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Abstract

Semi-classical techniques exist that study quantum field theories by looking at their special
classical field configurations. Examples include solitons, instantons and sphalerons. For each
of these we will discuss to different degrees what defines them, how to find them, why they
exist, what they say about the classical and quantum theoretic vacuum structures of their
associated theories and what phenomena they help us probe. In these discussions, topological
considerations turn out to be crucial. Our focus will be on the sphaleron, a potential energy
saddle point, in the electroweak sector of the standard model. It might make baryon and
lepton number violating processes possible in collider experiments and its thermal cousin might
be an ingredient in explaining the origin of the matter-antimatter asymmetry of the observable
universe. We examine this process and explore a recent proposal that claims it could be resonant.
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Chapter 1

Introduction

T
he standard model (SM) has been a phenomenally successful theory of particle physics.
Its backbone, which is also the foundation of many models in solid state physics, is

quantum field theory (QFT), the most successful theoretical framework that can combine
the principles of classical mechanics, special relativity and quantum mechanics (QM). In
particle physics, QFT is used to compute cross sections of reactions and decay rates of
particles. In addition to the usual pertubative contribution to these quantities probed
using, for instance, Feynman diagrams, semiclassical methods exist to examine a the non-
perturbative features.

“Semiclassical” is a broad term, it refers to any model which is part quantum and
part classical. Lots of these techniques analyze field theories by considering their special
classical field configurations. An example is the instanton, they are event configurations
of minimal Euclidean action, which help us compute tunneling amplitudes and which tells
us about the gauge field vacuum. Other examples of special field configurations include
solitons (such as monopoles and vortices) or sphalerons. Bringing together the literature on
these special field configurations and the techniques and contexts in which they appear will
be the subject of this thesis: For each these three we discuss to different extend what defines
them, how to find them, when they exist and what predictions can be made with them.
Our primary focus will be understanding the sphaleron. As we will get to see, a thorough
understanding of the relation between the space of classical field configurations (and how
it appears it different gauges) and the quantum states of the actual QFT is paramount. As
it turns out, the appearance of such configurations can have a gauge-dependent character.
Especially the relation between the classical and quantum theoretic vacuum structure of
the models is important, which both instantons and sphalerons help us probe.

The most well known application of a sphaleron is seen in the SM. The bosonic com-
ponent of electroweak (EW) sector is known to have one[14][28][23] as well as a thermal
variant. In theory, it plays a crucial role in making baryon and lepton number violating re-
actions possible. These could occur in collider experiments using the regular EW sphaleron
or they might have occurred in the early universe using the thermal EW sphaleron. If
those reactions are found to exist, then they might ultimately help explain the origin of the
matter-antimatter asymmetry of the observable universe[26][32]. During our discussions,
we keep coming back to this EW sphaleron and its applications.
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Outline

In chapter 2 we discuss solitons, which are the most straightforward kind of special config-
uration to introduce. They are the non-trivial minima of the potential energy functional of
a theory. In the chapter, we introduce further concepts, such as field configuration spaces,
homotopy groups and the relevance of scaling arguments such as those used in proving
Derrick’s theorem. While these topics are discussed in regards to solitons, they are crucial
ingredients to assess the existence of the other special classical field configurations that
occur within this thesis.

In chapter 3 we discuss the aforementioned instantons, which are solutions of so-called
Euclidean equations of motion of a theory. They help us compute tunneling amplitudes in
both QM and QFT. We derive the famous BPST-instanton[5] in pure Yang-Mills theory,
which is a component of the EW and quantum chromodynamics (QCD) sector of the SM.
We discuss the gauge-dependent character of the classical vacuum structure. They give rise
to two physically equivalent, but conceptually different quantum pictures of the gauge field
vacuum.

In chapter 4 we discuss sphalerons: saddle points of the potential energy functional.
They exist on the smallest possible barriers between vacua, which makes them the most
energetically favorable channels for vacuum-to-vacuum transitions. Before deriving the EW
sphaleron itself, we derive the sphaleron (and instanton) in the (1 + 1)-dimensional Abelian
Higgs model, which is a toy model for the full EW theory.

In chapter 5 we introduce fermions into our theories and discuss their consequences.
We will see how they effect the vacuum structure of the gauge sectors of the SM. We will
see why sphalerons (and instantons) are related with the violations of fermionic quantum
numbers, such as the possible SM baryon and lepton number violating reactions. We do so
by studying the effect of bosonic fields on fermions semiclassically. Then we’ll discuss the
possibility that these reaction in the SM might be resonant.

In chapter 6 we summarize, discuss and conclude out findings.
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Chapter 2

Solitons and the Topology of Field
Configuration Space

I
n this chapter we discuss the most straightforward class of special classical field configura-
tion relevant to QFT: solitons[12, ch.6][11, ch.15]. Solitons are essentially non-dissipative

wave-packets. By definition, they are static, stable, and have finite potential energy. They
are static in the sense that their profile does not change when they move and they are stable
in the sense that at least under a small perturbation the soliton will not fall apart / decay
towards a vacuum configuration.

Objects like this can appear in theories with certain non-linear wave equations. This
non-linearity gives rise to self-reinforcement of waves that can balance out against natural
dispersion. Light traveling through glass can exhibit such a soliton, where dispersion,
characterized by the glass’s refractive index, balances out against the amplifying Kerr effect.
Note that these solitons exist in some sense accidentally: the balance of forces can still be
tipped, perturbing the wave hard enough will break the stability. In particular, these regular
solitons have no conservation law that keeps them around. On the other hand, the solitons
that we are interested in are called topological solitons. They are stable under a variation of
any size, the reason being the existence of topological conservation laws: We will see that
there is no way for the soliton to reach the vacuum by decay, because these configurations
are not continuously connected. Instead, they are separated by an infinitely large potential
energy barrier.

The goal of this chapter will be to introduce solitons while also serving as a foundation
for the rest of this thesis, introducing the mathematics that will keep coming back. The
chapter’s outline is as follows: We begin this chapter in section 2.1 by familiarizing ourselves
the most forthright example of a topological soliton: the (anti-) kink configuration in a
relativistic (1 + 1)-dimensional real scalar field theory (a φ4-theory). This soliton can
simply be computed as we go along. In section 2.2, we subsequently present the general
argument of why topological solitons exist and why they are stable, which also applies to field
theories with continuous symmetries like gauge theories and those of which that undergo
spontaneous symmetry breaking (SSB). We also discuss the concept of field configuration
space, which provides a topological picture of this argument. We apply the general argument
to theories with continuous symmetries in section 2.3. We also learn to characterize solitons
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by introducing winding numbers and homotopy groups. We close the section by giving the
example of the solitons called monopoles in the SSB SO(3) (3 + 1)-dimensional Georgi-
Glashow model. In section 2.4, we discuss Derrick’s theorem, which demonstrates how
topological arguments are ultimately insufficient to guarantee the existence of solitons. One
must check, in addition, that solitons cannot disappear by rescaling of the fields. The
theorem has a much wider application, similar scaling arguments can also preclude the
existence of the instantons and sphalerons mentioned in chapter 1. We will henceforth
refer to topological solitons simply as solitons for the rest of this thesis, except when the
distinction is important.

2.1 The (Anti-) Kink Soliton in Scalar Field Theory

We begin our discussion of solitons in field theories by studying the so-called kink and anti-
kink soliton. This is the traditional approach employed in many sources[11, ch.15 §2][12,
ch.6 §2][21]. The model is a simple relativistic (1 + 1)-dimensional real scalar field theory1.
Let us begin by reviewing this model while deriving the solitons themselves. After this
section we generalize our results for solitons in general.

−1 0 1
φ

0

2

4

V

Figure 2.1: A generic dou-
ble well potential.

The dynamics of the field φ is given by the following La-
grangian:

L =
1

2
∂µφ∂

µφ− V(φ), where V(φ) =
1

2
(φ2 − 1)2. (2.1)

The potential V used is that of a double well potential, making
this a φ4-theory, see figure 2.1. Given the action S =

∫
d2xL,

the equation of motion (e.o.m.) can be found using the sta-
tionary action principle. The result is

∂µ∂
µφ = −∂V

∂φ
. (2.2)

Even though we work in a relativistic setting, in any particular reference frame we can
break the energy E of the configuration into a kinetic T and potential V component at each
moment in time: E[φ] = T [φ] + V [φ]. In this specific case,

T [φ] =

∫
dx

1

2
(∂0φ)2 and V [φ] =

∫
dx

[
1

2
(∂1φ)2 + V(φ)

]
. (2.3)

Both are functionals of the particular configuration. As expected, E is conserved within
such a frame, but it is not Lorentz invariant.

Actually solving for solitons in this particular theory is straightforward, one simply
minimizes V by variation. The e.o.m. tells us that any extremum of V , which includes
our minima, produces a static configuration: ∂µ∂

µφ = 0 (extreme satisfy δV = 0, hence
∂V
∂φ = 0). In general, static configurations are not necessarily stable, but minima are. The
argument why this is true parallels the equivalent argument in classical (particle) mechanics

1Let us stick, like we do in the entirety of this thesis, to the (+,−) metric convention.
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(think of a particle rolling around in some potential, let loose near some minimum): If a
configurations φ̄ is a minimum of V w.r.t. all possible variations δφ, then one can always
start the system close enough to φ̄ such that the configuration is stuck under time evolution
in the neighborhood of φ̄, oscillating around this equilibrium. This is because the field
energy is conversed (T is bounded) and only a limited region of fields configurations is
accessible: Suppose we start the system, say at t = T , in the configuration φ = φi with
φ̇ = φ̇i such that its energy E = Ei. Then only φf obtained by continuously deforming φi

such that V [φf] < Ei during the deformation, are accessible configurations. Otherwise a
potential energy barrier prevents the field from reaching φf.

Before we continue, let us be clear about the precise meaning of deformation, the
concept returns quite often: We mean that one constructs a family of field configurations
φ(x;µ), continuous for all values of the parameter µ ∈ [0, 1] everywhere in space, which
begins and ends at the required fields. In the aforementioned example, φ(x, µ = 0) = φi

and φ(x;µ = 1) = φf. In mathematics, such a family of functions is called a homotopy. Two
functions that can be continuously connected are said to be homotopic.

The extremization that will lead us to the solitons is

δV = δ

(∫
dx

[
1

2
(∂1φ(x))2 + V(φ(x))

])
= 0. (2.4)

Notice the form of this variational problem, it is functionally identical to the minimization
of the “action” V of a particle of unit mass at “position” φ as a function of “time” x rolling
in the flipped potential −V(φ). We can therefore solve this problem as we would solve
any other classical mechanics problem. There is just one boundary condition that we need
not forget that carries over the original classical field theory problem: We would like to
find finite V solutions only. If we look at the potential energy functional, equation 2.3,
then we must conclude that φ(x) must approach a zero of the potential V(φ) as x→ ±∞.
Otherwise the potential energy V [φ] of the soliton will blow up. We discard the possibility
that φ̄(∞) = φ̄(−∞) = ±1. Solving the problem with these boundary conditions gives us
the vacuum configurations φ̄(x) ≡ φ±0 (x) = ±1 for which V [φ±0 ] = 0. They are the static
and stable global minima of V (the functional is positive definite), but not the non-trivial
soliton solutions we are looking for.

In case the φ̄(∞) = −φ̄(−∞) = ±1, we could write down the corresponding Euler-
Lagrange equations for δV = 0 and solve the system from there. Let us instead solve our
trajectory starting from “energy” conservation of the “particle” system of “action” V . Since
the particle tends asymptotically to a zero of V, the solution has zero “energy”:

1

2

(
dφ

dx

)2

+ (−V(φ)) = 0, hence x = ±
∫ φ(x)

φ(x0)
dφ′

1√
2V(φ′)

. (2.5)

The solution can simply be integrated to give

φ̄(x) ≡ φ±(x) = ± tanh(x− x0), (2.6)

for which V [φ±] = 4
3 > 0.

The stability of these configurations is discussed in lots of sources[12, ch.6 §2.2][21].
One writes out all small perturbations δφ(x), which vanish as x→ ±∞ to satisfy the finite
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V condition, in terms of some basis. One then shows that there are no negative modes
(variations that lower the V ), by showing that all eigenvalues of the linearized problem are
greater than zero. This turns out to be true, except for the existence of a zero mode (a
variation that keeps V constant), which corresponds to shifting the solution φ± left to right:
δφ(x) = ±∂φ

∂x (x). This is not surprising, the solution we obtained has translation invariance,
just as any solution of a Lagrangian with translation invariance should have. The solution
is still considered a soliton as the profile of the wave does not change when it moves.

2.2 Topological Solitons and Field Configurations Space

Figure 2.2: Schematic figure that graphs V
above a two dimensional cross section of CV
for the theory containing the (anti-) kink soli-
tons.

We have solved the (anti-) kink solitons by
stationarizing V , which were stable under
all (small) perturbations. This means they
are, at least, regular solitons. We have not
shown, however, whether they are topolog-
ical solitons. We will now argue why they
are. Recall from this chapter’s introduction
that a configurations being a topological
solitons means that its decay is prevented
by it and the vacua not being continuously
connected. They must therefore be (topo-
logically) stable under arbitrary large vari-
ations: They can be seen to carry a topo-
logical charge, conserved by a topological
conservation law.

Actually, we have already mentioned the reason why the (anti-) kink is a topological
soliton indirectly: Any finite V configuration, such as the (anti-) kinks φ± or vacua φ0

±,
have constrained asymptotic field values (asymptotics) to keep their V finite: They must
always approach a zero of V (which are ±1) as x→ ±∞. If we try and deform any finite V
configuration into another with at least one different asymptotic, then for some intermittent
value(s) of the deformation parameter µ one (or both) of the asymptotics must go from +1
to −1 (or vice versa). For those intermediate values of the parameter, V blows up. This
happens, in particular, when deforming any of the vacua or solitons into another: One needs
to cross an infinitely high potential energy barrier. Since time evolution is also a continuous
deformation, there is no way the (anti-) kink soliton can decay into a vacuum, even if the
configuration is hit by an arbitrary large variation ∆φ. Those change the configurations
potential energy by a large, but finite amount. We would need an infinite (kinetic) energy
to change the asymptotics.

Each of these four configurations are still part of the domain of V , which is the space of
finite V field configurations CV . The fact that they cannot be continuously deformed into
each other means that this space CV must consist of disconnected components. Figure 2.2
illustrates this point, we have graphed V above a two-dimensional cross section2 of CV . The

2We can only show a cross section in three dimensions. CV is, in general, infinite dimensional.
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plot captures the idea of the sectors, each containing a vacuum or (anti-) kink soliton, with
an infinitely large potential energy barriers between them. Note how each configuration is
the global minimum3 of its own component, this is why solving δV = 0 produced them.
The true global minima of the V on the whole space are, of course, the vacua themselves
(the solitons have a positive non-zero V , they hover above the plane).

Since the asymptotics of the fields cannot change, the difference between the corre-
sponding field values is a conserved quantity, a topological charge q. For the model that we
are considering,

q[φ] =
1

2

∫
dφ =

1

2

∫ +∞

−∞
dx ∂1φ = φ(+∞)− φ(−∞), (2.7)

where q[φ±] = ±1. The fact that requiring finiteness of V leads to q being conserved is
known as a topological conservation law. They have a completely different origin as the
usual Noether charges and currents, as they are not a consequence of the symmetries of the
Lagrangian. Each of the configurations inside a component of CV share the same q. We
can thus characterize each sector (and configuration) using the label q.

2.2.1 The Existence of Solitons and the Topology of CV

CV having disconnected components is a necessary requirement for the existence of solitons.
It occurs quite generally as CV inherits its topology from the space of field asymptotics:
As in the scalar field theory, deforming the asymptotics is enough to know V blows up. In
particular, it is independent of how the fields are deformed anywhere else on the line.

In a theory with d spatial dimensions, these asymptotics are simply mappings from the
boundary of space ∂Rd (which was the set x ∈ R = {−∞,+∞} for the previous scalar field
theory) to the zero’s of the potential term appearing within V , kerV (which was the set
φ ∈ kerV = {−1,+1}). In other words,

CV ∼= Maps(∂Rd → kerV). (2.8)

Thus, when there are multiple such maps that cannot be continuously deformed into each
other (or when the set of much mappings it self discrete, which happend in the scalar field
theory), then that disconnectedness carrier over into CV , such as in figure 2.2.

We note, however, that the condition is not sufficient to prove the existence of solitons.
In section 2.4 we consider Derrick’s theorem, which shows how a scaling argument can
preclude their appearance, even though CV has disjoint sectors.

Before we end this section, let us be clear about the meaning of ∂Rd: In general when
d > 1, we mean the space of coordinates the fields still depend on if the limit |~x| → ∞ of the
fields is taken (~x ∈ Rd). For instance, in a two dimensional space, when we can write our
fields using the polar coordinates r and θ, a field φ(r, θ) only depends on θ when r → ∞.
Therefore ∂R2 ∼= S1.

3Is such a figure, regular (non-topological) solitons would appear as local minima in each sector. This
reflects their ability to decay if perturbed hard enough, there is no topological conservation law keeping
them away from the vacua. They are instead separated by a finite height barrier.
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φ

 
φ

 
φ

Figure 2.3: A visualization of a mapping of S1 → S1, showing mappings with
winding numbers 0, 1 and 2 in order. For each point on the red outer ring (the
domain) one projects down radially onto the black inner ring (the codomain). From
left to right we see the trivial mapping (winding number 0; the whole domain
is mapped onto a single point), the identity mapping (winding number 1; each
point is mapped onto itself) and a mapping of winding number 2. Homotopies
(deformations) of the first two mappings are also drawn in beige, by definition
they belong in the same homotopy class as the winding number cannot change
disjointly under smooth deformations.

2.3 Continuous Symmetries and Homotopy Classes

In the previous example, we saw how CV separated in four components because there were
four discrete ways to map ∂R = {±∞} into kerV = {±1}. In this section, we discuss the
same problem, but for theories where both ∂Rd and kerV are continuous spaces instead.
The resulting sector structure of CV , one again, hints at the possibility of solitons.

Let us explain what changes by considering a theory with a complex scalar field φ(xµ)
in (2 + 1)-dimensions, where the potential term

V(φ) =
1

2

(
|φ|2 − 1

)
(2.9)

with U(1) symmetry appears in the potential energy functional V . Furthermore, let us write
our fields in polar coordinates, φ = φ(r, θ). Further details of the model are not relevant,
we only assume that φ is required to approach a zero of V for V to converge.

In this model, this potential has degenerate zero’s: kerV = {eiθ | θ ∈ [0, 2π]} ∼= S1.
Moreover, if we let r → ∞, then φ becomes a function of θ alone, as we discussed
above: ∂R2 ∼= S1. The asymptotics of φ, let us explicitly name these φ∞(θ) (φ∞(θ) =
limr→∞ φ(r, θ)), are therefore elements of the set Maps(∂R2 → kerV) = Maps(S1 → S1).

Mappings from S1 → S1 have a winding number or index q, corresponding to the
number of times the codomain is covered by the domain. Figure 2.3 illustrates a few of
such mappings (in red) with winding number 0, 1 and 2, as well as other mappings (in
a less saturated beige) to which these red mappings are homotopic (i.e. continuously de-
formable). To find out what any particular mapping does, project a point along the red
loop (the domain) radially down onto the black circle (the codomain). The picture demon-

10
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strates visually that two mappings with different winding numbers cannot be continuously
connected, while mappings with the same winding number can, they are are said to belong
to the same homotopy class (an equivalence class under winding numbers). Note that there
are also mapping with the opposite orientation (obtained by reversing the red arrow), we
label these mapping with a negative winding number.

Since CV inherits the structure of Maps(S1 → S1), there are a countably infinite
number of sectors: one for each homotopy class of labeled by winding number q. In each we
expect a soliton. Configurations whose asymptotics have different winding numbers are not
continuously connected and must be separated by infinitely high potential energy barriers.
Suppose φ∞(θ) ≡ 1 · u(θ) = eif(θ), then q in terms of u is given by

q[u] =
−i
2π

∫ 2π

0
u−1(θ)

du(θ)

dθ
dθ and q[f ] =

∫
df =

1

2π
(f(2π)− f(0)) . (2.10)

2.3.1 Homotopy Groups and Notation

For our example it is easy to construct a single element from each homotopy class f(θ) =
fn(θ) = nθ with winding number n. It is possible to endow the set of homotopy classes with
a group multiplication property ×, which is nothing more than connecting a representative
element of each class back to back. For example,

g(θ) = (fn × fm)(θ) =

{
fn(2θ) if 0 ≤ θ ≤ π,
fm(2θ − 2π) if π ≤ θ ≤ 2π

= fn+m(θ). (2.11)

This group is written as Π1(S1) which is called the 1st homotopy group of S1, where the
subscript 1 tells us that we consider the group structure of mapping S1 onto the argument
(also S1). We see immediately that the group structure is the same as that of the integers
under addition (Z,+) (generally shortened to just Z), i.e. that

Π1(S1) ∼= (Z,+). (2.12)

There also exists homotopy groups of higher order denoted by Πn(X), where we con-
sider the group structure of mapping Sn onto X. An example is Πn(Sn) ∼= Z in analogy
with the example above. Note that homotopy groups satisfy the composition law

Πn(Maps(Sm → X)) = Πn+m(X). (2.13)

Most importantly, one can also extend the concept of homotopy groups to include
a Π0(X), the first or fundamental homotopy group, with which the group structure of
the connected components of X are meant. In terms of homotopy groups, solitons might
exist if CV ’s fundamental homotopy group is non-trivial, i.e. Π0(CV ) 6= 1. In the (2+1)-
dimensional model, for instance,

Π0(CV ) = Π0(Maps(∂R2 → kerV)) = Π0(Maps(S1 → S1)) = Π1(S1) = Z. (2.14)

For more information on homotopy groups and classes, see [11, ch.16 §1][12, ch.7 §3.2].
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2.3.2 SSB and Homotopy Classes

In some gauge theories with gauge group G, the zeros of the potential are only invariant
under some proper subgroup H of G. The theory’s fields have different symmetries when
expended around this vacuum then the original fields had. Theories like this are said to
have SSB. For these theories[12, p.217]

kerV ∼= G/H, (2.15)

where G/H is the coset space. It is important to realize that H need not be an invariant
subgroup. In that case the result is not a group either, but it might very well be some
manifold. It is therefore possible to look for mappings from the boundaries of space into
G/H, rather than solving kerV(φ), when deciphering the field configuration space.

In our previous example H = 1, since each z ∈ kerV(φ) gets rotated away under all
u(θ) = eiθ ∈ U(1), except for the trivial u(0) = 1 element. This is knows as complete
symmetry breaking. In this case, G/H = U(1)/1 = U(1) ∼= S1 (an example of complete
symmetry breaking). This agrees with our earlier discussion kerV ∼= S1.

2.3.3 The SO(3) Georgi-Glashow Model

Let us finish our discussion on solitons in theories with continuous symmetries with a well
known model in which we can verify the validity of equation 2.15 visually. This is the so-
called Georgi-Glashow model[11, p.466][12, p.197, p.207]. It is a SO(3) (non-Abelian) gauge
theory in (3+1) dimensions containing a single triplet of Higgs scalars φ = (φ1, φ2, φ2) as
well as three gauge field Aaµ (one for each generator τa of SO(3)). This model is not to be
confused with the the SU(5) GUT theory also know by that name. Let us employ vector
notation, Aµ = i

gA
a
µ
τa

2 , Fµν = i
gF

a
µν

τa

2 . The details of the theory are given by:

L = −1

2
Tr(FµνF

µν) +
1

2
(Dµφ)∗(Dµφ) + V(φ). (2.16)

Dµ = ∂µφ+Aµφ. (2.17)

V(φ) =
λ

2
(φ · φ− 1)2. (2.18)

As we can see the kerV is given by the field values for which |φ| = 1, which is nothing
else than a 2-sphere. In other words kerV ∼= S2. The boundary of space ∂R3 ∼= S2 as
well. The field configuration space is therefore divided into disconnected components given
by maps from S2 → S2, i.e. by Π0(CV ) ∼= Π2(S2) = Z. So this theory has a countably
infinity number of sectors too. The model contains all of these solitons, they are referred
to as monopoles.

Let us see if we can obtain the same conclusion based on the principle expressed by
equation 2.15. For this model the symmetry remaining after SSB is the stabilizing subgroup
H = SO(2) rotations of G = SO(3) around a particular |φ = 1| vector. Our task will be to
find the manifold to which the set of (left) cosets G/H = SO(3)/SO(2) is isomorphic, which
ought to be S2. Note that it will not be another Lie subgroup, since the SO(2) subgroup
is not invariant.

12
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Figure 2.4: Demonstration that SO(3)/SO(2) ∼= S2. All points of g ∈ SO(3) are displayed
as points in and on a sphere of radius π: g = θn̂, where θ is the (right handedly oriented)
rotation angle around the axis specified by n̂.

We choose to take a geometrical approach to tackle this problem. Let us therefore
begin by visually representing all the elements of SO(3). We do this in the conventional
way: Draw each element g of SO(3) as a point inside and on a sphere of radius π in R3. The
distance θ to the origin of any given point g will be the rotation angle and the direction n̂
will be the axis of rotation (using the right hand rule to orient the rotation direction). The
left side of figure 2.4 shows this construction. It is important to realize that antipodal points
on the sphere’s surface are identified, they correspond to equivalent ±π rotations around
the given axis. For instance, Hẑ, the rotations around the φ = (0, 0, 1), is the oriented line
running through the center of the ball between the poles, see the right side of figure 2.4.
Note that, because of the identification, such a line is actually a closed non-contractible
loop (NCL) in SO(3). This is how it should be, the parameter space of SO(2) is S1.

