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Abstract

In the first two sections of this thesis the theory of number fields and the theory
of complex multiplication (CM) is discussed. In the third section, new results are
computed, namely the reflex types for two cases. First, where the Galois group of
the normal closure of the sextic CM-field K is (C2)3 o C3 and second, where the
Galois group of the normal closure of K is (C2)3 o S3. Moreover, in the end of
the section explicit examples of sextic CM-fields are found and the reflex fields are
computed for some of the examples. This thesis ends with discussion over further
research in using the results of this bachelor project.
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Preface

A complex multiplication field (CM-field) of degree 2g is defined to be a totally imaginary
quadratic extension of totally real number field of degree g over Q. For a given CM-
field K of degree g, one can construct a principally polarized abelian variety (ppav)
of dimension g with CM by K; this construction is known as the CM-method. This
connection to algebraic geometry makes these number fields interesting to study. For
example, when g = 1, these CM-fields are imaginary quadratic fields and the abelian
varieties constructed from these fields are CM-elliptic curves, which are commonly used
in cryptography.

A CM-type Φ of a CM-field K of degree 2g is a set of g complex embeddings of K
such that none of these embeddings are complex conjugate. To every pair (K,Φ), we
can associate a CM-field, called the reflex field, Kr. The main theorem of CM [10] says
that a ppav with CM by K is defined over a finite extension of the Kr. One interesting
question is to ask when such ppav’s are defined over Kr, this is known as CM-class
number one problem. This problem has been solved for g = 1, g = 2 and partially
for g = 3.

Let K be a sextic CM-field. Then the Galois group of the normal closure L of K
is isomorphic to one of these groups: C6, D6, (C2)3 o C3 or (C2)3 o S3. The CM-class
number one problem was solved for the first two cases but it is still open for the latter
two cases. The focus of this project will be on the the latter two cases.

The aim is to understand the basics of CM-theory and compute the CM-types Φ
of K and then determine the reflex CM-fields Kr for each (K,Φ) pair, where the Galois
group of K is isomorphic to (C2)3 o C3 or (C2)3 o S3. We will also look at explicit
examples of sextic CM-fields for these two cases.
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1 Number Fields

In this section some basic definitions from field theory and Galois theory are reviewed,
and the background on number fields is presented. Most of the definitions are standard
and can be found in Abstract Algebra by Dummit and Foote [3].

1.1 Field extensions

Suppose K and L are fields such that K ⊂ L. We say L is a field extension of K, and
write either K ⊂ L or L/K. Now, let α ∈ L, we say α is algebraic over K if there
exists a polynomial f(x) ∈ K[X] with f(α) = 0, i.e. α is a root of f(x). Recall that the
monic smallest degree polynomial f(x) ∈ K[X] such that f(α) = 0 is called the minimal
polynomial of α over K. If all elements in L are algebraic over K, we say L is an algebraic
field extension over K. We write [L : K] for the dimension of L as a K-vector space.
This dimension is called the degree of L/K, which can be either finite, if [L : K] < ∞
or infinite, if [L : K] =∞.

Let K be a field and let f(x) ∈ K[X]. A splitting field of K is the field L such that

L = K(α1, . . . , αn),

where αi’s are all the roots of f(x). For any polynomial f(x) ∈ K[X] a splitting field
exists and is defined uniquely up to an isomorphism that acts as identity on K, see
Theorem 25 and Corollary 28 in §13.4 [3].

LetK ⊂ L be an algebraic field extension, then L is normal overK if every irreducible
polynomial inK[X] has all roots in L. We say that a polynomial f(x) ∈ K[X] is separable
if all its roots in a splitting field are pairwise distinct. An element α ∈ L is separable over
K if its minimal polynomial is separable. Finally, an algebraic field extension K ⊂ L is
separable if every α ∈ L is separable over K.

For the same field extension, a K-automorphism of L is an isomorphism of fields
such that

σ : L −→ L

α 7−→ α, ∀α ∈ K,

in other words, σ|K = id. The set of K-automorphisms of L forms a group under
composition with identity automorphism as the unit element. This holds because the
composition of two K-automorphisms of L also fixes all the elements in K and is an
isomorphism, the inverse of each map exists since they are isomorphisms and associativity
is obvious. We denote this group by Aut(L/K).

Proposition 1.1. Let L be a finite extension of the fieldK and let an element α ∈ L. For
each σ ∈ Aut(L/K) we have that σ(α) is a root of the minimal polynomial of α over K.

Proof. Assume L is a finite extension over K such that [L : K] = n and take α ∈ L. Let
us denote the minimal polynomial of α over K by f(x). Then

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,
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where ai ∈ K since f(x) ∈ K[X]. Take σ ∈ Aut(L/K), then by the fact that σ is a field
homomorphism and σ|K = id, we get

σ(f(x)) = σ(anx
n + an−1x

n−1 + . . .+ a1x+ a0)

= σ(anx
n) + σ(an−1x

n−1) + . . .+ σ(a1x) + σ(a0)

= anσ(x)n + an−1σ(x)n−1 + . . .+ aσ(x) + a0

and therefore

0 = σ(f(α)) = anσ(α)n + an−1σ(x)n−1 + . . .+ aσ(x) + a0 = f(σα)).

This shows that σ(α) is a root of f(x). �

Definition 1.2. A finite field extension L/K is Galois if L is normal and separable
over K. In this case, the group of automorphisms of L/K is denoted by Gal(L/K) and
it is called the Galois group of L/K.

1.2 Number fields

In this section we will be interested in finite extensions of the field of rational numbers Q
contained in the field of complex numbers C.

Definition 1.3. An (algebraic) number field K ⊂ C is a finite degree field extension of
the field of rational numbers Q.

Proposition 1.4. Number field extensions are separable.

Proof. We begin by proving the following claim: Every non-zero polynomial in Q[X] is
separable if and only if it is relatively prime to its derivative in Q[X].
Suppose that f(x) is a non-zero separable polynomial in Q[X] with any root α ∈ C
such that f(α) = 0. Then f(x) = (x − α)h(x), where h(α) 6= 0 by the definition of
separability. Taking the derivative we get

f ′(x) = h(x) + (x− α)h′(x).

Since f ′(α) = h(α) 6= 0, so α is not a root of f ′(x). This implies that f(x) and f ′(x)
have no common roots, so they are relatively prime.
Now assume for contraposition that f(x) is not separable. By definition, there exists a
repeated root α in f(x), so f(x) = (x− α)2g(x) and that implies that

f ′(x) = 2(x− α)g(x) + (x− α)2g′(x) = (x− α)(2g(x)− (x− α)g′(x)).

So f(x) and f ′(x) contain the same root hence they are not relatively prime. This proves
the claim.

To finish the proof, we want to show that all irreducible polynomials f(x) in Q[X]
are separable. We will show by contradiction that (f(x), f ′(x)) = 1. Now assume
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that (f(x), f ′(x)) 6= 1. Then we get f(x)/f ′(x), because f(x) is assumed to be irreducible
and f ′(x) is also in Q[X]. But the degree of f ′(x) is lower than that of f(x), so f ′(x) = 0.
Since char(Q) = 0, every non-constant polynomial in Q[X] has a non-zero derivative.
We get a contradiction, so every irreducible polynomial in Q[X] is separable. �

Corollary 1.5. Every finite normal extension of a number field is Galois.

Proof. By Proposition 1.4 it follows that every finite extension of a number field is
separable. Then using Definition 1.2, it follows that every normal extension of a number
field is Galois. �

Lemma 1.6. Let K and L be number fields such that K and L are Galois over Q.
Then KL is Galois over Q.

Proof. Assume that K and L are number fields Galois over Q. Then [K : Q] = n
and [L : Q] = m and thus [KL : Q] ≤ nm. Since KL is a finite degree extension over Q,
it is also a number field and by Proposition 1.4 we have KL is separable over K. Now,
by definition, K and L are both normal (and separable) over Q so every irreducible
polynomial in Q[X] has all roots in K and L so also in KL. This shows that KL is
normal, so we proved that KL is Galois over Q. �

Definition 1.7. Let K ⊂ L be an non-normal algebraic field extension. The normal
closure of L is the smallest field N such that N/K is normal and L ⊂ N .

Note that all normal closures of number fields are Galois. This follows immediately
from Corollary 1.5.

In the previous section, we defined algebraic elements. A similar notion exists in
number fields.

Definition 1.8. Let K be a number field and α ∈ C, then α is an algebraic number if
there exists a polynomial in K[X] such that α is a root of that polynomial.

Lemma 1.9. If α, β ∈ C are algebraic over a number field K, then there exists an
element θ such that K(θ) = K(α, β).

Proof. Let fα(x) and gβ(x) be the minimal polynomials of α and β over K, respectively.
We claim that there is an element c ∈ K(α, β) such that θ := α+cβ and K(α, β) = K(θ).

The first inclusion K(θ) ⊂ K(α, β) is obvious since θ = α + cβ ∈ K(α, β). For
the second inclusion, we proceed as follows. By Proposition 1.4 we know that all the
roots α1 := α, . . . , αn of fα(x) and β1 := β, . . . , βm of gβ(x) are distinct. We choose an
element c ∈ K(α, β) so that for all αi and βj with i, j > 1 we have α + cβ 6= αi + cβj .
Note that there are infinitely many elements in K(α, β) but only finitely many restriction
for c, hence such a c exists.

Let ϕ(x) := fα(θ− cx) ∈ K(θ)[X], then ϕ(β) = fα(α) = 0 and β is the only common
root of ϕ(x) and gβ(x) by the choice of c. So we get

gcd(ϕ(x), gβ(x)) = k(x− β) ∈ K(θ)[X],
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where k is such that k 6= 0, hence β ∈ K(θ), thus also α = θ − cβ ∈ K(θ). This shows
that K(α, β) ⊂ K(θ), so K(α, β) = K(θ). �

Theorem 1.10. (Primitive Element Theorem) Let L/K be a number field exten-
sion. Then there exists a non-zero element θ ∈ L such that L = K(θ).

Proof. Let L/K be a number field extension and let S be a basis of L over K, i.e, S is
such that S = {α1, . . . , αm : αi ∈ L} and L = K(α1, . . . , αm). Note that #S is finite
since L is a finite extension over K, because they are both number fields. We will use
induction on the size of S. Assume that #S = 1. Then by definition L = K(θ). Assume
that #S = n and there exists θ ∈ L such that L = K(θ).

Now let S = {α1, . . . , αn+1 : αi ∈ L}. So L = K(α1, . . . , αn+1) but by induction
hypothesis there exists θ0 ∈ L such that L = K(θ0, αn+1). By Lemma 1.9 there exists
an element θ ∈ L such that L = K(θ). �

1.3 Embeddings

Definition 1.11. Let K and K ′ be two number fields and let φ be a field homomor-
phism φ : K ↪−→ K ′. Then φ is also called a field embedding of K into K ′. We say that
an embedding φ : K ↪−→ C is a complex embedding. A totally complex embedding is
an embedding of the form φ : K ↪−→ C \ R. A real embedding is an embedding such
that φ : K ↪−→ R.

Every field homomorphism φ : K ↪−→ K ′ is injective, because the kernel of a field
homomorphism is trivial.

The embedding ρ such that

ρ : C ↪−→ C
a+ ib 7−→ a− ib

where a, b ∈ R and i :=
√
−1 ∈ C is an automorphism of C called complex conjugation.

Each number field K is a subset of C, so the restriction map ρ|K : K ↪−→ C is a complex
embedding of K.

Moreover, totally complex embeddings of a number field K come in conjugate pairs,
where we define the complex conjugate of a complex embedding φ of K, denoted by φ,
to be φ := ρ ◦ φ. Note that if φ is a totally complex embedding of K, then φ is also a
totally complex embedding of K.

Definition 1.12. A totally real number field is a number field K such that all complex
embeddings of K are real. Similarly, a totally imaginary number field is a number field K
such that all complex embeddings of K are totally complex.

Let K be a number field such that [K : Q] = n. By Theorem 1.10 there exists an
element θ ∈ C such that K = Q(θ). This notation will be used in the following two
Lemmas.
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Lemma 1.13. Any field homomorphism φ : K ↪−→ C fixes Q.

Proof. By the definition of a field homomorphism, it holds that φ(α+ β) = φ(α) + φ(β)
and φ(αβ) = φ(α)φ(β) for any α, β ∈ K. Therefore, for any number a ∈ Z we have
that φ(a) = aφ(1) and most importantly, for all a, b ∈ Z, b 6= 0 we have

φ
(a
b

)
= φ(a)φ(b)−1 = ab−1 =

a

b
,

so φ|Q = id . �

Lemma 1.14. The field homomorphism φ : K ↪−→ C is uniquely determined by φ(θ).

Proof. Since we have K = Q(θ), every element α ∈ K can be written as α =
∑n

i=0 aiθ
i

for ai ∈ Q. Therefore we get

φ(α) = φ(

n∑
i=0

aiθ
i) =

n∑
i=0

φ(ai)φ(θi) =

n∑
i=0

aiφ(θ)i.

Note that φ(ai) = ai by Lemma 1.13. Uniqueness follows from injectivity of φ. �

Proposition 1.15. A number field K with [K : Q] = n has exactly n complex embed-
dings.

Proof. Assume K is a number field such that [K : Q] = n. From Theorem 1.10 we get
that there is a θ ∈ K such that Q(θ) = K. Let f(x) be the minimal polynomial of θ
over K. By Lemma 1.14 we know that for φ a complex embedding of K, we get φ(θ)
is a root of f(x). Since K is separable, all roots of f(x) are distinct so each complex
embedding maps θ to a different root of f(x). We can define complex embeddings

φi : K = Q(θ) −→ Q(θi) ⊂ C
θ 7−→ θi,

where θ1 := θ, . . . , θn are roots of f(x). Note that φi’s are field homomorphisms since

φi((c1 + θc2) + (d1 + θd2)) = φi(c1 + d1 + θ(c2 + d2))

= c1 + d1 + θi(c2 + d2)

= (c1 + θic2) + (d1 + θid2)

= φi(c1 + θc2) + φi(d1 + θd2)

φi((c1 + θc2)(d1 + θd2)) = φi(c1d1 + c2d2 + θ(c1d2 + c2d1))

= c1d1 + c2d2 + θi(c1d2 + c2d1)

= (c1 + θic2)(d1 + θid2)

= φi(c1 + θc2)φi(d1 + θd2),

for all c1, c2, d1, d2 ∈ Q. Moreover, φi forms an isomorphisms since

Q(θ) ∼= Q[X]/(f) ∼= Q(θi).

