be written in a similar form. If f is a parameter representing the coupling
strength to weak gauge bosons, then any co-annihilation will have one vertex corresponding to
DM-neutrino coupling and one corresponding to gauge coupling (See right side of Fig. 9.1).
Therefore, the co-annihilation cross-section can be written like σχφv = g2f2

m2 Cχφ and the C
constant now also accommodates the exponential factors. In parallel to Vogl, 2014 ,[60] which
treats DM-quark coupling, for mediator annihilation one can expect a single diagram with two
DM-neutrino coupling vertices and plenty of diagrams with two gauge coupling vertices. Thus,
the dominant term in the mediator annihilation cross-section will be a f4 term and the cross-
section could be written like σφφv ≈ f4

m2Cφφ. Therefore, for the energy density of Dark Matter
in the Universe, we can write

ΩDM h2 ∼ 1

〈σeffv〉
≈ m2

g4〈Cχχ〉+ g2f2〈Cχφ〉+ f4〈Cφφ〉
(9.3)

In the mass degenerate limit, this effective cross-section can be used to carefully compute the relic
density with the input parameters, namely masses and couplings. This is done in the following
chapter, but only in the non-degenerate limit, that amounts to neglect both 〈Cφφ〉 and 〈Cχφ〉.
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Chapter III

Observational Evidence and Discussion

In the previous chapter we derived and studied the observables of the model by purely mathe-
matical methods. However, up to here the constructed model is nothing more than an imaginary
toy, which is completely detached from reality. In this chapter, we will bring the model to the
real world and see how it can fit in the Universe. To do so, we will take a look at different
cosmological observations and see how exactly we need to further shape the model and adjust
it so that it is allowed to exist without contradicting any already present evidence. This will
greatly restrict the parameter space of the model, which can either completely rule out the model
or confine the parameters to given ranges, in which they can be more carefully searched.

10 Obtaining a Correct Dark Matter Abundance

As discussed before, it is a good approximation to say that the Dark Matter particle is non-
relativistic both at decoupling and in the present day, even though the small energy dissipation
from the self-interactions introduced here translate to Dark Matter being ’hotter’ at decoupling
than in the present day. This allows us to write

106 ~2c3

e2
g4 m2

64π(m2 +M2)2
≈ 〈σA vr〉 ≈ 3× 10−26 cm3

s
, (10.1)

where we performed dimensional analysis to bring the expression to the correct units. We
proceed to solve the equation for M . There are 4 different solutions, but only one satisfies the
requirements for the mediator masses M,m ∈ R++. This is namely

M(g,m) =
√
g2 ζ m−m2 , ζ ≈ 1.338× 1012eV. (10.2)

Applying this condition makes a significant cut in the parameter space of the model. This is
depicted in Fig. 10.1. An important consequence of M > m and Eq. (10.2) is that a rough
upper boundary for the Dark Matter mass is introduced, which is dependent on the coupling
strength of the model

0 < m . g2 × 7× 1011eV . (10.3)

With this in mind, we can now revisit the elastic scattering cross-section, substitute the
necessary relation between the two masses, which we just found, and reduce the parameters in
the expression to 3. Hence, σsc. = σsc.(g,Eν ,m), where Eν is the energy of the incoming neutrino,
formerly indicated with Ep1. We will not give the full expression as it does not provide any new
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Figure 10.1: The mass-plane of the model with Dark Matter mass on x and mediator mass on
y. The model has to stay above the black line and strictly on the blue lines. They describe the
condition on the masses, which gives the correct abundance of Dark Matter, for different values
of the coupling strength.

insight and is too lengthy. Instead, we go directly to plotting it (Fig. 10.2). As expected, the
elastic scattering cross-section decreases approximately linearly with Dark Matter mass, which
is to be expected for a relevant (third order in fields) interaction term. There are a few further
features of the model, which are worthy of discussion, but we will wait to see in what other way
we can constrain the model before discussing them.
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(a) (b)

(c)

Figure 10.2: (a), (b) The elastic scattering cross-section is plotted against the mass of the Dark
Matter particle for a fixed coupling strength (g = 1). As we can see, the different lines represent
different incoming neutrino energies and while plot (a) focuses on the lower-end, plot (b) focuses
on the higher energies. (c) Again, the elastic scattering cross-section is depicted, but this time
the neutrino energy is held constant at Eν = 108eV and the coupling strength is varied.
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11 Further Observational Constraints