The right side of figure 2.4 shows us why G/H ∼= S2: w.r.t. the reference subgroup Hẑ,
each other SO(2) subgroup H can be reached by a unique element g′ = θ′n̂′ ∈ G ⊂ G, which
are the points in the xy-plane (Note that geometrically, g′Hẑ = Hẑ×θ′n̂′). It appears that
G is not an S2, since it is a disk. This is not exactly true: Not just the antipodal points,
but the entire rim of the disk map Hẑ → H−ẑ, which shows that, as far as the cosets are
concerned, we need to treat the elements on the edge as one. The disk gets compactified to
a sphere: G/H ∼= G ∼= S2.

2.4 Derrick’s Theorem

Sometimes a theory has a soliton in isolation, but when we try to add other fields the solitons
suddenly ceases to exist. One way that this can happen is through one of several “scaling

13
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arguments”[27]. Qualitatively, a sector of field configurations space loses its minimum, even
though CV still has disconnected components. Hence, there is no longer any configuration
that can resemble a soliton. Similar scaling arguments can also be used to rule out the
instantons and sphalerons that are the topic of the upcoming chapters.

For the case of solitons there is a no-go theorem called Derrick’s theorem[12, p.194]
that exploits such an argument to preclude their existence. It applies in the case of (D+1)
dimensional gauge theories with scalar fields only.

Let the theory’s scalar fields be assembled into some big vector φ with Lagrangian

L =
1

2
(∂µφ)(∂µφ)− V(φ) (2.19)

and where the potential V(φ) is positive-definite with zeros at φ0: V(φ0) = 0. Then the
only static solutions of finite energy (to which solitons belong) for D ≥ 2 are the vacua, i.e.
φ(xµ) = φ0.

To see why this is the case, consider the following argument. Recall that finite energy
solutions minimize the potential energy functional:

V [φ] = V1[φ] + V2[φ] where, V1[φ] =
1

2

∫
dDx(∇φ)2 and V2[φ] =

∫
dDxV(φ)

(2.20)
The argument is based on the way different terms in the Lagrangian scale when scaling the
solution φλ(~x) → φ(λ~x). Under this transformation ∇φ(~x) → λ2∇φ(λ~x), therefore (after
a change of variables), V [φ] scales as

V [φλ] = λ2−DV1[φ] + λ−DV2[φ]. (2.21)

If the solution is really stationary it must be at a minimum of the potential, so
d
dλV [φλ] = 0 at λ = 1, in other words

(D − 2)V1[φ] +DV2[φ] = 0 (2.22)

However, since V1[φ] and V2[φ] are positive-definite, when D > 2, V1[φ] and V2[φ]
must vanish. In other words the solutions must be the vacua φ(xµ) = φ0, since their
energy vanishes. Even in the case D = 2, it can be shown that this cannot be satisfied by
non-trivial solutions.

The same principle can be applied to the EW theory in the search for instantons.
Here we apply a scaling argument to the Euclidean action SE [φ,Aµ] in R4 rather then the
potential energy functional V [φ,Aµ]. This rules out the pure Yang-Mills instantons in that
theory[30, p.459]. However, the same argument cannot be used to rule out sphalerons in
that particular theory[28][27, §4].
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Chapter 3

Instantons and the Gauge Theory
Vacuum

I
n this chapter we will meet instantons, which, like solitons, are another example of a
special classical field configuration with importance to physics. As we will get to see,

they are solutions of the Euclidean equations of motion found by minimizing the Euclidean
action SE of various field theories.

Mathematically, instantons and solitons are more than superficially similar: They live
in CSE , the space of finite SE field configurations, a space analogous to CV . Minimizing
SE over CSE to find instantons is similar to minimizing V over CV to find solitons. The
instanton’s existence is therefore similarly related to the non-trivial topology of CSE , this
space can consist of disconnected components (Π0(CSE ) 6= 1) just as CV does. They can
thus be classified using the elements of Π0(CSE ), hence labeled by topological charges (i.e.
winding numbers). Despite this similarity, their physical applications are quite different.
Solitons reveal static objects, like monopoles and vortices, that appear in certain theories.
Instantons, on the other hand, are relevant when discussing quantum tunneling. As a clas-
sical solution they connect a theory’s classical vacua together over the so-called Euclidean
time (or Imaginary time). They therefore appear as an “event” taking place over Euclidean
time, transforming one vacuum into another. These are the same vacua as those appearing
in CV , they are generally isolated and separated by potential energy barriers through which
the instantons are said to tunnel.

To be precise, instantons are used to compute transition amplitudes (or tunneling
amplitudes) in the path integral between classical vacuum configurations in both quantum
mechanics (QM) and quantum field theory (QFT). With classical vacuum configurations,
we mean the same as in the last chapter: the minima x0 of the potential V (x) in QM and
the minima Φ0 of V [Φ] in QFT. When there is an instanton connecting two such vacua,
then, in terms of wave functions1, there is a non-zero probability amplitudes for a state
that is approximately localized at one of these classical vacua (close to a delta spike) to
be found at the other an arbitrarily long time later. It is the instanton’s Euclidean action

1Wave functions are generally used in quantum mechanics, but have their use in field theory too. The
wave function picture in field theory is called the Schrödinger functional formalism.
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that ultimately determines these amplitudes. The higher the barrier between the vacua, the
longer such approximately localized state will last. Essentially they are the approximate
ground (or vacuum) states of the theory. In terms of wave functions, the true stationary
(hence tunneling invariant) ground state must be localized (in superposition) near all the
classical vacua; the existence of the instanton (and its resulted tunneling) have clued us in
to this fact.

−a 0 a
x

0

2

4

V
/a

2

|a〉

Figure 3.1: Double well po-
tential, with approximate
ground state |a〉.

Consider, for instance, the particle in the double well po-
tential. It is one of the simplest examples of a quantum me-
chanical system with tunneling. The potential is,

V (x) =
1

2
(x2 − a2)2, (3.1)

see figure 3.1. In this problem, the classical vacua are x0 =
±a and there are two instantons: one connecting x0 = a to
x0 = −a and vice versa. Both approximate ground states |±a〉
are required to build a true stationary ground state |Ω〉 ∼

1√
2
(|a〉+ |−a〉) of the system.

In gauge theory we run into additional complications:
The classical vacuum structure depends on which gauge fix-
ing one chooses. Since instantons interpolate between classical
vacua, the instantons change their appearance when changing gauge. Upon quantization,
there are some subtleties associated with discerning which approximate vacuum states exist
and between which of those instantons determine the transition amplitudes. In other words,
there is some subtly involved in relating the classical vacuum structure (like the zero’s ±a)
with the quantum theoretic vacuum structure (like the states |±a〉) in gauge theories. As
we will get to see, the issue comes down to the physicality of large gauge transformations.
An example of such a theory is the pure SU(2) Yang-Mills theory in (3+1)-dimensions.

In the pure SU(2) Yang-Mills theory, Belavin, Polyakov, Schwarz and Tyupkin, discov-
ered a countably infinite number of instantons classified by topological charges[5] (Π0(CSE =
Z)). The unit winding number instanton is now known as the BPST-instanton, named after
its discoverers. At the time, the theory was expected to have only a single classical vacuum,
while it appears as if these instantons contradict that fact. Jackiw and Rebbi were the first
to make sense of these instantons by interpreting the theory’s vacuum structure[22] and
they were later followed by Callan, Dashen and Gross[9] who came to the same conclusion.
As it turns out, the true vacuum state |Ω〉 is characterized by a so-called vacuum angle θ.

For this thesis, investigating how the classical vacuum structure (and hence an in-
stanton) changes when changing gauge is important. For instance, the SU(2) sphaleron
has a similar gauge fixing-dependent appearance as the BPST-instanton. Moreover, un-
derstanding the difference between the quantum theoretic vacuum structures of quantum
chromodynamics (QCD) (which is similar to pure Yang-Mills) and the electroweak (EW)
theory (which as the SU(2) sphaleron) is important to understand the work by Tye and
Wong on resonant tunneling in the EW theory[37].

In this chapter, we discuss the aforementioned topics as follows: In section 3.1, we begin
this chapter with a brief overview of tunneling in quantum mechanics. First, we discuss
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the transmission amplitude computed in the WKB approximation, which is also been put
to use in field theory (in the Schrödinger functional formalism). Afterwards we compute
using instantons the transition amplitude of tunneling between the approximate ground
states |±a〉 in the double well problem. This section is meant as an introduction to working
with instantons. In section 3.2 we derive the BPST-instanton itself. In section 3.3, we
show how the instanton changes between different gauges and we present one possible way
of thinking about the quantum theoretic vacuum structure of the pure SU(2) Yang-Mills
theory. We draw upon an analogy between it and the quantum mechanical pendulum. We
use the comparison to interpret the vacuum angle θ that characterizes the ground state.

3.1 An Overview of Quantum Tunneling

In this section we discuss two techniques that are used to make quantitative predictions
about quantum tunneling in both quantum mechanical and quantum field theory. Firstly,
we briefly discuss the computation of transmission amplitudes using WKB approximation.
Secondly, we discuss tunneling using instantons. This section is meant as a rudimentary
introduction to quantum tunneling (especially using instantons), for that reason we present
a quantum mechanical example for either technique.

3.1.1 The WKB Approximation

In short, the WKB approximation is all about computing approximate wave functions ψ(x)
that solve the time-independent Schrödinger equation, given what their energy E should
be. The primary application of the technique is to approximate the spectrum of bound
states of some system. Central to the procedure is the patching together of wave functions
in classically allowed regions (E > V (x)) with classical forbidden regions (E < V (x)).

By analyzing the time-independent Schrödinger equation, one can show that in regions
where E � V (x) and E � V (x) the wave function is given by

ψ(x) ≈ Ae± i
~

√
2m(E−V (x)x and ψ(x) ≈ Ae− 1

~

√
2m(V (x)−E)x respectively. (3.2)

These approximations are then assumed to hold all the way up to the classical turning
points where E = V (x). The patching is done in such away that ψ(x) is differentiable at
these points.

The patching together of wave functions makes the technique ideal for scattering calcu-
lations where some particle impinges on some barrier. The incoming plane wave solutions
can be joined up with an outgoing transmitted wave on the other side of the barrier (which
is partially a forbidden region). The ratio (or relative magnitude) of the amplitudes of wave
functions on either side of the barrier T (E) helps us compute the transmission amplitude
(the probability for the particle to tunnel through), which is simply |T (E)|2. The magnitude
of T (E) is given by

|T (E)| = exp

(
− 1

~

∫ x2

x1

dx
√

2m(V (x)− E)

)
, (3.3)
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where x1 and x2 are the turning points at either side of the barrier. This straightforward
form is a consequence of the assumption that the amplitude simply decays exponentially
throughout the forbidden part of the barrier, see equation 3.2.

The WKB approach has also been applied to field theory. The technique is used to
compute the so-called most probable escape paths (MPEPs) along which fields will most
likely tunnel between them[8]. This domain of techniques is closely related to the work by
Tye and Wong[37] we discuss in chapter 5. For further details on the WKB procedure see,
for example, Griffiths[19].

3.1.2 Tunneling Using Instantons

−∞ 0 ∞
Re(t)

−∞

0

∞

Im
(t

)

Figure 3.2: Equivalent in-
tegrating over the real and
imaginary axis.

We will now discuss another technique that can be used to
make quantitative predictions about tunneling in QM and
QFT. In certain scenarios, the technique reproduces the WKB
procedure’s results[8][38]. The technique uses instantons,
which we will apply to the problem from the introduction:
the double well potential. This is the conventional pedagog-
ical examples used to explain instantons. For instance, it is
used in the famous paper “The Uses of Instantons” by Cole-
man[12, ch.7 §1]. To be precise, we will go ahead and com-
pute the probability amplitude 〈−a| exp

(
− i

~HT
)
|a〉. This is

the transition amplitude for a particle initially in the approx-
imate ground state |−a〉 to transition to |a〉, given a specified
transition time T (that we will have to make arbitrarily large
later, see below). The dominant contribution to this quantity
is calculated using the instanton. Even though we discuss instantons in the context of quan-
tum mechanics, the idea can be extended straightforwardly to field theory. This section will
act as an introduction to the concept of the instanton and we will connect it to the previous
chapter by comparing it to the soliton.

The transition amplitude can be written down in term of the path integral

〈−a| e− i
~HT |a〉 =

∫
Dq e i~S[q], (3.4)

where

S[q] =

∫ T
2

−T
2

dtL(q, q̇) =

∫ T
2

−T
2

dt

[
1

2

(
dq

dt

)2

− V (q)

]
(3.5)

is the action for a classical particle trajectory used in quantum mechanics.
To find the dominant contribution to the amplitude 3.4, one would like to apply some

sort of steepest descent method (the stationary phase approximation) to the path integral
expression. However, it is tricky to apply such an approximation to the amplitude as is. This

is because a sum of rotating phases e
i
~S does not have the same nice converge properties a

regular exponent e−
1
~S would. We therefore start by manipulating this amplitude’s exponent

such that it becomes of this regular e−
1
~S form. It is then argued that in the vicinity of the

classical trajectory qcls.(t) neighboring paths interfere constructively within this amplitude
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in what is known as the semiclassical limit: ~ → 0. Instantons enter the picture when we
apply a, more or less, regular steepest descent method to this newly obtained amplitude.

To turn the complex exponent into a reguler one we start with a so-called Wick rotation.
One analytically continues the action integral, equation 3.5, such that we can equivalently
integrate over the imaginary axis instead, see figure 3.2. The new coordinate along which
we integrate is known as the imaginary time τ . Even though both integrals are only equal
in the limit T →∞ (since then the contributions along the arcs vanish), the equivalence of
the integrals is generally assumed. This is because proving that the analytical continuation
exists and is well defined is definitely not straightforward. Nonetheless, the procedure works
for the applications in physics. The result of the continuation is usually summarized as the
following active transformation

t→ −iτ. (3.6)

One can choose to give the Wick-rotated time a new index, x0 → −ix4, we choose to
keep the index the same: x0 → −ix0. The transformed time coordinate is also known as the
Euclidean time, since for these field theories the Wick rotation turns the regular spacetime
interval into2:

dxµdx
µ = dx2

0 − dx2
i → (−idx0)2 − dx2

i = −(dx2
0 + dx2

i ) ≡ −dx2
µ, (3.7)

which is the negative of the now Euclidean distance dx2
µ.

The Wick rotation turns the action into the so-called Euclidean action SE :

iS[q]→ −SE [q] =

∫ T
2

−T
2

dτ

[
1

2

(
dq

dt

)2

+ V (q)

]
, (3.8)

which can be seen as the negative of the action of a Newtonian particle rolling in a flipped
potential −V (x). The Wick rotation has done what we desired and has given us a simpler
exponent in the path integral to work with:

〈−a| e− i
~HT |a〉 =

∫
Dq e− 1

~SE [q]. (3.9)

Only the solutions that minimize the new SE [q] dominate this new path integral am-
plitude (a saddle point approximation essentially). These are the solutions of the Euclidean
equations of motion generated by δSE = 0:

d2q

dτ2
=
dV

dq
(3.10)

In light of the double well potential, equation 3.1, this is similar to the last chapter’s
(anti-) kink soliton, see section 2.1. Since we are specifically looking to find the amplitude
in going from the left to the right well, we need only to consider the solutions q(τ) that
start and end at these vacua. This is the way in which the instanton interpolates between
the two classical vacua q0 = ±a. Since we would like to work in the limit T → ∞ (such

2Here we use the (+,−,−,−) particle physics metric convention used throughout this thesis.
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that the Wick rotation is exact) this must correspond to a particle motion that goes from
hill to hill in this flipped potential −V (x) in an arbitrary large amount of time. This can
only be achieved by a zero “energy” motion E(qinst(τ)) = 0. Note that for this particular
particle motion the energy is given by

E(q(τ)) =
1

2

(
dq

dτ

)2

− V (q). (3.11)

The instanton solution that takes us from −a to a (between τ = ±∞) is given by

qinst.(t) = a tanh
(
a(τ − τ0)

)
, (3.12)

which we recall from equation 2.6 solves this e.o.m. This is the instanton event for the
tunneling from −a to a.

Given this instanton, the leading order contribution to the tunneling rate is

〈−a| e− i
~HT |a〉 ∼= e−

1
~SE [qinst]

(
1 +O(~)

)
. (3.13)

Note the inverse power of ~ that remain inside the exponent, it makes the expression non-
analytic. In other words, a perturbative expansion of the path integral in orders of ~ would
not have picked up on the tunneling.

There is, unsurprisingly, also an instanton solution that takes us from a to −a instead.
This instanton is required to compute the reverse tunneling amplitude 〈a| exp

(
− i

~HT
)
|−a〉

(whose magnitude will by symmetry be equally large). That solution is simply q′inst. =
−qinst..

There was no way to deform the kink soliton into the antikink soliton without making
V blow up intermittently. The same happens to SE , of course, when one tries to deform
qinst. into q′inst.: Both CV and CSE are made out of disconnected components (Π0(CV )
and Π0(CSE ) are non-trivial). Configurations in these spaces are characterized by their
asymptotics (by which zero of the potential they approach as τ → ±∞) or equivalently by
their topological charge (like equation 2.7). Each sector of CSE contains either a vacuum
or instanton configuration.

This concludes the main goal that we set for ourselves in this section. See, for instance,
Coleman[12, ch.7 §1] for further details of the procedure such as for dealing with the higher
order corrections.

3.2 The BPST-Instanton in SU(2) Yang-Mills

In this section we present the BPST-instanton in the pure (3+1)-dimensional SU(2) Yang-
Mills theory originally found by Belavin, Polyakov, Schwarz and Tyupkin[5]. We discuss the
details of the theory, how to perform the wick rotation, the scale-invariance of the model,
the topology of CSE and, ultimately, how to find the instanton solution. What is listed here
is based on the advanced textbooks by Cheng and Li[11, ch.16], Coleman[12, ch.7 §3.5],
and Rubakov[33, ch.13]. In the next section, we will discuss how the instanton appears in
different gauges and what implications this has for its quantum theoretic interpretation.
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3.2.1 The SU(2) Pure Yang-Mills Theory

The pure SU(2) Yang-Mills theory is a simple field theory consisting of nothing else than
the three massless gauge fields Aaµ corresponding to each of the three generator the SU(2)
gauge group.

The parameter space of SU(2) is S3, as each element of U ∈ SU(2) can be labeled by
two complex scalars α and β satisfying

U(α, β) =

(
α −β∗
β α

)
, such that |α|2 + |β|2 = 1. (3.14)

The hypersphere S3 is defined implicitly by the constraint the real and imaginary compo-
nents of α and β together satisfy. The group’s generators are the three Pauli matrices τa.
Their structure constant are 2εabc: [τa, τ b] = 2iεabcτ c and their index is Tr τaτ b = 2δab.

The Lagrangian of the Yang-Mills theory is given by

L = −1

2
Tr(FµνF

µν), (3.15)

which is the familiair Maxwellian term for non-Abelian gauge theories. It contains the field
strength tensor Fµν , which itself is given by

Fµν =
i

g
[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ,Aν ]. (3.16)

Here, the covariant derivative
Dµ = ∂µ − igAµ (3.17)

does contain a coupling constant g, even though there are no other fields present to which
the gauge fields couple. Here we have used the vector notation

Aµ =
τa

2
Aaµ and Fµν =

τa

2
F aµν , (3.18)

to simplify our notation. We can use the index relation of the Pauli matrices to get rid of
the trace in the Lagrangian if necessary, the Lagrangian then becomes

L = −1

4
F aµν F

µν a. (3.19)

Under a gauge transformation U ∈ SU(2),

Aµ → U−1AµU +
i

g
U−1∂µU and Fµν → U−1FµνU. (3.20)

These transformations will become important in a moment3.

3Note that one regularly encounters different conventions, for instance, by puting the U on the left and
∂µU

−1 on the right.
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3.2.2 The Wick Rotation

Now that we have introduced the pure SU(2) Yang-Mills theory we can begin the actual
BPST-instanton derivation. As in section 3.1.2, this means beginning with a Wick rotation.
For this particular problem we choose to transform A0 in addition to x0. If we would simply
let x0 → −ix0, then the initially real F a0i (see equation 3.16) becomes

F a0i → i∂0A
a
i − ∂iA0 + gεabcAb0A

c
i , (3.21)

which suddenly includes both imaginary and real contributions. This is not necessarily a
problem, but we would rather like to keep the Euclidean action real if we can. By choosing to
transform A0 in addition to x0 we make F a0i completely imaginary. The covariant derivative
then transforms covariantly under the Wick rotation itself.

x0 → −ix0 (∂0 → i∂0) and A0 → iA0 (3.22)

imply D0 → iD0 and hence
F a0i → iF a0i. (3.23)

We can use these transformations to figure out how the Lagrangian transforms starting
from the action.

S[A] =

∫
d4xL =

∫
d4x −

[
1

2
F a0i F

0i a +
1

4
F aij F

ij a

]
=

∫
d4x

[
1

2
(F a0i)

2 − 1

4
(F aij)

2

]
,

which Wick-rotates to

SE [A] =

∫
d4x

[
1

2
(F a0i)

2 +
1

4
(F aij)

2

]
=

∫
d4x

1

4
(F aµν)2, (3.24)

since iS → −SE (recall equation 3.8). Hence, the Wick-rotated Lagrangian is given by

L =
1

2
Tr(FµνFµν), (3.25)

which is similar to the original Lagrangian, equation 3.15, except for the Euclidean index
contractions rather than Minkowski ones (recall that dx2

µ = dx2
0 + dx2

i ).
With the Wick rotation completed, we have turned our (3+1) dimensional theory into

a 4 dimensional one, i.e. with fields defined throughout R4.

3.2.3 Scale-Invariance of the Pure Yang-Mills Theories

A pure Yang-Mills theory’s Lagrangian is entire scale-invariant. That is, it is left unchanged
by a proper rescaling of the coordinates and fields:

xµ → λxµ and Ainst
µ (x)→ λAinst

µ (λx). (3.26)

This has two important consequences.
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Firstly, any instanton solution Ainst
µ (x) that we will find will have some free parameter

that indicates its “size” (i.e. the spatial extend over which the fields are approximately non-
trivial). This is because any rescaling of the solution will be a new instanton. Changing
the free parameter will rescale the fields.

Secondly, it means that Derrick’s theorem (see section 2.4) does not preclude the BPST-
instanton’s existence. In the theories where a soliton is prevented, the theorem works as
proof by contradiction: There cannot be any solitons, since there always exists a scale
transformation that lowers the potential energy of any suspected soliton (in pure Yang-
Mills, the theorem refers to a trial instanton and its Euclidean action). Because Yang-Mills
is scale invariant, SE does not change under any rescaling.

The double well problem (section 3.1.2) demonstrated what is usually said about in-
stantons: They tunnel through potential energy barriers between vacua. In pure Yang-
Mills theories, this story is slightly different. Since pure Yang-Mills theories are length
scale-invariant, they are also energy scale invariant. This means that there is no particu-
lar energy scale set by theory for process, including tunneling. In particular, there is no
energy scale for the height of the barriers between the vacua. Any particular instanton
does have a size (set by that free parameter we just mentioned) and does tunnel through
a particular barrier (the height being its potential energy at its center in Euclidean time),
but a rescaling will change both. A large instanton will traverse a small barrier and a small
instanton a large one[30, p.460][33, p.281]. When the scale invariance is explicitly broken
by, for instance, the inclusion of a new field, then this story stops being true. The instanton
action might become scale dependent. Therefore, one needs to consider whether scaling
arguments, like Derrick’s theorem, do not start to rule out their existence.

3.2.4 The Topology of CSE

In this section we will demonstrate that Π0(CSE ) = Z, hence that CSE is made out of a
countably infinite number disconnected components. We will find an expression for the
topological charge (i.e. winding number) that can be used to determine to which sector any
particular finite SE configuration belongs. This charge is determined, once again, by the
asymptotics of the fields. In the next section, we will show that each of these disconnected
component has an instanton. This topological charge can be used to characterize each them.

Let the distance to the origin of R4 be ρ, that is ρ2 = x2
0 + x2

i . Then, for any field
configuration to have finite SE , it needs to approach asymptotically, that is as ρ → ∞, a
configuration such that Fµν → 0, see equation 3.24. In other words, Fµν must vanish at
each point Ω of the “boundary” of Euclidean spacetime ∂R4. With this boundary we mean
that Aµ is only a function of the angular variables Ω describing the direction towards which
the point ρ =∞ was approached, recall the discussion in section 2.3 . Since we consider R4,
the points on this boundary Ω make up the continuous space ∂R4 ∼= S3. Not just Aµ = 0,
but any pure gauge configuration

Aµ(x)
ρ→∞−−−→ i

g
U−1(Ω)∂µU(Ω), (3.27)

makes Fµν vanish asymptotically. As was true for solitons, CSE inherits its topology from

23



SPHALERONS AND THE VACUUM STRUCTURE OF GAUGE THEORIES CHAPTER 3

the space of these mappings U :

CSE
∼= Maps(∂R4 → SU(2)) (3.28)

Since the parameter space of SU(2) is also an S3, U(Ω) is a mapping from S3 → S3.
These cannot all be continuously connected to each other: Π0(CSE ) ∼= Π3(S3) ∼= Z. CSE is
made out of a countably infinite number of disconnected components, like CV was for the
Georgi-Glashow model, recall section 2.3.3.

