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Abstract

In this thesis, we study the magnetostatic Aharonov-Bohm effect when charged particles
are constrained to move on several spaces. To do so, we find explicit descriptions of the
spectrum and eigenfunctions of a generalized Laplace-Beltrami operator which admits a
vector potential A (in general, a one-form) on several two-dimensional almost-Riemannian
manifolds (a generalization of Riemannian manifolds). We study three examples, namely
the punctured plane and the unit cylinder both with Euclidean metric (these are in fact
Riemannian manifolds) and finally the Grushin cylinder. We find in the case of the Grushin
cylinder that the spectrum is extremely sensitive to changes in the magnetic flux, in contrast
to the Euclidean cases.

We also discuss several modifications of this effect, including the addition of relativ-
istic effects (from a quantum field theoretical perspective) and the addition of magnetic
monopoles.
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1 Introduction

The Aharonov-Bohm (AB) effect is an electromagnetic phenomenon in quantum mechanics
named after Yakir Aharonov and David Bohm. In their paper, they showed that the wave
function of a charged particle can be affected purely by its potentials (in the sense that an
additional phase is acquired) without any electric or magnetic field being present. This was
rather counter-intuitive at the time, since it was thought that only the electric and magnetic
fields are physical quantities and that the scalar and vector potentials are just a mathemat-
ical construction used to simplify certain computations [1]. Their paper was thus met with
skepticism by many physicists. However, the effect has been experimentally confirmed mul-
tiple times. There are two versions of this effect, one where the wave function depends on
the scalar potential (the electric AB effect) and the other where the wave function depends on
the vector potential (the magnetic AB effect). We will focus on the latter case, as the former
case’s existence is controversial (for example, see [2]). The first such experiment was based on
Aharonov and Bohm’s proposed experiment [3]. Their proposed setup is given in Figure 1.1.
It involves splitting an electron beam at point A so that some electrons travel clockwise and
others anticlockwise around the solenoid. The beams will then recombine at point F and form
an interference pattern as predicted by Aharonov and Bohm in 1959 (since the phase induced
by the potential is path-dependent). The experiment was first performed a year later in 1960
by Robert G. Chambers and he proved that the effect indeed exists [1].

Figure 1.1: Schematic experiment to demonstrate interference with vector potential [4]

The magnetic AB effect is mathematically well-understood in the Euclidean case. However,
until recently there has been little research on this effect on more abstract spaces. In this
thesis, we will discuss the AB effect on several finite-dimensional almost-Riemannian manifolds.
They are a generalization of Riemannian manifolds which have many well-studied applications
in physics [5]. Even though the most common examples in physics are Riemannian (e.g., Rn
with the standard dot product), almost-Riemannian manifolds have already appeared in many
physical situations. For example, in classical mechanics they can be used to study orbital
mechanics [6] and they play a central role in control theory [7]. Their application in quantum
mechanics is rather recent: an interesting example of this is their relevance in understanding
the Berry phase (also known as the geometric phase), which is especially relevant to the AB
effect and the control of quantum mechanical systems [5]. We will focus on one abstract almost-
Riemannian manifold called the Grushin cylinder.

We will find the spectrum of the Laplace-Beltrami (LB) operator (which is a generalization of
the Laplacian) on various two-dimensional almost-Riemannian manifolds and we will analyse its
relevance to the magnetic AB effect. One does this by defining a slightly more general operator,
called the magnetic LB operator, which reduces to the standard LB operator in the case that
the vector potential vanishes [8]. In addition to the Grushin cylinder mentioned above, we will
focus on the Euclidean case and compute the spectrum on both the plane and the cylinder.
This will be useful from a physical point of view, as from the magnetic LB operator, we can
determine eigenvalues and eigenstates of the Hamiltonian associated with the AB effect. Finally,
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we will discuss the similarities and differences between the effect in the Euclidean cases and the
Grushin cylinder.

This thesis is structured as follows: Section 2 contains an introduction of the AB effect in R3

and demonstrates that the interference pattern should indeed appear from a theoretical point
of view. We also find in that section that the effect is more topological than geometrical in
nature. Section 3 introduces the preliminary differential geometry concepts and defines almost-
Riemannian manifolds and the Grushin cylinder. Section 4 contains a light introduction to
spectral theory and also a description of the spectrum of the LB operator for each almost-
Riemannian manifold. Section 5 contains some extensions and similar effects to the standard
non-relativistic magnetic AB effect with an infinite solenoid (such as the Aharonov-Casher effect,
which is dual to the AB effect). A comparison of the results is contained in Section 6. Finally,
Section 7 contains the concluding remarks.

We use SI units throughout this thesis.
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2 The Aharonov-Bohm effect

In the following, we explain the magnetic Aharonov-Bohm effect in the most commonly discussed
three-dimensional Euclidean space where there are no relativistic effects. The extension to more
abstract spaces will then be clear.

2.1 Constructing the Hamiltonian

We first start by deriving the electromagnetic Hamiltonian for the classical case, then we use the
correspondence principle to derive the quantum mechanical Hamiltonian. Consider the motion
of a particle of charge q and mass m at position r at time t moving through an electromagnetic
field with electric scalar potential V = V (r, t) and magnetic vector potential A = A(r, t). In
classical mechanics, the motion of the particle is given by the Lorentz force law

mr̈ = q (E + ṙ×B) , (2.1)

where the electric field E and magnetic field B can be expressed in terms of the potentials

E = −∇V − ∂A

∂t
, B = ∇×A. (2.2)

We now make a guess for a Lagrangian which will produce the Lorentz force law (2.1). We
make the guess

L =
1

2
mṙ2 − qV + qṙ ·A. (2.3)

We now show that this indeed is the correct Lagrangian. We find that

∂L

∂r
= −q∇V + q∇(ṙ ·A),

∂L

∂ṙ
= mṙ + qA.

Thus, by the Euler-Lagrange equations, the equations of motion are

mr̈ = q
(
∇(ṙ ·A)− Ȧ−∇V

)
.

In components, this is (we use the Einstein summation convention here)

mr̈i = q

(
∂Aj
∂ri

ṙj − ∂Ai
∂t
− ∂Ai
∂rj

ṙj − ∂V

∂ri

)
= q

((
−∂V
∂ri
− ∂Ai

∂t

)
+

(
∂Aj
∂ri
− ∂Ai
∂rj

)
ṙj
)
, i, j ∈ {1, 2, 3},

which can be simplified using the Levi-Civita symbol εijk defined to be

εijk =


1, if (i, j, k) is an even permutation of (1, 2, 3),

−1, if (i, j, k) is an odd permutation of (1, 2, 3),

0, otherwise.

This gives us the equality

εijkBk = εijkεklm
∂Am
∂rl

= εkijεklm
∂Am
∂rl

= (δilδjm − δimδjl)
∂Am
∂rl

=
∂Aj
∂ri
− ∂Ai
∂rj

,

which allows us to obtain the following equation of motion in components

mr̈i = q
(
Ei + εijkṙ

jBk
)
, i, j, k ∈ {1, 2, 3},
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which agrees with equation (2.1) component-wise [9]. Thus, the Lagrangian in equation (2.3)
indeed describes the motion of the particle. We derive the Hamiltonian by identifying the
conjugate momentum p = ∂L

∂ṙ = mṙ + qA, and taking a Legendre transform

H = ṙ · p− L =
1

2m
(p− qA)2 + qV.

Note that if one wishes to add additional interactions such as a Coulomb interaction, one
just simply adds the corresponding potential to the Hamiltonian. The transition to quantum
mechanics is made by using the quantum mechanical substitution p→ −i~∇ [10], which results
in the following Hamiltonian operator on L2(R3):

H = − ~2

2m

(
∇− iq

~
A

)2

+ qV.

As one can see, the Hamiltonian operator has explicit dependence on the potentials and not
on the fields. This motivates the Aharonov-Bohm effect. From here onwards, we discuss the
magnetic version of the effect. Therefore, we assume that E = 0 and we assume there are no
additional interactions. Due to gauge freedom of the potentials (A→ A+∇χ and V → V − ∂χ

∂t ,
where χ is a scalar function [11]), we may also assume V = 0. Hence in the following, the time-
dependent Schrödinger equation we consider is

i~
∂ψ

∂t
= Hψ = − ~2

2m

(
∇− iq

~
A

)2

ψ. (2.4)

2.2 Deriving the phase shift

Consider a static electromagnetic field where A 6= 0 and B = 0 on a simply connected domain
of R3 (for an explanation on simply connectedness, see Appendix A). We then claim that the
solution to the Schrödinger equation in equation (2.4) is

ψ(r, t) = eig(r)ψ0(r, t), g(r) =
q

~

∫ r

O
A(r′) · dr′, (2.5)

where O is some arbitrarily chosen reference point in that domain (due to gauge freedom of the
potentials) and ψ0 is the solution to the Schrödinger equation where A = 0 [12]. Note that the
line integral is well-defined since B = ∇×A = 0 implies that A is irrotational, which in simply
connected domains implies that A is conservative, so that the line integral is path independent.

Proof. Since ∇g = (q/~)A,

∇ψ = eig(i∇g)ψ0 + eig(∇ψ0) =
iq

~
eigψ0A + eig(∇ψ0).

Thus, it follows that(
∇− iq

~
A

)2

ψ =

(
∇− iq

~
A

)
·
(
eig∇ψ0

)
= ∇ ·

(
eig (∇ψ0)

)
− iq

~
eigA · (∇ψ0)

= (∇eig) · (∇ψ0) + eig∇2ψ0 −
iq

~
eigA · (∇ψ0)

= eig∇2ψ0.

By plugging this into equation (2.5) and multiplying both sides by e−ig, we obtain

i~
∂ψ0

∂t
= − ~2

2m
∇2ψ0,

which is precisely equation (2.4) but with A = 0, as required [13].
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The above result implies that in order to solve the Schrödinger equation, it suffices to
determine the eigenstates in the case where A = 0, then compute the phase factor g and
multiply the eigenstates by eig. Note that we use the letter g to denote the phase factor, as it
is a particular instance of geometric phase (also known as Berry’s phase) [13].

Now consider a more general situation where the domain D ⊆ R3 such that B = 0 is not
necessarily simply connected. Furthermore, consider two charged particles taking two different
paths C1 and C2 onD with the same start and end points such that there exists simply connected
domains Di ⊆ D containing Ci for all i ∈ {1, 2}. The difference in phase is then given by (using
Stokes’ theorem)

∆g = g1 − g2 =
q

~

[∫
C1

A(r′) · dr′ −
∫
C2

A(r′) · dr′
]

=
q

~

∮
A(r′) · dr′ = qΦB

~
, (2.6)

where ΦB is the magnetic flux through the area between the paths [1]. Note that for the change
of phase to be non-zero, it is necessary that D is not simply connected and that C1 and C2 are
not homotopic on D (intuitively, this means that C1 and C2 cannot be continuously deformed
into each other, without leaving D. For a more rigorous definition see Appendix A) [10]. Hence,
just by changing the vector potential, one may affect a charged particle by a change of phase.
This is precisely the magnetic Aharonov-Bohm effect. Note that this result is gauge invariant,
as the line integral of a gradient of a scalar function over a closed loop is zero (this is a corollary
of the fundamental theorem of line integrals).

A more concrete example is given in Figure 2.1, where we have an infinitely long solenoid
along the ẑ axis and a charged particle moving outside this solenoid.