The two relevant interactions of Dark Matter with neutrinos of the model, described by Eq. (6.9),
have been analysed mathematically and ’paired’ together. It is now time to look a bit more in
detail into the behaviour of the cross-sections and their dependence on the input parameters.
Furthermore, observational data has to be examined and implemented in order to confine the
model to the real world. The goal of this section is to:

(1) Constrain the model and its parameters to specific ranges. This is useful for testing the
theory since it is much easier to examine a specific range as opposed to a full spectrum.
Additionally, this provides a more specific energy scale on which the model is valid.

(2) Find detection signatures. This term points to very specific features of the model, which
could potentially lead to very sharp and noticeable behaviour in the case that outgoing
neutrinos from the aforementioned interactions are detected. This would be a sign that the
model is on the right track. Conversely, it is possible to find detection signatures, which
would specifically signal that the model is fundamentally wrong and not a good description
of reality.

11.1 From Large Scale Structures

In the present day, interactions of neutrinos with other Standard Model (visible) particles and
matter are somewhat well understood. These interactions have certain impacts on how the Uni-
verse is shaped (e.g. the scales on which neutrinos or other matter clusters). If we now consider
a reality in which Dark Matter interacts with neutrinos, we can expect fundamental changes in
the CMB and the structure formation of the Universe.[87–89] One one hand, introducing a non-
collisionless Dark Matter (because it can interact weakly with itself) will result in suppression of
the oscillation of the matter power spectrum of the CMB.[90] Data from the 2015 Planck satellite
(Fig. 2.3a) survey was analysed and resulted in a relatively weak upper bound on the strength
of the elastic scattering interaction.[91] Namely, the elastic scattering cross-section cannot be
greater than σsc. < 6× 10−40 ( meV) cm2. On the other hand, neutrinos have a certain average fre-
quency of interaction with visible matter, which translates to a certain mean free path. Allowing
neutrinos to also interact with Dark Matter, which is highly abundant, will result in changes of
the mean free path, which in turn will reduce the scale on which neutrinos tend to cluster around
matter in the Universe. A stronger bound than the one mentioned earlier comes from analysis of
the same Planck data, but this time paired with observations of Large Scale Structures from the
Lyman-α forest (a series of absorption lines in the spectrum of a galaxy or any large observable
structure).[92] This analysis[93] gives an upper boundary for the elastic scattering cross-section of
σsc. < 10−42 ( meV) cm2 and this is the strongest boundary on the interaction strength as of today.
It is possible that in the future even stricter constraints can be made based on observational data.
It is important to note that in our model we assume that the elastic scattering cross-section is
independent of temperature. This boundary is plotted in orange in Fig. 11.1.

11.2 From Neutrino Re-heating

We consider Weakly Interacting Massive Particles, which are thought to decouple from the early
Universe at a time before the Big Bang Nucelosynthesis (BBN).[6] The BBN is thought to occur
the latest at a temperature of T & 4MeV.[94] At the same time, neutrinos decouple from electrons
at a T1 ∼ 2.3MeV.[95] Lastly, as discussed in Chapter I, the CMB is emitted at a much later time
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Figure 11.1: The elastic scattering cross-section is plotted against mass of the Dark Matter
particle, identically to Fig. 10.2a. In addition, the orange line and shaded region represent the
boundary due to LSS formation constraints and the forbidden region respectively. The red line
and shaded region do the same for the boundaries derived from neutrino reheating bounds.

at temperature T2 ∼ 1eV.[31] At temperatures T2 < T < T1 it is possible to have Dark Matter
annihilating into neutrinos. This could change the neutrino energy density in the early Universe,
which would have significant impacts on the emission of the CMB and its power spectrum.[75]

Since the mass of the Dark Matter determines the time at which it decouples, analysis of the
Planck data of the CMB power spectrum can impose a lower boundary on the mass of the
Dark Matter particle of a few MeVs.[96, 97] This constraint complements well the one from LSS
formation.

