

faculty of science
and engineering

 mathematics and applied
mathematics

Drawing the Kontsevich

Graphs in LATEX

Bachelor’s Project Mathematics

June 2020

Student: S.S. Kerkhove

First supervisor: Dr. A.V. Kiselev

Second assessor: Dr. A.E. Sterk

Abstract

Kontsevich graphs are a class of oriented graphs on two sinks,
build of wedges. Such graphs are naturally encoded by a list of pairs
of target vertices of each wedge. This project is about semi-automatic
drawing of Kontsevich graphs in the LATEX picture environment, that
is, finding the Cartesian coordinates of the top vertex of each wedge
such that the result can be drawn in the picture environment while
satisfying several requirements.

An algorithm to achieve this was proposed by A.V. Kiselev. This
algorithm first calculates the aforementioned coordinates based on
randomly assigned inclines of the edges. It then filters out the bad
drawings and finally uses a penalty function to determine the most
beautiful drawing. The goal of this project is to tune and modify this
penalty function so that its output guarantees aesthetically pleasing
drawings. I have implemented this algorithm in SageMath (with the
help of R. Buring).

In this paper I contribute several modifications to the existing
algorithm and I analyse which part of the penalty function is most
important to draw nice graphs. This whole project is presently ap-
plied to drawing – for the first time! – a significant number of the 247
four-wedge graphs which have been discovered by Buring and Kise-
lev in [arXiv:1702.00681] at the fourth order of the parameter in the
expansion of noncommutative associative star-product by Kontsevich.

Preface

I will start with giving a background to Kontsevich Graphs in Section 1. The
purpose and approach of this project will then be discussed in Section 2. In
Section 3 I will explain the steps of the algorithm proposed by A.V. Kise-
lev. The implementation of the algorithm in SageMath will be discussed
in Section 4, the resulting programmes and their history can be found in
the repository at: https://github.com/SKerkhove/Bachelors-Project.
In these two previous sections the target function, some kind of penalty
function, is mentioned, but as the (possibly) most important part of the al-
gorithm, it will be discussed in depth in Section 5. I will then look at how
the resulting drawings from the target function react to changes in its pa-
rameters in Section 6. Section 7 contains a discussion about how to change
the algorithm in order to draw 2-cycles in Subsection 7.1 and a look at how

2

https://github.com/SKerkhove/Bachelors-Project

the resulting drawings change when changing the parameters of the target
function in Subsection 7.2. Conclusions will then be drawn and discussed in
Section 9. Finally, in Section 10, future developments of this topic will be
discussed.

Contents

1 Introduction 5

2 Research Question and Approach 8

3 The Algorithm 10

4 Programming the Algorithm 12
4.1 The Linear System . 13
4.2 The Algorithm . 15

5 The Target Function 20
5.1 The Short and Long Edges Score 20
5.2 Intersections Score . 23
5.3 Distance Between Unrelated Vertices Score 24
5.4 Overshoot Score . 26
5.5 Height y-coordinate Score . 26
5.6 Points on Line Score . 27
5.7 Vertical Lines Score . 27
5.8 Concluding Remarks and Summary 28

6 Tuning the Target Function 30
6.1 The Wedge . 30
6.2 The Double Wedge, The Graph With Encoding 2 2 1 01 01 . 36
6.3 The Graph With Encoding 2 3 1 01 12 12 46

6.3.1 Some Probability Theory 46
6.3.2 Tuning the Target Function 48

6.4 All Graphs up to Order 3 . 54

7 Graphs with 2-cycles 57
7.1 Changing the Programme . 58
7.2 Tuning the Target Function 59

3

8 Graphs of order 4 62

9 Conclusions 67

10 Discussion 73

A Appendix 81
A.1 Matlab code . 81

A.1.1 The function graphfunc 81
A.2 Sage Code . 81

A.2.1 The Function to generate the vector b 82
A.2.2 The Function to generate the matrix A 83
A.2.3 the Function Inclines to Coordinates 84
A.2.4 The Function DrawGraph algorithm 85
A.2.5 The Function Positive Test 87
A.2.6 The Function Same Vertices Test 88
A.2.7 The Function Length Test 89
A.2.8 The Function Overlapping Edges Test 91
A.2.9 The Function DrawGraph Filter 93
A.2.10 The Function DrawGraph Compute and Draw 96
A.2.11 The Function DrawGraph Draw 97
A.2.12 The Target Function 98
A.2.13 The Function Intersection Test 103
A.2.14 The Function Inclines to coordinates 104
A.2.15 The Function Generate List of Coordinates 105
A.2.16 The Function Choosing Best Five Pictures 108
A.2.17 Code to Sort All Possible Coordinates for the Wedge . 110
A.2.18 The Mirroring Function 112

4

1 Introduction

One of the early problems in the study of quantum mechanics was that the
rules of classical mechanics don’t hold anymore, because quantum mechanics
deals with phenomena at nanoscopic scales. There is a difference in the math-
ematical formulation of the observable phenomena. In classical mechanics,
observations are functions over the phase space (a Poisson manifold). On the
other hand, in quantum mechanics, observations are functions over Hilbert
spaces of wave functions. This called for a search for deformations of alge-
bras of functions on Poisson manifolds. Deformation quantization seeks to
describe the non-commutative structure of functions on the Hilbert space
algebraically on the phase space [14]. A major breakthrough was made by
the Russian mathematician Maxim Kontsevich in the 1990s when he proved
his formality theorem, implying the existence and classification of star prod-
ucts on Poisson Manifolds (see Sections 1, 2.2 and 3.3 of [5] for details). To
prove this, he came with the revolutionary idea of using graphs in Poisson
Geometry calculus [12] (see [9, 10, 11] for his work leading up to this result).

r r?
f g

= r r
f g

+
~1

1!
r r
f g

r
�
��
A
AU +

~2

2!
r r
f g

rr��
�

B
B
BN��/SSw +

~2

3

(
r r
f g

rr
?

@@R
@@R��	 + r r

f g

r
@@R��	

r
?

��	
)

+
~2

6
r r
f g

r r
??

�
	

+

+
~3

6

(
r r
f g

rr��
�

B
B
BN��/SSw

rr
�
�
�
�
��

C
C
C
C
CW + r r

f g

r r
??

�
	

r

�JĴ

+ r r
f g

r r
??

�
	r
��	@@R + r r

f g

rr
?

@@R
@@R��	

r
��	
?

+ r r
f g

r
@@R��	

r
?

��	

r
@@R
?

+ r r
f g

rr
?

@@R
@@R��	

r
R

A
AU

+ r r
f g

r
@@R��	

r
?

��	

r
�
���

)
+

+
~3

3

(
r r
f g

rr
?

@@R
@@R��	r���HHj + r r

f g

r
@@R��	

r
?

��	r���HHj
)

+
~3

6

(
r r
f g

r r
?R?L

�
	

r
Q
QQs

U + r r
f g

r r
?R?L

�
	

r
�

��+

 + r r
f g

r
@@R��	

r
?

��	

r
?

H
HHj

+ r r
f g

rr
?

@@R
@@R��	

r
?

�
���)

+o(~3).

Figure 1: The Kontsevich graphs determine polydifferential operators in the
Kontsevich star product.

This project will focus on the graphs associated with the Kontsevich
star product. As we can see in Figure 1, Kontsevich graphs are a class of
directed graphs. Therefore, we will now first look into some basic graph

5

theory terminology.
We define directed graphs as follows (see Section 1.2 of [1] and 1.10 of

[4]):

Definition 1. A directed graph (also called digraph) D consists of a
finite set V (D) 6= ∅ of elements called vertices and another finite set E(D)
of ordered pairs of distinct vertices called edges. Such a graph D is often
written as D = (V,E).

Let’s look at the following example for an illustration of this:

Example 1. The graph D in Figure 2 is denoted by

V (D) = {x1, x2, x3, x4, x5, x6}

and

E(D) = {〈x3, x1〉, 〈x3, x2〉, 〈x4, x1〉, 〈x4, x3〉, 〈x5, x2〉, 〈x5, x3〉, 〈x6, x2〉, 〈x6, x3〉}.

s
x1

s
x2

sx5
sx4

sx3

sx6

�
�
�
�
��

A
A
A
A
AU

�
�
�
�
��

?

C
C
C
C
CW

�

A
A
A
A
AU

?

Figure 2: The graph D.

Given an edge 〈u, v〉 I will call the first vertex u its tail, and its latter
vertex v its head. This, and the upcoming definition, have also been defined
in Section 1.2 of [1].

Definition 2. Given a digraph D = (V,E) and a vertex v ∈ V the out-
degree of v is the number of edges that have their tail in v.

A vertex with out-degree 0 will be called a sink. A vertex v of out-degree
larger than 0 is a source for the edges that have their tails in v.

In the article by Buring and Kiselev [2] Kontsevich graphs of type (m,n)
(first defined in [8, 9]) are described as:

6

Definition 3. Consider a class of directed graphs on m+n vertices, labelled
from 0 to m+n−1 such that the vertices 0, ...,m−1 are sinks and the other
vertices are internal. Each of the internal vertices is a source for two edges,
the two edges are ordered L ≺ R: the preceding edge is labelled L and the
other edge is labelled R. A Kontsevich graph of type (m,n) is an oriented
graph on m sinks and n edges.

With preceding in the above definition, we mean that for vertex k ≥ m,
the label of the edge L(k) is a lower number than the label of the edge R(k).

In the article by Buring, Kiselev and Rutten [3] the notion of oriented
Kontsevich graphs is slightly differently formulated: The graphs are built

over m ordered sinks from n wedges
L←− • R−→: each top • of such a wedge is

the source of exactly two arrows. A wedge is a graph existing of 3 nodes and
two vertices, those two vertices with a tail at the same node and both ending
at a different node (see Figure 3a).

Every Kontsevich graph is uniquely determined by the numbers m and n,
and a list of ordered pairs of nodes to which the vertices should connect.[2]
We store the graphs in the format:

m n s 〈list of ordered pairs〉 (1)

as introduced in [2].

Example 2. The encoding 2 1 1 01 corresponds to the wedge, seen in Figure
3a. The encoding 2 2 1 01 12 corresponds to the graph in Figure 3b.

s0 s1
s2
�
�
�
��

A
A
A
AU

(a) Picture of the wedge with
encoding 2 1 1 01.

s0 s1
s2

�
�	
@
@R

s3
�
�	

?

(b) Picture of the graph
2 2 1 01 12.

Figure 3: The pictures of Example 2.

The number s is the sign of the encoding, it equals 0, 1 or −1. Each
Kontsevich graph can be associated with a formula, a differential operator.
To a Kontsevich graph with sign one can associate a differential operator

7

multiplied with the sign. For example, the three encodings 2 3 1 01 12 12,
2 3 − 1 01 21 12 and 2 3 1 10 21 12 all correspond to the same graph. If
the formula corresponding to the graph is zero, the sign is set to be 0 too.
However, the sign part of the encoding will be mainly ignored in the rest of
the project.

The pictures in Figure 3 are made in the LaTeX picture environment.
This environment has a lot of restrictions on drawing (see Section 2). How-
ever, it is worth trying to draw the Kontsevich graphs in the picture environ-
ment, because for one, drawings within the picture environment do not take
up a lot of space. Secondly, no external packages are needed when using the
picture environment to draw the Kontsevich graphs, this makes it easier to
use in manuscripts sent to journals.

2 Research Question and Approach

We would like to be able to properly draw the Kontsevich graphs arising
from the expansion ? mod ō(~4) in LATEX, therefore the research question of
my project will be:

How can one nicely semi-automatically draw the given class of
Kontsevich’s directed graphs up to order 4, specifically with

two sinks, within the LATEX picture environment?

The picture environment allows one to program pictures directly into
LATEX. Although the picture environment has severe restrictions, it produces
documents that are small in size and no external packages are needed, a
reason for us to study how we can nicely draw graphs with these restrictions
in place. To draw a digraph, in order to show the direction of the edges, we
need to be able to draw arrows. As written in section 7.1 of Lamport’s User
Guide to LATEX [13], arrows are drawn with the command:

\put(x,y){\vector(x_0,y_0){len}}.

Here, (x,y) should be two numerical values, giving the starting point of the
vector, the part without the arrowhead. The values that should be put on the
place of (x_0,y_0) give the slope of the vector, the values are restricted to
integers between -4 and 4, inclusive. Moreover, they should have no common

8

6

-�
�
���

�
�
�
���

�
�
�
�
��

�
�
�
�
��

��
�
��*

�

��
��
�1

�
�
�
�3

�
�
�
�7

���
��:

�
�
�
�>

?

� @
@
@@I

A
A
A
AAK

B
B
B
B
BM

C
C
C
C
CO

HH
H

HHY

J
J
J
J]

PP
PP

Pi
Q

Q
Q
Qk

S
S
S
So

XXX
XXy

Z
Z
Z
Z}

@
@
@@R

A
A
A
AAU

B
B
B
B
BN

C
C
C
C
CW

HHH
HHj

J
J
J
Ĵ

PPPPPq
Q
Q
Q
Qs

S
S
S
Sw

XXXXXzZ
Z
Z
Z~

�
�
��	

�
�
�
���

�
�
�
�
�

�
�
�
�
��

���
���

�

�����)
�

�
�
�+

�
�
�
�/

�����9 �
�
�
�=

Figure 4: All the possible vector inclines in the LATEX picture environment.

divisor, i.e. (-4,2) is not allowed, because -4 and 2 have common divisor 2.
A drawing of all possible vector inclines is given in Figure 4.

The value at the place of len gives the length of the projection of the
arrow in the horizontal direction, unless the arrow is purely vertical, i.e. if
x_0 = 0, then the value len does give the vertical length of the arrow. I will
use \unitlength=1pt for this entire project, 1 point is equal to 1/72 inch,
which is approximately 0.35 mm.

Example 3. With Pythagoras’s theorem, we can calculate that the com-
mand \put(0,0){\vector(3,4){24}} gives a vector of length 40. The
length is 24 in the horizontal direction and 24

3
· 4 = 32 in the vertical di-

rection. On the other hand, the command \put(0,0){\vector(4,-3){24}}

gives a vector of length 30, with length 24 in the horizontal direction and 18
in the vertical direction. You can see the result of the commands in Figure
5. As you can see, the up going arrow is longer than the down going arrow,
even though they have the same value on the place of len. Therefore, the
value for len does not directly correspond to the length of the vector.

�
�
��7

Z
ZZ~

Figure 5: Two vectors with the same horizontal length value.

Another restriction of the picture environment is that because of the way
lines are drawn, that for lines that aren’t horizontal or vertical, there is a
smallest line you can draw in the picture environment. The minimum length

9

is about 10 points which is 10/72 inch, and about 3.5 mm (see section 7.1
of [13]).

To get an answer to the research question I will implement an algorithm
provided by A.V. Kiselev [7], that will generate the coordinates for the edges
of the Kontsevich graphs. This algorithm first defines a system of equations
with the help of chosen inclines for the edges (see Equation 2 below). I will
start with trying to write this system in matrix form, i.e. in the form Ax = b
where x is a 2n vector of the form [x1, y1, ..., xn, yn]T where each pair (xi, yi)
gives the coordinates of the ith inner vertex of the graph.

After this I will write a function in SageMath that can solve the system
for an inputted encoding and value δ > 0 prescribing the distance between
the sinks. I will then write a function that filters the solutions to the system,
so that we get ’nice’ solutions, i.e. no overlapping vertices, no overlapping
edges, etc. When this works I will write a target function with easily changed
parameters. The target function will assign to each solution of the system as
value. The lower the value the ’more beautiful’ a drawing of the particular
solution is. Finally, I will train the target function. I will try to find the best
parameters for it, such that the five best, according to the target function,
drawings of a particular graph all look alike.
I will start by excluding graphs with 2-cycles from my considerations. Once
I think I have a good idea of the workings of the algorithm, I will extend it
to include 2-cycles.

The results of this project will be beneficial to those who want to use
Kontsevich graphs in their papers formatted in LATEX. Because graphs drawn
in the picture environment don’t take up a lot of memory, the compiling time
of the document will be lower, just like the size of the resulting paper. There
is not a lot of research on this topic, making this project extra interesting to
the scientific community.

3 The Algorithm

In the Syllabus Propadeutic Project (Applied) Mathematics 2017-2018, A.V.
Kiselev has written down an algorithm to generate the coordinates of the
Kontsevich graphs in such a way that the graphs can be drawn in the LATEX
picture environment [7]. The algorithm consists of 3 main steps, each having
several sub steps. The unknown coordinates for the ith internal vertex are

10

denoted by (xi, yi). The algorithm has as input an encoding of a graph and
a scalar δ that indicates the distance between the sinks of the graph.

Step 1: For i from 1 to n, take a pair of unequal inclines (aLi : bLi) and

(aRi : bRi) from the set of choices. As mentioned in Section 2, −4 ≤ a
{L,R}
i ≤ 4

and −4 ≤ b
{L,R}
i ≤ 4, moreover a

{L,R}
i and b

{L,R}
i can not have a common

divisor. It is also not allowed for a
{L,R}
i and b

{L,R}
i to both be 0, because that

will not actually define an incline of the line. This will give us a total of 24
choices, if we discount opposite vectors in the same direction, e.g. (1, 1) and
(−1,−1)1. Define the equations

xL(i) − xi
yL(i) − yi

=
aLi
bLi

and
xR(i) − xi
yR(i) − yi

=
aRi
bRi
. (2)

It may seem like there will be a problem when b
{L,R}
i = 0, however when the

system will be worked out in Section 4, there will never actually be divided
by b

{L,R}
i in the resulting system. So for now we can just say that b

{L,R}
i = 0

implies that y{L,R}(i) − yi = 0 as well.
Because the m sinks have fixed coordinates, the linear system is inhomo-
geneous. This system can be written in the form Ax = b where x =
[x1, y1, ..., xn, yn]T . If this system has a solution go to step 2, if not, try
another choice of inclines. For a system with n internal vertices there are
(24 ·23)n = 552n possible choices of inclines. For every i, there are 24 choices
for (aLi : bLi) and since (aRi : bRi) must be different, there are 23 choices for
(aRi : bRi).

Step 2: (filter)

• 2.1 Reject all solutions where:

– yi ≤ 0 for some i;

– at least two vertices overlap;

– at least two edges are (partly) overlapping;

– at least one edge is shorter than the minimal length for which
LATEX can draw vectors.

1The possible inclines are (0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (3, 1),
(3, 2), (3, 4), (4, 1), (4, 3), (−1, 1), (−1, 2), (−1, 3), (−1, 4), (−2, 1), (−2, 3), (−3, 1), (−3, 2),
(−3, 4), (−4, 1) and (−4, 3).

11

• 2.2 Store δ and the list of acceptable coordinates for the internal ver-
tices. Repeat the previous steps for sufficiently many randomly chosen
admissible values of inclines.

Step 3: (optimisation)

• 3.1 Choose a target function whose input is a string of coordinates
from 2.2. The target function should increase as long as:

– Some edges are too short, add a · (l0/l)α;

– Some edges are too long, add b · (l/l0)β;

– There are too many intersections of drawn edges, add Nγ ·(logN)ε.

Where a, b, α, β, γ and ε are all parameters.

• 3.2 Train the target function. Vary the parameters in such a way that
for each encoding, the drawings of loop-less graphs are almost identi-
cally reproduced among the five best approximations of the minima.

• 3.3 From the set of outputs from 2.2 choose five lists of vertex co-
ordinates such that each list is almost the best with respect to the
minimisation of the trained target function.

• 3.4 Draw these 5 pictures in LATEX and choose the favourite picture
encoding.

Extend the algorithm to loop-full graphs. Do this by giving the target
function an argument that will ensure that two vertices that point edges at
each other are reasonably close to each other.

4 Programming the Algorithm

I will write the system of equations into the form

Ax = b (3)

where x =
[
x1, y1, . . . , xn, yn

]T
. I will have to figure out what the matrix A

and the vector b look like. After that, I will have to figure out how to write
the algorithm.

12

4.1 The Linear System

To find out how the matrix A and vector b should be constructed, I started
with easy graphs. In particular, I wrote down the system 3 in case of the
wedge.

Example 4. The wedge is encoded by 211 01. This yields the equations

xL(1) − x1
yL(1) − y1

=
aL1
bL1

and
xR(1) − x1
yR(1) − y1

=
aR1
bR1
.

When we fill this in (xL(1) = yL(1) = yR(1) = 0 and xR(1) = δ) and with
crosswise multiplying, we can get the equivalent equations

bL1 x1 − aL1 y1 = 0 and bR1 x1 − aR1 y1 = bR1 δ.

This gives us the matrix A and the vector b

A =

[
bL1 −aL1
bR1 −aR1

]
and b =

[
0
bR1 δ

]
.

Let us now look at the more complicated graph with encoding 221 01
12. Using this encoding in our Matlab function graphfunc (given in the
Appendix, see Section A.1.1) gives the plot in Figure 6 We see that this

Figure 6: A plot of the graph with encoding 2 2 1 01 12.

graph has no 2-cycles, so we can use our algorithm.

13

Example 5. For the encoding 2 2 1 01 12 get the equations:

xL(1) − x1
yL(1) − y1

=
aL1
bL1
,

xR(1) − x1
yR(1) − y1

=
aR1
bR1
,

xL(2) − x2
yL(2) − y2

=
aL2
bL2

and
xR(2) − x2
yR(2) − y2

=
aR2
bR2
.

We can now fill it in, from the encoding we can conclude that xL(1) = yL(1) =
yR(1) = yL(2) = 0, xR(1) = xL(2) = δ and xR(2) = x1, yR(2) = y1. With some
multiplication and addition, we get the equations:

bL1 x1 − aL1 y1 = 0

bR1 x1 − aR1 y1 = bR1 δ

bL2 x2 − aL2 y2 = bL2 δ

−bL2 (x1 − x2) + aL2 (y1 − y2) = 0.

These equations correspond to a matrix A and vector b of the form:

A =

bL1 −aL1 0 0
bR1 −aR1 0 0
0 0 bL2 −aL2
−bR2 aR2 bR2 −aR2

 and b =

0
bR1 δ
bL2 δ
0

 .
We are beginning to see a pattern here. It appears that for every two

rows of A we have a block in the corresponding columns of the form

bLi −aLi
bRi −aRi

.

Then, the other entries depend on the encoding. The ith row corresponds
to the ith number in the encoding (ignoring the m, n and s slot). If this
ith number is 0 or 1, all other entries in the row are zero, because then the
corresponding edge goes to one of the sinks, so is not dependent on a variable.
However, if this ith number is higher than 1, let’s call it e, than the (e−1)th
set of 2 columns (so the columns 2(e− 1)− 1 and 2(e− 1)) have the entry

−bL,Rj aL,Rj .

A function that gives the matrix A is given in the Appendix, Section A.2.2.

14

On the other hand, the ith entry in the vector b is 0 unless the ith entry
in the encoding is 1, then the corresponding entry in the vector is of the form

bL,Rj δ.

A function that gives the vector b is given in the Appendix, Section A.2.1.