Figure 2.1: The electron beam splits, with half passing on either side of an infinitely long
solenoid [13]

Using cylindrical coordinates (r, φ, z) ∈ [0,∞) × [0, 2π) × R, the solenoid of radius a > 0
has constant non-zero magnetic field B = B0ẑ inside the solenoid (r ≤ a), and B = 0 otherwise
(r > a). Using Stokes’ theorem, one obtains that the vector potential for r > a is given by
(where we adopt the Coulomb gauge ∇ ·A = 0)

A =
a2B0

2r
φ̂. (2.7)

With the notation of the previous paragraph, the region D is not simply connected. One lets
C1 and C2 be the paths where electrons pass clockwise and anticlockwise around the solenoid
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respectively. The phase difference is then non-zero, namely qπa2B0/~ 6= 0 [13]. This concrete
example is the most standard way of observing the effect experimentally (the differences in
phase where the beam recombines will cause an interference pattern) and it is in accordance
with the experiment proposed by Aharonov and Bohm in Figure 1.1. In principle, as this phase
difference is very small, the Aharonov-Bohm effect can be used to measure small differences in
magnetic flux. While it is not so relevant for our analysis, one may similarly show that the
vector potential inside the solenoid (r ≤ a) with Coulomb gauge is given by [14]

A =
B0r

2
φ̂.

9



3 Differential geometry

In the following section, we introduce the preliminary differential geometry to be able to compute
the spectra of the magnetic Laplace-Beltrami operator on several almost-Riemannian manifolds.
In Sections 3.1 and 3.2, we introduce the preliminaries to be able to define a two-dimensional
almost-Riemannian manifold, namely vector bundles and Lie brackets of vector fields. In Sec-
tion 3.3, we define a Riemannian manifold, which will be particularly useful in Section 4. In
Section 3.4, we define what general two-dimensional almost-Riemannian manifolds are and give
two specific examples.

3.1 Vector bundles

In this section, we define a smooth vector bundle over a smooth manifold M and discuss their
properties. Intuitively, one can think of them as smooth families of vector spaces parametrized
by points in M . We make this more formal below. This section is based on [15].

We define the fiber Ep at a point p ∈M under any map π : E →M to be the inverse image
of the singleton set {p} under π. For any two maps π : E → M and π′ : E′ → M , a map
φ : E → E′ is called fiber-preserving if φ(Ep) ⊆ E′p for all p ∈M .

Definition 3.1. A surjective smooth map π : E → M of manifolds is called locally trivial of
rank k if

(i) The fiber Ep is a k-dimensional vector space for all p ∈M .

(ii) For all p ∈ M , there exists an open neighbourhood U of p and a fiber-preserving diffeo-
morphism φ : π−1(U) → U × Rk such that for every q ∈ U , the restriction of φ to Eq,
namely φ|Eq : Eq → {q} × Rk is a vector space isomorphism. Note that the collection
{(U, φ)} is called a local trivialization for E.

Definition 3.2. A smooth vector bundle of rank k is a triple (E,M, π), where E and M are
manifolds and π : E → M is a locally trivial surjective smooth map of rank k. We call E the
total space of the vector bundle and M the base space of the vector bundle respectively.

Example 3.3. The triple (TM,M, π) with TM the tangent bundle of a smooth manifold M
and π : TM →M the canonical projection (defined to be the map π(p, v) = p with p ∈M and
v ∈ TpM) is a smooth vector bundle.

To avoid notational pedantry, we will from this point onward write the vector bundle
(E,M, π) as π : E →M .

Definition 3.4. A section of a vector bundle π : E → M is a map σ : M → E such that for
all p ∈M , we have π(σ(p)) = p (i.e., a right-inverse of π). A section is said to be smooth if the
map σ is smooth as a map of manifolds.

3.2 Vector fields and Lie brackets

In the following section, we define a smooth vector field of a smooth manifold M and the Lie
bracket of two vector fields. This section is based on [5], [15].

Definition 3.5. A vector field is a section of the vector bundle π : TM →M (see Example 3.3).
A vector field is called smooth if this section is smooth as a map of manifolds. We denote the
space of all smooth vector fields on M by X (M).
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Remark 3.6. Note that it is also possible to define a vector field as a map that is a derivation
of the algebra C∞(M). That is to say, a linear map X : C∞(M) → C∞(M) (as opposed to
M → TM) which satisfies the Leibniz rule

X(fg) = fX(g) +X(f)g,

for all f, g ∈ C∞(M). The vector field X is called smooth if for every f ∈ C∞(M), the function
Xf is smooth. This definition is more convenient to use for some arguments in this thesis. Note
that it is actually possible to relate the two definitions. With respect to Definition 3.5, any
vector field induces a derivation LX : C∞(M) → C∞(M) (this is called a Lie derivative, for
more detail we refer to [16], [17]). However, using this distinction of notation can be pedantic,
so we will use the same symbol, as the definition used is usually clear from context.

Let x1, . . . , xn be local coordinates on a n-dimensional smooth manifold M . In the following,
we use the basis { ∂

∂x1
|p, . . . , ∂

∂xn |p} for the tangent space TpM and the basis {dx1|p, . . . , dxn|p}
for the cotangent space T ∗pM . In a coordinate chart (U, x1, . . . , xn) of M (so U is an open

neighbourhood of a point p ∈ M) we can write X =
∑n

i=1 ξ
i ∂
∂xi

, where the ξi are smooth
coordinate functions on U .

We now introduce a way to generate another smooth vector field from two vector fields. To
do so, we first introduce Lie algebras.

Definition 3.7. A Lie algebra over a field K is a pair (V, [·, ·]), where V is a vector space over
K and [·, ·] : V ×V → V is a map (called the Lie bracket) satisfying the following properties for
all a, b ∈ K and x, y, z ∈ V :

(i) Bilinearity: [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y],

(ii) Anticommutativity: [x, y] = −[y, x],

(iii) The Jacobi identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Definition 3.8. Let M be a smooth manifold and let X,Y ∈ X (M) be two vector fields. Their
Lie bracket is defined for all f ∈ C∞(M) to be

[X,Y ]f := X(Y f)− Y (Xf). (3.1)

It can easily be verified that the set X (M) forms a vector space over R with standard
addition of functions and scalar multiplication of a function.

Proposition 3.9. Let M be a smooth manifold. The vector space X (M) forms a Lie algebra
over R with the Lie bracket in equation (3.1).

Proof. Let X,Y ∈ X (M). We first need to show that [X,Y ] ∈ X (M) as well. Suppose that
f ∈ C∞(M) is an arbitrary smooth function over M . Since X and Y are smooth, it follows
that Xf and Y f are also smooth. Thus, X(Y f) and Y (Xf) are smooth. A sum of smooth
functions is also smooth, hence [X,Y ]f is smooth, as required.

We now need to check properties (i)-(iii) for a Lie bracket. Showing bilinearity (i) and
anticommutativity (ii) is straightforward, so we will only prove the Jacobi identity (iii). We
have for X,Y, Z ∈ X (M) and f ∈ C∞(M) that

[X, [Y, Z]]f = X([Y, Z]f)− [Y,Z](Xf)

= X(Y (Zf)− Z(Y f))− (Y (Z(Xf))− Z(Y (Xf)))

= X(Y (Zf)) + Z(Y (Xf))−X(Z(Y f))− Y (Z(Xf)).

By a relabelling of the vector fields, we find that

[Z, [X,Y ]]f = Z(X(Y f)) + Y (X(Zf))− Z(Y (Xf))−X(Y (Zf)),
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[Y, [Z,X]]f = Y (Z(Xf)) +X(Z(Y f))− Y (X(Zf))− Z(X(Y f)).

We thus indeed find that

([X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]])f = 0,

as required.

Proposition 3.10. Let M be a n-dimensional smooth manifold and let (U, x1, . . . , xn) be a
coordinate chart of M . Let X and Y be the vector fields on this coordinate chart defined by

X =
n∑
i=1

ξi
∂

∂xi
, Y =

n∑
j=1

ηj
∂

∂xj
,

with ξi and ηj coordinate functions defined on U . One has the following coordinate expression
of the Lie bracket

[X,Y ] =
∑
i,j

(
ξi
∂ηj

∂xi
− ηi∂ξ

j

∂xi

)
∂

∂xj
. (3.2)

Proof. We apply [X,Y ] to some function f ∈ C∞(U). We then have by bilinearity of the Lie
bracket that

[X,Y ]f =

 n∑
i=1

ξi
∂

∂xi
,
n∑
j=1

ηj
∂

∂xj

 f
=
∑
i,j

[
ξi

∂

∂xi
, ηj

∂

∂xj

]
f

=
∑
i,j

ξi
∂

∂xi

(
ηj
∂f

∂xj

)
− ηj ∂

∂xj

(
ξi
∂f

∂xi

)
.

By the product rule, it follows that for all i, j ∈ {1, 2, . . . , n}

∂

∂xi

(
ηj
∂f

∂xj

)
=
∂ηj

∂xi
∂f

∂xj
+ ηj

∂2f

∂xi∂xj
,

∂

∂xj

(
ξi
∂f

∂xi

)
=
∂ξi

∂xj
∂f

∂xi
+ ξi

∂2f

∂xj∂xi
.

By Clairaut’s theorem, we have ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

for all i, j, thus the expression reduces to

[X,Y ]f =
∑
i,j

(
ξi
∂ηj

∂xi
∂f

∂xj
− ηj ∂ξ

i

∂xj
∂f

∂xi

)

=
∑
i,j

(
ξi
∂ηj

∂xi
− ηi∂ξ

j

∂xi

)
∂

∂xj
f,

where in the last step, we have relabelled the indices i, j. This agrees with equation (3.2).

3.3 Riemannian manifolds

In this section, we define a Riemannian manifold and discuss some properties.

Definition 3.11. A Riemannian manifold is a pair (M, g) where M is a smooth manifold and
g is a map that provides each p ∈ M an inner product gp : TpM × TpM → R such that for all
X,Y ∈ X (M), the map p 7→ gp(X(p), Y (p)) is smooth.
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Now, suppose that dim(M) = n. In local coordinates (x1, . . . , xn), we may write [18]

g =
∑
i,j

gij dx
i ⊗ dxj , gij |p = gp

(
∂

∂xi

∣∣∣
p
,
∂

∂xj

∣∣∣
p

)
. (3.3)

Also, we let gij be the entries of the inverse of the coefficient matrix [gij ], so that
∑n

k=1 g
ikgkj =

δij . One can then show that

gij |p = gp
(
dxi|p, dxj |p

)
. (3.4)

It can be shown that any smooth manifold carries a Riemannian metric (see for instance Pro-
position 2.10 of [19]). In the case when the local coordinates are positively oriented, a volume
form is given by

ωg =
√
| det(gij)| dx1 ∧ · · · ∧ dxn. (3.5)

The volume form ωg is called the Riemannian volume form.

Example 3.12. Let Rn be endowed with the Euclidean metric. This forms a Riemannian
manifold (this is called Euclidean space). In this case, we have gij = δij .

3.4 2D Almost-Riemannian manifolds

In this section, we define a generalization of two-dimensional Riemannian manifolds called two-
dimensional almost-Riemannian manifolds and we study their properties. Intuitively, these are
manifolds that are Riemannian outside a low codimension set (this is called the singular set)
which satisfy certain conditions. In the singular set, vector fields are constrained to live on
a strict subset of TM . Under appropriate conditions, one can still find geodesics (and thus
measure distances between points). This section is based on [5], [20].

Definition 3.13. Let M be a smooth manifold and let F ⊆ X (M) be a collection of smooth
vector fields. We define the Lie algebra generated by F to be

Lie(F) := span{[X1, . . . , [Xj−1, Xj ]] : Xi ∈ F , j ∈ N}.

We then say that F satisfies the Hörmander condition if for all p ∈ M , the evaluation at p of
the Lie algebra generated by F is equal to the tangent space of M at p. That is,

Liep(F) = {X(p) : X ∈ Lie(F)} = TpM.

Definition 3.14. Let M be a two-dimensional connected smooth manifold. A two-dimensional
almost-Riemannian structure on M is a pair (U, f) such that:

(i) U is a Euclidean bundle of rank 2 with base space M . A Euclidean bundle is a vector
bundle whose fibers Up are equipped with a smoothly varying inner product 〈·, ·〉p with
respect to p.