All of the boundaries discussed so far are depicted in Fig. 11.1. This restricts the model to
only live in the small trapezoidal region on the bottom right of the figure. We now have a much
better-defined range for the Dark Matter mass

O(1MeV) . m . g2 × 7× 1011eV . (11.1)

In order to see how these constraints impact the model specifically and what they require for the
parameters, we have to do a little more analysis.

12 Restrictions on the Parameter Space

In order to consider this model as plausible we have to show that it satisfies fully the constraints,
which were imposed in the previous section. This means that for all configurations of sensibly
selected parameters, the model must remain within the boundaries. The most obvious constraints
that can be presented are the mass constraints, which have been partially discussed already. As
can be seen from Eq. (10.2), the boundaries of both masses are dependent on the coupling
strength g. We will now try to translate the mass boundaries to rough g-boundaries and ideally
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Figure 11.2: Elastic scattering cross-section is plotted against Dark Matter mass for different
coupling parameters g. The neutrino energies are taken to give maximal cross-sections at the
specified coupling parameters, thus being most likely to contradict observations (See Fig. 12.1).
The figure is zoomed on the allowed region and the observational constraints are shown in the
same way as in Fig. 11.1. As can be seen, the cross-section for g = 1 currently is in contradiction
with observations form . 1GeV Note: The abrupt ends of the graphs depict the upper boundary
of the Dark Matter mass, which varies with the coupling strength as in (11.1).

arrive at a well-defined region in the parameter space where the model can exist. It should be
pointed out that the fundamental parameters of the model are the Dark Matter and mediator
mass m and M respectively, and the coupling strength parameter g. The possibility for an
elastic scattering or an annihilation interaction could also be governed by energies, momenta,
and other interaction parameters and so the exact elastic scattering cross-section may vary from
one interaction to another. Therefore, we must find a region in the m-M -g parameter space
where the elastic scattering cross-section satisfies the discussed observational constraints for all
physically achievable interaction parameters. Luckily, after approximations, the only interaction
parameter for which we have to worry is the neutrino energy Eν .

This means that for all neutrino energies found in the cosmos, the elastic scattering cross-
section must not exceed a given value, which is imposed by Large Scale Structure Formation, as
explained in the previous section. As can be deduced from Figures 10.2a and 10.2b, there exists
a maximum for the cross-section with respect to the neutrino energy. For g = 1, this maximum
occurs at an energy of about Eν ∼ 1 TeV, which is also roughly the upper boundary for the
Dark Matter mass. This can be considered to be a fairly ’usual’ and accessible energy for a
neutrino, especially in the present-day Universe. Analysis of the cross-section as in Eq. (7.13) in
the region of interest does not reveal any additional critical points and so we can assume that as
the global maximum (See Fig. 12.1). It turns out that for different coupling parameter values,
the maximum cross-section occurs at different neutrino energies, which are depicted in Figure
12.1.
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Figure 12.1: Elastic scattering cross-section plotted against
incoming neutrino energy. The Dark Matter mass is fixed
and the coupling strength parameter g is varied to demon-
strate varying maxima.

This result is extremely impor-
tant because it can be used to
constrain the model further. At
given values of g, there are specific
energies for which the scattering
cross-section is maximal for all rel-
evant Dark Matter masses. There-
fore, also the model is most likely
to be in contradiction with the
constraint from Large Scale Struc-
tures, which produces an upper
boundary for the cross-section. In
other words, if we ensure the
model is not in contradiction with
observations at that given neu-
trino energy, then it will not be
in contradiction at any other neu-
trino energy. This can be seen in
Figure 11.1 – so that they are not

in contradiction with observations, the blue lines must not overlap with neither the orange region
(upper boundary on the elastic cross-section from LSS), nor the red region (lower bound on Dark
Matter mass from Neutrino Reheating). Now, the purple line (denoting Eν ∼ 1012eV) appears
to give a largest cross-section for g = 1 and due to the linear-in-mass constraint from LSS, it
also corresponds to the smallest range of admissible Dark Matter masses. The goal currently is
to exclude as many regions from the parameter space as possible. Hence, from now on, for every
set of parameters g, m, M , we will pick out and use only the energy, which results in a maximal
elastic scattering cross-section. We can utilise this to proceed and see how we can constrain the
remaining parameters further.