4.2 The Algorithm

I have chosen to program the algorithm in SageMath. After having pro-
grammed the algorithms for the matrix A and the vector b it is fairly easy
to calculate a solution. I built in a provision that the matrix A is not sin-
gular (but for all possible systems of order 1 and 2 without 2-cycles, none of
the matrices are singular), if this is the case, can x be calculated with the
command x=A\b. The code for the algorithm can be found in the Appendix,
Section A.2.3.
This basically solves Step 1 of the algorithm, but to automate the process
of choosing the inclines I made the function DrawGraph_algorithm (see Sec-
tion A.2.4) which chooses a random set of inclines for as long as it takes to
get a non-singular matrix. This algorithm can henceforth give 552n results, a
drawing of three possible results of the algorithm for the encoding 2 2 1 01 12
is given in Figure 7. As we can see, while the pictures do give an idea of what

s ss s�
�
�+

@
@RCCW

XXy

(a) The inner vertices
have coordinates

(30, 20) and (46, 16).

s sssPPPi ��*��7y

(b) The inner vertices
have coordinates

(30,−10) and
(40.5,−12.6).

s s
ss�

�
�
�
�/

C
C
C
C
CW

A
A
A
AAU

3

(c) The inner vertices
have coordinates

(37.5, 50) and
(28.13, 43.75).

Figure 7: Three figures produced with the function DrawGraph_algorithm.

the graph looks like, but especially Figures 7b and 7c are far from aestheti-
cally pleasing. Figure 7b is drawn completely below the line y = 0 and the
edge from vertex 3 to 2 is too small for LATEX to draw. Similarly, in Figure

15

7c the edge from vertex 3 to 1 and from 2 to 0 intersect. Moreover, the same
edge as in Figure 7b is again too small to be drawn.

For Step 2 of the algorithm I split the different checks (so to check whether
the solution has vertices below y = 0, too short edges, two overlapping ver-
tices or overlapping edges) into functions, you can find them in Sections A.2.5
to A.2.8, each outputting a value True or False, indicating whether the condi-
tion is satisfied or not. I have then written the function DrawGraph_filter

(see Section A.2.9) which computes a solution and then checks, using the
above mentioned functions, whether it satisfies the conditions. If the solu-
tion doesn’t satisfy the conditions, it recomputes a different solution for as
long as it takes to satisfy all the conditions.

The function DrawGraph_filter gives us already more acceptable coor-
dinates for the graphs. Three possible drawings of the graph with encoding
2 2 1 01 12 are given in 8.

s s

s
s

C
C
C
C
C
C
C
C
C
C
C
CW

J
J
J
J
J
J
J
J
J
J
J
Ĵ

C
C
C
C
C
C
CCW

Z
Z

Z
Z

Z
ZZ}

(a) The inner vertices
have coordinates

(-30,120) and
(31.5,73.8).

s s
s s

�
�
�

�
�
�

��+

�
�
�
�
��

�
�

�
�
�

�
�
�
�=

�������9

(b) The inner vertices
have coordinates (75,50)

and (137.5,65.6).

s sss �
����
A
AU

PPPPq

���:

(c) The inner vertices
have coordinates (40,20)

and (11.4,12.9).

Figure 8: Three drawings produced with DrawGraph_filter.

While these drawings already look a lot better than the ones in Figure
7, they are for one all above the line y = 0 and there are no edges that
are too short, we can’t yet say they look very pretty. Subfigure 8a is too
high, Subfigure 8b is leaning too far to the right and Subfigure 8c has an
unnecessary intersection of lines.

After this I wrote the functions DrawGraph_compute_and_draw and DrawGraph_draw

(Sections A.2.10 and A.2.11). These functions are not entirely necessary for

16

the task, but they do help me get an idea of what the graphs would look like
when drawn, without needing to put the entire picture in LATEX. The first
function has as input the encoding of a graph, the distance δ between the
sinks and a value min_len which gives the minimum length for a line to be
drawn in LATEX. This function computes a set of coordinates for the graph
satisfying the conditions of Step 2 of the algorithm, and then outputs a plot
of the graph. The function DrawGraph_draw has as input the encoding of a
graph and a set of acceptable coordinates. It outputs a plot of the graph. In
Figure 9 a graph computed with DrawGraph_compute_and_draw is shown.
Graphs plotted with DrawGraph_draw look similar.

Figure 9: A graph plotted with DrawGraph_compute_and_draw.

This wrapped up Step 2 of the algorithm plus some extra things. I started
working on the target function as defined in the equations 4 to 7 below.

TF (`e, `v, vx, vy, N,M,K) = SLS(`e) + IS(N) + UV S(`v)

+HY S(vy) +OS(vx) + PLS(M) + V LS(K)

(4)

where TF stands for target function, SLS for short and long edges score:

SLS(`e) =
2n∑
i=1

cse ·
(
`ei
`0

)α
+ cle ·

(
`0
`ei

)β
, (5)

IS for intersections score:

IS(N) = Nγ · (logN)ε , (6)

17

UV S for unrelated vertices score:

UV S(`v) =
n∑
i=1

n∑
j=i

no edge from i to j

cdv ·
(
`1
`vi,j

)ζ
, (7)

HY S for height y-coordinate score:

HY S(vy) =
n∑
i=1

chy ·
(
`2
vy,i

)θ
, (8)

OS for overshoot score:

OS(vx) =
n∑
i=1

cos ·

|vx,i|ι if vx,i < 0

(vx,i − δ)ι if vx,i > δ

0 if 0 ≤ vx,i ≤ δ

, (9)

PLS for points on lines score:

PLS(M) = −Mκ · (logM)λ (10)

and V LS for vertical lines score:

V LS(K) = −Kµ · (logK)ν . (11)

In the equations above, `ei gives the length of edge i, `vi,j gives the distance
from vertex i to vertex j, vx,i and vy,i give respectively the x and y-coordinate
of the ith vertex, N gives the number of intersections of edges (plus one, see
Section 5.2 for details) in the drawing of a graph, M gives the number of
times three vertices lie on one line (also plus 1, see Section 5.6 for details)
and finally K gives the number of times 2 vertices are positioned right above
each other (again plus 1, see Section 5.7 for details).

The programmed target function (see Section A.2.14) takes as input the
encoding of a graph and a set of acceptable coordinates. It outputs a numer-
ical value denoting how ’beautiful’ the drawing of the graph is. The lower
the value the more beautiful the drawing is. In the above, `0, cse, cle, α, β, γ
and ε are all parameters.

To check whether two lines of a graph intersect I made the function
intersection_test (see Section A.2.13). The function uses a 2-dimensional

18

form of the method for finding whether two line segments intersect in a 3-
dimensional space by Ronald Goldman in [6] (the actual method I used was
explained on [15]). For this method the endpoints of the line segments are
written in vector form as p and p + r, and q and q + s. Every point on
the first line segment can now be written as p + tr and every point on the
second line segment can be written as q + us, where t and u are scalars.
Define a cross product v ×w = vxwy − vywx. If the line segments intersect,
then p + tr = q + us for some t and u. Crossing both sides with s gives
t(r× s) = (q− p)× s (since s× s = 0). It follows that:

t =
(q− p)× s

r× s
.

Similarly, we can find

u =
(q− p)× r

r× s
.

Since we do not need to worry about overlapping edges, because those have
been filtered out already, we are only considered in intersections of lines that
are not parallel/co-linear. So, if r × s 6= 0 (because the line segments are
parallel if and only if r × s = 0), 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, then the line
segments intersect at p + tr = q + us.

After I wrote the target function, I wrote 2 more functions,
generate_list_of_coordinates and choosing_best_five_pictures (see
Sections A.2.15 and A.2.16). The function generate_list_of_coordinates

has as input the encoding of a graph, the distance δ between the sinks, the
value min_len that gives the minimum length for a line to be drawn in LATEX
and num_of_iterations and integer that indicates how long the outputted
list of coordinates must be. It outputs a list of length num_of_iterations

containing different solutions to the system.
The function choosing_best_five_pictures has the same four inputs,

but uses generate_list_of_coordinates to compute a list of coordinates,
deletes all duplicates in the list and it then uses the target function on the
remaining solutions to determine the five sets of coordinates that have the
lowest score, i.e. the five ’most beautiful’ drawings.

I will use these functions to see what kind of drawings get a low score
from the target function.

19

5 The Target Function

In this section I will take a look at the different components of the target
function and how the parameters influence them. The Sections 5.1 to 5.3
consider the parts of the target function that were mentioned in the algo-
rithm, Sections 5.4 to 5.7 contain parts added to the target function at a
later stage.

5.1 The Short and Long Edges Score

For each edge with length ` in the graph, the function adds a value cse ·(`/`0)α
and a value cle · (`0/`)β. I will only consider values of α and β larger than
0. It seems to be pretty clear that increasing the value of cse, respectively
cle will make the component (`/`0)

α, respectively (`0/`)
β more important. In

other words, if cse increases, drawings of the graph with long edges, i.e. edges
of length ` > `0, will get a much higher score than drawings of the graph
with edges of a length ` much smaller than `0. Consequently, graphs that
get ’good’ scores will have short edges. Similarly, if cle increases, drawings
of the graph with short edges, i.e. edges of length ` < `0, will get a much
higher score than drawing of the graph with edges of a length ` much larger
than `0. So in this case, graphs with long edges will get low scores. I will try
to illustrate this in the example below.

Example 6. Let’s first start with taking `0 = 50 and α = β = 1. Let’s
take a look at the wedge (the graph with encoding 2 2 1 01). Two possible
drawings of the graph are shown in Figure 10. The drawing in Subfigure 10a
has two edges, both of length `s =

√
252 + 6.252 ≈ 25.76. The edges of the

drawing in Subfigure 10b are both of length `l =
√

252 + 1002 ≈ 103.08. In
these cases, the target function score for the first drawing will be

2cse ·
(

25.76

50

)
+ 2cle ·

(
50

25.76

)
≈ 1.03cse + 3.88cle.

Since cle has a greater ’weight’ than cse, the drawing will get a much higher
score when cle is high than when cse is high. For the second drawing, the
opposite is true:

2cse ·
(

103.08

50

)
+ 2cle ·

(
50

103.08

)
≈ 2.06cse + 0.49cle.

20

s ss���9 XXXz

(a) The inner vertex is at (25,6.25).

s s

s
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
CW

(b) The inner vertex is
at (25,100).

Figure 10: Two drawings of the wedge, the coordinates for the sinks are at
(0, 0) and (50, 0).

In this case the first term has the greater ’weight’. So the drawing will in
this case get a higher score when cse is high.

Let’s now look at how α and β influence the score of the target function.
If we increase α, then (`/`0)

α → 0 if and only if ` < `0. But we also have
the term (`0/`)

β, which is minimised if ` > `0. If, however, α is much larger
than β, then taking a value ` > `0 will make the score very large. So, to
get a low score we need ` < `0. However, it doesn’t matter a lot how much
smaller ` is than `0, because a number smaller than 1 to a positive power
will always remain smaller than 1. It will hence not have a big effect on the
score. However a number larger than 1 to a power larger than 1 can blow up
very quickly. Hence, the lowest scores will be reached when ` is just a little
less than `0. Let us see this in an example:

Example 7. Take α = 10 and β = 2, also set `0 = 50 again. (We set
cse = cle = 1 for now.) Consider 3 values of `, `1 = 10, `2 = 49 and `3 = 50.
The score that the first edge (with length `1) gets in the target function is:(

10

50

)10

+

(
50

10

)2

= 0.210 + 52 = 1.024 · 10−7 + 25 ≈ 25.

The second edge (with length `2) gets:(
49

50

)10

+

(
50

49

)2

≈ 0.9810 + 1.022 = 0.82 + 1.04 = 1.86.

21

And the third edge (with length `3) gets:(
50

50

)10

+

(
50

50

)2

= 110 + 12 = 2.

It is clear that lengths larger than 50 lead to greater values of the target
function, but the first calculation shows that lengths a lot less than 50 also
lead to greater values.

I start to wonder what the optimal value for the length of an edge is in
order to minimise the target function. The function TF (`) = cse · (`/`0)α +
cle · (`0/`)β is differentiable for ` 6= 0 (and we only consider positive values of
` anyway):

dTF

d`
(`) =

cse
`α0
· α · `α−1 − cle · `β0 · β · `−β−1.

The minimum occurs if the derivative is zero. In this case, it equals:

cse
`α0
· α · `α−1 = cle · `β0 · β · `−β−1.

If we move the terms with ` to the left and all the rest to the right, we get:

`α+β =
βcle
αcse

· `α+β0 .

So we get as solution for `:

` =

(
βcle
αcse

) 1
α+β

· `0. (12)

So if we take the values for the parameters from Example 7 we get:

` =

(
2

10

) 1
12

· 50 ≈ 43.72.

And indeed, if we fill this ` into TF , we get TF (`) = 1.57 which is lower than
any of the numbers we calculated in Example 7. As we can seen in Equation
12, the optimal value of ` is higher or lower than `0 dependent on the values
of the other parameters.
From Equation 12 we can also conclude that when α + β > 1 the optimal
value of ` will be relatively close to `0. Because in that case, the fraction will

22

be raised to a power less than 1, which means that the resulting number will
be closer to 1 than the original fraction. Similarly, if α+ β < 1, the optimal
value will be relatively farther away from `0, since then, the fraction will be
raised to a power greater than 1, which means that fractions less than 1 will
get smaller and fractions larger than 1 bigger.

Another thing we should notice is that when α and β are less than one,
there will be a lesser difference between the values of the two fractions. In-
deed, if α < 1 and β < 1 and the fraction x := (`/`0) < 1 is also less than 1,
then x < xα < 1. So xα goes to 1. However, in this case the fraction for β is
(`/`0) = 1/x > 1. Which means that 1 < (1/x)β < 1/x, so (1/x)β also gets
closer to 1. It follows that the difference between the fractions gets smaller.
This will lead to less strict bounds on the length of the edges of the graph.

5.2 Intersections Score

The part of the target function that increases if a drawing of a graph has
intersections is given by Nγ ·(logN)ε, where N is the number of intersections.
Because log 0 is undefined, N starts counting at 1, meaning that N = 1 if
there are no intersections, N = 2 when there is one intersection, etc. It is
clear that the function is minimised if there are no intersections, but how do
γ and ε influence the value of the function?

An increase of γ or ε above 1 will, if there are intersections, always increase
the value of the function. However logN < N for all N . This means that
increasing ε will have a smaller effect on the value of the target function than
increasing γ.

Example 8. Take N = 3, log 3 ≈ 1.1. So, 3 · log 3 ≈ 3.3. If γ is set at
2, then the value will be 32 · log 3 ≈ 9.9. However, if ε is 2, the value is
3 · (log 3)2 ≈ 3.6. It is clear that increasing ε has a lesser effect on the value
of the target function than increasing γ.

It is interesting to look at what happens when γ or ε gets decreased to
below 1 (I do not consider γ, ε ≤ 0). The decrease of the value will be bigger
if γ is smaller than 1 then when ε < 1.

Example 9. Take again N = 3. If we take γ = 1/2, then the value will be
31/2 · log 3 ≈ 1.9. If instead ε = 1/2, the value will be 3 · (log 3)1/2 ≈ 3.1.
That’s only a small decrease from the value 3.3 when γ = ε = 1!

So the value of γ has a larger influence on the value of the target function
than the value of ε.

23

5.3 Distance Between Unrelated Vertices Score

The target function increases with cdv · (`1/`)ζ for any two vertices with no
edge between them, where ` is the distance between them. cdv, `1 and ζ are
parameters. The goal of this term is to make sure unrelated vertices will be
drawn at a reasonable distance from each other, and not close together. For
an illustration, using the graph with encoding 2 2 1 01 01 as an example, see
Figure 11. It is clear that the drawing in Subfigure 11a doesn’t look as nice

s s
ss
�
�
��/

S
S
SSw

�

J
J
J
Ĵ

(a) The inner vertices
are at (25,33.33) and

(25,37.5).

s s
s
s
�
�
�
�
��

A
A
A
A
AU

�
��	

@
@@R

(b) The inner vertices
are at (25,25) and

(25,50).

Figure 11: Two drawings of the graph with encoding 2 2 1 01 01.

as the one in Subfigure 11b, because the inner vertices of the former are too
close together. Also notice that the function will only seriously increase if
the vertices are too close together, there is no upper bound for the distance
between unrelated vertices.

The value of cdv increases the importance of this term of the target func-
tion, e.g. if cdv � cse, then the target function might assign low scores to
drawings where unrelated vertices are far apart, even if it means that the
edges are shorter than `0.

Example 10. Let `0 = 50, `1 = 10 and α = ζ = 1. Compare the drawings
from Figure 11. The graph has 4 edges, in the first drawing, 2 edges are of
length

√
252 + 33.332 ≈ 41.67 and 2 are of length

√
252 + 27.52 ≈ 45.07, the

distance between the unrelated inner vertices is 4.17.
In the second drawing, 2 edges are of length

√
2 · 252 ≈ 35.36 and 2 of length√

252 + 502 ≈ 55.90, the distance between the unrelated inner vertices is 25.
The the value of

n∑
i=1

cse ·
(
`ei
50

)
+

n∑
i=1

n∑
j=i

no edge from i to j

cdv ·
(

10

`vi,j

)

24

for the first drawing will be:

cse ·
(

2 · 41.67 + 2 · 45.07

50

)
+ cdv ·

(
10

4.17

)
= cse · 3.47 + cdv · 2.40.

For the second drawing it will be:

cse ·
(

2 · 35.36 + 2 · 55.90

50

)
+ cdv ·

(
10

25

)
= cse · 3.65 + cdv · 0.4.

Now suppose cse = 15 and cdv = 1, then the first value will be 52.05 + 2.40 =
54.05 and the second value will be 36.5 + 0.4 = 55.15. The first value is
lower and would be considered better, but if the difference between cse and
cdv would be less, the second value would be lower, and hence the second
drawing would be considered better.

The value of ζ determines mainly how much ` can be below `1. If ζ > 1,
and ` < `1, then (`1/`)

ζ > (`1/`) > 1. However, if ` > `1, then (`1/`)
ζ <

(`1/`) < 1. So, if ζ get larger, values of ` larger than `1 will make sure the
value gets small.
If ζ < 1, and ` < `1, then 1 < (`1/`)

ζ < (`1/`). Which means that the value
of the function will not be very high, especially if ` is not much less than `1.

Example 11. Consider again the drawings from Figure 11. For the first
drawing the distance between the unrelated vertices is 4.17, for the second
it is 25. Set again at `1 = 10 and suppose cdv = 1. The value for the first
drawing will be: (

10

4.17

)ζ
= 2.40ζ .

The value for the second drawing will be:(
10

25

)ζ
= 0.4ζ

Now it’s clear that if ζ > 1, the first value will become even larger, but the
second value will go to 0. However, if ζ < 1, for example, ζ = 0.25, then the
first value will be 1.25 and the second will be 0.80. The difference between
the two values will be less.

25

5.4 Overshoot Score

For every inner vertex that has an x-coordinate smaller than 0 or larger than
δ the value cos ·|vx|ι, respectively cos ·(vx − δ)ι. This score will make sure that
the vertices will not be drawn very far outside the lines x = 0 and x = δ.
Like in most of the previous terms of the target function, cos determines
the importance of the overshoot score with respect to the other terms. If
ι > 1, any value of vx more than 1 point away from the bounds will get a
relatively high score. At the same time, if vx is less than one point away from
the bounds, a value of ι larger than 1 will make the score become relatively
small. If ι < 1, any value of vx will (especially if ι� 1) lead to a score close
to 1 (times cos).

5.5 Height y-coordinate Score

For every vertex the target function will increase with chy ·(`2/vy)θ where vy is
the y-coordinate of the vertex and chy, `2 and θ the parameters. `2 will be set
at about 0.4 · `0. This term will make sure that the graphs will not be drawn
too flat. The height y-coordinate score looks a lot like the distance between
unrelated vertices score discussed in the previous section. The parameter chy
determines the importance of the term compared to the other terms of the
target function. The parameter θ determines how bad it is if the drawing
has vertices lower than `2. Finally `2 determines what is considered low, the
higher the value of `2, the higher the vertices will have to be in order for the
drawing to get a good score. Let’s look at a short example.

Example 12. Let’s consider the two drawings of Example 6 of the wedge
with inner vertex at (15, 6.25) and (25, 100) (See Figure 10 for an illustration)
and set `2 = 20. The first drawing will get the score

chy ·
(

20

6.25

)θ
= chy · 3.2θ.

The second drawing will get the score

chy ·
(

20

100

)θ
= chy · 0.2θ

It is clear that the second drawing will get the better score.

26

5.6 Points on Line Score

The points on line score deducts a value Mκ · (logM)λ, where κ and λ are
parameters and M is the number of times three points lie on one line in the
drawing of a graph plus 1 (because if M starts counting at 0, the function
would not be defined in all cases). Let us look at an example:

Example 13. Lets look at the graph with encoding 2 2 1 01 12 as drawn
in Figure 12. In this drawing, the vertices with number 0, 2 and 3 are lying

s s
s

s
�

��	

@
@@R

�
��	

?

Figure 12: A drawing of the graph with encoding 2 2 1 01 12.

on one line. Hence, M = 2 and the points on line score is −2κ · (log 2)λ.

The goal of the points on line score is to give drawings that have multiple
points lying on one line a lower score. This will make sure that drawings
that, for example, might have slightly too long edges, but have at least 3
points on one line will nevertheless get a good score.

5.7 Vertical Lines Score

The vertical lines score deducts a value Kµ · (logK)ν , where µ and ν are
parameters and K is the number of times two points are positioned right
above each other plus one (for the same reason as we start counting the N
from the intersections score and the M from the points on line score at 1,
otherwise logK would not be defined for all possible values of K). Let’s look
at an example of what I mean with vertical lines:

Example 14. Let’s look at the graph with encoding 2 2 1 01 01 and its two
drawings in Figure 13. Both these drawings have 2 vertices with a vertical
’line’ between them. In Figure 13a, the vertices that are straight above each
other are vertex 2 and 3. In Figure 13b vertices 0 and 3 are straight above
each other. It is not necessary for the vertical line between vertices to be
actually drawn in order to count for the vertical lines score. Both drawings
in Figure 13 have vertical lines score −2µ · (log 2)ν .

27

s s
s
s
�

��	

@
@@R

�
�
�
�
��

A
A
A
A
AU

(a)

s s
s

s

�
��	

@
@@R?

J
J
J
J
J
J
JĴ

(b)

Figure 13: Two drawings of the graph with encoding 2 2 1 01 01.

5.8 Concluding Remarks and Summary

It is important to keep in mind that all the different terms influence each
other. We could for example increase cle in the hope of getting shorter edges,
but if chy is very large, the effectiveness of cle might not be what one hoped
for.

In summary:

• Short and Long Edges Score

– cse: Increasing leads to graphs with long edges, decreasing leads
to graphs with shorter edges.

– cle: Increasing leads to graphs with short edges, decreasing lead
to graphs with longer edges.

– α: Increasing above 1 leads to graphs with edges of length ` < `0.
The larger the value of α, the closer the length of the edges gets to
`0. Decreasing below 1 leads to less strict bounds on the lengths
of the edges.

– β: Increasing above 1 leads to graphs with edges of length ` > `0.
Decreasing below 1 leads to less strict bounds on the lengths of
the edges.

• Intersections Score

– Increasing ε has a lesser effect than increasing γ. But increasing
either above 1 leads to fewer intersections in the graphs.

– Decreasing γ below 1 can lead to more intersections.

• Distance Between Unrelated Vertices Score

28

– Increasing cdv increases the importance of the term, it leads to
graphs with unrelated vertices being situated further apart. De-
creasing cdv leads to unrelated vertices being situated closer to-
gether.

– Increasing ζ above 1 leads to unrelated vertices being further apart
than a length `1. Decreasing ζ below 1 will lead to unrelated
vertices that are situated closer together.

• Overshoot Score

– Increasing cos increases the importance of the term, it leads to
vertices only within the interval [0, δ]. Decreasing cos can lead to
vertices outside the mentioned interval.