(ii) The map f : U → TM is a smooth map such that f(Up) ⊆ TpM and its restriction to
each fiber of U is linear.

(iii) The collection of smooth vector fields D = {f ◦ σ : σ : M → U is a smooth section}
satisfies the Hörmander condition.

A two-dimensional connected smooth manifold with a two-dimensional almost-Riemannian
structure is called a two-dimensional almost-Riemannian manifold and is denoted by (M,U, f).

Example 3.15. One induces a Riemannian manifold by setting U = TM and f : TM → TM
the identity map.

13



Now that we have defined a two-dimensional almost-Riemannian manifold, we may now
discuss their properties. From now on, we will drop the term ’two-dimensional’.

Definition 3.16. Let Ω be a subset of M . An orthonormal frame for an almost-Riemannian
structure on Ω is the pair of vector fields

{X1, X2} = {f ◦ σ1, f ◦ σ2},

where {σ1, σ2} is an orthonormal frame on a local trivialization Ω × R2 of U with respect to
the inner product 〈·, ·〉p for every p ∈ Ω.

In this case, we can write the map f as f(p, u) = u1X1(p) + u2X2(p), where p ∈ M and
u ∈ Up. When an orthonormal frame for an almost-Riemannian structure on M exists (i.e., if
Ω = M), we say that the almost-Riemannian structure is free (in some literature, they call such
an almost-Riemannian structure trivializable [8]).

Definition 3.17. The distribution of an almost-Riemannian structure on M is the family of
subspaces {Dp : p ∈M}, where

Dp := {X(p) : X ∈ D} = f(Up) ⊆ TpM.

Roughly speaking, Dp is a subspace per point p ∈ M such that curves can be tangent to
its vectors (in order to measure distances on almost-Riemannian manifolds). We now define a
norm for an element of this subspace.

Definition 3.18. Let v ∈ Dp. We define the almost-Riemannian norm to be

‖v‖ := min{|u| : u ∈ Up s.t. v = f(p, u)}.

Definition 3.19. The singular set Z of an almost-Riemannian structure (U, f) of M is the
set of points p ∈ M such that dim(Dp) < 2. Such points p ∈ Z are called singular points.
Otherwise, we call points p ∈ M \ Z Riemannian points (the reason why will be clear in the
next theorem).

Theorem 3.20. An almost-Riemannian structure is a Riemannian structure on M \ Z.

Proof. We provide a sketch of a proof. One can verify that the almost-Riemannian norm is
indeed a norm. Furthermore, one can define an inner product at p ∈ M via the polarization
identity

〈v, w〉p =
1

4

(
‖v + w‖2 − ‖v − w‖2

)
,

where v, w ∈ Dp. In particular, for the Riemannian points p ∈ M \ Z, we have smoothness of
the map p 7→ 〈X(p), Y (p)〉p, which induces a Riemannian metric.

Hence one can define a Riemannian metric and Riemannian volume form on M \ Z. We
now provide a useful result for a specific form of orthonormal frame.

Theorem 3.21. Let (x1, x2) be a local system of coordinates on an open set Ω ⊆ M . Assume
that an orthonormal frame defined on Ω for a two-dimensional almost-Riemannian structure is
of the form

X1(x1, x2) =

(
1
0

)
, X2(x1, x2) =

(
0

f(x1, x2)

)
, (3.6)

where f : Ω → R is a smooth function. The singular set is then given by Z = {(x1, x2) :
f(x1, x2) = 0} and on Ω ∩ (M \ Z), one has the following expression for the components of the
Riemannian metric and volume:

g = (dx1)2 +
1

f(x1, x2)2
(dx2)2, ωg =

dx1 ∧ dx2

|f(x1, x2)|
.
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Proof. In this case, the distribution D is given by the pair of vector fields {X1, X2}. To find
the singular set, one must therefore find the set of points p ∈ M such that X1(p) and X2(p)
are linearly dependent. This holds if and only if p is such that f(p) = 0. Thus, we indeed have
Z = {(x1, x2) : f(x1, x2) = 0}. The metric is constructed from the identity

gp(Xi(p), Xj(p)) = δij .

Subsequently, the volume form is immediately obtained from equation (3.5).

We now discuss two examples of (free) almost-Riemannian structures, one on the unit cyl-
inder R × S1 and the other on the unit sphere S2. Although we will not extensively discuss
the almost-Riemannian structure on the sphere in this thesis, we will cover it briefly to provide
further intuition.

3.4.1 The Grushin cylinder

Let (x, φ) ∈ R× [0, 2π) be the standard cylindrical coordinates on a cylinder of unit radius. The
Grushin cylinder is a free almost-Riemannian structure (U, f) on M = R× S1 with Euclidean
bundle U = M ×R2 endowed with the Euclidean metric and f(x, φ, u1, u2) = (x, φ, u1, xu2). A
global orthonormal frame is then given by [5]

X1(x, φ) =

(
1
0

)
, X2(x, φ) =

(
0
x

)
,

which indeed satisfies the Hörmander condition as (see Proposition 3.10)

[X1, X2](x, φ) =

(
0
1

)
,

and the span of X1 and [X1, X2] evaluated at each p ∈ M spans TpM . By Theorem 3.21, it
follows that the singular set is given by Z = {(x, φ) : x = 0}. On that set, geodesics can only
go parallel to the x-axis. On the Riemannian points (x, φ) ∈ M \ Z, the Riemannian metric
and volume forms are given by

g = dx2 +
1

x2
dφ2, ωg =

dx ∧ dφ
|x|

.

To gain some intuition on why the singular set appears, one can compare the Euclidean
cylinder and Grushin cylinder (see Figure 3.1). In the Euclidean case, the vector fields are
constant and given by

X1(x, φ) =

(
1
0

)
, X2(x, φ) =

(
0
1

)
,

which span the tangent space at each point. This implies that every point on the Euc-
lidean cylinder is a Riemannian point. However, for the Grushin cylinder, this is not the
case when p ∈ M is a point such that x = 0. In that case for each φ ∈ [0, 2π) we have
dim(span{X1(0, φ), X2(0, φ)}) = 1 < 2.

Figure 3.1: Comparison between the Euclidean cylinder and Grushin cylinder
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3.4.2 The Grushin sphere

The Grushin sphere is a free almost-Riemannian structure (U, f) on the unit sphere S2 =
{(x, y, z) : x2 + y2 + z2 = 1} with Euclidean bundle U = S2 × R2 and f(θ, ϕ, u1, u2) =
(θ, ϕ, u1, tan(θ)u2), where we have used spherical coordinates (θ, ϕ) ∈ [−π/2, π/2] × [0, 2π)
related to Cartesian coordinates by

(x, y, z) = (cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)). (3.7)

A global orthonormal frame is then given by [8]

X1(θ, ϕ) =

(
1
0

)
, X2(θ, ϕ) =

(
0

tan(θ)

)
,

which similarly satisfies the Hörmander condition. By Theorem 3.21, it follows that the singular
set Z is the set of points such that θ = 0 in the spherical coordinate system (3.7). On that
set, geodesics can only go parallel to the θ-axis. Note that in this case, the singular set does
not include the set of points such that θ = ±π/2. This is only due to the natural coordinate
singularity which arises when converting to spherical coordinates. On Riemannian points, the
Riemannian metric and volume form are

g = dθ2 +
1

tan2(θ)
dϕ2, ωg =

dθ ∧ dϕ
| tan(θ)|

.
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4 Spectra of the magnetic Laplace-Beltrami operator

In the following section, we evaluate the spectrum of an operator called the magnetic Laplace-
Beltrami operator (cf. Definition 4.6) on several spaces, which is related to the Hamiltonian
operator H. We find that due to the generality of the underlying space, it is more convenient
to consider electromagnetic quantities in terms of differential forms. Namely, in Cartesian
coordinates we use the following one-to-one correspondence [21]:

E = E1x̂ + E2ŷ + E3ẑ←→ E = E1 dx+ E2 dy + E3 dz,

B = B1x̂ +B2ŷ +B3ẑ←→ B = B1 dy ∧ dz +B2 dz ∧ dx+B3 dx ∧ dy,

A = A1x̂ +A2ŷ +A3ẑ←→ A = A1 dx+A2 dy +A3 dz.

Note that strictly speaking, the magnetic field is not a vector (it is an axial vector). Nevertheless,
this abuse of notation is used quite frequently in physics. With this correspondence, we have
B = dA, where d is the exterior derivative (i.e., B is an exact two-form).

4.1 The Laplace-Beltrami operator

In the following, we define the Laplace-Beltrami operator when acted on a smooth function on
a Riemannian manifold (M, g). It is a generalization of the standard Laplacian in Euclidean
space. Let Ωk(M) be the vector space of smooth k-forms on M .

Definition 4.1. Let (M, g) be a smooth n-dimensional Riemannian manifold. We define the
Hodge star operator to be the unique isomorphism ? : Ωk(M) → Ωn−k(M) with α 7→ ?α such
that for all α, β ∈ Ωk(M), we have

α ∧ (?β) = g(α, β)ωg,

where we define the inner product of decomposable k-forms α = α1∧· · ·∧αk and β = β1∧· · ·∧βk
to be

g(α, β) := det(g(αi, βj))
k
i,j=1,

which is extended to general k-forms by linearity. Note that ωg here is the Riemannian volume
form, as in equation (3.5).

Uniqueness of ?β can be proven using the Riesz representation theorem, but since the proof
is not so relevant in our analysis, we omit it. For a proof, we refer to [22]. Note that an explicit
formula for the operator exists, as seen for instance in [23]. However, computing with this
expression is rather tedious and it is easier to simply use the definition. We may now define the
Laplace-Beltrami operator.

Definition 4.2. Let (M, g) be a smooth Riemannian manifold. The Laplace-Beltrami operator
of a smooth function on M is defined to be

∆ := d∗d,

where d∗ := ?d? [8].

The notation d∗ is due to the fact that with the definition above it is formally adjoint to
the exterior derivative with respect to the inner product 〈ω, η〉 =

∫
M ω ∧ ?η (up to a difference

in sign). This can be proven using the anti-derivation property of the exterior derivative and
Stokes’ theorem (the particular case where ∂M = ∅).

Remark 4.3. Note that it is also possible to define the Laplace-Beltrami operator without
use of the Hodge star operator. This approach allows for an easier derivation for an explicit
expression on a coordinate chart. For more detail, see Appendix B.
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Example 4.4. Consider the case where M = R3 is endowed with the Euclidean metric and let
f ∈ C∞(R3). In this case the Laplace-Beltrami operator coincides with the usual Laplacian.
This can be seen by the following computation

∆f = d∗df

= d∗
(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
= ?d

(
∂f

∂x
dy ∧ dz +

∂f

∂y
dz ∧ dx+

∂f

∂z
dx ∧ dy

)
= ?

(
∂2f

∂x2
dx ∧ dy ∧ dz +

∂2f

∂y2
dy ∧ dz ∧ dx+

∂2f

∂z2
dz ∧ dx ∧ dy

)
= ?

((
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)
dx ∧ dy ∧ dz

)
=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
,

where we have used ?(dx) = dy ∧ dz, ?(dy) = dz ∧ dx, ?(dz) = dx∧ dy and ?(dx∧ dy ∧ dz) = 1.

We now give a coordinate expression for the Laplace-Beltrami operator on two-dimensional
free almost-Riemannian manifolds with the general form in Theorem 3.21.