This shows that φi are complex embeddings of K and there are exactly n of them. �
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Corollary 1.16. If K ⊂ L is a number field extension, then every complex embedding
of K extends exactly d := [L : K] embeddings of L in C.

Proof. This follows from Proposition 1.15 when replacing Q,K with K,L, respectively.
�

Proposition 1.17. Let K be a number field such that K/Q is Galois. The complex
embeddings of K identify exactly with the elements of Gal(K/Q).

Proof. Let K ⊂ C be a normal number field extension over Q and let [K : Q] = n.
By Corollary 1.5, the extension K/Q is Galois. By Theorem 1.10, there exists θ ∈ C
such that K = Q(θ). Recall that the elements of the group Aut(K/Q) (in this case we
have Aut(K/Q) = Gal(K/Q)) permute the roots of the minimal polynomial of θ over Q
by Proposition 1.1. Since K ⊂ C, any automorphism σ ∈ Aut(K/Q) gives

σ : K −→ K ⊂ C.

So the automorphisms of K give distinct complex embeddings. Moreover, K/Q is Galois
so this implies # Aut(K/Q) = [K : Q]. By Proposition 1.15 we can conclude that all
the complex embeddings of K arise as automorphisms of K. �

Let K be a number field and L the normal closure of K. We have that K = Q(θ) for
some element θ ∈ C. Let φ : K ↪−→ L be a field homomorphism, then by Lemma 1.14,
the embedding φ is uniquely determined by the roots of the minimal polynomial of θ
over Q. By Proposition 1.17 we can then identify the complex embeddings of L with the
automorphisms of L. The embeddings of K into L ⊂ C then become

{φ|K ∈ Hom(K,L) : φ ∈ Aut(L/Q)}.

Definition 1.18. Let the notation be as above. Then an automorphism φ ∈ Aut(L/Q)
for which φ|K ∈ Hom(K,L) is called an extension of φ|K .

Assume thatK ⊂ L is an extension of number fields such that the degrees [K : Q] = n
and [L : K] = d. By the tower law we have [L : Q] = nd. Following from Proposition 1.15
and Corollary 1.16 there exist exactly n complex embeddings φi of K (note that these
are also complex embeddings of L since K ⊂ L) and every complex embedding of K
extends exactly d embeddings of L in C.

L C

K

φL

σ
φ=φL◦σ

Figure 1: Extending complex embeddings of K to L

Suppose that the field extension L/K is Galois. Let φ ∈ Hom(K,L) then the set

{φ ◦ σ : σ ∈ Gal(L/K)}
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contains # Gal(L/K) embeddings of L into L ⊂ C and these embeddings are distinct.
By Corollary 1.16, we conclude that this is the set of all embeddings in Hom(L,L)
extending φ.

1.4 Trace and Norm

Let K be a number field of degree n over Q. The trace TK and the norm NK are two
maps defined as follows: Let φ1,. . . ,φn be the embeddings of K with values in C. For
each element α ∈ K , set

TK(α) :=
n∑
i=1

φi(α),

NK(α) :=
n∏
i=1

φi(α).

Since all φi are embeddings, so they are also field homomorphisms, by definition we
have φi(α+ β) = φi(α) + φi(β) and φi(αβ) = φi(α)φi(β). This immediately implies

TK(α+ β) = TK(α) + TK(β)

NK(αβ) = NK(α)NK(β)

for all α, β ∈ K. Moreover, if c ∈ Q, by Lemma 1.13 we get

TK(cα) = cTK(α) and NK(cα) = cn NK(α).

Note that both TK(α) and NK(α) are coefficients of the minimal polynomial of α over Q,
namely TK(α) is the second coefficient and NK(α) is the last constant term. Then they
both must always be rational values. For example, if K = Q(

√
d) where d ∈ Q, then we

have for any a, b ∈ Q

TK(a+ b
√
d) = 2a and NK(a+ b

√
d) = a2 − db2,

because the only two embeddings of K into C are identity and complex conjugation.

1.5 Ring of integers

Definition 1.19. An algebraic number is called an algebraic integer whenever it is a
root of some monic irreducible polynomial with coefficients in Z.

Theorem 1.20. The set of algebraic integers in a number field K forms a ring, which
has rank [K : Q] = n over Z as a Z-module, i.e., it is isomorphic to Zn .

Proof. The fact that the algebraic integers form a ring follows from Corollary 1 in § 2 [8].
By Corollary on page 22 of [8] it follows that the ring of algebraic integers is a free abelian
group of rank n, which is the same as it being a Z-module isomorphic to Zn. �
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Definition 1.21. The set of all algebraic integers in a number field K is called the ring
of integers or the maximal order and is denoted by OK .

In order to understand rings of integers better, let us take the trivial number field,
namely K = Q. If we take a ∈ Q such that it is a root of some monic irreducible
polynomial in Z[X], we get (x− a) ∈ Z[X]. Hence a ∈ Z, which implies that OQ = Z.

Now let K = Q(
√
d) for some squarefree number d ∈ K. Thus K is a second degree

extension over Q. The following proposition shows the possibilities for the ring of integers
for different values of d.

Proposition 1.22. (Example in §7.1, p.229 [3]) Let d be a squarefree integer. The set
of algebraic integers in the quadratic field Q(

√
d) is

Z
[√

d
]

=
{
a+ b

√
d : a, b ∈ Z

}
, if d ≡ 2 or 3 mod 4,

Z

[
1 +
√
d

2

]
=

{
a+ b

√
d

2
: a, b ∈ Z and a ≡ b mod 2

}
, if d ≡ 1 mod 4.

Definition 1.23. Let A ⊂ B be an extension of rings. An element α ∈ B is an integral
over A if there exists a monic polynomial f(x) ∈ A[X] such that f(α) = 0. If A and B
are integral domains, then B is integrally closed in B if every element in B that is an
integral over A is contained in A.

For example, let us take an integral α ∈ Q. Then the monic polynomial f(x) ∈ Z[X]
such that f(α) = 0. By Gauss Lemma (x− α) ∈ Z[X] so also α ∈ Z. Since both Z and
Q are integral domains, we have that Z is integrally closed in Q, where Q is actually the
field of fractions of Z.

Definition 1.24. A Dedekind domain is an integral domain R such that

1. Every ideal is finitely generated,

2. Every non-zero prime ideal is a maximal ideal,

3. R is integrally closed in its field of fractions

Q(R) =
{a
b

: a, b ∈ R and b 6= 0
}
.

Theorem 1.25. (Proposition 14 in §16.3 [3]) The ring of integers OK is a Dedekind
domain.

1.6 Ideals in the ring of integers

Now the attention will turn more towards the ideals in the ring of integers. Let us first
recall a couple of notions that will be used in this section. A ring R is called an integral
domain if for all elements x,y ∈ R such that xy = 0, either x = 0 or y = 0 (or both).
The set I ⊂ R is an ideal in R if it satisfies the following conditions:

12



1. I is a subring of R,

2. For all i ∈ I and r ∈ R, it holds that ir ∈ R.

We say I is a principal ideal if I is generated by a single element. An integral domain
of which all ideals are principal is called a principal ideal domain or simply PID. An
ideal I 6= R for which it holds that if ab ∈ I then either a ∈ I or b ∈ I (or both) is called
a prime ideal. An ideal M 6= R is called maximal if it holds that every ideal J of R
with M ⊂ J ⊂ R is either J = M or J = R.

In the next theorem we use the notion of a unique factorization domain (UFD).
A UFD is an integral domain such that every element can be uniquely factorized to
the product of irreducible elements up to a unit. Every PID is actually a UFD (see
Theorem 14 in §8.3 [3]) so this theorem states that for Dedekind domains also the
opposite inclusion holds.

Theorem 1.26. (Corollary 20 of §16.3 [3]) A Dedekind domain is a UFD if and only if
it is a PID.

We say that two ideals a and b in a Dedekind domain R are equivalent if there is a
non-zero element d ∈ R such that a = db, where db := {db : b ∈ b}. The ideals that are
equivalent to each other form a set called equivalency class denoted by

[a] := {b ⊂ R : a ∼ b and a, b are ideals in R}.

Let Cl(R) denote the set of all equivalence classes [a] of non-zero ideals a ⊂ R. With
respect to the equivalence relation we define the multiplication of equivalence classes by

[a][b] := [ab] (1)

for ideals a, b in R. Then the following proposition holds.

Proposition 1.27. Let R be an integral domain and let a and b be ideals in R. Then
the following holds:

1. If ca is principal for some non-zero c ∈ R then a is principal.

2. The principal ideals in R form an ideal class, which we denote by [R].

3. The set Cl(R) of ideal classes in R forms a group with respect to multiplication
defined in (1) with the identity element [R] if and only if for every ideal a there
exists an ideal b such that ab is principal.

Proof. We will prove each part of this proposition separately.

1. Assume ca = (α) for some non-zero α ∈ R. That means α = ca for some a ∈ a.
We want to show that (a) = a.

Since a ∈ a we get (a) ⊂ a. Now take any b ∈ a. Then cb ∈ ca = (α) = (ca). Then
we can write cb as cb = kca for some non-zero k ∈ R. By commutativity of R, it
follows that cb = cka, so b = ka ∈ (a). This gives a ⊂ (a) and hence (a) = a which
means a is principal.
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2. We need to show that any two principal ideals in R are equivalent and any ideal
equivalent to a principal ideal is also principal.

Let (α) and (β) be two principal ideals in R. Since α(β) = (αβ) = (βα) = β(α),
we get (α) ∼ (β). For the second part, let a be an ideal in R and (γ) be a principal
ideal in R such that (γ) ∼ a. By definition, (γ) = ca for some non-zero c ∈ R,
so ca is principal. By 1, we get that a is principal.

3. Assume for every ideal in R there exists an ideal such that their product is a
principal ideal. Associativity of ideal class multiplication follows directly from
associativity of ideal multiplication. For any class C in Cl(R) there exists a non-
zero ideal a such that C = [a]. So for every C ∈ Cl(R) we have

[R] · C = [(1) · a] = [a] = C

for some ideal a ⊂ R. To verify that every ideal class has an inverse, let C be
any class and a ∈ C. By assumption, there exists an ideal b such that ab ∈ [R].
Letting [b] be the ideal class of b, this means C[b] = [R], i.e. [b] is the inverse of C.
Hence the ideal classes form a group.

Now, for the other direction, assume that Cl(R) forms a group with the identity [R].
Let a be an ideal in R. Then there is a non-zero ideal b such that [a][b] = [ab] = [R].
This implies that ab is principal.

�

Lemma 1.28. (Lemma 2 in §3 [8]) Let I be a proper ideal in a Dedekind domain R
with field of fractions Q(R). Then there is an element γ ∈ Q(R) \R such that γI ⊂ R.

Theorem 1.29. For every non-zero ideal a in a Dedekind domain R, there is an ideal b
such that ab is principal.

Proof. Let a ∈ a be such that a 6= 0 and let b = {b ∈ R : ba ⊂ (a)}. Then a ∈ b so b is
a non-zero ideal because if we take any r ∈ R, ra ∈ a for all a ∈ a (by the definition of
an ideal) so therefore for every b ∈ b it holds that

rba = bra ⊂ ba ⊂ (a)

which shows that rb ∈ b. Note that this is possible since a Dedekind domain is an
integral domain, so it is commutative. By the definition of b we get that b ⊂ (a) hence
also ab ⊂ (a). Consider A = 1

aab. We will show that A is an ideal in R.
Take r ∈ R and x ∈ A. We can write x = 1

aa1b1 for some a1 ∈ a and b1 ∈ b. By
commutativity we get

rx = r
1

a
a1b1 =

1

a
a1rb1 =

1

a
a1b2,

since again, b2a = rb1a ⊂ (a) hence b2 ∈ b. Note that since ab ⊂ aR then 1
a ∈

1
aab ⊂ R.

Now we have two options: If A = R then since R = (1) = 1
aab this implies (a) = ab,

so ab is principal; In the other case A is a proper ideal and by Lemma 1.28 there is an

14



element c ∈ Q(R) \ R such that cA ⊂ R. Since R is integrally closed in Q(R), it is
enough to show that c is a root of a monic polynomial over R because then c ∈ R which
is a contradiction.

Since b ⊂ A = 1
aab and a ∈ a, we have cb ⊂ cA ⊂ R. By the definition of b we get

that cb ⊂ b. Now fix a finite generating set b1, . . . , br for the ideal b (note that b is
finitely generated ideal because R is a Dedekind domain) and by cb ⊂ b we get

cb1 ∈ b

cb2 ∈ b

. . .

cbr ∈ b.

Therefore each cbi can be written as

cbi = mi1b1 +mi2b2 + . . .+mirbr

for all i. This can also be rewritten in the following form

c


b1
.
.
.
br

 =


m11 . . . m1r

. . .

. . .

. . .
mr1 . . . mrr



b1
.
.
.
br

 .

Let M be the r × r matrix stated above, then via the determinant of (cIr −M), we
obtain a monic polynomial over R having c as a root. This proves theorem. �

Corollary 1.30. Let R be a Dedekind domain. Then the set of ideal classes of R
denoted by Cl(R) forms an abelian group with respect to multiplication defined in (1)
with identity [R] being the class of principal ideals in R.

Proof. From Theorem 1.29 we have that for every ideal a ∈ Cl(R) there exists an
ideal b ∈ Cl(R) such that ab is principal. Since a Dedekind domain is an integral domain,
by the third part of Proposition 1.27 it follows that Cl(R) forms a group. Moreover,
multiplication of ideals is commutative in R, hence this group is abelian. �

In particular, by Theorem 1.25, we conclude:

Corollary 1.31. Let K be a number field. Then the set of ideal classes of OK forms
an abelian group with respect to multiplication defined in (1) with identity [OK ] being
the class of principal ideals in OK .

By Marcus (Chapter 1 and 5 in [8]) the group Cl(OK) is finite. This group is called
the ideal class group and the size of the group is called the class number.

