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Abstract

The well-known theatre Oosterpoort in Groningen conducted a sociological research into the
perception of music by conducting a questionnaire. This research tries to build a mathematical
analysis for such studies of perception. By using mathematics, the reduction of dimension and
the interdependencies among latent constructs is analysed. It was found that a suitable model
is possible, reducing about half (62 questions) into seven factors. Then, by using the regression
coefficients a structural equation model, the structure of the model was given an interpretation.
Additionally, by using factor score estimation procedures, a better numerical interpretation was
given to the seven factors. Item response theory was used for presenting an in-depth analysis for
each item loading onto the latent factors. Then, by using the result from the latter theory, a
vastly improved structural model was successfully constructed. In parallel, a software package was
developed in order to improve the usability of the standard software used for these mathematical
techniques.
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1 Preface

The author would like to point out that not only mathematical models are presented in this study, but
software applicable to most data sources has been made available. While using the Lavaan-package
by the University of Gent in de R-language, we found out that for larger or more complex data the
functions did not provide a convenient method of building structural models. Also, the estimation
procedure used in the software has been improved over the last few decades. Below, we list the
features of the TLV package that were used in this study.

Goal of the software. The R-code comprised in the package has a number of goals. All the goals are
inspired by the same path taken as in this thesis. Therefore, the structure of the goals are somewhat
sequential.

1. Handling large surveys or questionnaires can be time consuming. Therefore, the package pro-
vides a method of tidying the raw survey data. The tidying function include functions such as
structuring the survey uniformly, trying to spot columns which are able to be parsed into numeric
columns and detecting linear dependence - which can result in problems in estimation procedures
- such that the data attains the highest quality as possible. Most importantly, however, the soft-
ware provides a way of structuring the data by means of generated meta data. Information about
the scale, whether a question has a reverse scale and whether its questions can be categorized.

2. Handling large surveys or questionnaires can also result in difficult, complex and foremost messy
structural equation models. By means of functions such as MeasurementModels(...) and Vari-
anceModels(...), the lavaan model is automatically generated, either based on meta data provided
by the user beforehand or meta data generated in the previous step. Also, the use of a modi-
fication index - which will be discussed later - is easily implemented by means of the functions
EmbedMI(lavaanmodel).

3. Factor score estimation of a structural equation model is not as straightforward as it is with a
generalized linear model (by means of a predict function). The methods used in Lavaan are some-
what less diverse. Therefore, alternative methods to factor score estimation are implemented.
ore estimation procedure, with the inclusion of a confidence interval.

4. For Item Response Theory, multiple sufficiently good packages have been made available for
the R- programming language. Nevertheless, structuring the outputs and making an assessment
methods relied on limited or non-existing functions. Therefore, the package provides a method
of structuring the outputs of an item response model while also giving confidence intervals of
some score estimation procedures. Also, it provides some alternatives to assessment procedures,
such as the Andersen likelihood ratio test (1973), to assess both dichotomous and polytomous
Rasch models.

As is a great good in science, the software has been made public and can be installed by running the
code

# If necessary: install the package devtools by: install.packages("devtools")

library(devtools)

install_github("MauriceTaekema/TidyLatentVariables")

Improvements, additions and other comments about the software are very much welcomed. It should
be noted that not all of the constructed functions were necessary for this study; some were constructed
in order to see whether certain models or functions are possible.

A disclaimer should be provided. This package has been created in a few months and can contain
problems, bugs and possibly incorrect results by accident. Please have caution when using the soft-
ware. For the upcoming time, the package will probably be updated frequently, but when using the
package, please try to identify whether the package has been updated recently. Due to the dependence
upon other packages as well as base functions of the R-language, only maintenance of such software
can provide safety in using the software. All the code used can also be found in the appendix at the
end of this thesis. For each of the code, if applicable, the functions with respective inputs and outputs
will be given such that it is clear for the reader what the code is about.

Maurice Taekema
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2 Introduction

It is easy to lose yourself in the tangle of the beauty of mathematics. Abstract algebra, mathematical
physics and other theoretical or applied fields of this formal science are with the right amount of
time and a proper mindset enjoyable fields of study. However, in the field of sociology and other social
sciences, mathematics can have a deterrent effect. However, mathematics is one the most versatile fields
of science and applying mathematics in social domains provides a demonstration of its capabilities.
One of the main branches of mathematics used outside the scope of the formal sciences, is undoubtedly
statistics. Researchers within the realm of social science use statistical techniques in order to formulate
and test hypotheses that relate to all kinds of (social) reality. The aim of this thesis is to analyse the
use of commonly used statistical techniques in the social domain. While doing so, this study provides
the necessary intuitive descriptions and exemplification of the mathematical theory.

2.1 Context of the problem

In 2016, a study was conducted at the Oosterpoort regarding visitor’s perception of the performance
they attended. The visitor’s perception regarding the performance they attended was measured by
means of a questionnaire, consisting of a vast amount of questions (∼ 141). This study presents a
complementary research to the already conducted study. For consistency and effectiveness, the data
that has been collected will be considered for analysis. The eventual aim of this thesis is to measure the
perception of the performance and overall experience of visitors of the Oosterpoort in a methodological
and mathematically sound manner. At the end, the reader should be able to both formally and
concretely understand the factors modeling the perception of the guests while also determine its related
structure.

2.1.1 Questionnaire of Music Perception

First, we want to gain a proper understanding regarding the data. X questions have been asked to Y
respondents, resulting in a vast amount of data. The survey primarily consisted of questions regarding
mood, experience and the meaning and interpretation of the music performed. Some examples are:
”How well do you know the music of Bach”, or; ”Did the music give you a sense of recognition?”. In
order to cope with such a large amount of data, we cluster the data. The previous research categorized
the questions into two dimensions:

1. time; and

2. aggregated factors modeling the ’full’ experience.

For the aggregated factors, questions related to a certain category are grouped. For instance, questions
related to mood, e.g. happiness, being in a hurry, and so on are categorized as temper related. All
such questions have been asked three times, such that we can track these factors over time. A glimpse
and the full data can be found in the appendix. Summarising all the categories with some sample
questions:

Factor Time Sample questions
Reasons of visiting the theatre 0 How did you travel?; Did a queue exists at arrival?
Knowledge about the composers 0 How well do you know the music of Bach?
Setting of the concert all Did you have a nice seat?
Meaning and Interpretation 1,2 Did you recognize the emotions in the piece?
Mood 1,2 Did you feel happy?
Experience 1,2 Did the piece move you?
Break 1,2 What activities did you conduct in the break?
Musical background all Do you play an instrument yourself?
Quality of the musicians all Are you impressed by the quality of musicians?
Final verdict 3 Was the concert worth your money?

6



2.2 Aim of the research

Survey data has been gathered to collect information about visitor’s perception of the performance
and overall experience. Constructing a survey poses a dilemma concerning the amount of questions.
A limited number of questions simplifies the model and makes it easy to extract insights. However,
it provides limited information and it is more difficult to prove the validity of conclusions. On the
other hand, large surveys are difficult to capture in a few statistics or make even use of due to the
large set of information. Moreover, with a large amount of variables it is often difficult to capture
the real discriminating or essential variables with the most explanatory power. This is where a more
advanced mathematical approach to survey data analysis comes into play. In order to cope with a
large amount of data and arrive at methodological and mathematical sound conclusions, this research
has been broken down into separable and concrete sub-problems:

1. Dimension reduction: Since many questions are considered for this study, reducing the dimen-
sion of the data provides both a method of preserving the ease of using the data while making
minimal loss of information about the data. Each questions measures a latent construct, already
given in the data. Now, the questions arises how well-constructed the hypothesized structure is.
Therefore, the possibility of reducing the large amount of items into a fewer amount of latent
constructs is an important part of this study.

2. Quantifying and assessing factor structures Not only should the structure be the point of
study for this thesis, a numerical interpretation displaying the results of the assessed structure
provides necessary information

3. Development of a generalizable R-package Thirdly, contributing to the scientific community
always is an inherent goal of conducting research. A somewhat more separate aim for this study
is the constructing of a software package in the R-language which can be used to easily reproduce
the procedures of this thesis to any survey-esque data. The software automatically constructs
models and provides alternative estimators.

Caution should be advised whenever dealing with actual real life data. The interpretation, the thought-
process and the goal of the data should be taken into account. The next session tries to elaborate on
the methods and design of the study which is believed to be suitable for the data.

2.3 Design and Methodology

The power of mathematics can be found in its inherent soundness and therefore satisfying visualisation.
The Riemann Hypothesis, fractals and dynamical systems of ordinary or partial differential equations
are nice demonstrations of such interpretations within this particular field. The same principle fortu-
nately applies to statistics. Descriptive charts or graphs are well-known visualisation of survey data.
However, one might question the ability to visualize hypothesis testing, or in our case the structure of
musical data to measure the experience. To identify the suitable theory for this case, the dimension-
ality is the starting point for assessing relevant studies and papers. The known factors of the model
can be considered a latent variable. The theory of a latent variable should be investigated before
considering which statistical methods might be convenient. Within social sciences, D Kaplan (2004)
and Bollen (1988) provide a valid framework for the latent construct. As multiple latent variables
occur, studying the structure within these latent variables seems reasonable. Pinning down its possi-
bilities, Hui,C., Law, K.S. and Chen Z.X. (1999) exemplified the use of structural equations to model
the perceived safety behaviours in a nuclear plant. Although the context is quite distinct from the one
at hand, the focal point of perception is completely alike.

Thus far, methods structuring the data have been considered. Performing statistical inferences re-
quires a more numerical approach to the problem with the inclusion of every question. Kaplan (2004)
identified the method of item response theory to be helpful in this area for handling individual re-
sponses and individuals questions, called items. Studying the practicality of the response theory,
papers exemplifying the exploitation of the method provides a suitable and time-saving approach. In
the light of the current time of online education due to the COVID-19 crisis, Meyer, J.P. and Zhu, S.
(2013) employed an item response theory model for assessing and exemplifying scores of students
of a test within MOOC-courses. At the stage of writing, the latter paper provides a meaningful way of
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identifying mathematical methods used in handling survey-esque data while also focusing on an elabo-
rate exemplification. Nevertheless, the research focused primarily on whether a student or participant
answered a question correctly. This point of view does not resemble the essence of this study, as this
study investigates the agreeableness of a question placed on multiple scales. This change of thought
can be considered as an extension of the theory of item response models, and is well used in multiple
studies, which will be fully discussed in an upcoming section.

1. Exploratory factor analysis will be used to identify a structure and understand the data. Also,
the method builds a theoretical framework for defining factors, categories and latent variables.
Although exploratory factor analysis does not provide a method of assessing the hypothesized
structure, it can identify, roughly, the amount of factors loading into the model and hence gives
direction to dimensionality problem.

2. Then, the pre-defined structure of the data is implemented by means of Structural Equation
Modeling and Path Analysis. Afterwards, the model must be assessed by means of confirmatory
factor analysis and respective measures. The benefit of using a structural equation model is that
the stucture, interaction and measurements are assessed by this method.

3. To give an numeric interpretation of the latent variables, estimators and Item Response Theory
will be used to assess the scores of the participant

As the materials rely heavily on not well known definitions and notions, the next sections discusses
each point of the methodology more elaborately.

2.3.1 Path Analysis and Measurement Models

Although mathematics was a branch of science developed by the Mesopotamian states in 3000 B.C.,
most statistical methods originated in the 19th century. The story for structural equation modeling is
no different. Due to the substantial dependency on societal applications, similar to the respective the-
sis of this review, investigating the incentives of emergence of the method can be deemed beneficiary.
Sewall Wrigth (1921) studied the directed dependencies of variables. It can be considered as a form of
regression, with a special focus on causality. Due to the invention of computers, maximum likelihood
algorithms could be developed in order to estimate the path models and therefore its causality. Al-
though causality is not the main concern of the research, the idea of path analysis can be extended to
the methods of structural equation modeling. However, due to the dimensionality of the data at hand,
each factor belongs to a category. This category can be considered as an unobserved variable, which
should be assessed and integrated in the mathematical framework.

By means of the addition of a measurement model, usually in the form of a partial least squares
path modeling, the notion of a latent variable is introduced, solving the latter problem. Dong-Wan
Ko, William P. Stewart (2002) showed how to integrate a measurement model containing attitudes.
Although the paper did give a fair assessment of the model made, equivalent research should still be
inspected in order to study alternative models. More recently, Tempelaar, Van der Loeff and Gijselaers
(2007) analysed the relationship of students’ attitude towards statistics. Setting aside the irony, the
study showed a more rigid approach to evaluating the measurement model by integrating a rationale
for each of the measurements, instead of merely assessing the overall model structure.

2.3.2 Covariance

Due to the causality of the models, covariance is the starting point of the model. The inclusion
of factor analysis is no surprise within structural equation modeling. Musil, C.M., Jones, S.L. and
Warner, C.D. (1998) showed with many others the use of factor analysis within structural equation
modeling to assess the structure of the model. They discuss the connection of structural equation
models and confirmatory analysis to evaluate the quality of the model. Assessing the structure is an
essential prerequisite for conducting statistical inferences based on the model. Richter, N., Sinkovics,
R.R., Ringle, CM, and Schlägel, (2016). argued that the covariance-based models did not mostly
use best practices for developing advanced models. Frameworks lacking mathematical rigidity and
unfamiliarity with the notions of linear algebra can easily result in a seemingly proper model while the
right assumptions assuring the correctness are violated. Therefore, it seems only reasonable to formalize
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the idea of covariance while also grasping its capabilities. Fan,J., Ke, Z.T., Liu, H. and Xia, L (2014)
provided theoretical insight in the theory and intuitive understanding of covariance by providing the
use of the Rayleigh Quotient to the eigenvalues presented by the covariance matrix. However, the
methods above are disjoint results of research focusing on specific examples and models, requiring a
comprehensive text integrating all the topics listed thus far. In order to solve this, Boomsma (1999)
identified the book of Bollen (1989) as the most complete and extensive material regarding structural
equation models. Within the book, factor analysis, path analysis and measurement models are listed
separately before the intersecting the three models. The result is a well-balanced theory providing a
valid and rigid backbone for the problem given. The line of reasoning will be employed to ensure a
logical footpath throughout the study. However, some technical details need to be addressed by a more
extensive discussion. For this, relevant papers will be used and are described in the upcoming section.

2.3.3 Latent Variables

Assessing not merely the structure of the data nor the model, the latent variables itself need some
numerical assignment. The arithmetical interpretation of a latent variable, however, is not without
its controversies. Glass, Maguire (1996) generalized this position in the debate by arguing that factor
scores cannot be obtained by using a mapping of weights of each score to the (latent) factor. Therefore,
prudence is advised for using factor scores. T Asparouhov and B Muthén (2010) use a generalized
linear model argument for assigning a value to a latent factor. However, in order to guarantee a similar
notion of factor scores structure as within SEM, the methods of Bollen (1989) is used. Nevertheless,
the use of estimating factor scores within Bollen cannot be considered to be fully scientifically well
founded as the mathematics used is quite brief. For a elaborate view of this kind of estimation, Kari
Ann Azevedo (2002) provides an assessment of the works on this issue of Bollen (1989). Due to the
reviewing of the work of Bollen, the theory is quite akin to the work of Bollen ensuring a uniform and
aligned account for factor estimation.

2.3.4 Item response theory

Working with latent variables and latent constructs provides a meaningful way for dealing with ques-
tionnaire data. However, information about the participants and every specific answer to a question
is lost in this process. The change of point of view is nicely captured by the works of Petrillo J, Cano
SJ, McLeod LD and Coon C (2015). The paper compared IRT-models to other statistical methods.By
using a Rasch model, the model assessed the trade-off in the latent construct of the ability of a par-
ticipant, and the latent construct of difficulty of a question. The difficulty can be extrapolated towards
the scope of this thesis by interpreting it as the difficulty to agree with a statement, or agreeableness
of a statement. However, classical Rasch models usually involve dichotome data. Therefore, a polyto-
mous extension of the data must be sought. Baker, J.G., Rounds, J.B. and Zevon M.A. discuss the two
main methods for a polytomous extension: the pure form of a polytomous Rasch model, the Partial
credit model, and the graded response model, involving an ordinal structure of the data. Although the
method seems best applicable due to the similarity in ordinal structure, the model assumes a uniform
scale, whereas the partial credit model assumes no general scale. For the given data there are multiple
scales, 0-1; 0-6 and 0-10; considered. This study will consider both methods as they both have unique
advantages included.