– Increasing ι above 1 will lead to vertices being situated within the
interval. Decreasing ι below 1 will lead to vertices being more
likely to be situated outside of the interval.

• Height y-Coordinate Score

– Increasing chy leads to higher vertices, decreasing to lower.

– Increasing θ above 1 leads to vertices with an y-coordinate above
`2. Decreasing θ below 1 gives a greater likelihood of vertices
having a y-coordinate below `2.

• Points on Line Score

– Increasing κ or λ above 1 both lead to more points lying on one
line. Although the effect of κ is larger than the effect of λ. De-
creasing them below 1 leads to less points lying on one line.

• Vertical Lines Score

– Increasing µ or ν above 1 both lead to more vertices lying right
above each other. Although the effect of µ is larger than the effect
of ν. Decreasing them below 1 leads to less points lying right above
each other.

29

6 Tuning the Target Function

Before starting to tune the target function, recall that we always have 2 sinks,
the left one always being in (0, 0) and the right one being at (δ, 0).

I started out with the target function having parameters: `0 = `1 =
10, cse = cle = cdv = 1, α = β = γ = ε = ζ = 1. If you read Section 5, you
might notice that I omitted some parameters. This is because I will only add
the other scores later in this section. Therefore, the unmentioned parameters
are not used yet. Please recall that \unitlength=1pt, so that the value of `
is in points. (1 point is approximately 0.35 mm.)

6.1 The Wedge

I started with tuning the function for the easiest graph, the wedge. I set
the value of delta at 50 and with the starting parameters this gave me the
pictures in Figure 14.

s ss���9 XXXz

(a) The inner vertex is
at (25,6.25).

s ss���9 PPPq

(b) The inner vertex is
at (28.57,7.14).

s ss���) XXXz

(c) The inner vertex is
at (21.43,7.14).s ss���) PPPq

(d) The inner vertex is
at (25,8.33).

s ss
���
XXXXz

(e) The inner vertex is
at (16.76,8.33).

Figure 14: The five drawings of the wedge with the initial parameters `0 =
`1 = 10, cse = cle = cdv = 1 and α = β = γ = ε = ζ = 1.

For me, two things stand out in these drawings. Firstly, not all drawings
are symmetrical, in fact, only Sub-figures 14a and 14d are symmetrical. (Also
note that 14b and 14c are mirror images of each other.) While I would
definitely like all figures to be symmetrical, a bigger issue at the moment
is that the inner vertex is positioned very low in all pictures, making the
graphs very flat. I think that that is because of the value of `0. Right now
`0 = 10, however 10 points is also the minimal length for any line that LATEX
can draw, making all possible solutions to the system having ’too long’ lines
according to the target function. To get a good view of what will happen if
the value of `0 gets bigger I will first make `0 a lot larger. I set the value of
`0 at 100. The results can be seen in Figure 15.

30

s s

s

?

A
A
A
A
A
A
A
A
A
AU

(a) The inner vertex is
at (100,0).

s s

s
�
�
�
�
�
�
�
�
�
�� ?

(b) The inner vertex is
at (50,100).

s s

s
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
CCW

(c) The inner vertex is
at (28.57,85.71).

s s

s
�
�
�
�
�
�
�
���

B
B
B
B
B
B
B
BBN

(d) The inner vertex is
at (21.42,85.71).

s s

s
�
�
�
�
�
�
�
�
�
�/

�
�
�
�
�
�
�
�
�
��

(e) The inner vertex is
at (75,100).

Figure 15: The five drawings of the wedge with `0 = 100.

Now one can see that, for one, a value of 100 makes the lines way too
long, and secondly, there is even less symmetry here, with none of the drawing
being completely symmetrical. (But note that 15a and 15b are mirror images
of each other and so are 15c and 15d.)

I think the drawings will be a lot prettier if they could be drawn in a
square. Since the sinks are on a distance 50, we might like our edges to have
a size of 50 too. The resulting drawings can be seen in Figure 16.

These drawings already look a lot better. I think that the optimal value
of `0 might be a bit lower than 50, but for now this is good enough.

I will now look at what difference the other parameters make. To see
this, I will change them one by one into a much larger number I will keep `0
at 50 for the moment, but I will now change cse from 1 to 10. This gave as
coordinates for the inner vertex: (50, 150), (0, 150), (−50, 150), (100, 150)
and 150, 100. Because (50, 150) and (0, 150) give the same drawing but
mirrored and (−50, 150) and (100, 150) too, I will only draw the graph for

31

s s
s

�

A
A
A
AAU

(a) The inner vertex is
at (28.57,42.86).

s s
s
�
�
�
���

J
J
J
JĴ

(b) The inner vertex is
at (21.42,42.86).

s s
s
�
�
�
��

S
S
S
Sw

(c) The inner vertex is
at (20,40).

s s
s
�
�
�
�/

A
A
A
AU

(d) The inner vertex is
at (30,40).

s s
s
�
�
�
��

S
S
S
S
Sw

(e) The inner vertex is
at (15.38,46.15).

Figure 16: The five drawings of the wedge with `0 = 50.

(50, 150), (−50, 150) and (150, 100). This gives the drawings in Figure 17.

s s

s
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� ?

(a) The inner vertex is
at (50,150).

s s

s
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

J
J
J
J
J
J
J
J
J
J
J
J
J
J
Ĵ

(b) The inner vertex is
at (-50,150).

s s

s
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�+

�
�
�

�
�

�
�
�

�
�	

(c) The inner vertex is
at (150,100).

Figure 17: The five drawings of the wedge with l0 = 50 and cse = 10.

In this figure, we can see that a larger value of cse gives graphs with longer
edges. This is quite logical, since if cse gets larger, in order for the score to
stay low, the length of the edges will have to increase. Because if ` is large
(larger than `0), (`0/`)

α will get smaller, which means that the effect of the
large cse gets slightly negated.

32

Keeping this in mind I anticipate that increasing the value of cle will lead to
shorter edges, i.e. ’flat graphs’. I will set the value of cse back at 1, but I
will now increase the value of cle to 10. This gives as values for the inner co-
ordinates (25, 6.25), (28.57, 7.14), (21.43, 7.14), (25, 8.33) and (20, 10). Since
(28.57, 7.14) and (21.43, 7.14) are again mirror images I will only draw the
first. The drawings can be seen in Figure 18.

s ss���9 XXXz

(a) The inner vertex is at
(25,6.25).

s ss���9 PPPq

(b) The inner vertex is at
(28.57,7.14).s ss���) PPPq

(c) The inner vertex is at
(25,8.33).

s ss��� PPPq

(d) The inner vertex is at
(20,10).

Figure 18: The five drawings of the wedge with l0 = 50 and cle = 10.

We can see that my prediction was correct, the drawings look a lot like
the ones in Figure 14. (In fact they’re largely the same.) Hence larger value
of cle gives drawings with short edges.

Let’s now take a look at how changing α influences the drawings. I
return the value of cle to 1, but now I set α = 10. This gives (30, 60), (20, 60),
(13.64, 54.55), (36.36, 54.55) and (25, 50) as coordinates for the inner vertices.
The first coordinates are again in mirrored pairs, so I will only draw (30, 60),
(13.64, 54.55) and (25, 50). The drawings can be seen in Figure 19.

s s

s
�
�
�
�
�
��

B
B
B
B
B
BN

(a) The inner vertex is
at
(30,60).

s s

s
�
�
�
�
���

J
J
J
J
JĴ

(b) The inner vertex is
at

(13.64,54.55).

s s
s
�
�
�
�
��

A
A
A
A
AU

(c) The inner vertex is
at
(25,50).

Figure 19: The five drawings of the wedge with l0 = 50 and α = 10.

It appears that increasing α also leads to longer edges, though the increase
is not as large as when cse is increased. Let’s increase α some more, let us set

33

α = 100. This gives as coordinates for the inner vertex (25, 50), (16.67, 50),
(33.33, 50), (37.5, 50) and (12.5, 50). It is interesting to see that the in all
cases the y-coordinate is 50. In fact, increasing α even more keeps giving
the same coordinates. So, why is this? Let’s take a look at the value of the
target function for the drawing with inner vertex at (25, 50) and the drawing
with inner vertex at (20, 40).

Example 15. The drawing with inner vertex at (25, 50) is symmetrical and
has hence two edges of equal length, ` =

√
252 + 502 ≈ 55.90. If we fill this

into the target function, we get the equation:

2 ·
(

50

55.90

)α
+ 2 ·

(
55.90

50

)β
≈ 2 · 0.89α + 2 · 1.12β

As α increases, 2 · 0.89α → 0 (0.89100 is already 8.7 · 10−6), because 0.89 < 1.
So if β = 1 and α is large, the score will be around 2 · 1.12 = 2.24.

The drawing with inner vertex at (20, 40) is not symmetrical and has
edges of length

√
202 + 402 ≈ 44.72 and

√
(50− 20)2 + 402 = 50. If we fill

this into the target function, we get the equation:(
50

44.72

)α
+

(
50

50

)α
+

(
44.72

50

)β
+

(
50

50

)β
≈ 1.12α + 0.89β + 2.

If α gets very large, the 0.89β + 2 part is not very significant anymore. The
whole value will be big already (1.12100 ≈ 84 · 103), because 1.12 > 1.

What can be concluded from these calculation is that, if α is large and
the length of the edges is larger than 50, we can almost completely discount
the first term in the target function and only focus on the term with β. That
would mean that drawings with edges with a length close to 50 will get the
lowest score from the target function. (Also note that if the length of the
edges are 50, the score will be 4.) Drawings that have edges with a length
that is less than 50 will automatically get a very large score from the target
function and will hence not be among the three best drawings. In fact, if
we make a list of all sets of coordinates that have only edges with a length
longer than 50, we can find that that the 5 sets of coordinates that are given
by the function choosing_best_five_pictures, are the five sets with the
shortest edges. This can be found by changing line 40 in the code in Section
A.2.17 into checking whether len_L or len_R are smaller than 50.

34

Because of these considerations, I anticipate that for β very large, the best
five coordinates for the inner vertex are (25, 37.5), (26.47, 35.29), (23.53, 35.29),
(33.33, 33.33) and (16.67, 16.67) . This was found by running the code in Sec-
tion A.2.17.
But let us first look at what happens if α = 1 and β = 10. In this case, we
get (25, 33.33), (28.57, 28.57), (21.43, 28.57), (26.47, 35.29) and (23.53, 35.29)
as coordinates for the inner vertex. Since the last 4 are again two pairs of
mirror images, I will only draw the graph for (25, 33.33), (28.57, 28.57) and
(26.47, 35.29) in Figure 20.

s s
s
�
�
��/

S
S
SSw

(a) The inner vertex is
at
(25,33.33).

s s
s
�

�
�	

S
S
Sw

(b) The inner vertex is
at

(28.57,28.57).

s s
s
�
�
��/

J
J
JĴ

(c) The inner vertex is
at

(26.47,35.29).

Figure 20: Three of the best drawings of the wedge with l0 = 50 and β = 10.

Similar as to how the resulting drawings have slightly longer edges when
α = 10, so do these drawings have slightly shorter edges than the ones in
Figure 16. Another interesting feature is that the drawings seem to become
more symmetric if we take measures to shorten the edges.

Let us now look at what happens if β = 100. For the inner vertex,
we get coordinates (25, 37.5), (23.53, 35.29), (26.47, 35.29), (25, 33.33) and
(33.33, 33.33). With the exception of (25, 33.33), these are indeed the coor-
dinates that I expected. If I take a look at the rest of the list that came out
of running the code in Section A.2.17 it appears that (25, 33.33) is on the 6th

place in the list. I assume that the difference in placement comes from the
fact that while the average length of the edges of the drawing corresponding
to (33.33, 33.33) might be shorter than the length of the edges of the draw-
ing corresponding to (25, 33.33), but that one of the edges of (33.33, 33.33)
is longer than the edges of (25, 33.33).

Now I would like to know what happens to the drawings if α < 1. If I set
α = 0.1, the best five drawings have inner coordinates (25, 6.25), (21.43, 7.14),
(28.57, 7.14), (25, 8.33) and (16.67, 8.33). The two best drawings are given
in Figure 21. As can be seen, setting α below 1 leads again to flat graphs.
Similarly, setting β below 1 leads to very tall graphs.

35

s ss���9 XXXz

(a) The inner vertex is at
(25,6.25).

s ss���) XXXz

(b) The inner vertex is at
(21.43,7.14).

Figure 21: The two best drawings of the wedge with l0 = 50 and α = 0.1.

The example of the wedge has given me a first idea of what the param-
eters in the target function do. Because the wedge has no possibilities for
intersecting edges, or to change the distance between 2 unrelated vertices,
I will now look at the graph with encoding 2 2 1 01 01, which, as seen in
Figure 22, can have intersections and has two unrelated edges.

Figure 22: A drawing of the graph with encoding 2 2 1 01 01.

6.2 The Double Wedge, The Graph With Encoding
2 2 1 01 01

I will use this graph to start looking at the effects of γ and ε on the pictures.
Recall that γ and ε influence the number of intersections in the pictures. To
do this I will put all parameters back to 1, except from `0 which I will keep
at 50 and I will set cdv at 0, because I will ignore that term of the target
function at first. The starting parameters will hence be: `0 = 50, α = β = 1,
cle = cse = 1, ε = γ = 1 and all other parameters are 0. Because there are
more possible solutions to the system with this more complicated graph, I
increase num_of_iterations to 2000. Note that even with this increase, the
resulting pictures will differ a little each time, because there is no guarantee

36

that all possible options of inclines will be tried.2 The 5 best drawings using
these initial parameters are given in Figure 23.

s s
ss
�
�
���

@
@
@@R

�
�
�
�
�

J
J
J
J
Ĵ

(a) The inner vertices
are at (16.67,33.33) and

(16.67,50).

s s
ss

�

A
A
A
AAU

�
�
�
�
�
��

B
B
B
B
B
BN

(b) The inner vertices
are at (28.57,42.86) and

(30,60).

s s
ss
�
�
��

@
@
@
@R

�
�
�
�
���

J
J
J
J
JĴ

(c) The inner vertices
are at (12.5,37.5) and

(13.64,54.55).

s s
ss�
�
�
��

S
S
S
Sw

�

@
@
@R

(d) The inner vertices
are at (20,40) and

(20,30).

s s

s
s�

�
�
�
���

J
J
J
J
JĴ

�
�
��/

S
S
SSw

(e) The inner vertices
are at (13.64,54.55) and

(25,33.33).

Figure 23: The five drawings of the graph with encoding 2 2 1 01 01 with
the initial parameters.

None of these drawings have an intersection. However, because I want to
look at the effects of γ and ε, I will change the other parameters to see if I
can get pictures with intersections. I set all parameters one by one to 5. The
best drawing for all the parameters can be seen in Figure 24, in each drawing
all parameters are 1, except the one explicitly mentioned in the caption. For
cse = 5 and α = 5 I got an intersection for some of the 5 pictures given in
the top 5. In those cases I also drew the best drawing with intersection. (See
Subfigures 24b and 24e.)

Since I now first want to get some drawings with intersections, it seems
like I have to use very tall drawings to get an drawings with an intersec-
tion. However, what if I combine a higher value for cse and β or for cle and
α? Results of these can be seen in Figure 25, again all parameters are 1
unless otherwise indicated in the caption. Remember that while I, for ex-

2Recall that there are 5522 = 304, 704 possible combinations of inclines. Later in
this paper I will run through all possible inclines, but for now I will take 2000 random
combinations for each run.

37

s s

s

s

�
�
�
�
�
���

A
A
A
A
A
A
AU?

B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

(a) The best drawing
for cse = 5. The inner

vertices are at
(16.67,66.67) and

(0,150).

s s

s sC
C
C
C
C
C
C
C
C
C
C
CW

J
J
J
J
J
J
J
J
J
J
J
Ĵ

�
�
�
�
�
�
�
�
�
�� ?

(b) The second best
drawing for cse = 5.The

inner vertices are at
(-30,120) and (50,100).

s sss���9 PPPq
�

���
H
HHj

(c) The best drawing for
cle = 5. The inner

vertices are at
(28.57,7.14) and

(25,12.5).

s s
s
s
�
�
�
�
��

A
A
A
A
AU

�
�
�
�
�
�
�
���

B
B
B
B
B
B
B
BBN

(d) The best drawing
for α = 5. The inner

vertices are at (25,50)
and (21.43,85.71).

s s

s s
�
�
�
�
�
�
��

A
A
A
A
A
A
AU

�
�
�
�
�
�
��

B
B
B
B
B
B
BBN

(e) The third best
drawing for α = 5. The

inner vertices are at
(16.67,66.67) and

(25,75).

s s
ss

�

S
S
SSw

�
��	

@
@@R

(f) The best drawing for
β = 5. The inner

vertices are at
(23.53,35.29) and

(25,25).

Figure 24: Six drawings of the graph with encoding 2 2 1 01 01 with varying
parameters.

ample, denote Subfigure 25a as the ’best’ drawing for these parameters, this
is simply the drawing that got the lowest score from the target function on
this run. Moreover, because the given drawings change with each time I use
choosing_best_five_pictures, it is highly likely that the drawing in Sub-
figure 25a is not the actual best drawing of this graph with these parameters.
So, when I run the function again for cse = 5 and α = 5, I can get a different

38

s s
ss�

�
�
�
��

A
A
A
A
AU

�
�
��/

J
J
JĴ

(a) The best drawing
for cse = 5 and α = 5.
The inner vertices are

at (25,50) and
(26.47,35.29).

s s
s s
�
�
�
��

S
S
S
Sw

�
�
�
�
�/

B
B
B
BBN

(b) The second best
drawing for cse = 5 and
α = 5.The inner vertices

are at (20,40) and
(34.62,46.15).

s s
ss
�
�
�
�
�/

B
B
B
BBN

�

A
A
A
AAU

(c) The best drawing for
cle = 5 and β = 5. The

inner vertices are at
(34.61,46.15) and

(28.57,42.86).

s s
ss�
�
�
��

S
S
S
Sw

�
�
�/

@
@
@R

(d) The second best
drawing for cle = 5 and

β = 5. The inner
vertices are at (20,40)

and (21.43,28.57).

Figure 25: Four drawings of the graph with encoding 2 2 1 01 01 with a
combination of different parameters.

value for the inner vertices of the ’best’ drawing.
We can see that when using a combination of a higher value of α and cse

or β and cle we get some drawings with intersections and they are not terribly
tall. It actually makes me curious as to what happens when I set both cse,
cle, α and β to 5. The drawings for the combinations α = 5 and cse = 5, and
β = 5 and cle = 5 look a lot alike, save for the first combination seeming to
produce slightly taller graphs than the second. So let’s look at the drawings
of the graph with α = β = 5 and cse = cle = 5 (the other parameters are
again 1). The best two drawings are given in Figure 26. (To be complete,
the coordinates given for the inner vertices of the other 3 ’good’ drawings
are: (23.53, 35.29) and (16.67, 50), (26.47, 35.29) and (40, 40), and (12.5, 50)
and (26.47, 35.29). The last two graphs also have an intersection.)

From Figure 26 we can see that there are again intersections with these
parameters and that the length of the graphs is more in between the lengths
of the graphs of Subfigures 25a and 25b, and 25c and 25d. So let us continue
with all these parameters at 5 and let us now look at what happens if we

39

s s
ss

�

A
A
A
AAU

�
�
�
���

J
J
J
JĴ

(a) The best drawing
for cse = 5, cle = 5,
α = 5 and β = 5. The
inner vertices are at

(28.57,42.86) and
(21.43,42.86).

s s
ss�

�
�
�
��

A
A
A
A
AU

�

J
J
J
Ĵ

(b) The second best
drawing for cse = 5,
cle = 5, α = 5 and
β = 5. The inner

vertices are at (25,50)
and (25,37.5).

Figure 26: Two drawings of the graph with encoding 2 2 1 01 01 with cse,
cle, α and β all 5.

increase γ to 5 too. The results are shown in Figure 27.

s s

ss

�

C
C
C
C
CCW

�
�
�
�
�/

B
B
B
BBN

(a) The inner vertices
are at (36.36,54.55) and

(34.62,46.15).

s s
ss��
�
�
�

J
J
J
J
Ĵ

�
�
���

@
@
@@R

(b) The inner vertices
are at (16.67,50) and

(16.67,33.33).

s s
ss��

�
�
�

J
J
J
J
Ĵ

�

@
@
@R

(c) The inner vertices
are at (16.67,50) and

(20,30).

s s
s
s
�
�
���

@
@
@@R

�
�
�
�
���

J
J
J
J
JĴ

(d) The inner vertices
are at (16.67,33.33) and

(13.64,54.55).

s s
ss
�
�
�
�
��

S
S
S
S
Sw

�
�
�
�
�

J
J
J
J
Ĵ

(e) The inner vertices
are at (12.5,50) and

(16.67,50).

Figure 27: The five drawings of the graph with encoding 2 2 1 01 01 with
γ = 5.

Figure 27 shows that when we raise γ to 5, we already get less drawings
with an intersection. The four best drawings (Subfigures 27a, 27b, 27c and
27d) have no intersection.

40

Let’s now compare this too when we instead increase ε to 5. The drawings
for when α = β = 5, cse = cle = 5, γ = 1 and ε = 5 can be seen in Figure 28.

s s
ss
�
�
�
�
�/

B
B
B
BBN

�
�
�
���

J
J
J
JĴ

(a) The inner vertices
are at (34.62,46.15) and

(21.43,42.86).

s s
ss
�
�
�
�/

A
A
A
AU

�
�
�
��

S
S
S
Sw

(b) The inner vertices
are at (30,40) and

(20,40).

s s
ss�

�
�
���

J
J
J
JĴ

�
�
�
�

@
@
@
@R

(c) The inner vertices
are at (21.43,42.86) and

(12.5,37.5).

s s
s s
�
�
�
��

S
S
S
Sw

�
�
�
�
�/

C
C
C
C
CW

(d) The inner vertices
are at (20,40) and

(37.5,50).

s s
ss
�
�
��/

S
S
SSw

�
�
�
���

J
J
J
JĴ

(e) The inner vertices
are at (25,33.33) and

(21.43,42.86).

Figure 28: The five drawings of the graph with encoding 2 2 1 01 01 with
ε = 5.

We see that for ε = 5 we get more often intersections in our list of best
five drawings than for γ = 5. This is not so strange if we remember how the
function works. The intersections score consists of a product:

Nγ · (logN)ε .

In the case we’re studying now there’s maximally one intersection, so N = 2
and log 2 < 1. Hence increasing ε will have more of an opposite effect.
Permitting functions to have an intersection, because if they have one inter-
section and ε is high, then the intersections score will be close to zero.

Let us now look at what happens if we increase γ to 10, and return ε
to 1. Since we already had little intersections for γ = 5, I’m expecting the
resulting five drawings to have no intersections at all. The results are given
in Figure 29. It can be seen that these drawings 29 do indeed not have any
intersections.

I have two questions left about this graph.

Questions: What happens if I increase ε to 5 again?
And, can I make the graphs more symmetric?

41

s s
ss

�

B
B
B
B
BN

�
�
��/

S
S
SSw

(a) The inner vertices
are at (33.33,50) and

(25,33.33).

s s
ss
�
�
�
��

S
S
S
Sw

�
�
�
�
���

J
J
J
J
JĴ

(b) The inner vertices
are at (20,40) and

(13.64,54.55).

s s

ss

�

C
C
C
C
CCW

�
�
�
�/

A
A
A
AU

(c) The inner vertices
are at (36.36,54.55) and

(30,40).

s s
s s��
�
�
��

S
S
S
S
Sw

�

@
@
@R

(d) The inner vertices
are at (12.5,50) and

(20,30).

s s
s

s
�

�
�	

S
S
Sw

�
�
�
�
���

J
J
J
J
JĴ

(e) The inner vertices
are at (28.57,28.57) and

(13.64,54.55).