Theorem 1.32. If # Cl(OK) = 1 then OK is a PID.
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Proof. Assume # Cl(OK) = 1, then Cl(OK) = [OK ]. That means that every ideal in OK
is principal. �

Note that from the previous theorem it follows that if OK has class number one then
it is also a UFD. By determining the class number one fields we, therefore, determine
the ring of integers with UFD property.

The class number one problem for number fields of degree n determines a complete
list of such fields having class number one. When the number fields are imaginary
quadratic, this problem is known as Gauss class number one problem which was solved
independently by Baker [1], Heegner [4] and Stark [11].

Theorem 1.33. ([1, 4, 11]) Let K be an imaginary quadratic number field with the
maximal order OK . Then we have # Cl(OK) = 1 if and only if K ∼= Q(

√
−d), where d

is such that d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

2 CM-fields and CM-types

In this chapter we provide an introduction to the theory of complex multiplication by
providing some basic definitions that build upon the theory of number fields. The
definitions, theorems, etc. follow from Complex Multiplication by Lang [7] and Complex
Multiplication by Milne [9].

Definition 2.1. A complex multiplication field also called a CM-field K is a totally
imaginary quadratic extension of a totally real number field K+. In other words, a
CM-field is K = K+(

√
r), where r is totally negative element in K0.

Proposition 2.2. (Characterization of CM-fields by Lang [7]) Either one of the following
two conditions characterize a CM-field:

1. K is a totally imaginary quadratic extension of a totally real field.

2. Complex conjugation ρ commutes with every complex embedding of K and K is
not real.

Proposition 2.3. The normal closure of a CM-field is a CM-field.

Proof. Assume that K is a CM-field and L is the normal closure of K. By Proposition 2.2
the field K is totally imaginary, meaning that every complex embedding of K is totally
complex. We now show that L is also totally imaginary. Assume for contradiction that
there is a real embedding φ of L. Then φ(a) ∈ R for all a ∈ L, but we know that
φ|K (a′) ∈ C \ R for all a′ ∈ K ⊂ L, hence we get a contradiction, so L is not real.

Now we will show that ρ commutes with every complex embedding of L. The degree
of K over Q is finite, so let [K : Q] = n and by Theorem 1.10 we have that K = Q(θ)
for some θ ∈ C. Now, the minimal polynomial f(x) of θ over Q is of the form

f(x) =

n∏
i=1

(x− θi),
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where θ := θ1, . . . , θn denote the roots of f(x). We get that there are n fields Q(θi)
which are isomorphic to K by the following isomorphism

K = Q(θ) −→ Q(θi)

θ 7−→ θi.

This shows that for all i the field Q(θi) must be a CM-field. Note that L = Q(θ1, . . . , θn)
since it is the normal closure of K. Now the complex conjugation ρ : C → C can be
restricted to each of these CM-fields such that by Proposition 2.2 we have that ρ|Q(θi)

commutes with all complex embeddings of Q(θi) for all i. Then any complex embedding φ
of L satisfies φ|Q(θi)

◦ ρ = ρ ◦ φ|Q(θi)
. An arbitrary element a ∈ L is an element of Q(θi)

for some 0 ≤ i ≤ n. Then we have

φ(a) = φ|Q(θi)
(a)

but then we get

ρ ◦ φ(a) = ρ ◦ φ|Q(θi)
(a) = φ|Q(θi)

◦ ρ(a) = φ ◦ ρ(a).

This shows that ρ commutes with all complex embeddings of L and hence by Proposi-
tion 2.2 the normal closure L of K is a CM-field. �

Let K and L be CM-fields such that L is the normal closure of K. Assume that the
degree [K : Q] = 2g, so by Proposition 1.15 there are 2g complex embeddings of K.

Definition 2.4. A CM-type Φ of K with values in L is a set of g-embeddings of K
into L of which no two are complex conjugate of each other.

As we have shown before, complex embeddings come in conjugate pairs. By picking
one embedding from each conjugate pair, we construct a CM-type with exactly g em-
beddings. This also gives 2g possibilities on how to construct a CM-type, so there are
exactly 2g CM-types of K with values in L ⊂ C.

Definition 2.5. Let Φ be a CM-type of K with values in L. The CM-type of L induced
by Φ is defined as

ΦL = {φ ∈ Aut(L) : φ|K ∈ Φ}.
We say that a CM-type is primitive if it is not induced from a CM-type of a strict
CM-subfield.

Definition 2.6. Let K be a CM-field and let Φ be a CM-type of K. Let σ ∈ Aut(K)
and φ be an embedding of K into a field L. Then we define

Φσ := {φ ◦ σ : φ ∈ Φ}

and

φΦ := {φ ◦ ϕ : ϕ ∈ Φ}.
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Proposition 2.7. (Proposition 1.9 in [9]) Every CM-pair (K,Φ) is the extension of a
unique primitive CM-pair (K0,Φ0) with K0 ⊂ K. In fact, for any CM-field L contain-
ing K such that L/Q is Galois, K0 is the fixed field of

Gal(L/K0) = {σ ∈ Gal(L/Q) : ΦLσ = ΦL},

where ΦL is the extension of Φ to L.

Definition 2.8. Two CM-types Φ and Φ′ of a CM-field K are equivalent if there exists
an automorphism σ of K such that Φσ = Φ′.

2.1 Reflex types and reflex fields

Let K be a CM-field and let Φ be a CM-type of K with values in L the normal closure
of K. The reflex (Kr,Φr) of (K,Φ) is defined as follows. Let ΦL be the CM-type of L
with values in L induced by Φ. Note that ΦL is a set of isomorphisms from L to L, so
there is a set of inverses of each of these maps, denoted by Φ−1

L .
From §2 of Chapter 1 in [7] it follows that Φ−1

L is a CM-type of L with values in L.
By Proposition 2.7, there exists a unique primitive pair (Kr,Φr) that induces (L,Φ−1

L ).

Definition 2.9. The reflex type or reflex pair of (K,Φ) is the pair (Kr,Φr), where Kr

is the reflex field of (K,Φ) and Φr is the reflex CM-type of (K,Φ).

Lemma 2.10. The CM-type Φr is a primitive CM-type of Kr. If we denote the reflex
of (Kr,Φr) by (Krr,Φrr), then Krr is a subfield of K and Φ is induced by Φrr. If Φ is
primitive, then we have Krr = K and Φrr = Φ.

Proof. It follows from the definition that Krr ⊂ K and Φrr induces Φ. Then if Φ is
primitive, there exist no CM-type that would induce Φ, so Φ must be equal to Φrr and
hence also K = Krr. �

As we know, every normal extension of a number field is Galois. So one can examine
the Galois groups of these extensions. The following corollary describes the Galois group
of L/Kr. This will be useful in constructing the reflex fields in the next section.

Proposition 2.11. With the same notation as in Definition 2.9, we have

Gal(L/Kr) = {σ ∈ Gal(L/Q) : σΦL = ΦL}.

Proof. This follows from Theorem 2.7 and the definition of Kr. �

Proposition 2.12. Let K be a CM-field and let Φ1 and Φ2 be two CM-types of K.
If Φ1 and Φ2 are equivalent, then the reflex fields of (K,Φ1) and (K,Φ2) are the same.
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Proof. Assume that Φ1 and Φ2 are equivalent CM-types of the CM-field K with values
in L the normal closure of K. By definition, there exist automorphisms σ, τ of K such
that Φ1σ = Φ2 and Φ2τ = Φ1. Note that

Φ1 = Φ2τ = Φ1στ,

Φ2 = Φ1σ = Φ2τσ,

so τ−1 = σ. Now we want to find Kr
1 and Kr

2 , the reflex fields of (K,Φ1) and (K,Φ2)
respectively, using Proposition 2.11.

Take ϕ ∈ Gal(L/Kr
2), then ϕΦ2 = Φ2. Hence ϕΦ1σ = Φ1σ and by multiplying

both sides from the right by τ , we get ϕΦ1 = Φ1. So ϕ ∈ Gal(L/Kr
1) hence we find

that Gal(L/Kr
2) ⊂ Gal(L/Kr

1). For the other inclusion take ϕ ∈ Gal(L/Kr
1), by def-

inition we get ϕΦ1 = Φ1 which implies ϕΦ2τ = Φ2τ and again by multiplying both
sides with σ from the right we obtain ϕΦ2 = Φ2. We get that ϕ ∈ Gal(L/Kr

2) which
implies Gal(L/Kr

1) ⊂ Gal(L/Kr
2) and hence Gal(L/Kr

1) = Gal(L/Kr
2). We conclude

that Kr
1 = Kr

2 . �

Proposition 2.13. Let K be a CM-field and let Φ be a CM-type of K. Let L be the
normal closure of K. Then the reflex type of (K,Φ) is (Kr,Φr).

Proof. Since complex conjugation ρ commutes with every embedding of K it follows
that Φ = Φ ◦ ρ|K where ρ|K ∈ Aut(K/Q). Then by Definition 2.8, the CM-types Φ
and Φ are equivalent. By Proposition 2.12, the reflex fields of Φ and Φ are the same.

Let (Kr,Φr) be the reflex type of (K,Φ). Then by definition,

Φr := {φ|Kr : φ ∈ Φ−1
L },

where ΦL is the induced CM-type of L from Φ. From the explanation in Section 1.3 it
follows that the induced CM-type of L from Φ is the set

Φ Gal(L/K) = {ρ ◦ φ ◦ σ : φ ∈ Hom(K,L) and σ ∈ Gal(L/K)}
= {ρ ◦ φL : φL ∈ Hom(L,L)}
= ρΦL = ΦL.

Then Φ
−1
L = {φ−1

L ◦ ρ : φL ∈ Hom(L,L)} = Φ−1
L and we have

Φ
r

= {φ|Kr : φ ∈ Φ
−1
L }

= {φ|Kr : φ ∈ Φ−1
L }

= {φ|Kr : ρ ◦ φ ∈ Φ−1
L }

= ρ{φ|Kr : φ ∈ Φ−1
L }

= ρΦr.

�
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2.2 The CM-class group

Definition 2.14. The type norm of a CM-pair (K,Φ) is the multiplicative map

NΦ : K −→ Kr

x 7−→
∏
φ∈Φ

φ(x).

By the definition a CM-type Φ is a set of complex embeddings φ of K such that φ /∈ Φ,
so we have that Φ contains a half of all the complex embeddings of K. The other half,
namely the complex conjugates of each φ ∈ Φ, form another CM-type that we can denote
by Φ, since it holds that Φ = ρ ◦ Φ. Hence by the definition of the norm in Section 1.4
and the type norm, for every α ∈ K the following holds:

NΦ(α) NΦ(α) = NΦ(α)NΦ(α) = NK(α). (2)

By Remark in §3 of Chapter 3 in [7] we know that the map NΦ sends ideals to ideals,
in particular principal ideals to principal ideals. Namely, if a = (γ) for some γ ∈ OK we
have

NΦr(γOK) = NΦr(γ)OKr .

Let K be a CM-field of degree 2g and let Φ be a primitive CM-type of K. Let J(OKr)
be the set of ideal classes in Cl(OKr) such that there is an ideal representative a in each
class C ∈ Cl(OKr) satisfying the following: there exists an element α ∈ K for which we
have

NΦr(a) = (α) such that αα ∈ Q for some α ∈ K. (3)

Lemma 2.15. All principal ideals in OKr satisfies (3).

Proof. Let a be a principal ideal in OKr . Then there exists an element γ ∈ OKr such
that a = (γ). Then we have

NΦr(γOK) = NΦr(γ)OKr .

Then by (2), we have
NΦ(γ)NΦ(γ) = NK(γ) ∈ Q.

�

Proposition 2.16. The set J(OKr) is a subgroup of Cl(OKr).

Proof. Take the ideal (1) from [OKr ] the class of principal ideals in OKr . Then we have
that NΦr((1)) = 1 because every complex embedding fixes Q, and moreover 1·1 = 1 ∈ Q,
we have that the identity element is in J(OKr).

Let C1, C2 be two classes in J(OKr). Then this means that there exist ideals a1

and a2 in OKr such that C1 = [a1] and C2 = [a2] satisfying

NΦr(a1) = (α1) such that α1α1 ∈ Q for some α1 ∈ K,
NΦr(a2) = (α2) such that α2α2 ∈ Q for some α2 ∈ K.
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Then we have

NΦr(a1a2) =
∏
φ∈Φ

φ(a1a2)

=
∏
φ∈Φ

φ(a1)
∏
φ∈Φ

φ(a2)

= (α1)(α2)

= (α1α2)

and since α1α1 ∈ Q and α2α2 ∈ Q, also their product is in Q.
Finally, let [a] ∈ J(OKr). Then there exists α ∈ K such that

NΦr(a) = (α) such that αα ∈ Q.

Since Cl(OKr) is a group then there exists [b] ∈ Cl(OKr) such that [ab] = [OKr ].
Then this means that there is a γ ∈ OKr such that ab = (γ). Then we have

NΦr(γOKr) = NΦr(ab) =
∏
φ∈Φ

φ(a)
∏
φ∈Φ

φ(b) = (α) NΦr(b).

Thus, we have NΦr(b) = 1
α(ξ) = ( 1

αξ) where NΦr(γOKr) = (ξ) and NΦr(γ) = ξ ∈ OK .
Moreover, by the property (2), we have ξξ ∈ Q. Then we get

(α−1ξ)(α−1ξ) = (αα)−1ξξ ∈ Q

as αα and ξξ in Q. �

By Corollary 1.31, the class group Cl(OKr) is an abelian group so J(OKr) is an
abelian subgroup so J(OKr) is normal and therefore the quotient Cl(OKr)/J(OKr) is a
group.

Definition 2.17. The quotient group C(OKr) := Cl(OKr)/J(OKr) is called the CM-
class group of (K,Φ).

Remark 2.18. Since Cl(OKr) and J(OKr) are finite, the group C(OKr) is finite.