For all the methods considered, the model relies on strict assumptions. All the materials consid-
ered thus far do not satisfy the rigidity of elaborating on the assumptions and necessary conditions
underlying the methods. Hatzinger (2008) gives a detailed account for the constructing a proper
mathematical model for item response theory. —By Andersen (1973b) a statistical test, the Andersen
conditional likelihood ratio test, was developed to check all assumptions of the model simultaneously.
The implementation of this theory both in the study as with software will be part of the study.

2.3.5 Integration and statistical reporting

Scientific soundness relies on the integration of theory and application. Therefore, an integration of
the works of structural equation modeling and item responses theory is required. Considering the
extension discussed in both methods as crucial, Raju, N. S., Laffitte, L. J., and Byrne, B. M. (2002)
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provide both a theoretical as an exemplified case of the similarities between the confirmatory factor
analysis, used to assess a structural equation model, and an item response theory model. Also, the
paper discusses the differences between the methods. Based on the similar notions,Glöckner-Rist, A.,
and Hoijtink, H. (2003) produced a more well-integrated model combining the best assets of both
models.

The results of the eventual integrated models must be assessed, but more importantly compared
to already known literature. Then, since the models rely upon the controversial p-values, ethical pro-
cedures in statistical reporting must be considered. Schumm, W.R.,Pratt, K.K. and Hartenstein, J.L.
(2013) discuss the ethics concerning statistical significance. Since working with confidence intervals
is possible for the statistics conducted, a shift to the more modern statistical methods of reporting
prevents the possibility of controversy.

2.3.6 Discussion and conclusion

The methods of structural equation models have explicitly been listed in order to give a detailed ac-
count for the most relevant aspects. A possible pitfall is the mathematical foundation of the methods of
structural equation model, as described in one of the previous sections. By conducting the specialized
papers described above, the risk of resorting to an ill-defined mathematical framework is minimized.
For the IRT-models, the choice of models heavily depends upon the context. Based on the studies
already conducted, the partial credit model and the graded response model seem most suitable for this
specific study.

Including the relevant theory for integrating both models to answer the main research question con-
cerning the overall, or total, perception of the music displayed is done by the estimation of factor
scores. Caution is advised for using the method, although a full exclusion is not necessary. Then, by
conducting statistical inferences of the factor scores, the final research question can be answered and
simultaneously transformed into relevant information for the theatre.
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3 Outlining the Methods of Structural Equation Modeling

A bounteous amount of questions has been rewarded to this thesis. Although cannot be regarded as
’Big data’, constructing appropriate statistical models for over 150 variables is sinecure. Nonetheless,
the data can be secluded across the two discussed dimensions (categorization over clusters and the
categorization over time). By epitomization, the questionnaire contains questions related to mood,
such as the level of tiredness, happiness and joy. From an informative standpoint, modeling mood
in general instead of each specific emotion seems only reasonable. Due to the known structure as
exemplified above, the method opted into is structural equation modeling (from now on SEM).
The method uses a wide variety of mathematical fields and techniques, such as factor analysis, path
analysis and measurement models. The most relevant theories within SEM will be examined, employed
and illustrated by means of the data.

3.1 Introduction to SEM

Structural equation modeling is a technique that can be traced back to the nineteenth century. The
ideas and principles are based on genetic path modeling, a theory introduced by the mathematician
Sewall Wright. Within the last fifty to sixty years, the method of SEM has grown in popularity. Soci-
ology and psychometry are the most well-known examples of the usage or the theory, whereas within
the field of pure mathematics, the method is not widely applied. Most frequently, the method is used
in order to assess a hypothesized structure of the data, while addressing so-called latent variables.
To illustrate the term informally by an example, consider the quality of a new employee. Since directly
measuring such a variable is not feasible, it is measured by means of other observed variables, such
as education, pre-existing experience and social capabilities. Then, the unobserved variable quality is
what is meant by a latent variable. Additionally, the model evaluates the quality of each specific item
measurement the quality, providing an instrument to continuously improve measurements.

A structural equation model can be broken up into two components (Bollen, 1989):

• the structural model relating the variables and identifying the dependencies of variables; and

• the measurement model identifying the interdependencies with the latent variables and the ob-
served variables

Identifying the theory of factors and exploring covariance structures assembles an understanding of the
data. An informed reader may argue that SEM builds on the methods of confirmatory factor analysis.
However, for the sake of constructing a broad and well-balanced view, complementary theories such
as exploratory factor analysis will be highlighted. In the next section, the notion of a latent variable
will be formalized

3.2 Latent variable models

The formulation of a latent variable has already been discussed in chapter two. However, this section
tries to rigorously define the latent variable by means of a latent variable model.

Definition. [Latent variable model] A Latent variable model is a distribution f over the variables
X,Y where X are the observed variables and Y are the unobserved, or latent, variables.

Example. Although it might seem outside the scope of this thesis, latent variable models are fre-
quently applied in machine learning algorithms, where the Gaussian mixture model is the most popular
of them. Before discussing the extensiveness of the mathematics, understanding their importance and
applications for this thesis must be discussed. More specifically, for the example below, the variables
Are you in a Hurry? and Are you excited? are used.
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Figure 1: Single Gaussian vs. Mixture of Gaussians (k = 2)

For the specific case displayed by the figure above, the cluster acts as an latent variable making
statements of performing regression on the data more suitable.
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Intermezzo: the numerical strategies involved.

Understanding the structure of data, performing data reduction and conducting item
response theory all depend upon the learning of a latent variable model. Performing inferences
and estimation frequently involves the expressions of the log-likelihood. However, in contrast
to maximizing the regular log f(x; θ), the log-likelihood of the marginal distribution must be
maximized,

max
x∈D

log f(D) =
∑
x∈D

log

(∑
z

f(x|y)f(y)

)
,

with D being the data. Due to the inclusion of a prior, two difficulties are posed by the structure
of the maximization problem K Ganchev, B Taskar, J Gama - Advances in neural information,
2008) :

1. A summation within the log-operator forbids a well-defined decomposition of f(x) into
the summation of log-factors.

2. the right hand side of the expression indicates that the model is a mixture of distributions
f(x|y) with corresponding weight f(y). A single exponential distribution must have a
likelihood having the concave property (e.g. Siva Balakrishnan, 2019). However, by the
introduction of weights, the concave property does no longer apply

Fortunately, the problem at hand has been widely recognized and solved by means of the
Expectation-Maximization algorithm. Addressing the points made above respectively, the prin-
cipals can be captured by

1. If y is fully observed, then the optimization of the log-likelihood using f(x, y) is possible

2. Considering the weights f(y) as known, the posterior f(y|x) is computable.

The procedure is conducted as follows. Let X be the set observed variables, Y be the latent
variables and let θ be the vector of unknown parameters

Algorithm 1 EM

1: procedure Expectation-Maximization(EM)
2: L(θ;X,Y ) = f(X,Y |θ)
3: while Tolerance not attained do
4: Ê[θ|θ(t)) := EY∼f(y|x;θ(t)) log f(x, y; θ)

5: θ(t+1) = arg maxθ Ê[θ|θ(t)]
6: end while
7: return θ(t)

8: end procedure

The algorithm is not only used for Gaussian mixture models and clustering, but is used in the
estimation process both used in most notably item response theory. Understanding numerical
problems and numerical solutions provides more insight in modeling difficult mathematical
concepts, such as a latent variable.

3.3 Factor Analysis

Multivariate statistical models pose a valid method for data reduction, presenting a method to examine
the first aim of this study. Factor analysis tries to coalesce various variability-related variables into
factors. More formally, factor analysis can be captured into the following definition.
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Definition. Factor Analysis is the statistical model in which we describe the variability among
observed and correlated variables in terms of a lesser number of latent variables, which we shall call
Factors. More concretely, factor analysis assumes that for a random vector X with dim[X] = d, X con-
sists of correlated variables which can be captured in the factors Y with dimension dF such that dF ≤ d

The observed variables are modelled by representing the variables in terms of a linear combination of
the other unobserved variables, plus some noise εi. Note that ε ∼ N(0, σ2). Define Xi as the observed
variables, Yi as the factors, where #F < #X, and let λi be the coefficients of the factors, usually
captured by the self-explanatory term Factor loadings. Then,

X1 = µ1 + λ11Y1 + λ12Y2 + · · ·+ λ1kYk + ε1

X2 = µ2 + λ21Y1 + λ22Y2 + · · ·+ λ2kYk + ε2

...

Xn = µn + λn1Y1 + λn2Y2 + · · ·+ λnkYk + εn

After centering,

X1 − µ1 = λ11Y1 + λ12Y2 + · · ·+ λ1nYk + ε1

X2 − µ2 = λ21Y1 + λ22Y2 + · · ·+ λ2nYk + ε2

...

Xn − µn = λn1Y1 + λn2Y2 + · · ·+ λnnYk + εn

or in matrix form

X − µ = ΛY + ε

Xcen = ΛY + ε

With definitions and dimensions

• Xcen : (d× 1) being the centered random variable;

• Λ : (d × dF ) being the factor loadings, with each λij is the ith variable of the jth factor.
i = 1, . . . , p; j = 1, . . . , F ;

• Y : (dF × 1) being the latent variables; and

• ε : (d× 1) being the error measurements.

The following assumptions are considered:

• rankΛ = dF , id est Λ is full rank.

• Yi ∼ N(0,Φ) : each Yi of Y is normally distributed

• εi ∼ N(0,Ω). Each error is normally distributed. We assume a diagonal Ω with positive elements,
or in other words, Ω =diag(ω11, . . . , ωdd) where each ωjj > 0.

Intermezzo: Why are the error terms normally distributed?

In the definition of a factor model, it was assumed that ε ∼ N(0, σ2). Although this is
standard practice, it might be worthwhile to discuss why this is assumed. First of all, as is
usually the case, the convenience of modeling with the normal distribution makes a great case
of assuming normality. However, mathematical convenience may not be the only reason to use
this assumption. By the central limit theorem, it can be derived that all the individual errors
will tend to a normal distribution with zero mean (e.g. Sang Gyu Kwak Jong Hae Kim, 2017).
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Element-wise, each xi is of the form xi =
∑
k λikyk + εk. Considering an example with two Factors

Y1 and Y2, the assumptions of independence and relationship described above can be visualized by

y1

y2

λi1

λi2

x̂i

εixi

Figure 2: Visual representation of the model

3.3.1 Dimensionality

The data for this study is equipped with pre-defined factors. In other words, it is already known which
questions can be clustered together. However, this might not always be the case. Then, the theory
of exploratory factor analysis seeks the possible factors explaining the variances of its underlying
items. Since the factors are already considered known, the method might not seem to be immediately
applicable. This assertion is not necessarily true as the mathematical technique also incorporates a
method of determining the number of possible factors. The power of eigenvalues are once more demon-
strated within this theory, as most methods revolve around criteria based on these eigenvalues.

Excluding the presupposed factors modeling the data, employing an exploratory factor analysis model
contributes to an insight of the data. While Kaiser’s criterion, in which the number of factors are equal
to the number of eigenvalues larger than 1, poses a suitable method, another method is used more
frequently (J. Hayton, D Allen, V Scarpello, 2010). Parallel Analysis compares the eigenvalues of the
covariance matrix with the eigenvalues of the covariance of a Monte-Carlo process-generated sample
of the data. More precisely, the process of a parallel analysis can be captured into the following steps:
(J. Hayton, D Allen, V Scarpello, 2010)

1. First, choose a random subset of the data.

2. Then, compute the eigenvalues of the correlation matrix of the sample data. Repeat this process
at least fifty times (rule of thumb, J. Hayton, D Allen, V Scarpello, 2010).

3. Thirdly, compute the mean, the 0.95 percentiles of the computed eigenvalues.

4. Next, compare the actual data with the generated samples.

5. Finally, only retain the factors having eigenvalues greater than those of the sampled data.

Computing both metrics for the data, it can be found that

Method Number of factors
Kaiser’s Criterion 32
Parallel Analysis 9

Table 1: Number of factors for the data

In chapter 2, the hypothesized structure has been given. It can be obtained that eleven factors are
assumed to model the data, in which three factors are decomposed in time since they contain repeated
measures. Therefore, the first informal exploratory analysis is in line with the hypothesized number of
factors. Observe that comparing exploratory factor analysis with the researchers beliefs is not a form
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of confirmatory factor analysis. Nevertheless, it gives a process scrutinizing the proposed number of
factors. The method of exploratory factor analysis can also be visualized by means of a simple plot.
First, consider the same factor analysis method as described in the previous section

X = ΛY + ε

Then, if T designates the rotation matrix defined by

T =

[
cos θ − sin θ
sin θ cos θ

]
,

the rotated factor loadings matrix is denoted by

Λ∗ = ΛT

such that

X = Λ∗Y + ε

Demonstrating the application of such a rotation becomes clear whenever a visualisation is made as
below.

θ1

θ2

Excited

Energetic Enthusiastic

Happy

Relaxed

Emotional

I’m into Bach’s music

I’m into the music of Brahms

I’m very familiar with Beethoven’s music
I’m very familiar with Bach’s musicn

I’m very familiar with Brahms’s music

Figure 3: Exemplifying factor analysis with rotation for the actual data

Note that this plot is based on the actual data. Visually, an evident pattern is recognizable. Since
mathematical techniques have more difficulty with making use of this pattern due to the standard
orientation of the axis, the insertion of a rotation matrix models the pattern. Since the number of
factors from the analysis are relatively close to the hypothesized ones (nine vs. eleven), the next step
is assessing the items which load onto each of the eleven factors.

3.4 Confirmatory Factor Analysis and Covariance

In contrast to exploratory factor analysis, confirmatory analysis assumes a known structures which
needs to be tested. The model is of the form

X = ΛY + ε
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where Y are the observed variables, Λ is the so-called factor loadings matrix for the unobserved, or
latent, variables ξ with ε as the disturbance term. The theory of a confirmatory factor analysis model
will be discussed in the next chapter. However, the representation displayed above will be useful for
introducing the notion of covariance and the possibility to model by means of covariance. Identification
and estimation of structural models are based on the covariance matrix. This section tries to both
formally discuss the covariance matrix, after which a demonstration of covariance is given. To comply
with mathematical standards, the formal definition of the covariance operator is given by

Definition. On a Hilbert space H with inner product 〈·, ·〉 and the probability measure P, the
Covariance operator H ×H → R is given by

cov(x, y) =

∫
H

〈x, z〉〈y, z〉 dP(z)

More concretely, the covariance matrix of a random vector X = [x1, . . . , xd]
T , each with well-defined

variance and expectation, is defined as

Σ = cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj ])]

For the confirmatory factor analysis model described above, a simple computation by using the defi-
nition above yields the covariance matrix (Note that E[Xcen] = 0)

Σ = E[(Xcen)(Xcen)T ] = E[(ΛYi + εi)(ΛYi + εi)
T

] (1)

= ΛE(YiY
T
i )ΛT + 2ΛE[Yiε

T
i ] + E[εiε

T
i ]. (2)

As Yi |= εi, it follows ΛE[Yiε
T
i ] = 0. Also, let Φ = E(YiY

T
i ) and Ψ = E[εiε

T
i ]. Then,

= ΛΦΛ + Ψ (3)

Corollary. The covariance matrix of X is a positive semi-definite matrix for all a ∈ Rd.

Proof: A matrix is positive definite whenever, for a ∈ Rd and square d × d matrix X if the scalar
aTXa ≥ 0. By following this definition, the computation of the scalar aTXa yields

aTΣa = aTE[(Xcen)(Xcen)T ]a

= E[aT (Xcen)(Xcen)Ta]

= E[(aTXcen)2]

≥ 0.

3.4.1 Understanding Covariance and Eigendecomposition

Formal definitions aside, understanding the importance and aim of modeling by covariance yields an
intuitive view of the subject. Considering the variance as a the ’spread’ of the data, the covariance of
two random variables is less straightforward to capture in one informal word of sentence. To illustrate
the notion of covariance, consider two dimensional data. In this case, the variables ”Knowledge of
the music of Bach” and ”Knowledge of the music of Brahms” are taken into account. Intuitively,
expecting correlation between the two variables seems only reasonable. A clear diagonal orientation is
visible. Calculating the representative covariance matrix yields

Σ =

[
σ2
xx σ2

xy

σ2
yx σ2

yy

]
=

[
1.65 1.14
1.14 1.52

]
(4)

which is in line with the plot in figure 4. The diagonal elements are equal to the familiar variances of the
x and y components. The non-diagonal covariance elements of x, y are nonzero, and hence a positive
correlation is detected. Informally, the covariances of x and y can be regarded as the ’orientation’
of the data. Following the latter notion, identifying the direction and magnitude of the orientation
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Figure 4: Scatterplot of 2D data

produces relevant information about the data. Define Z as the exemplified two dimensional data, and
let v be the direction of the orientation of the data. Then, the covariance has the quadratic form

cov(Z) = vTΣv

The direction and hence v is determined by pointing into the direction of the largest variance. Such a
problem can be mathematical stated by finding maxvtΣv. In the topic of eigenvalues of a real sym-
metric matrix, the Rayleigh quotient is commonly employed for this specific maximisation problem

Definition. The Rayleigh quotient for a some real symmetric matrix M and some x ≥ 0 is defined
as

R(M,x) =
xTMx

‖x‖2
.

