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Abstract

The elliptic curve discrete logarithm problem is an essential problem in cryptogra-

phy. In general it is a very complex problem; the best known solving algorithms all have

exponential running time. However, for supersingular elliptic curves there exists a sub-

exponential solving algorithm called the MOV attack. The MOV attack reduces an elliptic

curve discrete logarithm to a logarithm over a finite field using the Weil pairing. The dis-

crete logarithm problem in a finite field can be solved efficiently using Index Calculus.

This thesis deals with analyzing the MOV attack and generating examples to demonstrate

its power.
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1 INTRODUCTION

1 Introduction

The study of cryptography, the area in mathematics that deals with concealing data, originates

from the time people started to use written communication. In the early days there were no

advanced systems for exchanging secret messages. Messages were encrypted by using straight-

forward ciphers; a letter in the message was replaced by another letter or symbol. In the 14’th

and 15’th century, symmetric key encryption methods occurred for the first time. Encryption

methods based on a secret key work as follows. Two people, say Alice and Bob, want to share

secret, confidential data. The idea is that Alice and Bob first meet in person to agree on a

common secret. This common secret can then be used to encrypt and decrypt the confidential

data that has to be shared. This is a symmetric key encryption method since Alice and Bob

both have the same amount of information. The fact that Alice and Bob meet in person seems

to be crucial in this secret key encryption. However, in 1976 Diffie and Hellman introduced the

notion of public key encryption [3]. It appeared that Alice and Bob meeting in person is not

necessary at all, since the secret key that is used to encrypt the data can be constructed by

exchanging information via a public channel.

Since the introduction of public-key cryptography by Diffie and Hellman, the discrete logarithm

problem has been recognized as an important tool in cryptography. A few years later, Elgamal

explained how the discrete logarithm problem can be used in public key encryption systems

and digital signature schemes [4]. All in all, the discrete logarithm problem has had, and still

has, an enormous impact on cryptographical systems.

1.1 Discrete logarithm problem

The discrete logarithm problem for a certain group G can be described as the following problem.

For a group G and an element g in the group, the element h = gn is given for an unknown

integer n. Then, given the elements g and h, the task is to find the positive integer n such that

h = gn.

The safety of a lot of cryptographical systems, for example the Diffie and Hellman key exchange,

relies mainly on the complexity of the discrete logarithm problem. To illustrate this: the usage

and importance of the discrete logarithm problem in a cryptographical system, the Diffie and

Hellman key exchange will be described here.

Alice and Bob want to exchange secret data via a public channel. It is assumed that Alice

and Bob are only able to communicate via the public channel. In order to safely exchange the

data, Alice and Bob want to agree on a secret key. To do so, Alice and Bob publicly select

a group G such that the discrete logarithm problem is difficult to solve in G. Furthermore,

they publicly select an element g ∈ G. Now Alice chooses a secret integer a and computes

ga. Then Alice sends the element ga to Bob via the public channel. Bob does the same: he

chooses a secret integer b, and computes gb and sends gb to Alice. Alice computes (gb)a = gba

and Bob computes (ga)b = gab. Alice and Bob now both know the secret element gab, from

which they can construct a secret key. Publicly, the only things that are known are the group

G, the element g and the elements ga and gb. This means that if an eavesdropper, say Eve, is

able to solve the discrete logarithm problem in the group G in a reasonable amount of time,
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1.2 Elliptic Curves 1 INTRODUCTION

then Eve can find out the value of the integers a and b and use this to derive the secret key

gab. Therefore, the complexity of the discrete logarithm problem in the group G determines

the safety of the public key exchange.

In 1985, the mathematicians Koblitz and Miller suggested to use elliptic curves in cryptography

[14]. This appeared to be a groundbreaking suggestion, as elliptic curve discrete logarithms have

proven to be very interesting and particularly difficult to solve. Nowadays, elliptic curves form

the foundation of many cryptographical applications based on the discrete logarithm problem

and they also appear in many other fields of cryptography.

1.2 Elliptic Curves

An elliptic curve defined over a field K is an algebraic object that is defined as a planar curve,

whose points are the solutions of the so-called Weierstrass equation. A Weierstrass equation is

an equation of the form

y2 = x3 +Ax+B. (1)

The variables x, y and constants A,B take on values from the field K. Not all Weierstrass

equations define an elliptic curve: elliptic curves are not allowed to be singular. This means

that the Weierstrass equation of an elliptic curve is not allowed to have multiple roots, the

coefficients always satisfy

4A3 + 27B2 6= 0.