Lemma 4.5. Let {X1, X2} be a global orthonormal frame as in equation (3.6) for a two-
dimensional almost-Riemannian structure on a smooth two-dimensional connected manifold M .
The Laplace-Beltrami operator on M \ Z is given by

∆ =
∂2

∂(x1)2
+ f2 ∂2

∂(x2)2
− 1

f

∂f

∂x1

∂

∂x1
+ f

∂f

∂x2

∂

∂x2
. (4.1)

Proof. Let ψ ∈ C∞c (M \ Z) be a smooth function with compact support in M \ Z. We have
g(dx1, dx1) = 1 and g(dx2, dx2) = f2 (see equation (3.4)). It then follows that ?(dx1) = 1

|f | dx
2,

?(dx2) = −|f | dx1 and ?(dx1 ∧ dx2) = |f |. Hence

d∗dψ = d∗
(
∂ψ

∂x1
dx1 +

∂ψ

∂x2
dx2

)
= ?d

(
∂ψ

∂x1

1

|f |
dx2 − ∂ψ

∂x2
|f | dx1

)
= ?

(
∂

∂x1

(
∂ψ

∂x1

1

|f |

)
dx1 ∧ dx2 − ∂

∂x2

(
∂ψ

∂x2
|f |
)
dx2 ∧ dx1

)
= |f |

(
∂

∂x1

(
∂ψ

∂x1

1

|f |

)
+

∂

∂x2

(
∂ψ

∂x2
|f |
))

=
∂2ψ

∂(x1)2
+ |f | ∂ψ

∂x1

∂(|f |−1)

∂x1
+ f2 ∂2ψ

∂(x2)2
+ |f | ∂ψ

∂x2

∂(|f |)
∂x2

=
∂2ψ

∂(x1)2
− |f | ∂ψ

∂x1

1

f · |f |
∂f

∂x1
+ f2 ∂2ψ

∂(x2)2
+ |f | ∂ψ

∂x2

f

|f |
∂f

∂x2

=
∂2ψ

∂(x1)2
+ f2 ∂2ψ

∂(x2)2
− 1

f

∂f

∂x1

∂ψ

∂x1
+ f

∂f

∂x2

∂ψ

∂x2
,

which indeed agrees with equation (4.1).

We now generalize the Laplace-Beltrami operator in order to compute the spectrum of the
Aharonov-Bohm Hamiltonian on almost-Riemannian manifolds.
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Definition 4.6. Let (M, g) be a smooth Riemannian manifold, A ∈ Ω1(M) a differential one-
form and b ∈ R a constant. We define the magnetic Laplace-Beltrami operator to be [8]

∆b
A := (d− ibA)∗(d− ibA).

Note that one can find the following decomposition

∆b
Aψ = ∆ψ − ibd∗(Aψ)− ibA∗(dψ)− b2A∗(Aψ), (4.2)

so that we indeed find that ∆b
A reduces to the standard Laplace-Beltrami operator if either A = 0

or b = 0. In the Euclidean case, one finds that the Aharonov-Bohm Hamiltonian operator and
the magnetic Laplace-Beltrami operator coincide up to a scale factor, namely

H = − ~2

2m
∆
q/~
A .

We now state a similar result to Lemma 4.5 for the generalized operator.

Theorem 4.7. Let {X1, X2} be a global orthonormal frame as in equation (3.6) for a two-
dimensional almost-Riemannian structure on a smooth two-dimensional connected manifold M .
Let A = A1 dx

1 + A2 dx
2, where both A1 and A2 may be functions of both x1 and x2. The

Laplace-Beltrami operator on M \ Z is given by

∆b
A =

∂2

∂(x1)2
+ f2 ∂2

∂(x2)2
− 1

f

∂f

∂x1

∂

∂x1
+ f

∂f

∂x2

∂

∂x2

− ib
(

2A1
∂

∂x1
+
∂A1

∂x1
− A1

f

∂f

∂x1
+ 2f2A2

∂

∂x2
+ f2∂A2

∂x2
+A2f

∂f

∂x2

)
− b2

(
A2

1 +A2
2f

2
)

Proof. We use the decomposition in equation (4.2). We have already computed the first term,
see Lemma 4.5. It suffices to compute the three remaining terms. We find that

d∗(Aψ) = |f | ∂
∂x1

(
A1ψ

|f |

)
+ |f | ∂

∂x2
(A2|f |ψ)

=
∂A1

∂x1
ψ +A1

∂ψ

∂x1
− A1

f

∂f

∂x1
ψ + f2∂A2

∂x2
ψ + f2A2

∂ψ

∂x2
+A2f

∂f

∂x2
ψ,

A∗(dψ) = A1
∂ψ

∂x1
+ f2A2

∂ψ

∂x2
,

and
A∗Aψ = A2

1ψ +A2
2f

2ψ.

This gives the required expression.

4.2 Spectral theory

In this section, we introduce all of the preliminary spectral theory concepts. This is necessary
because in order to define the magnetic Laplace-Beltrami operator on the singular set Z, one
must study the self-adjointness of the operator. This section is based on [24], [25].

Definition 4.8. Let H be a Hilbert space with inner product 〈·, ·〉H. A linear operator T :
dom(T ) ⊂ H → H (we assume the domain of T to be a dense subspace of H) is self-adjoint if

(i) T is symmetric, namely 〈Tx, y〉H = 〈x, Ty〉H for any x, y ∈ dom(T ),

(ii) The domain of T is equal to the domain of its adjoint T ∗ (i.e., dom(T ) = dom(T ∗)).
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In physics, one usually refers to a symmetric operator as a Hermitian one. Not all operators
are self-adjoint. However, there are certain ways to extend them to be.

Definition 4.9. An operator A is a self-adjoint extension of T if

(i) dom(T ) ⊆ dom(A) = dom(A∗) ⊆ dom(T ∗),

(ii) Ax = T ∗x for any x ∈ dom(A).

For non-negative densely defined symmetric operators, one always has at least one self-
adjoint extension, called the Friedrichs extension. In this case, one can show that there are two
possibilities for the number of self-adjoint extensions that an operator admits, namely

• Only one self-adjoint extension exists. In this case, we call an operator essentially self-
adjoint,

• There are infinitely many self-adjoint extensions.

A physical consequence of this in our analysis is that if the magnetic Laplace-Beltrami
operator restricted to C∞c (M \ Z) is essentially self-adjoint, a quantum particle cannot cross
the singular set Z. Mathematically, this means that the domain of such an operator splits into
a direct sum of parts of the almost-Riemannian manifold. Moreover, the operator splits into a
direct sum of self-adjoint operators on these parts.

Remark 4.10. When we say that we will compute the spectrum of the magnetic Laplace-
Beltrami operator, we will actually be computing the spectrum of −∆b

A. This has to do with
the fact that the standard Laplace-Beltrami operator is a negative operator. Namely, for all
f ∈ C∞(M) we have

〈∆f, f〉L2 ≤ 0,

where 〈·, ·〉L2 is the standard L2 inner product on M . This can be shown by integration by
parts. It therefore follows that −∆ is a non-negative operator. A convenient implication of this
is that all the eigenvalues of −∆ are non-negative [26]. Moreover, the existence of the Friedrichs
extension requires the operator to be non-negative.

Recall that the spectrum σ(T ) of an operator T that operates on a Hilbert space H is the
set of all scalars λ such that the operator T − λI does not have a bounded inverse in H. It
turns out that σ(T ) can be separated into three parts. We discuss this below. We first introduce
some preliminary measure theory (in particular, a refined version of the Lebesgue decomposition
theorem), then define the three types of spectrum.

Definition 4.11. Let (Ω,A) be a measurable space, where Ω is a set and A is the σ-algebra on
Ω, and let λ1 and λ2 be measures on that space. A measure λ1 is said to be absolutely continuous
with respect to a measure λ2 if for all A ∈ A such that λ2(A) = 0 implies λ1(A) = 0. We then
write λ1 � λ2.

Definition 4.12. Let (Ω,A) be a measurable space and let λ be a measure. The measure λ is
said to be concentrated on a set A ∈ A if λ(Ac) = 0.

Definition 4.13. Let (Ω,A) be a measurable space and let λ1 and λ2 be measures. Then λ1

and λ2 are said to be mutually singular if λ1 is concentrated on A1 ∈ A, λ2 is concentrated on
A2 ∈ A, and A1 ∩A2 = ∅. In that case, we write λ1 ⊥ λ2.

Definition 4.14. A Borel measure µ is said to be a pure point measure if for every Borel set
Ω we have

µ(Ω) =
∑
x∈Ω

µ({x}).
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We now decompose the measure into two parts. The result below is called the Lebesgue
decomposition theorem.

Theorem 4.15. Let (Ω,A) be a measurable space and let λ and µ be σ-finite measures. There
is a unique pair of measures λac and λsing such that λ = λac + λsing, λac � µ and λsing ⊥ µ.

Proof. A proof can be found in Theorem 9.14 of [27] or Theorem 19.42 of [28].

As a consequence of the above, λac ⊥ λsing (i.e., the two measures are mutually singular).
We call λac the absolutely continuous part of the measure and λsing as the singular part of the
measure. It is possible to decompose λ even further by decomposing λsing as a sum of two
measures. This is done by taking out the pure point part. The result below is called the refined
Lebesgue decomposition theorem.

Theorem 4.16. Let (Ω,A) be a measurable space and let λ and µ be σ-finite measures. Then
there are unique measures λac, λcs and λpp such that λ = λac + λcs + λpp, λac � µ, λcs ⊥ µ,
λcs({x}) = 0 for all x ∈ Ω, and λpp is a pure point measure.

Proof. A proof can be found in Theorem 19.61 of [28].

Like the standard Lebesgue decomposition theorem, it follows that the three measures are
mutually singular. We call λcs the continuous singular part of the measure and λpp the pure
point part of the measure. We now define the spectral measure of an operator T associated to
a point in a Hilbert space.

Theorem 4.17. Let T : dom(T ) ⊆ H → H be a self-adjoint linear operator (we again assume
that dom(T ) is a dense subspace of H) on a Hilbert space H with inner product 〈·, ·〉H. Moreover,
let f be a continuous bounded function in R and let v ∈ H. Then there exists a unique finite
Borel measure µT,v : B(R)→ [0,∞) such that

〈f(T )v, v〉H =

∫
R
f(x) dµT,v(x).

We call this measure the spectral measure of T associated to v ∈ H.

Proof. A proof using the Riesz-Markov representation theorem can be found on pages 4 and 5
of [29].

As a consequence, one may also decompose the Hilbert space H as a direct sum of spaces.
Let λ be the Lebesgue measure. We define

Hac := {v ∈ H : µT,v � λ},

Hcs := {v ∈ H : µT,v continuous singular},

Hpp := {v ∈ H : µT,v pure point}.

We then have H = Hac ⊕Hcs ⊕Hpp. We may thus define three different types of spectrum as
follows:

Definition 4.18. We define the absolutely continuous, continuous singular and pure point
spectrum as follows:

σac(T ) := σ(T |Hac),

σcs(T ) := σ(T |Hcs),

σpp(T ) := σ(T |Hpp) = σp(T ).

where σp(T ) is the point spectrum of T (i.e., the set of eigenvalues of T ) and the bar above the
set represents closure.
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One then finds the decomposition

σ(T ) = σac(T ) ∪ σcs(T ) ∪ σpp(T ) = σac(T ) ∪ σcs(T ) ∪ σp(T ).

Note that in most cases (including the cases we will consider later), the continuous singular
spectrum of an operator is empty. We therefore define the continuous spectrum by

σc(T ) := σac(T ) ∪ σcs(T ).

Hence, in our analysis it suffices to compute the continuous spectrum and the eigenvalues of the
operator to obtain a full description of the spectrum. We will use the terms ’discrete spectrum’
(which we will denote by σd(T )) and ’point spectrum’ interchangeably. Physically, the discrete
spectrum of the Hamiltonian represents the bound states of a quantum system, which are
normalizable, and the continuous spectrum of the Hamiltonian represents its scattering states,
which are non-normalizable.