Theorem. Let M be a real squared symmetric matrix. Then, the largest eigenvalue λmax is obtained
by

λmax = R(M ;x)

Proof in the appendix.

Corollary. Σ has orthogonal eigenvectors.

Proof: Let v = {v1, . . . vn} be the set of eigenvectors, and let λ = {λ1, . . . , λn} be the set of eigenvalues.
Then,

Σvi = λivi =⇒ vTk Σi = vTj λivi

=⇒ λjv
T
j vi = λTi vjvi

=⇒ (λj − λi)vTj vi = 0

=⇒ vTj vi = 0
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In short, the eigenvector associated with the largest eigenvector has direction of the largest variance.
For the case at hand, computing the eigenvalues and vectors yields

λi = {2.79, 0.45} & ei =

{[
−0.72
−0.68

]
,

[
0.68
−0.72

]}
, for i = 1, 2

adjusting these vectors with the representative x and y mean, plotting the eigenvectors results in the
plot below.

Figure 5: Eigendecomposition of the covariance matrix

Whereas the variance of the two dimensional data describes the variance of the x and y components
along the x and y axis, the eigenvalues represent the magnitude of the variance adjusted to the direction
having the largest variance. For having a visual counterpart, two dimensional data is best applicable.
However, the methods used can easily be extended to having d dimensions.

3.4.2 Estimation

Estimation is a central part of statistics. Point estimation, hypothesis testing and Bayesian inference
all depend upon estimation. For the covariance matrices, the method of estimation usually involves
Maximum Likelihood Estimation. As ε ∼ N(O,Σ), the starting point revolves around the multi-
variate normal distribution

f(z) =

p∏
i=1

f(zi) =

(
1√
2π

)d
det [Σ] exp

[
− 1

2
(z − µ)TΣ−1(z − µ)

]
. (5)
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Computing the loglikelihood yields

l(µ,Σ;x1, . . . , xn) = log

{ n∏
i=1

f(z)

}

= log

{ n∏
i=1

1

(2π)d/2|Σ|1/2
exp

[
− 1

2
(xi − µ)TΣ−1(xi − µ)

]}

=

n∑
i=1

{
d

2
log(2π)︸ ︷︷ ︸

constant

−1

2
log |Σ| − 1

2

(
(xi − µ)TΣ−1(xi − µ)

)

= C − n

2
log |Σ− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

= C − 1

2

(
n log |Σ|+ trace[SµΣ−1]

)
where

Sµ =

n∑
i=1

(xi − µ)(xi − µ)T

Handling a likelihood with matrices instead of real numbers is somewhat more complex and requires
the following identities

1. traceAB = traceBA.

2. xTAx = tracexTAx = tracexTxA

3.
∂

∂A
traceAB = BT

4.
∂

∂A
log |A| = A−T

Then

∂

∂A
xTAx =

∂

∂A
xTxA = [xxT ]T = xxT

Implying

l(µ,Σ;x1, . . . , xn) = C +
1

2

(
n log |Σ−1|+ trace[SµΣ−1]

)
Computing the derivative with respect to Σ−1

∂l

∂Σ−1
= 0 +

1

2

(
nΣ + STµ

)
Note that Sµ is symmetric. Equating to zero yields

Σ̂ =
1

n
Sµ

3.5 The two components of SEM

The framework of Factor Analysis and Covariance is necessary to fully grasp structural equation
modeling. Model assessment aside, SEM can be broken down into measurement models, modeling
latent variables, and path analysis, modeling causality between variables.
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Definition. An endogenous variable, usually denoted by η, is a variable determined by the relation-
ship with other variables. It’s opposite is a exogenous variable, being independent from other variables.
In the models, it will be denoted by ξ

3.5.1 Path Analysis

Path Analysis is a method used within SEM, in which causality is (usually also graphically) modeled.
A recursive model of the latent variables listed in the data is

Figure 6: A path model for a subset of the data

The goal is to formalize the model above. First, define
η1
η2
η3
η4
η5
η6

 =


Experience 1
Experience 2

mood 1
Interpretation 1

mood 2
Interpretation 2

 ,
[
ξ1
ξ2

]
=

[
Knowledge

Setting

]
.

The structural equations writes

η1 = β3η3 + β4η4 + γ1ξ1 + γ2ξ2 + ε1

η2 = β1η1 + β5η5 + β6η6 + γ3ξ1 + γ4ξ2 + ε2

Or in matrix form

η = Bη + Γξ + ε (6)

The recursive structure is only logical to implement, as the experience at time 1 intuitively correlates
with the experience at time 2. The same principle holds for other variables measured at different
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instances of time. Nonetheless, the asserted structure cannot perfectly fit the model. Therefore, an
error term ε is incorporated. Similar to the factor analytic model, strict assumptions are imposed on
the model assuring valid models.

• For the latent variables, η = ηcen, meaning that y is centered around its mean, and thus E[η] = 0.
The same holds for ξ, thus E[ξ] = 0

• The error terms are normally distributed: ε ∼ N(O,Ψ)

• The model is recursive in the sense that an element of η may dependent upon another element
or elements of η. However, the specific element of η may not depend on itself. Therefore, the
diagonal elements of B are all set to zero.

As the structural model tries to elucidate the variable y in terms of exogenous and endogenous variables,
the variance of the exogenous variable ξ measures the explained variable by means of those exogenous
variables related to the endogenous variable η. The error term ε has covariance matrix Ψ, displaying
the unexplained variance of the model.

3.5.2 Measurement models

The second central topic within structural equation modeling comprises the measurement model, iden-
tifying the measurement of the latent variables. A tricky but necessary assumptions, which heavily
relies on the assessment of the researcher, is the proper correlation of latent variables and its respective
or assigned observed variables. The general model for a structural equation models writes

η = Bη + Γξ + ε

Both η and ξ contain latent variables which are required to be measured. For this, the linear relation-
ships

x = Λxη + ε

y = Λyξ + δ

are employed. To exemplify the notation, consider a very simple model with the latent variables mood
at time 1 and 2 (η3 and η5 respectively from the previous subsection). Let

x1
x2
x3
x4
x5
x6

 =


Energetic t1

Enthusiasm t1
Happiness t1
Relaxed t1

Emotional t1
Excited t1

 ,

x7
x8
x9
x10
x11
x12

 =


Energetic t2

Enthusiasm t2
Happiness t2
Relaxed t2

Emotional t2
Excited t2

 ,

where x1, . . . , x6 are the items measuring latent eta3 and x7, . . . , x12 are the items measuring η5. Then,
component-wise,

x1 = λ1x3 + ε1 x7 = λ7x5 + ε7

x2 = λ2x3 + ε2 x8 = λ8x5 + ε8

x3 = λ3x3 + ε3 x9 = λ9x5 + ε9

x4 = λ4x3 + ε4 x10 = λ10x5 + ε10

x5 = λ5x3 + ε5 x11 = λ11x5 + ε11

x6 = λ6x3 + ε6 x12 = λ12x5 + ε12.

or, in matrix form,

x =

 x1...
x12

 Λ =



λ1 0
...

...
λ6 0
0 λ7
...

...
0 λ12


, η =

[
η3
η5

]
ε =

 ε1...
ε12

 .
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Note, it is also possible to restrict the factor loadings λ such that λ1 = λ7, . . . , λ6 = λ12. Then, the
factor have a similar loading onto the latent variable. This restriction is reasonable to impose whenever
it is believed that item have to load similarly onto a latent variable. For this study, this is also the
case. Although mood at time 1 and 2 might be different valued, their respective factor loadings should
be equal since they measure the exact same items.

3.5.3 Estimation of parameters of the structural equation model

A few sections preceeding this section, the ML-estimate for the covariance matrix was discussed. Now,
as the two components of the structural model have been given, the next step is to seek a suitable
estimator for the model. Multiple estimators can be formed for the model, but most show lackluster
properties. Although the unweighted least squares is an intuitively pleasing estimator, the method
shows disadvantages, such as lacking the property of being scale invariant. This is no problem if the
model at hand admits a uniform scale, but this is not the case. Therefore, the FULS method cannot be
considered for this project. For solving this problem, the inclusion of a weight matrix is implemented
in the weighted least squares method

FULS =
1

2
trace (W−1(S −Σ(θ)))2

where the weights are derived from the residuals. This method takes into account possible heteroscedas-
ticity or auto-correlation between the residuals, which is applicable to the model. However, the most
considered method is the maximum likelihood estimate, showing maximum efficiency and consistency
and it is given by

FML = log |Σ(θ)|+ traceSΣ−1(θ)− log |S| − q (7)

where q denotes the rank of Σ.
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4 The structural model

The methods of a structural equation model has had a subtle introduction in the previous sections.
Such a model is, however, not merely a method of presenting a plain structure to some factor analysis-
esque equations, but provides a method of assessing a hypothesized structure of the data, identifies
alternative structures and consists of an estimation procedure thus providing a numerical interpreta-
tion to the unobserved latent variables. A complete structural equation model consists of a latent
variable model and a measurement model, as discussed in chapter 3. This section integrate the
two components into a absolute model, after which its identification will be established. The first half
of the model is constructed by the latent variable model

η = Bη + Γξ + δ

where the notion is in line with Bollen (1989), with the following definitions

• η is the vector of latent endogenous variables with dimension d× 1.

• ξ are the latent exogenous variables with n× 1

• B includes the factors loadings for the interdependence of the endogenous latent variables

• Γ includes the factor loadings for the interdependence of the exogenous latent variables.

The next component comprises the system of measurement models:

Y = Λyη + ε

X = Λxξ + δ

with definitions

• y with dimensions p× 1 and x with dimension q × 1 are the observed variables

• Λy with dimensions p×m and Λx with dimensions q × n are the coefficient matrices.

• ε, δ are the matrices concerning the error terms.

Note the similarity with a confirmatory factor analysis model. By a simple computation, Bollen (1989)
showed that the implied covariance matrix, based on the structural model, is given by

Σ(Ω) =

[
(I −B)−1(ΓΦΓT + Ψ)((I −B)−1)T (I −B)−1

ΦΓT ((I −B)−1)T Φ

]
Constructing statistical inferences of a structural model requires a proper method of estimation for the
covariance matrix. The process pointing out whether estimation is well defined is called identification.

4.0.1 Identification

Almost every equation and system has restrictions to be considered well-defined. Within the methods
of SEM, this will be referred to as identifiability.

Definition. A parameter vector Ω is not globally identified if Σ(Ω1) 6= Σ(Ω2) =⇒ Ω1 6= Ω2.

Observe the argumentative contra-positivity in the definition. Bollen (1988) provides a diverse set
of identification metrics. Nonetheless, they all require a diagonal Ψ, which does not resemble the
data in which items from different latent variables are correlated (the items of mood of time 1 and 2
are component-wise correlated). To account for this problem, several checks are possible for checking
mathematical and numerical criterions.

t-rule A model based on matrices is not solvable if the number of estimated parameters exceeds the
number of unique parameters. More specifically, the number of unique elements of a matrix is equal
to q · (q+ 1). Note that Σ is symmetric, and hence the unique elements reduce to 1

2q(q+ 1). Defining t
to be the unknowns, it is required that t ≤ 1

2q(q+ 1). Due the contra-positive nature of the argument,
the t-rule gives a check for mis-identification, and is consequently a necessary- but not a sufficient
condition for identifiability.
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Example. Consider the two factor model for experience at time 1 and 2. By using the decomposition
discussed in the previous chapter, the number of estimated parameters

Σ(Ω) = ΛΦΛT + Ψ

is sought. By an ordinary substitution

Γ =



λ1 0
...

...
λ6 0
0 λ7
...

...
0 λ12


, Φ =

[
φ11
φ12 φ22

]
(8)

Now, the matrix Ψ containing the measurement error is the only matrix left to identify. Note that is
only reasonable to let δ1 correlate to δ7 due to the correlation of x1 and x7. Therefore,

Ψ =



V(δ1)
V(δ2)

V(δ3)
V(δ4)

V(δ5)
V(δ6)

Cov(δ1, δ7) V(δ7)
. . .

. . .

Cov(δ6, δ12) V(δ12)


Then, by counting the unknowns in all matrices, we have that 1/2(q(q + 1)) = 78, t = 33 resulting in
the possibility of identification. Numerical necessity of identification should also be part of this section
as all methods used heavily rely on computer algebra.

Definition. Let f : R 7→ Rn be a scalar valued function with well defined second partial derivatives.
Then, the Hessian matrix H is defined by

H =



∂2f

∂x21

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x22
. . .

∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f

∂xn∂x2
. . .

∂2f

∂2xn


.

For a feasible computation, the Hessian of the likelihood also used in the determination of the maximum
likelihood estimator is required to be positive definite, posing another check for the identification for
the model.

4.1 Mathematical soundness

The application of a structural equation model is easily done by a decent number of mathematical
tools (e.g. SPSS, Stata, R). Nevertheless, without a sufficient understanding of the mathematical
techniques, assumptions constructing the model are easily violated (West, Stephen G. Finch, John F.
Curran, Patrick J, 1995). This section tries to perspicaciously identify each assumption or statistical
pitfalls after which a possible mathematical solution will be given and demonstrated. The upcoming
subsections list the main problems within the framework and consists of problems with non-normality,
specification error and the seemingly unrestricted construction of exogenous variables.
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4.1.1 Non-normality

Assuming normal distributed data is a very common practice in statistics, but may sometimes be
an ill-considered premise. Questions related to the possible normality of categorical variables, the
violation of the assumption and the estimation procedure based on this assumption arise.

Problem. The data may not always be normally distributed.

Consequences. The estimation procedure is based on the data having a normal distribution. There-
fore, the estimated parameters might be inappropriate. However, violation of the normality assumption
shows no problem for the parameter estimation, but produces issues for the efficiency of the standard
errors. Consequently, the standard errors of the current estimation cannot be guaranteed to be the
smallest. Also Boomsma (1983) states that the violation of the normality assumption leads to the
overestimation of the likelihood ratio chi-square statistic.

Solution. To account for the non-normality, the least squares estimation should be replaced by the
weighted least squares method to account for a non-normality in the error terms (or: heteroscedas-
ticity). It should be noted that the study works with discrete data, which can never follow a normal
distribution, as a normal distribution is continuous. However, by inspection of histograms, such as
the histogram below, it can be obtained that almost every data-point seems approximately normal,
with usually a right or left skew. Therefore, the weighted least squares will be used for the estimation
procedure.

Figure 7: Histogram of I like the music of Brahms

4.1.2 Specification error, modification index and the Wald test

A structural equation model assumes a measurement error in the measurement model. Although a
fully correct fit is not to be expected, other errors also arise, such as the specification error.

Problem. The specification error is the omission of other possibly necessary variables in any of the
measurements of any of the structural equations.

The question arises what the influence of this error is in the model.

Consequences. The structural equation model omits a non-trivial parameter estimate bias, as dis-
cussed in Kaplan (1988). The more important consequence is inherent to its name, as the model is
not well specified.
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Solution. The solution for this situation requires more insight into the current and most used meth-
ods of correction of specification errors. It can be divided into two steps:

1. The application of the chi-square test, testing for amendments of the model and its necessity

2. After it is concluded that the model should be modified, the Modification Index is used to identify
which restrictions should be changed.

The assessment of the statistical quality of the model is inherent to the error of specification. The
most common method of assessment within the method relies on the chi-square statistic, in line with
most other statistical methods. The application of the p-value is not without its controversies (e.g.
Amrhein, Greenland and McShane, 2019). Additionally, the chi-square test for SEM-based models
pose another problem. Namely, the chi-square statistic and hence the p value is fully proportional to
the sample size. Illustrating the latter statement, computation of the likelihood ratio statistic yields

L0 = −n
2
{log |Σ(Ω)|+ traceSΣ−1(Ω)}

with alternative that the loglikelihood attains its maximum as Σ̂ = S. Then,

La = −n
2

log |S|+ traceSS−1 =
n

2
log |S|+ q.

The likelihood ratio test is based on the relationship

−2 log
L0

La
= n{log |Σ|+ trace Σ−1S − log |S| − q}

= n · FML.