An elliptic curve always contains a special point ‘at infinity’. In some sense this point can be

seen as the ‘top’ and ‘bottom’ of the y-axis. To give a rigorous explanation of the point ‘at

infinity’, the projective plane will be introduced in Section 2.3.

The K-points of an elliptic curve are defined to be the set

E(K) = {∞} ∪ {(x, y) ∈ K ×K | y2 = x3 +Ax+B}.

In fact, the set of K-points of an elliptic curve has an abelian group structure with the point at

infinity as identity element. The group law that defines this group structure is defined by the

statement that the sum of three points on an elliptic curve E is equal to the identity element

if and only if the three points are the intersection of E and a line. The projective plane will

allow for the derivation of this definition of the group law. In the Section 2.1, the group law

will be explained both geometrically and algebraically.

1.3 Elliptic curve discrete logarithms

The currently best known algorithms for solving the elliptic curve discrete logarithm problem

for general elliptic curves are all exponential time algorithms. However, there are exceptions

to this. The discrete logarithm problem for the class of supersingular elliptic curves, which

are curves of a specific order defined over a finite field, as will be explained in Section 5, can

be solved a lot faster. In fact, for supersingular elliptic curves there exists a sub-exponential

solving algorithm. This algorithm was introduced in 1996 by Menezes, Okamoto and Vanstone,

and it is known as the MOV attack.

7



1.3 Elliptic curve discrete logarithms 1 INTRODUCTION

The main goal in this thesis is to analyse the MOV attack and to construct examples to show

the power of the MOV attack. The MOV attack reduces the elliptic curve discrete logarithm

problem to a discrete logarithm problem in a finite field by using the Weil pairing. The discrete

logarithm problem in the finite field can then be solved efficiently by means of Index Calculus

methods.

Analyzing the MOV attack, by studying the Weil pairing and Index Calculus, requires a more

complete understanding of elliptic curves in general, elliptic curves over a finite field, super-

singular elliptic curves and the discrete logarithm problem. Finally, in Section 7, the MOV

attack will be applied to different examples of elliptic curve discrete logarithm problems for

supersingular elliptic curves.

From the theory and the actual performance of the MOV attack, it will become clear at the end

of this thesis why supersingular elliptic curves are not suitable for applications in cryptography

based on the discrete logarithm problem.

8



2 GENERAL THEORY OF ELLIPTIC CURVES

2 General theory of elliptic curves

An elliptic curve defined over a field K can be defined in more generality as a planar curve

whose points satisfy the general Weierstrass equation,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where x, y are variables that take values in the field K and a1, a2, a3, a4, a6 are constants

from the field K. If the characteristic of the field K is not equal to 2 or 3, a change of

variables can always transform the general Weierstrass equation to a Weierstrass equation [26].

This transformation involves dividing by 2 and 3 and completing the square and cube. For

convenience, in this paper a finite field is always assumed to have characteristic not equal to 2

or 3. Therefore equation (1) will be the only equation to work with.

An important observation is that an elliptic curve that is given by a Weierstrass equation is

always symmetric with respect to the x-axis. This means that if the point (x, y) is on the

elliptic curve, then (x,−y) is also a point on the elliptic curve.

The cubic x3 + Ax + B is not allowed have multiple roots, i.e. the curve is not allowed to be

singular. A curve given by a singular Weierstrass equation is not considered an to be an elliptic

curve. An elliptic curve thus never has self-intersections or cusps. The condition 4A3+27B2 6= 0

implies that the elliptic curve has no singularities since 4A3 + 27B2 is the discriminant of the

cubic equation f(x) = x3 +Ax+B.

(a) (b)

Figure 1: Elliptic curves over Q

Figure 1 depicts two elliptic curves over the field Q, the points of these curves satisfy the

Weierstrass equation. The curves in Figure 2 also satisfy the Weierstrass equation. However,

these curves are not elliptic curves. Figure 2a has a self-intersection and Figure 2b has a cusp.

The plots in Figure 1 give a nice intuition on elliptic curves, but it is good to keep in mind that

elliptic curves over an arbitrary field do not in general take on this form.