Figure 29: The five drawings of the graph with encoding 2 2 1 01 01 with
γ = 10.

To answer the first question, see the drawings in Figure 30.

s s
ss
�
�
��/

S
S
SSw

�

J
J
J
Ĵ

(a) The inner vertices
are at (25,37.5) and

(25,33.33).

s s
ss
�
�
��/

S
S
SSw

�
�
�
�
�

J
J
J
J
Ĵ

(b) The inner vertices
are at (25,33.33) and

(16.67,50).

s s
ss
�

�
��	

A
A
AAU

�
�
�
�
�/

C
C
C
C
CW

(c) The inner vertices
are at (33.33,33.33) and

(37.5,50).

s s

s
s��

�
�
�
��

B
B
B
B
B
BN

�
�
��/

J
J
JĴ

(d) The inner vertices
are at (30,60) and

(26.47,35.29).

s s

s
s���

�
�
�

A
A
A
A
A
AU

�
�
���

@
@
@@R

(e) The inner vertices
are at (20,60) and

(16.67,33.33).

Figure 30: The five drawings of the graph with encoding 2 2 1 01 01 with
γ = 10 and ε = 5.

42

As we can see in Figure 30, there is not a lot of difference when we increase
ε to 5 compared to when ε is 1 as in Figure 29. The best drawings still have
no intersections.

Let us now look at if we can make the drawings more symmetric. As
we’ve noticed in Section 6.1, the drawings seem to become more symmetric
if we take measures to shorten the edges. I can do that in 4 ways, I can
increase β or cle, or I can decrease α or cse. As concluded in the section on
the wedge, higher values of β or α make the lengths of the vertices converge
to l0. In this case I suspect I will get drawings like in Subfigure 30a. I don’t
want my vertices to be so close together, so I will try to increase cle and
decrease cse. The best five results for α = β = 5, cse = 3, cle = 7, γ = 10
and ε = 5 are given in Figure 31.

s s
ss
�
�
��/

J
J
JĴ

�

A
A
A
AAU

(a) The inner vertices
are at (26.47,35.29) and

(28.57,42.86).

s s
ss
�
�
��/

S
S
SSw

�
�
�
���

J
J
J
JĴ

(b) The inner vertices
are at (21.43,42.86) and

(25,33.33).

s s
ss

�

J
J
J
Ĵ

�
�
�	

S
S
Sw

(c) The inner vertices
are at (25,37.5) and

(28.57,28.57).

s s
s s
�
�
�/

@
@
@R

�

A
A
A
AAU

(d) The inner vertices
are at (21.43,28.57) and

(28.57,42.86).

s s
ss��

�
�
��

A
A
A
A
AU

�
�
��/

S
S
SSw

(e) The inner vertices
are at (25,50) and

(25,33.33).

Figure 31: The five drawings of the graph with encoding 2 2 1 01 01 with
cle = 7 and cse = 3.

The best three drawings do unfortunately still have their vertices very
close to each other.

This is why the unrelated vertices score was introduced, so I will hence
now set ζ = 1, cdv = 1 and `1 = 10. The three best drawing are given in
Figure 32. Even though the vertices in Subfigure 32c are 12.5pt apart, I still
find them too close to each other. I will therefore increase `1 to 20. The
three best resulting drawings are given in Figure 33. This still does not seem

43

s s
ss

�

J
J
J
Ĵ

�
�
�/

@
@
@R

(a) The inner vertices
are at (25,37.5) and

(21.42,28.57).

s s
ss

�
��	

@
@@R

�

A
A
A
AAU

(b) The inner vertices
are at (28.57,42.86) and

(25,25).

s s
ss

�
�

�
�	

B
B
B
BN

�
�
�
�
�/

C
C
C
C
CW

(c) The inner vertices
are at (37.5,37.5)) and

(37.5,50).

Figure 32: The three drawings of the graph with encoding 2 2 1 01 01 with
cdv = 1, cle = 7 and cse = 3.

s s
ss

�

@
@
@R

�
�
�
��

S
S
S
Sw

(a) The inner vertices
are at (20,30)) and

(20,40).

s s
ss�

�
�
�
��

A
A
A
A
AU

�
�
��/

J
J
JĴ

(b) The inner vertices
are at (26.47,35.29) and

(25,50).

s s
ss

�

S
S
SSw

�
�
�/

@
@
@R

(c) The inner vertices
are at (21.43,28.57) and

(23.53,35.29).

Figure 33: The three drawings of the graph with encoding 2 2 1 01 01 with
`1 = 20.

to work a great deal, so I will increase ζ to 5, so that for a drawing to be
good, the distance between the unrelated vertices must be larger. The best
3 drawing for this are given in Figure 34. These drawings look quite a lot

s s
ss��

�
�
�/

B
B
B
B
BN

�
�
�	

S
S
Sw

(a) The inner vertices
are at (34.62,46.15))
and (28.57,28.57).

s s
ss

�
�
��	

A
A
AAU

�

B
B
B
B
BN

(b) The inner vertices
are at (33.33,50) and

(33.33,33.33).

s s
s s

�
�
�	

J
J
Ĵ

�
�
�
�
�/

C
C
C
C
CW

(c) The inner vertices
are at (30,30) and

(37.5,50).

Figure 34: The three drawings of the graph with encoding 2 2 1 01 01 with
ζ = 5.

more acceptable, but what would have happened if instead of ζ, cdv had been
increased to 5? The resulting drawings with α = β = 5, cle = 7, cse = 3,

44

ζ = 1 and cdv = 5 (and `2 = 20) are shown in Figure 35. There doesn’t seem

s s
ss

�

S
S
SSw

�
�
�
�
�

J
J
J
J
Ĵ

(a) The inner vertices
are at (23.53,35.29))

and (16.67,50).

s s
ss

�

@
@
@R

�
�
�
�
��

S
S
S
S
Sw

(b) The inner vertices
are at (20,30) and

(12.5,50).

s s
ss
�
�
�
��

S
S
S
Sw

�
�
�
�
���

J
J
J
J
JĴ

(c) The inner vertices
are at (20,40) and

(13.64,54.55).

Figure 35: The three drawings of the graph with encoding 2 2 1 01 01 with
cdv = 5.

to be a big difference, but the vertices in Subfigure 35a, are closer together
than in Subfigure 34a. So setting cdv = 5 seems to be less effective than
setting ζ = 5. Secondly, the distance between the vertices seems to be more
constant when ζ = 5 compared to when cdv = 5.

It might also be interesting to look at what happens if α and β are less
than 1. As discussed in Subsection 5.1, decreasing the value of α and β below
1, will lead to less strict bounds on the length of the edges. I would suspect
that α and β less than 1 and ζ = 5 and cdv = 5 might lead to the inner
vertices being even further apart. The three best resulting drawings with
α = β = 0.9 are shown in Figure 36. These drawings start to look like what

s ss
s
���9 PPPq

�
�
�
�

@
@
@
@R

(a) The inner vertices
are at (28.57,7.14) and

(12.5,37.5).

s s
s
s
�
�
�
�/

A
A
A
AU���) PPPq

(b) The inner vertices
are at (30,40) and

(25,8.33).

s s
s

s���9 PPPq

�
�
�

Z
Z
Z
Z~

(c) The inner vertices
are at (10,30) and

(28.57,7.14).

Figure 36: The three drawings of the graph with encoding 2 2 1 01 01 with
cdv = ζ = 5 and α = β = 0.9.

I was hoping for, however I think the inner wedges are quite a bit too flat.
This is because cse is still 3 and cle is still 7, so let us run the code again with
cse = cle = 5. The three best drawings are shown in Figure 37. I find that
these drawings look quite acceptable now. The only problem might be that
they are too tall. But I will not do anything about that for now.

45

s s

s
s
�
�
��/

S
S
SSw

�
�
�
�
�
�
��

B
B
B
B
B
B
BBN

(a) The inner vertices
are at (25,33.33) and

(25,75).

s s
s

s
�

�
�=

@
@@R

�
�
�
�
���

J
J
J
J
JĴ

(b) The inner vertices
are at (28.57,21.43) and

(13.64,54.55).

s s

s
s
B
B
B
B
B
BN

�
�
�
�
�
��

�
�

��=

A
A
AU

(c) The inner vertices
are at (36.36,27.27) and

(30,60).

Figure 37: The three drawings of the graph with encoding 2 2 1 01 01 with
cse = cle = 5.

Since I now managed to make an acceptable drawing of the graph with
encoding 2 2 1 01 01, with the parameters α = β = 0.9, cse = cle = 5,
cdv = 5 and ζ = 5 (and `0 = 50 and `1 = 20).

I will now move on to the more difficult graph with 3 internal vertices
with encoding 2 3 1 01 12 12. In Figure 38 we see a first attempt at drawing
the graph with the function DrawGraph_compute_and_draw.

Figure 38: A drawing of the graph with encoding 2 2 1 01 12 12.

6.3 The Graph With Encoding 2 3 1 01 12 12

6.3.1 Some Probability Theory

To run the function for this graph, I estimated what I had to fill in for
num_of_iterations so that I had probability P of picking at least 1 of the

46

best 5 elements. For a graph of order n the probability of picking one of
the best five elements in one try is 5/552n if using DrawGraph_algorithm.
However, I’m using DrawGraph_filter, which means that not all 552n op-
tions of possible inclines can also be an output. I ran all possible inclines for
the wedge, and found that only 253 of the total 552 options gave an accept-
able output. For the graph with encoding 2 2 1 01 01 only 56, 672 of the
5522 = 304, 702 options gave an acceptable output and for the graph with
encoding 2 2 1 01 12 only 65, 457 options gave an acceptable output.3

Idea. The number of acceptable outputs for a graph of order n is less than
(552/2)n.

Hence the change of picking one of the 5 best sets of coordinates of a
graph of order n using DrawGraph_filter, would be around 5·(2/552)n. If we
know this, we can use the cumulative distribution function of the geometric
distribution as used in probability theory:

P (X ≤ k) = 1− (1− p)k. (13)

Where P (X ≤ k) is the probability that there occurs a success (picking one
of the best 5 sets of coordinates in this case) in k tries. The change of success
in each individual try is denoted by p, so that would be 5 · (2/552)n in this
case. We can now calculate from Equation 13 that if we want a change P of
success, k needs to be:

k =
log(1− P)

log(1− p)
.

For n = 3 and P = 0.8, this leads to a value of k of 6, 767, 549. For P = 0.5,
k = 2, 914, 624 . However, running the programme for all possible inclines
for order 2, so for 5522 = 304, 704 iterations took already more than 10
minutes. That would mean that to run the programme for order 3 and to
have a certainty of more than 50 percent that we pick one of the best 5 sets of
coordinates, I would probably have to wait more than 100 minutes, in which
I am not even taking into account the fact that higher orders take longer to

3I also tried to run the graph with encoding 2 3 1 01 12 12 for all possible inclines, but
it wasn’t done after 2 hours of running. (I measured that the time needed to run through
all possible inclines for order 1 is just less than a second, but for order 2 it is already
around 800s. If we assume that order 3 would be 800 times that, it would mean that
running through all inclines for order 3 would cost my programme more than 177 hours!)
I hence decided against running the programme through for all inclines for order 3.

47

run anyway. I do not have the time for that, so instead I calculated that if I
want to take at least one of the best 0.1 percent4 of the possible acceptable
solutions. I would have to have k = 3000.5 So, I set num_of_iterations at
3000 for this section.

The point of the above is to give a foundation for the number of iterations
I choose to run the programme with.

6.3.2 Tuning the Target Function

I first ran the graph with the parameters as I ended up with them in Section
6.2. That is, `0 = 50, `1 = 20, cse = cle = 5, cdv = 5, α = β = 0.9,
γ = 10, ε = 5 and ζ = 5. This gave the drawings in Figure 39 as the three
best solutions. Let us first notice that the length of the edges seems to be

s s
s s

sC
C
C
CCW

Z
Z
Z
Z
Z
ZZ~

��������9
�
�
�
�
�
���

XXX
XXy

A
A
AAU

(a) The inner vertices
are at (-11.54,46.15),

(66.41,65.64) and
(32.42,35.16).

s s

s s
s
�
�
�
�
�
�

A
A
A
A
A
AU

�
�
�
�
�
�
��

6

Q
Q
Qs

(b) The inner vertices
are at (20,60), (80,60)

and (20,20).

s s

s ss

�

C
C
C
C
CCW

XX
XXX

XXy

�
�

�
�
��+

@
@

@
@I

�
��=

(c) The inner vertices
are at (36.36,54.55),
(105.79,37.19) and

(73.83,17.53).

Figure 39: The three best drawings of the graph with encoding 2 2 1 01 12 12
with the parameters as mentioned in the beginning of the section.

fine, moreover, there are no intersections. The biggest problem with these
drawings is that one of the wedges on the outside is inside the original wedge
(one of the wedges encoded by 12 is inside the wedge encoded by 01). Since
drawing the third vertex inside the first wedge inevitably leads to vertices
that are close together, I will try to solve this by increasing cdv to 10. As
I mentioned in Section 5 the values of the c’s determine the importance of

4However, the best 0.1 percent for order 3 still contains (552/2)3 · 0.001 ≈ 21, 025
different elements, so the solutions will change on each iteration.

5Also note that this calculation is the same for all other orders. If one takes k = 3000,
one always has 95% possibility of picking one of the best 0.1 procent of the solutions.
However for order 1, the best 0.1 percent is the best solution and for order 2 it is one of
the 76 best solutions.

48

that term in the target function. The three best drawings with cdv = 10
are given in Figure 40. These drawings all do not have a vertex inside the

s s
s

ss

�

B
B
B
B
BN

PP
PP

PP
Pi

���
����

HH
HHY

�
�
���

(a) The inner vertices
are at (33.33,50),
(103.33,26.67) and

(66.67,33.33).

s s
s

s
sA

A
A
A
AU

Q
Q
Q
Q
Q
Q
QQs

���
����

C
C
C
C
C
C
C
CW

PP
PP

PPi

J
J
JĴ

(b) The inner vertices
are at (-25,50),

(30.56,77.78) and
(28.57,32.14).

s s

s
s s

�

C
C
C
C
CCW

@
@
@I

�
�
��

HH
HH

H
HHY

��
����

(c) The inner vertices
are at (36.36,54.55,
(63.64,27.27) and

(97.73,23.86).

Figure 40: The three best drawings of the graph with encoding 2 2 1 01 12 12
with cdv = 10.

original wedge, so that is an improvement. However, the drawings are very
much overshooting the line x = 50, which is not convenient if one tries to
draw multiple different drawings on one line (as we can see in how Figure
40a and 40b almost intersect). I will try to solve this problem by adding an
overshoot score to the target function (see Section 5.4). I will start by setting
cos and ι at 1. The three best resulting drawings are given in Figure 41.

s s

s
s

s���
�
�
�

A
A
A
A
A
AU

�
�
�
�/

?

C
C
CO

S
S
Sw

(a) The inner vertices
are at (20,60), (50,100)

and (27.5,30).

s s

s s
s

?

S
S
S
S
S
S
Sw

����9 C
C
C
C
C
C
CCW

�
�

�
�
�=

?

(b) The inner vertices
are at (-25,50),

(31.37,74.51) and
(50,104.17).

s s

s s
s

?

A
A
A
A
A
A
A
A
A
AU

HH
HY

C
C
C
C
C
C
C
CCW

B
B
B
B
B
BM

S
S
S
Sw

(c) The inner vertices
are at (0,100)

(28.57,85.71) and
(20,40).

Figure 41: The three best drawings of the graph with encoding 2 2 1 01 12 12
with c0s = 1 and ι = 1.

49

The overshoot score works, none of the best three drawings have vertices
with an x-coordinate outside of the interval [0, 50]. However, the graphs are
all very tall. I will try to get them a bit flatter by increasing cle to 7, the
resulting drawings are given in Figure 42. While I think that these drawings

s s
s s

s
�
�
�
��

@
@
@
@R

HH
HHY

B
BBN

�
�

�
�=

?

(a) The inner vertices
are at (10,40), (42,24)

and (50,70).

s s
s s

s�
�
��

Q
Q
Q
QQs

�����)

?
@

@@I

PPPq

(b) The inner vertices
are at (7.14,28.57),

(50,42.86) and
(28.57,7.14).

s s
s

s
s

�
�
�

Q
Q
Q
Qs

�
�

�
��	

?

�
A
A
AU

(c) The inner vertices
are at (9.09,27.27)

(50,68.18) and
(36.36,27.27).

Figure 42: The three best drawings of the graph with encoding 2 2 1 01 12 12
with cle = 7.

look better than the ones in Figure 41, the drawing in Subfigure 42b still
has a vertex inside the original wedge. Because the unrelated vertices are
actually on a proper distance from each other, it seems to be more efficient
to ‘punish’ graphs for drawing vertices with a low height. For this purpose
I added the height y-coordinate score to the target function (see Subsection
5.5). I set chy and θ at 10, and `2 at 0.4 · `0. This did however result at
inner vertices again being very high. With the highest inner vertex in the
best three drawings having y-coordinate 100. Recalling from our tuning of
α in Subsection 6.1 that increasing α did not necessary lead to longer edges,
but in fact to edges with length converting to `0. Keeping this in mind,
I increased θ even more to 20, the best three resulting drawings are given
in Figure 43. This seems to work, these figures are however still a far cry
from the example drawings in Section 1 (see Figure 1). While because of the
overlapping edges test, I will not be able to exactly draw the figure there, one
can look at the drawings to conclude a few things about how a nice drawing
must look. Apart from everything I have discussed before, we can see that
the drawings have a preference for vertical lines, and in fact not even only for
edges, but also for unrelated vertices to be positioned right above each other.
Secondly, the drawings often have three or more vertices positioned along one
(not necessarily drawn) line. I hence added two extra scores to the target

50

s s
s s

s
?

@
@
@
@
@R

���) B
B
B
B
B
BN

Q
Q

QQk

A
AAU

(a) The inner vertices
are at (0,50), (30,60)

and (37.5,25).

s s
s s

s

�

Z
Z
ZZ~

�
B
BBN

�
�
�
�
���

C
C
C
C
C
C
C
CW

(b) The inner vertices
are at (16.67,25),

(41.67,25) and
(30.21,79.17).

s s
s s

s
�
�
�
�

@
@
@
@R

Z
ZZ}

S
SSw

C
C
CW

J
J
J
J
J
J
Ĵ

(c) The inner vertices
are at (12.5,37.5)
(3.93,21.43) and

(5,67.5).

Figure 43: The three best drawings of the graph with encoding 2 2 1 01 12 12
with θ = 20.

function: the points on line score and the vertical lines score (See Sections
5.6 respectively 5.7). Other than all the other scores in the target function,
both these scores are negative, only decreasing the target function if there
are vertical lines or more than two points positioned on one line. I started
with looking at the effect of the points on line score. Because the score works
basically opposite from the intersections score, I set the parameters at the
same value as the intersections score, i.e. κ = 10 and λ = 5. The results

s s
s s

s

�
�
�
��

S
S
S
S
Sw

Q
Qk

A
A
AAU

�
�
�
�
�
�
�
�
�
��

?

(a) The inner vertices are at
(15.38,46.15), (33.85,32.31)

and (50,150).

s s
s s
s
?

@
@
@
@
@R

�	J
J
J
J
J
Ĵ

B
BM

Z
Z
Z
ZZ~

(b) The inner vertices
are at (0,50), (10,60)

and (5.56,33.33).

s ss
s
s

�

HHHHj

�
�
�/

B
B
B
B
BN

��9
S
SSw

(c) The inner vertices
are at (13.64,18.18)
(34.62,46.15) and

(32.78,22.97).

Figure 44: The three best drawings of the graph with encoding 2 2 1 01 12 12
with κ = 10 and λ = 5.

51

are given in Figure 44. Only the first two graphs have more than 2 vertices
lying on one line (if you calculate the inclines in Figure 44c you will see that
the points are not lying on one line, even if it might look like they do). The
drawings also still do not have intersections, however if κ and λ are 10 times
as large as the γ and ε of the intersections score, we will get points lying on
one line, but the number of intersections will barely be considered anymore,
see Figure 45.

s s
s ss
�
�
�
�
��

A
A
A
A
AU

�
�
�
�
�
��

�
��
C
C
C
C
C
CCW

Figure 45: The best drawing of the graph with encoding 2 2 1 01 12 12 with
κ = 100 and λ = 50. The inner vertices are at (12.5,37.5), (0,25) and (0,75).

Let’s now look at the vertical lines score. If I set µ = 10 and ν = 5,
similar to the points on line score, I get the drawings in Figure 46 as the best
three drawings. All these drawings have at least 2 vertical lines, they do also

s s
s

s
s

?

HH
HHHj

?

S
S
S
S
S
S
Sw

�

?

(a) The inner vertices
are at (0,25), (0,66.67)

and (50,100).

s s
s s
s

?

Z
Z
Z
Z
Z~

�
B
B
B
BN

?

J
J
J
J
J
J
JĴ

(b) The inner vertices
are at (0,37.5),

(37.5,37.5) and (0,75).

s ss
ss
?

PPPPPq

?

Z
Z
Z
Z
Z~

���
Q
Q
Q
QQs

(c) The inner vertices
are at (0,16.67) (0,37.5)

and (3.57,30.96).

Figure 46: The three best drawings of the graph with encoding 2 2 1 01 12 12
with µ = 10 and ν = 5.

have intersections and in the last case, unrelated vertices on a close distance.
We can find that if we decrease µ to 4 and ν to 2, we still have at least 2
vertical lines in the best three drawings, but no intersections anymore. The
best drawing for these values is given in Figure 47.

52

s s
s

s
s

?

Q
Q
Q
Q
Qs

�
�

�
�
�	

?

���9 A
A
A
AU

Figure 47: The best drawing of the graph with encoding 2 2 1 01 12 12
with µ = 4 and ν = 2. The inner vertices are at (0,33.33), (50,83.33) and
(29.63,40.74).

This drawing looks quite acceptable, so let’s now look at what happens
if we use both the points on line score and the vertical lines score. Using the
parameters as determined before, we get the drawings in Figure 48 as the
best three results6.

s s
s ss
?

HHHHHj

��
���

C
C
C
CCW

?

@
@
@
@
@R

(a) The inner vertices
are at (0,25),

(38.89,44.44) and (0,50).

s s
s

s

s
?

HHHHHj

?

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW

��Z
Z
Z
Z~

(b) The inner vertices
are at (0,25), (0,200)

and (10,30).

s s
s

s

s
?

Q
Q
Q
Q
Qs

�
�
�
�
�
�
�
�
�
��

?

XXX
XXy

B
BBN

(c) The inner vertices
are at (0,33.33)
(50,133.33) and
(42.42,22.73).

Figure 48: The three best drawings of the graph with encoding 2 2 1 01 12 12
with κ = 10, λ = 5, µ = 4 and ν = 2.

6In order to get more accurate results from now on I increase the number of iterations
to 5000.

53

The first drawing here has as problem that there is an intersection again,
the other two drawings have as problem that the edges are too long. I hence
increase γ to 15 and cle also to 15. The best three drawings are given in Figure
49. These drawings look quite acceptable now. In the following section I will

s s
s s s

�

Q
Q
QQs

��	 A
A
A
AU

�

C
C
C
C
CCW

(a) The inner vertices
are at (15.38,23.07),

(30.77,38,46) and
(36.36,54.55).

s s
s

s

s
�
�
�
�
��

S
S
S
S
Sw

�
�
�
�
��

C
C
C
C
C
C
C
C
C
CW

6

HHHHj

(b) The inner vertices
are at (12.5,50),

(25,100) and
(12.5,18.75).

s s
s

s
s

?