It is now more useful to look at Figure 11.2 in order to understand how we must move forward
if we want to obtain a plausible model. There are two parameters left to be varied and they are
namely the Dark Matter mass m and the coupling parameter g since the mediator mass M was
shown to depend on them as in Eq. (10.2). We must ensure that for all combinations of these
parameters the elastic scattering cross-section does not contradict observations.

As can be seen from Figure 11.2, if we select g . 0.012, the model is very much safe as the
region, where the elastic scattering cross-section would be in contradiction, cannot be accessed
because there is a lower boundary on the Dark Matter mass from Neutrino Reheating. This
choice of g, however, lowers the upper boundary of the Dark Matter mass as in the inequality
(11.1). On the other hand, if we select g & 0.012, we must introduce a new lower boundary
for the Dark Matter mass m, which is stronger than the boundary from Neutrino Reheating a.
The exact value of the coupling parameter where this new boundary has to be introduced could
be studied in more detail and found more precisely if the lower boundary of the Dark Matter
mass from Neutrino Reheating is determined more precisely. These results can be extended and
summarised by denoting a specific region in the g−m plane, where the model can exist and not
be in contradiction with neither of the observations described in the previous section. This is
done in Figure 12.2. It is important to note that a lower boundary on g has to be imposed (so
that the inequality (11.1) is proper) and this lower boundary would be more or less consistent

aThe actual function for that boundary cannot be found analytically and is instead approximated numerically.
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Figure 12.2: Coupling parameter-Dark Matter massm plane. The blue and purple lines represent
lower and upper boundaries of the Dark Matter mass respectively. The model can exist only
in the light-green shaded region if it is to not contradict any observational constraints. The
boundaries for g . 0.012 are identical to those in (11.1). However, a new boundary is introduced
for g & 0.012 so that the model is not in contradiction with the constraint from Large Scale
Structures. The dashed red lines depict an expected region for a coupling parameter of a Weak
interaction, which also satisfies a perturbative theory.

with the lower boundary that one would expect for a coupling parameter of an interaction on the
Weak scale. On the other hand, the model does not imply a specific upper boundary on g, but
one would not expect g > 1 for an interaction around and below the Weak scale. Additionally,
any perturbative theory in g (e.g. the Dyson series based on which the scattering matrix is
computed) is on the safe side in terms of validity if g < 1. Perhaps a better dimensionless
constant for a perturbative theory is the g2

4π , which would allow coupling parameters up to
g ∼ 2.[60] Furthermore, the condition g < 1 guarantees that the given in Figures 7.1 and 8.1
two-vertex diagrams result in leading terms in the amplitude. In this way, any higher order
loop diagrams are essentially suppressed. Finally, a connected set of allowed parameter values
for g and m can be constructed (light-green region in Figure 12.2) and the mediator mass M
parameter can be found for any point of that set by Eq. (10.2), which can now be considered an
injective mapping R2 → R.

An alternative approach

What was done so far is to utilise the correct abundance condition as in Eq. (10.2), substitute
it back in the expression for the cross-section (7.13), and arrive at conclusions. This approach
has its perks in terms of simplicity, but it would be also useful to visualise a region, in which
the model is allowed to exist, in a way that puts the Dark Matter and mediator masses on
equal footing. To do that, we can solve Eq. (10.1) for the coupling parameter g and proceed
to substitute in in the expression for the elastic scattering cross-section. Once that is done,
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(a) (b)

Figure 12.3: (a) Similarly to Fig. 11.2, the elastic scattering cross-section is plotted against the
Dark Matter mass for varying mediator mass M . The neutrino energies for each line are picked
to give a maximal cross-section. The orange and red regions depict the same boundaries. (b)
Similarly to Fig. 12.2, the region in which the model can exist without contradicting observations
is shown in light-green between the lower (blue) and upper (purple) boundaries for the Dark
Matter mass. The grey dashed line depicts g = 1 and the grey region to the right of it (g > 1)
can be excluded/neglected by interaction strength arguments.