A generalization of the Gauss class number one problem is the CM-class number one
problem. This problem asks for which CM-fields of degree 2g the CM-class group C(OKr)
is trivial, i.e. when #C(OKr) = 1 (in this case we say that (K,Φ) has CM-class number
one). This problem corresponds to the class number one problem for the imaginary
quadratic number fields, that was introduced in the previous section. For quartic CM-
fields it was solved by Kılıçer and Streng (2015) [5] but for sextic CM-fields it has only
been solved partially by Kılıçer (2016) [6].
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Theorem 2.19. (Proposition 2.1 in [2]) Let K be a sextic CM-field, and let G be the
Galois group of the Galois closure of K/Q. Then G is one of the following groups:

1. C2 × C3
∼= C6

2. C2 × S3
∼= D12

3. (C2)3oG+ with G+ ∈ {C3, S3} where o denotes the semi-direct product of groups,
so G+ is acting by permutations on the three copies of C2.

The CM-class number one problem was solved by Kılıçer for the first two cases. We
will therefore restrict ourselves to the third case, for which the CM-class number one
problem is still open.

3 Sextic CM-fields and their reflex fields

In this section we assume that K is a sextic CM-field with L the normal closure of K.
In Theorem 2.19 we saw that there are 3 cases for what Gal(L/Q) can be isomorphic
to. In the first case K = L, because K is normal over Q and in the second case, we
have K/Q is not normal but K contains an imaginary quadratic subfield [2]. We will
restrict ourselves to the third case, where K/Q is not normal and K does not contain
any imaginary quadratic subfield [2]. The goal of this section is to find the reflex fields
and reflex types of (K,Φ) for every CM-type Φ. For that we will first determine all the
complex embeddings of K, then all its CM-types which will help us compute the reflex
pairs (Kr,Φr) of (K,Φ).

3.1 Sextic CM-fields with Galois group G = (C2)
3 o C3

3.1.1 The group G = (C2)3 o C3

Let (C2)3 = 〈a, b, c : a2 = b2 = c2 = 1, ab = ba, ac = ca, bc = cb〉 and similarly
let C3 = 〈x : x3 = 1〉. The group C3 acts on (C2)3 by

x · a = b, x · b = c and x · c = a.

This action induces the following automorphism of (C2)3

x : (C2)3 −→ (C2)3

a 7−→ b

b 7−→ c

c 7−→ a.
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Let ϕ be the homomorphism from C3 to Aut((C2)3) sending x to the induced auto-
morphism, i.e,

ϕ : C3 −→ Aut((C2)3)

x 7−→


a 7→ b
b 7→ c
c 7→ a

 .

By Theorem 10 in §5.5 [3] the set G of ordered pairs (r, t) with r ∈ (C2)3 and t ∈ C3 is
a group with respect to the multiplication

(r1, t1)(r2, t2) = (r1ϕ(t1)(r2), t1t2). (4)

In the group G, we have (1, x)(r, 1)(1, x)−1 = (ϕ(x)(r), 1) for all r ∈ (C2)3. By identi-
fying (1, x) with x and (r, 1) with r ∈ {a, b, c} via isomorphisms C3 → {(1, t) : t ∈ C3}
and (C2)3 → {(r, 1) : r ∈ (C2)3}, respectively, we can present the group G by

G = 〈a, b, c, x : a2 = b2 = c2 = x3 = 1, ab = ba, ac = ca, bc = cb,

xax−1 = b, xbx−1 = c, xcx−1 = a〉,
= 〈a, b, c, x : a2 = b2 = c2 = x3 = 1, ab = ba, ac = ca, bc = cb,

ax = xc, bx = xa, cx = xb〉.

The group G is a non-abelian group of order #(C2)3 ·#C3 = 24. The subgroup (C2)3

is normal in G since xax−1 = b, xbx−1 = c and xcx−1 = a. Note that the elements of G
are the same elements as of (C2)3 ×C3, but the multiplications of elements on G differs
from the one in (C2)3 × C3.

Lemma 3.1. The center of G is 〈abc〉.

Proof. By the definition, the centre of the group G is

Z(G) := {g ∈ G : zg = gz}.

First we want to show that 1 and abc commute with every element of G. By definition,
we know that 1 commutes with every element of G, so 1 ∈ Z(G). Now, an element g ∈ G
can be written in the form g = ae1be2ce3xi, then we have three cases: i = 0, 1, 2.

If i = 0 then

(abc)(ae1be2ce3) = ae1be2ce3abc,

since a, b, c commute with each other. If i = 1 then we get

(abc)(ae1be2ce3x) = ae1be2ce3abcx

= ae1be2ce3xcab

= (ae1be2ce3x)(abc).
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And finally, if i = 2 then

(abc)(ae1be2ce3x2) = ae1be2ce3abcx2

= ae1be2ce3x2bca

= (ae1be2ce3x2)(abc).

Secondly, we will show that no other element than 1 and abc commutes with all
elements of G. By the definition of G we get a, b, c, x, ax, bx, cx /∈ Z(G). Similarly, we
know ax2 = x2b, bx2 = x2c and cx2 = x2a, so also x2, ax2, bx2, cx2 /∈ Z(G). Moreover,
we get ab, bc, ca, abx, bcx, cax, abx2, bcx2, cax2 /∈ Z(G) since for these elements it holds
that abx2 = x2bc, bcx2 = x2ca, and cax2 = x2ab. Finally, abcx, abcx2 /∈ Z(G) since we
have a(abcx) = xba and a(abcx2) = x2ca. From this we can conclude that the center
of G is Z(G) = 〈abc〉. �

Definition 3.2. The group G described in this section is called the semi-direct product
of groups (C2)3 and C3 with respect to ϕ and is commonly denoted by G = (C2)3oϕC3.
For simplicity, we will be writing G = (C2)3 o C3.

3.1.2 Intermediate extensions of L/Q

Assume that Gal(L/Q) ∼= (C2)3 o C3. Since # Gal(L/Q) = [L : Q] = 24, by the tower
law, the Galois extension L/K is of degree 4 since [K : Q] = 6 by definition. See the
orders of these extensions over Q in Figure 2.

Let us denote the totally real cubic intermediate field extension Q ⊂ K+ ⊂ K.
Let δ ∈ K+ \Q be a totally positive element such that K = K+(

√
−δ) and let

δ0 := δ, δ1 := x(δ0), δ2 := x2(δ0).

The extension N := K+(
√
−δ0,

√
−δ1,

√
−δ2) = K(

√
−δ1,

√
−δ2) is a subfield of L.

Since δi’s are distinct, the extension N/K+ is of degree 8. However, since [L : K+] = 8,
we get L = N = K+(

√
−δ0,

√
−δ1,

√
−δ2) with

1→ Gal(L/Q)→ Gal(L/K+)→ Gal(K+/Q)→ 1

where Gal(K+/Q) ∼= C3 and Gal(L/K+) ∼= (C2)3 (Lemma 2.2 in [2]). Recall that (C2)3

is a normal subgroup of (C2)3 oC3, which by Galois correspondence implies that K+/Q
is Galois. Hence we get that δ0, δ1, δ2 ∈ K+.

Lemma 3.3. The number fields K = K+(
√
−δ0), K+(

√
−δ1) and K+(

√
−δ2) are iso-

morphic to each other.

Proof. Using the automorphism x ∈ G we have that

xi : K+(
√
δ0) −→ K+(

√
δi)√

−δ0 7−→
√
−δi.
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Note that this is a homomorphism of fields since K+(
√
−δi) ⊂ L and Aut(L/Q) = G.

Since there exists an inverse map

x3−i : K+(
√
δ3−i) −→ K+(

√
δ0)√

−δ3−i 7−→
√
−δi,

such that xix3−i = x3 = 1, we have that xi is an isomorphism of fields. Hence

(K+(
√
−δ0)) ∼= K+(

√
−δ1) ∼= K+(

√
−δ2).

�

L 〈1〉

K = K+(
√
−δ0) K+(

√
−δ1) K+(

√
−δ2) 〈b, c〉 〈a, c〉 〈a, b〉

K+ 〈a, b, c〉

Q 〈a, b, c, x〉

4 4
4

4
4

4

∼

2

6

∼

2
2

∼

2

6

∼

2
2

3 3

Figure 2: Sublattices of subfields of L and of subgroups of Gal(L/Q)

3.1.3 Complex embeddings of L

In this section we will find all the complex embeddings of L. We know that L ⊂ C
and L/Q is Galois so we can identify the complex embeddings of L with the automor-
phisms of L. Let us therefore examine the Galois group of L/Q.

We will now explicitly write the complex embeddings corresponding to the genera-
tor automorphisms a, b, c, x of Gal(L/Q). Note that it is enough to write the images
of
√
−δ0,

√
−δ1,

√
−δ2, because by Lemma 1.13 every field homomorphism fixes Q and

since L = K+(
√
−δ0,

√
−δ1,

√
−δ2) and K+ = Q(δ0, δ1, δ2), by permuting these we auto-

matically permute δ0, δ1, δ2. Since x fixes the field K+ we will write the images of δ0, δ1, δ2

for this automorphism.

a : L −→ L ⊂ C b : L −→ L ⊂ C c : L −→ L ⊂ C√
−δ0 7−→ −

√
−δ0

√
−δ0 7−→

√
−δ0

√
−δ0 7−→

√
−δ0√

−δ1 7−→
√
−δ1

√
−δ1 7−→ −

√
−δ1

√
−δ1 7−→

√
−δ1√

−δ2 7−→
√
−δ2,

√
−δ2 7−→

√
−δ2,

√
−δ2 7−→ −

√
−δ2,
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x : L −→ L ⊂ C
δ0 7−→ δ1

δ1 7−→ δ2

δ2 7−→ δ0.

The generators b, c are fixing K elementwise, i.e, fixing δ0, hence we get

Gal(L/K) = 〈b, c〉.

Since a, b, c, x are the generators of Gal(L/Q), we get 24 complex embeddings of L
by combining these generators. For example, the embedding ax is given as

ax :
√
−δ0 7−→ −

√
−δ1,√

−δ1 7−→
√
−δ2,√

−δ2 7−→
√
−δ0.

Note that ax = xc 6= xa = bx. The embedding xa looks as follows

xa :
√
−δ0 7−→

√
−δ1,√

−δ1 7−→ −
√
−δ2,√

−δ2 7−→
√
−δ0.

Proposition 3.4. The element ρ = abc corresponds to complex conjugation on L.

Proof. By Proposition 2.2, complex conjugation commutes with every embedding of L,
hence with every element of Gal(L/Q). So the corresponding automorphism is in the
center of G = Gal(L/Q). Then by Lemma 3.1, we get ρ = abc since complex conjugation
is of order 2. �

We denote the complex conjugation by ρ and if φ is an embedding of L then we
denote by the complex conjugate of φ by φ, where φ := φ ◦ ρ, which is the same as ρ ◦ φ.

ρ :
√
−δ0 7−→ −

√
−δ0,√

−δ1 7−→ −
√
−δ1,√

−δ2 7−→ −
√
−δ2.

3.1.4 Complex embeddings and CM-types of K

In this section we will find all complex embeddings of K and then compute the CM-
types of K. Since we have [K : Q] = 6, there are 6 complex embeddings of K. These
embeddings are totally complex since K is a CM-field. Recall that totally complex
embeddings come in pairs, so we can denote them by ϕ1, ϕ2, ϕ3, ϕ1, ϕ2, ϕ3.

26



Proposition 3.5. The set S = {1|K , x|K , x
2
|K , ρ|K , ρx|K , ρx

2
|K} contains all complex em-

beddings of K.

Proof. In Section 1.3 we have shown that if φ is a complex embedding of K and we
take σ ∈ Gal(L/K) we can extend the set of complex embeddings of K to L using φ ◦σ.
We have that Gal(L/K) = 〈b, c〉, so to prove that S contains all complex embeddings
of K we will show that 〈b, c〉S = G.

Take 1 ∈ Gal(L/K). Since ρ|K = a, then we have

1S = 1{1|K , x|K , x
2
|K , ρ|K , ρx|K , ρx

2
|K} = {1, x, x2, a, ax, ax2}.

Similarly for b, c, bc ∈ Gal(L/K), we get

bS = {b, bx, bx2, ab, abx, abx2},

cS = {c, cx, cx2, ac, acx, acx2},

and
bcS = {bc, bcx, bcx2, abc, abcx, abcx2}.

Adding the elements of these four sets together we obtain all the elements of G. We
conclude that 〈b, c〉S = G, so the set S contains all complex embeddings of K. �

For simplicity, we will denote the complex embeddings of K as follows

ϕ1 = 1|K , ϕ2 = x|K ϕ3 = x2
|K

ϕ1 = ρ|K , ϕ2 = ρx|K , ϕ3 = ρx2
|K .

Now we will construct the CM-types of K. Note that in each CM-type there are 3
elements, because it does not contain 2 elements that are complex conjugates of each
other. We obtain 23 = 8 CM-types:

{ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3},
{ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}.

The following theorem will be used in showing that the only field automorphisms
of K are 1|K and ρ|K . This result will be helpful in finding the equivalence of CM-types.

Theorem 3.6. (Theorem 9 in §14.2 [3]) Let K be a field and let G ≤ Aut(K/Q) be a
subgroup of the group of automorphisms of K. Let F be the fixed field F = KG. Then

[K : F ] = #G.

Proposition 3.7. The only field automorphisms of K are 1|K and ρ|K .
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Proof. We have [K : Q] = 6 so the group of automorphisms of K has # Aut(K/Q) ≤ 6.
Note that the identity 1|K and the complex conjugation ρ|K are in Aut(K/Q), so it has
already at least 2 elements. If Aut(K/Q) is of order 6, then this would imply that K/Q
is Galois, which is a contradiction. We also know that # Aut(K/Q) 6= 3 or 5, because
these subgroups do not contain an element of order 2. So # Aut(K/Q) = 2 or 4.

Now assume F = KAut(K/Q) where # Aut(K/Q) = 4. Then also [F : K] = 4 (using
Theorem 3.6) but here we arrive to a contradiction, because [K : F ] = 4 must divide the
degree [K : Q] = 6 by the tower law, but this does not hold. Hence # Aut(K/Q) = 2,
which means the only K-automorphisms are 1|K and ρ|K . �

Since the only non-trivial automorphism of K is ρ|K , by Definition 2.8 each CM-

type Φ is only equivalent to its complex conjugate Φ := {φ : φ ∈ Φ}. Thus, we get the
following:

Φ1 = {ϕ1, ϕ2, ϕ3} ∼ {ϕ1, ϕ2, ϕ3} = Φ1,

Φ2 = {ϕ1, ϕ2, ϕ3} ∼ {ϕ1, ϕ2, ϕ3} = Φ2,

Φ3 = {ϕ1, ϕ2, ϕ3} ∼ {ϕ1, ϕ2, ϕ3} = Φ3,

Φ4 = {ϕ1, ϕ2, ϕ3} ∼ {ϕ1, ϕ2, ϕ3} = Φ4.