9



2.1 The group law of an elliptic curve 2 GENERAL THEORY OF ELLIPTIC CURVES

(a) (b)

Figure 2: Singular curves over Q

The point at infinity is essential when doing algebraic operations with points of an elliptic

curve. The two main properties of the point at infinity are that any two vertical lines intersect

at that point and additionally, the point at infinity is both the ‘top’ and the ‘bottom’ of the

y-axis and all lines parallel to the y-axis. The projective plane, which will be introduced in

Section 2.3 will enable finding specific coordinates for the point at infinity of an elliptic curve.

2.1 The group law of an elliptic curve

The set of points of an elliptic curve E defined over a field K has an abelian group structure

with the point at infinity as identity element. The group of K-points of E is denoted by

E(K) = {(x, y) ∈ K ×K | y2 = x3 +Ax+B} ∪ {∞}.

Here K can be replaced by any suitable field extension, meaning that for every extension

L ⊃ K, the L-points of the elliptic curve are denoted by E(L). The procedure that allows

for the group structure is sometimes referred to as the “tangent and chord method” [17]. It

will shortly become clear why this name is suitable. The procedure, which requires only a

few simple operations, yields the possibility of finding more K-points of an elliptic curve when

starting with only one or two K-points. The goal of this section is to formally describe the

group law, using both a geometric and an algebraic explanation.

2.1.1 Geometric explanation

Let E be an elliptic curve defined over a field K. Then the addition law on E can be described

as follows.

Start with two different points, P and Q on E. Then there is a unique line passing through

these points. This line will always intersect the elliptic curve in one additional point, R′ (see

also Section 2.3). Now reflect the point R′ in the x-axis to obtain some point R. Note that

this is possible since the elliptic curve is symmetric with respect to the x-axis. This reflection

in the x-axis sends the point (x, y) on E to the point (x,−y) on E. Define P ⊕ Q = R (see

Figure 3).

10
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Figure 3: Adding two different points from E(Q)

When adding a point to itself the method is a little bit different. Start with a point P on E.

There is a unique line that is tangent to E and that passes through the point P . This line will

intersect the curve E in one other point, which is denoted by R′. Reflect the point R′ with

respect to the x-axis. This will give some new point R on E. Define P ⊕ P = 2 · P = R (see

Figure 4). There is one technical exception here. If the y-coordinate of the point P is equal to

0, then the sum P ⊕ P = 2 · P is defined to be ∞.

Figure 4: Adding a point from E(Q) to itself

There is another technicality when adding a point to itself. Let P be an ‘inflection’ point of E.

When adding P to itself, the third point of intersection of the tangent line of E and E itself is

again the point P ; the point P is an intersection point of multiplicity 3. Therefore in this case

P ⊕ P = −P , or 3 · P =∞.

There are two other cases that need to be considered. First, let P be a point on the elliptic

curve E, and let O be the point at infinity. Now the line through P and O is a vertical line.

Because of the symmetry of the curve E, the line intersects E in a point P ′ that is the reflection

of P across the x-axis. Reflecting the point P ′ across the x-axis therefore results in the point

P . Hence in this case it holds that P ⊕O = P ⊕∞ = P .

For the second case, let P and Q be two points on the elliptic curve E that have the same

x-coordinate. The line through the points P and Q is now a vertical line. This line intersects

the elliptic curve in the point at infinity. Reflecting this point ∞ across the x-axis again yields

again the point at infinity. This is clear from the definition of the point at infinity of an elliptic

11
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curve; it is both the ‘top’ and ‘bottom’ of the y-axis. Therefore in this case, P ⊕ Q = ∞, i.e.

Q = −P .

Remark. Note that Figures 3 and 4 are plots of an elliptic curve defined over the field of

rational numbers. These plots serve as an intuitive picture for how the group law works.

However, it is important to keep in mind that these pictures do not give a general geometric

representation of the group law for an elliptic curve defined over an arbitrary field.

2.1.2 Algebraic explanation

The group law can be described by rational functions. This means that adding two points will

only involve polynomials and/or fractions of polynomials.

Let E : y2 = x3 + Ax + B be an elliptic curve and let P1 = (x1, y1) and P2 = (x2, y2) be two

points on E. First assume that ∞ 6= P1 6= P2 6= ∞ and that x1 6= x2. The line L through P1

and P2 has slope

m =
y2 − y1
x2 − x1

,

and the equation of L is equal to

y = m(x− x1) + y1.