we can examine the dependence of the scattering cross-section on the mediator mass in more
detail (See Fig. 12.3a). When it comes to selecting energies of the incoming neutrino, we can
now use a similar logic to what we did for g. Namely, different neutrino energies give maximal
cross-sections for different configurations of model parameters M , m, g. This is studied and
all presented results involve only energies which give maximal cross-sections. As we did before,
we can state how the lower boundary for the Dark Matter mass from Neutrino reheating needs
a stronger replacement after a certain point (M ∼ 30MeV) as the boundary from Large Scale
Structures becomes stronger. This allows for the construction of Figure 12.3b, which showcases
the allowed region in the mass-plane. The lower boundary (blue line on Fig. 12.3b) is safely in
the non-degenerate-in-mass limit, except for the low-mass region where the two boundaries meet
and possible altering of the allowed region could be necessary of co-annihilations are taken into
account. Once again, every point of the connected set corresponds to a (non-unique) coupling
parameter g. The intersection point in the bottom-left corner of Figure 12.3b corresponds to the
same corner from Figure 12.2 where g ∼ 0.003. In addition, we can make use of the expectation
that the coupling parameter does not exceed g ∼ 1 to further restrict the parameter space, as
depicted by the grey line and region.

13 Detection Signatures

Now that we are fully acquainted with the model, its properties, and parameters, it is time to
figure out how exactly we can find out if the model is a correct description of reality, partially
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correct or fully incorrect. The features of the model, that would influence any relics from the
early Universe like the CMB, have already been fully covered and we will focus solely on detection
of interactions that have taken place in the present day. We can further divide the detection into
detection of scattering and detection of annihilation.

As stated previously, the model of the thesis allows weak interactions of Dark Matter with
itself. This leads to annihilation into neutrinos. The law of conservation of energy dictates that
the outgoing neutrinos (in opposite directions) must possess an energy, which is very similar to
the mass of the Dark Matter particle m. As discussed in the Chapter I, Dark Matter clusters
in certain structures throughout the Universe. Therefore, a careful examination of the neutrino
fluxes, which are coming from the direction of the selected object would reveal a slight bump at
approximately the mass of the Dark Matter. The energies, which must be surveyed are defined
by the mass boundaries as discussed in the previous section. Some facilities, which can prove
useful in that case, are depicted in Fig. 3.1.

Additionally, scattering of Dark Matter with neutrinos could occur in relatively large scales
near certain astronomical objects, which have also been discussed in Chapter I. These interactions
would be harder to detect and would require very good precision in the detection, which is almost
impossible with the available nowadays detectors. Nevertheless, one can calculate the expected
flux from a specific location due to that interaction and try to find knee-like features, which
would be due to the cross-sectional maxima at a given neutrino energy, as depicted in Figure
12.1. These features might be easier to find especially if the data is compared with data from a
direction in which the interaction is expected to take place less often. Again, all of this would
require very precise examination of the neutrino fluxes reaching Earth, would be quite challenging
with the current detection techniques known to particle physicists. The biggest hope lies within
the IceCube facility and the newer generation of neutrino detectors.

14 Direct Searches

So far we have been only discussing indirect evidence for the existence of Dark Matter and
have made rough conclusions on how the existence of Dark Matter can be indirectly showcased.
Although indirect evidence can be very convincing and at the same time relatively easier to
find, it is always also worthy to discuss the possible direct detection of WIMPs. A successful
detection of a Dark Matter particle will truly start a new era of Physics because direct detection
is linked to direct measurement of properties, which in turn can shine a lot of light on the
nature of Dark Matter. Obviously, the main challenge for detection is that it requires a well-
understood interaction with a particle within a detector. Moreover, the interaction has to occur
with a relatively large probability. Fortunately, by WIMPs are thought to interact weakly, which
allows them to interact with leptons and possible other fermions and combinations thereof. In
particular, WIMP-nucleon interactions are of interest, to a large extent due to the significant
understanding and abundance of nucleons. Additionally, WIMP-lepton interactions can also be
linked to nucleon coupling from loop diagrams.[98] It should be stated that local Dark Matter
densities and velocity distributions play a significant role in direct detection and the relative
lack of understanding of these parameters at Earth-based detectors makes direct detection even
more complicated and coupling to flavoured particles (quarks and leptons) imposes additional
conditions on the interaction mediator.[77]