Proposition 3.8. All the CM-types mentioned above are primitive.

Proof. We want to show that there is no CM-subfield of K, which then by definition
implies that no CM-type is induced and hence they are all primitive.

Assume for contradiction that there exists an intermediate extension Q ⊂ N ⊂ K,
such that N is totally imaginary quadratic field over Q, i.e., a CM-subfield of K. This
implies that N/Q is Galois because all quadratic field extensions are normal. But as
mentioned in Section 3.1.2, K+/Q is also Galois. The field NK+ must hence be Galois
over Q by Lemma 1.6 and moreover it is a subfield of K since both N ⊂ K and K+ ⊂ K.

As [K+ : Q] = 3 and [N : Q] = 2, we get [NK+ : Q] = 6 and that implies K = NK+.
However, K/Q is not Galois over Q whereas NK+ is, so we get a contradiction. �

3.1.5 Reflex fields

Finally, we will find the reflex types (Kr,Φr) of (K,Φ) for K and each of its CM-types Φ.
By Proposition 2.12 and Proposition 2.13 it follows that if Φ is a CM-type of K with
the reflex type (Kr,Φr), then Φ has the reflex type (Kr,Φr). Hence we only need to
consider the following 4 cases:

Φ1 = {ϕ1, ϕ2, ϕ3}, Φ2 = {ϕ1, ϕ2, ϕ3}, Φ3 = {ϕ1, ϕ2, ϕ3}, Φ4 = {ϕ1, ϕ2, ϕ3} (5)

Take a CM-type Φ of K. In order to find the reflex of (K,Φ) we will follow the expla-
nation in Section 2.1. We have that Gal(L/K) = 〈b, c〉 = {1, b, c, bc}. Using Gal(L/K)
we can get the set of induced embeddings of Φ denoted by ΦL, by computing

ΦL = Φ Gal(L/K). (6)
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Firstly, finding this set is useful because then by Proposition 2.11 we get Gal(L/Kr)
from which we can determine Kr. Secondly, we want to find Φr. Since each embedding
in ΦL is an isomorphism we can determine the set of inverses of the embeddings in ΦL

denoted by (ΦL)−1. Finally by computing

(ΦL)−1(Gal(L/Kr))−1 = (ΦL)−1
|Kr
, (7)

which follows from (6), we obtain Φr = (ΦL)−1
|Kr

.

Theorem 3.9. Let K be a sextic CM-field and let L be the normal closure of K such
that Gal(L/Q) = (C2)3 o C3. Let Φ be a CM-type of K with values in L. The reflex
types of (K,Φ) are

(Kr
1 ,Φ

r
1) = (L〈x〉, 〈b, c〉) (Kr

5 ,Φ
r
5) = (L〈x〉, ρ〈b, c〉)

(Kr
2 ,Φ

r
2) = (L〈xac〉, ρ〈b, c〉) (Kr

6 ,Φ
r
6) = (L〈xac〉, 〈b, c〉)

(Kr
3 ,Φ

r
3) = (L〈xab〉, 〈b, c〉) (Kr

7 ,Φ
r
7) = (L〈xab〉, ρ〈b, c〉)

(Kr
4 ,Φ

r
4) = (L〈xbc〉, 〈b, c〉) (Kr

8 ,Φ
r
8) = (L〈xbc〉, ρ〈b, c〉).

Moreover, these reflex fields are isomorphic.

Proof. We will consider each of the 4 cases mentioned in (5) separately.

The reflex of (K,Φ1)
We first consider Φ1 = {1|K , x|K , x

2
|K}. The CM-type induced by Φ1 on L is

Φ1,L = Φ1 Gal(L/K)

= Φ1{1, b, c, bc}
= {1, x, x2, b, xb, x2b, c, xc, x2c, bc, xbc, x2bc}.

We will first compute Kr
1 using Proposition 2.11. We want to find the elements

of Gal(L/Kr
1), which are the elements σ ∈ Gal(L/Q) such that

σΦ1,L = Φ1,L. (8)

Note that σ has to be contained in Φ1,L since 1 ∈ Φ1,L so we only check the elements
contained in Φ1,L. First we will show that the elements b, xb, x2b do not satisfy the
criterion in (8). We have

bx ∈ bΦ1,L but bx = xa /∈ Φ1,L,

xbx ∈ xbΦ1,L but xbx = x2a /∈ Φ1,L,

x2bx ∈ x2bΦ1,L but x2bx = a /∈ Φ1,L.
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Similarly, for the elements c, xc, x2c we get

cx2 ∈ cΦ1,L but cx2 = x2a /∈ Φ1,L,

xcx2 ∈ xcΦ1,L but xcx2 = a /∈ Φ1,L,

x2cx2 ∈ x2cΦ1,L but x2cx2 = xa /∈ Φ1,L.

Finally, for bc, xbc, x2bc we have

bcx ∈ bcΦ1,L but bcx = xab /∈ Φ1,L,

xbcx ∈ xbcΦ1,L but xbcx = x2ab /∈ Φ1,L,

x2bcx ∈ x2bcΦ1,L but x2bcx = ab /∈ Φ1,L.

Therefore for any σ ∈ {b, xb, x2b, c, xc, x2c, bc, xbc, x2bc} we have that σΦ1,L 6= Φ1,L, so
then σ /∈ Gal(L/Kr

1). Now we will show that the elements 1, x, x2 do satisfy the criterion
in (8). For the element 1 it of course holds that 1Φ1,L = Φ1,L by the definition of the
identity element. Now, for x, x2 we get that

xΦ1,L = {x, x2, 1, xb, x2b, b, xc, x2c, c, xbc, x2bc, bc} = Φ1,L

x2Φ1,L = {x2, 1, x, x2b, b, xb, x2c, c, xc, x2bc, bc, xbc} = Φ1,L.

We conclude that Gal(L/Kr
1) = 〈x〉. Hence Kr

1 = L〈x〉.
Now we will find the reflex CM-type Φr

1 of (K,Φ1). For this we need to determine
the set of inverse maps in Φ1,L denoted by (Φ1,L)−1 and then find Φr

1 = (Φ1,L)−1
|Kr

. We
have that

(Φ1,L)−1 = {1, x2, x, b, bx2, bx, c, cx2, cx, bc, bcx2, bcx}.
Since 〈x〉 fixes Kr

1 elementwise and Φr
1 = (Φ1,L)−1

|Kr1
, we get that Φr

1 = {1, b, c, bc}. We

obtain the following reflex type of (K,Φ1)

(Kr,Φr
1) = (L〈x〉, 〈b, c〉).

The reflex of (K,Φ2)
Now we consider Φ2 = {ρ|K , x|K , x

2
|K}. Similarly, extending Φ2 to L gives us the following

Φ2,L = Φ2 Gal(L/K)

= Φ2{1, b, c, bc}
= {ρ, x, x2, ρb, xb, x2b, ρc, xc, x2c, ρbc, xbc, x2bc}
= {abc, x, x2, ac, xb, x2b, ab, xc, x2c, a, xbc, x2bc}.

Again, by using Proposition 2.11 we will compute Gal(L/Kr
2) in order to find the

reflex field Kr
2 of (K,Φ2). Note that since the element ρ ∈ Φ2,L and we are searching for

all σ ∈ Gal(L/Q) such that σΦ2,L = Φ2,L, we find that σρ ∈ Φ2,L hence σ ∈ Φ2,L where

Φ2,L = {1, xabc, x2abc, b, xac, x2ac, c, xab, x2ab, bc, xa, x2a}.
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We will therefore only consider the elements of Φ2,L. We begin with showing that the
elements b, c, bc do not satisfy (8), because

bx ∈ bΦ2,L but bx = ax /∈ Φ2,L

cx2 ∈ cΦ2,L but cx2 = x2a /∈ Φ2,L

bcx ∈ bcΦ2,L but bcx = xab /∈ Φ2,L.

Similarly, for the elements xabc, x2abc, x2ac, xab, xa, x2a we have

xabcx ∈ xabcΦ2,L but xabcx = x2abc /∈ Φ2,L

x2abcx2 ∈ x2abcΦ2,L but x2abcx2 = xabc /∈ Φ2,L

x2acx ∈ x2acΦ2,L but x2acx = bc /∈ Φ2,L

xabx ∈ xabΦ2,L but xabx = x2ac /∈ Φ2,L

xax2 ∈ xaΦ2,L but xax2 = b /∈ Φ2,L

x2ax ∈ x2aΦ2,L but x2ax = c /∈ Φ2,L.

Now we will show that 1, xac, x2ab satisfy the criterion in (8). For 1 it holds by definition
that 1Φ2,L = Φ2,L. For xac, x2ab we get that

xacΦ2,L = {xb, x2bc, ab, x, x2c, a, xbc, x2b, abc, xc, x2, ac} = Φ2,L

x2abΦ2,L = {x2c, ac, xbc, x2bc, abc, xc, x2, a, xb, x2b, ab, x} = Φ2,L.

Hence we get that Gal(L/Kr) = 〈xac〉, so Kr
2 = L〈xac〉. In order to find the reflex

CM-type Φr
2 we need to determine (Φ2,L)−1 and then Φr

2 = (Φ2,L)−1
|Kr2

. We have that

(Φ2,L)−1 = {abc, x2, x, ac, bx2, bx, ab, cx2, cx, a, bcx2, bcx}.

By Proposition 2.11 we get that Φr
2 = {abc, ac, ab, a} hence

(Kr
2 ,Φ

r
2) = (L〈xac〉, ρ〈b, c〉).

The reflex of (K,Φ3)

We have Φ3 = {1|K , ρx|K , x
2
|K}. Extending this up to L this gives

Φ3,L = Φ3 Gal(L/K)

= Φ3{1, b, c, bc}
= {1, ρx, x2, b, ρxb, x2b, c, ρxc, x2c, bc, ρxbc, x2bc}
= {1, xabc, x2, b, xac, x2b, c, xab, x2c, bc, xa, x2bc}.
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We follow the same procedure as before. An element of Gal(L/Kr
3) is σ ∈ Gal(L/Q)

such that σΦ3,L = Φ3,L. Note that σ has to be contained in Φ3,L since 1 ∈ Φ1,L so we
only need to check the elements contained in Φ3,L, such as we did when finding the reflex
type of (K,Φ1). Now we obtain the following

1Φ3,L = {1, xabc, x2, b, xac, x2b, c, xab, x2c, bc, xa, x2bc} = Φ3,L,

xabΦ3,L = {xab, x2, bc, xa, x2, c, xabc, x2bc, b, xac, x2c, 1} = Φ3,L,

x2bcΦ3,L = {x2bc, c, xac, x2c, bc, xabc, x2b, 1, xa, x2, b, xab} = Φ3,L.

This shows that Gal(L/Kr
3) = 〈xab〉 so Kr

3 = L〈xab〉. In order to find Φr
3 we determine

the set of inverse maps of Φ3,L, where

(Φ3,L)−1 = {1, abcx2, x, b, acx2, bx, c, abx2, cx, bc, ax2, bcx}.

Using Proposition 2.11 we get Φr
3 = {1, b, c, bc} so therefore the reflex type of (K,Φ3) is

(Kr
3 ,Φ

r
3) = (L〈xab〉, 〈b, c〉).

The reflex of (K,Φ4)
We consider Φ4 = {1|K , x|K , ρx

2
|K}. Extending this up to L gives

Φ4,L = Φ4 Gal(L/K)

= Φ4{1, b, c, bc}
= {1, x, ρx2, b, xb, ρx2b, c, xc, ρx2c, bc, xbc, ρx2bc}
= {1, x, x2abc, b, xb, x2ac, c, xc, x2ab, bc, xbc, x2a}.

Now we will determine Gal(L/Kr
4). Again, the elements of Gal(L/Kr

4) have to be
contained in Φ4,L since 1 ∈ Φ4,L, so we will only check those such as we did when finding
the reflex type of (K,Φ1) and (K,Φ3). We get the following

1Φ4,L = {1, x, x2abc, b, xb, x2ac, c, xc, x2ab, bc, xbc, x2a} = Φ4,L,

xbcΦ4,L = {xbc, x2ab, b, xc, x2a, 1, xb, x2abc, bc, x, x2ac, c} = Φ4,L,

x2acΦ4,L = {x2ac, bc, xc, x2abc, c, xbc, x2a, b, x, x2ab, 1, xb} = Φ4,L.

So Gal(L/Kr
4) = 〈xbc〉 and Kr

4 = L〈xbc〉. In order to find Φr
4, we will determine (Φ4,L)−1

by finding the inverse of each of the elements in Φ4,L. We obtain

(Φ4,L)−1 = {1, x2, abcx, b, bx2, acx, c, cx2, abx, bc, bcx2, ax}.

Now we get Φr
4 = (Φ4,L)−1

Kr
4

= {1, b, c, bc}. Hence

(Kr
4 ,Φ

r
4) = (L〈xbc〉, 〈b, c〉).
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Finally, we will show that the reflex fields that we found are actually isomorphic to
each other. Note that 〈xac〉 = 〈axa〉 = 〈a−1xa〉 = a−1〈x〉a, so 〈xac〉 is conjugate to 〈x〉.
Similarly we can show 〈xab〉 = b−1〈x〉b and 〈xbc〉 = c−1〈x〉c, so also 〈xab〉 and 〈xbc〉
are both conjugate to 〈x〉 as well. Then Lσ

−1〈x〉σ, where σ ∈ {1, a, b, c}, is the set of
all α ∈ L such that σ−1xiσ(α) = α, which is the same as xiσ(α) = σ(α). Hence

Lσ
−1〈x〉σ = {α ∈ L : σ(α) ∈ L〈x〉} = σL〈x〉.

Since σ is bijective, we conclude that

L〈x〉 ∼= L〈xac〉 ∼= L〈xab〉 ∼= L〈xbc〉.