To find the point P ′3 on the curve E, which is the third point of intersection (besides P1 and

P2) of the line L and the curve E, one has to substitute the equation of L into the equation of

the elliptic curve E. This yields

(m(x− x1) + y1)2 = x3 +Ax+B.

This is equivalent to

x3 −m2x2 + (A− 2m2x1 − 2my1)−m2x21 + 2mx1y1 − y21 +B = 0.

To find the solution to this equation, the roots of a cubic polynomial have to be found. Two

roots of this polynomial are already known: x1 and x2. Assume that x3 is the third solution

to this equation. Then

x3 −m2x2 + ... = (x− x1)(x− x2)(x− x3) = x3 − (x1 + x2 + x3)x2 + . . . ,

which implies that m2 = x1 + x2 + x3, and therefore

x3 = m2 − x1 − x2. (2)

By substituting the point x3 into the Weierstrass equation and reflecting the point across the

x-axis, the corresponding y-coordinate of the point P3 = P1 ⊕ P2 on the elliptic curve can be

found. This gives

y3 = m(x1 − x3)− y1. (3)

There is a special case when P1 = (x1, y1) and P2 = (x2, y2) are two points on the elliptic curve

E such that x1 = x2, but y1 6= y2. In this case the line through the points P1 and P2 is a

vertical line. In this case equations (2) and (3) are defined in such a way that P1 + P2 =∞.

12
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Now assume that P1 = P2 = (x1, y1), with y1 6= 0, is a point on the elliptic curve E. The slope

of the tangent line L at this point can be found using implicit differentiation.

2y
dy

dx
= 3x2 +A ⇒ m =

dy

dx
=

3x21 +A

2y1
.

The equation of the tangent line L is given by

y = m(x− x1) + y1.

The point P ′3 can be found similarly as before, by substituting the equation for the tangent line

into the Weierstrass equation. Again the roots of a cubic polynomial have to be found. This

time, one root of multiplicity 2 is already known, namely x1. This yields

x3 −m2x2 + · · · = (x− x1)2(x− x3) = x3 − (2x1 + x3)x2 + . . .

This means that the coordinates of P ′3 are given by

x′3 = m2 − 2x1 and y′3 = m(x′3 − x1) + y1.

Therefore P3 = P1 ⊕ P2 = 2 · P1 = (x3, y3), where

x3 = m2 − 2x1 and y3 = m(x1 − x3)− y1.

The special cases where P1 and P2 are two points on the elliptic curve such that either P1 = P2

and y1 = 0 or P2 =∞ were already (geometrically) explained in the previous section.

Remark. This derivation is extended to the case where the point at infinity, the identity

element of the group, is added to itself. It holds that ∞⊕∞ =∞.

Finally, the group structure on the group of points of an elliptic curve can be defined properly.

Theorem 2.1. The points of an elliptic curve form an abelian group under the group law

described above, where ∞ is the identity element.

This means that the points of an elliptic curve E satisfy the group axioms.

1. Associativity: (P ⊕Q)⊕R = P ⊕ (Q⊕R) for all points P,Q,R on E.

2. Identity: P ⊕∞ =∞⊕ P = P for all points P on E.

3. Inverses: For each point P on E there exists a point P ′ on E such that P ⊕ P ′ =∞.

4. Commutativity: P ⊕Q = Q⊕ P for all points P,Q on E.

Proof. From the geometric and algebraic construction of the group law, the identity element,

inverses and commutativity of the group are all clear. The proof of the associativity is quite

elaborate and it is not the focus of this thesis. A very nice proof, based on the Riemann-Roch

theorem [9], can be found in [21].

Remark. If P is a point on an elliptic curve and the goal is to compute k · P , it is not very

efficient to add P to itself subsequently until k ·P is reached. A faster approach for computing

13



2.2 General forms and isomorphisms 2 GENERAL THEORY OF ELLIPTIC CURVES

multiples of P is known as successive doubling [26]. This works as follows. To compute for

example 21 · P , first compute

2 · P, 4 · P = 2 · P + 2 · P, 8 · P = 4 · P + 4 · P, 16 · P = 8 · P + 8 · P,

then

21 · P = 16 · P + 4 · P + P.

This method correctly computes multiples of P because of the associativity of the group law.