As of today, there is no single confirmed detection of a WIMP-nucleon interaction. However,
failed detection experiments can still be used to constrain the strength of a possible interaction
of that sort. Some of the detection techniques used currently for WIMP detection are ultra-
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14. Direct Searches

Figure 14.1: An equivalent of a mediator-Dark Matter mass plane for a Majorana fermion Dark
Matter and complex scalar mediator, which is the closest possible variation to the model of this
thesis.. The green regions are excluded from collider searches. The pink region could be tested
in the future with the LUX-ZEPLIN facility. Taken from Garny et al, 2015 .[77]

cold semiconductor detectors, noble gas scintillators, crystal scintillators, bubble chambers, etc.
The current strongest limits are set by the SuperCDMS experiment[99] (cryogenic semiconductor
detectors) and the LUX experiment[100] (xenon scintillator) and will not be discussed in detail
here as they are only marginally relevant since this thesis focuses on WIMP-lepton interactions.

In the past two decades, there have been four independent collaborations, which have signalled
a Dark Matter detection event. Half of them have been shown to be false alarms, but there are
two detections, which are still under investigation and the sides involved cannot agree on a single
conclusion.[101] These are detections performed by DAMA and CDMS-Si, which both claim to
detect a signal, which could be produced by a WIMP-nucleon interaction with a reasonable
certainty.[101,102] Both signal a detection of a WIMP in the GeV range, which is very well
accommodated in our model as well. Both have also been ruled out by the aforementioned
SuperCDMS and LUX experiment constraints, but there is still some lingering plausibility that
WIMPs really were detected.[103] Currently, hope lies within the next generation of WIMP-
nucleon detectors like LUX-ZEPLIN (could probe a fermionic Dark Matter and complex scalar
mediator model like in Fig. 14.1) and DARWIN, which are expected to be operational in the
next decade.[104,105]

WIMP-lepton interactions can also be used for direct detection of Dark Matter. As previously
stated, since left-handed leptons come in SU(2) doublets, the interaction Lagrangian (6.9) allows
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14. Direct Searches

charged lepton interactions as well. These are normally not observed in the cosmos or at least
in large scales. This does not rule out the possibility for WIMP-lepton interactions, but simply
provides a constraint on the interaction strength like we have seen a lot so far. Some of these
can be seen in Figure 14.1.

If Dark Matter interacts with Standard Model particles, like we have allowed it to in the
model of this thesis, a good question to ask is why has not Dark Matter ever been detected
in collider experiments? The Large Hadron Collider (LHC) can reach energies of O(1TeV) and
our model can be considered to live entirely below this energy scale. Additionally, the Large
Electron-Positron Collider (LEP) can achieve energies of about a couple hundred GeVs. The
lack of observation in the largest collider facilities can also be used for restriction of parameter
spaces. A mediator can be produced only in the mass-degenerate limit and it can subsequently
undergo a fast decay to Dark Matter. It should be added that the lack of direct observation
does not mean a Dark Matter or a mediator particle was not produced – it means the leptons
(most likely neutrinos) were simply not detected and flavour can play a significant role in that
detection.[77] Examples of limits imposed by such collider searches are depicted in Figure 14.1.
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Chapter IV

Conclusions

Revealing the secrets of Dark Matter has been a main scientific goal for almost half a century
now. The knowledge they hide is essential for the understanding of the Universe and its history.
Should it be a thermal relic of the early Universe, Dark Matter is also thought to hold information
about the Universe from before the emission of the CMB and even the BBN – an epoch, about
which we know very little currently.[6]