�

3.2 Sextic CM-fields with Galois group G = (C2)
3 o S3

3.2.1 The group G = (C2)3 o S3

Let (C2)3 = 〈a, b, c : a2 = b2 = c2 = 1, ab = ba, ac = ca, bc = cb〉 and similarly
let S3 = 〈x, y : x3 = y2 = 1, yxy = x2〉. The group S3 acts on (C2)3 by

x · a = b, x · b = c, x · c = a,

y · a = b, y · b = a, y · c = c.

This action induces the following automorphisms of (C2)3

x : (C2)3 −→ (C2)3 y : (C2)3 −→ (C2)3

a 7−→ b a 7−→ b

b 7−→ c b 7−→ a

c 7−→ a, c 7−→ c.

Let us now define ψ be the homomorphism from C3 to Aut((C2)3) sending x and y
to the induced automorphism, i.e.

ψ : S3 −→ Aut((C2)3)

x 7−→


a 7→ b
b 7→ c
c 7→ a


y 7−→


a 7→ b
b 7→ a
c 7→ c

 .

The set G of ordered pairs (r, t), where r ∈ (C2)3 and t ∈ S3 forms a group under
multiplication

(r1, t1)(r2, t2) = (r1ψ(t1)(r2), t1t2), (9)
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which follows by Theorem 10 in §5.5 [3]. Note that by (9) we get

(1, t)(r, 1)(1, t)−1 = (ψ(t)(r), 1)

for all r ∈ {a, b, c} and t ∈ {x, y}. We will identify the element (1, t) with t ∈ 〈x, y〉
and similarly (r, 1) with r ∈ 〈a, b, c〉 via the isomorphisms S3 → {(1, t) : t ∈ S3}
and (C2)3 → {(r, 1) : r ∈ (C2)3}, respectively. Hence we can represent G as follows

G = 〈a, b, c, x, y : a2 = b2 = c2 = x3 = y2 = 1, ab = ba, ac = ca, bc = cb,

ax = xc, bx = xa, cx = xb, ya = by, yb = ay, yc = cy, yx = x2y〉.

Lemma 3.10. The center of G is 〈abc〉.

Proof. The centre of the group G is defined as

Z(G) := {g ∈ G : zg = gz}.

By the definition of G above, we already see that x, xa, xb, xc, y, ya, yb, yx /∈ Z(G) and
from this it follows that any element of the form xae1be2ce3 , x2ae1be2ce3 , yae1be2ce3 ,
yxae1be2ce3 , yx2ae1be2ce3 /∈ Z(G). Hence we are left with elements of the form ae1be2ce3 .
Since ax = xc, bx = xa and cx = xb, we have a, b, c /∈ Z(G). Combining these we get
that abx = xca, acx = xcb and bcx = xab hence ab, bc, ca /∈ Z(G).

Now we want to show that 1 and abc do commute with every element of G. By
definition, 1 commutes with every element of G, so 1 ∈ Z(G). Now, every element g ∈ G
can be written of the form g = xiyjae1be2ce3 . Note since the elements a, b, c commute
with each other, we have abcx = xabc abcx2 = x2abc and abcy = yabc. From this we
obtain the following

(abc)(xiyjae1be2ce3) = xi(abc)ae1be2ce3

= xiyj(abc)ae1be2ce3

= xiyjae1be2ce3(abc).

We conclude that Z(G) = 〈abc〉. �

Hence it follows that the group G is a non-abelian group of order #(C2)3 ·#S3 = 48.
The subgroup (C2)3 of G is normal in G since xax−1 = b, xbx−1 = c, xcx−1 = a
and yay−1 = b, yby−1 = a, ycy−1 = c.

Definition 3.11. The group G described in this section is called the semi-direct product
of groups (C2)3 and S3 with respect to ψ and will be denoted by G = (C2)3 o S3.

3.2.2 Intermediate extensions of L/Q

Assume that Gal(L/Q) ∼= (C2)3 o S3. Since # Gal(L/Q) = [L : Q] = 48, by the
tower law, the Galois extension L/K is of degree 8 since [K : Q] = 6 by definition.
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We will denote the totally real cubic intermediate field extension by Q ⊂ K+ ⊂ K.
Let δ ∈ K+ \Q be a totally positive element such that K = K+(

√
−δ) and let

δ0 := δ = y(δ1),

δ1 := x(δ0) = y(δ0),

δ2 := x2(δ0) = y(δ2).

Since K+ is not Galois, we have that δ1, δ2 /∈ K+ but they are contained in the Galois
closure of K+ denoted by L′. By Lemma 2.2 from [2] we have that Gal(L/L′) ∼= (C2)3

and Gal(L′/Q) ∼= S3 following from that by Galois correspondence, with

1→ Gal(L/L′)→ Gal(L′/Q)→ Gal(L/Q)→ 1.

See the order of these extensions in Figure 3.

L 〈1〉

L′(
√
−δ0) L′(

√
−δ1) L′(

√
−δ2) 〈b, c〉 〈a, b〉 〈a, c〉

K = K+(
√
−δ0) L′ 〈b, c, x2y〉 〈a, b, c〉

K+ 〈a, b, c, x2y〉

Q 〈a, b, c, x, y〉

4 4
4

4 4
4

∼

22

∼

2
2

∼

2
2

∼

2
2

6

2 2

6

2
2

3 3

Figure 3: Sublattices of subfields of L and of subgroups of Gal(L/Q)

3.2.3 Complex embeddings of L

In this section we will find all the complex embeddings of L. As we already explained,
the complex embeddings of L can be identified with the automorphisms of L. Let us
therefore examine the Galois group of L/Q.

We will now explicitly write the complex embeddings corresponding to the generator
automorphisms a, b, c, x, y of Gal(L/Q). By Lemma 1.13 every field homomorphism fixes
Q and since L = L′(

√
−δ0,

√
−δ1,

√
−δ2), by permuting

√
−δ0,

√
−δ1,

√
−δ2 we automat-

ically permute δ0, δ1, δ2, so it is enough to write the images of
√
−δ0,

√
−δ1,

√
−δ2. For

x and y we however write the images of δ0, δ1, δ2 because these are embeddings of L′.
Similarly as in Section 3.1.3 we get the following
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a : L −→ L ⊂ C b : L −→ L ⊂ C c : L −→ L ⊂ C√
−δ0 7−→ −

√
−δ0

√
−δ0 7−→

√
−δ0

√
−δ0 7−→

√
−δ0√

−δ1 7−→
√
−δ1

√
−δ1 7−→ −

√
−δ1

√
−δ1 7−→

√
−δ1√

−δ2 7−→
√
−δ2,

√
−δ2 7−→

√
−δ2,

√
−δ2 7−→ −

√
−δ2,

x : L −→ L ⊂ C y : L −→ L ⊂ C
δ0 7−→ δ1, δ0 7−→ δ1

δ1 7−→ δ2, δ1 7−→ δ0

δ2 7−→ δ0, δ2 7−→ δ2.

The generators b, c and the element x2y (which permutes
√
−δ1 with

√
−δ2) are fixing

K elementwise, so we obtain

Gal(L/K) = 〈b, c, x2y〉. (10)

Since a, b, c, x, y are the generators of Gal(L/Q), we get 48 complex embeddings of L by
combining these generators.

Proposition 3.12. The element ρ = abc corresponds to complex conjugation on L.

Proof. By Proposition 2.2, complex conjugation commutes with every embedding of L,
hence with every element of Gal(L/Q). So the corresponding automorphism to ρ is in
the center Z(G) of G = Gal(L/Q). Then by Lemma 3.10, we get ρ = abc since complex
conjugation is of order 2. �

3.2.4 Complex embeddings and CM-types of K

In this section we will determine all complex embeddings of K and since [K : Q] = 6,
there are 6 complex embeddings of K. These embeddings are totally complex since K
is a CM-field and therefore each of these embeddings has its conjugate pair. We will
denote them by ϕ1, ϕ2, ϕ3, ϕ1, ϕ2, ϕ3.

Proposition 3.13. The set S = {1|K , x|K , x
2
|K , ρ|K , ρx|K , ρx

2
|K} contains all complex

embeddings of K.

Proof. By the explanation in Section 1.3 we can take φ a complex embedding of K
and σ ∈ Gal(L/K) and we can extend the set of complex embeddings of K to L by φ◦σ.
We have that Gal(L/K) = 〈b, c, x2y〉, and in order to prove that S contains all complex
embeddings of K we will show that 〈b, c, x2y〉S = G.

Take 1 ∈ Gal(L/K). Since ρ|K = a, then we have

1S = 1{1|K , x|K , x
2
|K , ρ|K , ρx|K , ρx

2
|K} = {1, x, x2, a, ax, ax2}.
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Similarly for b, c, bc ∈ Gal(L/K), we get

bS = {b, bx, bx2, ab, abx, abx2},

cS = {c, cx, cx2, ac, acx, acx2},

and
bcS = {bc, bcx, bcx2, abc, abcx, abcx2}.

Finally for x2y, bx2y, cx2y, bcx2y we obtain

x2yS = {x2y, xy, y, ax2y, axy, ay}

bx2yS = {bx2y, bxy, by, abx2y, abxy, aby}

cx2yS = {cx2y, cxy, cy, acx2y, acxy, acy}

bcx2yS = {bcx2y, bcxy, bcy, abcx2y, abcxy, abcy}.

Adding the elements of these sets together we obtain all the elements of G. We conclude
that 〈b, c, x2y〉S = G, so the set S contains all complex embeddings of K. �

We will denote the complex embeddings of K as follows

ϕ1 = 1|K , ϕ2 = x|K ϕ3 = x2
|K

ϕ1 = ρ|K , ϕ2 = ρx|K , ϕ3 = ρx2
|K .

Each CM-type of K will contain 3 of these embedding, such that two that are con-
jugate to each other cannot be in the same CM-type. We get the following CM-types:

{ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3},
{ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ3}.

Proposition 3.14. The only field automorphisms of K are 1|K and ρ|K .

Proof. See the proof of Proposition 3.7. �

Now we want to determine the equivalency of the found CM-types. Since by Propo-
sition 3.14 the only non-trivial automorphism of K is ρ|K , by Definition 2.8 each CM-

type Φ is only equivalent to its complex conjugate Φ := {φ : φ ∈ Φ}. Thus, we get the
following:

Φ1 = {ϕ1, ϕ2, ϕ3} ∼ {ϕ1, ϕ2, ϕ3} = Φ1,

Φ2 = {ϕ1, ϕ2, ϕ3} ∼ {ϕ1, ϕ2, ϕ3} = Φ2,

Φ3 = {ϕ1, ϕ2, ϕ3} ∼ {ϕ1, ϕ2, ϕ3} = Φ3,

Φ4 = {ϕ1, ϕ2, ϕ3} ∼ {ϕ1, ϕ2, ϕ3} = Φ4.
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Proposition 3.15. All the CM-types mentioned above are primitive.

Proof. We want to show that there is no CM-subfield of K, which then by definition
implies that no CM-type is induced and hence they are all primitive.

Assume for contradiction that there exists an intermediate extension Q ⊂ N ⊂ K,
such that N is a totally imaginary quadratic extension over Q, hence a CM-subfield
of K. And since K is a subfield of L′(

√
−δ0) (see Figure 3), we get that N is a subfield

of L′(
√
−δ0). The extension N/Q is Galois because all quadratic field extensions are

normal. Moreover, since L′ is the Galois closure of K+, the extension L′/Q is Galois,
which is a subfield of L′(

√
−δ0). Hence the field NL′ ⊂ L′(

√
−δ0) is also Galois over Q

by Lemma 1.6. Now, since [N : Q] = 2 and [L′ : Q] = 6, then we have two options for
the degree of NL′ over Q, which is either [NL′ : Q] = 6 or 12.

If [NL′ : Q] = 6, then N ⊂ L′, but this is not possible since L′ is a totally real field
so it cannot contain a totally imaginary subfield N .

In the other case we have that [NL′ : Q] = 12, but then NL′ = L′(
√
−δ0), where

the right hand side is Galois over Q, but the left hand side is not (since it does not
contain

√
−δ1 and

√
−δ2). Therefore, we get a contradiction. We conclude that all the

CM-types are primitive. �

3.2.5 Reflex fields

In this section we will find the reflex types (Kr,Φr) of (K,Φ) for K and each of its
CM-types Φ. We only need to consider the following 4 cases, because the reflex type
of (K,Φ) can be concluded after we have found the reflex type of (K,Φ).

Φ1 = {ϕ1, ϕ2, ϕ3}, Φ2 = {ϕ1, ϕ2, ϕ3}, Φ3 = {ϕ1, ϕ2, ϕ3}, Φ4 = {ϕ1, ϕ2, ϕ3} (11)

Theorem 3.16. Let K be a sextic CM-field and let L be the normal closure of K such
that Gal(L/Q) = (C2)3 o S3. Let Φ be a CM-type of K with values in L. The reflex
types of (K,Φ) are

(Kr
1 ,Φ

r
1) = (L〈x,y〉, 〈b, c〉) (Kr

5 ,Φ
r
5) = (L〈x,y〉, ρ〈b, c〉)

(Kr
2 ,Φ

r
2) = (L〈xac,x

2y〉, ρ〈b, c〉) (Kr
6 ,Φ

r
6) = (L〈xac,x

2y〉, 〈b, c〉)
(Kr

3 ,Φ
r
3) = (L〈xab,xy〉, 〈b, c〉) (Kr

7 ,Φ
r
7) = (L〈xab,xy〉, ρ〈b, c〉)

(Kr
4 ,Φ

r
4) = (L〈xbc,y〉, 〈b, c〉) (Kr

8 ,Φ
r
8) = (L〈xbc,y〉, ρ〈b, c〉).

Moreover, these reflex fields are isomorphic.

Proof. We will consider each of the 4 cases mentioned in (5) separately.
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The reflex of (K,Φ1)
We first consider Φ1 = {1|K , x|K , x

2
|K}. The CM-type induced by Φ1 on L is

Φ1,L = Φ1 Gal(L/K)

= Φ1{1, b, c, bc, x2y, x2yb, x2yc, x2ybc}
= {1, x, x2, b, xb, x2b, c, xc, x2c, bc, xbc, x2bc, x2y, y,

xy, x2yb, yb, xyb, x2yc, yc, xyc, x2ybc, ybc, xybc}.