Note the sensitivity for n. As pointed out by e.g. Jöreskog and Sörbin (1983), the sample size is
directly proportional to the test statistic. The resulting p-value will therefore easily be statistically
significant. Paradoxically, for a structural model it is essential to have a sufficiently large sample size
(e.g. TA Kyriazos - Psychology, 2018). Hence, a different method of assessment should be used. An
alternative method of assessment evaluates the quality of the model specification. The specification
of a model is based on restrictions of factor loadings. To exemplify such a restriction, consider the
possibility to let λ11 = λ52 such that the factor loadings are equal, or λ12 = 0 such that the respective
item does not load onto the respective latent variable. Then, by Satorra (1987), it is possible to test
the difference in models in which a restriction is imposed or relaxed. Consider the statistic

∆F = nF ∗ − nF = n(F ∗ − F )

where F ∗ denotes the restricted model, and F denotes the more general model. Note that if no
restrictions are imposed, F = 0. Then,

• If the baseline model F ∗ is correct and the data omits normality, ∆F will be asymptotically chi
square distributed with the difference in known elements as the degrees of freedom

• If the baseline model F is incorrect and the data omits normality, ∆F will be asymptotically non-
centrally chi square distributed with the difference in known elements as the degrees of freedom.
Satorra and Saris (1985) showed that the non-centrality parameter λ is equal to the test statistic
itself, ∆F .

This alternative assessment of the model less dependent upon the sample size concerns the placed
restriction upon the model and their validness. The method can also be extended such that it provides
information about the possible improvements of the model. Consider the score vector

U(Ω) =
∂ logL(Ω)

∂Ω

which is simply the first derivative of the log-likelihood. Note that the U = 0 if Ω is chosen to be
the maximum likelihood estimator FML by construction. However, the estimation does not concern
the resticted model as exemplified above. Consider Ω∗, which is the restricted vector of parameters
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of Ω. If Ω∗ fits the model perfectly, then U will vanish. However, if U does not vanish under the
Ω∗, the restrictions do not hold perfectly. Practically, perfect restrictions are utopian thoughts. The
level of discrepancy indicates the appropriateness of the restricted model, and can be composed by the
Modification Index Test (Silvey 1959)

MI = U(Ω∗)T (I(Ω̂
∗
)−1(U(Ω̂

∗
))

where MI ∼ χ2 with the number of restrictions as the degrees of freedom. This test is more commonly
referred to as the Lagrange Multiplier test, but for the context of this thesis the first term is more
fitting. However, the MI-test only accounts for a test for a more restrictive and less restrictive model.
We wish to evaluate this principal for a fully unrestricted model and the final restricted model. Then,
by first defining R(Ω) to be the set of restrictions. Then, by D Kaplan 2009, the Wald statistic for
the assessment of the full model vs. the full restricted model is

W = (R(Ω̂u))T
{[

∂R(Ω̂u)

∂Ω̂u

]
(I(Ω̂u))

[
∂R(Ω̂u)

∂Ω̂

]}−1
(R(Ω̂u))

which again is asymptotically chi-square distributed. The lavaan-software has a built in functions for
this method and will be used accordingly.

28



Another theoretical problem: weak exogeneity.

Another possible problem arises in the designation of a exogenous variable. Recall the
model for a structural equation model

η = Bη + Γξ + δ

By the construction, the parameter ξ is exogenous. However, a simple designation may not
imply full exogeneity. Explaining the problem in the normal general linearized model context
seems appropriate. Let Z be denote the matrix of independent and dependent variables con-
cerned. Or in this case, Z can be partitioned into the endogenous and exogenous variables.
The partitioning is also possible from the model theoretic standpoint, since the model can be
written as

(I −B)η = Γξ + δξ

η = (I −B)−1Γξ + (I −B)−1δ

η = Π1ξ + Π2

which can be interpreted as a linear model. Assuming normality within the model, the joint
distribution of η and ξ is given by

f(z|Ω)f(z1, . . . , zN |Ω).

with Ω 3 Ω denotes the parameter space. Extracting one of the two elements in the partition,
η and ξ, is done by considering the marginal distribution, given by

f(η, ξ|Ω) = f(η|ξ,Ω1)f(ξ,Ω2)

where Ω1 ∈ Ω denotes the parameters for the conditional distribution of η given ξ and vice
versa for Ω2. The factorization displayed above assumes that the marginal distributions are
given, or can be considered given.

As is the case within SEM, modeling typically revolves around the conditional distribu-
tion denoted above. Before finally introducing the notion of weak exogeneity, a technical
definition should be discussed

Definition. (By Spanos, 1986). For any determined vector of parameters Ω1, Ω2 can take on
any value within Ω.

Definition. (By Spanos (1986)) A variable ξ is weakly exogenous if and only if it is possible
to construct a re-parameterization of Ω in terms of Ω1 and Ω such that

• Ω = g(Ω1), or in other words, the respective parameters are a function of Ω1

• Ω1 and Ω2 are variation free

Note that for the model described above, the parameters of interest are Ω∗ = (Π1,Ψ). The
condition of ξ being weakly exogenous for this thesis, as

• The models used rely on the conditional estimation.

• More importantly, the violation of the exogeneity principle raises questions for the context
of the model. Namely, the manipulation of the ξ variable by which we model the latent
η are ill-considered whenever the parameters of ξ are a function of ξ.
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4.1.3 Methods of assessment

As discussed in the previous section, the use of a χ2-test is not without its controversy. Therefore,
different statistical tests are considered for assessing the quality of the model. More specifically, the
works of Hu and Bentler (1995) and Tucker and Lewis (1973) will be discussed in the paragraphs
below.

Definition. The Comparative Fit Index is defined by

CFI =
(χ2
b − dfb)− (χ2

q − dfq)

χ2
b − dfb

where χ2
b is the chi-square statistic of the so-called baseline model, or in other words the chi-square

statistic of a model without any dependency (Hence with diagonal Ψ), and the χ2
q is the full model

shown in figure 7.

• CFI > .90 is considered an adequate fit (Hu and Bentler, 1995)

• CFI > .95 is considered an excellent fit (Hu and Bentler, 1995)

Definition. The Tucker-Lewis index is defined as

TLI =
χ2
b/dfb − χ2

t/dft
χ2
b/dfb − 1

Which shows a similarity with the CFI. Both are important examples of comparative fit indices,
in which the model is compared to a baseline model, with maximum restrictions. It has the same
guidelines,

• TLI > .90 is considered an adequate fit

• TLI > .95 is considered an excellent fit

Finally, the Root mean squared error of approximation is frequently used within structural equation
models.

Definition. The Root mean squared error of approximation, or RMSEA, is defined as

RMSEA =

√
χ2 − df

df(N − 1)

and has the following guidelines (Brown and Cudeck, 1993)

• RMSEA < .10 is considered an acceptable fit.

• RMSEA < .08 is considered an adequate fit.

• RMSEA < .06 is considered an excellent fit.

By Edward Rigon (1996), the CFI and TLI still have some problematic features. It is argued that the
metrics are usefull in a exploratory setting (e.g. iteratively building up a model), and the RMSEA is
aimed at evaluating a final and complete model. Therefore, this study will use the first two metrics
when building the model, and will resort to the RMSEA after the final model has been constructed.

4.2 The structural model of music perception

Thus far, the mathematics underlying the structural equation model have been discussed. Theoretical
notions of a path model and a measurement model formed the basis on which the models can be
constructed. Now, it is time to construct the models evaluating all the previously listed principles.
The first few models will be rather simple, and the models will get increasingly more complicated
during this section. First, consider the simplest model as exemplified in section 4.1, modeling mood at
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the first musical piece and the second musical piece (time 1 and 2 respectively). Recall the equation (8),
and define y1, . . . , y6 the questions measuring mood at time 1 (e.g. the amount of happiness, sadness,
...). The items y7, . . . , y12 are the same as y1, . . . , y6, but then for mood at time 2. Hence, each yi is
the same question as yi+6. Therefore, it is reasonable to let εi correlate with each εi+6. Additionally,
let ηi designate the latent mood at time i, with i = 1, 2. The inclusion of the measurement of the
latent mood at time 1 in the measurement of the latent mood at time 2 is also taken into account,
as the mood at the second musical piece is intuitively interdependent upon the mood at the previous
time. Displaying this construction visually,

Figure 8: The simplest model.

A simple improvement to this model concerns the complete similarity between the measurements of
η1 and η2. For each of the same questions, it is possible to impose a restriction on the factor loadings
of Λ such that the factor loadings of yi is equal to the factor loading of yi+6. More precisely, each
λi = λi+6.

The implementation of a complex structural model can be both time consuming and sensitive to
errors. Therefore, in line with the previous function, it is also possible with the package coming
along this thesis to automatically restrict the factor loadings of the items. The input requires
a two dimensional vector with the two latent constructs (as exemplified above) in which the
factor loadings of the items should be restricted. For example,

TidyLavaan::MeasurementModelConstraint(MetaData = meta_data,

SelectedFactors = c(mood1, mood2),

ConstraingLogical = TRUE ,

ConstraintLabel = ’b’)

It is interesting to inspect the matrices underlying the model. For the model

η = Bη + Λξ + Ψ
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the matrices B, Λ show

B =

[
0 0.84
0 0

]
, Λ =



1 0
5.026 0
5.253 0
5.587 0
4.926 0
1.367 0
6.177 0

0 1
0 5.026
0 5.253
0 5.587
0 4.926
0 1.367
0 6.177



Ψ =



0.96
0 0.45
0 0 0.39
0 0 0 0.35
0 0 0 0 0.45
0 0 0 0 0 0.95
0 0 0 0 0 0 0.12

0.47 0 0 0 0 0 0 0.96
0 0.40 0 0 0 0 0 0 0.39
0 0 0.43 0 0 0 0 0 0 0.33
0 0 0 0.57 0 0 0 0 0 0 0.34
0 0 0 0 0.53 0 0 0 0 0 0 0.45
0 0 0 0 0 0.64 0 0 0 0 0 0 0.95
0 0 0 0 0 0 0.52 0 0 0 0 0 0 0.17


The factor loadings in Λ assigning a weight to each individual item is quite diverse. For a factor loading,
a standardized factor loading > 0.5 is usually considered to be an adequate factor loading (Bagozzi &
Yi, 1991). Then, after standardizing, for the items Suprising, Relaxing, Emotional, Exciting, Beautiful
load very well onto the latent construct mood. On the contrary, the factor loadings of Difficult and
Demanding indicate a poor loading onto mood. As these two factor are quite similar, the results seem
intuitively cerebral. The ensure a suitable fit, the metrics show

Metric Value

CFI 0.94
TLI 0.93
RMSEA 0.072

indicating an adequate fit. Now, the model discussed does, of course, not fully represent the entire
data and hypothesized structure as we iteratively build up the model. Using the items measuring
meaning and interpretation at, time 1 and 2, the model can be visualised by
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Figure 9: The second model

The fit indices are almost invariant under the addition of η3 and η4 to the model, as

Metric Value

CFI 0.94
TLI 0.93
RMSEA 0.074

A simple inspection indicates that 24 of the 141 items have been covered in the model. The next
addition comprises the mood of the participants at time 0 and 3. Denoting the mood at both times
by η5 and η6 respectively, the model is updated into
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Figure 10: Third model

This time, the overall performance of the model drops to

Metric Value

CFI 0.89
TLI 0.88
RMSEA 0.09

indicating a fit on the bounds of being a poor fit and an adequate fit. Since the inclusion of the
latent construct shows a poor quality and the mood during the concert indicates a significantly better
fit, these two variables will be dropped. Another possibility to tackle the latter issue is by internally
improving the model. This sort of model improvement will only discussed after the final model has been
established. In the final model, the exogenous variables are considered for implementation. However,
the variables

1. Setting

2. Reasons to visit the theatre

3. Quality of the musicians

indicated a very poor fit, dropping all measures significantly (e.g. CFI = 0.69). This is due to a
number of reasons, such as

• Different scales of measurement (ranging from binary data to 0-10 scaled variables) within the
same latent construct

• A low variability within each item. This will be discussed in chapter five.

• Too much missing data, or data that is conditionally based on answering a different question
(e.g. whether having a traffic jam whenever the method of transportation is a car).

The one latent construct within ξ improving the model is Knowledge, in which questions about the
knowledge about the musical pieces are asked. The final model is therefore more complicated, and can
be visualised by

34



Figure 11: Full model

However, the fit indices have worsened. Although the RMSEA still shows the same adequate fit
(0.074), the CFI has dropped to 0.85. Due to the inclusion of more factors while not considering
the interaction between each item, the model has worsened in the fit indices. In section 4.2, the
Modification Index has been established giving a powerful tool for studying plausible interactions
within the model. For this study, the modification index is even more interesting as it shows which
questions measure other latent variables. To prevent every possible modification to be included in the
model, only improvements with MI > 10 (as is in line with most other statistical programs modeling
modification indices, such as Mplus) will be considered and proposed to be added to the model. As is
expected, most additions are rather obvious and consider correlation of items within the same latent
factor. Such correlations improve the model without losing the hypothesized structure and are therefore
convenient additions.

The inclusion of reasonable correlations can be done by the function IncludeMI in the package
coming along this thesis. It can be executed by the code

TidyLavaan::IncludeMI(model)

To update the model, create a new model by the lines

NewModel <- paste(OldModel, ’\n\n’, TidyLavaan::IncludeMI(model))

and can be embedded in the lavaan/cfa function of the package lavaan.

A list of the additions and its considerations is given below. Note that only correlations are added.
The modification index also indicates possible changes in the measurement model. However, to stay
as close as possible to the original study, the addition of a statistically better measurement model will
not be considered. It is also noteworthy that due to having a large and complex model, statistical
significant modifications are easily obtained, although they might not be true in reality.
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Figure 12: Modification index. Actual table is triple the size

After the implementation, the model has improved, as

Metric Value

CFI 0.90
TLI 0.90
RMSEA 0.053

indicating an adequate to good fit. As for the confirmatory model the RMSEA is the more im-
portant metric and shows an excellent fit. Also note that the Hessian is positive definite and that the
degrees of freedom (df = 1865) is positive - resulting in identification.

4.3 Regression coefficients and variable selection

The assessment of the quality of the model can be chosen in two separate ways. First of all, con-
structing the method by adding and dropping variables purely based on model performance is an
option. Secondly, by staying close to the data, the point of view is not statistical performance, but
the performance of the data in a model-theoretic context. Thus far in this thesis, a combination of
both methods have been used. Although the writer is not a psychologist nor a sociologist, by means
of educated guesses a statistical valid model was constructed. Variables which indicated significant
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model performance loss were dropped from the model. To ensure a valid representation of the data,
only factors were dropped - and not individual items. This section assesses the output of the structural
equation model, while specifically assessing the quality of the measurement model.

The concept of regression in a structural equation model is similar to that of a linear regression. Note
that the regression coefficients can be found in the B-matrix of the structural equation. Extracting
the elements from the B-matrix, the non-zero elements show

Latent Variable Correlates with Standard Error Estimate
Meaning and Interpretation t1 Knowledge 0.045 0.280
Meaning and Interpretation t2 Meaning and Interpretation t1 0.037 0.840
Meaning and Interpretation t2 Knowledge 0.81 0.280 *

Mood t2 Mood t1 0.036 0.810
Experience t1 Mood t1 0.683 -2.407
Experience t1 Meaning and Interpretation t1 0.095 0.379
Experience t2 Experience t1 0.060 0.075*
Experience t2 Mood t2 0.788 -3.348
Experience t2 Meaning and Interpretation t2 0.071 0.293

Table 2: Results of latent factor score improvement per partition of knowledge

As Knowledge presumably exerts influence on the score of the construct of meaning an interpreta-
tion, the analysis shows that as Knowledge is already incorporated in the regression of meaning and
interpretation at time 1, there is no need to let the meaning and integration at t2 also model knowl-
edge. Including solely the regressions which are significantly different from zero, the new regression
coefficients are similar to the previous table, as

Latent Variable Correlates with Standard Error Estimate
Meaning and Interpretation t1 Knowledge 0.045 0.289
Meaning and Interpretation t2 Meaning and Interpretation t1 0.037 0.876

Mood t2 Mood t1 0.037 0.816
Experience t1 Mood t1 0.682 -2.334
Experience t1 Meaning and Interpretation t1 0.095 0.382
Experience t2 Mood t2 0.788 -3.411
Experience t2 Meaning and Interpretation t2 0.071 0.330

Table 3: Results of latent factor score improvement per partition of knowledge

The interpretation of the regression results are similar to a normal linear regression. Since all items
and latent variables operate on an uniform scale, it can be obtained that mood quite heavily impacts
the experience at both times. Maybe somewhat surprising, the opposite is true for the meaning and
interpretation. At both times, the regression coefficients do not differ significantly from zero in the
regression model. Secondly, it is noteworthy to discuss the individual factor loadings. The construction
of the items loading onto the factors is based on sociological and psychological knowledge. By using
mathematics, or more specifically the constructed structural equation model, it is possible to identify
whether the latent constructs are measured correctly. If the measurement estimate is not significantly
different from zero, the consideration of removing the item is suggested. Then, the inspection of the
measurement model is required. The Λ matrix identifying the factor loadings has been converted into
a readable table and is listed below.