In this thesis, we began by introducing Dark Matter, evidence for its existence, famous
possible particle and non-particle candidates, and how it could have become the crucial part of
the Universe that it is today. We also reviewed neutrinos, their detection, and what secrets it
could reveal about Dark Matter. Some of the basic mathematical tools from Quantum Field
Theory were reviewed for better understanding of how exactly the amplitudes and cross-sections
are derived and computed. We considered and examined a simplified model, which effectively
tests the interactions between these two particles. Feynman diagrams and amplitudes were
constructed and computed. Cross-sections were extracted based on these and also studied in
detail. By imposing a multitude of constraints on the model, which come from cosmological
observations, we showed how they translate to the parameters of the model and what they mean.
Additionally, we showed what astronomical observations could be linked to the plausibility of
the model and in what energy ranges such searches should be undertaken. On the grand scheme
of the history of the Universe, we probe and take information from roughly three epochs – the
decoupling of Dark Matter, the interactions of Dark Matter before the emission of the CMB,
and the present-day Universe and the interactions of Dark Matter in it. The first one gives
information about the self-interaction strength of Dark Matter as based on the energy density of
Dark Matter in the Universe. Upon careful examination of early Universe relics, the second one
provides details about the gravitational interactions of Dark Matter with visible matter but also
about possible weak interactions like the ones we discussed in this thesis. The interactions of
Dark Matter in that epoch leave a permanent footprint on the CMB, which can then be surveyed
for indirect evidence, but also give constraints on these possible interactions. The measurement
of the energy density of Dark Matter is arguably the most important piece of information on
Dark Matter that is available and is also determined by detailed studies of the CMB. The last
epoch tells a little bit about how Dark Matter interacts with itself and other particles and
most importantly, we must study this epoch extensively if direct evidence is ever to be found
for the existence of Dark Matter. All three information sources are combined and based on
them and their analysis, we made predictions about the nature of Dark Matter under significant
assumptions.

The Dirac Dark Matter and complex scalar mediator model falls under the rather large
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umbrella of the Lambda Cold Dark Matter model (ΛCDM). Alternatives like a modified theory
of gravity exist, which was briefly explained in Chapter I, but ΛCDM is currently considered
to be the only ’standard model of the Big Bang’, which can explain the observed structure and
dynamics of the Universe. The coldness of Dark Matter was reviewed before and this specific
property was utilised on several occasions for computational simplification. The lambda stands
for dark energy, which is very marginally related to our model in the sense that its presence is
required for the correct understanding of energy densities in the Universe. ΛCDM holds high
hopes for the future with the main missing components being the full detection and understanding
of these dark elements of the Universe, which comprise only some ∼ 95% of it.

At first it may seem like this approach resembles searching for a needle in a haystack and this
is not far from the truth. The model is very specific and assumes very specific properties of the
Dark Matter particle and the way it interacts. There are plenty of other possibilities and there is
no evidence so far that would specifically mean one model is preferred over the other. Therefore,
it is important that all possibilities are considered, analysed, and taken into account. Even if
this model can be compared to searching for a needle in a haystack, it is a search nonetheless.
In addition, careful analysis can be exploited to extract information about the plausibility of
this model and similar ones, thus giving an indication whether the needle is in this corner of the
haystack or not close at all.

There are several aspects of the model and issues that may arise, which were mentioned
throughout the thesis, but not discussed in detail. Firstly, interactions of Dark Matter with
charged leptons bring a whole bag of additional complications. A consideration of the full
Standard Model and the provided extension for Dark Matter can result in Dark Matter coupling
to nucleons or the electromagnetic sector. Additional limits must be imposed from observation
and direct searches to restrict these interactions and subsequently the parameter space of the
model. These are very important to be taken into account for a more detailed study of the
direct detection of this model. Secondly, flavours of neutrinos and leptons were not covered in
the thesis but are also worthy of further examination in a more detailed study of Dark Matter
detection. Just like charged lepton interactions, adding flavours to the model does not change the
underlying general properties of the model, but it introduces a colour/flavour to the mediator.
The fact that Dark Matter and the mediator are massive can additionally require an extension,
which would cover mixing with the Higgs boson and a mass generation mechanism. Lastly,
a major subtopic, which should be studied for a complete comprehension of the model is the
mass-degenerate regime. When the two particle masses are very similar, the production of Dark
Matter in the early Universe is altered and the so-called co-annihilation channels must be studied
as well. These will not necessarily give a spectacular new result in terms of model behaviour but
will require an adaptation and adjustment in the M ∼ m region of the parameter space.

In any case, high hopes for the solution to the Dark Matter problem lie within new generations
of observational tools in both gravitational wave and neutrino astronomy. With more precise
measurements, models like this one can be examined in a lot more detail and hopefully the model
that describes Dark Matter correctly is revealed, even if it is not this one specifically.
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