We will first compute the reflex field Kr
1 of (K,Φ1) using Proposition 2.11. We want

to find the elements of Gal(L/Kr
1), which are the elements σ ∈ Gal(L/Q) such that

σΦ1,L = Φ1,L. (12)

Since 1 ∈ Φ1,L, every σ satisfying (12) has to be in Φ1,L. We will therefore only consider
those elements. We get that

1Φ1,L = {1, x, x2, b, xb, x2b, c, xc, x2c, bc, xbc, x2bc, x2y, y,

xy, x2yb, yb, xyb, x2yc, yc, xyc, x2ybc, ybc, xybc} = Φ1,L

xΦ1,L = {x, x2, 1, xb, x2b, b, xc, x2c, c, xbc, x2bc, bc, y, xy,

x2y, yb, xyb, x2yb, yc, xyc, x2yc, ybc, xybc, x2ybc} = Φ1,L

x2Φ1,L = {x2, 1, x, x2b, b, xb, x2c, c, xc, x2bc, bc, xbc, xy, x2y,

y, xyb, x2yb, yb, xyc, x2yc, yc, xybc, x2ybc, ybc} = Φ1,L

yΦ1,L = {y, x2y, xy, yb, x2yb, xyb, yc, x2yc, xyc, ybc, x2ybc,

xybc, x, 1, x2, xb, b, x2b, xc, c, x2c, xbc, bc, x2bc} = Φ1,L

xyΦ1,L = {xy, y, x2y, xyb, yb, x2yb, xyc, yc, x2yc, xybc, ybc,

x2ybc, x2, x, 1, x2b, xb, b, x2c, xc, c, x2bc, xbc, bc} = Φ1,L

x2yΦ1,L = {x2y, xy, y, x2yb, xyb, yb, x2yc, xyc, yc, x2ybc, xybc,

ybc, 1, x2, x, b, x2b, xb, c, x2c, xc, bc, x2bc, xbc} = Φ1,L.

We can show that for any other element σ ∈ Φ1,L apart from 1, x, x2, y, xy, x2y we have
that σΦ1,L 6= Φ1,L. For example, if σ = x2yc, then the element x2ycx2 ∈ (x2yc)Φ1,L but
since x2ycx2 = ya /∈ Φ1,L we have (x2yc)Φ1,L 6= Φ1,L. By Proposition 2.11 we conclude
that Gal(L/Kr

1) = 〈x, y〉 and thus Kr
1 = L〈x,y〉.

Now we will find the reflex CM-type Φr
1 of (K,Φ1). For this we need to determine

the set of inverse maps in Φ1,L denoted by (Φ1,L)−1 and then find Φr
1 = (Φ1,L)−1

|Kr1
. We

have that

(Φ1,L)−1 = {1, x2, x, b, bx2, bx, c, cx2, cx, bc, bcx2, bcx, yx, y,

yx2, byx, by, byx2, cyx, cy, cyx2, bcyx, bcy, bcyx2}.
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Since 〈x, y〉 fixes Kr
1 elementwise and Φr

1 = (Φ1,L)−1
|Kr1

, we get that Φr
1 = {1, b, c, bc}. We

obtain the following reflex type of (K,Φ1)

(Kr
1 ,Φ

r
1) = (L〈x,y〉, 〈b, c〉).

The reflex of (K,Φ2)
Now we consider Φ2 = {ρ|K , x|K , x

2
|K}. Similarly, extending Φ2 to L gives us the following

Φ2,L = {abc, x, x2, ac, xb, x2b, ab, xc, x2c, a, xbc, x2bc, x2yabc,

y, xy, x2yac, yb, xyb, x2yab, yc, xyc, x2ya, ybc, xybc},

with the set of inverse elements

(Φ2,L)−1 = {abc, x2, x, ac, bx2, bx, ab, cx2, cx, a, bcx2, bcx, abcyx,

y, yx2, acyx, by, byx2, abyx, cy, cyx2, ayx, bcy, bcyx2}.

Now we want to find Gal(L/Kr
2) using Proposition 2.11 Note that since ρ ∈ Φ2,L and

we are searching for σ ∈ Gal(L/Q) such that σΦ2,L = Φ2,L, we find that σρ ∈ Φ2,L and
hence σ ∈ Φ2,L.

1Φ2,L = {abc, x, x2, ac, xb, x2b, ab, xc, x2c, a, xbc, x2bc, x2yabc,

y, xy, x2yac, yb, xyb, x2yab, yc, xyc, x2ya, ybc, xybc} = Φ2,L

xacΦ2,L = {xb, x2bc, ab, x, x2c, a, xbc, x2b, abc, xc, x2, a, yc, xybc,

x2yac, ybc, xyc, x2yabc, y, xyb, x2ya, yb, xy, x2yab} = Φ2,L

x2abΦ2,L = {x2c, ac, xbc, x2bc, abc, xc, x2, a, xb, x2b, ab, x, xyb,

x2yab, ybc, xy, x2ya, yc, xybc, x2yabc, yb, xyc, x2yac, y} = Φ2,L

x2yΦ2,L = {x2yabc, xy, y, x2yac, xyb, yb, x2yab, xyc, yc, x2ya, xybc,

ybc, abc, x2, x, ac, x2b, xb, ab, x2c, xc, a, x2bc, xbc} = Φ2,L

xyacΦ2,L = {xyb, ybc, x2yab, xy, yc, x2ya, xybc, yb, x2yabc, xyc, y,

x2yac, x2c, xbc, ac, x2bc, xc, abc, x2, xb, a, x2b, x, ab} = Φ2,L

yabΦ2,L = {yc, x2yac, xybc, ybc, x2yabc, xyc, y, x2ya, xyb, yb, x2yab,

xy, xb, ab, x2bc, x, a, x2c, xbc, abc, x2b, xc, ac, x2} = Φ2,L

We conclude that Gal(L/Kr
2) = 〈xac, x2y〉 and thus Kr

2 = L〈acx,x
2y〉. Since 〈xac, x2y〉

fixes Kr
2 elementwise and Φr

2 = (Φ2,L)−1
|Kr2

, we get that Φr
2 = {abc, ca, cb, a} = ρ〈b, c〉. We

obtain the following reflex type of (K,Φ2)

(Kr
2 ,Φ

r
2) = (L〈xac,x

2y〉, ρ〈b, c〉).
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The reflex of (K,Φ3)

We have Φ3 = {1|K , ρx|K , x
2
|K}. Extending this up to L this gives

Φ3,L = {1, xabc, x2, b, xac, x2b, c, xab, x2c, bc, xa, x2bc, x2y, yabc,

xy, x2yb, yac, xyb, x2yc, yab, xyc, x2ybc, ya, xybc},

with the set of inverse elements of Φ3,L

(Φ3,L)−1 = {1, abcx2, x, b, acx2, bx, c, abx2, cx, bc, ax2, bcx, yx, abcy,

yx2, byx, acy, byx2, cyx, aby, cyx2, bcyx2, ay, bcyx2}.

We will first find Gal(L/Kr
3). For the following elements it holds that

1Φ3,L = {1, xabc, x2, b, xac, x2b, c, xab, x2c, bc, xa, x2bc, x2y, yabc,

xy, x2yb, yac, xyb, x2yc, yab, xyc, x2ybc, ya, xybc} = Φ3,L

xabΦ3,L = {xab, x2b, bc, xa, x2, c, xabc, x2bc, b, xac, x2c, 1, yac, xyc,

x2ybc, yabc, xybc, x2yc, ya, xy, x2yb, yab, xyb, x2y} = Φ3,L

x2bcΦ3,L = {x2bc, c, xac, x2c, bc, xabc, x2b, 1, xa, x2, b, xab, xybc,

x2yb, yab, xyc, x2y, ya, xyb, x2ybc, yabc, xy, x2c, yac} = Φ3,L

xyΦ3,L = {xy, yabc, x2y, xyb, yac, x2yb, xyc, yab, x2yc, xybc, ya,

x2ybc, x2, xabc, 1, x2b, xac, b, x2c, xab, c, x2bc, xa, bc} = Φ3,L

yabΦ3,L = {yab, x2yb, xybc, ya, x2y, xyc, yabc, x2ybc, xyb, yac, x2yc,

xy, xac, c, x2bc, xabc, bc, x2c, xa, 1, x2b, xab, b, x2} = Φ3,L

x2ybcΦ3,L = {x2ybc, xyc, yac, x2yc, xybc, yabc, x2yb, xy, ya, x2y, xyb,

yab, bc, x2b, xab, c, x2, xa, b, x2bc, xabc, 1, x2c, xac} = Φ3,L

Hence we get that Gal(L/Kr
3) = 〈xab, xy〉 and thus Kr

3 = L〈xab,xy〉. Since 〈xab, xy〉
fixes Kr

3 elementwise and Φr
3 = (Φ3,L)−1

|Kr3
, we get that Φr

3 = {1, b, c, bc}. Hence we get

the following reflex type of (K,Φ3)

(Kr
3 ,Φ

r
3) = (L〈xab,xy〉, 〈b, c〉).

The reflex of (K,Φ4)
Consider Φ4 = {1|K , x|K , ρx

2
|K}. Extending this up to L this gives

Φ4,L = {1, x, x2abc, b, xb, x2ac, c, xc, x2ab, bc, xbc, x2a, x2y, y,

xyabc, x2yb, yb, xyac, x2yc, yc, xyab, x2ybc, ybc, xya},
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with the set of inverse elements of Φ4,L

(Φ4,L)−1 = {1, x2, abcx, b, bx2, acx, c, cx2, abx, bc, bcx2, ax, yx, y,

abcyx2, byx, by, acyx2, cyx, cy, abyx2, bcyx, bcy, ayx2}.

Now we will find the elements of Gal(L/Kr
4). We find that

1Φ4,L = {1, x, x2abc, b, xb, x2ac, c, xc, x2ab, bc, xbc, x2a, x2y, y,

xyabc, x2yb, yb, xyac, x2yc, yc, xyab, x2ybc, ybc, xya} = Φ4,L

xbcΦ4,L = {xbc, x2ab, b, xc, x2a, 1, xb, x2abc, bc, x, x2ac, c, ybc,

xyac, x2yc, yc, xyabc, x2ybc, yb, xya, x2y, y, xyac, x2yb} = Φ4,L

x2acΦ4,L = {x2ac, bc, xc, x2abc, c, xbc, x2a, b, x, x2ab, 1, xb, xyab,

x2ybc, yb, xya, x2yc, y, xyabc, x2yb, ybc, xyac, x2y, yc} = Φ4,L

yΦ4,L = {y, x2y, xyabc, yb, x2yb, xyac, yc, x2yc, xyab, ybc, x2ybc,

xya, x, 1, x2abc, xb, b, x2ac, xc, c, x2ab, xbc, bc, x2a} = Φ4,L

xyacΦ4,L = {xyac, ybc, x2yc, xyabc, yc, x2ybc, xya, yb, x2y, xyab,

y, x2yb, x2ab, xbc, b, x2a, xc, 1, x2abc, xb, bc, x2ac, x, c} = Φ4,L

x2ybcΦ4,L = {x2ybc, xyab, yb, x2yc, xya, y, x2yb, xyabc, ybc, x2y,

xyac, yc, bc, x2ac, xc, c, x2abc, xbc, b, x2a, x, 1, x2ab, xb} = Φ4,L.

Hence we get that Gal(L/Kr
4) = 〈xbc, y〉 and thus Kr

4 = L〈xbc,y〉. Since 〈xbc, y〉 fixes Kr
4

elementwise and Φr
4 = (Φ4,L)−1

|Kr4
, we again have that Φr

4 = {1, b, c, bc}. Hence we get the

following reflex type of (K,Φ4)

(Kr
4 ,Φ

r
4) = (L〈xbc,y〉, 〈b, c〉).

Now we will show that the reflex fields are isomorphic. The reflex fields are fixed by
the groups 〈x, y〉, 〈xac, x2y〉, 〈xab, xy〉 and 〈xbc, y〉 respectively. We will first show that
these groups are conjugate. Note that

〈xac, x2y〉 = 〈axa, ax2ya〉 = a〈x, y〉a = a−1〈x, y〉a,

because ax2ya = x2bya = x2yaa = x2y. Hence 〈xac, x2y〉 is conjugate to 〈x, y〉. Similarly
we have that

〈xab, xy〉 = 〈bxb, bxyb〉 = b−1〈x, y〉b

and
〈xbc, y〉 = 〈cxc, cyc〉 = c−1〈x, y〉c,
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so also 〈xab, xy〉 and 〈xbc, y〉 are both conjugate to 〈x, y〉. So we can write any reflex
field of K as Lσ

−1〈x,y〉σ, where σ ∈ {1, a, b, c}. By definition

Lσ
−1〈x,y〉σ = {α ∈ L : σ−1xiyjσ(α) = α}

= {α ∈ L : xiyjσ(α) = σ(α)} = σL〈x,y〉.

Since σ is an isomorphism, we get

L〈x,y〉 ∼= L〈xac,x
2y〉 ∼= L〈xab,xy〉 ∼= L〈xbc,y〉.

�

4 Explicit examples

In this section we provide some examples of sextic CM-fields and we explicitly compute
the reflex fields for some of them. This is done using SageMath.

4.1 Examples of sextic CM-fields

Code 1 calculates the sextic CM-fields with minimal polynomial in the form

x6 +Ax4 +Bx2 + C

such that the Galois group of their normal closure is isomorphic to (C2)3 oC3. We want
to find CM-fields with class number one, because these are more interesting for further
research.