HHH
HHj

�
�
�

�
�	

?

���� A
A
A
AU

(c) The inner vertices
are at (0,25) (50,75)
and (42.42,22.73).

Figure 49: The three best drawings of the graph with encoding 2 2 1 01 12 12
with γ = 15 and cle = 15.

look at what all other graphs up till order three, without 2-cycles, look like
with these parameters.

6.4 All Graphs up to Order 3

In this section, I will not look at any mirroring graphs. For example the
graphs with encoding 2 2 1 01 12 and 2 2 1 01 02 are mirror images of each
other, so I will only look at the graph with the first encoding. The graphs I
will hence look at have encodings:

• Order 1: 2 1 1 01;

• Order 2: 2 2 1 01 12 and 2 2 1 01 01;

• Order 3: 2 3 1 01 12 12, 2 3 1 01 01 12, 2 3 1 01 01 01,
2 3 1 01 12 23 and 2 3 1 01 04 12.

Recall that I used the parameters `0 = 50, `1 = 20, `2 = 0.4 · `0, cse = 5,
cle = 15, cdv = 10, chy = 10, cos = 1, α = 0.9, β = 0.9, γ = 15, ε = 5, ζ = 5,
ι = 1, θ = 20, κ = 10, λ = 5, µ = 4 and ν = 2.

54

s s
s
?

HHH
HHj

(a) The graph with
encoding 2 1 1 01
with inner vertex

at (0,25).

s s
s

s
?

@
@
@
@
@R

�
��/

Z
Z
ZZ~

(b) The graph with
encoding

2 2 1 01 01 with
inner vertices at

(0,50) and (18,24).

s s
s
s
?

HH
HHHj

?

@
@
@
@
@R

(c) The graph with
encoding

2 2 1 01 12 with
inner vertices at

(0,25) and (0,50).

s s
s

s

s
�
�
�
�
��

S
S
S
S
Sw

�
�
�=

@
@@R

�
�
���

B
B
B
B
B
B
B
BBN

(d) The graph with
encoding

2 3 1 01 01 12 with
inner vertices at

(12.5,50),
(28.57,21.43) and

(21.43,85.71).

s ss

s

s
�

�
�+

@
@R?

B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�/

A
A
A
AU

(e) The graph with
encoding

2 3 1 01 01 01 with
inner vertices at
(30,20), (0,150)

and (30,40).

s s

s s

s

?

J
J
J
J
J
J
JĴ

Z
Z}

A
A
A
A
A
AU

?

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW

(f) The graph with
encoding

2 3 1 01 12 12 with
inner vertices at

(0,75), (20,60) and
(0,200).

s s
s

s
s

�
���

Q
Q
QQs

�
�
�
�=

?

�
�
�
�
�
�
���

?

(g) The graph with
encoding

2 3 1 01 12 23 with
inner vertices at

(12.5,25),
(50,53.125) and

(50,100).

s s
s

s

s
�
���

Q
Q
QQs

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

?
�
�

�
�	

?

(h) The graph with
encoding

2 3 1 01 04 12 with
inner vertices at

(12.5,25), (50,150)
and (50,62.5).

Figure 50: The best drawings of all graphs up to order 3, save for mirroring
images, with the parameters as mentioned in the beginning of the section.

When I run these graphs through the target function7, I get the drawings

7The graphs up to order 2 have been run through all possible inclines, the graphs of

55

in Figure 50 as the best. These drawings do not at all look ugly! There
are no intersections and all vertices are drawn on a reasonable distance from
each other.

The main problem in these drawings is that a couple of them are very tall,
I hence increase cle to 20 and β to 1.5. It also appears that the horizontal
lines has gone a bit too far, so I will look at what happens if I decrease µ to
2 and ν to 1. The best resulting drawings are given in Figure 51.

s s
s
�

��	

@
@@R

(a) The graph with
encoding 2 1 1 01
with inner vertex

at (25,25).

s s
s

s
�
��	

Z
Z
Z~

�
�
�
�
�/

B
B
B
B
BN

(b) The graph with
encoding

2 2 1 01 01 with
inner vertices at
(21.43,21.43) and

(34.62,46.15).

s s
s s

�
�
�=

@
@@R

�
��=

?

(c) The graph with
encoding

2 2 1 01 12 with
inner vertices at
(28.57,21.43) and

(50,37.5).

s s
s

s
s
�

�
��+

S
SSw

�
�
�
�
�
�
�
���

B
B
B
B
B
B
B
BBN

�
�
�
���

J
J
J
JĴ

(d) The graph with
encoding

2 3 1 01 01 01 with
inner vertices at

(33.33,22.22),
(21.43,85.71) and

(21.43,42.85).

s s
s

s

s
�
�
�
�
��

S
S
S
S
Sw

�
�
�=

@
@@R

�
�
���

B
B
B
B
B
B
B
BBN

(e) The graph with
encoding

2 3 1 01 01 12 with
inner vertices at

(12.5,50),
(28.57,21.43) and

(21.43,85.71).

s s
s

s
s�

�
��

Z
Z
ZZ~

�
�
�
��

C
C
C
C
C
CCW

XXXy

J
JĴ

(f) The graph with
encoding

2 3 1 01 12 12 with
inner vertices at

(13.64,27.27),
(33.33,66.67) and

(35.45,21.82).

s s
s

s
s

�
���

Q
Q
QQs

�
�
�
�=

?

�
�
�
�
�
�
���

?

(g) The graph with
encoding

2 3 1 01 12 23 with
inner vertices at

(12.5,25),
(50,53.125) and

(50,100).

s s
ss s

�
�
�=

@
@@R

B
B
B
BN

-
�
��=

?

(h) The graph with
encoding

2 3 1 01 04 12 with
inner vertices at

(28.57,21.43),
(-12.5,37.5) and

(50,37.5).

Figure 51: The best drawings of all graphs without 2-cycles up to order 3
with cle = 20, β = 1.5, µ = 2 and ν = 1.

order 3 are run for 10,000 iterations.

56

These drawings look already very good, they are more symmetric and
less high. Notably, the drawing of the wedge in Figure 51a is completely
symmetric and the drawing in Figure 51h now has 3 points on one line and
a horizontal line.

One should of course keep in mind that we have only used 10,000 iterations
for the graphs of order 3. It is hence possible that the best graphs of order
3 are not in our sample.

I tried to get slightly more horizontal lines, by increasing ν to 2, in the
hope that the vertices in Figure 51b would be situated straight above each
other. However, this only gave a different drawing for the graph with encod-
ing 2 2 1 01 12 (see Figure 52) which I actually thought less beautiful than
the drawing in Figure 51b.

s s
s
s
?

HHH
HHj

?

@
@
@
@
@R

Figure 52: The best drawing of the graphs with encoding 2 2 1 01 12 with
ν = 2.

Because one could also argue that the first three and last drawing of
Figure 51 might actually be too short, I also looked at what would happen
if I decreased cle again to 15, while at the same time also decreasing chy to 5
to make sure not all graphs would become very tall again. This did however
give the exact same effect as increasing µ to 2, as did the combination of the
two.

I set the parameters back to how they were in Figure 51, because this is
likely the best possible combination of parameters.

7 Graphs with 2-cycles

I also extended the algorithm to deal with 2-cycles. At first, I thought
that I could simply change the function overlapping_edges_test to accept
overlapping edges if they were pointing to each other, however it wasn’t that
simple.

57

7.1 Changing the Programme

Like I said above, while changing the function overlapping_edges_test was
absolutely necessary, it didn’t solve all problems. I did get no solutions using
DrawGraph_filter and when using DrawGraph_algorithm I could only get
solutions where the vertices that were supposed to be in a two cycle sat at
the same point. Why did this happen? To see this, let us look at an example
using the graph with encoding 2 2 1 03 12. A drawing of this graph is given
in Figure 53.

s s
s s
? ?

Y
j

Figure 53: A drawing of the graph with encoding 2 2 1 03 12.

Example 16. The graph with encoding 2 2 1 03 12 corresponds to a matrix
A of the form:

A =

bL1 −aL1 0 0
bR1 −aR1 −bR1 aR1
0 0 bL2 −al2
−bR2 aR2 bR2 −aR2

 .
Recall that the corresponding vector b would be of the form: [0, 0, δ · bL2 , 0]T

and that Ax = b. From the second and fourth row of the equations, the
following equations can always be made:

x1 − x2 = 0

y1 − y2 = 0.

(Just add (aR1 /a
L
2) times the fourth row to the second row and divide the

resulting second row by −bR1 . After that the second equation is simply gotten
by subtracting aR2 times the resulting second row from the fourth row.) This
implies that x1 would always have to be x2 and y1 needs to be y2. Hence the
two vertices of the 2-cycle will end up in the same point.

As the example shows, our current way of building the matrix A is not
sufficient anymore. R. Buring suggested that I could maybe change the graph

58

into one without 2-cycles, by adding an extra vertex inside the 2-cycle and 2
more extra vertices on top and on the bottom of the 2-cycle. See Figure 54
for an illustration. However this graph had the same problem where all the

s s
s sss

s

? ?

-�
6
?

HH
HY

HHHj��
�*

�
���

Figure 54: A drawing of the graph with encoding 2 2 1 03 12, but with extra
vertices, essentially making it a graph with encoding 2 5 1 06 25 13 24 45.

vertices would end up in the same point.
I hence had to come up with a different solution, which would permit

me to draw graphs with 2-cycles. I decided that in the case of a 2-cycle, I
would set the height of the first vertex of the 2-cycle at δ (recall that δ is
the distance between the sinks). This will make sure that the matrix is not
always singular nor that the points of the inner vertices will always be drawn
at the same point.

Example 17. Let us return to Example 16. With my changes to the way
the matrix A is build, the matrix A will be of the form:

A =

bL1 −aL1 0 0
0 1 0 0
0 0 bL2 −al2
−bR2 aR2 bR2 −aR2

 .
The corresponding vector b will be of the form [0, δ, δ ·bL2 , 0]T . The coordinate
y1 will always be δ, but all other coordinates can be chosen in a variety of
ways.

An example of what a graph drawn with this underlying algorithm looks
like is given in Figure 55.

7.2 Tuning the Target Function

I will start with looking at all graphs with 2-cycles up to order 3, i.e. the
graphs with encodings: 2 2 1 03 12, 2 3 1 03 12 23, 2 3 1 03 12 12 and

59

Figure 55: The graph with encoding 2 2 1 03 12 drawn with the function
DrawGraph_compute_and_draw.

2 3 1 01 04 13. The order 2 graph will be run over all possible inclines, the
order 3 graphs will be run over only 10,000 iterations. The drawing of all
graphs with the parameters as established at the end of section 6.4 is given
in Figure 56. The main problem with these drawings seems to be that the

s s
ss

?

U
KS
S
S
S
S
S
Sw

(a) The graph with
encoding

2 2 1 03 12 with
inner vertex at

(0,50) and
(0,66.67).

s s
s s

s
B
B
B
B
BN

)
1
@
@
@
@@R

B
BBN

@
@
@R

(b) The graph with
encoding

2 3 1 03 12 23 with
inner vertices at

(-16.67,50),
(5.56,44.44) and

(-25,75).

s s
s s
s

?

Yj
S
S
S
S
Sw

?

J
J
J
J
J
J
JĴ

(c) The graph with
encoding

2 3 1 03 12 12 with
inner vertices at
(0,50), (12.5,50)

and (0,75).

s s
s

s s
�

�
��+

A
AAU

�
�
�
�
��

�
�C
C
C
C
C
CCW

(d) The graph with
encoding

2 3 1 01 01 01 with
inner vertices at
(37.5,35), (25,50)
and (33.33,66.67).

Figure 56: The best drawings of all graphs with 2-cycles up to order 3 with
the parameters as in the end of Section 6.4.

graphs are too focused on getting points lying on one line. I hence decrease
κ to 5. The resulting drawings are given in Figure 57.

It is also important to look at what such a change of parameter does with
the drawings of the graphs without 2-cycles. Only the graphs with encoding

60

s s
s
s���

�
��

K

U
@
@@R

(a) The graph with
encoding

2 2 1 03 12 with
inner vertex at

(25,50) and
(25.25).

s s
s s

s
B
B
B
B
BN

)
1
@
@
@
@@R

B
BBN

@
@
@R

(b) The graph with
encoding

2 3 1 03 12 23 with
inner vertices at

(-16.67,50),
(5.56,44.44) and

(-25,75).

s s
s

s s
?

k

s
Q
Q
QQs

PP
PPPi

C
C
C
CW

(c) The graph with
encoding

2 3 1 03 12 12 with
inner vertices at
(0,50), (12.5,50)

and (40.91,36.36).

s s
s

s s
�

�
��+

A
AAU

�
�
�
�
��

�
�C
C
C
C
C
CCW

(d) The graph with
encoding

2 3 1 01 01 01 with
inner vertices at
(37.5,35), (25,50)
and (33.33,66.67).

Figure 57: The best drawings of all graphs with 2-cycles up to order 3 with
κ = 5.

2 3 1 01 01 12 and 2 3 01 04 12 are affected, their drawings can be seen
in Figure 58. Luckily the resulting drawings are not a lot uglier than the

s s
s
s s�

�
�
���

J
J
J
JĴ

�
��	

Z
Z
Z~

HH
HHY

�
��

(a) The graph with
encoding 2 3 1 01 01 12
with inner vertices at

(21.43,42.86),
(21.43,21.43) and

(58.16,24.49).

s s
s

s
s

�
��/

Q
Q
QQs?

H
HHHHj�

?

(b) The graph with
encoding 2 3 1 01 04 12
with inner vertices at

(16.67,22.22), (0,47.22)
and (50,22.22).

Figure 58: The best drawings of the two graphs without 2-cycles up to order
3 that change with κ = 5.

drawings we had. However, the drawing in Figure 58a does overshoot the
bound of x = δ.

The combination of the drawings in Figure 57 and 58 suggests to me that
I should decrease the importance of the vertical lines score even more by
setting µ = 1 and ν = 2 and by increasing the importance of the overshoot
score by setting cos = 2. The only graph with 2-cycle whose best drawing

61

changed is the graph with encoding 2 2 1 03 12, the result is given in Figure
59. The graphs without 2-cycles can of course also change because of this.

s s
s s�
�
�
�
�

M
N
A
A
AAU

Figure 59: The best drawing of the graph 2 2 1 03 12 µ = 1, ν = 2 and
cos = 2. The inner vertices are at (16.67,50) and (33.33,33.33).

However, only the drawing of the graph with encoding 2 3 1 01 01 12 did
change, the result is given in Figure 60.

s s
ss s
�
�
�
���

J
J
J
JĴ

�
��/

Z
Z
ZZ~

�

?

Figure 60: The best drawing of the graph with encoding 2 3 1 01 01 12 with
κ = 5. The inner vertices are at (21.43,42.86), (18,24) and (50,42.86).

I will hence set the ‘best’ parameters to be: `0 = 50, `1 = 20, `2 = 20,
cse = 5, cle = 20, cdv = 10, chy = 10, cos = 2, α = 0.9, β = 1.5, γ = 15, ε = 5,
ζ = 5, θ = 20, ι = 1, κ = 5, λ = 5, µ = 1 and ν = 2. Keep in mind that
this might not be the actual best parameters, but because I haven’t done a
full run through of all possible inclines for the order 3 graphs, it is difficult
to draw definitive conclusions.

8 Graphs of order 4

I didn’t have time to run all the graphs of order 4, but I ran the graphs from
line 41 to 155 excluding symmetries (which would together give drawings of
more than 100 graphs of order 4) of the list of all encodings of Kontsevich
graphs at https://github.com/rburing/kontsevich_graph_series-cpp/
blob/master/data/star4.txt each with 10000 iterations. Recall that for
graphs of order 4 there are 5524 different combinations of inclines, this means
that 10000 iterations is by no means a large (or even significant) sample, but

62

https://github.com/rburing/kontsevich_graph_series-cpp/blob/master/data/star4.txt
https://github.com/rburing/kontsevich_graph_series-cpp/blob/master/data/star4.txt

there were some decent pictures in there.8

I also didn’t have time to actually look at all drawings of these graphs
while determining the best combination of parameters, so I picked a sample of
12 to see the influence of the target function on. Graphs that are on lines close
together often look like, so I picked graphs more or less evenly distributed
over my sample. The graphs I chose have encodings: 2 4 1 01 01 01 01,
2 4 1 01 12 12 13, 2 4 1 01 01 02 13, 2 4 1 01 02 12 12, 2 4 1 01 02 12 13,
2 4 1 01 02 03 12, 2 4 1 01 12 13 34, 2 4 1 01 14 15 24, 2 4 1 03 14 12 14,
2 4 1 03 12 12 12, 2 4 1 03 24 12 24 and 2 4 1 03 14 35 24. I will look at
the drawings of these graphs using the function DrawGraph_draw, but I will
only draw the graphs with encodings 2 4 1 01 12 12 13, 2 4 1 01 14 15 24
and 2 4 1 03 14 12 14 in LATEX.

s s
s

s
s

s
C
C
CW

HHH
HHHj

A
A
A
A
AAU

�
�

��=
J
J
Ĵ

�

?

�

(a) The graph with encoding
2 4 1 01 12 12 13, the inner vertices

have coordinates (−7.14, 28.57),
(24.03, 51.95), (30.95, 28.57) and

(50, 51.95).

s ss
s

s

s

�����) ?

�
��	

��
��

��
��1�
���

���
����

�
�

�
�
�

�
�
�

�
�

�
�
��	

W

6

(b) The graph with encoding
2 4 1 01 14 15 24, the inner vertices

have coordinates (50, 16.67),
(75, 25), (150, 50) and (183.33, 150).

s s
s s

s
s

?

SSw
Q
Q
Q
Qs

�
���J
J
J
J
Ĵ

���

C
CW

@
@
@I

(c) The graph with encoding 2 4 1 03 14 12 14, the inner
vertices have coordinates (0, 40.81), (11.22, 25.85),

(17.09, 49.36) and (44.52, 21.94).

Figure 61: Order 4 graphs with the parameters as the end of Section 7.2.

8The list of all coordinates I considered can be found at https://github.com/

SKerkhove/Bachelors-Project/blob/master/coordinates_order4_part1.txt and
https://github.com/SKerkhove/Bachelors-Project/blob/master/coordinates_

order4_part2.txt

63

https://github.com/SKerkhove/Bachelors-Project/blob/master/coordinates_order4_part1.txt
https://github.com/SKerkhove/Bachelors-Project/blob/master/coordinates_order4_part1.txt
https://github.com/SKerkhove/Bachelors-Project/blob/master/coordinates_order4_part2.txt
https://github.com/SKerkhove/Bachelors-Project/blob/master/coordinates_order4_part2.txt

I will start with the parameters as I determined them in the end of Sec-
tion 7.2. The resulting drawings are shown in Figure 61. Looking at the
drawings, it seems that the biggest problem is too high graphs and over-
shooting the bounds x = 0 and x = 50. I try to solve this by increasing
cle from 20 to 25, β from 1.5 to 2, cos from 2 to 5 and ι from 1 to 2. The
results are shown in Figure 62. We still see overshoot in Figure 62b, more-

s s
s
s s s
?

Z
Z
Z
Z
Z~

J
J
J
J
J
JĴ

�
�� S

S
S
SSw

���
C
C
C
CW

Q
Q

QQk

(a) The graph with encoding
2 4 1 01 12 12 13, the inner vertices

have coordinates (0, 37.5), (8.33, 62.5),
(15.91, 45.45) and (39.58, 41.67).

s s
s s ss

�
���

���

�
�
�

�
�
�
�/

��*�
�
�

�
�	

�
��+

z
y

(b) The graph with encoding
2 4 1 01 14 15 24, the inner vertices
have coordinates (60, 30), (80, 40),

(100, 50) and (84, 46).

s s
s s

s
s

?

SSw
Q
Q
Q
Qs

�
���J
J
J
J
Ĵ

���

C
CW

@
@
@I

(c) The graph with encoding
2 4 1 03 14 12 14, the inner vertices

have coordinates (0, 40.81),
(11.22, 25.85), (17.09, 49.36) and

(44.52, 21.94).

Figure 62: Order 4 graphs with the parameters as the end of Section 7.2, but
cle = 25, cos = 5 β = 2 and ι = 2.

over unrelated vertices are situated close together. I will try to solve this by
increasing cdv from 10 to 15 and cos from 5 to 10. The results are given in
Figure 63. Please keep in mind that I’m only looking at a small sample of
the total number of possible drawings, so there is a chance that I would ac-
tually choose the drawings I have now as the best ones in the sample. These
drawings actually look very good. (Note that the drawings in Subfigures 63a
and 63c are the same as the ones in Subfigures 62a and 62c.) While these
drawings do not really look like my ideal drawing of these graphs, they are all

64

s s
s
s s s
?

Z
Z
Z
Z
Z~

J
J
J
J
J
JĴ

�
�� S

S
S
SSw

���
C
C
C
CW

Q
Q

QQk

(a) The graph with encoding
2 4 1 01 12 12 13, the inner vertices

have coordinates (0, 37.5), (8.33, 62.5),
(15.91, 45.45) and (39.58, 41.67).

s s
s s

ss
�
�
�

Z
Z
Z
Z~?

J
JJ]BB
B
B
BN

?

jY

(b) The graph with encoding
2 4 1 01 14 15 24, the inner vertices
have coordinates (10, 30), (50, 25),

(33.33, 50) and (10, 50).

s s
s s

s
s

?

SSw
Q
Q
Q
Qs

�
���J
J
J
J
Ĵ

���

C
CW

@
@
@I

(c) The graph with encoding 2 4 1 03 14 12 14, the inner
vertices have coordinates (0, 40.81), (11.22, 25.85),

(17.09, 49.36) and (44.52, 21.94).

Figure 63: Order 4 graphs with the parameters as the end of Section 7.2, but
cos = 10 and cdv = 15.

clear to look at. The other drawings that I only drew using DrawGraph_draw

also look good now. For example, the graph with encoding 2 4 1 01 12 13 34
looked terrible in the first two runs (it mainly had an intersection), but it
looks very reasonable under these parameters (see Figure 64).

(a) The ‘best’ drawing of the graph
with the parameters as in Figure 61.

(b) The ’best’ drawing of the graph
with the parameters as in Figure 63.

Figure 64: The ‘best’ drawings of the graph with encoding 2 4 1 01 12 13 34
with different parameters.

65

Because of the size of my sample I find it unlikely that there is a com-
bination of parameters that would give me a more satisfying result. I will
hence now look at whether these parameters also give a nice result for the
graphs up to order 3. Most graphs up to order 3 get more or less the same
result as at the end of Section 7, but the graph with encoding 2 2 1 03 12 23
does look different. The drawing can be seen in Figure 65. However I think

s s
s s
s�

�
�
�
��

)

?

-

AK�
�
�7

Figure 65: The graph with encoding 2 2 1 03 12 23, the inner vertices have
coordinates (25, 50), (50, 66.67) and (30, 40). The parameters are as in

Figure 63.

that this drawing is in some ways better than the one we got at the end of
Section 7 (it’s not overshooting the line y = 0). So while this is not my ideal
drawing, I do think this might be one of the best drawings in the sample.