Latent variable Item Coefficient
Meaning and Interpretation t1 I recognized the emotions 1
Meaning and Interpretation t1 I felt attracted by the developments 1,122
Meaning and Interpretation t1 I understood the intentions of the composeer 0,925
Meaning and Interpretation t1 I tended to physically move 0,654
Meaning and Interpretation t1 I primarly listened with my eyes closed 0,335*
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Meaning and Interpretation t2 I recognized the emotions 1
Meaning and Interpretation t2 I felt attracted by the developments 1,122
Meaning and Interpretation t2 I understood the intentions of the composer 0,925
Meaning and Interpretation t2 I tended to physically move 0,654
Meaning and Interpretation t2 I primarily listened with my eyes closed 0,335*
Mood t1 difficult 1
Mood t1 surprising 2,238
Mood t1 relaxing 1,863
Mood t1 emotional 3,296
Mood t1 exciting 2,687
Mood t1 Demanding −0, 378∗

Mood t1 beautiful 2,538
Mood t2 difficult 1
Mood t2 surprising 2,238
Mood t2 relaxing 1,863
Mood t2 emotional 3,296
Mood t2 exciting 2,687
Mood t2 Demanding −0, 378∗

Mood t2 beautiful 2,538
Experience t1 Gave me a feeling of beauty 1
Experience t1 Touched me 1,197
Experience t1 Appealed to my fantasy 0,865
Experience t1 challenged my feeling for music 1,03
Experience t1 Provided inner rest 1,065
Experience t1 Made me experience a new part of the piece 0,981
Experience t1 Provided consolation 1,067
Experience t1 Made me feel sympathy 0,957
Experience t1 Made me lose track of time 1,089
Experience t1 Deeply impressed me 1,298
Experience t1 Made me able to clear my head 1,051
Experience t2 Gave me a feeling of beauty 1
Experience t2 Touched me 1,197
Experience t2 Appealed to my fantasy 0,865
Experience t2 challenged my feeling for music 1,03
Experience t2 Provided inner rest 1,065
Experience t2 Made me experience a new part of the piece 0,981
Experience t2 Provided consolation 1,067
Experience t2 Made me feel sympathy 0,957
Experience t2 Made me lose track of time 1,089
Experience t2 Deeply impressed me 1,298
Experience t2 Made me able to clear my head 1,051
Knowledge I know the music of Beethoven quite well 1
Knowledge I know the music of Bach quite well 0,924
Knowledge I like the music of Bach 0,754
Knowledge I know the music of Brahms quite well 0,979
Knowledge I like the music of Brahms quite well 0,592

Merely the items

• I primarily listened to the music with my eyes close

• It was quite a demanding musical piece

did not fit the model well, also due to a relative high standard error. As the distinction between being
significantly different from zero is set by some crude interval, usually .95, some comments about other
variables should be made. Then, the items
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• I tended to physically move

• Appealed to my fantasy

• I like the music of Brahms quite well

did not seem to fit the model too well either. In the next chapter, item response theory will be
discussed. By using the discriminability parameter within such a model, it is possible to extract how
much utility a question has to offer to distinguish a participant based on the score. The ’future’ of the
variables just listed will be assessed by the amount of discriminability they have to offer. Only after
the latter assessment, a new structural equation model will be constructed such that a more optimized
model can be formed based on diverse and informed considerations.

4.3.1 An alternative method of locating goodness of fit

Locating the residuals underlying the model, the difference between the implied and the population
covariance matrix can be computed. The residuals of |S−Σ| can identify the places where the fit could
be improved. Computation yields a lower diagonal matrix. Since we work with many observations,
a simple matrix does not fulfill the needs of identifying a pattern within the residuals. This problem
is analogous to the ones of identifying correlations within a large data set, which is usually resolved
by plotting the correlation plot. The same principle is executed, with the only difference that the
loadings, or values, are based on the residuals rather than the correlations.

The alteration of the correlation plot is made possible by including the statement

corplot = FALSE

in the corrplot function in the stats package. Then, by entering the matrix of residuals, the
plot below can be constructed

Figure 13: Plot of residuals as it was a correlation

Variables 49 and 50 (tended to physically move and I listened to the music primarily with my eyes
cloded) show an interesting pattern of having consistently high residuals. Although these items could
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be omitted from the data, the hypothesized structure is changed within each factor, which declines
the resemblance of the data.

As an adequate fit has been established, the next step in constructing analysis on the latent per-
ception of music can be found both in a structural equation model as well as in other mathematical
theories. However, within a structural equation model, it should be noted that latent factor estimation
is not without problems. Analysing the hypothesized perception further, the primary objective is to
identify the possible changes in the perception of music over time. The method of a latent growth
model is frequently referred to as modeling the time component within a structural equation model.
As the latent growth model is based on the same principles as a normal structural equation model,
the same problems with latent inferences may occur. Also, the literature of a latent growth model is
quite scarce, and therefore it relies on the framework built by Bollen.

4.3.2 Small recap

The original study compromised 141 questions ranging over eleven factors. Unfortunately, not all
questions were did fit the model well. The items in the structural model described in the previous
sections do describe the data well, and the factors

Factor Time Inclusion
Reasons of visiting the theatre 0 No.
Knowledge about the composers 0 Yes
Setting of the concert all No. Measured well, but no good addition to the model
Meaning and Interpretation 1,2 Yes
Mood 1,2 Yes
Experience 1,2 Yes
Break 1,2 No. Not well-defined nor numerically valid to include
Musical background all No. Numerical Problems
Quality of the musicians all No. Little to no variability

As stated in the table above, the quality of musicians is not taken into account for this model.
Although the measure was initially to be included in the model, the model performance dropped.
Inspection shows that the variability within the measures is very low. It should be noted that the
exclusion of the quality of musicians does not imply the quality of musicians itself was poor. On the
contrary, almost every participant rated the musicians very high, hence indicated a good quality but
points out the lack of providing information for the model.

4.4 Factor Estimation

Constructing and assessing the structure of latent variables is often a goal in scientific studies. By
means of measurement models as introduced above, the latent variables are given a more concrete
and practical form, although a numerical value is lacking. The latter numerical interpretation of a
latent variable is usually referred to as a factor score, and numerous factor score estimation procedures
have been developed over the latter centuries. Having alternative methods to examine factor scores is,
however, not necessarily desired. Since most methods are in line with the theory of factor analysis, and
in our case a structural model, it poses different well-accepted options to assign different numerical
values to a latent variable. The paradoxical situation in which multiple estimators are well-defined,
but are unequal to each other, is called factor indeterminacy. To align with the most common meth-
ods applied to a structural equation model, the regression method and the Bartlett method will be
introduced first. Then, a more recent alternative will be discussed.

ξ = ATx.

However, the factor estimation procedure should preserve the structural model, with

Σ = ΛΦΛT + Ψ
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with Σ being the covariance matrix of x, Φ = E[ξξT ] is the common factors correlation matrix and
Ψ = E[εεT ]. The factor score estimation within the software used for this thesis, Lavaan, is Bartlett’s
method.

Definition. In Bartlett factor scores only the shared factors influence the factor scores. The sum-
mation of the squared components of the unique factors sequencing along the variables in minimized.
Then, the matrix AT is computed by

AT = (ΛT (Ψ−1)TΛ)−1ΛTΨ−1 (9)

The matrix AT is constructed by means of a maximum likelihood estimate, resulting in unbiased
estimates of the factor scores (Herschberger, 2005). Nevertheless, this method poses not merely positive
sides to factor score estimation, as the method does not take the structural matrix Φ into account.
The notion of correlation preserving methods tries to formalize this concept

Definition. Let A be the m × q matrix representing the matrix of coefficients in the factor score
equation ξ = ATx. An estimator of AT is correlation preserving if and only if

E[ξ̂ξ̂
T

] = E[ξξT ] = Φ

is satisfied.

Lemma. The matrix A as discussed before is of the form

A = Σ−1/2CΩ1/2

with C as some matrix with dimension m× q (Ten Berge, Krijnen, 1999). The proof follows trivially
from the inversion the structural decomposition of Σ

Theorem. For the estimator ξ̂, the matrix C must be columnwise orthonormal, i.e. CTC = I to
preserve the correlation.

Proof: Using the previous lemma, a simple computation shows

A = Σ−1/2CΩ1/2 =⇒ E[ξ̂ξ̂
T
] = E[ATx(ATx)T ]

= ATE[xxxT ]A

= ATΣA

= (Ω1/2)TCT (Σ−1/2)TΣΣ−1/2CΩ1/2

Note that Σ and Ω are symmetric, thus

= (Ω1/2)CTΣ−1/2ΣΣ−1/2CΩ1/2

= Ω1/2CT ICΩ1/2

= Ω ⇐⇒ CTC = I

It can be shown that the Bartlett estimator is not correlation preserving by checking that E[ξ̂ξ̂
T

] 6= Φ.
In the latter century, Anderson and Rubin proposed the first correlation preserving method by means
of minimizing the weighted least-squares function f(ξ̂) subjected to the previous lemma. However,
this solution only considered Ω = I. MacDonald (1981) generalized the concept and extended the
method such that Ω could be taken arbitrarily. More precisely,

A = Σ−1/2CΩ1/2

where C is determined by the singular value decomposition

U∆V T = Σ1/2Ψ−1ΛΩ1/2
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with U and V as orthogonal matrices and ∆ a diagonal matrix. Green proposed a different method
in which the function

g(A) = trace MSE(ATx) subjected to A = Σ−1/2CΩ1/2

is minimized. Or, in other words, the of the trace of the mean squared error is minimized. Similarly
to Anderson and Rubin, the solution relied upon the singular value decomposition with

U∆V T = Σ−1/2ΛΩ3/2

where U and V are again orthogonal matrices and ∆ is a diagonal matrix. Krijnen et al (1996)
generalized the two notions above by means of specifying an iterated method for determining C in
which the determinant of the mean squared error matrix is minimized. Ten Berge, Krijnen (1999)
improved this method by considered a solution of C in a closed form, and the iterative procedures are
no longer required. As shown in Ten Berge, Krijnen (1999),

C = Σ−1/2L(LTΣ−1L)1/2

with L = ΛΩ1/2.

Corollary. The factor score estimation procedure proposed by Ten Berge and Krijnen is correlation
preserving.

Proof: Referring to the previously constructed lemma in which CTC = CCT = I is a sufficient
criteria for a correlation preserving method, a computation shows

CCT = Σ−1/2L(LTΣ−1L)1/2
{
Σ−1/2L(LTΣ−1L)−1/2

}T
= Σ−1/2L(LTΣ−1L)−1/2((LTΣ−1L)1/2)TLTΣ−1/2

= Σ−1/2L(LTΣ−1L)−1LTΣ−1/2

= Σ−1/2LL−1Σ(LT )−1LTΣ−1/2

= Σ−1/2ΣΣ−1/2

= I

which completes the proof. Hence, the method proposed by Ten Berge and Krijnen consists of the
most general method while preserving correlation.

This method has been implemented in the TidyLavaan package coming along this thesis. It
can be used by executing the lines

TidyLavaan::TenBergeKrijnen(LavaanModel)

The only input required is the Lavaan model. The software extracts the matrices Σ, L, Ω,
Φ and Ψ and the implemented data for the user. If new data is required, the following code
should be executed

TidyLavaan::TenBergeKrijnen(LavaanModel, NewData)

4.4.1 Results

As a thorough theoretical foundation has been established, the application of the theory illustrates the
capacity of the theory itself.

The results discussed in this sections are based on the factor scores of the Mood of a participant
at entrance time and at the time after the concert. Hence, the difference in Mood when entering the
theatre and leaving the theatre after the concert is assessed. It should be noted that Mood has also
been measured at both classical pieces displayed in the theatre. However, for these specific times,
a more nuanced method of measuring Mood is required. Globally, the method of factor estimation
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as discussed in the latter section suffices, but when studying the Mood (or any other latent factor)
requires more nuance in the mathematics, which will be discussed in the upcoming chapter by means
of item response theory.

After the implementation of the methods of the previous section in R, the factor scores based on
the most complete model show (only the first few observations are taken)

Experience t1 Mood t1 Mood t2 Interpretation t1 Interpretation t2 Experience t2 Knowledge
1,45 -1,06 -0,58 -1,2 -0,61 -0,84 1,18
-0,76 0,45 0,35 -1,77 -0,67 0,53 -0,79
0,37 -0,15 0,08 -0,56 -0,8 0,3 -0,39
-1,01 -0,32 0,08 0,09 -0,02 -0,07 -1,35
0,38 0,12 -0,07 0,98 0,61 0,37 1,85
0,24 -0,17 0,22 0,1 0,2 -0,06 -0,17

By construction, E[ξ] = 0. Checking this construction yields

Latent Factor ξ E[ξ]
Mood t0 4.775892e-17
Mood t1 -1.513396e-16
Mood t2 1.024873e-16
Interpretation t1 1.024428e-16
Interpretation t2 2.794344e-17
Mood t4 -4.186291e-17
Knowledge 8.162729e-17

which is in line with the construction of the model. Visually, the distribution

Figure 14: Density plot of the factor estimation

By a transformation into the scale of the measurements underlying the latent factor, a better
interpretable estimation is obtained
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The rescaling has been implemented in the TidyLavaan package coming along this thesis. It
can be used by executing the lines

TidyLavaan::FactorRescale(FactorEstiamtes)

The only input required is the matrix of factor estimates. It automatically rescales the factor
estimates into the known scale of the measurements underlying the model. If different mea-
surement scales are used, please pass it through the function by the additional argument scale
or use the rescale function form the tidyr-package

TidyLavaan::TenBergeKrijnen(LavaanModel, scale = c(a,b))

After a rescaling, the first few lines of the data shows

Experience t1 Mood t1 Mood t2 Interpretation t1 Interpretation t2 Experience t2 Knowledge
3,42 3,53 4,9 1,15 2,35 3,81 2,91
4,37 2,18 4,36 2,12 2,09 3,58 3,26
3,2 1,81 4,36 2,64 3,59 3,21 2,43
4,37 2,79 4,05 3,35 4,79 3,65 5,22
4,26 2,15 4,64 2,65 4 3,23 3,46
5,1 2,99 3,66 0,87 5,84 3,38 2,58

Asserting changes over time can be done by means of constructing a confidence interval for each
individual. The confidence interval is of the form

[x− zαs.e., x+ zαs.e.]

where s.e. denotes the standard error, defined by

s.e. =
σ√
n
,

z denotes the respective z-score and α denotes the desired confidence value, which will be set to 0.95.
Then, comparing two similar factor scores at different times can be assessed by checking whether the
factor score of the factor score at time 2 is contained in the confidence interval of the factor score at
time 1.

The construction of the confidence interval is contained in the package coming along this thesis
and can be called upon by the line

TidyLavaan::DetectChanges(Column1, Column2)

The output is a data frame, which the two respective columns, a lower and an upper bound
for the confidence interval, the dichotomous variable Significant Change detecting whether the
value in column 2 is contained in the confidence interval of column 1, and an extra column
checking whether the factor score has become bigger or smaller.

Based on the function described above, the results will be summarized in the final subsection of
this chapter. Reassuring enough, the data and models show that the participants’ Mood improved in
about 80% of the cases. More precisely

Improved Observations
No 54
Yes 235

Table 5: Results of latent factor scores

Also, studying the amount of improvement of the factor score of Mood can be computed. This
can, again, be done by partitioning the participants in groups showing improvement in Mood or no
improvement.
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Improved Average Improvement
No -20.6 %
Yes 55.8 %

Table 6: Results of latent factor score improvement

Thus, on average, people who show a decrease in the factor score of Mood show a 20% decline. On
the upside, participants showing an increase in the factor score related to Mood show a 55% increase
in the factor score.