2.2 General forms and isomorphisms

Elliptic curves given by a Weierstrass equation are only a very special type of elliptic curves,

they are written in a very convenient way. However, it must be said that there are also other

forms of elliptic curves and other ways to generate elliptic curves. For example, elliptic curves

can be defined in higher dimensions as intersections of surfaces. Some such curves can be

reduced to the general Weierstrass equation. This thesis will only focus on elliptic curves given

by a Weierstrass equation. For elliptic curves defined by other equations, such as the Legendre

equation,

y2 = x(x− 1)(x− λ), λ ∈ K \ {0, 1},

see [26].

The remaining part of this section will be devoted to transformations of elliptic curves. The

transformations that are of most interest are isomorphisms, the transformations that preserve

the group structure of an elliptic curve. Formally, two elliptic curves defined over a field K

are isomorphic if there exists a bijection between them, given by rational maps, that preserves

the group structure. Over an algebraically closed field it will be possible to fully characterize

elliptic curves up to isomorphism.

To describe transformations of elliptic curves more precisely, the j-invariant of an elliptic curve

should be introduced. The j-invariant of an elliptic curve E over K given by the Weierstrass

equation is given by

j = j(E) = 1728
4A3

4A3 + 27B2
.

Theorem 2.2. Let E1 and E2 be two elliptic curves defined over a field K, given by E1 : y2 =

x3 + A1x + B1 and E2 : y2 = x3 + A2x + B2, with j-invariants j1 and j2. If j1 = j2 then E1

and E2 are transformations of each other, meaning that there exists a constant µ 6= 0 in the

field K, such that

A2 = µ4A1, B2 = µ6B1.

The transformation is given by (x′, y′) = (µ2x, µ3y).

Over a field that is not necessarily algebraically closed it is true that two elliptic curves that

are isomorphic have the same j-invariant, but the converse statement only holds when the field

K is algebraically closed.
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Example 2.3. The elliptic curves given by y2 = x3+4x and y2 = x3+3x defined over the field

Q (which is not algebraically closed) both have j-invariant equal to 1728. The latter curve has

infinitely many points with coordinates in Q, namely all the integer multiples of the point (3, 6)

and all the integer multiples of the point (1, 2). However, the first curve has only finitely many

points with coordinates in Q; the only points with rational coordinates on y2 = x3 + 4x are

∞, (2, 4), (2,−4) and (0, 0). This means that there is no rational transformation over the field

Q that transforms the first elliptic curve into the second elliptic curve, even though both curves

have the same j-invariant. According to Theorem 2.2, over the field Q( 4
√

12) it is possible

to find a transformation that transforms one curve into the other. That transformation is

(x, y) 7→ (µ2x, µ3y), where µ =
4√12
2 . �

Example 2.4. The elliptic curves given by E1 : y2 = x3 + 3 and E2 : y2 = x3 + 8 defined over

the field F13 (which is not algebraically closed) both have j-invariant equal to 0. However,

the groups of points of the elliptic curves have different order, namely #E1(F13) = 9 and

#E2(F13) = 16. This means that the curves E1 and E2 cannot be isomorphic over F13. In

other words, there exists no rational transformation over the field F13 that transforms E1 into

E2. As stated in Theorem 2.2, over the field F13(ζ6), where ζ6 denotes a sixth root of unity, it is

possible to find a transformation that transforms one curve into the other. The transformation

is given by (x, y) 7→ (µ2x, µ3y), where µ = 4ζ56 + 8ζ46 + 2ζ36 + 2ζ26 + 10. �

Two different elliptic curves defined over the field K that have the same j-invariant are called

twists. From Theorem 2.2 it is clear that twists are unique up to isomorphism and a twist is

isomorphic to the original curve over K.

If a general curve C has the same group structure as an elliptic curve E that is given by

a Weierstrass equation and the curve C can be transformed into the elliptic curve E via a

rational transformation over the field K, then the curve C and the elliptic curve E are called

isomorphic. For the details of general isomorphisms between curves, see [21]. If a curve C is

isomorphic to an elliptic curve, then C is also called an elliptic curve.

2.3 The projective plane

In this section the projective plane will be introduced. The point ∞ of an elliptic curve can be

defined more formally and precisely using the notion of the projective plane. The projective

plane will also give rise to another, simpler, definition of the group law on an elliptic curve.

The affine plane over a field K is given by

A2
K = {(x, y) ∈ K ×K}.