Therefore, I will conclude that the best drawings of graphs up to order 4
are given by the parameters: `0 = 50, `1 = 20. `2 = 20, cse = 5, cle = 25,
cdv = 15, chy = 10, cos = 10, α = 0.9, β = 2, γ = 15, ε = 5, ζ = 5, θ = 20,
ι = 2, κ = 5, λ = 5, µ = 1 and ν = 2.

It is of course also interesting to see what other graphs or order 4 look like
with these parameters, are they also reasonable? So let’s look at 3 randomly
chosen graphs, they are given in Figure 66. As we can see, these graphs also
look very reasonable. In fact I even quite like the graphs in Subfigures 66a
and 66c. So I think we can conclude that the parameters defined above are
indeed good parameters for graphs up to order 4.

66

s s
s s

s
s

�
�
�
�
�

�

?

-

�
�
�
�
�

M

?

N

(a) The graph with encoding
2 4 1 03 12 25 34, the inner vertices

have coordinates (16.67, 50),
(50, 58.33), (33.33, 100) and (50, 75).

s s
s s

s
s

?

SSw
Q
Q
Q
Qs

�
���J
J
J
J
Ĵ

���

C
CW

@
@
@I

(b) The graph with encoding
2 4 1 03 14 12 14, the inner vertices

have coordinates (0, 40.81),
(11.22, 25.85), (17.09, 49.36) and

(44.52, 21.94).

s s
ss

s
s

�

Q
Q
QQs?

ZZ~

B
B
B
B
B
B
BN

�
�
��/

?

A
A
A
A
AK

(c) The graph with encoding 2 4 1 01 02 13 14, the inner
vertices have coordinates (15.38, 23.08), (0, 34.62),

(26.63, 70.12) and (50, 23.37).

Figure 66: Three randomly chosen order 4 graphs with the parameters as
the end of Section 8.

9 Conclusions

I have given all Kontsevich graphs without 2-cycles up to order 3 that I have
drawn with the algorithm in Table 1.

Table 1: All graphs without 2-cycles up to order 3.

Encoding Hand-Drawn Drawn by the Algorithm

2 2 1 01 s s
s

�

J
J
J
Ĵ s s

s
�

��	

@
@@R

67

2 2 1 01 01 s s
s
s
�

��	

@
@@R

�
�
�
�
��

A
A
A
A
AU s s

s
s
@
@@R

�
�
�=

S
S
S
S
Sw

�
�
�
��

2 2 1 01 12 s s
s

s
�

��	

@
@@R

�
��	

? s s
s s
�

�
�=

@
@@R

�
��=

?

2 3 1 01 01 01 s sss
s

�
��=
Z
ZZ~

�

J
J
J
Ĵ

�
�
�
�
�
�
��

B
B
B
B
B
B
BBN s s

s

s
s
�

�
��+

S
SSw

�
�
�
�
�
�
�
���

B
B
B
B
B
B
B
BBN

�
�
�
���

J
J
J
JĴ

2 3 1 01 01 12 s sss
s

�
��=
Z
ZZ~

�

J
J
J
Ĵ

�

? s s
ss s
�
�
�
���

J
J
J
JĴ

�
��/

Z
Z
ZZ~

�

?

2 3 1 01 12 12 s s
s s

s

�

J
J
J
Ĵ

�
B
B
BBN

�

? s s
s

s
s�

�
��

Z
Z
ZZ~

�
�
�
��

C
C
C
C
C
CCW

XXXy

J
JĴ

2 3 1 01 12 23 s s
s

s
s

�
��	

@
@@R

�
��	

?

@
@@R

?

s s
s

s
s

�
���

Q
Q
QQs

�
�

�
�=

?

�
�
�
�
�
�
���

?

68

2 3 1 01 04 12 s s
s

ss

�

J
J
J
Ĵ

�

?

-

? s s
s

s
s

�
��/

Q
Q
QQs?

H
HHHHj�

?

From the comparison between the columns can we conclude that the
algorithm works pretty well in drawing the Kontsevich graphs in LATEX. Most
graphs drawn by the algorithm look quite like their hand-drawn counterparts.
I find that especially the graphs with encoding 2 2 1 01 and 2 2 1 01 12
are drawn very well by the algorithm. Furthermore, the drawings of the
graphs with encoding 2 2 1 01 01, 2 3 1 01 01 01, 2 3 1 01 12 12 and
2 3 1 01 12 23 also look quite good. While the remaining two graphs, with
encoding 2 3 1 01 01 12 and 2 3 1 01 04 12, don’t look as much like their
hand-drawn counterpart, I still don’t think they are ugly. One should keep
in mind that I only took 10,000 iterations for the graphs of order 3 instead of
running through all possible inclines. It is hence very likely that there might
actually be a better drawing for the graphs of order 3.

In Table 2 I have drawn the Kontsevich graphs with 2-cycles up to order
3.

Table 2: All graphs with 2-cycles up to order 3.

Encoding Hand-Drawn Drawn by the Algorithm

2 2 1 03 12 s s
s s
? ?

Y
j

s s
s s�
�
�
�
�

M
N
A
A
AAU

2 3 1 03 12 23 s s
s s

s

? ?

Y j

�
��	

@
@@R

s s
s s
s�

�
�
�
��

)

?

-

AK�
�
�7

69

2 3 1 01 04 12 s s
s s

s
? ?

Y j

�
��	

@
@@R s s

s
s s
�

�
��+

A
AAU

�
�
�
�
��

�
�C
C
C
C
C
CCW

2 3 1 03 12 12 s s
s s

s

? ?

Y
j

��
���

���

�
�
�
�
�
�
��� or s s

s s
s

? ?

Y
j

@
@@I

@
@@R s s

s
s s

?

k

s
Q
Q
QQs

PP
PPPi

C
C
C
CW

While I think the graphs with 2-cycles do not look as good as the graphs
without 2-cycles I think they are capable of showing what the graph should
look like. It should also be remembered that most graphs with 2-cycles that
I considered are of order 3. As mentioned above, it is very likely that the
graphs of order 3 actually have a better drawing that simply didn’t end up
in the sample I took.

The 12 graphs of order 4 that I considered are given in Table 3.

Table 3: Twelve graphs of order 4.

Encoding Hand-Drawn Drawn by Algorithm

2 4 1 01 01 01 01 s sss
s
s

�
��+
Q
QQs

�
�
��/

S
S
SSw

�
�
�
�
��

A
A
A
A
AU

�
�
�
�
�
�
��

B
B
B
B
B
B
BBN s ss

s

ss
�
�	
HHHHj?

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW

�
�
�

Z
Z
Z
Z~

�
�
�
�
��

S
S
S
S
Sw

70

2 4 1 01 12 12 13 s s
s s
s

s
�
�
��/

S
S
SSw

�
�/
C
C
C
C
CW

�
�/

?
Q
QQs

6

s s
s
s s s
?

Z
Z
Z
Z
Z~

J
J
J
J
J
JĴ

�
�� S

S
S
SSw

���
C
C
C
CW

Q
Q

QQk

2 3 1 01 01 02 13 s ss s
s

s

�
�/

-
�

��=
Z
ZZ~

�
�
�
�
��

A
A
A
A
AU

�
�
�
�
��

? s ss
s

s

s

�
��=

Z
ZZ~

�
�
�
�
���

J
J
J
J
JĴ

�
��

XXz

C
C
C
C
C
C
C
CW

�

2 4 1 01 02 12 12 s s
s

s
s

s

�
�
�
�
��

A
A
A
A
AU

�
�
�
�
��

?

C
C
C
C
CW

�

A
A
A
A
AU

? s s
ss

s
s

�

J
J
J
Ĵ

�
���

�
�3

�

?

C
CCW

Q
Qk

2 4 1 01 02 12 13 s s
s

s
s

s

�
�
�
�
��

A
A
A
A
AU

�

?

C
C
C
C
CW

�

A
A
A
A
AU

? s sss s
s

�

H
HHHj?

ZZ~ S
S
Sw

��=

A
A
A
A
AAU

�
��	

2 4 1 01 02 03 12 s s
ss

s
s

�
�
��/

S
S
SSw

�
�
��/

?

S
Sw
�
�
�
�
��

S
Sw

? s s
ss s

s
�
�
��/

S
S
SSw?

-

�

SSo

?

���9

71

2 4 1 01 12 13 34 s s
s s s

s
�
�
��/

S
S
SSw

�
�/
C
C
C
C
CW

S
So

?

�
�/

?

s ss
s

s
s
�
�	

Q
Q
Qs

J
J
J
JĴ

?

C
C
C
C
C
CCW

�-�
�
�3

2 4 1 01 14 15 24 s s
s s

ss
?

?

Y j

@
@@R

�
���

?

HHH
HHj s s

s s
ss

�
�
�

Z
Z
Z
Z~?

J
JJ]
B
B
B
B
BN

?

jY

2 4 1 03 14 12 14 s s
s s

ss
?

-
�
��	

?

@
@@I

@
@@R

���PPPPq s s
s s

s
s

?

SSw
Q
Q
Q
Qs

�
���J
J
J
J
Ĵ

���

C
CW

@
@
@I

2 4 1 03 12 12 12 s s
ss

s s
? ?

� *

A
A
AAK

HH
HHj

HH
HHY

A
A
AAU s s

s s s
s���

�
�

B
B
B
BBN

o
U

?

����)

Q
Q
QQs

6

2 4 1 03 24 12 24 s s
ss
ss

?

?

Y j

-@
@@I

H
HH

HHY

? s s
s

s

ss
�
�
�
�
��

?

�

?

HH
HYPPi
ZZ~

2 4 1 03 14 35 24 s s
s
s ss
?

?

Yj jY

?

�
��

��*

s s
s s

ss

�
�
�
��

��>A
A
A
A
AU

��
:

�
�
�
�
��

While I don’t think these graphs are all necessarily beautiful, I do think
they all look quite clear. Moreover, I find it remarkable that these graphs even

72

look so reasonable on a sample of only 10,000 out of the 5524 possibilities.
I need to make a remark on the last drawing (of the graph with encoding
2 4 1 03 14 35 24, this drawing can never look like my ideal version, because
I programmed the algorithm to put the first vertex of every second 2-cycle a
distance δ above the first 2-cycle. This will be discussed more in Section 10.

Let us now look at the parameters I ended up with and see if we can
conclusions from that. It is of course a bit difficult to draw strong conclu-

Table 4: The final parameters for each score of the target function.

SLS `0 = 50 cse = 5 cle = 25 α = 0.9 β = 2
UVS `1 = 20 cdv = 15 ζ = 5
HY `2 = 20 chy = 10 θ = 20
OS cos = 10 ι = 2
IS γ = 15 ε = 5

PLS κ = 5 λ = 5
VLS µ = 1 ν = 2

sions, because many scores influence each other. For example, the height
y-coordinate score works against the long edges score, while it works with
the short edges score. This would be why cle and β are much larger than cse
and α.

However, I think we can conclude that, in order to get aesthetically pleas-
ing pictures, it is in general important that the edges have a reasonable length
(of around 50 points). It seems to be slightly less important, but neverthe-
less, it looks like it is important that unrelated vertices are not positioned
too close together. Finally, drawings shouldn’t have intersections in order to
look pretty.

10 Discussion

First we need to go back to Section 3. There we see in step 3.4 that we do
not actually need to draw the picture that gets the lowest score from the
target function, but rather the one from the 5 pictures with the lowest score
that I think is the prettiest. So let’s look at what drawings I will get if I
follow this procedure. The results are shown in Table 5. While I believe
that these other drawings look better than the ones with the lowest score, it

73

should be noted that all these choices are purely personal preferences. For
example someone could actually prefer the first drawing of the graph with
encoding 2 4 1 01 02 12 13 while I prefer the other one.

Table 5: The graphs up to order 4 with a best picture that doesn’t have the
lowest score from the target function.

Encoding Picture with lowest score Best picture

2 3 1 01 01 01 s s
s

s
s
�
�

��+
S
SSw

�
�
�
�
�
�
�
���

B
B
B
B
B
B
B
BBN

�
�
�
���

J
J
J
JĴ s s

s
s

s���
�
�
��

B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
CW

�
�
��/

S
S
SSw

2 3 1 01 01 12 s s
ss s
�
�
�
���

J
J
J
JĴ

�
��/

Z
Z
ZZ~

�

? s s
s

s

s
�
�
�
�
��

S
S
S
S
Sw

�
�
�=

@
@@R

B
B
B
B
B
B
B
BBN

�
�
���

2 3 1 01 04 12 s s
s

s
s

�
��/

Q
Q
QQs?

HHH
HHj�

? s s
s

s s
�

��	

Z
Z
Z~?

-
J
J
J
JĴ

?

2 2 1 03 12 s s
s s�
�
�
�
�

M
N
A
A
AAU s s

s s�
�
�
�
��

�

-
A
A
AAU

2 3 1 03 12 23 s s
s s
s�

�
�
�
��

)

?

-

AK�
�
�7

s s
s s

s
�
�
�
�
�

�

?

-?

����)

74

2 3 1 01 04 12 s s
s

s s
�

�
��+

A
AAU

�
�
�
�
��

�
�C
C
C
C
C
CCW s s

s
s s
�

�
��=

S
SSw

�
�
�
�
�

�*
B
B
B
B
BN

2 3 1 03 12 12 s s
s

s s
?

k

s
Q
Q
QQs

PP
PPPi

C
C
C
CW s s

s ss
?

�

-
C
C
CCW

Z
Z
ZZ~

J
JJ]

2 4 1 01 12 12 13 s s
s
s s s
?

Z
Z
Z
Z
Z~

J
J
J
J
J
JĴ

�
�� S

S
S
SSw

���
C
C
C
CW

Q
Q
QQk

s s
s

s
s

s
C
C
CW

HH
HHHHj

A
A
A
A
AAU

�
�

��=
J
J
Ĵ

�

?

�

2 4 1 01 02 12 13 s sss s
s

�

HHHHj?

ZZ~ S
S
Sw

��=

A
A
A
A
AAU

�
��	

s sss s
s

�
�	
HH

HHj

�
�
�

AAU�
Z
ZZ~

C
C
C
CW

���)

2 4 1 01 02 03 12 s s
ss s

s
�
�
��/

S
S
SSw?

-

�

SSo

?

���9

s s
sss s
�

�
��	

A
A
AAU

�

��:

�
�

��>

?

XXy

2 4 1 01 12 13 34 s ss
s

s
s
�
�	

Q
Q
Qs

J
J
J
JĴ

?

C
C
C
C
C
CCW

�-�
�
�3

s s
s s ss

�

Q
Q
QQs

S
S
SSw

��/

?

����

�

AAU

2 4 1 03 14 12 14 s s
s s

s
s

?

SSw
Q
Q
Q
Qs

�
���J
J
J
J
Ĵ

���

C
CW

@
@
@I

s s
s
s

s s
�
�
�
��

B
BN
Z
Z
Z~

�
�
�
��C
C
C
C
C
CW

�
�	

?

�

75

2 4 1 03 12 12 12 s s
s s s
s���

�
�

B
B
B
BBN

o
U

?

����)

Q
Q
QQs

6

s s
s ss

s

?

-
�

S
S
S
Sw

Z
Z
Z~

S
S
So

C
C
C
C
C
CW

����9

2 4 1 03 24 12 24 s s
s

s

ss
�
�
�
�
��

?

�

?

H
HHYP
Pi
ZZ~

s s
s s

ss
?

	�@
@@R
C
C
CCW

PP
PPPi

C
CCO
��

��:

2 4 1 03 14 35 24 s s
s s

ss

�
�
�
��

��>A
A
A
A
AU

��
:

�
�
�
�
��

s s

s
s

s
s

?

S
S
S
S
Sw
C
C
C
C
CW

?

6

i

q?

While I have gotten a long way towards a good algorithm for drawing the
Kontsevich graphs in LATEX, the problem hasn’t been completely solved yet.

Firstly, one could consider adding more terms to the target function.
Some ideas for other terms in the target function are a horizontal lines score,
a score that increases if an upper-bound for the highest vertex has been
crossed, an edges almost overlapping score, a score that increases if two edges
are situated close to each other and a symmetry score. I actually considered
adding a symmetry score of the form

SS(vx) =
n∑
i=1

{
css · (δ/2− vx,i)η if vx,i ≤ δ/2

css · (vx,i − δ/2)η if vx,i > δ/2
.

I did ultimately decide against it in order to be able to properly draw the
asymmetric graphs. (Like the graph with encoding 2 2 1 01 12.) But maybe

76

there is another way to add a similar score to the target function that does
take into account the asymmetric graphs.

Another thing that could be considered in future research is using the
command \line instead of the command \vector to draw the edges. For
the inclines of lines in the picture environment, both the numerator and the
denominator can be chosen from -6 to 6 inclusive. All possible line inclines
are given in Figure 67. Comparing this to Figure 4, it can be seen that there

�
�
�
�

�
�
�
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
�

�
�
�
�
�

��
��
�

�
�
�
��

�
�
�
�

�
�
�
��

���
��

�
�
�
�

�
�
�
�

!!
!!
!

"
"
"
""

#
#
#
#

%
%
%
%

((((
(

,
,
,
,

@
@
@
@

A
A
A
AA

B
B
B
B
B

C
C
C
C
C

D
D
D
D
D

E
E
E
E
E

HH
HH

H

J
J
J
JJ

L
L
L
L
L

PP
PP

P
Q

Q
Q

QQ

S
S
S
S

T
T
T
TT

XXX
XX

Z
Z
Z

Z

\
\
\
\

```
``

aa
aa

a

b
b
b

bb

c
c
c
c

e
e
e
e

hhhh
h

l
l
l
l

@
@
@
@

A
A
A
AA

B
B
B
B
B

C
C
C
C
C

D
D
D
D
D

E
E
E
E
E

H
HHHH
J
J
J
JJ

L
L
L
L
L

PPPPP
Q
Q
Q
QQ

S
S
S
S

T
T
T
TT

XXXXXZ
Z
Z
Z

\
\
\
\

`````
aaaaa

b
b
b
bb

c
c
c
c

e
e
e
e

hhhhhl
l
l
l

�
�

�
�

�
�
�
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����

�
�
�
�
�

�����
�
�

�
��

�
�
�
�

�
�
�
��

����� �
�

�
�

�
�
�
�

!!!!!

"
"

"
""

#
#

#
#

%
%
%
%

(((((,
,

,
,

Figure 67: All possible inclines for lines in the LATEX picture environment.

is a higher density in the lines than in the vectors. We could use the inclines
of the lines to draw the graphs and attach a zero length vector of a slightly
different incline to it. The difference in incline will only be small and hard
to see. See Figure 68 for an illustration.

%
%
%
%7

Figure 68: A line with direction (5,6) with a zero length vector with direc-
tion (3,4) attached to it.

I drew the 2-cycles in this project using the \qbezier command. This
command takes 3 points as input, and draws a quadratic Bezier curve from
them, using the first and last point as end points and the middle point as a
control point. For example, the code

\qbezier(0,0)(40,60)(100,20)

draws the curve in Figure 69 (the dotted lines illustrate how the curve is de-
termined). It would be useful to extend the algorithm to be able to compute

77

Q
Q

Q
Q

Q
s(40,60)

(0,0)

(100,20)

Figure 69: An example of a Bezier curve.

the control point of the Bezier curves for the 2-cycles.
Something that R.Buring suggested and that I actually did, was building

a function that generates an encoding and coordinates for the mirror image
of a graph. The function can be found in in Section A.2.18. Note that I say
an encoding, by permutation of the labels of the vertices there are multiple
encodings for the most graphs. For example, the encoding 2 2 1 01 12 defines
the same graph as the encoding 2 2 1 13 01.

Acknowledgements

I would like to thank my supervisor A.V. Kiselev for giving me multiple
points of feedback during the course of this project. I am also grateful to
H.N. Kern for looking over my probability theory calculations and reassuring
me that they are sound. But mostly, I couldn’t have done a lot of things in
my project without the help of R. Buring, who helped me tremendously with
all the problems I had during coding the algorithm, including but not limited
to explaining what the target function was supposed to do, pointing me to
a technique to find intersections of lines and explaining the sign element of
the encoding to me.

78

References

[1] Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms
and applications. Springer Science & Business Media, 2008.

[2] R Buring and AV Kiselev. The expansion ? mod ō(}4) and computer-
assisted proof schemes in the Kontsevich deformation quantization. Ex-
perimental Mathematics, pages 1–54, 2019.

[3] Ricardo Buring, Arthemy V Kiselev, and Nina J Rutten. Poisson brack-
ets symmetry from the pentagon-wheel cocycle in the graph complex.
Physics of Particles and Nuclei, 49(5):924–928, 2018.

[4] Reinhard Diestel. Graph Theory. Number 173 in Graduate Texts in
Mathematics. Springer, 2012.

[5] Chiara Esposito. Formality Theory: From Poisson Structures to Defor-
mation Quantization, volume 2. Springer, 2014.

[6] Andrew S Glassner. Graphics gems. Elsevier, 2013.

[7] AV Kiselev. An algorithm to draw the Kontsevich graphs in LATEX.
in: Syllabus Propaedeutic project (Applied) Mathematics, acad. year
2017-2018. JBI RUG. -2p.

[8] Maxim Kontsevich. Formal (non)-commutative symplectic geometry.
In The Gelfand mathematical seminars, 1990–1992, pages 173–187.
Springer, 1993.

[9] Maxim Kontsevich. Feynman diagrams and low-dimensional topology.
In First European Congress of Mathematics Paris, July 6–10, 1992,
pages 97–121. Springer, 1994.

[10] Maxim Kontsevich. Homological algebra of mirror symmetry. In Pro-
ceedings of the international congress of mathematicians, pages 120–139.
Springer, 1995.

[11] Maxim Kontsevich. Formality conjecture. Deformation theory and sym-
plectic geometry, 128:139–156, 1997.

[12] Maxim Kontsevich. Deformation quantization of Poisson manifolds. Let-
ters in Mathematical Physics, 66(3):157–216, 2003.

79

[13] Leslie Lamport. LATEX: a document preparation system: user’s guide
and reference manual. Addison-Wesley, 1994.

[14] Erik Panzer. Multiple zeta values in deformation quantization. https:

//www.maths.ox.ac.uk/node/31248, 2019. Accessed on: 2020-07-11.

[15] Gareth Rees. How do you detect where two line segments intersect?
https://stackoverflow.com/a/565282, 2009. Accessed on: 2020-07-
11.

80

https://www.maths.ox.ac.uk/node/31248
https://www.maths.ox.ac.uk/node/31248
https://stackoverflow.com/a/565282

A Appendix

A.1 Matlab code

A.1.1 The function graphfunc

This function takes a Kontsevich graph encoding and outputs the correspond-
ing graph.

1 function G=graphfunc(inputstring)

2 %inputstring needs to be in the form of a vector

3 %e.g. the encoding 221 01 01 must be put in the form

[2,2,1,0,1,0,1]

4

5 m = inputstring (1);

6 n = inputstring (2);

7 num_edges = 0.5*(length(inputstring) -3);

8 edges = zeros(num_edges ,2);

9

10 %define a matrix to store the decoding of the edges

11 %the +1 is neccessary because you can ’t have 0 as an

index

12 for i = 1: num_edges

13 edges(i,:)=[inputstring (2*i+2)+1, inputstring (2*i+3)

+1];

14 end

15

16 %making the graph

17 G = digraph ();

18 G = addnode(G, m+n); %number of nodes of the graph

19

20 %constructing the edges

21 for i=1:n

22 G = addedge(G, m+i, [edges(i,1),edges(i,2)]);

23 end

24

25 %the output

26 G

27 plot(G,’Layout ’,’layered ’,’Sinks’ ,[1,2])

A.2 Sage Code

All code, including history, can also be found at: https://github.com/

SKerkhove/Bachelors-Project.