An expression for the topological charge in terms of the mapping U is given by

Q[U ] =
1

24π2

∫
dσµεµνρσ Tr

(
U−1(∂νU)U−1(∂ρU)U−1(∂σU)

)
, (3.29)

where dσµ is the (outward pointing) oriented surface integral over this boundary. Alterna-
tively, it is also possible to calculate the winding number of the solution from Fµν throughout
R4:

Q[F ] = − g2

16π2

∫
d4xTr(FµνF̃µν), (3.30)

where F̃µν = 1
2εµνρσFρσ is the so-called dual of Fµν .

To see why these two expressions agree, construct the following gauge dependent cur-
rent:

Kµ = 4εµνρσ Tr
(
Aν∂ρAσ −

2

3
igAνAρAσ

)
, (3.31)

whose divergence is related to the field strength tensor ∂µKµ = 2 Tr(FµνF̃µν). Using this
property we deduce that∫

d4xTr(FµνF̃µν) =
1

2

∫
d4x ∂µKµ =

1

2

∫
dσµ lim

ρ→∞
Kµ, (3.32)

where the last equality follows from Stokes’s theorem. What remains to be shown is whether
limρ→∞Kµ is indeed the integrand of equation equation 3.29. To see that it is indeed the
same, realize that the first term in the definition of Kµ does not contribute to the surface
integral: Since the action must be finite, see equation 3.24, Fµν must vanish faster than
ρ−2. Since ∂ρAσ is a term inside Fµν , it must do the same. Furthermore, since Fµν
contains a term that is a product of two Aµ, Aµ must vanishes faster than ρ−1. We know
that dσµ ∼= ρ3dΩ. Therefore, the first term in the integrand vanishes fast enough not to
contribute to the surface integral. Since only the second term survives and since the gauge
fields at infinity are given by equation 3.27, we deduce that limρ→∞Kµ is given by

lim
ρ→∞

Kµ = − 4

3g2
εµνρσ Tr

(
U−1(∂νU)U−1(∂ρU)U−1(∂σU)

)
, (3.33)

which is what we still needed to show that equation 3.30 is indeed correct.
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3.2.5 Constructing the BPST-Instanton

Now that we have shown that CSE consists of countably infinite number of disjoint com-
ponents and that within each sector instantons are not prevented by Derrick’s theorem, we
can go ahead and look for the instantons themselves. We will not be required to solve the
Euclidean equations of motion directly. Instead, these instantons can be found to satisfy
the simple relation

Fµν = ±F̃µν . (3.34)

To see why, we begin with the seemingly trivial identity:∫
d4xTr

(
(Fµν ± F̃µν)2

)
≥ 0. (3.35)

Since (Fµν ± F̃µν)2 = 2(FµνFµν ± FµνF̃µν), we can conclude that

SE =
1

2

∫
d4xTr(FµνFµν) ≥ 1

2

∣∣∣∣ ∫ d4xTr(FµνF̃µν)

∣∣∣∣ =
8π2|Q|
g2

, (3.36)

which is known as the Bogomol’nyi bound. It is an inequality for SE which holds within
each individual disconnected component of CSE (the inequality depends on that sector’s
particular Q). Suppose that we move around within that sector (assuming Q 6= 0), then

if the action is ever to attain its minimum value SE = 8π2|Q|
g2 , we must have found that

sector’s configuration of minimal SE , i.e. its instanton with topological charge Q. Since
this inequality followed from equation 3.35, this equality is saturated when Fµν = ±F̃µν .

Based on an ansatz[33, ch.13 §2] one can find the aforementioned BPST-instanton
(Q = 1). Its configuration is given by

ABPST
µ (x) =

i

g

(
ρ2

ρ2 + λ2

)
U−1(x)∂µU(x) where U(x) =

x0 + i~τ · ~x
ρ

. (3.37)

Alternatively, its time and space components are separately given by

ABPST
0 (x) =

1

g

~τ · ~x
ρ2 + λ2

, ABPST
i (x) =

1

g

−τix0 + (~τ × ~x)i
ρ2 + λ2

. (3.38)

On the boundary Aµ(x) tends to U−1(x)∂µU(x) which in the limit only depends on
xµ
ρ .

In other words U(x) becomes a mapping depending only on the direction towards which
we approach the boundary ∂R4. One can check using equation 3.29 that Q[U ] = 1 as we
desired. The free parameter λ is the scale paramater we discussed in section 3.2.3, which
determines the spatial extend of the instanton.

3.3 Instantons and the Vacuum Structure of Yang-Mills

In the previous section we have presented the BPST-instanton in the pure SU(2) Yang-
Mills theory, but the configuration does not look like what we expect. As we have claimed
in the introduction and then demonstrated when discussing the double well problem: An

25



SPHALERONS AND THE VACUUM STRUCTURE OF GAUGE THEORIES CHAPTER 3

instanton is supposed to look like an event in imaginary time, it has to be a configuration
that connects classical vacua between x0 = τ = ±∞. However, because we have not fixed
the gauge and determined the classical vacuum structure of the theory, this is currently not
possible.

Moreover, we have not spoken about the resulting quantum picture (the quantum the-
oretic vacuum structure) that this classical picture (the classical vacuum structure) implies
(upon quantization). In the double well problem, this was straightforward: there were two
classical vacua ±a and two approximate ground states |±a〉 from which the true vacuum
|Ω〉 was built. As it turns out, because Yang-Mills is a gauge theory, there is some subtlety
involved with the resulting quantum picture. In general, configurations related by gauge
transformations, that is gauge equivalent configurations, are considered physically the same:
they should be identified. However, some care needs to be taken when applying this idea to
large gauge transformations (we will explain these in a moment) that appear when fixing
the gauge in specific ways.

Figure 3.3: Schematic depiction of R4 (and its boundary ∂R4) as a cylinder. It is
used to picture the Yang-Mills instantons as tunneling events: As configurations
connecting the initial pure gauge vacuum on the cylinder’s bottom lid to another
on the top. Circular horizontal slices are all points of space R3 at individual
moments of imaginary time x0.

3.3.1 The Supplemented Temporal Gauge: Instantons and Classical Vac-
uum Structure

In this section we determine the classical vacuum structure of the theory by working in the
temporal gauge A0 = 0. We will also impose a subsidiary gauge fixing condition motivated
by Hamiltonian quantization, this is what the “supplemented” refers too. This gauge gives
the BPST-instanton the desired event structure. Our choice of gauge is not arbitrary, the
temporal gauge is the traditional gauge used to study this instanton. The procedure can be
found in a variety of sources[11, ch.16 §2][33, ch.13], which have been used for this section.
In the next section, we give this classical picture its quantum mechanical interpretation.

Working in the temporal gauge requires us to impose A0 = 0 everywhere on R4. The
remaining gauge transformations must then be time-independent U(~x). A classical vacuum
is a configuration for which Fµν = 0, they are pure gauges. Since only time-independent
gauge transformations remain, any vacuum configuration will, at the very least, be a pure
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gauge of the form

Avac.
i (~x) =

i

g
U−1(~x)∂µU(~x). (3.39)

This is not yet the whole story of the classical vacuum structure. At this point, all vacua can
still be continuously connected by gauge transformations and should therefore be identified.

To deduce the classical vacuum structure of the theory and to turn the BPST-instanton
into an event, we picture R4 as well as its boundary ∂R4 as the inside and surface of a
“cylinder” respectively, see figure 3.3. Taking imaginary time slices through the cylinder
gives us all of space R3 at different moments x0. The instanton will live on the inside,
taking us from one initial vacuum on the bottom lid to another final vacuum on the top
lid, both of the form of equation 3.39. We already know from section 3.2.4 that the fields
on the bottom and top lid, as well as the sides, must be pure gauges U(Ω), which has been
required for SE to converge.

To determine the classical vacuum structure we need to characterize which classical
vacua on the top and bottom lids can be connected by an instanton in between. Let us, for
convenience, choose the vacuum on the bottom to be Aµ = 0. We can do so by exploiting
the remaining gauge freedom to fix Ai = 0 at x0 = −∞. The question then becomes
which classes of vacua can be tunneled into on the top. Note that Aµ = 0 is the vacuum
corresponding to U(~x) = 1, which is the required pure gauge configuration on the bottom
lid.

In determining the classical vacuum structure, we need to be more precise about the
pure gauge configuration occurring on the sides of the cylinder (that is, the boundaries of
space ∂R3 at all x0). Because the barrier through which the instanton tunnels is finite in
height for any particular instanton, the field configuration at any imaginary time slice x0 is
some configuration of finite potential energy

V [A] =
1

2
Tr[FijFij ]. (3.40)

This means, in particular, that the fields on the sides of the cylinder are required to have
Fµν = 0 for V [A] converge. Therefore F0i = ∂0Ai = 0 on the sides: The asymptotics of the
fields cannot evolve over x0.

For now, we need to make sure U approaches a constant value on the boundary. We
choose to set

lim
|~x|→∞

U(~x)→ 1 for all x0 (3.41)

as an additional gauge condition. This condition is motivated by the Hamiltonian formula-
tion of the theory, which we will get to discuss. Equation 3.41 has effectively compactified
all of space R3 at each slice into an S3. In particular, this equation holds for the vacuum
on the top lid. Let us refer to the temporal gauge with this additional constrained the
supplemented temporal gauge.

Now we know precisely which vacua can be accessed by an instanton and how to char-
acterize them: The gauge function U(~x) that specifies a vacuum on the top of the cylinder
is therefore actually a map from S3 → SU(2) ∼= S3, those can not all be continuously con-
nected: Π3(S3) = Z. The classical vacuum structure is therefore periodic: it consists of a
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countably infinite number of homotopy classes of vacua characterized by a winding number
depending on U(~x), i.e. they are vacua that are topologically distinct. Vacua within a class
are gauge equivalent and therefore identified.

These classes of vacua are referred to as Chern-Simons vacua, since the winding number
of the map is the so-called Chern-Simons number NCS: a property of the gauge fields in the
supplemented temporal gauge. When Aµ described a vacuum, then NCS can be computed
in terms of U(~x),

NCS[A] = − 1

24π2

∫
d3xεijk Tr(U−1(∂iU)U−1(∂jU)U−1(∂kU)). (3.42)

A example of a vacuum with NCS = 1 is given by the gauge function

U(~x) = exp

[
iπ~τ · ~x√
r2 + λ2

]
(3.43)

through equation 3.39. The vacuum on the bottom of the cylinder, Aµ = 0 has NCS = 0.
Now that we know the vacuum structure, we can stop keeping Ai = 0 on the bottom of

the cylinder. As it turns out, the instanton in each sector of CSE can connect multiple CS-
vacua together, not just Aµ = 0 to another. As an example, consider the BPST-instanton
itself, which we still wanted to turn into an event. It still has to be put in the supplemented
temporal gauge, which is achieved by applying the gauge transformation

U ′(x) = exp

[
i~τ · ~x√
r2 + λ2

(
tan−1

(
x0√

r2 + λ2

)
+

(
n+

1

2

)
π

)]
(3.44)

to the components of ABPST
µ from equation 3.38, according to equation 3.20. The final and

initial vacua between which the BPST-instanton tunnels Avac.
± become

Avac.
± (x) = lim

x0=τ→±∞
U ′
−1

(x)ABPST
i (x)U ′(x) +

i

g
U ′
−1

(x)∂iV (x)

= lim
x0=τ→±∞

i

g
U ′
−1

(x)∂iU
′(x) (3.45)

respectively, where only the pure gauge part due to U ′ remains.

lim
x0=τ→+∞

U ′(x) = exp

[
iπ

~τ · ~x√
r2 + λ2

(n+ 1)

]
and (3.46)

lim
x0=τ→−∞

U ′(x) = exp

[
iπ

~τ · ~x√
r2 + λ2

n

]
, (3.47)

which, according to equation 3.42, define vacua with NCS = n+1 and NCS = n respectively.
That ∆NCS = (n + 1) − n = 1, given that Q[ABPST

µ ] = 1, is no coincidence: As it
turns out Q = ∆NCS for all instantons in the pure Yang-Mills theory. To see why, let us
compute Q from equation 3.29 for an instanton in the supplemented temporal gauge. For
that, we must perform an integral over ∂R4, that is, the outside of the cylinder C. Since the
U = 1 on the sides, only the top T and bottom B contribute. On the bottom dσµ εµνρσ =
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d3x −nµεµνρσ = −d3x ε0ijk, given the “upwards” pointing normal vector nµ = (1, 0, 0, 0),
while on the top dσµ εµνρσ = d3x ε0ijk.

Q[Ainst] =
1

24π2

∫
C
dσµεµνρσ Tr

(
U−1(∂νU)U−1(∂ρU)U−1(∂σU)

)
=

1

24π2

(∫
T
d3x ε0ijk −

∫
B
d3x ε0ijk

)
dσµ Tr

(
U−1(∂iU)U−1(∂jU)U−1(∂kU)

)
= NCS[Avac.

+ ]−NCS[Avac.
− ] = ∆NCS, (3.48)

where we used the fact that ε0ijk = εijk. Hence, Q = ∆NCS.
Before discussing the quantum picture of these vacua, let us emphasize the following:

Consider two CS-vacua, say defined by U1(~x) and U2(~x) through equation 3.39. Vacua with
different NCS cannot be continuously deformed into each other because of equation 3.41,
that is, as long as the fields are tied up as |~x| → ∞. If, on the other hand, they have the
same arbitrary NCS, then there exists a small time-independent gauge transformation Ũ(~x)
that connects them. Ũ being small means that it is continuously connected to U = 1, the
trivial gauge transformation. By construction, small time-independent gauge transforma-
tions always satisfy equation 3.41. Because Ũ is connected to U = 1, if Ũ would itself be
used to define a vacuum, then it would have NCS = 0. Note however that vacua with differ-
ent NCS are connected by gauge transformations: They are instead large time-independent
gauge transformations, like the one which defined the vacuum with NCS = 1 (equation
3.43). In other words, the expression for NCS can be used to label vacua themselves, but
also to count the windings of the large gauge transformations that map between them.

3.3.2 The Quantum Theoretic Vacuum Structure of Yang-Mills

We will now present two quantum pictures of the vacuum of the SU(2) Yang-Mills theory.
As we will see, these two views ultimately agree on the physics: For any pure Yang-Mills
theory, the true physics is determined by so-called vacuum angle θ, which shows up in
instanton corrections to various quantities, including Green’s functions and the vacuum
energy[33, App.2].

We begin with the conventional textbook view[11, ch.16 §2][33, ch.13 §2][20][34], which
agrees with the original interpretation found in the paper by Jackiw and Rebbi[22] and in the
paper by Callen, Dashen and Gross[9]. It consists of analyzing the theory’s quantum the-
oretic vacuum structure using (canonical) Hamiltonian quantization in the temporal gauge
A0 = 0. To summarize, this is an incomplete gauge fixing where small time-independent
gauge transformations remain. Classically, systems which have gauge freedom (remaining)
are constrained Hamiltonian systems. This remaining gauge freedom is generated, after
quantization, by the Noether charge of these small tine-independent gauge transformations:
This charge turns out to be Gauss’s law. States related by gauge transformations must be
identified, this makes the preceding discussion of the classical vacuum structure in the sup-
plemented temporal gauge relevant: Each homotopy class of CS-vacua given by NCS = n
(whose elements are related by the remaining small tine-independent gauge transforma-
tions) must obtain its own approximate vacuum state |n〉 (called an n-vacuum). According
to this view, the resulting quantum theoretic vacuum structure is analogous to that of the
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“quantum mechanical particle in a periodic potential”: The true vacuum state |θ〉 (called
the θ-vacuum) will be a superposition of all these n-vacua.

Afterwards, we will present an alternative view on the quantum theoretic vacuum
structure which, according to Rubakov[33, p.277], originated from Manton’s original paper
on the EW sphaleron[28]. In that paper, the sphaleron was derived in a physical gauge.
This means that the gauge fields Aµ are uniquely determined by Fµν [7]. This does not
mean that A0 = 0 cannot be part of such a gauge. In the EW sphaleron derivation
Manton uses the the radial gauge niAi = 0 (an example of an axial gauge) together with
A0 = 0 without imposing the supplementary condition of equation 3.41. This appears to
be over-fixing the gauge, but since the sphaleron is a static configuration traversed at some
moment in time we can always make sure that A0 = 0 is satisfied at the sphaleron point in
addition to imposing the radial gauge condition globally or vice versa. As Manton points
out in that paper, a switch between the views can be realized by letting go of Ar = 0
while imposing the aforementioned subsidiary boundary condition. In these gauges, there
is a single unique classical vacuum[33, p.277]. Hence, upon quantization there is only a
single vacuum state |Ω〉. To cast the traditional view in terms of the new one, the classical
CS-vacua and their states |n〉 must henceforth be identified. This means identifying states
related by large gauge transformations, ones that, according to Hamiltonian quantization
are not supposed to be identified: This is, ultimately, the central disagreement between the
views[20]. Upon identification, the quantum theoretic vacuum structure appears analogous
to the so-called “quantum mechanical pendulum”[33, p.278][28][20][3][7][34]. By inclusion
of a new θ-dependent term in the original Lagrangian, the equivalence of the views can be
established: |Ω〉 obtains the same θ-dependent instanton corrections as |θ〉 had.

Because the classical vacuum structure differs between the supplemented temporal and
physical gauges, instantons appear different as well. In the prior gauge, instantons tunnel
between n-vacua, while in physical gauges, they tunnel between |Ω〉 and itself along an NCL
in CSE . Let us now discuss these two views in more detail.

3.3.3 Gauss’s Law, Gauge Fixing and Hamiltonian Quantization

Consider the theory of free electromagnetism, for which L(A, ∂A) = −1
4

∫
d3xFµνF

µν . The
Euler-Lagrange equations ∂µF

µν = 0 , in addition to equations of motion, contain a famous
constraint equation called Gauss’s law4:

G = −∂iF i0 = −∂i(∂iA0 − ∂0Ai) = −∂iEi = 0. (3.49)

Free electromagnetism is a gauge theory, so as long an any gauge freedom remains,
there is no unique way of time evolving any particular set of initial conditions forward:
For any solution of the equations of motion there is another a gauge transformation away.
Gauge fixing is thus required. One way, for instance, to classically deal with Gauss’s law
is to choose to work in the temporal gauge A0 = 0. Gauss’s law is then no longer needed
dynamically: Once the initial conditions satisfy Gauss’s law, it is automatically satisfied for
all time [33, ch.4 §2].

4This is a constraint equation because it relates single time derivatives of the fields (except for A0, whose
time derivative do not appear at all).
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As it turns out, there is an important relation between Gauss’s law and gauge freedom
that becomes evident in the Hamiltonian formulation of the above Lagrangian system[34][7].

Gauss’s Law in the Hamiltonian Formalism

A Hamiltonian supposedly generates some unique time evolution. Therefore, as long as
there is some gauge freedom remaining (and hence the aforementioned ambiguity in time
evolution is present), there is no unique Hamiltonian. In particular, the canonical mo-
menta are not independent[34]. This makes a gauge field theory a constraint Hamiltonian
system. This shows up in the Legendre transform required to produce the Hamiltonian:
The transform between the positions / velocities and the canonical positions / momenta is
not invertible[34]. Instead, additional Lagrange multiplier terms involving the dependent
canonical momenta must be added to the Hamiltonian to pick out a unique dynamics (i.e.
to fix the gauge freedom). The canonical momenta πµ are found by taking a functional
derivative w.r.t. to the canonical positions Aµ,

πµ =
∂L
∂0Aµ

= Fµ0, (3.50)

which tells us that πi = Ei and π0 = 0. This is one of these constraints, telling us that
A0 is not really a dynamical variable (there was no velocity ∂0A0 anywhere in L). The
Hamiltonian

H =

∫
d3x [πµ∂0Aµ − L] +

∫
d3xλπ0

=

∫
d3x

[
Ei(Ei − ∂iA0) +

1

2
(EiEi −BiBi)

]
+

∫
d3xλπ0

=

∫
d3x

[
1

2
(EiEi +BiBi) +A0(∂iE

i)

]
+

∫
d3xλπ0, (3.51)

where Bi = −1
2εijkF

ij . Therefore, in additional to the previous constraint, free electromag-
netism contains an additional constraint containing Gauss’s law,

∫
d3xA0(∂iE

i), for which
A0 is the Lagrange multiplier field.

Working in the temporal gauge A0 = 0 (where Ai and Ei are the canonical vari-
ables) uses up the gauge freedom allowed by the momentum constraint[34]. Gauss’s law
also seems to disappear (its term in the Hamiltonian vanishes), but the freedom gener-
ated by the constraint is retained, which are small time-independent gauge transforma-
tions. Working in the temporal gauge means working in the supplemented temporal gauge
when considering this Hamiltonian system. Gauss’s law is the charge associated with this
symmetry: Given a gauge function U = eiα that generates such a gauge transformation
(lim|~x|→∞ α(~x) = const.), Ai → Ai − 1

g∂iα. Therefore its charge

Q =

∫
d3x j0 =

∫
d3xπiδAi

= −1

g

∫
d3xEi∂iα = −1

g

∫
d3x (∂iE

i)α, (3.52)
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where the last step’s integration by parts was made possible by α’s gauge transformation
being small. In analogy with free electromagnetism, this is why we imposed the condition
equation 3.41 in the pure Yang-Mills theory, it was in anticipation of using Hamiltonian
mechanics to analyze the theory. In particular, this constant that α approaches as |~x| → ±∞
can be chosen[34] to be U = 1.

Gauss’s law in Quantum Field Theory

Figure 3.4: Band structure of the
periodic potential, θ is extended be-
yond its first Brillouin zone. The red
levels are a θ-sector. (E expansion
taken from NIST Digital Library of
Mathematical Functions §28)

These observations are important when canonically
quantizing this system in the (thus supplemented)
temporal gauge. It is this Hamiltonian when quan-
tized that has its remaining small time-independent
gauge freedom generated by exponentiating the
Gauss’s law charge in operator form. In field theory,
we use Gauss’s law in this form to directly define
which states are physical[33, p.265][34][12, p.291],
rather than using it to constrain initial conditions
as opposed to the classical field theory:

G |Ψ〉phys. = 0. (3.53)

This is the same idea as in the Gupta-Bleuler quanti-
zation of free electromagnetism: First constructing a
Hilbert space that is too large (because A0 = 0 is an
incomplete gauge fixing) and then subsequently re-
ducing it by picking out physical states. Non-physical
states, on the other hand, can evolve however they
want[34]. Since Gauss’s law generates small time-
independent gauge transformations, states that can
be connected by exponentiating G are considered
physically equivalent, hence identified.

A similar story goes on with electromagnetism’s
non-Abelian sister, the pure Yang-Mills theory. From
this point of view large gauge transformations are not
taken to connect physically equivalent states: Only
the homotopy class of CS-vacua with the same NCS

should be identified. The theory must thus have a
countably infinite number of approximate vacuum states |n〉 with tunneling between them.
Out of these we will need to build the true vacuum state, which turns out to be |θ〉.
The model’s quantum theoretic vacuum structure is analogous to the quantum mechanical
system of the “particle in the periodic potential”, which we will discuss in the next section.

3.3.4 The Traditional Picture: The Particle in the Periodic Potential

Consider the problem of a quantum mechanical particle in a sinusoidal periodic potential
with physically distinct minima. For instance, think of a single electron placed in some
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infinitely large crystal where the nuclei are spaced some fixed distance apart. The minima
are unique lattice sites, there is no need for (periodic) boundary conditions to be imposed
on the electron’s wave function. Let us, for convenience, space them a distance 2π apart
and let us choose the barriers to have height q. The time-independent Schrödinger equation
for this particular system, including its Hamiltonian H, is

i~
d

dt
ψ = Hψ =

(
− d2

dx2
+ q(1− cos(x))

)
ψ(x), (3.54)

which goes by the name of the Mathieu equation (~ and m have been set to 1). The classical
vacuum structure of the problem are simply the set of minima x0 = 2πn.

The spectrum of this theory is given in figure 3.4, it is made out of bands. In terms of
wave functions, any state of such a system is the product of a plane wave term given by a
pseudo-momentum θ ∈ [0, 2π] and a truly periodic wave function φ:

ψθ(x) = e−iθ
x
2π φ(x), where φ(x± 2π) = φ(x), (3.55)

they are referred to as Bloch waves. States within any particular band share the same
φ, but have different θ. The structure is consequence of the commutation of the H and
the translation operator T , Tψ(x) = ψ(x − 2π), that moves the entire wave function 2π
to the right. The states are simultaneous eigenstates of both operators, eiθ being the
eigenvalue of T for any particular state. Because T translates wave functions, θ measures
the (negative of) the phase shift which the wave function picks up between neighboring
wells: ψθ(x− 2π) = eiθψθ(x).

To discuss the quantum mechanical vacuum structure, consider an approximate ground
state wave function localized near the n-th well. Like the double well potential, there will
be tunneling (hence instantons) between states like these. The true ground state will be a
superposition of all them. Let us drop the wave function notation in favor of brakets and
call these n-vacua |n〉. States |θ〉 in the lowest band are of the form

|θ〉 =
∑
n

e−inθ |n〉 , (3.56)

which a have pseudo-momentum θ: T |θ〉 = eiθ |θ〉 since T |n〉 = |n+ 1〉.