The affine plane is just the set of coordinates (x, y), the vector space structure does not play a

role in A2
k. In the affine plane it is known that two lines that are not parallel intersect in one

point, but what happens if the lines are parallel? Imagine that you are standing in the middle

of a straight road. The sides of the road are parallel lines, that do not seem to intersect at any

point. However, when you look at the horizon, the two sides of the road meet. This gives the

intuition that two parallel lines do intersect somewhere on the line at the horizon.

Using this explanation one could say that parallel lines meet at a line at infinity, but there is no

such line at infinity in the affine plane. This is where the notion of the projective plane has to
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be introduced. The projective plane will be the plane where every two lines intersect in exactly

one point and in particular parallel lines intersect on the line at infinity. The projective plane

will eventually lead to finding coordinates for the points at infinity in general, and specifically

coordinates for the point at infinity of an elliptic curve.

2.3.1 An extension of the affine plane

The projective plane P2
K is an extension of the affine plane A2

K , containing some points ‘at

infinity’.

The projective plane is always introduced over a fieldK, just like the affine plane. The projective

plane P2
K over a field K, consists of triples (x, y, z), where x, y, z are elements of the field K

that are not all zero. Moreover, in the projective plane two elements (x, y, x) and (ax, ay, az)

are considered to be equal for all a ∈ K×. This means that elements in the projective plane

are triples (x, y, z) modulo the equivalence relation (x, y, z) ∼ (ax, ay, az). A triple (x, y, z) in

the projective plane is the same as another triple (p, q, r) in the projective plane if and only if

one is a scalar multiple of another, i.e.

(x, y, z) ∼ (p, q, r)⇔ (x, y, z) = (λp, λq, λr).

A triple (x, y, z) in the projective plane can thus be seen as an equivalence class. The equivalence

class of the triple (x, y, z) is denoted by (x : y : z).

The projective plane contains affine points and points at infinity. The affine points in the

projective plane are all the points (x : y : z) such that z is not equal to zero. This means

that as representative for the affine points in the projective plane the triple
(
x
z ,

y
z , 1
)

can be

chosen and therefore the affine points in the projective plane are all the triples (x, y, z) such

that z = 1. There is a one-to-one correspondence between the affine points in the projective

plane P2
K and points in the affine plane A2

K . The correspondence is given by

A2
k ↪→ {affine points of P2

K}, (x, y) 7→ (x : y : 1).

Therefore, the affine plane is identified with the affine points in the projective plane.

The infinite points or points at infinity in the projective plane are points of the form (x : y : 0).

At the end of this section it will be possible to identify the point at infinity of an elliptic curve

with one of those points.

The fact that every two lines in the projective plane intersect in one point follows more precisely

from Bézout’s theorem, which holds in the projective plane.

Theorem 2.5 (Bézout’s theorem). Two distinct curves in P2(K) of degree m and n intersect

in mn points, counting multiplicities.

Since lines are curves of degree 1, Bézout’s theorem implies that every two lines in the projective

plane intersect in one point [6]. The proof of Bézout’s theorem is outside the scope of this thesis.

It can be found in [9].
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2.3.2 Homogeneous polynomials

To make sure that the affine plane is properly embedded in the projective plane it is also

necessary that there is a correspondence between curves in the affine plane and curves in the

projective plane. A curve in the affine plane is described as the set of zeros of a polynomial

in K[x, y], and a curve in the projective plane is described as the set of zeros of a polynomial

in K[x, y, z]. To make a proper correspondence, the set of zeros of a polynomial in the affine

plane needs to be equal to the set of zeros of a polynomial in the projective plane. This can be

guaranteed by introducing homogeneous polynomials.

A homogeneous polynomial in three variables is a polynomial in which each summand has the

form axiyjzk, where a is an element in K and n = i + j + k, where n is the degree of the

polynomial.

Let f(x, y) be a polynomial in two variables of degree n. This polynomial can be homogenized

in the following way: F (x, y, z) = znf
(
x
z ,

y
z

)
. Now F (x, y, z) is a homogeneous polynomial

in three variables of degree n. This polynomial has zeros in the projective plane. The set of

zeros (x : y : z) of F (x, y, z) is well defined. Let (x, y, z) and (λx, λy, λz) be two different

representatives from the equivalence class (x : y : z). Then F (λx, λy, λz) = λnF (x, y, z), since

F is a homogeneous polynomial. This means that F (x, y, z) = 0 implies that F (λx, λy, λz) = 0.