Code 1: Finding sextic CM-fields with Gal(L/Q) ∼= (C2)3 o C3

1 R.<X> = PolynomialRing (QQ)
2 F1.<a , b , c , x> = FreeGroup ( )
3 H1 = F1 / [ a ˆ2 , bˆ2 , c ˆ2 , x ˆ3 , a∗b∗a∗b , a∗c∗a∗c , b∗c∗b∗c , x∗a∗xˆ2∗b ,
4 x∗b∗xˆ2∗c , x∗c∗xˆ2∗a ]
5 for A in range (1 , 20 ) :
6 for B in range (1 , 30 ) :
7 for C in range (1 , 30 ) :
8 i f (Xˆ6 + A∗Xˆ4 + B∗Xˆ2 + C) . i s i r r e d u c i b l e ( ) :
9 K.<a> = NumberField (Xˆ6 + A∗Xˆ4 + B∗Xˆ2 + C)

10 i f K. is CM ( ) :
11 L.<b> = K. g a l o i s c l o s u r e ( )
12 G = L . g a l o i s g r o u p ( )
13 GG = G. a s f i n i t e l y p r e s e n t e d g r o u p ( )
14 i f GG. i s i s o m o r p h i c (H1) :
15 i f K. c lass number ( ) == 1 :
16 print (K)

For this code we get the following output.
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Code 2: Output for Code 1

1 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 10∗Xˆ4 + 21∗Xˆ2 + 11
2 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 12∗Xˆ4 + 17∗Xˆ2 + 2
3 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 15∗Xˆ4 + 14∗Xˆ2 + 3

Similarly, we can compute some sextic CM-fields with the Galois group of the normal
closure isomorphic to (C2)3 o S3, again with class number one. See Code 3.

Code 3: Finding sextic CM-fields with Gal(L/Q) ∼= (C2)3 o S3

1 R.<X> = PolynomialRing (QQ)
2 F2.<a , b , c , x , y> = FreeGroup ( )
3 H2 = F2 / [ a ˆ2 , bˆ2 , c ˆ2 , x ˆ3 , y ˆ2 , a∗b∗a∗b , a∗c∗a∗c , b∗c∗b∗c ,
4 x∗a∗xˆ2∗b , x∗b∗xˆ2∗c , x∗c∗xˆ2∗a , y∗x∗y∗x , y∗a∗y∗b , y∗b∗y∗a , y∗c∗y∗c ,
5 xˆ2∗y∗xˆ2∗y ]
6 for A in range (1 , 10 ) :
7 for B in range (1 , 30 ) :
8 for C in range (1 , 30 ) :
9 i f (Xˆ6 + A∗Xˆ4 + B∗Xˆ2 + C) . i s i r r e d u c i b l e ( ) :

10 K.<a> = NumberField (Xˆ6 + A∗Xˆ4 + B∗Xˆ2 + C)
11 i f K. is CM ( ) :
12 L.<b> = K. g a l o i s c l o s u r e ( )
13 G = L . g a l o i s g r o u p ( )
14 GG = G. a s f i n i t e l y p r e s e n t e d g r o u p ( )
15 i f GG. i s i s o m o r p h i c (H2) :
16 i f K. c lass number ( ) == 1 :
17 print (K)

For this code we get the following output.

Code 4: Output for Code 3

1 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 7∗Xˆ4 + 10∗Xˆ2 + 2
2 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 8∗Xˆ4 + 12∗Xˆ2 + 3
3 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 9∗Xˆ4 + 14∗Xˆ2 + 4
4 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 9∗Xˆ4 + 16∗Xˆ2 + 2
5 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 9∗Xˆ4 + 17∗Xˆ2 + 8
6 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 9∗Xˆ4 + 19∗Xˆ2 + 7
7 Number F i e ld in a with d e f i n i n g polynomial Xˆ6 + 9∗Xˆ4 + 21∗Xˆ2 + 8

4.2 Reflex field computation for Gal(L/Q) ∼= (C2)
3 o C3

Let us take K the CM-field with defining polynomial

f(x) = x6 + 15x4 + 14x2 + 3.

For this field we have that the Galois group of the normal closure L of K is such
that Gal(L/Q) ∼= (C2)3 o C3 and K has class number one. We use Theorem 3.9 to
find the reflex fields of K. Using SageMath we compute the fixed fields of the following
groups: 〈x〉, 〈xab〉, 〈xac〉, 〈xbc〉 with the notation from Section 3.1.
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First we begin with finding the Galois group of L over K, in other words we want to
find which elements fix K.

Code 5: Computing the reflex fields

1 X = polygen (QQ)
2 poly = Xˆ6 + 15∗Xˆ4 + 14∗Xˆ2 + 3
3 K.<m> = NumberField ( poly )
4 L.<n> = K. g a l o i s c l o s u r e ( )
5 G = L . g a l o i s g r o u p ( )
6 ( r0 , s0 , t0 , u0 ) = G. gens ( )
7 r0 . order ( )
8 s0 . order ( )
9 t0 . order ( )

10 u0 . order ( )

The generators of Gal(L/Q) are of orders 2, 2, 3 and 2 respectively. From the investiga-
tion in Section 3.1 we know that K is fixed by a group generated by 2 elements both of
order 2. That is why we define number fields K1, K2 and K3.

Code 6: Code for computing the reflex fields

1 G1 = G. subgroup ( [ u0 , r0 ] )
2 G2 = G. subgroup ( [ s0 , r0 ] )
3 G3 = G. subgroup ( [ u0 , s0 ] )
4 K1 = G1. f i x e d f i e l d ( ) [ 0 ]
5 K2 = G2. f i x e d f i e l d ( ) [ 0 ]
6 K3 = G3. f i x e d f i e l d ( ) [ 0 ]
7

8 K. i s i s o m o r p h i c (K1)
9 K. i s i s o m o r p h i c (K2)

10 K. i s i s o m o r p h i c (K3)

We now check to which of these number fields is K isomorphic. The output that we get
is the following:

False
True
False

Therefore we have that K ∼= K2 and moreover Gal(L/K) = G2 = 〈s0, r0〉. The next
step is to find which elements correspond to the elements a, b, c, x using the notation
from Section 3.1. We already know that the order of t0 is 3 and and K+ is Galois
over Q, hence t0 corresponds to x. Now we want to find the complex conjugation.

Code 7: Computing the reflex fields

1 r = r0 . as hom ( )
2 s = s0 . as hom ( )
3 t = t0 . as hom ( )
4 u = u0 . as hom ( )
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5

6 embeds = K. embeddings (L)
7 for phi in embeds :
8 print (L(u( phi (m) ) ) == phi (m) . conjugate ( ) )
9

10 s0 ∗ t0 == t0 ∗ r0

Since for each embedding the output is ‘True’, we get that the element u0 corresponds
to complex conjugation abc. Moreover, since s0 ∗ t0 == t0 ∗ r0 also gives ‘True’, we
get that s0 corresponds to c and r0 to b. Therefore we can proceed with defining the
subgroups 〈x〉, 〈xab〉, 〈xac〉, and 〈xbc〉 of G and then finding the fixed fields which by
Theorem 3.9 are the reflex fields of K.

Code 8: Computing the reflex fields

1 H1 = G. subgroup ( [ t0 ] ) # In our notat ion <t0> = <x>
2 H2 = G. subgroup ( [ t0 ∗ r0 ∗u0 ] ) # In our notat ion <t0 ∗u0∗ r0> = <xac>
3 H3 = G. subgroup ( [ t0 ∗u0∗ s0 ] ) # In our notat ion <t0 ∗u0∗ s0> = <xab>
4 H4 = G. subgroup ( [ t0 ∗ r0 ∗ s0 ] ) # In our notat ion <t0 ∗ r0 ∗ s0> = <xbc>
5 K1r = H1 . f i x e d f i e l d ( )
6 K2r = H2 . f i x e d f i e l d ( )
7 K3r = H3 . f i x e d f i e l d ( )
8 K4r = H4 . f i x e d f i e l d ( )

Finally, we get the following results:

Kr
1 is number field with defining polynomial:

x8 + 12x7 + 90x6 + 432x5 + 1448x4 + 3342x3 + 5196x2 + 4923x+ 2077

Kr
2 is number field with defining polynomial:

x8 + 12x7 + 110x6 + 612x5 + 2472x4 + 6786x3 + 12758x2 + 14541x+ 7177

Kr
3 is number field with defining polynomial:

x8 + 12x7 + 250x6 + 1872x5 + 18048x4 + 81342x3 + 418300x2 + 912675x+ 2365111

Kr
4 is number field with defining polynomial:

x8 + 12x7 + 190x6 + 1332x5 + 9048x4 + 35442x3 + 96550x2 + 146685x+ 119911

4.3 Reflex field computation for Gal(L/Q) ∼= (C2)
3 o S3

Let us now consider K the CM-field with defining polynomial

f(x) = x6 + 7x4 + 10x2 + 2.

For this field we get that the Galois group of the normal closure L of K is such
that Gal(L/Q) ∼= (C2)3 o S3 and K has class number one. In order to find the re-
flex fields of K, using Theorem 3.16 we need to find the fixed fields by the following
subgroups of Gal(L/Q): 〈x, y〉, 〈xac, x2y〉, 〈xab, xy〉 and 〈xbc, y〉 using the notation from
Section 3.2.

First we begin with finding which elements fix K.
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Code 9: Computing the reflex fields

1 X = polygen (QQ)
2 poly = Xˆ6 + 7∗Xˆ4 + 10∗Xˆ2 + 2
3 K.<m> = NumberField ( poly )
4 L.<n> = K. g a l o i s c l o s u r e ( )
5 G = L . g a l o i s g r o u p ( )
6

7 ( r0 , s0 , t0 , u0 , v0 ) = G. gens ( )
8 r0 . order ( )
9 s0 . order ( )

10 t0 . order ( )
11 u0 . order ( )
12 v0 . order ( )

We get that the orders of the generators of G are 3, 2, 2, 2, 2, respectively. Since we
know that # Gal(L/K) = 8, we need to try all the following combinations to see which
elements fix K.

Code 10: Computing the reflex fields

1 G1 = G. subgroup ( [ s0 , t0 , u0 ] )
2 G2 = G. subgroup ( [ s0 , t0 , v0 ] )
3 G3 = G. subgroup ( [ s0 , u0 , v0 ] )
4 G4 = G. subgroup ( [ t0 , u0 , v0 ] )
5 K1 = G1. f i x e d f i e l d ( ) [ 0 ]
6 K2 = G2. f i x e d f i e l d ( ) [ 0 ]
7 K3 = G3. f i x e d f i e l d ( ) [ 0 ]
8 K4 = G4. f i x e d f i e l d ( ) [ 0 ]
9

10 K1. i s g a l o i s ( )
11 K2. i s g a l o i s ( )
12 K3. i s g a l o i s ( )
13 K4. i s g a l o i s ( )

The output for this code is the following:

False
True
False
False

Since K2 is Galois over Q and the only order 8 normal subgroup of G is 〈a, b, c〉, we have
that 〈s0, t0, v0〉 = 〈a, b, c〉. That also implies that 〈r0, u0〉 = 〈x, y〉.

Next we want to find the complex conjugation and using that we will find what
elements correspond to the elements a, b, c, x, y.

Code 11: Computing the reflex fields

1 r = r0 . as hom ( )
2 s = s0 . as hom ( )
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3 t = t0 . as hom ( )
4 u = u0 . as hom ( )
5 v = v0 . as hom ( )
6

7 embeds = K. embeddings (L)
8 for phi in embeds :
9 print (L( v ( phi (m) ) ) == phi (m) . conjugate ( ) )

10

11 t0 ∗ r0 == r0 ∗ s0 ∗v0 #ax = xc
12 s0 ∗ t0 ∗ r0 == r0 ∗ t0 #bx = xb
13 s0 ∗v0∗ r0 == r0 ∗ s0 ∗ t0 #cx = xa
14 t0 ∗( r0 ∗u0 ) == r0 ∗u0∗ s0 ∗ t0 #ay = yb
15 s0 ∗ t0 ∗( r0 ∗u0 ) == ( r0 ∗u0 ) ∗ t0 #by = ya
16 s0 ∗v0 ∗( r0 ∗u0 ) == ( r0 ∗u0 ) ∗ s0 ∗v0 #cy = yc
17 ( r0 ∗u0 ) ∗ r0 == r0 ˆ2∗( r0 ∗u0 ) #yx = xˆ2y

Since all the outputs say ‘True’, this shows that v0 corresponds to complex conjugation
abc. Futhermore, we get that r0 = x, s0 = ab, t0 = a and u0 = x2y.

Code 12: Computing the reflex fields

1 H1 = G. subgroup ( [ r0 , r0 ∗u0 ] ) # <x , y>
2 H2 = G. subgroup ( [ r0 ∗ s0 ∗ t0 ∗v0 , u0 ] ) # <xac , xˆ2y>
3 H3 = G. subgroup ( [ r0 ∗ s0 , r0 ˆ2∗u0 ] ) # <xab , xy>
4 H4 = G. subgroup ( [ r0 ∗ t0 ∗v0 , r0 ∗u0 ] ) # <xbc , y>
5 K1r = H1 . f i x e d f i e l d ( )
6 K2r = H2 . f i x e d f i e l d ( )
7 K3r = H3 . f i x e d f i e l d ( )
8 K4r = H4 . f i x e d f i e l d ( )

Finally, we get the following results:

Kr
1 is number field with defining polynomial:

x8 − 408x7 + 75744x6 − 7767360x5 + 480080844x4 − 18556611408x3 + 443169154368x2

− 6012645546816x+ 35489528179524

Kr
2 is number field with defining polynomial:

x8 − 408x7 + 99072x6 − 14615424x5 + 1407513996x4 − 88174797264x3 + 3523360622976x2

− 82154208782016x+ 879745494828996

Kr
3 is number field with defining polynomial:

x8 − 408x7 + 80928x6 − 9370944x5 + 699265548x4 − 34351844688x3 + 1095311139264x2

− 20717588448576x+ 184356641271492

Kr
4 is number field with defining polynomial:

x8 − 408x7 + 97920x6 − 13640832x5 + 1262978892x4 − 75302469072x3 + 2803143894912x2

− 62138984096448x+ 664976326747716
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5 Conclusion

In conclusion, the sextic CM-fields with Galois groups of the normal closure (C2)3 oC3

or (C2)3 oS3 were studied in order to compute the reflex types of these CM-fields. This
was done using number theory and complex multiplication theory. The new results that
have been computed are stated in Theorem 3.9 for the first case and Theorem 3.16 for
the second case.

Furthermore, these computations can be used to compute the CM-class number
one problem for the cases 3 and 4 of Theorem 2.19, which is still open for these two
cases. Using SageMath we have found sextic CM-fields for these two cases and finally
we have explicitly computed the reflex fields for two of these results, namely for the
field with the defining polynomial x6 + 15x4 + 14x2 + 3 and the field with the defining
polynomial x6 + 7x4 + 10x2 + 2.
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