The Analogy for Pure Yang-Mills

It is this system to which the pure Yang-Mills theory is analogous in the traditional view[11,
ch.16 §2][33, ch.13 §3][20][3][34]. The translation operator T is replaced by a large gauge
transformation with NCS = 1, mapping the class of Chern-Simons vacua with NCS = n
into the class with NCS = n+ 1. Each class has a single state |n〉, since the configurations
amongst a class are identified. Moreover, each field state5 has its own pseudo-momentum
θ. The instantons tunnel between these |n〉 vacua, i.e. they help us compute transition

5Jackiw and Rebbi write down their states using Wave functionals Ψθ[A], we instead continue using
braket notation as employed in the book by Cheng and Li[11, p.486].
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amplitudes of the form 〈n| exp(−iHt) |m〉. The potential energy barriers through which
they tunnel are given by the specific size of the instantons chosen.

Not just the bottom rung of the lowest band |θ = 0〉, but the entire lowest band itself
|θ〉 can be considered to be made out of vacuum states in Yang-Mills. Such a claim is not
made about an electron in a crystal: θ is indeed a conserved quantity, however, in quantum
mechanics, that is simply an idealization. Not only is a real crystal not infinitely large, we
could also, in theory, perform a position measurement x to change θ ([T, x] 6= 0). Such
operation do not exist in Yang-Mills: All gauge-invariant operators O leave θ intact[33,
p.277]. In other words, NCS (to which x is the analogue) is not measurable6. Only ∆NCS

can be observed. The system is essentially a continuum of mutually non-interacting ladders
specified by θ: 〈θ′| exp(−iHt) |θ〉 ∼ δ(θ−θ′). These ladders are referred to as superselections
sectors. The lowest energy state in each of these ladders is the state |θ〉, the lowest energy
state amongst them all is |θ = 0〉. If we would live in a pure Yang-Mills world, the question
would be in which sector: θ is a true universal constant of the theory and most importantly
a true physical quantity: matrix elements of operators such as O on |θ〉 have θ-dependent

instanton corrections / contributions of the form[33, p.277] eiθ 〈n+ 1|O |n〉 ∼ e−SE [ABPST].

The Consequences for the Path Integral

In this section we will compute the effect of sitting in a particular θ-sector for the path
integral in the way it is presented in the Book by Cheng and Li[11, p.487]. It turns out
that having |θ〉 be the ground state changes the theory’s Lagrangian.

As we have seen, the Yang-Mills theory can have any of many θ-vacua. Different |θ〉
belong in different non-interacting sectors of the theory,

〈θ′| e−iHt |θ〉 = δ(θ − θ′)I(θ). (3.57)

In terms of the n-vacua this means that

〈θ′| e−iHt |θ〉 =
∑
m,n

eimθ
′
e−inθ 〈m| e−iHt |n〉 (3.58)

=
∑
m,n

e−i(n−m)θeim(θ′−θ)
∫

[DA]n−m e
− i

~
∫
dx0 d3x L, (3.59)

where we inserted the |θ〉’s in terms of the n-vacua according to equation 3.56.
∫

[DA]n−m
denotes a path integral over only those configurations for which NCS[A] = n−m, as those
are the only configurations able to connect these |n〉 and |m〉. Since,

∑
m e

im(θ′−θ) = δ(θ−θ′)
we conclude that

I(θ) =
∑
ν

e−iQθ
∫

[DA]ν e
− i

~
∫
dx0 d3x L, (3.60)

6 For related reasons, the states |n〉 cannot be proper states for the gauge fields. They do not satisfy the
so-called cluster decomposition principle[11, p.491]. That means that the expectation value of a product of
widely separated operators does not vanish as their separation is increased: lim|x−y|→∞ 〈n|O†(x)O(y) |n〉 6=
0.
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where Q = n − m. We can absorb this winding number into the path integral by using
equation 3.30 (in Minkowski space). We then get to see that

I(θ) =
∑
ν

∫
[DA]ν e

− i
~
∫
dx0 d3x Leff , (3.61)

where the effective Lagrangian Leff is given by

Leff = L − θg2

16π2
Tr(FµνF̃

µν). (3.62)

This is the result of having a θ-vacuum: In the pure Yang-Mills theory the Lagrangian
obtains a P and CP odd θ-term. In this model (or one with additional scalar fields) θ show
up in various physical quantities because that term gets to violate the same symmetries.

With additional fermions the story gets more complicated, both the Lagrangian of QCD
and EW sector of the SM contain a Yang-Mills component (SU(3) and SU(2) resectively).
QCD inherits its quantum theoretic vacuum structure, including the vacuum angle θ, from
the pure Yang-Mills theory wholesale. On the other hand, in the EW sector θ becomes
unphysical. The fermions are responsible for this effect. The difference has to do with the
anomalous global symmetries such a model obtains. We will discuss this topic in the next
chapter, see section 5.1. Generally, the existence of mass or Yukawa terms is crucial in
deducing the physicality of θ.

3.3.5 The Alternative Picture: The Quantum Mechanical Pendulum

In this section we discuss the aforementioned alternative view of the quantum theoretic
vacuum structure of the pure Yang-Mills theory[33, p.277][28][20][3][7][34]. It is the view
that turns the “particle in the periodic potential” picture into the one of the “quantum
mechanical pendulum”. The view has been motivated by working in physical gauges. In
those gauges, the classical vacuum structure consists of only a single vacuum, for Yang-Mills
theory this is Aµ = 0. Hence, there is also only a single vacuum state |Ω〉.

Turning the Crystal into a Pendulum

Since we have already discussed “the particle in the periodic potential” point of view at
length, there is no need for us to requantize the theory in a physical gauge. In physical
gauges, there is only a singe classical vacuum. Hence, there is only a single vacuum state
|Ω〉. To compare the two views, we can simply identify the classical Chern-Simons vacua
connected by large gauge transformations. Consequently, the corresponding states |n〉 will
also be identified. The path between them becomes an NCL in CSE . In doing this, the
“quantum mechanical pendulum” point of view pops out immediately.

In terms of the “particle in the periodic potential”, this means identifying the classical
vacua 2πn. This compactifies the potential’s domain (an analogy for CSE ) from x ∈ R into
x ∈ [0, 2π] = S1. This constraint carries over into the states ψ(x) as a boundary condition:
ψ(x+ 2π) = ψ(x). This boundary condition identifies all the states |n〉.
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The system we have now obtained is precisely the “quantum mechanical pendulum”:
The Hamiltonian from equation 3.54 supplemented by this boundary condition is a Hamil-
tonian for a mass on a rod of length q, rotating around in a gravitational potential (stuck to
some xy-plane with ~ = m = G = 1), see figure 3.5. Because of the identification, x is now
interpreted as measuring the angle of the pendulum from the vertical. The compactification
makes sure that the pendulum having rotated around its suspension point returns to the
same classical vacuum.

Figure 3.5: Pendulum and its poten-
tial including the ground state |Ω〉
once quantized.

Manton discusses the perturbative features of
this problem in his original paper[28], If the rod is
really long (q � 1) and the excitations from the ver-
tical really small, then the system is approximately
an harmonic oscillator (the Gaussian ground state
|Ω〉 is depicted in figure 3.5). One can treat the an-

harmonicity perturbatively in q−
1
2 , but such a pro-

cedure does not converge. This is loosely attributed
to ignoring the tunneling present in this model[28].
The instantons that tunneled between the n-vacua
in the tradition view have not disappeared. Instead,
they become events that connect the vacuum to it-
self: they have tunneled the pendulum over its pivot
point, which is, most importantly, along an NCL.
There will always be some instanton corrections to
the ground state |Ω〉: it needs to be tunneling invari-
ant. The instantons in the pure Yang-Mills theory
change their appearance in precisely the same way:
In these physical gauges, they help compute the am-
plitude 〈Ω| exp(−iHt) |Ω〉.

The original spectrum from figure 3.4 is no longer accurate. It would contain wave
functions that are themselves not periodic in 2π: The boundary condition ψ(x+2π) = ψ(x)
holds for all states of the pendulum, not ψ(x + 2π) = eiθψ(x). The superselection sector
θ = 0 is the Hilbert space of the pendulum, all the other states have become unphysical
because we identified the minima. In particular, |Ω〉 = |θ = 0〉.

The Vacuum Angle θ Survives

If only the θ = 0 sector survives, one might rightfully wonder whether this means that the
pure Yang-Mills theory cannot have a vacuum angle θ after all. As it turns out, it can. The
two pictures must ultimately agree on the physics, because θ is physical / observable in the
pure Yang-Mills theory.

Consider cloning the θ-term appearing the effective Lagrangian from equation 3.62
with a different angle, say θ′, and adding it all the way back to our original Lagrangian[33,
p.278][3][34] from equation 3.15. There is no problem in adding this new term, it does not
modify the symmetries of the theory7 or the equations of motion. It carries all the way

7At the very least, compared to the explicit C and CP odd term that exist when working in any non-zero
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through back into the effective Lagrangian, changing θ → θ + θ′.
This term does something very special to the theory, it “mixes” the vacuum structure.

In the sector given by θ, instantons will now contribute a correction proportional to ei(θ+θ
′)

rather then simply eiθ. In other words, the instantons pick up an additional contribution θ′

to the phase dynamically because of the new term. In particular, the state |θ = 0〉, which is
the vacuum state |Ω〉 of the pendulum, now produces physics as if it has a vacuum angle θ′,
even though it satisfies the proper boundary condition. For instance, it now has the energy
of the original state |θ′〉 before adding the term, which is an energy larger than it used to
have.

To conclude, manually adding an additional θ′-term rotates the physics of the states
amongst themselves in each band. Most importantly, by setting θ′ = θ the pendulum
mimics8 the physics of the particular ladder / sector of the traditional crystal picture. The
physics of either picture is therefore equivalent.

θ-sector.
8The new θ′ term in the problem of the quantum mechanical pendulum resembles an Aharonov-Bohm

term as if the pendulum was charged and swinging in a magnetic field perpendicular to the plane of rota-
tion[34]. The instanton picks up a phase dynamically as it tunnels over and around the suspension point.
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Chapter 4

Sphalerons: Saddle Point
Configurations in Field Theory

I
n chapters 2 and 3 we concerned ourselves with solitons and instantons of various (Eu-
clidean) field theories. In spite of their different physical contexts, both of them are

critical point configurations that minimize their respective functionals V and SE (δV = 0
or δSE = 0). The origin of both configurations is topological: Keeping V or SE finite breaks
their configurations spaces CV or CSE into disjoint components. Since both V and E are
bounded from below (i.e. positive definite functionals), the existence of a minimum (i.e.
solitons or instanton) in each sector disconnected from the vacuum is guaranteed as long as
scaling argument do not preclude their existence.

In this chapter we concern ourselves with the so-called sphalerons[30, ch.11][33, ch.13 §4],
another type of critical point of V : saddle point configurations. They were originally studied
by Taubes[35] and also have a topological origin rooted, in this case, in Morse theory[27].
What intuitively distinguishes a saddle point from a minimum is clear: Solitons, as minima,
are stable under all variations1, while sphalerons have one or more specific variations, known
as negative modes, that lower their energy; making them unstable. They are, however, still
static if left unperturbed, since they are still critical point configurations2. Figure 4.1 shows
a sketch of a cross section of configuration space on which V is graphed in a region with a
typical saddle point. In the figure a single negative mode is visible. Such sphalerons reside
on potential energy barriers between the classical vacua of a theory. In principle, sphalerons
can have as many negative modes as we would like. The sphalerons we will study in this
chapter will have just one.

The most famous example of a sphaleron can be found in the EW sector of the SM:
an SU(2) sphaleron rediscovered[14] by Manton and Klinkhamer[28][23]. It lives in the
bosonic sector of the theory, it is a configuration in both the gauge fields and Higgs field.
This sphaleron, as well as its thermal cousins (saddle points of the free energy functional F ),
are a key ingredient in predicted baryon and lepton number violating processes in the SM.
Such processes might be observable in collider experiments (using the regular EW sphaleron)

1Except, possibly, the existence of zero modes. The (anti-) kink soliton we studied back in chapter 2
had such a mode that moved the lump back and forth.

2δV = 0, so they reside on a point without a potential gradient.
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Figure 4.1: Qualitative figure showing the two dimensional cross section of CV on
which V is graphed in a region with a typical saddle point, i.e. sphaleron. At
least one negative mode and one positive mode is visible. A path through CV
between CS-vacua is drawn that crosses the sphaleron at its apex. The grey line
is an alternative path between these vacua that upon variation (minimizing the
supremum of V along that line while keeping the ends fixed) will end up finding
the sphaleron.

or they might have happened in the early universe (using the thermal EW sphaleron)
and be (partially) responsible for the generation of the matter-antimatter asymmetry of
the observable universe[33, ch.17 §4][26][32]. Understanding why such processes relate to
sphalerons will be the discussed in the next chapter.

The main aim of this chapter is to discuss the sphaleron configurations themselves
and to ultimately derive the EW sphaleron based on the literature. In section 4.1 we tie
sphalerons to the content of the latter half of the previous chapter: The relation between
sphalerons and the classical vacuum structure of gauge theories. We also discuss why they
exist and what Manton refers to as the minmax procedure[27] by which we will find the EW
sphaleron. Then we discuss the (1+1)-dimensional Abelian Higgs model and its sphaleron
in section 4.2. This is in many ways a toy model of the full EW theory with a analytically
solvable sphaleron. The topology of the configuration and its relation to the vacua is much
more transparent than in the full EW sphaleron’s case (which must, instead, be found
numerically). Then we will discuss the EW sector of the SM and derive the EW sphaleron
in section 4.3.
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4.1 Sphalerons and Chern-Simons Vacua

In this section we discuss how the EW sphaleron relates to the classical vacuum structure of
the EW sector, how the EW sphaleron has a gauge-dependent appearance, why sphalerons
generally exist and how we will find them conceptually. The previous chapter’s discussion
of the pure Yang-Mills theory will be of help. The topics discussed in this section also apply
to the (1+1)-dimensional Abelian Higgs model as well.

The EW theory’s vacuum structure (in the absence of fermions) is analogous to the
one of the pure Yang-Mills theory: In the temporal gauge A0 = 0 supplemented by the
boundary condition 3.41 the vacuum structure is periodic, consisting of a countably infinite
number of topologically distinct CS-vacua. While in a physical gauge, specifically combining
the temporal A0 = 0 and radial Ar = 0 gauge conditions (without a boundary constraint),
there is only a single vacuum. We will use the latter gauge to derive the EW sphaleron,
which might appear to be over-fixed. However, the sphaleron is simply a configuration at
one moment in time, which is in general part of a larger path or trajectory. We can only
impose one of the two conditions globally (at all times), but the other can be chosen to hold
at sphaleron’s time slice. Let us, for the moment, think about the sphaleron in the prior
gauge with CS-vacua.

The EW sphaleron exists because the Higgs field introduces an explicit energy and
length scale into the theory[27], as opposed to the pure Yang-Mills theory where the barriers
between the CS-vacua were of arbitrary size (with large instantons tunneling through small
barriers and vice versa, recall section 3.2.3). In the gauge with CS-vacua, the sphaleron
therefore resides on some potential energy barrier of finite physical height between the CS-
vacua. In other words, we cannot construct a path between the CS-vacua (that might or
might not intersect the sphaleron) without Tr(FµνF

µν) 6= 0 somewhere along the path.
On the other hand, the Euclidean EW sector has no true instanton anymore: Derrick’s
theorem rules out the existence of a stationary point of SE [30, p.459]. Nonetheless, there
exist instanton-like solutions that allow for tunneling in the EW theory[28].

How large the potential energy along a path must get depends on the path chosen and
simply trying gives us only an upper bound on the smallest possible barrier. For reasons
that will be made clear in the next chapter, it is the change of the CS-number of the gauge
fields that is connected with the production of baryons and leptons. Therefore, the path that
connects the vacua along the smallest possible barrier is the most physically interesting. It
provides the most energetically favored “channel” along which baryon and lepton number
violating processes are predicted to occur. This special path always traverses a saddle
point, i.e. sphaleron, at its apex. The EW sphaleron energy therefore sets the energy scale
at which baryon and lepton number violating processes are predicted to start occurring.
For the regular EW sphaleron (relevant at zero temperature) this barrier has a height of
∼ 9 TeV, a quantity calculated form the Higgs VEV and EW coupling constant. Since
the sphaleron is situated half-way along a path between CS-vacua, it turns out that the
CS-number of the sphaleron is half-integer. Figure 4.1 depicts a path that intersects the
sphaleron on this smallest possible energy barrier.

Figure 4.1 also illustrates qualitatively how one attempts to find sphalerons in general:
One varies a path with the ends fixed at the intended vacua, until the smallest barrier is
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found. It is the point at which tangential variation of the path makes the energy go up. This
is the minmax procedure Manton speaks about. We will essentially use this procedure to
derive the sphalerons in this chapter. The parallel variation of the sphaleron in the direction
along which V decreases most rapidly is what we call the sphaleron’s negative mode. Note
that the same tangential variation process cannot be used to look for sphalerons with more
than a single negative mode: Graphs like figure 4.1 are simply sketches, they can only show
two possible modes at once. Suppose, for instance, that a sphaleron has two negative modes.
Then there exists a tangential variation of the path through the sphaleron that is able to
lower the energy, the path “slides off”. The graph looks like a local maximum restricted
to those two modes. Of course V is still required to be positive definite for a sphaleron to
exist and scaling arguments must still be considered.

Figure 4.2: Qualitative figure show-
ing a cross section of CV on which V
is graphed in a region where there
is an NCL, Π1(CV ) = Z. The
sphaleron resides on a barrier be-
tween the vacuum and itself.

In practice, we cannot be expected to vary over
all possible paths between the CS-vacua, the d.o.f.
would be too large. However, we can reduce this
number by exploiting the so-called principle of sym-
metric criticality [30, ch.4 §3][33, ch.7 §3]. The prin-
ciple claims that, at least in certain theories, we
can expect critical point configurations like solitons
and sphalerons to have additional symmetry. For
instance, the BPST-instanton was rotationally sym-
metric, a symmetry of SE . On the other hand, the in-
stanton is not maximally symmetric. The instanton
has a center, so it has no translation invariance. The
vacua on the other hand do have maximal symmetry.
If true, we can restrain our path to include only those
configurations which are, for instance, spherically
symmetric. One then substitutes the most general
ansatz for a class of paths into V and solves the con-
strained minimization problem to find the sphaleron.
Manton also emphasizes the importance of further
proper gauge fixing when minmaxing[27]. Otherwise
sphalerons can appear to have many zero modes, one
associated to each infinitesimal gauge transformation
(since V has gauge symmetry).

We obtain a different picture of a sphaleron in a physical gauge with a single vacuum.
The story is much the same as for the pure Yang-Mills instantons: sphaleron go from resting
on a barrier between different CS-vacua, to a point on a barrier between the vacuum and
itself, see figure 4.2. To find the EW sphaleron, we instead minmax the family of field
configurations along this NCL. Therefore in gauges with a single vacuum, NCLs in CV tend
to have an associated sphaleron[27]. In other words, a non-trivial first homotopy group, such
as Π1(CV ) = Z, can reveal the existence of sphalerons. The same is true for sphalerons
with a larger number of negative modes. In that case one considers Π≥2(CV ). For instance,
to find the SU(3) sphaleron[24], which has two such modes, one considers the existence of
non-contractible spheres in CV , i.e. Π2(CV ).
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4.2 The Abelian Higgs Model in (1+1) Dimensions

In this section we discuss one of the simplest theories that contains both an instanton and
sphaleron, which is the Abelian Higgs model in (1+1) dimensions. The model is in many
ways a simplified version of the EW theory’s gauge and Higgs fields. For instance, the
model has CS-vacua in the supplemented temporal gauge and its sphaleron has a single
negative mode. This model makes it easier to demonstrate, for instance, how the sphaleron
is situated on the barrier between these vacua.

The derivation of the instanton that follows is based on Rubakov’s book[33, ch.13 §3]
and Coleman’s book[12, ch.7 §4]. The derivation of the sphaleron is based on the book by
Manton and Sutcliffe[30, ch.11 §3]. These works discuss these solutions in different contexts
and in different conventions, the aim here is in bringing them together in a consistent
fashion.

The (1+1)-dimensional Abelian-Higgs model

The theory is a U(1) gauge theory for which the Lagrangian is given by

L = −1

4
fµνf

µν + |Dµφ|2 − V(|φ|2), where V(|φ|2) =
1

2
(|φ|2 − 1)2. (4.1)

Note the use of uncapitalized letters, they refer to Abelian quantities (or quantities that
are a result of the U(1) symmetry). The Lagrangian is similar to the one from scalar QED,
with a Maxwell term and massive charged scalar. Here, the mass of the scalar (Higgs)
is a consequence of the Abelian Higgs mechanism. This is due to the symmetry broken
potential.

The field strength tensor and covariant derivative are

fµν = ∂µaν − ∂νaµ and Dµ = ∂µ − igaµ. (4.2)

Under a local U(1) gauge transformation u(x) = eiα(x), the fields transform as

φ→ uφ = eiαφ and aµ → u−1aµu+
i

g
u−1∂µu = aµ −

1

g
∂µα. (4.3)

The equations of motion for the theory are

DµD
µφ = − ∂V

∂(|φ|2)
φ and ∂µf

µν = jµ. (4.4)

Here, jµ is the Noether current for the global U(1) symmetry,

jµ = ig(φ∗(Dµφ)− φ(Dµφ)∗). (4.5)

The Classical Vacuum Structure

The theory’s potential energy functional is given by

V [Φ] =

∫
dx1

[
1

2
(∂1a0)2 + |D1φ|2 + V(|φ|2)

]
, (4.6)
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here Φ is used to represent the joined collection of Higgs and gauge fields. Like the EW
theory, whether this model has a periodic vacuum structure or not depends on the gauge
chosen to minimize V . Let us consider the vacuum structure in the supplemented temporal
gauge, a0 = 0, first. The vacuum Φvac. is then periodic.

Choosing to work in the temporal gauge leaves time-independent gauge transformations
u(x1) = eiα(x1) allowed. All terms in V must vanish simultaneously, therefore

Φvac.(x
1) =

{
φ(x1) = eiϕ u(x1), a1(x1) =

i

g
u(x1)

−1
∂µu(x1) = −1

g
∂1α(x1)

}
. (4.7)

In other words, the remaining gauge d.o.f. a1 is pure gauge. Note that both the φ and a1

fields depend upon the same u(x1) = eiα(x1), this is because the requirement that D1φ = 0
links the behavior of the Higgs field to the gauge field up to some arbitrary global phase
eiϕ (a phase since |φ| = 1).

The vacua as given by equation 4.7 are not yet divided into homotopy classes: We
need to compacitify space at each slice of time, such as we made happen for the pure Yang-
Mills theory in section 3.3.1. We need to further impose an analogous supplementary gauge
fixing condition such as equation 3.41. This divided the U ’s (hence the gauge fields Ai)
into homotopy classes. The CS-number of the vacua could then be computed from Ai or
U . Here, we need to impose a boundary condition on φ as well. We impose

lim
x1→−∞

α(x1) = 0, lim
x1→+∞

α(x1) = 2πn and lim
x1→±∞

φ(x1) = 1. (4.8)

Note that the first two conditions make sure that limx1→±∞ u(x1) = 1 and where we have
eliminated the global phase freedom by setting3 eiϕ = 1. The assumption compactifies space
at each time slice into an S1, the same as the gauge group manifold. The u’s have therefore
become mappings from S1 → S1 which divide into homotopy classes (Π1(S1) = 1). Hence,
the same is true for the vacua.

To figure out to which homotopy class a particular vacuum belongs one needs to know
the right asymptotic of α, i.e. the integer n. Say, for instance, that for a given vacuum
limx1→+∞ α(x1) = 2πN , then the CS-number of the vacuum is itself N :

NCS[Φvac.] =
−g
2π

∫
dx1 a1(x1) =

1

2πi

∫
dx1 u(x1)−1 d

dx1
u(x1)

=
1

2π

(
lim
x1→∞

α(x1)− lim
x1→−∞

α(x1)

)
= N. (4.9)

We can now convincingly call these CS-vacua. A possible choice for a CS-vacuum with
NCS = n is given by the gauge mapping

un(x1) ≡ ei nπ(tanh(x1)+1). (4.10)

3Simply requiring that limx1→±∞ u(x1) = 1 (in addition to the condition on φ) is insufficient for this
particular theory because ∂R = {±∞} are two disconnected points. This would leave each vacuum specified
by two integers instead of one that turns out to be CS-number. In Yang-Mills on the other hand, requiring
that U(~x)→ 1 is enough because ∂R3 = S2 is connected.
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The associated vacuum being

Φvac.(x
1) =

{
ei nπ(tanh(x1)+1), a1(x1) = −nπ

g
sech2(x1)

}
, (4.11)

as can be verified using equation 4.9
In the physical axial gauge a1 = 0 there is only a single vacuum. This is because a0 = 0

is required to make V [Φvac.] vanish:

Φvac. =

{
φ = eiϕ, a0 = 0

}
, (4.12)

except for that same global phase freedom in φ (that we have chosen to be eiϕ = 1).
All in all we have the same periodic structure as the pure Yang-Mills theory did in the

supplemented temporal gauge. Two vacua with CS-numbers 0 and 1 are plotted in figure
4.3. In section 4.2.3 we will derive the sphaleron that resides on the barrier between these
two vacua.