Interestingly enough, when constructing a partition in the data based upon the factor score of the
knowledge, the data shows a very close similarity for the group having an insufficient knowledge of
classical music and a sufficient knowledge of classical music. Concentrating on the 25% quantile per-
forming the best on knowledge, the improvement in Mood for both the group is almost completely
similar:

Knowledge score Improvement Observations (in %)
0-75% of knowledge scores No 16.3%
0-75% of knowledge scores Yes 83.7%

75-100% of knowledge scores No 16.2%
75-100% of knowledge scores Yes 83.8 %

Table 7: Results of latent factor score improvement per partition of knowledge

It might be interesting to combine the latent variables into one plot in order to notice patterns.
As the regression coefficient of knowledge indicates a strong relationship, it is noteworthy to discuss
the interdependence of experience and knowledge. By plotting a simple visual with all the knowledge
scores on the x-axis and the average factor score of experience at both times, on the y-axis, we have

Figure 15: Visualiation of the interaction of knowledge and experience

showing an intuitively pleasing relationship with knowledge and the experience. A different effect
can be obtained for meaning and interpretation
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Figure 16: Meaning and Interpretation per knowledge score

Hence, obtaining a higher score on the knowledge axis results in having a lower score at the factor
of meaning and interpretation. Psychologically, this result may arise from the paradoxical situation in
which an informed person is more (self-) critical than a worse informed person. However, such a study
is beyond the scope of this thesis and acts merely an educated guess by the author. Finally, a more
understandable and clear pattern shows when mood is used as the x-axis,

Figure 17: Visualisation of the interaction of mood and experience

The experience gradually improves with mood, which is in line what is intuitively to be expected.

4.5 Conclusion and discussion

This chapter presented a straight forward method for constructing the structural equation model. By
means of a combination of educated guesses, proper scientific conduct and statistical performance,
the model has been generated iteratively. It should be noted that model performance could have
been much higher if it were not for the inclusion of seemingly important variables, such as mood and
experience. As the goal of building the model is not statistical significance, but finding a method to
study, investigate and test a hypothesized or pre-defined knowledge, model performances dropped over
the iterations. The measurement model plays an important role in the statistical power and therefore
the appropriateness of the loadings in Λ has been discussed. Since a few items are on the edge of
statistical significance and such an edge is somewhat arbitrary, a different mechanism is required to
get more insight into the quality of the factors. The proposed method is the item response theory,
which brings parameters such as discriminability into consideration.
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5 Latent Inferences and Measurement

The first and foremost method of research with survey is measurement. Analysing financial insecurity,
academic achievement or in this case the perception of music is performed by conducting measurements,
partitioned into different categories and questions. The theory of conducting a proper survey heavily
relies upon the qualities of the questions, the phrasing of the questions, the possible bias of the research
and the participants of the survey. For instance, the legitimacy of a poll fully depends upon the quality
and how well the sample represents the full society (e.g. consider the polls of the 2016 presidential
election in the USA). The central topic of this section comprises the theory for measurement.

5.1 Item Response Theory

The Item Response theory encompasses a number of mathematical models, including the possibility
of statistical inferences focused on addressing and assessing questions from a survey, or items as they
are called within this theory. Analysis of items, assessing scores and latent variable analysis are all
part of the latter theory, promising a valid method for research.

Using a theory or statistical method arbitrarily cannot be categorized as conducting proper sci-
ence. Therefore, a case must be made for using item response theory. Traditional statistics frequently
resorts to using the mean statistics for comparing the overall score on the same item at two different
times. However, this sort of simplification of the problem is not possible for this model. Each latent
category of questions contains multiple items. Therefore, comparing the total score of each category
would implicate using the mean of the mean. This kind of a statistic is necessarily a valid statistic
for displaying the entire data. The concern made above can be exemplified by considering the sample
questions.

The items for the survey at hand admits an ordinal scheme on a 0-6 scale. The scale can be in-
terpreted as a Likert scale, based on the interpretation of ranging from Very Strongly disagree to
Very Strongly Agree, with neutral as the median possible score. However, classical item models usually
depend upon dichotomy, i.e. a binary scale. The section below builds up a item response theory model,
starting by the most simplest binary data.

5.2 The Rasch model

Developed by Georg Rasch, the Rasch model is a method for modeling dichotomous data. The model
compromises the trade-off between the participants knowledge and/or capabilities and the ’difficulty’
of a question. More precisely, let yij be the jth item of the questionnaire, and let i be the ith response
such that the questionnaires has dimensions i× j. The items measure the dichotomous latent variable
ability θ, which can be interpreted as knowledge, enjoyment or capability dependent upon the context.
The equation providing the base for the Rasch model is the Sigmoid function S(x) for x = θi − bj

P(Yij = yij |θi) =
eθi−bj

1 + eθi−bj

where bj is the item difficulty, or the amount of difficulty one has with getting the score ’1’ on this
question. To yield valid results, proper statistical assumptions should be imposed. More specifically,

1. Monotonicity. Similar to a cdf, the Probability of the Rasch model is strictly increasing, with
0 ≤ P(yij = 1|θi) ≤ 1. More formally, for θi > θm:

f(yij |θi, bj) > f(xim|θm, bj), ∀θi, θm

2. Unidimensionality The respective items are restricted to interact with only one latent trait.
Therefore, the vector form of θi is strictly one dimensional. Mathematically,

P(yij = 1|θi, bj , ϕ) = P(yij = 1|θi, bj)
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3. Conditional independence. The items can only be interdependent because of the depedence
on the latent variable θi. Thus,

P(Yi1 = yi1, . . . , YiJ = yiJ |ξi) =
∏
j

fj(ξj)

4. Sufficiency. The raw score ri =
∑
i yij has all information about the ability. By the factorisation

theorem,

f(yij , . . . , ykj |θi) = g(ri|θi)h(xi1, . . . , xiJ)

For each of the assumptions listed above, a more detailed explanation is required. Also, algorithms to
check the conditions are shared.

5.2.1 A likelihood ratio model for assessment

Several tests have been constructed to check assumption (1) and (4), such as Molenaar’s Statistics
U and Fisher and Scheiblechner’s statistic S. The most common statistical test is constructed by
Anderson, who also formulated the theory of polytomous Rasch models, which will be discussed later
in this chapter. For the Andersen test, the conditional likelihood, given in Reinhold (2018), is defined
by

L =
exp(−

∑
j bjri)∏

r

(∑
y exp(−

∑
j yjbj)

)nr

The likelihood can be partitioned into a likelihood estimate for each possible raw score such that

L =
∏
r

L(r)

Then, by a simple deconstruction it follows that

L(r) =
exp(−

∑
j bjri)(∑

y exp(−
∑
j yjbj)

)nr

if the raw score ri is a sufficient statistic, the two likelihood should be similar. However, if the opposite
is true, then the raw score is not a sufficient statistic and hence the fourth condition is violated. Also,
if the item characteristic curve for a question j has a non-monotonic property, then |θi| varies along
the different sub scores. Then, the the following LR-test Λ will decrease. By Anderson (1973), the
statistic

Z = −2 log Λ = 2
∑
r

L(r) − 2 logL

approximately follows has the χ2
(j−1)(j−2) distribution (Andersen, 1973b). The algorithm checking the

statements above can be constructed using

Algorithm 2 Andersen LRT

1: procedure AndersenLRT(data) . Clean data
2: L← exp(−

∑
j bjri)

/∏
r

(∑
y exp(−

∑
j yjbj)

)nr

3: for k in 1 : maxri i do

4: L
(r)
k ← exp(−

∑
j bjri)

/(∑
y exp(−

∑
j yjbj)

)nr

5: end for
6: LR← 2 ·

[
L(yij , θi, bj)−

∏
k L

(r)
k (yij , θi, bj)

]
7: df ← (j − 1)(j − 2)
8: p← χ2

(j−1)(j−2)(LR)

9: return
[
p, LR, df

]
10: end procedure
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and can be found in the package

To use the latter algorithm, the function can be exectued by the line

TidyLavaan::AndersenLRT(IRTmodel)

having an item response theoretic model as its input.

5.3 Polytomous Item Response Theory

A non-dichotomous, or polytomous, extension needs to be explored in order to fully capture the data
without losing the ordinal structure. The Rasch model can be extended into a polytomous setting by
means of the Rating scale model.

5.3.1 From rating scale model to the partial credit model

In the previous section, the works of Andersen proved to be a powerful method of checking the condi-
tions of the dichotomous Rasch Model. Within the same year, Andersen wondered whether the idea
of Rasch could be extended into a polytomous version (1973b). The idea of constructing a response
vector yij is different in construction, as the vector denotes a partioning into each category, where

y
(c)
ij denotes whether the response yij is chosen for category m. For example, if participant i = 43

answer question j = 6 with m = 5, then y
(5)
43,6 = 1 and y

(k))
43,6 = 0 for k 6= 5. By Andersen 1973b, the

polytomous Rasch model is then constructed by

P(Y
(c)
ij = y

(c)
ij |θ

(c)
i ‘, b

(c)
j ) =

exp
(
y
(c)
ij (θ

(c)
i − b

(c)
j )
)∑

k exp
(
θ
(k)
i − b

(k)
j

) with m 6= k

By using the model displayed above, the problem of having categorical data is resolved. This idea has
been extended into the partial credit model, in which the necessary assumption of having a uniform
scale is relaxed. Therefore, it serves as a generalization of a polytomous Rasch model. The probability
of attaining the next step within the likert scale is the foremost principle. To exemplify the notion of
a step, consider the situation in which the score starts at 0. Then, the probability to reach the first
step, or to take on the next score, 1, is defined by

P(Y = m) =
πm

πm−1 + πm

in which πi is the unconditional probability of attaining the specific score m. In this case, the prob-
ability P(Y = m) is the conditional probability that the attained score is m given that m − 1 has
already been attained. However, the expression of πm is similar to the Rasch model, as

P(Y = m) =
exp (θ − bm)

1 + exp (θ − bm)
.

Note the Markovian structure of bm, as bm−1 ≤ bm for m = 1, . . . ,M . The general formulation of πm
is given by

πm =
exp(

∑m
k=0(θ − bk))∑M

l=0 exp(
∑
k = 0(θ − bk))

and hence, if π
(m)
ij denotes the probability that participants i has a realisation of the score m on a

specific item j, then

π
(m)
ij =

exp(
∑m
k=0(θi − b(k)j ))∑M

l=0 exp(
∑l
k=0(θi − b(m)

j ))
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5.4 Dimensionality

For every latent construct, the appropriateness of the inclusion of each item measuring the latent factor
will be discussed in this section. Item response theory can asses the quality of each item loading onto
the factor, similar to the structural equation model. Statistical appropriateness is not the only method
of measurement to identify the proper questions. The discriminality parameter indicates how well
a specific score on an item distinguishes a participant from other participants on a different position
on the latent continuum of θ (ability). Mathematically, the parameter is described by the slope of the
probability density with respect to the latent ability. If an item has little to no discriminability, It is
best to discuss or analyse the possible lack of importance of inclusion in the model

5.4.1 Experience

For each latent construct, the results from the partial credit model will be given as well as additional
analysis and suggestion to further improve the model ánd the survey

Experience t1 Discriminability parameter

Gave me a feeling of beauty 1.844
Touched me 2.112
Appealed to my fantasy 0.701
Challenged by feeling for music 0.94
Provided inner rest 1.205
Made me experience a new part of the piece 0.541
Provided consolation 0.730
Made me feel sympathy 0.645
Made me lose track of time 0.840
Deeply impressed me 1.927
Made me able to clear my head 0.746

Analysis and suggestion The last column of the table compromises the discriminability parameter.
The poorest items

• Appealed to my fantasy

• Made me experience a new part of the piece

• Provided consolation

• Made me able to clear my head

• Made me feel sympathy

did not provide satisfactory parameter estimates. On the other hand, the best items based on the
discriminability parameter, ordered, are

1. Touched me

2. Deeply impressed me

3. Gave me a feeling of beauty

The implication of a high estimate does not imply a high score. It is merely a metric measuring
the amount of information it can contain to distinguish a participant from a different participant.
To exemplify, it was noted that appealed to my fantasy did not entail much discriminability into the
model. By creating a simple histogram, this statistical measure seems to be intuitively true
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Figure 18: Distribution of Appealed to my fantasy

The data follows a uniform-esque distribution. On the other hand, it was stated that the item
touched me provided the best discriminability parameter, which is in line with the histogram displayed
below.

Figure 19: Distribution of Touched me

Indeed, the satisfying distribution intuitively confirms the results from the partial credit model.
For the experience at time 2, a similar result is expected. By computing the same table,

Latent variable Discriminability

Gave me a feeling of beauty 1.447
Touched me 1.862
Appealed to my fantasy 0.715
Challenged my feeling for music 1.215
Provided inner rest 1.902
Made me experience a new part of the piece 0.701
Provided consolation 0.894
Made me feel sympathy 0.786
Made me lose track of time 0.919
Deeply impressed me 1.478
Made me able to clear my head 0.984
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5.4.2 Mood

Specifying the same parameter, the discriminability parameters of mood tell a different story. First,
consider the mood at time 1. The data shows

Item Discriminability

Difficult 0.333
Surprising 0.686
Relaxing 0.626
Emotional 1.151
Exciting 0.709
Demanding 0.003
Beautiful 3.455

Immediately, two items are of interest. First of all, the estimate for Demanding is really poor and
most definitely is not significantly different from zero. On the other hand, the item beautiful scores
extremely well. After experience the Matthaus Passion from Bach in person, it is no surprise that the
music of Bach is easily found to be both emotional and beautiful at the same time. The results are
quite similar for the mood at the second musical piece, as

Item Discriminability

Difficult -0.144
Surprising 1.319
Relaxing 1.908
Emotional 1.511
Exciting 1.920
Demanding 0.23
Beautiful 3.499

5.4.3 Meaning and Interpretation

As the meaning and interpretation has proven to be an important factor in the model, it is noteworthy
to analyse the results from the item response theory model. At time 1, it can be obtained that

Item Discriminability

I recognized the emotions in the music 2.209
I felt appealed by the developments in the musical piece 2.785
I was able to experience the intentions of the composer 1.551
I tended to physically move 0.596
I listened to the music primarily with my eyes closed 0.404

Similarly, for time 2,

Item Discriminability

I recognized the emotions in the music 2.552
I felt appealed by the developments in the musical piece 2.520
I was able to experience the intentions of the composer 1.937
I tended to physically move 0.530
I listened to the music primarily with my eyes closed 0.344

Again, great similarity between the two tables can be noticed. The discriminability parameter
estimates tell a diverse story, as the items

• I tended to physically move; and

• I listened to the music primarily with my eyes closed
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indicate a poor discriminability. As the factor loadings in the structural equation model were poor
(although not significantly poor), the item response theory creates an extra layer of evidence against
using such an item.

5.5 The inertia to agree with an item

As listed in the mathematical models, not only the discriminability parameter is estimated. The
difficulty-parameter is a central topic of the item response theory. Recall that the difficulty paramater
can be interpreted as the hardness to agree with a question or item.

By means of extracting the estimated difficulty parameter found extracted by functions in the
eRm package, the standard error and confidence intervals for the estimates can be calculated.
Within the TidyLavaan package, this process can simple be computed by

TidyLavaan::ConfidenceIntervalIRT(IRTmodel)

Both a rating scale model and a partial credit model are admissible inputs for this function.
The output is a data frame, with the category, the estimated difficulty, the standard error
(denoted by se) and both the lower and upper bound of the confidence interval.

First, consider the mood at time 1 and time 2 respectively

Category Difficulty SE 2.5% 97.5%

Happiness -0.52 0.06 -0.64 -0.39
Energetic 0.06 0.05 -0.04 0.17
Excited 0.86 0.06 0.74 0.98
Enthusiastic -0.44 0.06 -0.56 -0.32
Emotional 1.2 0.07 1.06 1.33

Table 8: Estimation of the difficulty parameter at time 1

Category Difficulty SE 2.5% 97.5%

Happiness -0.77 0.08 -0.93 -0.62
Energetic -0.36 0.07 -0.5 -0.22
Excited 1.54 0.09 1.37 1.71
Enthusiastic -0.14 0.07 -0.27 0
Emotional 1.46 0.09 1.29 1.63

Table 9: Estimation of the difficulty parameter at time 2

As the numerical interpretation does not follow trivially from the table, the scale and numerical
assignment of the estimator difficulty parameter bj should be discussed first. As stated before, the
latent bj represents the difficulty of a particular item. For negative values of bj , the item relatively easy
to agree with. For a value of bj close to zero, the items have a neutral difficulty. For bj greater than
zero, the question was relatively hard to agree with. The author would like to emphasize the intuitive
meaning of difficulty to agree with an item rather than the plain difficulty of an item. Then, it can
be obtained that it was more easy to score higher on the items happiness, energetic, emotional, but
it was easier to score less high on the items excited, enthusiastic and emotional. It is only reasonable
to expect changes over time, but by using the confidence interval, the results show that the all items
have significantly changed over time.