Lastly, we provide a result for the spectrum of a direct sum of linear operators, which will
be useful when finding the spectrum of the magnetic Laplace-Beltrami operator on the Grushin
cylinder.

Theorem 4.19. Let T =
⊕

k∈Z Tk, where each Tk is a linear operator on a Hilbert space H
over a field K. Then, we have the following relations [30]:

σp(T ) =
⋃
k∈Z

σp(Tk),

σc(T ) =

{(⋃
k∈Z

σp(Tk)

)c
∩

(⋃
k∈Z

σr(Tk)

)c
∩

(⋃
k∈Z

σc(Tk)

)}
∪

{
λ ∈

⋂
k∈Z

ρ(Tk) : sup
k∈Z
‖Rλ(Tk)‖ = +∞

}
,

where ρ(T ) is the resolvent set

ρ(T ) := {λ ∈ K : T − λI is invertible},

Rλ(T ) is the resolvent operator
Rλ(T ) = (T − λI)−1,

and σr(T ) is the residual spectrum of T , which is the set of all λ ∈ K such that T −λI does not
have dense range but is injective. For normal operators (in particular, self-adjoint operators),
this spectrum is empty.

Proof. A proof can be found in Theorem 2.3 of [31].

4.3 Spectrum in the two-dimensional Euclidean plane

We consider the concrete situation as in Figure 2.1. In this case, the one-form corresponding
to the magnetic vector potential outside the solenoid is given by

A =
1

2
a2B0 dφ,

where we fix the Coulomb gauge d∗A = 0. Note that due to the symmetry of the infinite
solenoid, it suffices to consider the case where the particle is constrained to a plane orthogonal
to the solenoid (and outside it).

Remark 4.20. Strictly speaking, we are not computing the spectrum on the plane, but on a
plane without the cross section of the solenoid. This manifold is topologically equivalent to a
punctured plane R2 \ {(0, 0)}.
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We now find a partial differential equation satisfied by a wave function ψ ∈ C∞(R2 \
{cross section of solenoid}) which vanishes at the origin. For the sake of simplicity, in the
following we let γ = (1/2)a2B0 so that A = γ dφ. To evaluate the Hodge dual, we need
knowledge of the metric for polar coordinates. It is well-known that

[gij ] =

(
1 0
0 r2

)
, [gij ] =

(
1 0
0 1/r2

)
.

Therefore, it follows that g(dr, dr) = 1, g(dφ, dφ) = 1/r2 and all other components vanish.
It thus follows that g(dr ∧ dφ, dr ∧ dφ) = 1/r2. The Riemannian volume form is given by
ωg = r dr ∧ dφ. A simple computation then shows that

?(dr) = r dφ, ?(dφ) = −(1/r) dr, ?(dr ∧ dφ) = 1/r.

We use the decomposition in equation (4.2). It follows that

∆ψ = d∗dψ

= d∗
(
∂ψ

∂r
dr +

∂ψ

∂φ
dφ

)
= ?d

(
∂ψ

∂r
r dφ− ∂ψ

∂φ

1

r
dr

)
= ?

(
∂

∂r

(
r
∂ψ

∂r

)
dr ∧ dφ− 1

r

∂2ψ

∂φ2
dφ ∧ dr

)
=

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2

=
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂φ2
,

and

d∗(Aψ) = ?d

(
−γψ
r

dr

)
= ?

(
γ

r

∂ψ

∂φ
dφ ∧ dr

)
=

γ

r2

∂ψ

∂φ
.

It can similarly be seen in this case that d∗(Aψ) = A∗(dψ). Finally, we have

A∗Aψ = ?A

(
−γψ
r

dr

)
= ?

(
−γ

2ψ

r
dφ ∧ dr

)
=
γ2ψ

r2
.

Therefore, the magnetic Laplace-Beltrami operator is given by

∆b
A =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
− 2ibγ

r2

∂

∂φ
− b2γ2

r2
,

or alternatively, we can write the Hamiltonian operator

H = − ~2

2m

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂φ
− iqa

2B0

2~

)2
]
.

The problem now rests on solving the eigenvalue equation −∆b
Aψ = λψ. To do so, we use

separation of variables with the ansatz ψ(r, φ) = R(r)Φ(φ). Omitting function arguments, we
then obtain

∆b
Aψ = R′′Φ +

1

r
R′Φ +

1

r2
RΦ′′ − 2ibγ

r2
RΦ′ − b2γ2

r2
RΦ = −λRΦ.
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Multiplication with r2/(RΦ) and a rearrangement of the terms gives

r2R
′′

R
+ r

R′

R
+ λr2 = −Φ′′

Φ
+ 2ibγ

Φ′

Φ
+ b2γ2.

Since the two sides depend on different independent variables, there must be a constant µ to
which they are equal. We then obtain that Φ (the angular term) satisfies the ordinary differential
equation

Φ′′ − 2ibγΦ′ + (µ− b2γ2)Φ = 0,

which has solutions
Φn(φ) = c1e

inφ, µ = (n− bγ)2,

where c1 is an arbitrary constant. Due to 2π-periodicity of Φ, n has to be an integer, which
constrains µ to take discrete values µn = (n − bγ)2. The equation for R (the radial term) is
given by

r2R′′ + rR′ + (λr2 − µn)R = 0.

For λ 6= 0, the change of variable s =
√
λr leads to the Bessel differential equation of order

√
µn

s2R′′ + sR′ + (s2 − µn)R = 0,

which has general solution
R(s) = c2J√µn(s) + c3Y√µn(s),

where Jν(·) and Yν(·) are Bessel functions of the first and second kind of order ν respectively
(for more information about the Bessel functions, see Appendix C.1) and both c2 and c3 are
arbitrary constants. Hence, solutions to the radial equation are given by

Rn(r) = c2J|n−bγ|(
√
λr) + c3Y|n−bγ|(

√
λr).

If λ = 0, the radial equation reduces to a Cauchy-Euler equation, which has solutions

Rn(r) = c4r
|n−bγ| + c5r

−|n−bγ|,

where c4 and c5 are arbitrary constants. Hence, the general class of separable solutions to the
eigenvalue problem −∆b

Aψ = λψ is given by

ψ(r, φ) =
∑
n

CnRn(r)Φn(φ),

where Cn are arbitrary constants. Since ψ must vanish at the origin, the asymptotic behaviour
of the radial functions (in the limit r → 0+) implies that they must be of the form (for ψ to be
an eigenstate of −∆b

A)

Rn(r) =

{
c2J|n−bγ|(

√
λr), if λ 6= 0,

c4r
|n−bγ|, if λ = 0,

which are all non-normalizable (no matter the choice of c2 and c4). Therefore, the discrete
spectrum is empty and the continuous spectrum is [0,∞).

Discretization of the spectrum can be done by localizing the particle to a set of finite
Lebesgue measure, which will remove the continuous part of the spectrum. To this end, we
consider a particle outside the solenoid moving in an annulus with r ∈ [α, β], where the wave
function is assumed to vanish on the inner and outer walls of the annulus (we impose Dirichlet
boundary conditions). We now compute the eigenvalues. The only part of the wave function
dependent on λ is the radial part. It therefore suffices to compute λ such that Rn(r) is non-zero.
Since the wave function vanishes at r = α and r = β, it follows that for λ 6= 0{

c2J|n−bγ|(
√
λα) + c3Y|n−bγ|(

√
λα) = 0,

c2J|n−bγ|(
√
λβ) + c3Y|n−bγ|(

√
λβ) = 0,
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and for λ = 0 {
c4α
|n−bγ| + c5α

−|n−bγ| = 0,

c4β
|n−bγ| + c5β

−|n−bγ| = 0.

This has non-trivial solutions if and only if the determinants of the matrix corresponding to the
linear system is zero. Hence, for α < β, one sees that λ = 0 is not an eigenvalue (unless n = bγ)
and that λ 6= 0 is an eigenvalue if and only if

J|n−bγ|(
√
λα)Y|n−bγ|(

√
λβ)− Y|n−bγ|(

√
λα)J|n−bγ|(

√
λβ) = 0. (4.3)

Let the l-th root of this transcendental equation be given by λln. From the above, one sees that
the spectrum is composed of an empty continuous spectrum and discrete spectrum {λln : l ∈
N, n ∈ Z}. Hence, the eigenvalues of the Hamiltonian are the energies

Eln =
~2

2m
λln, l ∈ N, n ∈ Z. (4.4)

In the limit that α → β− (i.e., When one restricts that particle to a circular ring outside
the solenoid), the physical phenomena which appear become even simpler to understand. One
obtains the ordinary differential equation

∆b
Aψ =

1

β2

(
d2ψ

dφ2
− 2ibγ

dψ

dφ
− b2γ2ψ

)
= −λψ,

which (similarly to how one solves the angular equation) has general solution

ψ = ceinφ, λ =
(n− bγ)

β2
,

where n ∈ Z due to 2π-periodicity of ψ and c is a normalization constant. This results in the
eigenvalues

λn =
(n− bγ)2

β2
, n ∈ Z.

Hence, the spectrum is composed of discrete spectrum {λn : n ∈ Z} and empty continuous
spectrum. The eigenvalues of the Hamiltonian are the energies

En =
~2

2mβ2

(
n− qa2B0

2~

)2

, n ∈ Z. (4.5)

This leads to the following physical consequence: Assuming that q is positive, a particle trav-
elling in the same direction as the current (this represents positive n) in the solenoid has lower
energy than a particle travelling in the other direction (negative n). In other words, we have
En < E−n. Moreover, the eigenvalues are non-degenerate. If one compares this to the case
where a charged particle is restricted to a circular ring without the solenoid (B0 = 0), one has
two-fold degeneracy instead. Hence, the non-simply connectedness of the region defined to be
where the magnetic field is zero leads to the splitting of energy levels [13].

4.4 Spectrum in the two-dimensional Euclidean unit cylinder

Let (x, φ) ∈ R × [0, 2π) be the standard cylindrical coordinates on a unit cylinder of infinite
length. We again choose the vector potential such that

A =
1

2
a2B0 dφ = γ dφ,
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where we use the Coulomb gauge. It is well-known that the metric is flat

[gij ] =

(
1 0
0 1

)
, [gij ] =

(
1 0
0 1

)
.

Thus, we have ?(dx) = dφ and ?(dφ) = −dx. Let ψ ∈ C∞(R × S1). A simple computation
shows that

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂φ2
, d∗(Aψ) = A∗(dψ) = γ

∂ψ

∂φ
, A∗A = γ2ψ.

Hence, the magnetic Laplace-Beltrami operator is given by

∆b
A =

∂2

∂x2
+

∂2

∂φ2
− 2ibγ

∂

∂φ
− b2γ2.

We now solve the eigenvalue equation −∆b
Aψ = λψ. To do so, we proceed in a similar

way to the planar case: we use separation of variables with ansatz ψ(x, φ) = X(x)Φ(φ). The
separation procedure then gives us (omitting function arguments)

X ′′

X
+ λ = −Φ′′

Φ
+ 2ibγ

Φ′

Φ
+ b2γ2 = µ,

where µ is the separation constant. This results in the following ordinary differential equations

X ′′ + (λ− µ)X = 0,

Φ′′ − 2ibγΦ′ + (µ− b2γ2)Φ = 0.