(a) Vacuum with NCS = 0 (b) Vacuum with NCS = 1

Figure 4.3: Two examples of CS-vacua in the Abelian Higgs model in the supple-
mented temporal gauge a0 = 0. The top and bottom plot depict the Higgs field
and gauge field respectively. The entire real axis (space) has been compressed
asymptotically near the ends, but the relevant part around the origin is left undis-
torted.
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4.2.1 The Landau-Ginzburg Theory

The Abelian Higgs Model model is more than a toy model of the EW theory. As it turns
out, the instanton in this model is actually of physical relevance in an entirely different
branch of physics[12, p.205]. To see why, consider the Euclidean action of this theory

SE [Φ] =

∫
d2x

[
1

4
(fµν)2 + (Dµφ)∗(Dµφ) + V(|φ|2)

]
. (4.13)

Its Lagrangian density is functionally identical to the static free energy density F of the
Landau-Ginzburg theory of superconductors, here written down in vector notation.

F =
~2

2m

∣∣∣∣(∇− iq

~c
A

)
ψ

∣∣∣∣2 − v|ψ|2 +
u

2
|ψ|4 +

|∇×A|2
8π

, (4.14)

where ψ is the so-called complex order parameter field. The purpose of this theory is to
describe the two-dimensional cross section of a superconductor (in the absence of time) near
the superconducting transition in the presence of a protruding B field (caused by the ∇×A
term). ψ accounts for the behavior of the superconducting electrons and is proportional to
their density. Due to the Euclidean nature of SE , the x0x1-plane corresponds functionally
to the xy-plane in this particular model.

In the Landau-Ginzburg model, minimizing the free energy produces a soliton called
the Abrikosov-Nielsen-Olesen vortex4, which is structurally the same as the instanton we
are going to look for.

4.2.2 The Instanton in the Abelian Higgs model

In this section we derive an instanton that appears in the Abelian Higgs model and that
corresponds with the vortex solitons discussed in the previous subsection. The derivation is
based on those found in the books by Rubakov[33, ch.7 §3] and Coleman[12, ch.7 §4] and use
vector notation borrowed from a paper discussing the Abrikosov-Nielsen-Olesen vortex[10].
This notation will help simplify the Euclidean e.o.m.

Since we have spend a long time deriving the BPST-instanton in the previous chapter,
we keep this section short. We therefore sum up the relevant differences and similarities
between this instanton and the BPST-instanton upfront:

1. The CSE of the theory is once again divided into disjoint sectors. In other words,
there is a topological characteristic (i.e. topological charge Q) by which we can divide
the instantons into distinct homotopy classes. We will find an instanton in the unit
winding number sector, i.e. an instanton characterized by a topological charge Q = 1.

2. We will not have a simple equation such as Fµν = ±F̃µν to our disposal to find the
instanton. Instead, we will have to solve the Euclidean e.o.m. directly (and approx-
imately). We will solve the e.o.m. using a rotationally symmetric ansatz containing
just two free radial functions. The rotational symmetry is expected based on the

4The Landau-Ginzburg model is static, i.e. without reference to time. This is why the solution is
interpreted to as a soliton.
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principle of symmetric criticality, because the required asymptotics of the fields have
rotational symmetry[33, p.159] (see the next section).

3. The ansatz will be a pure “curl”, a configuration without a radial component. In
other words, aµnν = 0 (nµ being an outward pointing unit vector in the x0x1-plane).
This is the reason why the solution is referred to as a “vortex”.

4. We will solve the resulting e.o.m. in terms of the radial functions approximately in
regions far away from the origin, where we can expand the instantons around the pure
gauge background.

5. Although we will not demonstrated this here, it should be possible to present the
instanton in the supplemented temporal gauge a0 = 0, rather than it satisfying aµnν =
0 as it does when we derive it. We did change the gauge of the BPST-instanton after
we found it. In this way, it becomes explicit that the instanton tunnels between the
CS-vacua from equation 4.7.

The Finite SE Field Configuration Space

In this section we demonstrate first point above, that the instantons can be divided amongst
homotopy classes based on a topological charge. The discussion parallels section ?? where
we did the same for the pure Yang-Mills theory.

For SE to converge in the plane5, aµ and φ must tend to a pure gauge configurations
as x2

µ = x2
0 + x2

1 → ∞, see equation 4.13. At |xµ| = ∞ both fields must be given by a
gauge mapping u that only depends on the direction towards which the boundary ∂R ∼= S1

is approached. The asymptotics of φ and aµ are not independent, this is once again due to
the vanishing of Dµφ.

Let us use the polar coordinates ρ, θ in the x0x1-plane for convenience. It allows us
to write partial and covariant derivatives in the angular direction as derivatives in θ. For
instance, nνεµν∂ν = 1

ρ
d
dθ . This allows us to express u as some function u(θ) ≡ eiα(θ). The

pure gauge asymptotics of the instanton in this parameterization are then given by

lim
ρ→∞

Φinst.(ρ, θ) =

{
lim
ρ→∞

φ(ρ, θ) = u(θ), lim
ρ→∞

aµ(ρ, θ) =
i

g
∂µα(θ)

}
, (4.15)

where, just like u, the gauge and Higgs components only depend on θ.
This mapping u maps each point on the boundary ∂R2 ∼= S1 to a zero of an element

of U(1) ∼= S1. Since Π1(S1) ∼= Z, this divides the u’s into homotopy classes (and hence
divides our configurations space into disconnected components). The associated winding
number or topological charge for any finite SE configuration, including the instantons, can
be computed from u as well as fµν (Compare with equations 3.29, 3.30).

Q[u] =
1

2πi

∫ 2π

0
dθ u(θ)−1 d

dθ
u(θ) =

1

2π
(α(2π)− α(0)) (4.16)

Q[fµν ] =
1

4πi

∫
d2x εµνfµν . (4.17)

5This is true for any finite SE configuration, not just instantons.
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To prove that these are equal one constructs a gauge dependent current Kµ = 1
2πiεµνaν

whose divergence is 1
2πiεµνfµν and whose asymptotics match those of aµ.

Q[u] =
1

2πi

∫ 2π

0
ρdθ Kµnµ =

1

2πi

∫
d2x ∂µKµ =

1

2πi

∫
d2x εµν∂µaν = Q[fµν ], (4.18)

where the second equality follows from Stokes’s theorem.

Deriving the Instanton

We begin with minimizing the Euclidean action, equation 4.13. The resulting e.o.m. are6:

(Dµ)2φ =
∂V

∂(|φ|2)
φ and ∂µfµν = jµ. (4.19)

These are, unsurprisingly, the Euclidean versions of the original ones, see equation 4.4.
We look for instantons in the unit winding number sector that we expect, based on the

principle of symmetric criticality, to have additional rotation symmetry in the x0x1-plane.
Let us therefore try

Φinst.(ρ, θ) =

{
φ(ρ, θ) = f(ρ)eiθ, aµ(ρ, θ) =

a(ρ)

ρ
εµνnν

}
, (4.20)

where f and a are the radial functions that specify the instanton and that we are still
required to find. The ansatz is a pure “curl”: aµ points in its entirety in the θ-direction,
aρ = 0. This is not the maximally symmetric option, there could still have been a radial
contribution to aµ. However, such a radial contribution can always be written as the
addition of a pure gauge, and hence, can always be gauged away. The mapping u(θ) that
this ansatz uses is the identity mapping, α(θ) = θ, which definitely produces an ansatz for
which Q = 1. For smoothness we need to make sure that f, a→ 1 as ρ→∞ as well as that
f, a→ 0 as ρ→ 0.

To find the instanton, we need to substitute the ansatz into the field equations and
then solve them. This is made easier by using covariant vector notation, since we have
access to vector identities. For instance, D = ∇ − ig a in this particular notation. This
operator acting as a covariant divergence or covariant gradient in polar coordinates (with
our ansatz for aµ already substituted in) is given by

Dφ =
∂φ

∂ρ
ρ̂+

1

ρ

{
∂φ

∂θ
− ig a(ρ)φ

}
θ̂, (4.21)

D · a′ = 1

ρ

∂(ρa′ · ρ̂)

∂ρ
+

1

ρ

∂(a′ · θ̂)

∂θ
− ig a · a′. (4.22)

With both operators specified, the first equation of motion

D · (Dφ) =
∂V
∂φ∗

(4.23)

6Notice the flipped potential. This is what we expect, since we are looking to find an instanton.
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reduces, after substitution, to

1

ρ

∂

∂ρ

{
ρ
∂f

∂ρ

}
− f

ρ2
(1− g a)2 = f(f2 − 1). (4.24)

Similarly, the second equation of motion7

∇2a−∇ · (∇ · a) = j (4.25)

reduces, after substitution, to

−∇× (∇× a) = ig(φ∗Dφ− φDφ∗) (4.26)

∂

∂ρ

{
1

ρ

∂a

∂ρ

}
θ̂ = −2g

ρ
(1− g a)f2 θ̂, (4.27)

where we used a vector calculus identity in the first step8.
Even though the ansatz has made our equations of motion more palpable, we are still

not able to solve them analytically. What we can do, however, is solve them far away from
the origin by expanding around their asymptotic values f, a = 1. We expand

f(ρ) = 1 + ε h(ρ) and a(ρ) = 1 + εgρ b(ρ). (4.28)

Linearizing in small ε gives us the following equations of motion for h and b.

1

ρ

∂

∂ρ

{
ρ
∂h

∂ρ

}
= 2h and

∂

∂ρ

{
1

ρ

∂(ρb)

∂ρ

}
= 2b. (4.29)

These are solved by the modified Bessel functions

h(ρ) = K0(
√

2ρ) and b(ρ) =
√

2K1(
√

2ρ). (4.30)

This is the point at which the instanton can be computed over to supplemented tem-
poral gauge, where it interpolates between the CS-vacua that differ by a single winding.

4.2.3 The Sphaleron in the Abelian Higgs model

In this section we derive the Abelian Higgs model sphaleron Φsph. and its negative mode
η in both the axial gauge (a1 = 0) and supplemented temporal gauge (a0 = 0 + boundary
conditions). The Abelian Higgs model is an excellent toy model for the true EW theory,
since the derivation of its sphaleron is much more transparant. The computation of η
(from which one discerns the way in which the sphaleron decays) is also a useful exercise,
since must be done numerically in the full EW theory. We begin in the axial gauge, as
the derivation is more straightforward. Afterwards, we do the same in the supplemented
temporal gauge. The latter is more interesting as the sphaleron resides on the barrier

7∂µfµν = ∂2aν − ∂ν(∂µaµ) = jµ
8Even though we use the curl identity, our space is two dimensional. Here ∇× produces a fictitious

vector that points out of the x0x1-plane.
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between neighboring CS-vacua, those which we discussed in section 4.1. We will illustrate
this sphaleron with a figure in which its relation to these vacua becomes manifest. The
latter computation of η uses the so-called gradient flow equations. These equations play a
role in analyzing effective d.o.f. of certain field theories. The derivation here is based on
the one found in book by Manton and Sutcliffe[30, ch.11 §3].

The Sphaleron in the Axial Gauge

Since saddle point configurations are also critical points of V (δV = 0), we look for
sphalerons like we did for solitons: We simply stationarize V as given by equation 4.6.
By choosing to work in the axial gauge, we replace D1 with ∂1 in V . With the D1 gone,
we can tell that the remaining gauge field a0 plays a trivial role in the sphaleron: 1

2(∂1a0)2

is the only term in V that depends on a0 while, most importantly, being positive definite.
a0 = 0 will therefore definitely minimize V . We need only calculate the Euler-Lagrange
equation minimizing V for φ, which is given by

(∂1)2φ = −(1− φ∗φ)φ. (4.31)

This is the same equation as the (anti-) kink soliton satisfied back in chapter 2. The φ
portion of the sphaleron is therefore given by

φ(x1) = φsph.(x
1) ≡ tanh

x1

√
2
. (4.32)

and the whole sphaleron is therefore

Φsph. = {φ = φsph., a0 = 0}. (4.33)

Note that a0 = 0 is coincidental in the axial gauge, we have not set set a temporal gauge
constraint (this would not even be possible because it would overfix the gauge, making aµ
vanish entirely).

The Negative Mode

The (anti-) kink solution used to be a stable soliton, now it is an unstable sphaleron. This is
because we are now considering a complex gauge theory. From that prior discussion we do
know, however, that all possible real variations of φ will increase the energy. The negative
mode will therefore be fully imaginary. For that reason, let us expand our variations δΦ as

Φsph. + δΦ =

{
φ(x1) = φsph.(x

1) + iη(x1), a0(x1) = 0 + a(x1)

}
, (4.34)

as to make η real.
After substituting these into V and integrating by parts we obtain to quadratic order

V [Φsph. + δΦ] = V [Φsph.] +

∫
dx1 η

(
− ∂2

∂x12 − sech2 x
1

√
2

)
η +

∫
dx1a∂2

1a, (4.35)
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where there are no first order terms, since we expand around a critical point (δV = 0). The

sphaleron energy is V [Φsph.] = 4
√

2
3 .

We can tell from the last term in equation 4.35 that the variation a cannot lower
V [Φsph.]. On the other hand, the variation η can. We can see this by considering the
eigenvalue equation (

− ∂2

∂x12 − sech2 x
1

√
2

)
η = λη, (4.36)

which is an example of an integrable stationary Schrödinger equation. It has precisely what
we are looking for, a single eigenfunction with a negative eigenvalue:

η(x1) = sech
x1

√
2
, (4.37)

which has λ = −1
2 . This solution is the Higgs component of the whole negative mode

η =

{
η(x1) = i sech

x1

√
2
, a(x1) = 0

}
. (4.38)

The Sphaleron in the Supplemented Temporal Gauge

Now we will switch to the supplemented temporal gauge where we get periodic CS-vacua.
For Φsph. this simply means a change of gauge.

In the supplemented temporal gauge the sphaleron solves the same Euler-Lagrange
equation as before (equation 4.31) except with ∂1’s replaced with D1’s. The solution is
now any time-independent gauge transformation u(x1) away from equation 4.33. For the
sphaleron to properly interpolate between the CS-vacua, these u must satisfy the same
boundary conditions as we imposed on them, equation 4.8. For instance, let

u(x1) = u01(x1) = eiα01(x1) ≡ ei π2 (tanh(x1)−1), (4.39)

then the associated sphaleron is

Φsph.(x
1) =

{
φ(x1) = u01(x1)φsph.(x

1), a1(x1) = −1

g
∂1α01(x1)

}
, (4.40)

=

{
φ(x1) = tanh

(
x1

√
2

)
ei

π
2

(tanh(x1)−1), a1(x1) = − π

2g
sech2(x1)

}
(4.41)

as dictated by the way the fields must transform9, see equation 4.3. This sphaleron resides on
the barrier precisely beween the vacua with CS-numbers 0 and 1. As is therefore expected,
its CS-number is 1

2 (This can be verified explicitly using equation 4.9). Figure 4.4 shows
this sphaleron.

9Since a0 = 0 was part of the same sphaleron in the axial gauge, recall equation 4.33, a0 remains zero
under a time-independent gauge transformation. This is as it should be, otherwise the sphaleron in the
supplemented temporal gauge would not be the gauge transformed version of the one in the axial gauge.
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Figure 4.4: The Abelian Higgs model sphaleron, in the supplemented temporal
gauge, that resides on the barrier between the vacua of figure 4.3. The Higgs and
gauge fields are plotted on the left and right respectively.

The Negative Mode

To see how the sphaleron Φsph. actually starts to decay (deform) into either vacuum, we
need to rederive the negative mode η in the supplemented temporal gauge. In the axial
gauge, it was convenient that the gauge field participated trivially in η (equation 4.38) this
will no longer be the case. Here, η is recomputed using the gradient flow equations. These
equations are used by Manton and Sutcliffe in their derivation[30, ch.11 §3].

The gradient flow equations are a set of first order dynamical equations different from
the equations of motion. They instead describe motion through C on paths orthogonal to
the contours of V . In other words, their motion makes configurations decay in the direction
where V decreases most rapidly. This is why we can use them to find the negative mode of
the sphaleron: their dynamics point in the direction of η.

Consider, for instance, a classical dynamical system of an arbitrary but finite number
of d.o.f. Its Lagrangian is given by

L(x, ẋ) = T (x, ẋ)− V (x, ẋ), where T (x, ẋ) =
1

2
gij(x)ẋiẋj (4.42)

given some metric gij(x) for the discrete coordinates xi. For this system the equations of
motion and gradient flow equations are[29]

d

dt
(gijx

j)− 1

2

∂gjk
∂xi

ẋj ẋk = −∂V
∂xi

and gijx
j = −∂V

∂xi
. (4.43)

Most importantly, if gij(x) = δij (and hence there is no second term), then we see that the
gradient flow equations are found by simply dropping a single time derivative. This is a
heuristic rule that we will also use.

A interesting fact from a dynamical systems point of view is that these equations are
used to describe the bulk dynamics of solitons[30, p.20]. In some sense, solitons behave like
particles, they attract and repel each other. The gradient flow equations can be used to
formulate an effective reduced dynamical system for these solitons (in terms of, for instance,
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their centers of mass coordinates). Manton and Merabet used the gradient flow equations
to study the dynamics of (anti-) kink solitons in the φ4 theory[29] and others have examined
the forces between the vortices (solitons) from the previous section[15] in this very model.

There is also a gradient flow equation for field theories (as well as gauge theories),
where the coordinates have been replaced by fields[30, p.46]. In this case, the heuristic rule
consists of dropping a covariant derivative D0. When we work with gauge theories in which
we have not fully fixed the gauge, we can check that the gradient flow equations do not
dynamically generate (whichever still allowed) gauge transformations. Since gauge orbits are
also contours of V, they should not. In the supplemented temporal gauge, this means that
the gradient flow equations should not produce a time-independent gauge transformation.

Let us once again10 expand the fields around the sphaleron as

Φsph. + δΦ =

{
φ(x1) = φsph.(x

1) + iη(x1), a1(x1) = 0 + a(x1)

}
(4.44)

and use them to linearize the gradient flow equations (the gradient flow equations are
themselves obtained by dropping a single covariant or partial time derivative from equation
4.4). Those equations ought to have no more than a single exponentially growing solution,
in agreement with having a single negative mode.

These linearized gradient flow equations are[30, p.449]

∂0η = ∂1(∂1η − gaφsph.)− ga(∂1φsph.) + (1− φ2
sph.)η (4.45)

∂0a = gφsph.(∂1η − gaφsph.)− g(∂1φsph.)η. (4.46)

We mentioned that the gradient flow equations do not dynamically generate a gauge
transformation, this can quickly be shown. From the gradient flow equations as well as
equation 4.31 follows that

∂1∂0a = gφsph.∂0η. (4.47)

Applying an infinitesimal time-independent gauge transformation (iφsph.α, (
i
g ∂1α)) satisfy-

ing equation 4.8 this tells us that (multiplying either side by α and integrating by parts)

(iφsph.α) i∂0η −
(
i

g
∂1α

)
∂0a. (4.48)

The infinitesimal gauge transformation is thus orthogonal to time evolution (i∂0η, ∂0a).
The exponentially growing solution from which we deduce η will be of the form

η′(xµ) = η(x1)eΓx0 and a′(xµ) = a(x1)eΓx0 . (4.49)

which we try and substitute into the gradient flow equations. The spatial components η(x1)
and a(x1) are part of the negative mode we are trying to find11. The procedure seems to

10Except that a1 partakes instead of a0. We also choose to postpone the application of a gauge transfor-
mation such as the one from equation 4.39 (required to have Φsph. satisfy the correct boundary conditions)
until after we have found η.

11The dynamics of the gradient flow equations are not those of the e.o.m. The gradient flow equations
and their evolution are used purely as tool to find the special configurations η(x1) and a(x1) that decrease
V [Φsph.] most rapidly.
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work, the only negative mode appears to be[30, p.449]

η(x1) = τ

(
sech

x1

√
2

)τ
and a(x1) = −

√
2g

(
sech

x1

√
2

)τ
, (4.50)

where τ2 − τ − 2g2 = 0 and Γ = τ
2 . Choosing the positive root for τ makes sure it is a

growing solution12.
The expansion of the fields (equation 4.44) still needs to undergo a forced gauge trans-

formation. Otherwise the fields do not satisfy the appropriate boundary conditions, equation
4.8. For instance, the negative mode of the sphaleron from equation 4.41 is

η(x1) =

{
η(x1) = τ

(
sech

x1

√
2

)τ
ei

π
2

(tanh(x1)−1),

a(x1) = −
√

2g

(
sech

x1

√
2

)τ
− 1

g
sech2(x1)

}
, (4.51)

where we used the same time-independent gauge transformation u01(x1) from equation 4.39.
This is now the negative mode along which that sphaleron decays towards the vacua with
CS-numbers 0 and 1. This fact is illustrated from multiple angles for the Higgs component
of the sphaleron in figure 4.5 (The gauge component is far less interesting, the “lump”
centered at the origin just grows or shrinks depending on the decay direction). To be precise,
φsph.±0.5 iη are drawn in addition to the sphaleron. Both perturbed solutions already look
remarkably similar to the vacua toward which they are decaying: In the dashed case the
sphaleron loop is being blown up to almost encircle the cylinder, like the NCS = 1 vacuum,
while in the dotted case the loop has all but disappeared, like the NCS = 0 vacuum. This
is surprising, given that η is only tangent to the path of steepest descent of V to wards the
vacua at the sphaleron point. This shows us that the field mode along which V decreases
most rapidly does not change much when we move further down the barrier on either side.
The shape of the barrier around the sphaleron is thus quadratic over a great range of NCS.

4.3 The EW Sphaleron in the SM

The goal of this section will be to derive the famous SU(2) sphaleron in the EW sector
of the SM (what is also known as the Weinberg-Salam theory). It was originally found by
Manton and Klinkhamer[28][23]. It exists at zero temperature, where it resides on a ∼ 9
TeV barrier (the sphaleron mass). In complete analogy with the (1+1)-dimensional Abelian
Higgs model, in the supplemented temporal gauge the barrier is located between (topolog-
ically distict) CS-vacua. Within the radial + temporal gauge (without the supplementary
boundary condition) on the other hand, the barrier exists along an NCL from the vacuum
to itself. Imposing both gauge conditions is not over-fixing the gauge, we are looking at a
single configuration at one moment in time. We can therefore enforce the radial or temporal

12The appearance of various factors of
√

2 and g is a consequence of the metric used in our Lagrangian.
Manton and Sutcliffe include a convenient prefactor of 1

2
before the (Dµφ)∗(Dµφ) term in their Lagrangian

and they set g = 1, this makes sure that gij(x) = δij for them.
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Figure 4.5: The deformation of the Higgs component of the sphaleron from figure
4.4 (solid black line) by the negative mode from equation 4.51. The dashed line
is φsph. − 0.5 iη and the dotted line is φsph. + 0.5 iη. We see how the sphaleron is
quickly deformed towards a solution that resembles either of the vacua from figure
4.3. A front and side view is included for clarity.

gauge constraint globally and the other at the sphaleron’s time slice. Manton chooses to
enforce Ar = 0 globally when speaking about the EW sphaleron. It is in this gauge that we
will go ahead and find the configuration.

The EW sector of the SM is an SU(2)L × U(1)Y gauge theory (Y being the weak
hypercharge) that through SSB breaks down to U(1)EM, the gauge group of electromag-
netism: A mixed symmetry between a U(1) subgroup of SU(2)L and U(1)Y determined by
the Weinberg angle θW . After SSB, the massive gauge bosons that appear are the charged
W± (or W (†)) and neutral Z0. There are three, one for each broken gauge d.o.f. The Higgs
attains a mass depending on its vacuum expectation value (VEV) and becomes a real, hence
neutral, scalar field. The photon is the massless gauge boson of the remaining unbroken
mixed U(1)EM gauge group.

We will derive the EW sphaleron in the limit θW → 0. In this limit, only SU(2)L
breaks and produces three neutral equally massive gauge bosons for which we choose to
retain the original notation Aaµ. It is only these three fields that partake (in addition to the
Higgs) in the EW sphaleron. The remaining U(1) gauge boson (U(1)Y = U(1)EM in this
scenario) can safely be ignored in the derivation. For this reason, the sphaleron is known as
the SU(2) sphaleron. Turning θW back on is known to perturb the sphaleron’s mass only
minimally[23].

The derivation presented here is based on both the original papers on the EW sphaleron
by Manton and Klinkhamer[28][23], as well as the more succinct computation found in the
book by Manton and Sutcliffe[30, ch.11 §5].

4.3.1 The EW Theory

We begin the EW sphaleron derivation by summarizing the relevant details of the EW
sector (at zero temperature and finite θW ), as well as stating the conventions that we use
throughout this computation. The most important part is, of course, the Lagrangian of the
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bosonic fields. It is given by

L = −1

2
Tr(FµνF

µν)− 1

4
fµνf

µν + (Dµφ)†(Dµφ)− V(φ†φ). (4.52)

The field strength tensors F aµν and fµν of the SU(2)L and U(1)Y gauge fields, Aaµ and
aµ respectively, are given by

F aµν = ∂µA
a
ν − ∂νAaµ + gεabcAbµA

c
ν , (4.53)

fµν = ∂µaν − ∂νaµ. (4.54)

Once again, the lower case letter refer to the abelian quantities.
In the EW Lagrangian we have stuck to the same conventions that we used during the

BPST-instanton derivation. In particular, the SU(2)L gauge fields are presented in vector
notation such that

Aµ =
τa

2
Aaµ and Fµν

τa

2
F aµν , (4.55)

where the τa’s are once again the Pauli matrices.
The covariant derivative is given by

Dµ = ∂µ − ig
τa

2
Aµ − ig′

1

2
aµ, (4.56)

which couples the complex Higgs doublet φ = (φ1, φ2) to the gauge fields of both symmetry
groups at different strengths (g and g′ for Aaµ and aµ respectively).