Therefore the F (x, y, z) being zero does not depend on the choice of representative of the

equivalence class and hence the set of zeros of F (x, y, z) is well defined.

Now it can be explained with full precision what it means for two parallel lines to meet at infinity.

Let y = mx+ b1 and y = mx+ b2 be two parallel lines in the affine plane. Homogenizing these

two equations gives the lines y = mx + b1z and y = mx + b2z in the projective plane. These

two lines intersect when z = 0 (as expected, because points in the projective plane with z = 0

are points at infinity) and y = mx. Since not all among x, y, z are allowed to be equal to zero,

the point of intersection is given by:

(x : y : 0) = (x : mx : 0) = (1 : m : 0).

Now, consider two vertical lines x = a and x = b. Homogenizing these equations gives the lines

x = az and x = bz. These two lines in the projective plane intersect when z = 0 and x = 0, so

the point of intersection of two vertical lines is given by (0 : 1 : 0).

2.3.3 Point at infinity of an elliptic curve

Using the projective plane, the coordinates of the point at infinity of an elliptic curve can be

found. To do so, let E be an elliptic curve in the affine plane given by a Weierstrass equation,

so E is given by y2 = x3 +Ax+B. This curve corresponds to an elliptic curve in the projective

plane that is given by a homogeneous Weierstrass equation y2z = x3 +Axz2 + bz3. To find the

point at infinity of the elliptic curve, let z = 0. Then it follows that x3 = 0. Therefore, the

point at infinity of an elliptic curve in the projective plane is the triple (x : y : z) such that

x = z = 0, since not all x, y, z are allowed to be equal to zero. Therefore (0 : y : 0) = (0 : 1 : 0)

is the only point at infinity on an elliptic curve.

As shown before, the point (0 : 1 : 0) is a point on every vertical line. This means that the point

at infinity of an elliptic curve has the property that any vertical line intersects the elliptic curve
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in this point, as was predicted by Bézout’s theorem and already stated in the introduction.

Furthermore, it holds that (0 : 1 : 0) = (0 : −1 : 0), which means that indeed the ‘top’ and

‘bottom’ of the y-axis are identified.

2.3.4 Restating the group law

The specific form of the point at infinity of an elliptic curve, (0 : 1 : 0), allows for a simpler

definition of the group law. Denote the point at infinity of an elliptic curve by O = (0 : 1 : 0).

Let E be an elliptic curve defined over a field K. Consider the elliptic curve in the projective

plane, meaning that all the points are the points that satisfy the homogenized Weierstrass

equation and the point O. Now consider a line in the projective plane, a line is a curve given by

a polynomial of degree 1. Since the elliptic curve is an equation of degree 3, Bézout’s theorem

implies that the line and the elliptic curve have 3 intersection points in the projective plane.

Now the group-law can be described by the following rule.

Let P,Q be two points on the elliptic curve and let L be the line through P and Q (if P is

equal to Q, then let L be the tangent line at P ). Let R be the third point of intersection of the

line L and the elliptic curve E and let L′ be the line through O and R. The line L′ intersects

the elliptic curve E in the points R, O and a third point, R′. Then P ⊕ Q = R′ [21]. This

is equivalent to saying that the sum of three points on the elliptic curve is equal to O in the

projective plane if and only if they are the intersection of the elliptic curve E and a line.

In this thesis, elliptic curves will usually be defined in the affine plane. When it is necessary,

the projective plane will be recalled.

2.4 Endomorphisms

Previously, isomorphisms of elliptic curves were introduces to deal with the fact that, in some

sense, two different equation can describe the same algebraic object. Another important family

of maps are the endomorphisms of an elliptic curve. Let E be an elliptic curve defined over

a field K. Then an endomorphism of E is a homomorphism of E that is given by rational

functions. In other words, an endomorphism of E is a map α : E(K)→ E(K) and there exist

functions R(s, y) and Q(s, y) that are rational polynomials or quotients of polynomials such

that

α(x, y) = (R(x, y), Q(x, y)).

Furthermore, since α is a homomorphism it holds that α(P1⊕P2) = α(P1)⊕α(P2) for any two

points P1 and P2 on E. The fact that α is a homomorphism also implies that α maps the point

∞ of an elliptic curve to itself. This may seem nontrivial, since it does not seem obvious how

an endomorphism α is defined at the point at infinity. A more formal explanation of the fact

that α(∞) =∞ can be found in [21], which uses algebraic geometry to deal with the point at

infinity.