The equation for Φ has already been solved previously when computing the spectrum on the
plane. The solutions are

Φn(φ) = c1e
inφ, µ = (n− bγ)2,

where c1 is an arbitrary constant and n is an integer due to 2π-periodicity of Φ. Therefore µ
is constrained to take discrete values µn = (n − bγ)2. We have λ − µ ∈ R+. Thus, if we let
k2
n := λ− µn > 0, it follows that the equation for X is that of a free particle in one dimension

which has solution
Xn(x) = c2 cos(knx) + c3 sin(knx),

where c2 and c3 are arbitrary constants. The general class of separable solutions to the eigenvalue
problem −∆b

Aψ = λψ are hence given by

ψ(x, φ) =
∑
n

einφ (An cos(knx) +Bn sin(knx)) ,

where An and Bn are arbitrary constants. Imposing the boundary condition that the wave
function vanishes at x→ ±∞ for all φ, it is clear that the discrete spectrum is empty. However,
the continuous spectrum is non-empty. Since k2

n > 0 for all n, it follows that the continuous
spectrum is

σc(−∆b
A) =

⋃
n∈Z
{λ ∈ R : λ > µn} = [zb,γ ,∞) ,

where zb,γ := min{(n− bγ)2 : n ∈ Z} ∈ [0, 1/4]. An expression for zb,γ without involving n can
be found using the floor and ceiling functions b·c and d·e respectively. One has

zb,γ = min{bγ − bbγc, dbγe − bγ}2 = (1/2− |1/2 + bbγc − bγ|)2.

Clearly, if bγ ∈ Z, we have zb,γ = 0, so that σc(−∆b
A) = [0,∞). Hence, the magnetic flux makes

a difference to the spectrum, as expected due to the topology of the Aharonov-Bohm potential.
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Note that if we restrict the particle to a finite surface area of the cylinder (similarly to the
way we did on the Euclidean plane) and impose the condition that the wave function vanishes at
the boundaries, then the continuous spectrum disappears and the spectrum is purely discrete.
For instance, if we restrict to x ∈ [0, L] (which can be done without loss of generality due to
translational symmetry) with L > 0, one can verify that the discrete spectrum is given by

σd(−∆b
A) = {(lπ/L)2 + (n− bγ)2 : l ∈ Z, n ∈ Z},

which results in the energy spectrum

El,n =
~2

2m

((
lπ

L

)2

+

(
n− qa2B0

2~

)2
)
, l, n ∈ Z.

Similarly to the case where one restricts a particle to a circular ring (as studied at the end of
Section 4.3), the term (n− (qa2B0)/(2~))2 lifts the two-fold degeneracy of the energy spectrum.

4.5 Spectrum on the Grushin cylinder

This section is based on [8], [32]. We use the same coordinates (x, φ) as the Euclidean unit
cylinder. Choosing the vector potential such that A = γ dφ, a computation using Theorem 4.7
yields the magnetic Laplace-Beltrami operator

∆b
A =

∂2

∂x2
− 1

x

∂

∂x
+ x2

(
∂2

∂φ2
− 2ibγ

∂

∂φ
− b2γ2

)
.

Let M be the Grushin cylinder. Through a slight extension of the proof in [33], one finds
that the magnetic Laplace-Beltrami operator with domain C∞c (M \Z) is essentially self-adjoint
on L2(M,ωg) and separates in the direct sum of its restrictions to M± = R± × S1 (for more
information on the separation, see Appendix D). Hence, the evolutions on the two sides of the
singularity are independent of each other. Hence, without loss of generality, one may restrict
∆b
A to act on M+. We may separate this further. Cylindrical symmetry motivates the use of a

Fourier transform with respect to the variable φ. One then obtains the separation of spaces

L2(M+, ωg) =
⊕
k∈Z

Hk, Hk
∼= L2(R+, (1/x)dx),

and the transformation of operators

∆b
A =

⊕
k∈Z

∆̂b
A,k, ∆̂b

A,k =
∂2

∂x2
− 1

x

∂

∂x
− x2(k − bγ)2.

Since ∆b
A is essentially self-adjoint, each ∆̂b

A,k is self-adjoint on the closure (with respect to the

graph norm of C∞c (R+)). By the transformation U : L2(R+, (1/x)dx)→ L2(R+, dx) defined by

Uψ(x) := ψ(x)√
x

, one obtains that LbA,k := U∆̂b
A,kU

−1 when acted on ψ ∈ Hk takes the form

LbA,kψ = U∆̂b
A,k(
√
xψ)

= U

((√
x
∂2ψ

∂x2
+

1√
x

∂ψ

∂x
− ψ

4x3/2

)
−
(

1√
x

∂

∂x
+

ψ

2x3/2

)
− x5/2(k − bγ)ψ

)
=
∂2ψ

∂x2
− 3ψ

4x2
− x2(k − bγ)2ψ.

This leads to the fact that

LbA,k =
∂2

∂x2
− 3

4

1

x2
− x2(k − bγ)2, dom(LbA,k) = U(dom(∆̂b

A,k)).

27



Note that the spectrum does not change under unitary transformations. Namely, we have

(LbA,k − λ)ψ = 0 ⇐⇒ (∆̂b
A,k − λ)U−1ψ = 0. (4.6)

This is easy to show: Assume (LbA,k − λ)ψ = 0, then

(∆̂b
A,k − λ)U−1ψ = (U−1LbA,kU − λ)U−1ψ

= (U−1LbA,k − λU−1)ψ

= U−1U(U−1LbA,k − λU−1)ψ

= U−1(LbA,k − λ)ψ = 0.

The converse is shown similarly. It therefore suffices to study the spectral properties of this
operator, since one has a formula for the direct sum of operators (recall Theorem 4.19). Now
let k 6= bγ. Using the equivalence in equation (4.6) and letting ψ̃ = U−1ψ, the problem rests on
solving the ordinary differential equation

d2ψ̃

dx2
− 1

x

dψ̃

dx
− x2(k − bγ)2ψ̃ − λψ̃ = 0.

The change of variable z = |k − bγ|x2 results in the equation

4z|k − bγ|d
2ψ̃

dz2
− z|k − bγ|ψ̃ − λψ̃ = 0.

Division by 4z|k − bγ|2 results in a specific case of Whittaker’s equation

d2ψ̃

dz2
+

(
−1

4
− λ

4z|k − bγ|

)
ψ̃ = 0,

which has solutions Mλ/(4|k−bγ|),1/2(z) and Wλ/(4|k−bγ|),1/2(z). For more information on the
Whittaker equation and functions, see Appendix C.2. It thus follows that solutions to the
eigenvalue problem are linear combinations of the functions

ψ1(x) =
1√
x
Mλ/(4|k−bγ|),1/2(|k − bγ|x2), ψ2(x) =

1√
x
Wλ/(4|k−bγ|),1/2(|k − bγ|x2).

By definition of the Whittaker functions, one can see that ψ1 6∈ L2(R+, dx) for all choices of λ
and ψ2 ∈ L2(R+, dx) if and only if λ

4|k−bγ| is a non-negative integer. It thus follows that the

eigenvalues of LbA,k are

λb,γn,k = 4n|k − bγ|, n ∈ Z,

with corresponding eigenfunctions

ψb,γn,k(x) =
1√
x
Wn,1/2(|k − bγ|x2).

Now consider the case where k = bγ, [30] shows that −LbA,bγ has purely continuous spectrum
[0,∞). It is a Schrödinger operator with a Calogero potential of strength 3/4.

We now reconsider the original magnetic Laplace-Beltrami operator on M+. It follows from
Theorem 4.19 and the above that the discrete spectrum is given by

σd(−∆b
A) =

{
λb,γn,k = 4n|k − bγ| : n ∈ N, k ∈ Z \ {bγ}

}
.

If bγ ∈ Z, the spectrum has continuous part [0,∞). Otherwise, the spectrum is purely dis-
crete. Via the Fourier transform used previously and the definition of U , it follows that the
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corresponding eigenfunctions for any selection of bγ are ψb,γn,k(x, φ) = eikφ

x Wn,1/2(|k − bγ|x2).
Clearly, the spectrum changes significantly depending on bγ, which from a physical point of
view depends on the electric charge and the magnetic flux through the solenoid. This is even
more apparent when computing the degeneracy of the spectrum. Let d(n) be the number of
divisors of n. We claim that the following holds for all bγ ∈ R:

• If bγ is irrational, the spectrum is simple (i.e., non-degenerate).

• If bγ is rational, each eigenvalue λ has multiplicity less than or equal to 2d(λ/4).

• If bγ is an integer, the eigenvalues have multiplicity 2d(λ/4) if λ/4 is odd and 2d(λ/4)− 2
if λ/4 is even.

Proof. Suppose that bγ is irrational. Then x := k − bγ is irrational. Fix an arbitrary (n, k),

suppose that λb,γn′,k′ = λb,γn,k for some pair (n′, k′) 6= (n, k) and let x′ := k′ − bγ. Note that
k′ will differ from k by an nonzero integer, say m so that k′ = k − m. It then follows that
n′|x−m| = n|x|. There are now three cases, where both x−m and x are positive, where x−m
is negative and the other positive, and where both are negative. For simplicity, we only consider
the case where both are positive, as the other cases are proved similarly. In this case, we obtain
the equality n′(x − m) = nx, which is equivalent to x = n′m

n′−n . However, this implies that x

is rational, which is a contradiction. Hence λb,γn′,k′ = λb,γn,k if and only if (n′, k′) = (n, k), which
shows that the spectrum is simple.

Now suppose that bγ is rational. Then there exists p, q such that bγ = p/q with p ∈ Z,

q ∈ N such that gcd(p, q) = 1. Fix an arbitrary (n, k) and suppose that λb,γn′,k′ = λb,γn,k for some
pair (n′, k′). It then follows that

4n′|qk′ − p| = qλb,γn,k.

Now assume without loss of generality that qk′ − p is non-negative. Since gcd(p, q) = 1, we

have 4n′|qk′ − p| - q, hence 4n′|qk′ − p| | λb,γn,k. If bγ is not an integer, then q 6= 1, so that
{|qk′ − p| : k ∈ Z} ⊆ (qZ − p) ( Z. Hence, it follows that the number of (n′, k′) such that

λb,γn′,k′ = λb,γn,k can be at most 2d(λb,γn,k/4), as required.
Lastly, suppose that bγ is an integer. Assume without loss of generality that k is non-

negative. Then one has

λb,γk,n+bγ = λb,γn,k+bγ = λb,γn,−k+bγ = λb,γk,−n+bγ .

In the case that n|k| = λK,γn,k+Kγ/4 is even (where equality holds for arbitrary K ∈ R), then two

of the combinations repeat themselves (when n = k). If λK,γn,k+Kγ/4 is odd, then this does not
happen, as required.
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5 Extensions and related effects

In the following, we discuss extensions and modifications to the canonical example (namely, a
charged particle moving in opposite directions around a infinitely long cylindrical solenoid in
Euclidean space without any relativistic effects) discussed in the context of the Aharonov-Bohm
effect. Long derivations will be omitted in this section and we will refer to some sources for the
interested reader.

5.1 The relativistic Aharonov-Bohm effect

In this section, we derive an analogous effect for a relativistic Dirac particle (a massive particle
of spin-1/2, such as an electron) via the Dirac equation with electromagnetic effects (which we
derive first in this section). We use the Einstein summation convention throughout and employ
the (+,−,−,−) metric signature for the Minkowski metric η. We let In be the n × n identity
matrix. This section is based on [34]–[36].

We let ψ be a (four-component) Dirac spinor and denote its Dirac adjoint by ψ := ψ†γ0.
The Lagrangian density for the standard Dirac equation is known to be

L1 = ψ(i~cγµ∂µ −mc2)ψ,

where ∂µ = ((1/c)(∂/∂t),∇) and γµ are the Dirac matrices which satisfy the anti-commutation
relation {γµ, γν} = 2ηµνI4 and

(γ0)2 = I4, (γk)2 = −I4,

where k ∈ {1, 2, 3}. In the following, we take the Dirac basis

γ0 =

[
I2 0
0 −I2

]
, γk =

[
0 σk

−σk 0

]
,

where σk are the Pauli matrices given by

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

For an electromagnetic field with four-vector potential Aµ = (V/c,A), the Lagrangian density
is

L2 = −1

4
FµνF

µν − qAµjµ,

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor and jµ = cψγµψ is the current
density (this can be derived using U(1) symmetry, otherwise the Lagrangian density is not gauge
invariant). The QED Lagrangian density is therefore given by the sum

L = L1 + L2 = ψ

(
i~cγµ

(
∂µ +

iq

~
Aµ

)
−mc2

)
ψ − 1

4
FµνF

µν .