A general SU(2)L × U(1)Y gauge transformation U = ULUY , acting on the Higgs and
gauge fields, is made out of

UL(xµ) = exp

(
i
τa

2
θa(xµ)

)
and UY (xµ) = exp

(
i
1

2
α(xµ)

)
, (4.57)

where θ(xµ) and α(xµ) are the local gauge group parameter functions. Under such a trans-
formation these fields transform as

φ→ Uφ, (4.58)

Aµ → U−1
L AµUL +

i

g
U−1
L ∂µUL, (4.59)

aµ → aµ +
i

g
UY ∂µUY = aµ −

1

g
∂µα. (4.60)

In the full theory, the left-handed SM fermions interact as doublets with the SU(2)L
gauge fields (in the fundamental representation, leptons paired with their neutrinos and
quarks paired with their generation partners), while the right-handed particles do not par-
ticipate and interact as singlets (i.e. in the trivial representation).

The effect of the SU(2)L and U(1)Y gauge transformations on each of the leptons
is determined by their weak hypercharge T3 and isospin Y . These are then conveniently
included as operators (algebra elements) in the gauge transformations, picking up the right
charges when the gauge transformation acts in each of the leptons. The factor of 1

2 , which
begins appearing in equations 4.56 and 4.57, is the weak hypercharge of the Higgs field.
Since we are only concerned with the Higgs field during this derivation, we have already
substituted in this charge.
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EW SSB and Gauge Boson Masses

The EW Lagrangian includes the famous “Mexican hat” potential V, that results in SSB.

V(φ†φ) = λ

(
φ†φ− v2

2

)2

. (4.61)

In the process, the SM particles obtain their masses. For the gauge bosons we can tell that
this happens in the following way.

A possible choice of VEV of the Higgs field (i.e. a possible value of φ that minimizes
V) is given by

φ0 =
1√
2

(
0
v

)
. (4.62)

Only the mixed U(1) gauge transformation

UEM(xµ) = exp

(
i
τ3

2
αa(xµ) + i

1

2
α(xµ)

)
=

(
eiα(xµ) 0

0 1

)
(4.63)

leaves this VEV invariant. Hence it corresponds to the gauge symmetry of the electromag-
netic interaction U(1)EM post SSB.

By substituting an expanded Higgs fields around φ0 into the Lagrangian,

φ(xµ) =
1√
2
eiτ

aξa(x)

(
0

v +H(xµ)

)
, (4.64)

we can deduce what mass terms appear for the three broken and mixed SU(2)L × U(1)Y
gauge bosons not included in U(1)EM. Here, H and ξa correspond to a “radial” and “angu-
lar” excitation(s) in φ respectively. For that reason, H is a (electrically neutral) real valued
scalar field. The angular fields ξa can be absorbed (or rotated away) by a local SU(2)L
gauge transformation, these are the Goldstone bosons that get “eaten by the gauge fields”.
In this way, only a single Higgs d.o.f. remains: the post SSB Higgs field is simply H. The
expanded covariant derivative term is responsible for the masses of the gauge bosons13.
Substituting in the expanded version of φ with ξa = 0 gives

|Dφ|2 =
1

2
(∂H)2 +

g2

8

[
(A1)2 + (A2)2

]
(H + v)2 +

1

8

[
g′a+ gA3

]2
(H + v)2, (4.65)

from which we can tell that, using the conventions14

A1
µA

1µ +A2
µA

2µ = W †µW
µ (4.66)

and
(g′aµ + gA3

µ)(g′aµ + gA3µ) = (g′
2

+ g2)ZµZ
µ + 0 ·AµAµ, (4.67)

13The Lorentz indices have been suppressed, (Aa)2 = AaµA
aµ and |Dφ|2 = (Dµφ)(Dµφ)† etc.

14Complex fields halve, by convention, mass terms of the form M2
WW

†
µW

µ. On the other hand, scalar
fields have an additional pre-factor of 1

2
, 1

2
M2
ZZµZ

µ.
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that MW = gv

2
√

2
and MZ = v

2

√
g′2 + g2. The Higgs mass itself can be found by considering

the V term instead.

V(φ†φ) = λ

(
1

2
H2 + vH

)
, (4.68)

from which we immediately deduce that MH =
√
λ.

The mixing between U(1)Y and the U(1) subgroup of SU(2)L (corresponding to τ3) is
quantified by the previously mentioned Weinberg angle θW . By convention,

cos(θW ) =
g′√

g′2 + g2
and sin(θW ) =

g√
g′2 + g2

. (4.69)

4.3.2 The EW Sphaleron

We can now begin the actual (zero temperature) EW sphaleron derivation. We let the
θW → 0. This leaves us with just the Higgs and SU(2)L gauge fields, whose gauge bosons
now have equal masses, M = gv

2
√

2
. The potential energy functional V , whose saddle point

we are going to find, is given by

V [Φ] =

∫
d4x

[
1

2
Tr(FijFij) + (Diφ)†(Diφ) + V(φ, φ†)

]
. (4.70)

Take note that we have used Φ as a surrogate for the complete collection of fields once
again.

To make the derivation easier, we will normalize the Higgs field φ→ v√
2
φ. This makes

sure the VEV of φ is simply 1, φ0 = (0, 1). This reproduces the conventions used in Manton’s
original paper[28] (Note the prefactor for the covariant derivative term).

V [Φ] =

∫
d4x

[
1

2
Tr(FijFij) +

v2

2
(Diφ)†(Diφ) +

λv4

4
(φ†φ− 1)2

]
. (4.71)

At the end we can undo the scaling on φ and obtain the true Higgs field configuration of
the sphaleron.

We will derive the sphaleron in radial + temporal gauge: A0 = 0 and Aini = 0 (ni
being an outward pointing normal vector in R3). This will fix the gauge of the fields almost
completely, except for the global U(1)Y symmetry15. To get rid of this freedom as well
(and therefore to fix the gauge completely), we force φ to take on a specific value along a
predefined axis. Let us choose, for instance, the z-axis and make sure that φ → (0, 1) as
x3 →∞. Manton calls this a “base point condition”. With complete gauge fixing in place,
this has become a true physical gauge, there is only a single vacuum:

Φvac. =

{
φ =

(
0
1

)
, Aµ = 0

}
. (4.72)

15Global, since we ignored U(1)Y ’s gauge field.
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Topology of the EW theory in the Temporal + Radial Gauge

The topology of the finite V field configurations space CV is determined completely by the
asymptotics of the Higgs and gauge fields as |~x| → ∞. Each asymptotic being a unique16

function Φ∞ that maps each point on the boundary of space ∂R3 to a zero of V (given that
these functions satisfy the base point condition). The fields need to approach a zero of V for
V to be finite (otherwise the configuration in question does not belong in CV by definition).
Let us call the space of asymptotic field configurations Maps(∂R3 → kerV), then

CV ∼= Maps(∂R3 → kerV) ∼= Maps(∂R3 → SU(2)) ∼= Maps(S2 → S3). (4.73)

Figure 4.6: An alternative way to pa-
rameterize the points of S2, taking
S1 cross sections of S2 (parametrized
by the azimuthal angle ϕ) at an po-
lar angle µ.

The second equality follows from the theorem dis-
cussed in section 2.3.2 of chapter 2: kerV ∼= G/H =
(SU(2)L×U(1)Y )/U(1)EM

∼= SU(2). Note in partic-
ular that this topological argument is independent of
the mixing of SU(2)L and U(1)Y . The EW sphaleron
stays an SU(2) sphaleron at all mixing angles. The
third equality follows from the fact that the boundary
of space ∂R3 ∼= S2 and the gauge groups SU(2) ∼= S3.
Note that, even though we deduce the topology of
kerV from G/H, that the sphaleron will turn out
to be a non-trivial configuration for the entire Higgs
doublet (and not just H) at zero temperature.

We can already discuss the existence of soli-
tons and sphalerons in the EW theory. Maps from
S2 to S3 can always be deformed to the trivial
map (mapping all of ∂R3 to φ0). In other words,
CV has no disconnected components, Π0(CV ) =
Π0(Maps(S2 → S3)) = 1. Hence, the EW theory
does not have any solitons in addition to instan-
tons. On the other hand, the topology of CV is not
trivial: Π1(CV ) ∼= Π1(Maps(S2 → S3)) = Π3(S3) = Z (recall from section 2.3.1 that
Πn(Maps(Sm → X) = Πn+m(X)). This is ultimately the reason why the EW sphaleron
exists, there is an NCL in CV inherited from a loop in the space of asymptotic field config-
urations Maps(∂R3 → kerV).

The EW Sphaleron in the Temporal + Radial Gauge

To find the sphaleron, we begin with an NCL of asymptotic field configurations that crosses
both the asymptotics of the vacuum and the asymptotics of the sphaleron. This becomes
a loop in CV itself by supplementing the field already known at the boundary ∂R3 using
an ansatz over all of R3. The Higgs component of the loop of asymptotics Φ∞(θ, ϕ;µ) =

16Unique, since the covariant derivative term in V fixes the asymptotic behavior of Aµ to that of φ.
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{φ∞(θ, φ;µ),A∞µ (θ, φ;µ)} is given by

φ∞(θ, ϕ;µ) =

(
φ∞1
φ∞2

)
=

(
sinµ sin θeiϕ

e−iµ(cosµ+ i sinµ cos θ).

)
, (4.74)

where θ ∈ [0, π] is the polar angle (measured w.r.t. the z-axis) and ϕ ∈ [0, 2π] is the
azimuthal angle (measured w.r.t. the x-axis) used to label the point of ∂R3. µ ∈ [0, π] is
the loop paramater, it maps the point µ = 0, π to the vacuum.

This map covers all of kerV once as µ goes from 0 to π. It therefore belongs to the
homotopy class of unit winding number of Π1(∂R3 → kerV) ∼= Π3(S3). The reason why
this map covers all elements once, is because µ is essentially the second polar angle (recall
µ’s interval) in the triplet (µ, θ, φ) used as a conventional coordinate system for the points
of S3. Figure 4.6 illustrates as analogous coordinate system used to label the points of S2.
The figure also nice illustrates why the base point condition remains satisfied for each value
of µ, it is the “pivot point” for the plane at which the S1 cross section of S2 are taken.

The asymptotic field configuration of the gauge fields A∞µ is not independent from φ∞.
The covariant derivative term in V need to vanish there also. This once again couples the
asymptotic behaviors of the Higgs and gauge fields together. From φ∞ we can construct
the following gauge transformation, which maps each point on the boundary to an element
of SU(2):

U−1
∞ =

(
φ∞2
∗ φ∞1

−φ∞1 ∗ φ∞2

)
=

∣∣∣∣
µ=π

2

(
cos θ sin θeiϕ

− sin θe−iϕ cos θ

)
. (4.75)

By defining

A∞α =
i

g
U−1
∞ ∂αU∞, α = {θ, ϕ}, (4.76)

we make sure that Dθφ
∞ = 0 and Dϕφ

∞ = 0. We have thereby found the gauge component
of Φ∞(θ, ϕ;µ). It also allows us to write φ∞ = U−1

∞ φ0, which shows us why the base point
condition allows us to explicitly associate each zero of kerV with an element of G/H ∼=
SU(2).

The next step will be to put V , as given in equation 4.71, in spherical coordinates.
Let rα = (r, θ, ϕ) be the vector xi = (x, y, z) in spherical coordinates, then the change of
variables is specified by

Rα
i =

∂xi

∂rα
, gαβ = RαiR

β
j g

ij , gαβ =

1
1
r2

1
r2 sin2 θ

 , (4.77)

where gαβ is the inverse metric and Rα
i the inverse Jacobian. In any other coordinate
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system, and specifically in spherical coordinates, V is given by

V [Φ] =

∫ √
det g d3r

[
1

2
gαρgβσ Tr(FαβFρσ) +

v2

2
gαβ(Dαφ)†(Dβφ) +

λv4

4
(φ†φ− 1)2

]

=

∫
r2 sin2 θ drdθdϕ

[
1

r2
Tr(FrθFrθ) +

1

r4 sin2 θ
Tr(FrϕFrϕ)

+
1

r4 sin2 θ
Tr(FθϕFθϕ) +

v2

2
(Drφ)†(Drφ) +

v2

2r2
(Dθφ)†(Dθφ) (4.78)

+
v2

2r2 sin2 θ
(Dϕφ)†(Dϕφ) +

λv4

4
(φ†φ− 1)2

]
.

We will now present the ansatz that completes Φ∞(θ, ϕ;µ) over all of R3, here r = |~x|.
It contains two, yet to be determined, radial functions f and h.

φ(r, θ, ϕ;µ) = (1− h(r))

(
0

e−iµ cosµ

)
+ h(r)φ∞(θ, ϕ;µ) (4.79)

Aα(r, θ, ϕ;µ) = f(r)A∞α (θ, ϕ;µ), α = {θ, ϕ}, (4.80)

for which the radial functions f and h have to satisfy

lim
r→∞

f, h = 1 and lim
r→0

f, h = 0, (4.81)

such that the asymptotic agree with our earlier results and such that (as r → 0) the fields
are smooth17. Note that the ansatz satisfies the radial gauge condition, Ar = 0, because of
equation 4.75.

We will now minimize V half way along the loop, at µ = π
2 , at what we suspect is

the sphaleron point. At this point (see equation 4.75), the Higgs component of the field is
simply given by

φ(r, θ, φ) = h(r)

(
sin θeiϕ

cos θ

)
. (4.82)

It has an additional symmetry SO(3) and reflection symmetry[30, p.457]. This makes
it, by the principle of symmetric criticality, the most likely candidate for the sphaleron
configuration.

Plugging this ansatz into V gives us the following spherically symmetric functional

V [Φ] =
∣∣∣
µ=π

2

4π

∫
dr

[
4

g2
f ′

2
+

8

g2

f2

r2
(f − 1)2 + r2h′

2
+ 2h2(f − 1)2 +

λ

2
r2(h− 1)2

]
,

(4.83)
as the angular d.o.f. separate and can be integrated out. That the energy density is
spherically symmetric at the sphaleron is precisely such an additional symmetry expected
of a sphaleron.

17One might wonder whether the large r boundary condition for f is even required. As A∞µ is pure gauge,
would that not make Fθϕ vanish? This turns out not to be the case in polar coordinates, no terms in V
turn out to vanish, specifically, Tr(FθϕFθϕ) 6=

∣∣
r=∞ 0.
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Figure 4.7: Plot of the approximate solutions of the radial functions that specify
the sphaleron.

The variational equations for f and h obtained by minimizing V at µ = π
2 are

r2f ′′ = 2f(f − 1)(2f − 1) +
g2v2

4
r2h2(f − 1), (4.84)

(r2h′)′ = 2h(f − 1)2 + λv2r2h(h2 − 1). (4.85)

These cannot be solved analytically, but it has been established that a smooth solution for
f and h exists and a numerical solution as a function of λ has also been found[30, p.458].
The true EW sphaleron can now be found by substituting f and h into equation 4.80 at

µ = π
2 , except that the Higgs field still needs to be shifted back, φ →

√
2
v φ, to undo our

normalization. Given the current day values of the Higgs mass (125 GeV) and Higgs VEV
(246 GeV), the mass of this zero temperature EW sphaleron, in the θW → 0, limit comes
out to be 9.11 TeV. In a paper by Tye and Wong[37], which we discuss in the next chapter,
an approximate solution for f and h is given by

f(r) ≈ 1− sech(aMW r) and h(r) ≈ tanh(bMW r), (4.86)

where a = 1.154 and b = 1.056 are two numerically fitted parameters. Figure 4.7 shows a
plot of these approximate solutions.

If this sphaleron would be put in the supplemented temporal gauge, then it would, like
the sphaleron in the Abelian Higgs model, reside on a barrier between CS-vacua. In that
case, the loop parameter µ is related to the CS-number of the fields[37]

NCS(µ) =
1

π

(
µ− sin(2µ)

2

)
, (4.87)

In other words, the NCS of the sphaleron is 1
2 when µ = π

2 (which corresponds to the EW
sphaleron residing on the barrier between CS-vacua with NCS = 0 and NCS = 1).
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Chapter 5

Fermions in Sphaleron
Backgrounds

W
e have discussed theories that have had solitons, instantons and sphalerons as special
classical field configurations. Of these three, we have discussed the physical implica-

tions of instantons most fully: They bring about vacuum-to-vacuum tunneling that influ-
ences the quantum picture of the gauge field vacuum. For the pure Yang-Mills theory this
meant the appearance of a vacuum angle θ, whose interpretation differs depending on the
supplemented temporal or physical gauge used to quantize the theory. On the other hand,
the previous chapter’s discussion of sphalerons was purely classical: We saw the Abelian-
Higgs model’s classical vacuum structure have a similarly gauge dependent character (with
CS-vacua in the supplemented temporal gauge), the same was true for the EW theory. The
sphaleron’s true physical significance comes about when fermions are finally introduced into
the picture: fermionic quantum numbers can change in gauge field background with special
topology such as instantons and sphalerons. This is going to be the topic of this chapter, in
which we will pay special attention to the SM and its regular (non-thermal) EW sphaleron.
In the case of the SM, these fermionic quantum numbers are the baryon B and lepton
Ll numbers (l = e, µ, τ), for which violating processes related to the EW sphaleron exist.
Moreover, fermions impact the vacuum angle θ of the EW and QCD gauge field vacuum,
which we will also get to discuss.

One might wonder how B and L are supposed to be violated, since they are classi-
cally conserved. They are the charges corresponding to the four global vector symmetries
U(1)B/Ll of the SM action. As it turns out, these symmetries disappear on a quantum
level: they are said to be anomalous. In other words, these symmetries of the Lagrangian
are only emergent in the classical limit, they are not true symmetries of nature. Hence,
their currents JµB and Jµl are not conserved, they are anomalous:

∂µJ
µ
B =

g2Nf

32π2
F aµνF̃

aµν and ∂µJ
µ
Ll

=
g2Nf

32π2
F aµνF̃

aµν , (5.1)

where Nf = 3 is the number of generations in the SM. The right hands of these anomalies
bear striking resemblance to the winding numbers we met in chapter 3 (such as equation
3.30), this is no coincidence, this is how instantons and sphalerons get involved. The
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anomaly reflects the phenomenon that CS-number changes in the EW sector’s gauge fields
produce SM fermions. Specifically, when ∆NCS = N , such processes satisfy the selection
rule[33, p.388]1

∆Le = ∆Lµ = ∆Lτ =
1

3
∆B = N, (5.2)

hence ∆(B + L) = 6N and2 ∆(B − L) = 0: The transitions produce matter without anti-
matter (or vice versa). Thus far such processes have not been observed, though they might
be seen in (future) collider experiments[37][36][31]. Moreover, these processes might be a
key-ingredient for generating the matter-antimatter asymmetry of te observable universe[33,
ch.17 §4][26][32].

In section 5.1 we discuss the anomalies and their implications for the SM’s quantum
theoretic vacuum structure by first looking at a toy model with an anomaly. Its discussion
brings together the topic of vacuum angles, which we discussed in regards to the pure
Yang-Mills theory (section 3.3), with the EW sector we examined when deriving the EW
sphaleron (section 4.3). As we alluded at the end of section 3.3.4, it turns out that having
an anomalous physical symmetry can make the vacuum angles of specific gauge sectors
unphysical. In the SM model, this happens to the θ angle of the EW sector. The θ angle
of the QCD sector stays physical because the SM fermions are massive (obtain their mass
through the Higgs mechanism). The difference in behavior is explained by the nature of
these interactions: The SU(2)L × U(1)Y EW interaction is chiral, while the SU(3)c QCD
interaction is vector instead. Furthermore, we will see how the existence of fermions shifts
QCD’s vacuum angle.

In section 5.2.1, we discuss a semiclassical technique to describe the non-conservation
of fermionic quantum numbers such as B and L[33, ch.14, ch.15 §2][25]. Specifically, we
describe electrons using Dirac spinors and make extensive use of the Dirac sea picture of
energy levels of the Dirac Hamiltonian (to be interpreted semiclassically). The background
gauge fields are instead treated as classical external parameters unchanged by the presence of
the fermions, the technique therefore has its limitations[33, p.305]. Nonetheless, it predicts
the production of particles as CS-number changes: The levels flow as the background fields
changes, producing particles when a level crosses zero. The techniques reproduces the
anomaly’s effect and selection rules3.

It has recently been proposed by Tye and Wong that sphaleron transitions might ac-
tually have a resonance feature[37][36][31], which makes sphaleron transitions much more
likely to occur. If correct, sphaleron transition might be visible in future collider experi-
ments at energies much lower than conventional beliefs suggest. It might even make them
observable at the IceCube experiment[17]. At the moment, the implications of the reso-
nance feature for the thermal EW sphaleron processes used in explanations of the origin
the matter-antimatter asymmetry remain unexplored. To come up with their prediction,
Tye and Wong used an alternative but novel technique, which they, however, did not spend

1These selection rules agree with the conservation of all other charges, such as electric charge. This
must be so, otherwise there would have been anomalies in gauge symmetry in the SM. These turn a theory
inconsistent, only anomalies in global symmetries are allowed.

2This second rule is an accidental symmetry within the SM caused by the right hand sides of the
anomalies being the same.

3In this view, the anomaly is essentially a local version of the Atiyah-Singer index theorem[25].
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much time on discussing in their original paper[37]. Follow-up papers have since then ad-
dressed these concerns[36][31]. Based on these works, we discuss conceptually, in section
5.3, the premises regarding vacuum structure that lay behind their technique. We also give
a rudimentary overview of the phenomenology of sphaleron transitions in colliders, includ-
ing the accepted wisdom regarding the degree of suppression the process experiences which
Tye and Wong contradict.

5.1 SM Anomalies and Their Effect on the Vacuum Angles

In this section, we discuss SM anomalies further: We examine why they exist and we argue
what consequences they have for the vacuum angle of the EW and QCD sector. As we will
see, the angle of the EW sector disappears while the QCD angle sticks around.

We notice that a symmetry is anomalous exists when it fails to survive quantization.
We can tell by looking at the path integral measure: The path integral measure itself (hence
the partition function) is not invariant under the corresponding classical symmetry, even
though the Lagrangian is. This was first shown by Fujikawa[18], who considered the effect
of axial rotations on the path integral measure.

5.1.1 The Fujikawa Anomaly Derivation and the Vacuum Angle

Before talking about the SM, let us consider what Fujikawa’s results can tell us about
the vacuum angle of a simpler theory that has an anomaly. For the actual derivation
we refer to the original paper[18], we instead highlight the important consequences of the
non-invariance of the measure.

Let us, for instance, consider a QCD-like theory with a single massless quark, as dis-
cussed by Schwichtenberg[34]

L = −1

4
GaµνG

aµν + ψ̄γµ(i∂µ − gAµ)ψ, (5.3)

where Gaµν is the SU(3)c gauge field tensor, Aµ are its gauge fields, γµ are the Dirac matrices
and where ψ the quark’s Dirac spinor. Naively it appears, since this model is a Yang-Mills
theory with fermions, that its gauge sector must have a vacuum angle θ. As it turns out, is
does not.

Let us begin by noticing that this model has two global symmetries (one is vector and
one is axial),

U(1)V : ψ → eiφvψ and U(1)A : ψ → eiγ
5φaψ, (5.4)

given the “fifth” Dirac matrix γ5 = −iγ0γ1γ2γ3. Note that the U(1)A symmetry appears
because the quark is massless, mass terms (or a Yukawa interaction terms) would break the
axial symmetry explicitly. Of these two symmetries, U(1)A becomes anomalous. According
to Fujikawa, under such a U(1)A rotation the path integral measure transforms non-trivially,
producing a term that can be absorbed into the Lagrangian[18][34]:

L → L+
g2φa
16π2

GaµνG̃
aµν . Leff = L − g2θ

32π2
F aµνF̃

aµν (5.5)
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From this term the anomaly is derived by functional variation of the partition function[21].
Specifically, U(1)A’s anomalous current, Jµ5 = ψγµγ5ψ, satisfies

∂µJ
µ
5 =

g2

8π2
GaµνG̃

aµν . (5.6)

At the time, the existence of this anomaly was not a new result[2][6]. It had historically
first been computed using a triangle diagram. Even today, computing such a diagram is a
quick way of determining whether a current is anomalous. Conventionally, anomalies have
been labeled by the symmetries of the particles and currents appearing at the vertices. This
makes this model’s anomaly an SU(3)2

c U(1)A anomaly. As it turns out, these anomalies
are actually 1-loop exact4.

Not the anomaly itself, but the newly produced Fujikawa-term lets us say something
about the vacuum angle θ of this model’s gauge sector. The term looks remarkably similar
to the θ-term that appears in the Yang-Mills Lagrangian given a particular θ-sector, recall
equation 3.62. If U(1)A would have been a true symmetry of the system (which we know
it is not, since it is anomalous), then we could have concluded that the vacuum angle θ
has been turned unphysical by the fermions: Under, what would have been, a symmetry
transformation, θ → θ + 2φa according to equation 5.5. This means θ cannot have any
physical consequences, since we are free to perform symmetry transformations in any way
we like. In particular, we could choose φa = − θ

2 to set θ = 0, it is then said that θ “can be
rotated away by an axial transformation”. θ cannot not show up in a physical quantity.