Within the concert, the experience of a classical piece at each specific time has been measured by
means of the items related to meaning and interpretation as described in the structural model. At
both the distinct classical pieces, questions on the meaning and interpretation can yield insights in the
change of experience. Conducting a similar study and by using the items which were discussed in the
discriminability section, we have
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Category Difficulty SE 2.5% 97.5%

I felt addressed by the developments in the musical piece -0.54 0.06 -0.66 -0.42
I experienced the meaning as the composer had intended 0.12 0.05 0.02 0.22
I tended to physically move during the classical piece 0.5 0.05 0.4 0.61
I listened to the music primarily with my eyes closed 0.71 0.06 0.6 0.82

And at time 2

Category Difficulty SE 2.5% 97.5%

I felt adressed by the developments in the musical piece -0.58 0.06 -0.70 -0.46
I experienced the meaning as the composer had intended 0.05 0.05 -0.05 0.12
I tended to physically move during the classical piece 0.56 0.05 0.45 0.67
I listened to the music primarily with my eyes closed 0.62 0.06 0.51 0.73

In contrast to the previous results, all items did not significantly change over time. For both musi-
cal pieces, it was relatively easy to feel addressed by the developments in the musical piece. However,
people felt indifferent about the identification with the composer. Even more, the participants were
not easily physically moved nor listened to the music with their eyes closed. This is fully similar to
the results which were found in the structural equation model.

Finally, the items measuring experience should be measured and analysed. Again, constructing tables
with parameter estimates yields

Category Difficulty SE 2.5% 97.5%

Moved me -0.67 0.07 -0.8 -0.54
Appealed to my fantasy 0.62 0.06 0.51 0.74
Challenged my feelings of music -0.1 0.06 -0.22 0.01
Created inner peace -0.33 0.06 -0.46 -0.21
Made me aware of something I did not know 0.29 0.06 0.17 0.4
Provided Consolation 0.87 0.06 0.75 0.99
Provided sympathy 0.91 0.06 0.79 1.03
Made me lose track of time -0.22 0.06 -0.34 -0.1
Deeply impressed me -0.33 0.06 -0.45 -0.21
Made me able to clear my head” -0.16 0.06 -0.27 -0.04

Also, for the second classical music piece,

Category Difficulty SE 2.5% 97.5%
Moved me -0.77 0.07 -0.91 -0.62
Appealed to my fantasy 0.8 0.06 0.67 0.92
Challenged by feelings of music -0.07 0.06 -0.19 0.06
Created inner peace -0.39 0.07 -0.52 -0.25
Made me aware of something I did not know 0.29 0.06 0.17 0.41
Provided consolation 0.87 0.06 0.74 0.99
Provided sympathy 1.07 0.07 0.94 1.2
Made me lose track of time -0.17 0.06 -0.3 -0.05
Deeply impressed me -0.45 0.07 -0.58 -0.31
Made me able to clear my head -0.14 0.06 -0.27 -0.02

Then, it can be observed that the itmes

• Moved me;

• Created inner peace;

• Made me lose track of time;
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• Deeply impressed me; and

• Made me able to clear my head

were relatively easy to agree with. On the other hand, the items

• Appealed to my fantasy ;

• Made me able to clear my head ; and

• Provided sympathy

were relatively hard to agree with. Once more, the results are in line with the structural equation
modeling providing evidence for having constructed a solid model.

5.6 Re-integration with the structural model

The structural equation model remains the main method for this thesis. Item response theory is
solely a mean of improving the model. Some factors and item shine in the structural model, some are
poor, and some are in a grey area. For the latter category, an alternative measure provides a more
diverse insight. As important notions on micro-level have been established this chapter, it is time to
re-integrate the results into a statistically improved model. The following items were removed as they
did not indicate a good fit within both the structural model and the item response model

1. I primarily listened to the music with my eyes closed

2. In a hurry

3. Demanding

4. I tended to physically move

5. I experienced something new in the piece which I did not know

6. Made me able to clear my head

For all of these items, at both times the fit has been established as a poor fit. The fit indices of the
structural equation vastly improved, as the new fit incides show

• CFI : 0.96 (+)

• TLI : 0.96 (+)

• RMSEA : 0.048 (+)

vastly improving the model into an excellent fit. Now, the regressions shows

Latent Variable Correlates with Standard Error Estimate
Meaning and Interpretation t1 Knowledge 0.132 -1.409
Meaning and Interpretation t2 Meaning and Interpretation t1 0.091 0.104*
Meaning and Interpretation t2 Knowledge t1 0.142 1.012*

Mood t2 Mood t1 0.036 0.838
Experience t1 Meaning and Interpretation t1 0.234 0.281*
Experience t1 Mood t1 1.593 -3.386
Experience t2 Meaning and Interpretation t2 0.175 1.367
Experience t2 Mood t2 0.350 1.257

Table 10: Results of latent factor score improvement per partition of knowledge

showing significant changes in the regression coefficients. Similar interpretations can be given,
however. As visualised in the previous chapter, the influence knowledge exerts on the meaning and
interpretation is negative. Also, the standard error is relatively small indicating a valid regression
coefficient. Similarly, the regression coefficient for mood at experience at time 2 is in line with the

55



results established thus far. Hence, for every increase of score in the mood, the score of experience
increases with an eight of a point. Nevertheless, it should be noted that more regressions are poor
due to having a high standard error. Therefore, some interdependencies in the model cannot be
successfully established. Most importantly, the regression of experience at time 1 and mood at time
give troublesome results due to having numerical difficulty.

5.6.1 Proper scientific conduct

The implications of the model and the survey are as follows. It is only reasonable to criticize the purely
statistical basis to improve the model. Of course, for every survey is it possible to find item indicating
a poor fit. Still, these question might give relevant information on its own without consideration for
a structural model. Therefore, it is not recommended to fully drop variables or to reason purely with
statistical significance. Also, the exclusion of a variable is prone to a type-I error, as exclusion is
funded upon the p-value of the factor loading (and whether is significantly different from zero, usually
with α = .05). Thus far, structural equation models and item response theories have been discussed.
Whereas a structural model discusses the interdependencies of the latent constructs, the item response
theory only considers one factor at a time. Therefore, the results of both method cannot be fully
similar. Nevertheless, a great similarity of the two methods is expected. As item response theory also
compromises a method of factor estimation, a great insight is the correlation between the respective
factor scores. By a simple computation, it can be obtained that

Latent variable Correlation
Experience t1 0.946
Experience t2 0.948
Meaning and Interpretation t1 0.960
Meaning and Interpretation t2 0.955
Mood t1 0.911
Mood t2 0.896
Knowledge 0.920

Which is exactly to be expected. This results provides confidence in the result of the study, as
different methods present similar results, but from a different perspective.

56



6 Discussion

Mathematical analysis can sometimes be a lot to take in. This section tries to recap and critically
discuss each chapter for each result. At the end, the reader should be able to understand the chosen
methodology, the interpretation of the results and the suggestions for conduction a similar survey.

6.1 Methodology

Although no statistical method is without its critics, the structural equation model provided the
right method for determining dimensionality, the quality of measurement and the interdependencies of
latent variables, tackling the problems posed as the aim for this study. In order to ensure the model
is properly identified, two important problems arising from a structural equation model have been
discussed. First, a switch to the weighted least squares estimator has been made to account for the
non-normality the data omits. Secondly, by means of making use of the modification index, the model
specification was studied and improved. Although these two possible problems were not the main
interest of this thesis, they should be discussed to ensure a thorough study.

6.2 Dimension reduction

For about half of the data, a very good method for data reduction has been found. More specifically, 62
items were reduced into seven factors. Fortunately, the items and factors within this have intuitively
seem to be the more important variables. More conceretely, the following result was found

Factor Time Inclusion
Reasons of visiting the theatre 0 No.
Knowledge about the composers 0 Yes
Setting of the concert all No. Meausured well, but no good addition to the model
Meaning and Interpretation 1,2 Yes
Mood 1,2 Yes
Experience 1,2 Yes
Break 1,2 No. Not well-defined nor numerically valid to include
Musical background all No. Numerical Problems
Quality of the musicians all No. Little to no variability

It should be noted that not being able to include a factor into the structural model does not
necessarily imply a poorly measured factor. For instance, the quality of the musicians was too highly
scored such that the variability among its items was too low to properly include in the model. On the
other hand, the musical background of the participants was a binary-evaluated variables, which does
not pose a well founded inclusion in the model but could help to analyse the data further. In order to
construct a more nuanced view, the items were studied by both a structural equation model and and
item response model. The six items

1. I primarily listened to the music with my eyes closed

2. In a hurry

3. Demanding

4. I tended to physically move

5. I experienced something new in the piece which I did not know

6. Made me able to clear my head

were excluded after the integration of the two methods as they lacked an adequate fit in both models.
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6.3 Quantifying and assessing factor structures

Thus far, this study mainly discussed the results of the items having a good quality. However, as
shown in the previous table, it is also possible to identify the problems with the poorly fitted factors.
Two interesting results from the regression should be listed.

1. Knowledge exerts a positive influence upon the experience.

2. Knowledge exerts a negative influence upon the mood and interpretation. The interpretation
and analyses of this result is an example of conducting a psychological- or sociological study.

This conclusion is supported both inspecting the factor score estimations and the regression coefficients.
Nevertheless, it should be noted that the regression coefficient of mood at time 1 is worrying and not
in line with the factor score estimation procedures. This problem certainly needs to be addressed when
wanting to make use of this specific regression coefficient.

6.4 Development of a generalizable R-package

As the methods used in this study are usually applied by the social sciences, most statistical software
in R can be quite intimidating. Therefore, a parallel aim of this study was to develop a R-package
constructing a structural equation model easier. More precisely, the following difficulties were solved

1. An ETL-proceds for handling survey data, which comprises:

• Seeks possible numerically difficulties such as having fully linearly dependent columns, re-
sulting in a non positive definite matrix

• Structurizing the data by means of meta data, consisting of each factor with its respective
factor.

• Handling ordinal data

2. Functions providing great usability for implementing a Lavaan model, comprising

• Measurement model.

• Measurement model with restricted factor loadings.

• Creating the Ψ matrix in order to correlate items.

• An alternative factor estimation process

• Functions detecting a change over time in factor score estimation procedures

3. Functions providing great usability for implementing an item response theory

• Automatically generate item response theory for every factor present in the data

• Functions detecting change over time in factor score estimation procedures

6.5 Improvements and acknowledgements

A few critical acknowledgements should be made. First of all, the data at hand did require a manual
ETL step - resulting in a deviation from the raw source of the data. Secondly, due to numerical prob-
lems, the Wald test for the structural equation model could not be assessed. Although the modification
index yields possible inclusions for the model, possible exclusions were not able to be tested due to
numerical difficulty.

At time of publishing this thesis, the author is unable to publish the package yet. However, at the
time of writing (July 2020), the author expects the package to available through GitHub and possibly
CRAN.
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A Proofs

A.1 Proof of the Rayliegh coefficient

Before using the Rayleigh quotient, consider first the decomposition of x in terms of a basis of the
eigenvectors vi

x = a · v =

n∑
i=1

aivi

where

ai =
〈x, vi〉
‖vi‖2

in order to establish orthogonality. Then, by using the established LU decomposition,

R(Σ, x) =
xTLTLx

‖x‖2

=

(∑n
i=1 ajvj

)(∑n
i=1 aiλivi

)
∑n
i=1 a

2
i ‖vi‖2

By orthonormality of vi, the latter reduces to

=

n∑
i=1

λi
(xT vi)

2

‖x‖2‖vi‖2

which attains its maximum whenever v ∈ E where E is the eigenspace corresponding to λmax =
max spectrum(Σ).

A.2 Proof of the identities in the ML-derivation

Proof:

1. By plain computation

traceAB =

n∑
i=1

(AB)ii =

n∑
i=1

m∑
k=1

AijBji =

m∑
k=1

(BA)jj = traceBA (10)

2. as xTAx is a scalar, it is invariant under taking its trace

3. Again, by computation

traceAB =

n∑
i=1

a1ibi1 +

n∑
i=1

a2ibi2 + · · ·+
n∑
i=1

amibim

Implying

∂

∂A

n∑
i=1

a1ibi1 +

n∑
i=1

a2ibi2 + · · ·+
n∑
i=1

amibim = bji = BT
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B Code

B.1 ETL

For the ETL-proces (Extract, transform and load), the following functions were constructed and used
at different stages of the study

### Data i n l a d e n
l ibrary ( r eadx l )
l ibrary ( dplyr )
l ibrary ( lavaan )
l ibrary ( Matrix )
l ibrary ( plm )
l ibrary ( c a r e t )
l ibrary ( matr ixca l c )
l ibrary ( s c a l e s )
l ibrary ( semPlot )
l ibrary ( FactoMineR )
l ibrary ( psych )
l ibrary ( lavaanPlot )

Clean Colnames <− function (data , RepeatedMeasures ){
# as s p e c i a l c h a r a c t e r s might r e s u l t in problems in the program ,
# they w i l l be removed
s <− colnames (data ) %>%

gsub ( ’ [ [ : d i g i t : ] ] + ’ , ’ ’ , . ) %>%
gsub ( ” [ ˆ [ : alnum : ] /// ’ ] ” , ”” , . ) %>%
gsub ( ’/ ’ , ”” , . ) %>%
gsub ( ’ ’ , ”” , . )

i f ( RepeatedMeasures == T){
# I f column names are not unique , they w i l l be enumerated ( x , x1 , x2 , . . )
s <− s %>%

make . unique ( . , sep = ’ ’ )
}
return ( s )

}

# a u t o m a t i c a l l y c r e a t e s a meta data t a b l e , an improved summary
# s p e c i f i c f o r survey data
MetaData <− function (data ){

Clas s e s <− data %>% sapply ( . , class ) %>% as . data . frame ( )
s c a l e 0 <− data %>%

sapply ( . , min) %>% as . data . frame ( ) %>% p u l l ( )
s c a l e 1 <− data %>%

sapply ( . , max) %>% as . data . frame ( ) %>% p u l l ( )
mean1 <− data %>%

sapply ( . , mean) %>% as . data . frame ( ) %>% p u l l ( )
return (data . frame (Column = colnames ( mydata ) , Minimum = sca l e0 , Maximum = sca l e1 , Mean = mean1 ) )

}

# Convert ing to numeric might r e s u l t in NA’ s . This t r i e s to overcome t h a t
ParseNumeric <− function ( x ) {

return ( suppressWarnings (sum( i s . na( as . numeric ( x ) ) ) ) == sum( i s . na( x ) ) )
}

# Whenever the p r e v i o u s f u n c t i o n r e t u r n s true , the v a r i a b l e w i l l be conver ted to numeric
Convert <− function (data ){

return (data %>%
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mutate i f ( ParseNumeric , as . numeric ) )
}

# Quest ions shou ld be r e v e r s e coded sometimes
Reverse Question <− function ( column ){

column <− −1∗column
mini <− min( column )
column<−column + abs ( mini )
return ( column )

}

B.2 Structural equation model

mydata <− mydata %>%
mutate at ( c ( ’ moe i l i j k ’ , ’ m o e i l i j k 1 ’ , ’ Ikwasmaarnetopt i jd indegrotezaa laanwez igvoordeaanvangvanhetconcert ’ ,

’ Erwarenstorendefoutenindeuitvoer ingvandemuziekstukken ’ , ’ Ikwasmet i jdenshetconcertbewustvandeaanwezighe idvananderebezoekers ’
) , ˜ Reverse Quest ion ( . ) )

formule bouwen <− f unc t i on ( f a c t o r s , Const ra intLog i ca l , Constra intLabe l ){
y <− unique ( f a c t o r s [ , 1 ] )
f a c t o r <− p u l l ( f a c t o r s [ , 2 ] )
paste (y , ”=˜” , paste ( f a c to r , c o l l a p s e=” + ”))

}

MeasurementModel <− f unc t i on ( MetaData , Se l e c t edFac to r s ){

m e t a l i s t <− s p l i t ( MetaData , MetaData$Factor ) [ S e l e c t edFac to r s ]

model <− m e t a l i s t %>%
lapp ly ( . , dplyr : : s e l e c t , Factor , Item ) %>%
lapp ly ( . , formule bouwen , Cons t ra in tLog i ca l = F) %>%
paste ( . , c o l l a p s e = ’\n\n ’ )

re turn ( model )
}

formule bouwen <− f unc t i on ( f a c t o r s , Const ra intLog i ca l , Constra intLabe l ){
y <− unique ( f a c t o r s [ , 1 ] )
f a c t o r <− p u l l ( f a c t o r s [ , 2 ] )

i f ( Cons t ra in tLog i ca l == TRUE){
CS <− paste0 ( Constra intLabel , 1 : l ength ( f a c t o r ) )

output <− paste (y , ”=˜” , paste ( paste0 (CS, ’∗ ’ , f a c t o r ) , c o l l a p s e=” + ”))
} e l s e {

output <− paste (y , ”=˜” , paste ( f a c to r , c o l l a p s e=” + ”))
}
re turn ( output )