Using the Euler-Lagrange equation for fields, one obtains the following equation of motion
by varying with respect to ψ:

i~cγµ
(
∂µ +

iq

~
Aµ

)
ψ −mc2ψ = 0. (5.1)

This is one way to write the Dirac equation with an electromagnetic field. However, it is more
convenient to separate the time and spatial components for our analysis. Multiplying by γ0

from the left and using (γ0)2 = I4 gives

i~
∂ψ

∂t
+ i~cγ0γk

(
∂k +

iq

~
Ak

)
ψ −mc2γ0ψ − qV ψ = 0.
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Recall that p→ −i~∇, it therefore follows that pk = i~∂k. Hence,

i~
∂ψ

∂t
= cγ0γk(−pk + qAk)ψ +mc2γ0ψ + qV ψ,

which can be written as

i~
∂ψ

∂t
= HDψ, HD := cα · (p− qA) + βmc2 + qV I4. (5.2)

where αk := γ0γk, β := γ0 and α := (α1, α2, α3) is a vector with matrix entries. One may also
express αk and β in terms of the Pauli matrices. We obtain

αk =

[
0 σk

σk 0

]
, β =

[
I2 0
0 −I2

]
.

Both matrices are Hermitian and they satisfy the involutive property, namely (αk)2 = I4 and
β2 = I4. Additionally, they satisfy the anti-commutation relations

{αk, αl} = 2ηklI4, {αk, β} = 0,

where l ∈ {1, 2, 3}. In particular, the matrices are mutually anti-commutative if k 6= l.
Equation (5.2) is the electromagnetic Dirac equation. Like in the non-relativistic case,

assume there is no electric field and that V = 0 due to gauge freedom. If A is time-independent,
it can be shown analogously to the proof of equation (2.5) that the solution to this equation is
given by

ψ(r, t) = eig(r)ψ0(r, t), g(r) =
q

~

∫ r

O
A(r′) · dr′,

where ψ0(r, t) is the solution to the free Dirac equation (when A = 0). Notice that the phase
factor in the relativistic case is exactly the same as the non-relativistic case, the only difference
being that the standard wave function gets replaced by a Dirac spinor.

5.2 The Aharonov-Bohm effect for the hydrogen atom with magnetic mono-
pole field

In the following we discuss a case where the vector potential A differs from the standard
infinite solenoid example. To this end, we consider the case where an electron of charge q = −e
is bound to a hydrogen nucleus with Coulomb potential energy V (r) = − 1

4πε0
e2

r , when both the
Aharonov-Bohm field and magnetic monopole field are present. This section is based on [37],
[38].

It is well-known that there is currently no experimental evidence that magnetic monopoles
exist. Nevertheless, it is interesting to analyse what would happen assuming they did, as this
could provide evidence for their existence/non-existence. An attempt of this was made by Dirac,
who showed that if magnetic monopoles exist, then electric charge must be quantized (this is
called the Dirac quantization condition). As a matter of fact, this is indeed the case. Had this
been false, we would be able to conclude that they do not exist.

The magnetic field of a point magnetic monopole of strength g analogous to a point electric
charge is given by (in spherical coordinates (r, θ, ϕ) ∈ [0,∞)× [0, π]× [0, 2π))

B =
g

r2
r̂.

It can be shown that the vector potential AN defined by

AN :=
g(1− cos(θ))

r sin(θ)
ϕ̂,
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satisfies B = ∇×AN everywhere except when θ = π. This line of singularity is called a Dirac
string. To avoid this singularity, Wu and Yang showed that for δ ∈ (0, π/2], the two vector
potentials AN defined for θ ∈ [0, π/2 + δ) (given above) and AS defined for θ ∈ (π/2− δ, π] by

AS := −g(1 + cos(θ))

r sin(θ)
ϕ̂,

differ by a gauge transformation in the overlap region (π/2 − δ, π/2 + δ), with B = ∇ ×AS .
Namely, we have [39]

AN −AS =
2g

r sin(θ)
ϕ̂ = 2g∇ϕ.

Hence, we may assume without loss of generality that the vector potential due to the magnetic
monopole is Ag := AN . In spherical coordinates, the Aharonov-Bohm potential is given by

AAB =
a2B0

2r sin(θ)
ϕ̂,

so that the total vector potential is given by A = Ag + AAB. This vector potential clearly has
different functional dependence from the standard Aharonov-Bohm potential, assuming that
g 6= 0. We thus obtain a different partial differential equation for the (time-independent) wave
function which can be solved by separation of variables, namely

− ~2

2m

(
∇+

ie

~
A

)2

ψ − 1

4πε0

e2

r
ψ = Eψ.

In this case, the result depends heavily on the values of two dimensionless parameters ξ and η
defined by

ξ = ge/~, η =
a2B0e

2~
+ ge/~ + kϕ,

where kϕ ∈ Z is a constant arising from the fact that eigenstates are of the form ψ(r, θ, ϕ) =
f(r, θ)eikϕϕ, where f is a smooth function (which can be shown using separation of variables
with ansatz ψ(r, θ, ϕ) = f(r, θ)h(ϕ)). The energy spectrum is then shown to be

El,n = − 1

2~2

(
1

4πε0

)2 me4(
l +
√

(n+ 1/2−max{|ξ|, |η|})2 − η2 + 1/2
)2 ,

where l ∈ N ∪ {0} and n ∈ Z.
This leads to the following surprising physical consequence: In the case that |η| < |ξ|, the

energy spectrum is independent of the magnetic flux of the solenoid. Hence, the Aharonov-
Bohm effect is absent for these quantum states. The same phenomenon has been found to
occur in the case of a relativistic spin-0 particle [37] and a relativistic spin-1/2 particle [40].

5.3 The Aharonov-Casher effect

An effect related to the Aharonov-Bohm effect is the Aharonov-Casher effect. In this case, a
(neutral) magnetic dipole µ is affected by an electric field E. Recall that a magnetic moment
is generated by a current distribution

Jm = ∇×M, µ =

∫∫∫
M dV,

where M is the magnetization and Jm is the contribution to current density due to magnetiz-
ation. In the Euclidean case, one has an acquired phase shift due to the non-simply connected
nature of the setup (similar to the Aharonov-Bohm effect). The effect was first predicted in
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1984 by Yakir Aharonov and Aharon Casher [41] and was observed experimentally in 1989 us-
ing neutron interferometry [42]. In fact, the two effects are electromagnetically dual. Roughly
speaking, the roles of the solenoid and moving electrons switch. Instead, we have neutral
particles possessing a magnetic dipole moment (such as neutrons) moving around a line charge.

Figure 5.1: The Aharonov-Casher effect (compare with Figure 2.1)

Aharonov and Casher showed that the Hamiltonian for this system (with vanishing scalar
potential) is given by

H =
1

2m

(
p− E× µ

c2

)2

− µ2E2

mc4
,

where c is the speed of light. In the case that µE/c2 � mv (here E is the electric field strength,
not the energy), which happens in most physical cases, one can neglect the term µ2E2/(mc4).
Hence, in the following we drop this term [43]. Analogous to the derivation of the Aharonov-
Bohm effect, the substitution p → −i~∇ promotes this Hamiltonian into an operator H on
L2(R3), which allows for the transition to quantum mechanics.

i~
∂ψ

∂t
= Hψ = − ~2

2m

(
∇− i

~c2
E× µ

)2

ψ. (5.3)

The computation of the phase factor is thus analogous for static electromagnetic fields and
works out to be (cf. equation (2.5))

gAC(r) =
1

~c2

∫ r

O
(E× µ) · dr′.

Due to the similar form of the Schrödinger equations (cf. equation (2.4)), we suspect that
one could perform a similar spectral analysis on various almost-Riemannian manifolds for the
Aharonov-Casher effect as we have done in Section 4 for the Aharonov-Bohm effect. The
transition to differential forms can be made by noting that the Hodge dual of the wedge product
of two vectors in R3 is just the cross product and that the magnetic moment is a axial vector
(like the magnetic field), which results in the correspondence

µ = µ1x̂ + µ2ŷ + µ3ẑ←→ µ = µ1 dy ∧ dz + µ2 dz ∧ dx+ µ3 dx ∧ dy.

This will not be discussed here, but it is a possible topic for future research.
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6 Discussion

In Section 2, we found in the Euclidean case that if one splits an electron beam in two around a
long cylindrical solenoid and bring them back to a point with non-zero magnetic flux through the
area between the paths, an interference pattern will appear. This comes from the fact that the
wave function of a charged particle travelling in different directions around the solenoid acquires
a change in phase independent of time (it depends only on the path taken) called geometric
phase. This shows that the Aharonov-Bohm effect is a non-local phenomenon, otherwise the
fact that the magnetic field is zero where the electron beam passes would not affect them in
any way.

In Section 4, we found that if a charged particle is bound to a plane (without the long
cylindrical solenoid’s cross section), one finds the spectra

σd(H) = ∅, σc(H) = [0,∞).

Surprisingly, this is independent of the magnetic flux through the solenoid. However, if one re-
stricts the particle to a subset of finite area, then the continuous part of the spectrum disappears
and the spectrum depends on the magnetic flux through the solenoid.

When one restricts the charged particle to a cylinder around the solenoid, one finds the
spectra

σd(H) = ∅, σc(H) =

[
~2

2m

(
1

2
−
∣∣∣∣12 +

⌊
qa2B0

2~

⌋
− qa2B0

2~

∣∣∣∣)2

,∞

)
.

In contrast to the Euclidean plane, the magnetic flux through the solenoid affects the spectrum
in both cases, whether one does or does not restrict the particle to a subset of finite area.

Finally, on the Grushin cylinder, it was found that

σd(H) =

{
2~2n

m

∣∣∣∣k − qa2B0

2~

∣∣∣∣ : n ∈ N, k ∈ Z \
{
qa2B0

2~

}}
, σc(H) =

{
[0,∞), qa2B0

2~ ∈ Z,
∅, otherwise.

The main difference between the effect on Riemannian manifolds and purely almost-Riemannian
manifolds is that the nature itself of the spectrum (continuity and/or discreteness) is affected
purely by a change in the magnetic flux on almost-Riemannian manifolds, whereas in Rieman-
nian manifolds it is independent of the magnetic flux. It is also quite easy to see that the
Grushin cylinder has infinite (almost-Riemannian) area

∫
M\Z ωg. Hence, it is quite unusual

that the continuous part of the spectrum disappears for some magnetic fluxes, since in most
physical situations where a particle is not localized to a region of finite measure (scattering
state), the energy spectrum is expected to be purely continuous. For instance, a one-dimensional
free quantum particle due to the lack of boundary conditions is well-known to have continuous
energy spectrum

Ek =
~2k2

2m
, k ∈ R,

with non-normalizable (time-independent) eigenstates ψk(x) = eikx. Ultimately, doing this
analysis on almost-Riemannian structures improves our mathematical understanding on how
singular spaces (in the almost-Riemannian sense) affect the spectrum of the Laplace-Beltrami
operator. It also improves our understanding on the control of quantum mechanical systems.