Nontheless, θ is still unphysical in this theory for almost this exact reason. This is
because we can very easily use Jµ5 to construct a proper conserved current J̃µ5 , which must
correspond to some true U(1)A symmetry of the system, let us call it Ũ(1)A. In particular,
let it transform ψ → exp(iQ̃5φ)ψ using its charge Q̃5. Constructing such a new current dates
back to the original paper on the Yang-Mills vacuum structure by Jackiw and Rebbi[22] as
well as the paper by Callan, Dashen and Gross[9], both of which we have discussed before.
More in depth discussions about this construction can also be found in the book by Cheng
and Li[11, ch.16 §3] as well as other sources[36][34].

We construct J̃µ5 as the difference

J̃µ5 = Jµ5 −
g2

8π2
Kµ, (5.7)

where we use the fact that GaµνG̃
aµν can be written as the divergence of some current

depending on the gauge fields. We have done this before, recall equation 3.31. Let

1

4
GaµνG̃

aµν = ∂µK
µ, (5.8)

then J̃µ5 is actually the conserved current we were looking for, it is conserved on account on
equations 5.6 and 5.8. Therefore, we have implicitly found the true Ũ(1)A symmetry that
can rotate θ away. (Ũ(1)A transformations still produce Fujikawa terms in the partition
function.)

4They receive no further corrections from higher order diagrams.
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Note that this whole story was only possible because the Lagrangian had an axial
symmetry (that turned out to be anomalous) which we could “fix” and use to rotate θ
away. If the quark would have been massive, then this axial symmetry would have been
explicitly broken en de argument could not have proceeded: θ would have remained physical.

5.1.2 An Original Argument for the Vanishing of the Vacuum Angle

Rotating away θ in the partition function using Ũ(1)A is the more modern view on the
vanishing of vacuum angles. The original argument in the papers by Jackiw and Rebbi[22]
and Callan, Dashen and Gross[9] had a different form and used state vector notation. This
argument also occurs from time to time in literature[11, ch.16 §3][34], including the papers
by Tye et. al. on resonant sphaleron transitions[36][31]. We present it here, employing the
notation from section 3.3.4 to refer to quantities such as the Hamiltonian H, large gauge
transformations T and the θ-vacuum state |θ〉.

Let us begin by recalling that Kµ is not gauge invariant, which includes large gauge
transformations. This means that the current J̃µ5 and the charge Q̃5 are not gauge invariant
either, this a feature of these quantities. In particular, under a large gauge transformation T
(that has NCS = 1 and hence maps between CS-vacua for which ∆NCS = 1), Q̃5 transforms
as[11, p.491][9][22][36]

Q̃5 → T−1Q̃5T = Q̃5 + 2n ⇒ [Q̃5, T
n] = 2nTn. (5.9)

Additionally, note that the conservation of Q̃5 can be written as

[Q̃5, H] = 0. (5.10)

Equation 5.9 implies that under the symmetry transformation exp(iQ̃5φ) ∈ Ũ(1)A,
that the θ-vacuum of this model’s gauge sector satisfies

TeiQ̃5φ |θ〉 = eĩ(Q5+2)φ T |θ〉 = ei(θ+2φ)eiQ̃5φ |θ〉 . (5.11)

The equation shows that exp(iQ̃5φ) |θ〉 is an eigenstate of T with eigenvalue ei(θ+2φ), see
section 3.3.4. In addition, we know it is an eigenstate H on account of equation 5.10. The
transformed state is therefore another θ-vacuum, exp(iQ̃5φ) |θ〉 = |θ + 2φ〉. In other words,
Ũ(1)A transformations map between θ-sectors. Since exp(iQ̃5φ) is a global symmetry of
the theory, we must identify the initial and final state: |θ〉 = |θ + 2φ〉 for arbitrary φ. In
other words, all θ-vacua are physically equivalent and identified. In particular, they have
the same energy because of equation 5.10,

H |θ + 2φ〉 |θ〉 = eiQ̃5φH |θ〉 = Eθ |θ + 2φ〉 . (5.12)

We have “collapsed” the band structure (recall figure 3.4) of this theory’s gauge sector,
θ has turned unphysical. This agrees with the result from simply rotating θ away in the
Lagrangian.

Cheng and Li give a further argument to explain why θ has all of a sudden disap-
peared[11, p.491]: The instanton corrections to matrix elements of operators O, such as we
discussed in section 3.3.4 (O can itself have some chirality, say k), now satisfy

eiθ 〈n+ 1|O |n〉 ∼ δ(n+1)−n,k. (5.13)
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In particular,
〈n| e−iHt |m〉 ∼ δn,m. (5.14)

Tunneling between n-vacua has therefore ceased: There is no longer a θ-vacuum. Once
again this argument requires the fermions to be massless.

5.1.3 Anomalies, Vacuum Angles and the Strong CP Problem in the SM

The QCD-like theory with massless quark is an example of a scenario where an axial current
obtained an axial anomaly in the presence of a vector interaction. We can now turn our
attention to the SM, which, on the other hand, has no axial (or chiral) symmetries. The
SM only has the four aforementioned global vector symmetries U(1)B/Ll that classically
correspond to the conservation of baryon number B and three lepton numbers Ll (l =
e, µ, τ). Their currents, as we have seen, are anomalous, equation 5.1.

Notice that only the gauge fields of the SM’s chiral interaction, the EW sector, appears
in the anomaly. There is no contribution from the vector QCD-sector. As we alluded to
in the introduction, the chiral and vector nature of these interaction are responsible: The
measure pays attention to each interaction’s character when producing Fujikawa terms.
Let us discuss the vector rotation U(1)B/L/B+L as made out of a left and right handed
component, U(1)V ∼ U(1)L+R. Then the Fujikawa term for the EW sector comes from
the U(1)L component alone. For the QCD sector, the measure produces both an U(1)L
and U(1)R term that cancel out with each other[25]. In any case, we can construct some
conserved J̃µB (or instead J̃µL or some combination J̃µB+L) that we can use to rotate the EW
vacuum angle away.

The Strong CP Problem

In the SM, the quarks have the Cabibbo-Kobayashi-Maskawa (CKM) mass matrix M that
introduces some CP violation into the SM through the QCD sector. This matrix is one
that we would like to real and diagonal when we work with it. In general, this requires us
to perform an axial rotation on our system (the partition function) nonetheless[34]. As a
consequence, the vacuum angle is shifted w.r.t. its innate value by the generated Fujikawa-
term.

θ → θ̄ ≡ θ + Argdet(M), (5.15)

where Argdet(M) is the argument of the complex phase which is the determinant of the
unitary CKM matrix. (This is also visible in the simple one quark model discussed above:
introducing a mass term mψ̄ψ and performing a chiral transformation, which is no longer
a symmetry, transforms this term into eiφmψ̄ψ.)

According to experiment[21] θ̄ � 10−10, which is exceptionally small for a variable
that is, at least in the SM, completely unconstrained: There is almost (or possibly exact)
cancellation of the vacuum angle and the mass matrix phase angle. Since CP violation is
generated by the θ̄-term, the experimental size of θ̄ presents a puzzle, the so-called strong
CP problem: Why is CP violated so weakly in QCD5? In principle, we have already seen
a solution, if a single quark in the SM is massless, for instance the u-quark, then the SM

5Having massive fermions and thus a vacuum angle θ, including its term in the Lagrangian, does not
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obtains a new axial symmetry. The current will then be anomalous and the QCD vacuum
angle can then be rotated out. This solution, however, appears to be ruled out on theoretical
grounds[21]. Other explanations are considered, such as the Peccei-Quinn mechanism where
θ is taken so be field whose particles are termed axions[16].

5.2 Spectral Flow and Non-conservation of Fermion Number

Dirac Sea

ω
Figure 5.1

In this section we discuss a specific semiclassical technique that can pre-
dict phenomena of fermions in external (topological) bosonic fields (such
as gauge fields). One such phenomenon is charge fractionalization: Field
states occur with a fractional electric charge when fermions are placed in a
(anti-) kink soliton background, this has been observed in condensed matter
systems[33, ch.15 §1].

Specifically, we present and summarize, based on chapter 14 and 15
from the book by Rubakov[33], the way in which this technique is used to
discuss the non-conservation of fermionic quantum numbers and its connec-
tion with CS-number changes. We keep this discussion largely conceptual,
highlighting the key points and leaving the computational details to the
book itself. The most important prediction of the technique is that it re-
produces the anomaly’s consequences such as the selection rules from a
different point of view. An analogous technique in Euclidean spacetime was
used by ’t Hooft in his famous work on the production of fermions in instan-
ton backgrounds[1], which was later shown to be equivalent to the technique
as we apply it here[33, p.336].

As it turns out, the interaction of fermions with bosonic fields (not nec-
essarily gauge fields) can in many cases be probed by treating the fermions
as a classical Dirac spinors in a classical bosonic field configuration chosen
independently as an external parameter. As we will see, the flow of eigen-
values of the classical Dirac Hamiltonian can tell us about the fermions
states. In reality, the presence of fermions changes the background field ever so slightly.
For this technique to work, it is therefore required that this effect is negligible. According
to Rubakov this happens in quite a few circumstances. In his example of charge fractional-
ization, the fermion mass (or Higgs VEV) needs to be much smaller than the energy of the
background field configuration[33, p.331].

5.2.1 The Dirac Equation, its Energy Levels and the Dirac Sea

Before looking at the spectral flow of the Hamiltonian, let us briefly summarize what the
classical spectrum of the Dirac Hamiltonian looks like in absence of bosonic background
fields. Then we can discuss the adequacy of this picture and motivate its use in the semi-
classical technique when applied to particle physics.

immediately imply that QCD violates CP. For that we need instantons to exist as well, which do exist in this
model since fermions do not change anything about the classical Euclidean action of Yang-Mills component.

68



SPHALERONS AND THE VACUUM STRUCTURE OF GAUGE THEORIES CHAPTER 5

The Dirac equation is the e.o.m. of Dirac spinors ψ(x) and can be written in an explicitly
Lorentz invariant way as well as one that resembles the Schödinger equation (~ = 1):

(iγµ∂µ −m)ψ = 0 or i∂0ψ =
(
−iαi∂i +mβ

)
ψ ≡ Hψ, (5.16)

where H is called the Dirac Hamiltonian and αi ≡ γ0γi and β = γ0. The Dirac “gamma”
matrices γµ form a Clifford algebra {γµ, γν} = 2ηµν . The representation depends on the
dimensionality of spacetime.

The equation was once used by Dirac in an attempt to formulate a relativistic version
of quantum mechanics for a single particle predating quantum field theory, the spinor was
then interpreted as a wave function.

In (3+1)-dimensional spacetime, the solution of the Dirac equation are plane waves of
the form[33, ch.14 §2]

ψ~p(x) = eiωx
0+i~p·~x u~p, given that ω2 − |~p|2 = m2, (5.17)

where τ i are the Pauli matrices and the constant spinor u~p = (u~p,L, u~p,R) has interdependent
components. If we choose u~p,L free, u~p,L ≡ uL, then

u~p,R =
τ ipi + ω

m
uL, (5.18)

For the plane wave, the eigenvalues of the H are simply the frequencies ω. ~p is the
conversed momentum of the wave, extracted from the solution using the operator Pi = −i∂i:
Piψ~p = piψ~p.

We can ascribe to these waves a conserved angular momentum ~L that contains a clas-
sical equivalent of spin ~s. Their operators are

Li = −εijkxj∂k + si, where si =

(
1
2τ

i

1
2τ

i

)
. (5.19)

The spin portion of the operator can be used to characterize the wave, since for each ω and
~p there are two independent solutions. They either have their spin aligned in or against the
direction of motion, i.e. the helicity of the solution. u~p = u±, where

sipi

|~p| u± = ±1

2
u±. (5.20)

The spectrum of H will be continuous unless we put the system in a box, let us
therefore impose boundary condition ψ

(
xi = −L

2

)
= ψ

(
xi = L

2

)
for all spatial coordinates

of the theory. Only a discrete number momenta and energies remain,

~p = ~p~n =
2π

L
~n with ω = ω~n =

√
|~p~n|2 +m2, (5.21)

given some lattice vector ~n whose components are integers. The spectrum is given as the
red lines in figure 5.1.
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The Dirac Sea Picture and its Relevance to QFT

If the Dirac equation would have been the relativistic Schödinger equation and ψ the single
particle wave function, then its spectrum would have been unbounded from below: There
is no (lowest energy) ground state. Dirac found a solution in the many particle version
of the problem (with spinors ψ(x1, x2, · · · )): The state with all countably infinite number
of negative energy states filled up by a fermion can be treated as the vacuum instead, see
figure 5.1 (the black dots denote the occupied levels). Such a vacuum works for fermions
because of Pauli’s exclusion principle: There is no way for the fermions to start jumping
down as there can only be one fermion per level. This is referred to as the Dirac sea picture
of relativistic quantum mechanics. In this picture, the absence of a particle in a negative
energy state (a “hole” in the Dirac sea) is interpreted as a positron.

Since the true relativistic theory of fermions is QFT, in which one quantizes the field
(not wave function6) ψ, one might wonder whether the classical spectrum of H is in any
way interesting7 and whether a Dirac sea picture is even possible. Moreover, one might
wonder whether the Dirac sea interpretation with its holes is adequate for particle physics
as opposed to solid state physics8. As it turns out, a Dirac sea like picture is available for
QFT.

In regular QFT (in a box), the field operator ψ and its Hermitian conjugate ψ† are
schematically

ψ(~x) =
∑
~p

bω,~p e
i~p·~x + c†ω,~pe

−i~p·~x and ψ†(~x) =
∑
~p

b†ω,~p e
−i~p·~x + cω,~pe

i~p·~x. (5.22)

Here, b†ω,~p and c†ω,~p create particles and antiparticles of momentum ~p respectively, while bω,~p
and cω,~p annihilation them.

To turn this algebra into one that mimics the Dirac sea story, we perform a so-called
Bogoliubov transformation on c†ω,~p and cω,~p of the antiparticles. Specifically, we replace
c†ω,~p → b−ω,~p, cω,~p → d†−ω,~p. In other words, we re-interpret the annihilation of an anti-
particle with the creation of a negative energy particle. This mapping preserves the expected
algebra when we transform the vacuum with it: For instance, annihilation of the vacuum
cω,~p |0〉 = b†−ω,~p |0〉

′ = 0 when |0〉′ = Πω<0,~p d
†
ω,~p |0〉, which reflects the idea that the Dirac

vacuum is already filled with negative energy fermions. Rubakov claims that studying
these classical eigenvalues works and is in agreement with the QFT[33, p.305].

5.2.2 The Concept of Spectral Flow

If we introduce a bosonic field background as external parameter to these fermions and we
start to change these new fields, then the levels can start to shift. Because the change of these
levels is continuous, as long as we move them along some contractible closed path, the levels
match back up with themselves. If there are instead NCLs of bosonic field configurations,

6This is where the historical term “second quantization” came form.
7At the very least, the relativistic corrections to the momentum of the particle can be used to compute

radiative corrections to the Hydrogen atom.
8The valence band of a solid can be regarded as a Dirac sea, holes in that band occur readily.
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such as the path on which a sphaleron resides9, then there is the possibility that the levels
mismatch. Such a loop (in whatever quantum picture of the gauge field vacuum one prefers)
is associated with a change in CS-number. Such a mismatch of the initial and final levels
means there must have been some spectral flow (the crossing of levels through ω = 0) at
some point along the loop of fields. (This point is the sphaleron in theories where they
exist.) The corresponding eigenspinors of zero energy at those points are called zero modes.

The mismatch of levels translates to mismatches of fermionic quantum number between
this initial and final states. The quantum numbers can be fermion numbers (such as baryon
and lepton number) or, for instance, the difference between the number of left and right
handed particles. For example, in the case a fermion number is violated, this would mean
that the level corresponding to the classical solution with zero particles (associated in QFT
with |0〉) connects to a state that has one particle more (associated with a state b† |0〉).
Most importantly, the mismatching of the fermionic quantum numbers is equivalent to the
existence of an anomaly in the corresponding current of the charge. The technique therefore
reproduces the anomaly’s effect such as the explicit form of the selection rules.

Spectral Flow in a Simple Model

To illustrate his point, Rubakov considers a (1+1)-dimensional theory of a free massless
fermion that obtains a vector interaction with a U(1) gauge field. In particular[33, p.298],
γ0 = τ1, γ1 = iτ2 and γ5 = −γ0γ

1 = τ3. Let us summarize his results[33, ch.15 §2].
There will not be any particle creation in this model, instead we will see an axial symmetry
become anomalous.

In the absence of the gauge fields, the theory is exactly the one we discussed above10.
Because the theory is massless, the Dirac equation separates for the top χ and bottom η
spinors of ψ = (χ, η)[33, p.336].

(i∂0 − i∂1)χ = 0 (5.23)

(i∂0 + i∂1)η = 0, (5.24)

which are both solved by any traveling wave χ = χ(x1 +x0) and η = η(x0−x1). The model
has both a vector U(1)V : ψ → eiφvψ and axial symmetry U(1)A : ψ → eiγ

5φaψ symmetry,
or equivalently two chiral symmetries U(1)L : (χ, η) → (eiφLχ, η) and U(1)R : (χ, η) →
(χ, eiφRη). This means a conservation of both the left handed and right handed current
JµL, J

µ
R and charges NL, NR individually.

JµL = ψ̄
1 + γ5

2
ψ and JµR = ψ̄

1− γ5

2
ψ (5.25)

Let us introduce the gauge fields Aµ(x0, x1) such that x0 is treated simply as an external
parameter (and not a variable under which Aµ is dynamic). Then the spectral flow itself is

9Alternatively, take an instanton in Euclidean spacetime with its imaginary time taking the role of the
loop parameter. This requires a modified technique, the one we referred to famously used by t’Hooft[1]. It
can also be found in the book by Rubakov[33, ch.17].

10Except for the absence of the mass gap.
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found by solving the eigenvalue equation[33, p.341]

HD(x0)ψω(x0)(x
1) = ω(x0)ψω(x0)(x

1), (5.26)

where we must use the instantaneous Dirac Hamiltonian

HD(x0) = −iα(∂1 − igA1(x0, x1)). (5.27)

The eigenvalue equation can be solved in terms of pure left handed ψω(x0),L = (χω(x0), 0)
and righthanded ψω(x0),R = (0, ηω(x0)) eigenspinors, the resulting spectrum turns out to
be[33, p.343]

ωn(x0) =
2πn

L
+
g

L

∫ L
2

−L
2

A1(x0, x1)dx1, (5.28)

ωn(x0) =
2πn

L
− g

L

∫ L
2

−L
2

A1(x0, x1)dx1, (5.29)

for both types of spinors respectively. The gauge fields of this model match those of the
(1+1)-dimensional Abelian Higgs model, except that they are constrained to live between
±L

2 . In particular, they still have the same CS-vacua, recall figure 4.3 (and imagine ±∞→
±L

2 and ignoring the Higgs part). The gauge terms in the above expressions count the
change in the CS-number of the gauge fields, see equation 4.9. If we make the gauge fields
transition between the vacua with NCS = 0, 1 as x0 goes from −∞ to ∞, then the spectral
flow occurs as in figure 5.2. One level crosses ω = 0 for either handedness.

Figure 5.2: Spectral flow of the instantaneous Dirac Hamiltonian HD for the left
and right handed eigenspinors ψωn,L/R(x1) as a function of x0.

This is not the whole story yet, the movement of the levels in independent from the
actual field evolution. The eigenspinors simply form a x0-dependent basis for the configu-
ration

ψ(x0, x1) =
∑
n

An(x0)ψωn(x1),L + Bn(x0)ψωn(x1),R. (5.30)
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The evolution of the field ψ(x0, x1) itself (in other words the coefficients) is given by the
new Dirac equations

(i(∂0 − igA0)− i(∂1 − igA1))χ = 0 and (5.31)

(i(∂0 − igA0) + i(∂1 − igA1))η = 0. (5.32)

The levels themselves might move, but a configuration starting out in some level might not
follow along (the coefficients might not stay constant) as the gauge fields change. Rubakov
demonstrated that the field does follow along[33, p.341] when Aµ changes adiabatically. If
the field starts out (at x0 = −∞) as some particular eigenspinor ψωM (x0) the configuration
stays proportional to ψωM (x0) as x0 changes:

ψ(x0, x1) ∼ exp

(
−i
∫ x0

∞
dt ωn(t)

)
ψωM (x0). (5.33)

Thus for any physical change in the gauge fields that causes in the CS-number to change
slowly, the selection rule for the physical change in the quantum numbers (classical charges
of the field ψ(x0, x1)) is

∆NL = −∆NR = ∆NCS . (5.34)

Further Remarks

� In this problem, the right handed levels all crossed zero from below. In more compli-
cated scenarios, some levels might also cross down from above. ∆NR would then have
been their difference. Such a difference of crossing eigenvalues of a differential opera-
tor like HD is called the analytic index of the operator. The change in x0 is indirectly
a change in the CS-number of the fields, known as a topological index of the gauge
fields. That these two quantities are equal (the selection rule) is a consequence of the
so-called Atiyah-Singer index theorem. That this can be proved by direct substitution
is a property of two dimensional models[33, p.345].

� The anomalies for this model in its regular form are[33, p.345]

∂µJ
µ
L =

e

4π
εµνF

µν and ∂µJ
µ
R = − e

4π
εµνF

µν , (5.35)

which upon integration of a particular background Aµ(x0, x1) reproduce this selec-
tion rule. Thus the non-conservation of fermionic quantum number presented here is
equivalent to the one the anomaly predicts.

� In the non-adiabatic scenario, the movement of the levels is still the same, but jumping
from ωM to a limited number of other levels has become allowed[33, p.343]. Jumping
from left handed to right handed states is still prevented as well as evolution from
negative energy to positive energy states and vice versa. After the transition, there
can only be an additional number of positive energy levels filled together with an
equal amount of holes in the states with energies below zero. In other words, the
left handed and right handed spinors are still related: The “electric” charge of the
particles is conserved, ∆(NL +NR) = 0, otherwise the theory would be inconsistent.
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� The model we have discussed has been very similar to the (1+1)-dimensional Abelian
Higgs model we considered in chapter 4, except for the absence of the Higgs field
(and a Yukawa term that should be added if there were fermions). This model has
precisely the same spectral flow, which occurs on the sphaleron. Moreover, by making
the interaction chiral instead of vector, the lepton current itself becomes anomalous11.
This model mimics the EW sector of the SM accurately. There, a single level crosses
from below for each quark and lepton as we traverse over the sphaleron. Thus a
particle from each kind is produced in a sphaleron process. This reproduces the
anomalies and selection rules from the start of the chapter[25].

� Anomalies in global U(1) are an example of an abelian anomaly. These are generally
related to the Atiyah-Singer index theorem and sphalerons as discussed above. On
the other hand, non-abelian anomalies are not, though they are analyzed in terms of
spectral flow (See the article on the SU(3) sphaleron[24], Klinkhamer’s and Rupp’s
Review Sphalerons, Spectral Flow and anomalies). According to these sources, not
being able to globally impose Gauss’s law (recall section 3.3.3) plays an important
role.

5.3 Resonant Instanton/Sphaleron Transitions in the SM

In this section, we will discuss the possibility of a “resonance” feature that ∆(B+L) violating
processes in the EW sector of the SM might have in collider experiments (mediated by
instantons or sphalerons depending on the center of mass energy). The “resonance” refers to
the concept of resonant tunneling, which is a phenomenon in QM, but whose QFT analogue
is thought to similarly exist. Having such a feature supposedly enlarges the cross section of
such transitions considerably. Knowing more about these cross sections in the laboratory
might also give us more insight into sphalerons transitions that might have occurred in the
early universe. The idea was put forth by originally Tye and Wong[37], since then their
view has been clarified and their calculations improved[36][31]. In addition, their views have
also been scrutinized[3]. In the context of this thesis we highlight the conceptual details of
the procedure and their relation with the quantum theoretic vacuum structure of the SM.
For the particulars of the computations themselves we refer to these papers as well as other
sources[21].

5.3.1 Tye and Wong’s Disagreement with the Conventional View

Consider the |∆NCS| = 1 reaction12 that can occur during a proton-proton collision

q + q → 3l̄ + 7q̄ +X, such as u+ u→ e+µ+τ+ b̄b̄b̄ c̄c̄c̄ ū+X (5.36)

with a quark-quark center of mass energy Eqq. From the discussions in the previous section,
one might think that a sphaleron process produces one of each electrically charged SM

11Since the particles carry a charge because of the interaction, a second fermion with the opposite charge
should be added to make the theory consistent.

12X are any other (in)directly produced particles that conserve electric charge.
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fermion as a single energy level crosses zero for each species. This is only true for the SM
leptons (recall equation 5.2) and not the quarks (because of the CKM matrix mixing, we
only know ∆B = 1).