}

MeasurementModelConstraint <− f unc t i on ( MetaData , Se l e c tedFactor s , Const ra intLog i ca l , Constra intLabe l ){
m e t a l i s t <− s p l i t ( MetaData , MetaData$Factor ) [ S e l e c t edFac to r s ]

model <− m e t a l i s t %>%
lapp ly ( . , dplyr : : s e l e c t , Factor , Item ) %>%
lapp ly ( . , formule bouwen , Constra intLabe l = Constra intLabel , Cons t ra in tLog i ca l = Cons t ra in tLog i ca l ) %>%
paste ( . , c o l l a p s e = ’\n\n ’ )
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re turn ( model )
}

VarianceModel <− f unc t i on ( MetaData , x , y ){

m e t a l i s t <− s p l i t ( MetaData , MetaData$Factor ) [ c (x , y ) ]
output <− paste ( m e t a l i s t [ [ x ] ] $Item , ”˜˜” , m e t a l i s t [ [ y ] ] $Item , c o l l a p s e = ’\n ’ ) # paste comonent wise
re turn ( output )

}

FirstModel <− paste0 (
MeasurementModelConstraint ( meta data , c ( ’ B e t e k e n i s e n I n t e r p r e t a t i e t i j d s t i p 1 ’ , ’ B e t e k e n i s e n I n t e r p r e t a t i e T i j d s t i p 2 ’ ) , Constra intLabe l = ’b ’ , Cons t ra in tLog i ca l = TRUE) , ’\n\n ’ ,
MeasurementModelConstraint ( meta data , c ( ’ GemoedstoestandTijdst ip1 ’ , ’ GemoedstoestandTijdst ip2 ’ ) , Constra intLabe l = ’ c ’ , Cons t ra in tLog i ca l = T) , ’\n\n ’ ,
MeasurementModelConstraint ( meta data , c (” E r v a r i n g t i j d s t i p 1 ” , ” E r v a r i n g t i j d s t i p 2 ”) , Constra intLabe l = ’ a ’ , Cons t ra in tLog i ca l = TRUE) , ’\n\n ’ ,
MeasurementModel ( meta data , c (” Kennis ” ) ) , ’\n\n ’ ,
VarianceModel ( meta data , ” B e t e k e n i s e n I n t e r p r e t a t i e t i j d s t i p 1 ” , ” B e t e k e n i s e n I n t e r p r e t a t i e T i j d s t i p 2 ”) , ’\n ’ ,
VarianceModel ( meta data , ” E r v a r i n g t i j d s t i p 1 ” , ” E r v a r i n g t i j d s t i p 2 ”) , ’\n ’ ,
VarianceModel ( meta data , ” GemoedstoestandTijdst ip1 ” , ” GemoedstoestandTijdst ip2 ”) , ’\n\n ’ ,

’ B e t e k e n i s e n I n t e r p r e t a t i e t i j d s t i p 1 ˜ Kennis \n\n ’ ,
’ B e t e k e n i s e n I n t e r p r e t a t i e T i j d s t i p 2 ˜ B e t e k e n i s e n I n t e r p r e t a t i e t i j d s t i p 1 \n\n ’ ,

’ GemoedstoestandTijdst ip1 ˜ GemoedstoestandTijdst ip2 \n\n ’ ,
’ E r v a r i n g t i j d s t i p 1 ˜ GemoedstoestandTijdst ip1 + B e t e k e n i s e n I n t e r p r e t a t i e t i j d s t i p 1

\n\n ’ ,
’ E r v a r i n g t i j d s t i p 2 ˜ GemoedstoestandTijdst ip2 + B e t e k e n i s e n I n t e r p r e t a t i e T i j d s t i p 2 ’ , ’\n\n ’ ,

’\n\n ’ , adjusted model
)

summary( FirstLavaan )

cat ( FirstModel )
FirstLavaan <− sem( FirstModel , mydata )
FirstLavaan
f i t m e a s u r e s ( FirstLavaan )
summary( FirstLavaan )

add cov <− m o d i f i c a t i o n i n d i c e s ( FirstLavaan ) %>%
f i l t e r ( op == ’˜˜ ’ ) %>%
f i l t e r (mi > 10)

adjusted model <− paste ( paste ( as . vec to r ( paste ( add cov$lhs , add cov$op , add cov$rhs ) ) , ”\n ”) , c o l l a p s e = ’\n ’ )

data . frame ( FirstLavaan@ParTable$lhs , FirstLavaan@ParTable$rhs , FirstLavaan@ParTable$est ) %>%
a s t i b b l e %>%
‘ colnames<−‘(c ( ’ Latent Variable ’ , ’ Item ’ , ’ C o e f f i c i e n t ’ ) ) %>%
mutate ( C o e f f i c i e n t = round ( C o e f f i c i e n t , d i g i t s = 3) ) %>%
wri t e . csv2 ( . , ’ Regress ionOutput . csv ’ )

LavPredictKri jnen <− f unc t i on ( LavaanModel ){

l i b r a r y ( psych )
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MatrixSquareRoot <− f unc t i on ( x ) {
e <− e igen ( x )
e$va lue s [ e$va lue s < 0 ] <− 0
return ( e$vec to r s %∗% diag ( s q r t ( e$va lue s ) ) %∗% t ( e$vec to r s ) )
}

InverseMatr ixSquareRoot <− f unc t i on ( x ) {
e <− e igen ( x )
e$va lue s [ e$va lue s < 0 . 0000 1 ] <− 0.00001
return ( e %>% ‘ [ [ ‘ ( ’ vector s ’ ) %∗% diag (1/ s q r t ( e %>% ‘ [ [ ‘ ( ’ va lues ’ ) ) ) %∗% t ( e %>% ‘ [ [ ‘ ( ’ vector s ’ ) ) )
}

Data <− i n s p e c t ( LavaanModel , what=”data ”)
Lambda <− i n s p e c t ( LavaanModel , what=”std ”) $lambda
Phi <− i n s p e c t ( LavaanModel , what = ’ std ’ ) $p s i %>% as . data . frame ( ) %>% as . matrix ( )

i f ( miss ing ( Phi ) ) {
Phi <− diag (1 , nco l (Lambda ) )

} e l s e {
Phi <− Phi

}

L <− Lambda %∗% MatrixSquareRoot ( Phi )

rMatrix <− Data %>%
cor ( . , use = ’ pa i rwi se ’ ) %>%
MatrixSquareRoot ( ) %>%
s o l v e ( )

i f ( corpcor : : i s . p o s i t i v e . d e f i n i t e ( cor ( Data ) , t o l = 10ˆ{−6} , method = ’ e igen ’ ) == TRUE){
r I n v e r s e <− cor . smooth ( cor ( Data ) ) %>%

s o l v e ( )
} e l s e {

r I n v e r s e <− cor . smooth ( cor ( Data ) ) %>%
s o l v e ( )

}

C d <− rMatrix %∗% L %∗% InverseMatrixSquareRoot ( t (L) %∗% r I n v e r s e %∗% L)
W <− rMatrix %∗% C d %∗% MatrixSquareRoot ( Phi )

Weights <− W %>%
‘ colnames<−‘( colnames (Lambda ) ) %>%
‘ rownames<−‘(rownames (Lambda ) )

FactorScores <− s c a l e ( Data ) %∗% Weights
re turn ( FactorScores %>% a s t i b b l e )

}

DetectChange <− f unc t i on (Kolom1 , Kolom2){
StandardError <− sd (Kolom1)/ s q r t ( l ength (Kolom1 ) )
LowerBound <− Kolom1 − 2 .576 ∗ StandardError
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UpperBound <− Kolom1 + 2.576 ∗ StandardError
S ign i f i cantChange <− i f e l s e (Kolom2 >= LowerBound & Kolom2 <= UpperBound , 0 , 1)

output <− data . frame (
Time1 = Kolom1 , Time2 = Kolom2 ,
‘ Lower Bound ‘ = LowerBound ,
‘ Upper Bound ‘ = UpperBound ,
‘ S i g n i f i c a n t Change ‘ = S ign i f i cantChange

)
re turn ( output )

}

B.3 Item respones theory

l i b r a r y ( ltm )
l i b r a r y ( mirt )
l i b r a r y ( dplyr )
l i b r a r y ( r l i s t )
l i b r a r y ( r eadx l )
l i b r a r y ( ggp lot2 )

datat func <− f unc t i on ( data ){
i f ( data %>% sapply ( . , max) %>% max( ) > 8){

data1 <− data %>%
sapply ( . , r e s c a l e f u n , 0 ,6) %>% as . data . frame ( ) %>%
sapply ( . , round )

} e l s e {
data1 <− data

}
re turn ( a s t i b b l e ( data1 ) )

}

t <− f unc t i on ( x ){ re turn ( nco l ( x ) > 4)}

l i s t f u n c <− f unc t i on ( data ){
re turn ( data %>% sapply ( . , f unc t i on ( x ){ re turn ( i f e l s e ( x < 4 , 0 , 1 ) )} ) )

}

FilterNrow <− f unc t i on ( d a t a l i s t , minimum rows ){
e lements <− which ( ( d a t a l i s t %>% lapp ly ( . , nco l ) %>% as . data . frame ( ) > minimum rows ) )
re turn ( d a t a l i s t [ e lements ] )

}

u n i q u e f i l t e r <− f unc t i on ( x ){
i f ( x %>% sapply ( . , unique ) %>% c l a s s ( ) == ” matrix ”){

re turn ( x )
} e l s e i f ( x %>% sapply ( . , unique ) %>% c l a s s ( ) == ” l i s t ”){

f i l <− x %>%
sapply ( . , unique ) %>%
sapply ( . , l ength )

re turn ( x [ f i l > 2 ] )
} e l s e {

warning (” Pos s ib ly i n v a l i d data , p l e a s e check r e s u l t s c a r e f u l l y ”)
}

}
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E x t r a c t D i f f i c u l t y <− f unc t i on ( Model ){
d i f f <− Model$betapar %>% as . data . frame ( )
Di f f i cu l tyDF <− data . frame ( Item = rownames ( d i f f ) , D i f f i c u t l y = d i f f )
rownames ( Di f f i cu l tyDF ) <− NULL
colnames ( Di f f i cu l tyDF ) <− c (” Item ” , ” D i f f i cu l tyParamete r ”)
re turn ( Di f f i cu l tyDF %>% a s t i b b l e ( ) )

}

r e s c a l e f u n <− f unc t i on (x , a , b){
re turn ( s c a l e s : : r e s c a l e (x , to = c ( a , b ) ) )

}

# Apply meta l i s t to the data
DataListPerCategory2 <− NULL

m e t a l i s t 2 <− s p l i t ( meta data2 , meta data2$Factor )
f o r ( i in 1 : l ength ( m e t a l i s t 2 ) ){

DataListPerCategory2 [ [ i ] ] <− mydata [ , m e t a l i s t 2 [ [ i ] ] $Item ]
}
names ( DataListPerCategory2 ) <− names ( m e t a l i s t 2 )

DataListPerCategory2 <− DataListPerCategory2 [ c ( ’ E r v a r i n g t i j d s t i p 1 ’ , ’ E r v a r i n g t i j d s t i p 2 ’ ,
’ B e t e k e n i s e n I n t e r p r e t a t i e t i j d s t i p 1 ’ , ’ B e t e k e n i s e n I n t e r p r e t a t i e T i j d s t i p 2 ’ ,
’ GemoedstoestandTijdst ip1 ’ , ’ GemoedstoestandTijdst ip2 ’ ,
’ Kennis ’ ) ]

PCMmodel <− DataListPerCategory2 %>%
lapp ly ( . , datat func ) %>%
lapp ly ( . , u n i q u e f i l t e r ) %>%
FilterNrow ( . , 3) %>%
lapp ly ( . , a s t i b b l e ) %>%
F i l t e r ( nrow , . ) %>%
lapp ly ( . , eRm : :PCM)

Conf idenceInterva l IRT <− f unc t i on ( Model ){
Eta <− Model$etapar %>% as . data . frame ( )
Etadf <− data . frame (

Categor i e = rownames ( Eta ) ,
D i f f i c u l t y = Eta ,
SE = Model$se . eta

)
rownames ( Etadf ) <− NULL
colnames ( Etadf ) <− c (” Categor i e ” , ” D i f f i c u l t y ” , ”SE”)

F i n a l d f <− Etadf %>%
mutate ( ‘2.5%−bound ‘ = D i f f i c u l t y + s t a t s : : qnorm ( 0 . 02 5 )∗SE) %>%
mutate ( ‘97.5%−bound ‘ = D i f f i c u l t y + s t a t s : : qnorm ( 0 . 97 5 )∗SE)

return ( F i n a l d f )
}

CIRSM <− PCMmodel %>%
lapp ly ( . , Conf idenceInterva l IRT ) %>%
lapp ly ( . , f i l t e r , ! g r e p l ( ’ Cat ’ , Categor i e ) )

Afname <− CIRSM$Ervaringti jdst ip2 %>%
mutate ( D i f f i c u l t y = round ( D i f f i c u l t y , d i g i t s = 2) ) %>%
mutate (SE = round (SE , d i g i t s = 2) ) %>%
mutate ( ‘2.5%−bound ‘ = round( ‘2.5%−bound ‘ , d i g i t s = 2) ) %>%
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mutate ( ‘97.5%−bound ‘ = round ( ‘97.5%−bound ‘ , d i g i t s = 2) )

A b i l i t y <− data . frame (
Persoon = round ( rowSums( dat [ 9 : 1 3 ] ) / 5 ) ,
T i j d s t i p 1 = f s c o r e s (T1 , f u l l . s c o r e s . SE = TRUE) %>% as . data . frame ( ) ,
T i j d s t i p 2 = f s c o r e s (T2 , f u l l . s c o r e s . SE = TRUE) %>% as . data . frame ( )

) %>%
‘ colnames<−‘(c (” PredefinedKnowledge ” , ” T i j d s t i p 1 ” , ”SE1” , ” T i j d s t i p 2 ” , ”SE2 ”) ) %>%
mutate ( V e r s c h i l = T i j d s t i p 1 −T i j d s t i p 2 ) %>%
mutate (GecombSE = s q r t (SE1ˆ2 + SE2ˆ2)/ s q r t ( 2 ) )

r e s u l t d f <− data . frame (
Mean1 <− mean( A b i l i t y $ T i j d s t i p 1 ) ,
Mean2 <− mean( A b i l i t y $ T i j d s t i p 2 ) ,
SE12 <− s q r t (sum( Ability$GecombSE ˆ2)/ s q r t (289 ) )

) %>%
‘ colnames<−‘(c (”Mean1” , ”Mean2” , ”SE”) ) %>%
mutate ( v e r s c h i l = Mean1 − Mean2)

AndersenLRT <− f unc t i on ( IRTmodel ){

f u l l l o g <− IRTmodel$logl ik

sp l i t t edmode l <− IRTmodel$X %>%
as . data . frame ( ) %>%
mutate ( Tota ls = rowSums ( . ) ) %>%
mutate ( Tota ls = round ( round ( round ( Tota ls ) / 1 0 ) / . 1 , d i g i t s = 1) ) %>%
s p l i t ( . , . $Tota ls ) %>%
F i l t e r ( func t i on ( x ){nrow ( x ) > 5 } , . ) %>%
lapp ly ( . , dplyr : : s e l e c t , −Tota ls ) %>%
lapp ly ( . , PCM)

e x t r a c t l o g l i k e l i h o o d <− f unc t i on ( model ){
re turn ( mode l$ l og l i k )

}

p a r t i t i o n e d l o g <− sp l i t t edmode l %>%
lapp ly ( . , e x t r a c t l o g l i k e l i h o o d ) %>%
do . c a l l ( ’ rbind ’ , . ) %>%
sum ( )

AndersenLRT (PCMmodel)

PCMmodel [ [ 2 ] ] $ log . Lik

LR = 2∗ ( p a r t i t i o n e d l o g − f u l l l o g )

J <− l ength ( sp l i t t edmode l ) + 1
p va lue <− 1 − pch i sq (LR, (J−1) ∗ (J−2))

OutputList <− l i s t ( f u l l l o g , p a r t i t i o n e d l o g , LR, (J−1)∗(J−2) , p va lue )
names ( OutputList ) <− c (” L o g l i k e l i h o o d f u l l model ” , ” L o g l i k e l i h o o d p a r t i t i o n e d model ” , ”Andersen Z−s t a t i s t i c ” , ” df ” , ”P value ”)
re turn ( OutputList )
}
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