81

https://github.com/SKerkhove/Bachelors-Project
https://github.com/SKerkhove/Bachelors-Project

A.2.1 The Function to generate the vector b

1 def b_vector(encoding ,delta ,inclines):

2 #saved under the name ’b_vector_algorithm ’

3 r"""

4 Return the vector b in the system $Ax=b$

5

6 INPUT:

7

8 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

9

10 - ’’delta ’’ - a positive scalar

11

12 - ’’inclines ’’ - a matrix of 2n inclines , of the form $[

a_1^L,b_1^L; ... ;a_n^R,b_n^R]$

13

14 OUTPUT:

15

16 - a vector b of size 2n x 1

17

18 EXAMPLES:

19

20 sage: b_vector(vector ([2,1,1,0,1]) ,1,matrix

([[1 ,1] ,[-1 ,1]]))

21 (0,1)

22 sage: b_vector(vector ([2,2,1,0,1,1,2]) ,1,\matrix

([[0,-1],[1,-1],[-1,0],[0,-1]]))

23 (0,-1,0,0)

24 """

25 m=encoding [0]

26 n=encoding [1]

27

28 b=zero_vector (2*n)

29 two_cycles_list =[]

30 for i in range (2*n):

31 e=encoding[i+3]

32 if e < m:

33 b[i]=e*delta*inclines[i,1]

34 else:

35 if encoding [2*e-1]==m+floor(i/2) or encoding [2*e

]==m+floor(i/2):

36 two_cycle=sorted ([e,m+floor(i/2)])

37 if two_cycle in two_cycles_list:

38 continue

82

39 b[i]=delta

40 two_cycles_list.append(two_cycle)

41

42 return b

A.2.2 The Function to generate the matrix A

1 def A_matrix(encoding ,inclines):

2 #saved under the name A_matrix_algorithm

3 r"""

4 Return the matrix A in the system Ax=b

5

6 INPUT:

7

8 - ’’encoding ’’ - a vector of the form (m,n,s,e_1 ,e_2

,..., e_2n)

9

10 - ’’inclines ’’ - a 2n x 2 matrix of the form [a_1^L,b_1^

L;...; a_n^R,b_n^R]

11

12 OUTPUT:

13

14 - a matrix A of size 2n x 2n

15

16 EXAMPLES:

17 sage: A_matrix(vector ([2,1,1,0,1]),matrix ([[1 ,1] ,[

-1 ,1]]))

18 [1,-1]

19 [1,1]

20

21 sage: A_matrix(vector ([2,2,1,0,1,1,2]),matrix

([[0,-1],[1,-1],[-1,0],[0,-1]]))

22 [-1 0 0 0]

23 [-1 -1 0 0]

24 [0 0 0 1]

25 [1 0 -1 0]

26

27 """

28 m=encoding [0]

29 n=encoding [1]

30 A=zero_matrix (2*n,2*n)

31 two_cycles_list =[]

32 for i in range (2*n):

33 e=encoding[i+3]

34 if e>=m:

35 if encoding [2*e-1]==m+floor(i/2) or encoding [2*e

83

]==m+floor(i/2):

36 two_cycle=sorted ([e,m+floor(i/2)])

37 if two_cycle in two_cycles_list:

38 if i%2 == 0:

39 A[i,i]= inclines[i,1]

40 A[i,i+1]=- inclines[i,0]

41 if e >= m:

42 A[i,2*(e-m+1) -2]=- inclines[i,1]

43 A[i,2*(e-m+1) -1]= inclines[i,0]

44 if i%2 == 1:

45 A[i,i]=-inclines[i,0]

46 A[i,i-1]= inclines[i,1]

47 if e >= m:

48 A[i,2*(e-m+1) -2]=- inclines[i,1]

49 A[i,2*(e-m+1) -1]= inclines[i,0]

50 continue

51 two_cycles_list.append(two_cycle)

52 if i%2 == 0:

53 A[i,i+1]=1

54 if i%2 == 1:

55 A[i,i]=1

56 continue

57 if i%2 == 0:

58 A[i,i]= inclines[i,1]

59 A[i,i+1]=- inclines[i,0]

60 if e >= m:

61 A[i,2*(e-m+1) -2]=- inclines[i,1]

62 A[i,2*(e-m+1) -1]= inclines[i,0]

63 if i%2 == 1:

64 A[i,i]=-inclines[i,0]

65 A[i,i-1]= inclines[i,1]

66 if e >= m:

67 A[i,2*(e-m+1) -2]=- inclines[i,1]

68 A[i,2*(e-m+1) -1]= inclines[i,0]

69

70

71 return A

A.2.3 the Function Inclines to Coordinates

1 def inclines_to_coordinates(encoding ,inclines ,delta):

2 #saved under the name ’inclines_to_coordinates ’

3

4 r"""

5 returns a vector x containing the coordinates of the

system defined by the encoding , inclines and delta

84

6

7 INPUT:

8

9 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

10

11 - ’’inclines ’’ - a matrix of 2n inclines , of the form $[

a_1^L,b_1^L; ... ;a_n^R,b_n^R]$

12

13 - ’’delta ’’ - a positive scalar

14

15 OUTPUT:

16

17 - a 2n x 1 vector x containing the coordinates of the

form (x_1 ,y_1 ,...,x_n ,y_n)

18

19 EXAMPLES:

20 sage: inclines_to_coordinates(vector ([2,1,1,0,1]),

matrix ([[1 ,1] ,[-1 ,1]]) ,1)

21 (1/2 ,1/2)

22 sage: inclines_to_coordinates(vector

([2,2,1,0,1,0,1]),matrix ([[0 ,1] ,[1 , -1] ,[1 ,1] ,[0 ,1]]) ,1)

23 (0,1,1,1)

24

25 """

26 A=A_matrix(encoding ,inclines)

27 b=b_vector(encoding ,delta ,inclines)

28

29 if det(A)==0:

30 x=0

31 if abs(det(A)) >0:

32 x=A\b

33

34 return x

A.2.4 The Function DrawGraph algorithm

1 def DrawGraph_algorithm(encoding ,delta):

2 #saved under the name ’DrawGraph_algorithm ’

3 r"""

4 returns a matrix with coordinates of the internal nodes

5

6 INPUT:

7

8 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

85

9

10 - ’’delta ’’ - a positive scalar

11

12 OUTPUT:

13

14 - an n x 2 matrix containing coordinates in the form [

x_1 ,y_1 ;...;x_n ,y_n],

15 because of randomization , the coordinates can change

with each use of the function

16

17 EXAMPLES:

18 sage: DrawGraph_algorithm(vector ([2,1,1,0,1]) ,1)

19 [0.818181818181818 -0.272727272727273]

20 sage: DrawGraph_algorithm(vector ([2,2,1,0,1,0,1]) ,1)

21 [3.00000000000000 3.00000000000000]

22 [0.307692307692308 0.230769230769231]

23

24 """

25

26 #we’re first generating all possible inclines , stored in

set_of_inclines

27 positive_inclines=matrix

([[0 ,1] ,[1 ,0] ,[1 ,1] ,[1 ,2] ,[1 ,3] ,[1 ,4] ,\

28 [2 ,1] ,[2 ,3] ,[3 ,1] ,[3 ,2] ,[3 ,4] ,[4 ,1] ,[4 ,3]])

29 nofinclines =(positive_inclines.nrows () -1)*2

30 half_nofi=nofinclines /2

31 set_of_inclines=zero_matrix(nofinclines ,2)

32 for i in range(nofinclines):

33 if i<= half_nofi:

34 set_of_inclines[i,:]= positive_inclines[i,:]

35 if i>half_nofi:

36 set_of_inclines[i,0]= positive_inclines[i-

half_nofi +1,0]

37 set_of_inclines[i,1]=- positive_inclines[i-

half_nofi +1,1]

38

39 #from here on we will be computing the solution x

40 #for a random set of inclines

41 n=encoding [1]

42 inclines=zero_matrix (2*n,2)

43 x=0

44 while x==0:

45 for i in range (2*n):

46 k=ZZ.random_element (0, nofinclines)

47 inclines[i,:]= set_of_inclines[k,:]

86

48 if i%2 == 1:

49 if inclines[i ,:]== inclines[i-1,:]:

50 if k== nofinclines -1:

51 inclines[i,:]= set_of_inclines [0,:]

52 if k<nofinclines -1:

53 inclines[i,:]= set_of_inclines[k+1,:]

54 x=inclines_to_coordinates(encoding ,inclines ,delta)

55

56

57 #changing the look of the output

58 coordinates=zero_matrix(RR,n,2)

59 for i in range(n):

60 coordinates[i,0]=x[2*i]

61 coordinates[i,1]=x[2*i+1]

62

63 return coordinates

A.2.5 The Function Positive Test

1 def positive_test(coordinates):

2

3 r""""

4 returns a value True or False based on whether the

coordinates all lie above the line y=0

5

6 INPUT:

7

8 - ’’coordinates ’’ - an n x 2 matrix containing

coordinates in the form [x_1 ,y_1 ;...;x_n ,y_n]

9

10 OUTPUT:

11

12 - a value False or True , indicating whether the input

matrix had coordinates below or on the line y=0

13

14 EXAMPLES:

15 sage: positive_test(matrix ([[1 ,4] ,[2 ,3]]))

16 True

17

18 sage: positive_test(matrix ([[1 ,4] ,[2 , -2]]))

19 False

20

21 sage: positive_test(matrix ([[1 ,0] ,[2 ,3] ,[4 ,5]]))

22 False

23

24 """

87

25 n=coordinates.nrows ()

26 value=True

27 for i in range(n):

28 if coordinates[i,1] <=0:

29 value = False

30 break

31

32 return value

A.2.6 The Function Same Vertices Test

1 def same_vertices_test(encoding , delta , n_coordinates):

2

3 r""""

4 returns a value True or False indicating whether the

coordinates all indicate unique points

5

6 INPUT:

7

8 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

9

10 - ’’delta ’’ - a positive scalar

11

12 - ’’n_coordinates ’’ - an n x 2 matrix containing

coordinates in the form [x_1 ,y_1 ;...;x_n ,y_n]

13

14 OUTPUT:

15

16 - a value False or True , indicating whether the input

matrix has unique coordinates

17

18 EXAMPLES:

19 sage: same_vertices_test(matrix ([[1 ,2] ,[3 ,4] ,[1 ,2]]))

20 False

21 sage: same_vertices_test(matrix ([[1 ,2] ,[3 ,4] ,[1 ,3]]))

22 True

23

24 """

25 m=encoding [0]

26 m_coordinates=zero_matrix(RR,m,2)

27 for i in range(m):

28 m_coordinates[i,0]=i*delta

29

30 coordinates=block_matrix ([[m_coordinates],[n_coordinates

]])

88

31 k=coordinates.nrows ()

32 value=True

33 for i in range(k):

34 for j in range(i+1,k):

35 if coordinates[i ,:]== coordinates[j,:]:

36 value = False

37 break

38

39 return value

A.2.7 The Function Length Test

1 def length_test(encoding ,delta ,coordinates ,min_len):

2 r"""

3 returns a value False or True

4 depending on whether any of the edges defined by the

coordinates and encoding has

5 a length smaller than the minimal value min_len

6

7 INPUT:

8

9 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

10

11 - ’’delta ’’ - a positive scalar

12

13 - ’’coordinates ’’ - an n x 2 matrix containing

coordinates in the form [x_1 ,y_1 ;...;x_n ,y_n]

14

15 - ’’min_len ’’ - a positive scalar

16

17 OUTPUT:

18

19 - a value False or True , denoting whether all edges of

the defined graph are larger than the minimum length

20

21 EXAMPLES:

22 sage: length_test(vector ([2,3,1,0,1,0,4,1,2]) ,40,

matrix ([[160 ,40] ,[210 ,105] ,[280 ,0]]) ,10)

23 True

24 sage: length_test(vector ([2,1,1,0,1]) ,10,matrix

([[1 ,3]]) ,10)

25 False

26

27 """

28

89

29

30 m=encoding [0]

31 n=encoding [1]

32 value=True

33

34 sink_coord=zero_matrix(RR,m,2)

35 for i in range(m):

36 sink_coord[i,0]=i*delta

37

38 for i in range(n):

39 source_vert_x=coordinates[i,0]

40 source_vert_y=coordinates[i,1]

41

42

43 goal_vert_L=encoding [3+2*i]

44 goal_vert_R=encoding [4+2*i]

45 if goal_vert_L <m:

46 goal_vert_L_x=sink_coord[goal_vert_L ,0]

47 goal_vert_L_y=sink_coord[goal_vert_L ,1]

48 if goal_vert_L >=m:

49 goal_vert_L_x=coordinates[goal_vert_L -m,0]

50 goal_vert_L_y=coordinates[goal_vert_L -m,1]

51

52 if goal_vert_R <m:

53 goal_vert_R_x=sink_coord[goal_vert_R ,0]

54 goal_vert_R_y=sink_coord[goal_vert_R ,1]

55 if goal_vert_R >=m:

56 goal_vert_R_x=coordinates[goal_vert_R -m,0]

57 goal_vert_R_y=coordinates[goal_vert_R -m,1]

58

59 delta_L_x=source_vert_x -goal_vert_L_x

60 delta_L_y=source_vert_y -goal_vert_L_y

61 delta_R_x=source_vert_x -goal_vert_R_x

62 delta_R_y=source_vert_y -goal_vert_R_y

63

64

65 edge_length_sq=delta_L_x ^2+ delta_L_y ^2

66 edge_length=sqrt(edge_length_sq)

67 if edge_length <min_len:

68 value=False

69 break

70

71 edge_length_sq=delta_R_x ^2+ delta_R_y ^2

72 edge_length=sqrt(edge_length_sq)

73 if edge_length <min_len:

90

74 value=False

75 break

76

77

78 return value

A.2.8 The Function Overlapping Edges Test

1 def overlapping_edges_test(encoding ,delta ,n_coordinates):

2 r"""

3 returns a value False or True , depending on whether the

defined graph has overlapping edges

4

5 INPUT:

6

7 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

8

9 - ’’delta ’’ - a positive scalar

10

11 - ’’n_coordinates ’’ - an n x 2 matrix containing

coordinates in the form [x_1 ,y_1 ;...;x_n ,y_n]

12

13 OUTPUT:

14

15 - a value False or True , depending on whether the

defined graph has overlapping edges

16

17 EXAMPLES:

18 sage: overlapping_edges_test(vector ([2,2,1,0,1,1,2])

,10,matrix ([[0 ,10] ,[5 ,5]]))

19 False

20 sage: overlapping_edges_test(vector ([2,2,1,0,1,1,2])

,10,matrix ([[0 ,10] ,[10 ,10]]))

21 True

22

23 """

24 m=encoding [0]

25 n=encoding [1]

26 value=True

27

28 sink_coord=zero_matrix(RR,m,2)

29 for i in range(m):

30 sink_coord[i,0]=i*delta

31

32 coordinates=block_matrix ([[sink_coord],[n_coordinates]])

91

33

34 edges_source_goal=zero_matrix(QQ ,2*n,4)

35 for i in range (2*n):

36 if i%2==0:

37 source_vertex_label=i/2+m

38 else:

39 source_vertice_label =(i-1) /2+m

40 source_vertex_x=coordinates[source_vertex_label ,0]

41 source_vertex_y=coordinates[source_vertex_label ,1]

42

43 goal_vertex_label=encoding [3+i]

44 goal_vertex_x=coordinates[goal_vertex_label ,0]

45 goal_vertex_y=coordinates[goal_vertex_label ,1]

46

47 edges_source_goal[i,:]= vector ([source_vertex_x ,

source_vertex_y ,goal_vertex_x ,goal_vertex_y])

48

49 for i in range (2*n):

50 p_0=vector ([edges_source_goal[i,0], edges_source_goal[

i ,1]])

51 p_1=vector ([edges_source_goal[i,2], edges_source_goal[

i ,3]])

52 if p_0==p_1:

53 continue

54 r=p_1 -p_0

55

56 for j in range(i+1,2*n):

57 q_0=vector ([edges_source_goal[j,0],

edges_source_goal[j,1]])

58 q_1=vector ([edges_source_goal[j,2],

edges_source_goal[j,3]])

59 if q_0==q_1:

60 continue

61

62 if p_0 == q_1 and p_1==q_0:

63 continue

64

65 s=q_1 -q_0

66 r_cross_s=r[0]*s[1]-r[1]*s[0]

67

68 q_min_p=q_0 -p_0

69 q_min_p_cross_r=q_min_p [0]*r[1]- q_min_p [1]*r[0]

70

71 if r_cross_s == 0 and q_min_p_cross_r == 0:

72 t_0=q_min_p*r/(r*r)

92

73 t_1=t_0+s*r/(r*r)

74 if 0<=t_0 <=1 or 0<=t_1 <=1:

75 if t_0 == 0 and t_1 <0:

76 continue

77 if t_0 == 1 and t_1 >1:

78 continue

79 if t_1 == 0 and t_0 <0:

80 continue

81 if t_1 == 1 and t_1 >1:

82 continue

83 value = False

84 break

85

86 return value

A.2.9 The Function DrawGraph Filter

The first code is the original version. The second is to use when one has done
a full run through of all possible inclines.

1 def DrawGraph_filter(encoding ,delta ,min_len):

2

3 r"""

4 returns coordinates that are a proper solution to the

system

5

6 INPUT:

7

8 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

9

10 - ’’delta ’’ - a positive scalar

11

12 - ’’min_len ’’ - a positive scalar

13

14 OUTPUT:

15

16 - an (m+n) x 2 matrix containing coordinates in the form

[x_1 ,y_1 ;...; x_m+n,y_m+n],

17 because of randomization , the coordinates can change

with each use of the function

18

19 EXAMPLES:

20 sage: DrawGraph_filter(vector ([2,1,1,0,1]) ,40,10)

21 [0.000000000000 0.000000000000]

22 [40.000000000000 0.000000000000]

93

23 [---------------------------------]

24 [120.000000000000 240.000000000000]

25

26 sage: DrawGraph_filter(vector ([2,2,1,0,1,0,1])

,40,10)

27 [0.0000000000000 0.0000000000000]

28 [40.0000000000000 0.0000000000000]

29 [-----------------------------------]

30 [-32.0000000000000 96.0000000000000]

31 [48.0000000000000 16.0000000000000]

32

33 """

34 value = False

35 k=0

36 while value == False:

37 n_coordinates=DrawGraph_algorithm(encoding ,delta)

38 v1=positive_test(n_coordinates)

39 v2=same_vertices_test(encoding , delta , n_coordinates)

40 v3=length_test(encoding ,delta ,n_coordinates ,min_len)

41 v4=overlapping_edges_test(encoding ,delta ,

n_coordinates)

42 value = all([v1 ,v2 ,v3,v4])

43 k=k+1

44 if k == 10^3:

45 n_coordinates =0

46 break

47

48 m=encoding [0]

49 m_coordinates=zero_matrix(RR,m,2)

50 for i in range(m):

51 m_coordinates[i,0]=i*delta

52 if n_coordinates !=0:

53 coordinates=block_matrix ([[m_coordinates],[

n_coordinates]])

54 else:

55 coordinates =0

56

57 return coordinates

1 def DrawGraph_filter_incl(encoding ,n_coordinates ,delta ,

min_len):

2

3 r"""

4 returns coordinates that are a proper solution to the

system

5

94

6 INPUT:

7

8 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

9

10 - ’’n_coordinates ’’ - a n x 2 matrix of the form [x_1 ,

y_1 ;...;x_n ,y_n]

11

12 - ’’delta ’’ - a positive scalar

13

14 - ’’min_len ’’ - a positive scalar

15

16 OUTPUT:

17

18 - an (m+n) x 2 matrix containing coordinates in the form

[x_1 ,y_1 ;...; x_m+n,y_m+n],

19 because of randomization , the coordinates can change

with each use of the function

20

21 EXAMPLES:

22 sage: DrawGraph_filter(vector ([2,1,1,0,1]) ,40,10)

23 [0.000000000000 0.000000000000]

24 [40.000000000000 0.000000000000]

25 [---------------------------------]

26 [120.000000000000 240.000000000000]

27

28 sage: DrawGraph_filter(vector ([2,2,1,0,1,0,1])

,40,10)

29 [0.0000000000000 0.0000000000000]

30 [40.0000000000000 0.0000000000000]

31 [-----------------------------------]

32 [-32.0000000000000 96.0000000000000]

33 [48.0000000000000 16.0000000000000]

34

35 """

36 if n_coordinates == 0:

37 value = False

38 else:

39 v1=positive_test(n_coordinates)

40 v2=same_vertices_test(encoding , delta , n_coordinates)

41 v3=length_test(encoding ,delta ,n_coordinates ,min_len)

42 v4=overlapping_edges_test(encoding ,delta ,

n_coordinates)

43 value = all([v1 ,v2 ,v3,v4])

44

95

45

46 return value

A.2.10 The Function DrawGraph Compute and Draw

1 def DrawGraph_compute_and_draw(encoding ,delta ,min_len):

2 r"""

3 returns a randomized plot of the graph defined by the

encoding

4

5 INPUT:

6

7 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

8

9 - ’’delta ’’ - a positive scalar

10

11 - ’’min_len ’’ - a positive scalar

12

13 OUTPUT:

14

15 - a graphics plot

16

17 """

18

19 m=encoding [0]

20 n=encoding [1]

21

22 coord=DrawGraph_filter(encoding ,delta ,min_len)

23 coordinates=coord.rows()

24 points=point2d(coord ,size =50)

25 plot_list =[points]

26

27 for i in range(n):

28 source_vertex=coordinates[m+i]

29

30 left_vertex_label=encoding [2*i+3]

31 right_vertex_label=encoding [2*i+4]

32

33 left_vertex=coordinates[left_vertex_label]

34 right_vertex=coordinates[right_vertex_label]

35

36 left_edge=arrow2d(source_vertex ,left_vertex)

37 right_edge=arrow2d(source_vertex ,right_vertex)

96

38

39 plot_list.append(left_edge)

40 plot_list.append(right_edge)

41

42 plot=points

43 for i in range(len(plot_list) -1):

44 plot+= plot_list[i+1]

45

46

47 return plot

A.2.11 The Function DrawGraph Draw

1 def DrawGraph_draw(encoding ,coord):

2 r"""

3 returns a randomized plot of the graph defined by the

encoding

4

5 INPUT:

6

7 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

8

9 - ’’coord ’’ - an (m+n) x 2 matrix containing coordinates

in the form [x_1 ,y_1 ;...; x_m+n,y_m+n]

10

11 OUTPUT:

12

13 - a graphics plot

14

15 """

16

17 m=encoding [0]

18 n=encoding [1]

19

20

21 coordinates=coord.rows()

22 points=point2d(coord ,size =50)

23 plot_list =[points]

24

25 for i in range(n):

26 source_vertice=coordinates[m+i]

27

28 left_vertex_label=encoding [2*i+3]

29 right_vertex_label=encoding [2*i+4]

30

97

31 left_vertex=coordinates[left_vertex_label]

32 right_vertex=coordinates[right_vertex_label]

33

34 left_edge=arrow2d(source_vertice ,left_vertex)

35 right_edge=arrow2d(source_vertice ,right_vertex)

36

37 plot_list.append(left_edge)

38 plot_list.append(right_edge)

39

40 plot=points

41 for i in range(len(plot_list) -1):

42 plot+= plot_list[i+1]

43

44

45 return plot

A.2.12 The Target Function

1 def target_function(encoding ,delta ,coordinates):

2 r"""