In literature[36], it is accepted that no matter the size of Eqq w.r.t. the laboratory
(zero temperature) value of the sphaleron energy Esph. ∼ 9 TeV, that such processes are
exponentially suppressed. Specifically, the (B+L)-violating fraction of all EW reactions (a
ratio of cross sections)

κ(Eqq) =
σ(Eqq, |∆NCS| 6= 0)

σ(Eqq, |∆NCS| 6= 0) + σ(Eqq, |∆NCS| = 0)
(5.37)

is thought to be dominated by the |∆NCS| = 1 transitions,

κ(Eqq) ≈
σ(Eqq, |∆NCS| = 1)

σ(Eqq, |∆NCS| = 0)
. (5.38)

The value turns out to be
κ(Eqq > Esph.) < 10−70. (5.39)

Furthermore
κ ∼ e−

4π
αw → κ ∼ e−

2π
αw (5.40)

as Eqq ≈ 0 � Esph. grows to Eqq � Esph.. Note that αw = g2

4π ≈ 1
30 , where g is the EW

coupling constant.
There are two exponential suppressions at play that limit the reaction[36]. Firstly, tun-

neling through instantons dominates the transition at Eqq ≈ 0� Esph., however the small-
ness of the EW coupling constant g prevents the reaction (see the left hand side of equation
5.40) from taking place: g ≈ 0.0645, such that tunneling Γ ∼ exp

(
−(16π2)/(g2)

)
∼ 10−160.

Thus instanton-mediated B+L violation turns out to be exponentially suppressed. Rather
than tunnel, the fields must thus actually traverse the barriers between the CS-vacua. The
∼ 9 TeV EW sphaleron therefore sets a lower limit on the energy threshold at which these
predicted processes could start to become observable in experiments. Secondly however, a
suppression exists at Eqq > Esph. as the process must first create a sphaleron background for
the reaction to take place in13, leading to a suppression that remains at high energies (the
right hand side of equation 5.40). This renders observations of such processes supposedly
impossible with current generation colliders[36].

Tye and Wong contradict these established views. In their first paper[37], they applied
a novel technique to probe the suppression of these processes when the transitions are
resonant. Firstly, they show that their technique produces the correct tunneling suppression
as Eqq → 0 (equation 5.40). Secondly, they conclude that sphaleron transitions at Eqq >
Esph. are, in contrast to the conventional belief, unsuppressed. In their original paper they
deduced

κ(Eqq > Esph.) ∼
1

3
10−2, (5.41)

13This is different for thermal EW sphaleron transitions in the early universe, those reactions are not
expected to be suppressed above Esph. in the first place[32].
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which is a discrepancy of more or less 67 orders of magnitude with equation 5.39 at those
energies.

In their second paper[36], they discuss the significance of what they call multisphalerons:
transitions for which |∆NCS| > 1. They claim these are crucial to their observed estimate
of κ. In the conventional literature these are neglected (recall equation 5.37), because they
are supposedly multiply suppressed. However, according to Tye and Wong, the resonance
feature prevents this. For instance, they show that a double sphaleron is only single sup-
pressed14. Furthermore, the paper discusses the premises of their technique. A further
analysis on that topic was done by Tye and Qiu[31].

Let us explain their results by discussing their novel technique. Since it relies on the
existence of resonant tunneling in QFT, we therefore begin by discussing the conceptual
details of resonant tunneling in QM first.

5.3.2 Resonant Tunneling in Quantum Mechanics

To explain resonant tunneling in quantum mechanics, let us use the simple one dimensional
example by Tye and Wong[36]: Consider the scenario portrayed in figure 5.3, where an
electron wave packet initially in region A is send to impinge on a double barrier.

Chances are that the predominant picture of the tunneling is as follows: Part of the
wave function transmits the first barrier and part of it reflects back, then the same thing
happens for the second barrier for the part that went through the first. In section 3.1.1, we
saw how to calculate the transmission amplitude T (A→ B,E) and T (B → C,E) for each
of these barriers individually, which are the same function of E given that the barriers are
the same T (A → B,E) = T (B → C,E) ≡ T . We computed these amplitudes by calculat-
ing an approximate wave function in the classically forbidden regions, by approximation,
those decay exponentially inside the barriers. The square of the ratio of the wave function
amplitudes on either end of the barrier then give the transmission probability |T |2. If the
tunneling rate Γ(A → B) = Γ(B → C) ≡ Γ = |T |−2 ∼ e−S for one barrier (where we
compare the rate with one computed from an instanton calculation with Euclidean action
S), then Γtot. = Γ2 = e−2S is a good estimate for the total tunneling rate for the double
barrier, at least according to our story. However, not all tunneling events proceed this way.

A double barrier such as this gives rise to resonant tunneling. This means that there
are certain plane wave wave functions of specific energies E′ for which Γtot. = Γ2 is a poor
estimate for the total tunneling rate. These special plane waves go through the double
barrier almost as if it was not there. If a plane wave component with energy E′ is the
dominant part of our initial wave packet, than it would large tunnel through as such. The
reason for the resonance effect is that the wave function crosses the barrier and transitions
into an approximate bound state for the intermittent region B[36]. To see that Γtot. = e−2S

is a poor estimate, realize that unperturbed movement through the barriers means that

14They phenomenologically support their idea by counting powers of g in a double ’t Hooft vertex diagram
describing a |∆NCS| = 2 transition[36]. It shows inner cancellation of powers of g, which they argue to be a
consequence of the resonance feature and leads to the single overall suppression of the whole diagram.
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x
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Figure 5.3: Wave packet electron impinging on a double barrier from region A.
Resonant tunneling into region C occurs when the particle can transition onto an
approximate bound state of region B.

transition times add up: t(A→ C) = t(A→ B) + t(B → C). Hence[36],

Γ(A→ C) =
1

t(A→ C)
=

Γ(A→ B)Γ(B → C)

Γ(A→ B) + Γ(B → C)
∼ e−S , (5.42)

which is only approximately singly suppressed.
In the case that the number of barriers increases arbitrarily, the approximate bound

states become Bloch waves, such as the periodic potentials we discussed in section 3.3.4.
This means that a plane wave that matches in frequency will tunnel through resonantly.
This will be important for the field theory problem we will discuss right now.

5.3.3 The Conceptual Premises behind the Reduction to a QM Problem

The technique that Tye and Wong apply has its roots in the works by Banks, Bender and
Wu[4]. They attempted to formulate a version of the WKB procedure that would work for
systems with more than one quantized degree of freedom ψ(xn).

The WKB procedure then obtains an additional step: One must first compute the most
probable escape path (MPEP), which is the specific curve xn(µ) (given some parameter
µ ∈ [0, 1]) that begins and ends at the points between which the tunneling should take
place. Specifically, the curve is found by minizing an expression such as equation 3.3. One
then substitutes this path into the classical Lagrangian L(xn, ẋn) and chain-rules all of the
dynamics onto µ alone[37], ẋn(µ) = ∂xn

∂µ µ̇. One then obtains some dynamical system for µ

L(µ, µ̇) =
m(µ)

2
µ̇2 − V (µ), (5.43)

where both the “mass” as well as the potential can be µ dependent. After quantizing this
reduced theory, (

− 1

2m

∂2

∂µ2
+ V (µ)

)
ψ(µ) = Eψ(µ), (5.44)
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(which required computing the Hamiltonian and promoting µ and its momentum to non-
commuting operators), one can apply the regular WKB procedure, that is writing down the
approximate solutions for the wave function ψ(µ).

This technique extends well into field theory, which under certain circumstances can
be seen or approximated as infinite-dimensional quantum mechanics15. For example, the
technique by Banks, Bender and Wu was used by Coleman in his famous paper Fate of
the false vacuum: Semiclassical theory [13]. It has been shown that this WKB result agrees
with the tunneling amplitudes computed using instantons[8][38]. The reduced dynamical
system in the case of field theory is found by integrating out the spatial coordinates of the
fields, rather then simply plugging the coordinates into the Lagrangian:

L(µ, µ̇) =

∫
d3xL(φ(x;µ), ∂µφ(x;µ)), (5.45)

one then still obtains a reduced Lagrangian of the same form.
In the Schödinger functional formalism, one could think of ψ(µ) as a cross section of

the whole wave functional Ψ[φ] (all field modes integrated out except the mode along µ),
that supposedly captures the relevant physics (such as the resonance feature) of the tunnel-
ing process. This approximation is only valid when the wave functional is approximately
separable for this mode. Interactions with the other neglected modes can effect the time
scale τ over which the approximate bound states in region B are metastable. Their effect
can effectively be taken into account as a form of decay[36]. Such as by introducing a
non-unitary decay term into the Hamiltonian, effecting τ . The resonant tunneling becomes
unnoticeable when t(A → C) > τ , so making sure that the neglected modes are irrelevant
is crucial.

Tye and Wong’s Approach

Ultimately, Tye and Wong want to use this WKB procedure to compute κ. They want
to describe the scattering of the colliding particles as scattering of the wave functional of
the SM fields in the EW sector in the potential along the (B + L)-violating modes[36].
According to them, a modified version of Manton’s path[37] through the sphaleron (as well
as another path for comparison) is an approximate ansatz for the MPEPs of this process.
Since µ is directly related to the CS-number, recall equation 4.87, it has effectively become
the relevant dynamical variable. They successfully integrate out the fields along the Manton
loop in the Lagrangian and obtain[36]

L(µ, µ̇) =
m(µ)

2
µ̇2 − V (µ) (5.46)

m(µ) = 44 TeV/g3v2 (5.47)

V (µ) = 4 TeV(sin2 µ+ 0.46 sin4 µ)/g. (5.48)

15The easiest example is a free massive scalar field φ described by the Klein-Gordon equation. Its field
modes are all independent, one can therefore write down a wave functional for Ψ(φ) in terms of the amplitudes
of each of the field modes αn: Ψ(φ) = ψ(αn).
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They also compute a similar system for another supposed MPEP, to compare and contrast
with the Manton path. If the results differ by a lot, chances are the one (but probably both)
of the paths are in no way close to MPEPs, invalidating their computation. They were in
agreement however (see below).

The important property is the translational EW CS-symmetry of the potential not
being gauge, but global[36]: In a CS-number change in the EW sector quarks and leptons
are produced, thus the fermion numbers can be used to label each minimum (making them
physically distinct). The potential is thus periodic. This is essentially how, according to Tye
and Wong, the EW and QCD vacuum structures differ and why QCD retains its vacuum
angle θ. The closest mode in QCD conceptually to a B + L violating direction is simply
the vacuum-to-vacuum path along which instantons tunnel and no particles are produced.
However Manton’s view of Yang-Mills and QCD reveals (the pendulum view, which Tye
and Wong use) that the apparent periodic symmetry of CS-vacua is gauge: There is no
resonant tunneling between |n〉 vacua in Yang-Mills or QCD in the same way as there is no
resonant tunneling in the quantum mechanical pendulum. Disagreement on the nature of
this symmetry has been a point of contention with the view[3]. Later works have even taken
the slight a periodicity due to the fermion masses into account[31] making the periodic EW
CS-symmetry only approximate.

Assuming that their view of the EW sector is correct, the periodicity of the resulting
quantum system has Bloch waves as solutions with an energy band spectrum such as we
discussed in section 3.3.4. Such a Bloch wave analysis is thus impossible for QCD. In their
paper, Tye and Wong compute this spectrum numerically[37]. If an initial wave packet
of ψ(µ) describing field state before the scattering of particles, then it is located at one
of the minima of the potential. Resonant tunneling of an instanton / sphaleron process
occurs when the plane waves component in in ψ(µ) fall within a energy band of the periodic
potential.

To demonstrate some prediction of the theory, consider quark-quark scattering at small
energies Eqq � Esph.. An important property of the spectrum is that the lowest lying
bands are really thin and are spaced far apart. According to Tye and Wong, the initial
wave function ψ(µ) obtains its energy spread from the parton distributions of the quarks
of the colliding protons[37][36]. At these small energies, they argue that the spread of Eqq
contained within ψ(µ) is much larger than any particular resonant tunneling band. The
rate κ can therefore be estimated as the relative overlap[37][36]

κ ∼ total band width overlap

total band gap overlap + total band width overlap
≡ e

4π
αW

C
, (5.49)

which they compute numerically. For ease of comparing, they define these estimates equal
to a typical tunneling term with free parameter C (which in theory should be 1 for tunneling
at Eqq = 0 in a pure Yang-Mills theory, recall the left hand side of equation 5.37). As it
turns out, C ≈ 1.1 for the Manton path[37][36] and about 1.35 for the alternative path.
Hence, the Bloch wave analysis reproduces the expected tunneling rates (the discrepancy
exists because the EW sector is not a pure Yang-Mills theory.).

Furthermore, the bands grow in size exponentially as Eqq → Esph.. From this they
predict that the (B+L)-violating transitions are completely unsupressed above Esph., which
is the main result of their paper.
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Chapter 6

Discussion and Conclusion

Let us start this chapter by discussing and summarizing the results of each of the core
chapters 2-5.

Chapter 2

In chapter 2 we began our investigations of classical field configurations of interest for
QFT by studying the soliton. They are non-trivial field configurations that are static and
stable (i.e. not the vacua), which means they are the minima of a theory’s potential energy
functional V . A soliton can be considered regular or topological, which refers to the origin
of its stability.

Regular solitons exist because dissipative and amplifying effects balance out in a region
of CV , the space of finite V field configurations. In that region there is a local minimum of
V , a regular soliton. If perturbed hard enough, such that the fields leave this region, the
soliton can still be made to decay. The stability of a topological soliton, on the other hand,
is absolute.

Topological solitons exist because there is no path through CV that connects them
to a vacuum: Any attempt at deforming a topological soliton into a vacuum is met with
V blowing up. Thus the topological soliton configurations are separated from the vacua
by infinite potential energy barriers, so under time evolution they cannot decay. In the
chapter we discussed two topological solitons: the (anti-) kink soliton in φ4-theory and the
monopole solitons in the SO(3) Georgi-Glashow model.

In general, CV consisting of disconnected components (i.e. the fundamental homo-
topy group Π0(CV ) is non-trivial) hints at the existence of topological solitons. This hap-
pens because CV inherits its topology from the requirements put on the fields needed for
V to converge. If V contains a potential term

∫
ddxV(φ(x)), then this term forces the

fields to approach one of V’s zeros at the d-dimensional boundary of space1 ∂Rd. Thus
CV ∼= Maps(∂Rd → kerV). If the number of such mappings is discrete (such as in the φ4-
theory) or when these mappings fall into homotopy classes (such as in the SO(3) Georgi-

1∂Rd is the space of the coordinates that remains once the limit |~x| → ∞ is taken. For instance in R2,
∂R2 is the circle S1 of points at “infinity”, which characterizes the ways one can walk away from the origin.

80



SPHALERONS AND THE VACUUM STRUCTURE OF GAUGE THEORIES CHAPTER 6

Glashow model), then CV gets similarly split up. The sectors of CV can be labeled by
topological charges associated with the discrete mappings or homotopy classes (generally
winding numbers). In the case of SSB from the gauge group G to some subgroup H,
such as in the SO(3) Georgi-Glashow model, the relation kerV ∼= G/H can be used to
deduce Π0(CV ). In that model Π0(CV ) ∼= Z, which hints at the possibility of there being a
countably infinite number of topological solitons.

Π0(CV ) 6= 1 is a necessary but insufficient condition to prove the existence of solitons.
V only obtains a true minimum (i.e. soliton) on each disconnected sector of CV when the
functional is positive definite (which is generally the case) and when these minima cannot be
shown to disappear under scaling arguments such as those used to prove Derrick’s theorem.

Chapter 3

In chapter 3 we discussed instantons and examined the classical and quantum picture of the
gauge field vacuum. Instantons are essentially the topological solitons of the Euclidean ac-
tion SE , which live in the space of finite SE configurations CSE of various field theories. Like
solitons, they exist because Π0(CSE ) is non-trivial. Classically, they appear as trajectories
/ events in Euclidean time that connects classical vacua together. They are relevant in QM
and QFT because their SE determines the corresponding tunneling amplitudes between the
associated vacuum / ground states.

In particular, we discussed instantons and vacuum structure of the pure SU(2) Yang-
Mills theory in (3+1)-dimensions. The model has a countably infinite number of instantons,
as Π0(CSE ) = Π0(Maps(∂R4 → SU(2))) = Π0(Maps(S3 → S3)) = Z, labeled by the corre-
sponding topological charge Q of which the Q = 1 solution is the famous BPST-instanton.
The supplemented temporal gauge, A0 = 0 with an additional boundary constraint, gives
the instantons their desired vacuum-to-vacuum event structure, the theory has a countably
infinite number of topologically distinct homotopy classes of CS-vacua labled by the CS-
number NCS. They are separated by large gauge transformations and the instantons tunnel
between them. Specifically, the instanton with charge Q interpolates between vacua such
that ∆NCS = Q.

We subsequently discussed what quantum picture this tunneling corresponds to. We
saw that there are two different views. In the original works by Jackiw and Rebbi[22] and
Callan, Dashen and Gross[9], large gauge transformations are treated as global symmetries,
since they are not gauge symmetries according to A0 = 0 Hamiltonian field theory, only
small ones are. Upon canonical quantization, each homotopy class of classical CS-vacua,
whose vacua are mutually connected by small gauge transformations, then gets their own n-
vacuum state |n〉. The Hilbert space separates into a set of ladders / superselection sectors
and the true vacuum state in each is the θ-vacuum |θ〉. This is the “periodic potential
picture” of the Yang-Mills vacuum. The θ can appear in physical quantities, it is a defining
constant of the theory.

On the other hand, if one insists that large gauge transformations are gauge symmetries
nonetheless, then one obtains Manton’s view. There is then only a single vacuum state
|Ω〉. This view occurs naturally in physical gauges where every Fµν configuration uniquely
specifies some Aµ and the CS-vacua never appear. In this view, the instantons tunnel along
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an NCL in the Euclidean field configuration space from the vacuum to itself, giving rise
to a “pendulum picture” of the gauge field vacuum. θ can be introduced by inserting a
topological term into the original Lagrangian, reproducing the θ-dependent physics from
the other picture. Therefore, both views ultimately agree on the physics.

Chapter 4

In chapter 4 we discussed sphaleron configurations, saddle points of the potential energy V
living in CV , for the first time. They reside on the top of the smallest possible potential
energy barriers separating the vacua of a theory. In the case such a theory has a single unique
vacuum (in a physical gauge) or a countably infinite number of CS-vacua (in a supplemented
temporal gauge), then the sphaleron changes its appearance accordingly (just as the Yang-
Mills instantons did). In a physical gauge, Π1(CV ) ∼= Z proves the existence of sphalerons
as long as V is positive definite and scaling arguments do not preclude their existence.

We began by examining the sphaleron (and instanton) in the (1+1)-dimensional Abelian
Higgs model, a toy model for the EW theory. We observed the aforementioned gauge-
dependent vacuum structure. The specific physical gauge we chose was an axial gauge. We
derived the sphaleron in both aforementioned gauges including its negative mode. The mode
shows how the configuration deforms towards either a single vacuum or towards distinct
CS-vacua depending on the gauge.

Then we derived the SU(2) sphaleron in the EW sector of the SM in a physical gauge
(in the θW → 0 limit) after briefly reviewing the bosonic part of the EW theory. In this
gauge, we explicitly show that Π1(CV ) = Z by studying the topology of the theory. We
derived the Euler-Lagrange equations for this sphaleron explicitly by first constructing a
family of NCLs in CV (in terms of two free functions) and by subsequently minimization
of V over the remaining degrees of freedom. In terms of Higgs VEV and the EW coupling
constant, the sphaleron mass, or height of the barrier, turns out to be ∼ 9 TeV if these
equations are solved numerically.

Chapter 5

In chapter 5 we finally introduced (interactions with) fermions into our theories. In the
discussion that followed, the concept of the anomaly, a classical symmetry that does not exist
at the quantum level (whose current Jµ is thus actually not conserved), was paramount. If
the right symmetries are anomalous, then these theories are effected in fundamental ways:
Vacuum angles can turn unphysical and sphalerons (and instantons) can start to play a
role in processes that violate specific fermionic quantum numbers. For instance, the EW
sector of the SM has anomalous baryon and lepton currents JµB and JµLl , hinting at the
possibility of baryon B and lepton number L violating processes. Such reactions might be
produced in collision experiments and they could have occurred in the early universe. In
the latter case, the thermal EW sphaleron might help explain how the matter-antimatter
asymmetry of the observable universe was generated. These processes satisfy the selection
rule ∆Le = ∆Lµ = ∆Lτ = 1

3∆B.
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Firstly, we examined the effect of fermions on the vacuum angles of the QCD and EW
gauge sectors of the SM. If the right symmetries of the classical Lagrangian are anomalous,
then the path integral measure produces a θ-term under an corrected version of the sym-
metry. This term is shown to cancel out against the preexisting θ-term that picks out a
θ-sector, turning θ nonphysical. The four global SM vector anomalies turns the EW vac-
uum angle unphysical. The QCD vacuum angle, however, remains because there is to global
axial symmetry to become anomalous (SM fermions have mass because of the Higgs mech-
anism). Nonetheless, the QCD vacuum angle (and thus de degree of C and CP violation)
is exceptionally small, this is the so-called strong CP problem.

Secondly, we studied a semiclassical technique that explains the connection between
sphalerons and the violation of fermionic quantum numbers (such as the SM’s B and L, i.e.
particle production), reproducing the effect of the anomaly. In the technique, fermions are
represented as classical Dirac spinors that reside in an external gauge field background. In
the case of the sphaleron, one studies the spectral flow of their Dirac Hamiltonian (the move-
ment of the eigenvalues), viewed in a Dirac sea-like picture, when traversing the sphaleron
loop. Depending on the kind of anomaly and nature of the interaction (vector, chiral, etc.)
levels get raised out of, or fall into, the sea, corresponding to the creation and / or anni-
hilation of fermions. Ultimately, a change in the CS-number of the gauge fields results in
the shifting of the levels, quantified by the Atiyah-Singer index theorem. In the SM, this
produces the selection rule ∆Ll = ∆B/3 = ∆NCS for a (B + L)-violating reaction.

Thirdly, we examined the recently proposed by Tye, Wong (and later Qiu) possibil-
ity that sphaleron process occurring in collider experiment could have a resonance fea-
ture[37][36][31], analogous to resonant tunneling in QM. The cross section of such processes
is then predicted to be 67 orders of magnitude larger at energies above the sphaleron mass,
which is where it is conventionally expected that sphaleron transitions remain suppressed.
The feature makes sphaleron processes more likely to be observed in future colliders. The
technique that was used to make these predictions is based on applying the WKB proce-
dure to QFT (in the Schrödinger functional formalism), reducing the complicated scattering
calculation into a one dimensional quantum mechanics problem with the CS-number as (in-
directly) quantized variable. This QM problem has resonant tunneling, because it contains
the periodic potential V (NCS) along the sphaleron loop, which is now a supposedly global
symmetry in the EW theory (as opposed to QCD), since fermions are produced when the
NCS changes in the EW sector. Periodic potentials have Bloch wave solutions, which take
the resonant tunneling feature implicitly into account. If the technique works, that this
resonance feature must exist in QFT too. The technique was not invented by Tye and
Wong, it has its roots in the works by Banks, Bender and Wu[4], which has seen applica-
tions[13][8][38].
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Conclusion

In this thesis we set out to understand solitons, instantons and especially sphalerons. We
have discussed what defined them, why they exist and what predictions can be made with
them. For the various theories discussed, the table in figure 6.1 lists whether any of these
configurations is present.

We notice especially the relevance of topology in all aspects of these problems. Firstly,
we saw that the topology of configuration spaces C (in terms of homotopy groups) is re-
sponsible for their existence. The connectedness of such a space Π0 revealing solitons (when
C = CV ) and instantons (when C = CSE ), while having an NCL in CV , characterized by
Π1(CV ), reveals the existence of a sphaleron.

Secondly, we noticed how important topology is for the violations of fermionic quantum
numbers. The spectral flow technique revealed that the gauge and fermion fields can only
be wound simultaneously: The levels of the Dirac Hamiltonian get shifted under a change
of CS-number. In the QFT, this corresponded to the creation of particles.

We also got to understand that for the application of these semiclassical techniques it is
important that one has a proper understanding of the connection between the classical and
quantum theoretic vacuum structure of the field theory in question. Firstly, we saw that the
quantum theoretic picture of the gauge field vacuum depends on the residual gauge freedom
the moment one start quantizing. This gave rise to a crystal or alternatively a pendulum
picture of the Yang-Mills vacuum structure. The reason was that one needs to carefully
analyze the way in which such a residual gauge freedom shows up in the Hamiltonian
formalism.

Secondly, understanding how the quantum theoretic vacuum structure of the SM
changes when fermions are introduced is crucial for the resonance feature of the sphaleron
transition to exist. The symmetry of the periodicity of V (NCS) (the potential along the
(B + L)-violating mode in which the Bloch wave states of reduced QM problem live) must
be global (not gauge). Tye and Wong argue that these are global, because changes in NCS

produce particles[36]. The importance of this point was made clear in Tye and Wong’s
second article, in which they responsed to criticisms by Bachas and Tomaras [3] concerning
the existence of Bloch waves.

Table of Theories

Model Topological
Soliton

Instanton Sphaleron

(3+1)-dim. SO(3) Georgi-Glashow X X
(1+1)-dim. Abelian Higgs X X
(3+1)-dim. SU(2) Yang-Mills X
(3+1)-dim. SU(2) Yang-Mills + Higgs (EW) X
(3+1)-dim. SU(3) Yang-Mills + Higgs (QCD) XXX

Figure 6.1: Table of theories with the existence of solitons, instantons or sphalerons
marked. Three X’s denotes the existence of three different classes of the particular
configuration type.
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