In Section 5, it was found that the phase factor for a relativistic massive spin-1/2 particle
obtained via the magnetic flux is the same as the non-relativistic case. However, this does
not necessarily imply that the spectrum of the Dirac operator HD (see equation (5.2)) is the
same as that of the Hamiltonian in the non-relativistic case. This may be worth investigating,
as in [44], the authors have found an alternative explanation of the Aharonov-Bohm effect in
terms of special relativity. We have also investigated some of the phenomena that could occur if
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magnetic monopoles were to exist. In particular, we focused on the case where an electron bound
to a proton (a hydrogen atom) is subject to a magnetic monopole field and Aharonov-Bohm
potential. It was found that despite the non-simply connected topology, the Aharonov-Bohm
effect is absent (i.e., no difference in geometric phase is acquired) for some quantum states.
Lastly, it was found that the Aharonov-Casher effect in a non-relativistic limit and under some
approximation has similar properties to the Aharonov-Bohm effect, but with a difference in
magnitude of the phase factor. A similar spectral study may thus be performed (this is likely
to be easier than the relativistic extension).

Some techniques in this thesis can be used to compute the spectrum on n-dimensional ver-
sions of the almost-Riemannian manifolds covered here (for an arbitrary dimensional definition
of an almost-Riemannian manifold, we refer to Section 3.1.3 of [5]). Unfortunately, the tech-
niques used to derive the spectra in this thesis rely heavily on the freeness and explicit nature of
the almost-Riemannian manifolds and the integrability of the geodesic equation of the almost-
Riemannian structures and they are thus not suitable to derive spectral properties associated
with the Aharonov-Bohm effect on generic almost-Riemannian manifolds.
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7 Conclusion

In this thesis, we have investigated the theory and results regarding the spectrum of the magnetic
Laplace-Beltrami operator on various two-dimensional almost-Riemannian manifolds with the
vector potential produced by a infinitely long solenoid.

For the cases where the manifold is also Riemannian (with Euclidean metric), we find for
both the plane (see Remark 4.20) and the unit cylinder that the discrete part of the spectrum
vanishes if one does not constrain a particle to a subset of finite measure. In that case, the
continuous part of the spectrum may vary with magnetic flux, which is expected due to the non-
simply connectedness of the manifolds. The type of spectrum was found to be independent of
the magnetic flux. In the purely almost-Riemannian case we considered (the Grushin cylinder),
we found that the above does not hold. Both the types of spectrum and degeneracies are
extremely sensitive to the magnetic flux.

We have also discussed what would happen if one considers more complex physical systems
or if one adds certain effects. For instance, we have found that the existence of magnetic
monopoles implies that the Aharonov-Bohm effect may not appear in some cases despite non-
simply connected topology. Additionally, we have found in a QFT framework that the addition
of relativity has no effect on the geometric phase, but we suspect that the energy spectrum may
differ from the standard quantum mechanical case.

A possibility for future research could be spectral analysis of the electromagnetic Dirac
operator (instead of the magnetic Laplace-Beltrami operator) on various almost-Riemannian
manifolds. This is particularly useful for constructing path integrals in quantum field theory
(this formulation is equivalent to canonical quantization) [45]. A similar analysis could also be
performed on the related Aharonov-Casher effect.
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Appendices

A Simply connectedness and homotopy

In the following, we introduce the notion of simply connectedness and what it means for two
paths to be homotopic.

Definition A.1. Let X be a topological space. A path from a point x to a point y in X is a
continuous function f : [0, 1]→ X with f(0) = x and f(1) = y.

Definition A.2. A topological space X is called path-connected if there is a path joining any
two points in X.

Definition A.3. Let p : [0, 1] → X and q : [0, 1] → X be two paths with the same start
and end points (p(0) = q(0) and p(1) = q(1)). A topological space X is simply connected
if it is path-connected and there exists a continuous map F : [0, 1] × [0, 1] → X such that
F (x, 0) = p(x) and F (x, 1) = q(x) (F is then called a homotopy and the two paths are said to
be homotopic). Intuitively, this means that p can be continuously deformed into q while staying
in the topological space and keeping the endpoints fixed.

Example A.4. Below are examples of topological spaces in R2 and R3 (with the Euclidean
topology) which are either simply connected or not simply connected.

Figure A.1: Examples of (non-)simply connected domains

Considering the domains of R2, the second (from left to right) is not simply connected,
because if one lets p and q be two paths that go around the inner circle in opposite directions,
one cannot continuously deform p into q without leaving the domain. The third is not simply
connected, as it is not path-connected. For domains in R2, one can (roughly speaking) identify
simply connected domains as those which do not have holes in them.

Regarding the domains of R3, the concept is more subtle. For instance, the second domain
has a hole inside the sphere, but is simply connected. The third domain is not simply connected
(for a similar reason as the second domain of R2) and is of particular importance for the study
of the Aharonov-Bohm effect (with respect to the solenoid example of Figure 2.1).

B An alternative definition for the Laplace-Beltrami operator

It is possible to define the Laplace-Beltrami operator without use of the Hodge star operator.
This section is based on [18].
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Definition B.1. Let f ∈ C∞(M) and (M, g) be a n-dimensional orientable Riemannian man-
ifold with volume form as in equation (3.5). We define the Laplace-Beltrami operator to be

∆ := div ◦∇,

where the gradient operator ∇ : C∞(M)→ X (M) is defined such that for all X ∈ X (M)

g(∇f,X) = df(X),

and the divergence operator div : X (M)→ C∞(M) is defined such that for all X ∈ X (M)

d(ιXωg) = (div(X))ωg,

where ιX is interior multiplication by X.

The Laplace-Beltrami operator is thus dependent on the choice of Riemannian metric.

Theorem B.2. An expression for the Laplace-Beltrami operator on a coordinate chart (U, x1, . . . , xn)
is

∆ =
1√

| det(gij)|

∑
i,j

∂

∂xi

(√
|det(gij)|gij

∂

∂xj

)
. (B.1)

Proof. We first find an expression in local coordinates for the gradient operator. We assume first
that ∇f =

∑n
i=1 a

i ∂
∂xi

for some ai ∈ C∞(U). Choosing in particular the vector field X = ∂
∂xj

,
we have

∂f

∂xj
= df

(
∂

∂xj

)
= g

(
∇f, ∂

∂xj

)
=

n∑
i=1

ai · g
(
∂

∂xi
,
∂

∂xj

)
=

n∑
i=1

aigij .

Fixing some k ∈ {1, . . . , n}, we find that

n∑
j=1

gjk
∂f

∂xj
=

n∑
j=1

n∑
i=1

aigijg
jk =

n∑
i=1

aiδki = ak.

Therefore, an expression in local coordinates for the gradient is

∇f =
∑
i,j

gij
∂f

∂xj
∂

∂xi
.

We now find an expression in local coordinates for the divergence. Writing X =
∑n

j=1 ξ
j ∂
∂xj

with ξj ∈ C∞(U) and letting X2, . . . , Xn be arbitrary vector fields, we find using a cofactor
expansion along the first column of the determinant that

(ιXωg)(X2, . . . , Xn) = ωg(X,X2, . . . , Xn)

=
√
| det(gij)|(dx1 ∧ · · · ∧ dxn)(X,X2, . . . , Xn)

=
√
| det(gij)| · det


dx1(X) dx1(X2) · · · dx1(Xn)
dx2(X) dx2(X2) · · · dx2(Xn)

...
...

. . .
...

dxn(X) dxn(X2) · · · dxn(Xn)


=
√
| det(gij)|

n∑
i=1

(−1)i−1dxi(X)(dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn)(X2, . . . , Xk),
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where the hat over a symbol means that the symbol is absent in the sum. Since dxi(X) = ξi

for fixed i, it follows that

ιXωg =
n∑
i=1

(−1)i−1
√
| det(gij)|ξi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

We now compute its exterior derivative. We find that

d(ιXωg) =
n∑
i=1

(−1)i−1 ∂

∂xi

(√
|det(gij)|ξi

)
dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
n∑
i=1

∂

∂xi

(√
|det(gij)|ξi

)
dx1 ∧ · · · ∧ dxn

=
1√

|det(gij)|

n∑
i=1

∂

∂xi

(√
|det(gij)|ξi

)
ωg.

Therefore, by definition we have the following coordinate expression for the divergence:

div(X) =
1√

| det(gij)|

n∑
i=1

∂

∂xi

(√
|det(gij)|ξi

)
.

Hence, it follows that

∆f =
1√

|det(gij)|

∑
i,j

∂

∂xi

(√
|det(gij)|gij

∂f

∂xj

)
,

which agrees with equation (B.1).

Example B.3. In n-dimensional Euclidean space, we have gij = δij , thus the Laplace-Beltrami
operator reduces to the standard Laplacian

∆f =

n∑
i=1

∂2f

∂(xi)2
.

C Special functions

C.1 Bessel functions

This section is based on [46], [47]. Consider the linear second order differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0.

This equation has two linearly independent solutions, which we denote by Jν(x) and Yν(x).
They are referred to as Bessel functions of the first and second kind of order ν respectively.
Especially in physics, one sometimes refers to the latter function as a Neumann function Nν(x)
of order ν. The two functions are defined by the following

Jν(x) :=

∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(x
2

)2m+ν
,

where Γ(z) :=
∫∞

0 xz−1e−x dx is the well-known Gamma function, a (shifted) extension of the
factorial for non-integer values, and

Yν(x) :=

{
Jν(x) cos(νπ)−J−ν(x)

sin(νπ) , ν 6∈ Z,
limα→ν Yα(x), ν ∈ Z.

42



The Bessel function of the first kind Jν(x) is zero at the origin, finite when x > 0, and diverges
as x → 0 for negative non-integer ν. In contrast, the Bessel function of the second kind Yν(x)
is singular at x = 0 for all ν ∈ R.

C.2 Whittaker functions

This section is based on [46]. Consider the differential equation

d2y

d2x
+

(
−1

4
+
κ

x
+

1/4− µ2

x2

)
= 0.

This equation has two linearly independent solutions, which we denote by Mκ,µ(x) and Wκ,µ(x).
They are defined by

Mκ,µ(x) := xµ+1/2e−x/2
∞∑
n=0

(µ− κ+ 1/2)n
n!(2µ+ 1)n

xn,

Wκ,µ(x) :=
e−x/2xκ

Γ(1/2− κ+ µ)

∫ ∞
0

t−κ−1/2+µ

(
1 +

t

2

)κ−1/2+µ

e−t dt.

where (z)n is the Pochhammer symbol, defined by

(z)n :=
Γ(z + n)

Γ(z)
.

D The splitting of the magnetic Laplace-Beltrami operator on
the Grushin cylinder

This section is based on [32]. Let M be the Grushin cylinder with volume form ωg on M \ Z.
In the following, we use the definitions of the gradient and Laplace-Beltrami operator as in
Appendix B. We define the space

H1(M,ωg) = {u ∈ L2(M,ωg) : |∇u| ∈ L2(M,ωg)},

with norm

‖u‖H1 =

(∫
M
|u|2 + |∇u|2

)1/2

.

From this, we can define the space

H1
0 (M,ωg) = C∞c (M),

where the overline represents the closure with respect to the H1 norm. Finally, we define

H2
0 (M,ωg) = {u ∈ H1

0 (M,ωg) : ∆u ∈ L2(M,ωg)}.

Since the magnetic Laplace-Beltrami operator ∆b
A with domain C∞c (M \ Z) is essentially self-

adjoint on L2(M,ωg), the only self-adjoint extension is the Friedrichs extension [∆b
A]F which is

well-defined and self-adjoint and has domain

dom([∆b
A]F ) = H2

0 (M,ωg).

Since L2(M,ωg) = L2(M+, ωg) ⊕ L2(M−, ωg) and H1
0 (M,ωg) = H1

0 (M+, ωg) ⊕H1
0 (M−, ωg), it

follows that
dom([∆b

A]F ) = H2
0 (M+, ωg)⊕H2

0 (M−, ωg).

Therefore, the operator splits into a direct sum of its restrictions to M±, as required. Note that
H1, H1

0 and H2
0 are all examples of Sobolev spaces, which are very important in the study of

partial differential equations.
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