3 returns a score denoting how ’beautiful ’ the drawing of

the graph is

4

5 INPUT:

6

7 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

8

9 - ’’coordinates ’’ - an (n+m) x 2 matrix containing

coordinates in the form [x_1 ,y_1 ;...; x_n+m,y_n+m]

10

11 OUTPUT:

12

13 - a scalar , the larger the value , the less ’beautiful ’

the drawing is

14

15 EXAMPLES:

16

17 """

18

19 #the parameters

20 L_0 = 50 #short and long edges score

21 L_1 = 20 #distance between unrelated vertices

22 L_2 = 0.4* L_0 #height y-coordinate

23 c_se = 5 #short edges

24 c_le = 16 #long edges

98

25 c_dv = 10 #distance between unrelaed vertices

26 c_ss = 0 #symmetry

27 c_hy = 1 #height y-coordinate

28 c_os = 1 #overshoot

29 alpha = 0.9 #short edges

30 beta = 1 #long edges

31 gamma = 15 #intersections

32 epsilon = 5 #intersections

33 zeta = 5 #unrelated vertices

34 eta = 10 #symmetry

35 theta = 20 #height y-coordinate

36 iota = 5 #overshoot

37 kappa = 10 #points on one line

38 labda = 5 #points on one line

39 mu = 2 #horizontal lines

40 nu = 1 #horizontal lines

41

42 #getting the prerequisites from the data

43 m=encoding [0]

44 n=encoding [1]

45

46 #vertices_sink is an n x 4 matrix of which the first two

columns give the coordinates for the left vertex with\

47 #which the source is connected and the column 2 and 3

give the coordinates for the right vertex

48 #edges_length is an n x 2 matrix of which the first

column gives the length of the left edge of the source

vertex\

49 #and the second column gives the length of the right edge

50 #edges_begin_end is a 2n x 4 matrix containing the begin

and end point of each edges in the rows

51 vertices_sink = zero_matrix(RR,n,4)

52 edges_length=zero_matrix(RR ,n,2)

53 edges_begin_end=zero_matrix(RR ,2*n,4)

54

55 for i in range(n):

56 e_L=encoding [3+2*i]

57 e_R=encoding [4+2*i]

58 vertices_sink[i ,0:2]= coordinates[e_L ,:]

59 vertices_sink[i ,2:4]= coordinates[e_R ,:]

60

61 coord_source_x=coordinates[m+i,0]

62 coord_source_y=coordinates[m+i,1]

63 edges_begin_end [[2*i,2*i+1] ,0]= coord_source_x

64 edges_begin_end [[2*i,2*i+1] ,1]= coord_source_y

99

65

66 coord_sink_L_x=coordinates[e_L ,0]

67 coord_sink_L_y=coordinates[e_L ,1]

68 edges_begin_end [2*i,2]= coord_sink_L_x

69 edges_begin_end [2*i,3]= coord_sink_L_y

70

71

72 coord_sink_R_x=coordinates[e_R ,0]

73 coord_sink_R_y=coordinates[e_R ,1]

74 edges_begin_end [2*i+1 ,2]= coord_sink_R_x

75 edges_begin_end [2*i+1 ,3]= coord_sink_R_y

76

77 delta_x_L=coord_source_x -coord_sink_L_x

78 delta_y_L=coord_source_y -coord_sink_L_y

79

80 delta_x_R=coord_source_x -coord_sink_R_x

81 delta_y_R=coord_source_y -coord_sink_R_y

82

83 edges_length[i,0] = sqrt(delta_x_L ^2+ delta_y_L ^2)

84 edges_length[i,1] = sqrt(delta_x_R ^2+ delta_y_R ^2)

85

86

87 # short edges

88 short_edges_score =0

89 #long edges

90 long_edges_score = 0

91 for i in range(n):

92 length_L=edges_length[i,0]

93 length_R=edges_length[i,1]

94

95 left_short_edges_score = c_se*(L_0/length_L)^alpha

96 right_short_edges_score =c_se*(L_0/length_R)^alpha

97

98 left_long_edges_score = c_le*(length_L/L_0)^beta

99 right_long_edges_score = c_le*(length_R/L_0)^beta

100

101 short_edges_score += left_short_edges_score+

right_short_edges_score

102 long_edges_score += left_long_edges_score+

right_long_edges_score

103

104 #intersections score

105 intersections_score = 0

106 num_of_intersections =1

107

100

108 for i in range (2*n):

109 p_0=vector ([edges_begin_end[i,0], edges_begin_end[i

,1]])

110 p_1=vector ([edges_begin_end[i,2], edges_begin_end[i

,3]])

111

112 for j in range(i+1,2*n):

113 q_0=vector ([edges_begin_end[j,0], edges_begin_end[

j ,1]])

114 q_1=vector ([edges_begin_end[j,2], edges_begin_end[

j ,3]])

115

116 if p_0==q_0 or p_0 == q_1:

117 continue

118 if p_1 == q_0 or p_1 == q_1:

119 continue

120

121 value=intersection_test(p_0 ,p_1 ,q_0 ,q_1)

122 if value == True:

123 num_of_intersections +=1

124

125 intersections_score = num_of_intersections^gamma*RDF(log(

num_of_intersections))^epsilon

126

127 #distance between unrelated vertices

128 distance_vertices_score =0

129 for i in range(n):

130 vertex_1_x=coordinates[i+m,0]

131 vertex_1_y=coordinates[i+m,1]

132 for j in range(i+m):

133 if j == encoding [3+2*i] or j == encoding [4+2*i]:

134 continue

135 vertex_2_x=coordinates[j,0]

136 vertex_2_y=coordinates[j,1]

137 Length_ij_sq =(vertex_2_x -vertex_1_x)^2+(

vertex_2_y -vertex_1_y)^2

138 Length_ij=sqrt(Length_ij_sq)

139 distance_vertices_score +=c_dv*(L_1/Length_ij)^

zeta

140

141 for j in range(i+m+1,n+m):

142 if j == encoding [3+2*i] or j == encoding [4+2*i]:

143 continue

144 vertex_2_x=coordinates[j,0]

145 vertex_2_y=coordinates[j,1]

101

146 Length_ij_sq =(vertex_2_x -vertex_1_x)^2+(

vertex_2_y -vertex_1_y)^2

147 Length_ij=sqrt(Length_ij_sq)

148 distance_vertices_score +=c_dv*(L_1/Length_ij)^

zeta

149

150 #height y-coordinate score

151 height_y_score =0

152 for i in range(n):

153 vertex_y=coordinates[m+i,1]

154 height_y_score +=c_hy*(L_2/vertex_y)^theta

155

156 #overshoot score

157 overshoot_score = 0

158 for i in range(n):

159 vertex_x=coordinates[m+i,0]

160 if vertex_x >delta:

161 overshoot_score += c_os*(vertex_x -delta)^iota

162 if vertex_x <0:

163 overshoot_score += c_os*abs(vertex_x)^iota

164

165 #points on line score

166 num_vert_on_line = points_on_line_test(coordinates)

167 points_on_line_score = -num_vert_on_line^kappa*RDF(log(

num_vert_on_line))^labda

168

169 #horizontal ’lines ’ score

170 num_horizontal_lines =1

171 for i in range(m+n):

172 p_x=coordinates[i,0]

173 for j in range(i+1,m+n):

174 q_x=coordinates[j,0]

175 if p_x==q_x:

176 num_horizontal_lines +=1

177 horizontal_lines_score = -num_horizontal_lines^mu*RDF(log

(num_horizontal_lines))^nu

178

179 #symmetry score

180 symmetry_score =0

181 for i in range(n):

182 vertex_x=coordinates[m+i,0]

183 if vertex_x <=0.5* delta:

184 symmetry_score +=-c_ss *(0.5* delta -vertex_x)^eta

185 if vertex_x >0.5* delta:

186 symmetry_score +=c_ss*(vertex_x -0.5* delta)^eta

102

187

188 score=short_edges_score+long_edges_score+

intersections_score\

189 +distance_vertices_score+height_y_score\

190 +overshoot_score+horizontal_lines_score+

points_on_line_score+symmetry_score

191

192

193 return score

A.2.13 The Function Intersection Test

1 def intersection_test(p_1 ,p_2 ,q_1 ,q_2):

2 r"""

3 returns a value True or False indicating whether the line

segments defined by the points intersect

4

5 INPUT:

6

7 - ’’p_1 ’’ - a vector indicating the source point of the

first line segment

8

9 - ’’p_2 ’’ - a vector indicating the end point of the

first line segment

10

11 - ’’q_1 ’’ - a vector indicating the source point of the

second line segment

12

13 - ’’q_2 ’’ - a vector indicating the end point of the

second line segment

14

15 OUTPUT:

16

17 - a value True or False , depending on whether the line

segments intersect

18

19 EXAMPLES:

20 sage: intersection_test(vector ([1 ,1]),vector ([4 ,4]),

vector ([3 ,0]),vector ([1 ,4]))

21 True

22 sage: intersection_test(vector ([1 ,0]),vector ([3 ,3]),

vector ([5 ,2]),vector ([3 ,5]))

23 False

24 """

25

26 value=False

103

27 #computing r

28 r=zero_vector(RR ,2)

29 r[0]= p_2[0]-p_1[0]

30 r[1]= p_2[1]-p_1[1]

31

32 #computing s

33 s=zero_vector(RR ,2)

34 s[0]= q_2[0]-q_1[0]

35 s[1]= q_2[1]-q_1[1]

36

37 r_x_s=r[0]*s[1]-r[1]*s[0]

38 if r_x_s !=0:

39 q_min_p=q_1 -p_1

40 q_min_p_x_s=q_min_p [0]*s[1]- q_min_p [1]*s[0]

41 t=q_min_p_x_s/r_x_s

42

43 q_min_p_x_r=q_min_p [0]*r[1]- q_min_p [1]*r[0]

44 u=q_min_p_x_r/r_x_s

45

46 if 0<=t<=1 and 0<=u<=1:

47 value=True

48 if t == 0:

49 if u == 0 or u == 1:

50 value=False

51 if t == 1:

52 if u == 0 or u == 1:

53 value=False

54

55

56 return value

A.2.14 The Function Inclines to coordinates

1 def inclines_to_coordinates(encoding ,inclines ,delta):

2 #saved under the name ’inclines_to_coordinates ’

3

4 r"""

5 returns a vector x containing the coordinates of the

system defined by the encoding , inclines and delta

6

7 INPUT:

8

9 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

10

11 - ’’inclines ’’ - a matrix of 2n inclines , of the form $[

104

a_1^L,b_1^L; ... ;a_n^R,b_n^R]$

12

13 - ’’delta ’’ - a positive scalar

14

15 OUTPUT:

16

17 - a 2n x 1 vector x containing the coordinates of the

form (x_1 ,y_1 ,...,x_n ,y_n)

18

19 EXAMPLES:

20 sage: inclines_to_coordinates(vector ([2,1,1,0,1]),

matrix ([[1 ,1] ,[-1 ,1]]) ,1)

21 (1/2 ,1/2)

22 sage: inclines_to_coordinates(vector

([2,2,1,0,1,0,1]),matrix ([[0 ,1] ,[1 , -1] ,[1 ,1] ,[0 ,1]]) ,1)

23 (0,1,1,1)

24

25 """

26 A=A_matrix(encoding ,inclines)

27 b=b_vector(encoding ,delta ,inclines)

28

29 if det(A)==0:

30 x=0

31 if abs(det(A)) >0:

32 x=A\b

33

34 return x

A.2.15 The Function Generate List of Coordinates

1 def generate_list_of_coordinates(encoding ,delta ,min_len ,

num_of_iterations):

2 r"""

3 returns a list containing coordinates for the system

determined by encoding and delta

4

5 INPUT:

6

7 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

8

9 - ’’delta ’’ - a positive scalar

10

11 - ’’min_len ’’ - a positive scalar

12

13 - ’’num_of_iterations ’’ - a positive integer

105

14

15 OUTPUT:

16

17 - a list containing num_of_iterations times a solution to

the system

18

19 """

20

21 n=encoding [1]

22 list_of_coordinates =[]

23

24 if n<3:

25 #we’re first generating all possible inclines , stored

in set_of_inclines

26 positive_inclines=matrix

([[0 ,1] ,[1 ,0] ,[1 ,1] ,[1 ,2] ,[1 ,3] ,[1 ,4] ,\

27 [2 ,1] ,[2 ,3] ,[3 ,1] ,[3 ,2] ,[3 ,4] ,[4 ,1] ,[4 ,3]])

28 nofinclines =(positive_inclines.nrows () -1)*2

29 half_nofi=nofinclines /2

30 set_of_inclines=zero_matrix(nofinclines ,2)

31 for i in range(nofinclines):

32 if i<= half_nofi:

33 set_of_inclines[i,:]= positive_inclines[i,:]

34 if i>half_nofi:

35 set_of_inclines[i,0]= positive_inclines[i-

half_nofi +1,0]

36 set_of_inclines[i,1]=- positive_inclines[i-

half_nofi +1,1]

37

38 m=encoding [0]

39 m_coordinates=zero_matrix(RR,m,2)

40 for i in range(m):

41 m_coordinates[i,0]=i*delta

42 counter =0

43 for i in range(nofinclines):

44 inclines=zero_matrix (2*n,2)

45 inclines [0 ,:]= set_of_inclines[i,:]

46 for j in range(nofinclines):

47 incl = set_of_inclines[j,:]

48 if incl == inclines [0,:]:

49 continue

50 inclines [1 ,:]= incl

51 if n == 1:

52 x=inclines_to_coordinates(encoding ,

inclines ,delta)

106

53 if x == 0:

54 continue

55 n_coordinates=zero_matrix(RR,n,2)

56 for q in range(n):

57 n_coordinates[q,0]=x[2*q]

58 n_coordinates[q,1]=x[2*q+1]

59 value=DrawGraph_filter_incl(encoding ,

n_coordinates ,delta ,min_len)

60 if value == False:

61 counter +=1

62 continue

63 coordinates=block_matrix ([[m_coordinates

],[n_coordinates]])

64 list_of_coordinates.append(coordinates)

65 continue

66 for k in range(nofinclines):

67 inclines [2 ,:]= set_of_inclines[k,:]

68 for l in range(nofinclines):

69 incl=set_of_inclines[l,:]

70 if incl== inclines [2 ,:]:

71 continue

72 inclines [3 ,:]= incl

73 if n == 2:

74 x=inclines_to_coordinates(

encoding ,inclines ,delta)

75 if x == 0:

76 continue

77 n_coordinates=zero_matrix(RR,n,2)

78 for r in range(n):

79 n_coordinates[r,0]=x[2*r]

80 n_coordinates[r,1]=x[2*r+1]

81 value=DrawGraph_filter_incl(

encoding ,n_coordinates ,delta ,min_len)

82 if value == False:

83 counter +=1

84 continue

85 coordinates=block_matrix ([[

m_coordinates],[n_coordinates]])

86 list_of_coordinates.append(

coordinates)

87 continue

88 for o in range(nofinclines):

89 inclines [4 ,:]= set_of_inclines[k

,:]

90 for p in range(nofinclines):

107

91 incl=set_of_inclines[p,:]

92 if incl== inclines [4,:]:

93 continue

94 inclines [5 ,:]= incl

95 x=inclines_to_coordinates(

encoding ,inclines ,delta)

96 n_coordinates=zero_matrix(RR,

n,2)

97 for s in range(n):

98 n_coordinates[s,0]=x[2*s]

99 n_coordinates[s,1]=x[2*s

+1]

100 value=DrawGraph_filter_incl(

encoding ,n_coordinates ,delta ,min_len)

101 if value == False:

102 continue

103 coordinates=block_matrix ([[

m_coordinates],[n_coordinates]])

104 list_of_coordinates.append(

coordinates)

105 print(counter)

106

107 else:

108 for i in range(num_of_iterations):

109 coordinates=DrawGraph_filter(encoding ,delta ,

min_len)

110 list_of_coordinates.append(coordinates)

111 print(len(list_of_coordinates))

112 return list_of_coordinates

A.2.16 The Function Choosing Best Five Pictures

1 def choosing_best_five_pictures(encoding ,delta ,min_len ,

num_of_iterations ,list_of_coordinates =0,

list_of_unique_coordinates =0):

2 r"""

3 returns the five best coordinates after a certain number

of applying DrawGraph_filter

4

5 INPUT:

6

7 - ’’encoding ’’ - a vector of the form $[m,n,s,e_1 ,e_2

,..., e_2n]$

8

9 - ’’delta ’’ - a positive scalar

10

108

11 - ’’min_len ’’ - a positive scalar

12

13 - ’’num_of_iterations ’’ - a positive integer

14

15 OUTPUT:

16

17 - a list of 5 coordinate systems

18

19 """

20 m=encoding [0]

21 n=encoding [1]

22

23 e_list =[]

24 for i in range(n):

25 e_list.append ([encoding [2*i+3], encoding [2*i+4]])

26

27

28 if list_of_coordinates == 0:

29 list_of_coordinates=generate_list_of_coordinates(

encoding ,delta ,min_len ,num_of_iterations)

30 if list_of_unique_coordinates == 0:

31 list_of_unique_coordinates =[]

32 for i in range(num_of_iterations):

33 list_of_unique_coordinates.append(

list_of_coordinates[i])

34

35 length = len(list_of_coordinates)

36 for i in range(length):

37 coord_1=list_of_coordinates[i]

38 # stop = False

39 for j in range(i+1,length):

40 # if stop == True:

41 # break

42 coord_2=list_of_coordinates[j]

43 if coord_1 == coord_2:

44 list_of_unique_coordinates.remove(coord_1

)

45 break

46

47 # for k in range(m,m+n):

48 # if stop == True:

49 # break

50 # for l in range(k+1,m+n):

51 # if e_list[k-m] == e_list[l-m]:

52 # if coord_1[k] == coord_2[l] and

109

coord_1[l] == coord_2[k]:

53 # if coord_1[m:k] == coord_2[m

:k] and\

54 # coord_1[k+1:l] == coord_2[k

+1:l] and\

55 # coord_1[l+1:m+n] == coord_2[

l+1:m+n]:

56 #

list_of_unique_coordinates.remove(coord_1)

57 # stop = True

58 # break

59

60 #still not completely valid for like 010101

61 #break

62 #else:

63 # list_of_unique_coordinates=

generate_list_of_coordinates(encoding ,delta ,min_len ,

num_of_iterations)

64

65 num_unique_coordinates=len(list_of_unique_coordinates)

66

67 score_list =[]

68 for i in range(num_unique_coordinates):

69 score=target_function(encoding ,delta ,

list_of_unique_coordinates[i])

70 score_list.append ([score ,i])

71

72 score_list=sorted(score_list)

73 best_score_list =[]

74 best_five =[]

75 if num_unique_coordinates <10:

76 best_five=list_of_unique_coordinates

77 else:

78 for i in range (10):

79 best_score_list.append(score_list[i][0])

80 k=score_list[i][1]

81 best_five.append(list_of_unique_coordinates[k])

82

83 return best_five

A.2.17 Code to Sort All Possible Coordinates for the Wedge

1 A=generate_list_of_coordinates(encoding ,delta ,min_len ,100000)

2 #attempting to find all the sets of coordinates

3

4 unique_list_of_coordinates =[]

110

5 #throwing all the duplicate coordinates away

6 for i in range(num_of_iterations):

7 x=A[i][2,0]

8 y=A[i][2,1]

9 if [x,y] not in unique_list_of_coordinates:

10 unique_list_of_coordinates.append ([x,y])

11

12 def pyt_compt(unique_list_of_coordinates):

13 #pythagoras computer , to compute the hypothenuse of a

rectangular triangle

14 k=len(unique_list_of_coordinates)

15 length_list =[]

16 for i in srange(k):

17 del_x_L=w[i][0]

18 del_x_R =50-w[i][0]

19

20 del_y=w[i][1]

21

22 len_L_sq=del_x_L ^2+ del_y ^2

23 len_R_sq=del_x_R ^2+ del_y ^2

24

25 len_L=sqrt(len_L_sq)

26 len_R=sqrt(len_R_sq)

27 length_list.append ([len_L ,len_R ,w[i]])

28

29 return length_list

30

31 length_list=pyt_compt(unique_list_of_coordinates)

32 #the above gives a list of the lengths of all the edges

33 #the below gives the same list , but sorted from small to

large

34 length_list_dup=sorted(length_list)

35

36 #we now remove all edges larger than 50

37 for i in range(len(length_list)):

38 len_L=length_list[i][0]

39 len_R=length_list[i][1]

40 if len_L >=50 or len_R >=50: #the >= can be changed in <=

to find all the edges smaller than 50

41 length_list_dup.remove(length_list[i])

42

43 #calculate the average length of each pair of coordinates

that has edges larger than 50

44 gem_len_list =[]

45 for i in range(len(length_list_dup)):

111

46 gem_len =(length_list_dup[i][0]+ length_list_dup[i][1])/2

47 gem_len_list.append ([gem_len ,length_list_dup[i][2]])

48 sorted(gem_len_list)

49

50 #the final output is a list that gives the average length of

the edges of one set of coordinates

51 #and the corresponding coordinates for the inner vertex

A.2.18 The Mirroring Function

1 def mirroring_function(encoding ,coordinates):

2 m=encoding [0]

3 n=encoding [1]

4

5 new_encoding =[m,n,encoding [2]]

6 print(new_encoding)

7 for i in range (2*n):

8 e=encoding [3+i]

9 if e==1:

10 if i%2==1 and encoding [2+i]==0:

11 new_encoding.append (1)

12 else:

13 new_encoding.append (0)

14 if e==0:

15 if i%2==0 and encoding [4+i]==1:

16 new_encoding.append (0)

17 else:

18 new_encoding.append (1)

19 if e not in [0,1]:

20 new_encoding.append(e)

21 print(new_encoding)

22 new_coordinates=zero_matrix(RR,m+n,2)

23 for i in range(m):

24 new_coordinates[i,:]= coordinates[i,:]

25 for i in range(n):

26 x=coordinates [2+i,0]

27 new_x=50-x

28 new_coordinates [2+i,0]= new_x

29 new_coordinates [2+i,1]= coordinates [2+i,1]

30 return new_encoding ,new_coordinates

112

	Introduction
	Research Question and Approach
	The Algorithm
	Programming the Algorithm
	The Linear System
	The Algorithm

	The Target Function
	The Short and Long Edges Score
	Intersections Score
	Distance Between Unrelated Vertices Score
	Overshoot Score
	Height y-coordinate Score
	Points on Line Score
	Vertical Lines Score
	Concluding Remarks and Summary

	Tuning the Target Function
	The Wedge
	The Double Wedge, The Graph With Encoding 2 2 1 01 01
	The Graph With Encoding 2 3 1 01 12 12
	Some Probability Theory
	Tuning the Target Function

	All Graphs up to Order 3

	Graphs with 2-cycles
	Changing the Programme
	Tuning the Target Function

	Graphs of order 4
	Conclusions
	Discussion
	Appendix
	Matlab code
	The function graphfunc

	Sage Code
	The Function to generate the vector b
	The Function to generate the matrix A
	the Function Inclines to Coordinates
	The Function DrawGraph algorithm
	The Function Positive Test
	The Function Same Vertices Test
	The Function Length Test
	The Function Overlapping Edges Test
	The Function DrawGraph Filter
	The Function DrawGraph Compute and Draw
	The Function DrawGraph Draw
	The Target Function
	The Function Intersection Test
	The Function Inclines to coordinates
	The Function Generate List of Coordinates
	The Function Choosing Best Five Pictures
	Code to Sort All Possible Coordinates for the Wedge
	The Mirroring Function