This section will describe a general form for endomorphisms of an elliptic curve and moreover a

few important properties of an endomorphism of an elliptic curve will be stated. Lastly, there is

a special endomorphism of an elliptic curve that requires extra attention, namely the Frobenius
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endomorphism. This endomorphism will be essential when dealing with elliptic curves defined

over a finite field.

2.4.1 General form of an elliptic curve endomorphism

It is useful to find a general form for an endomorphism of an elliptic curve.

Consider an elliptic curve defined over a fieldK, where the elliptic curve is written in Weierstrass

form, y2 = x3+Ax+B. Let α = (R(x, y), Q(x, y)). Then using the Weierstrass equation, every

even power of y in R(x, y) and Q(x, y) can be replaced by an expression that only depends on

the variable x. This means that the two rational functions in the endomorphism α can be

written in the form:

R(x, y) =
p1(x) + p2(x)y

p3(x) + p4(x)y
, Q(x, y) =

q1(x) + q2(x)y

q3(x) + q4(x)y
, (4)

where pi, qi ∈ K[x]. Then by multiplying the numerator and denominator of R(x, y) by p3(x)−
p4(x)y and the numerator and denominator of Q(x, y) by q3(x) − q4(x)y and furthermore

again replacing any term y2 according to the Weierstrass equation, R(x, y) and Q(x, y) can be

simplified even more. This gives

R(x, y) =
p1(x) + p2(x)y

p3(x)
, Q(x, y) =

q1(x) + q2(x)y

q3(x)
. (5)

Note that the rational functions pi, qi in equation (5) are not the same as the functions pi, qi
in equation (4).

For a point on an elliptic curve it holds that −(x, y) = (x,−y), which means that α(x,−y) =

α(−(x, y)), and by applying properties of an homomorphism it holds that α(x,−y) = −α(x, y).

Furthermore, since

α(x,−y) = (R(x,−y), Q(x,−y)),

and

−α(x, y) = −(R(x, y), Q(x, y)) = (R(x, y),−Q(x, y)),

it follows that R(x,−y) = R(x, y) and Q(x,−y) = −Q(x, y).

Consequently, by applying this to the simplified form of R(x, y) and Q(x, y) from equation (5),

it holds that p2(x) = 0 and q1(x) = 0.

Therefore in general an endomorphism can be written in the form

α(x, y) = (r1(x), r2(x)y).

2.4.2 Properties of endomorphisms

Endomorphisms of elliptic curves can be characterized in different ways.

Let α be an endomorphism of an elliptic curve E. As was just shown, α can be written as

α(x, y) = (r1(x), r2(x)y). Write r1(x) = p(x)
q(x) . The degree of an endomorphism is defined as

deg(α) = max{deg(p(x)),deg(q(x))}.
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Furthermore, an endomorphism is called separable if r′1(x) is not identically zero. Consider the

polynomial given by P (x) = xp as an example. This polynomial has derivative 0 in the finite

field Fp, so an endomorphism given by α(x, y) = (p(x), p(y)) is not a separable endomorphism

of an elliptic curve over Fp.

It is possible to identify the degree of a separable endomorphism with the number of elements

in the kernel of the endomorphism.

Proposition 2.6. Let E be an elliptic curve defined over a field K and let α 6= 0 be a separable

endomorphism of E. Then

deg(α) = # ker(α),

where ker(α) denotes the kernel of the homomorphism α : E(K)→ E(K).

If the endomorphism α is not separable then

deg(α) > # ker(α).

The idea of the proof is to show that, if α is separable then for a generic point (a, b) ∈ E(K),

there exist exactly deg(α) many points (x, y) ∈ E(K) such that α(x, y) = (a, b). This then

implies that the kernel of α has deg(α) many elements because α is a group homomorphism.

Details of the proof can be found in [26].

A natural question that arises is whether an endomorphism of an elliptic curve is surjective.

Theorem 2.7. Let E be an elliptic curve defined over a field K and let α 6= 0 be an endomor-

phism of E. Then α : E(K)→ E(K) is surjective.

Let N be a positive integer. The multiplication by N map is a map that will be used to prove a

statement about the order of the group of points of an elliptic curve. In fact, the multiplication

by N map is an endomorphism.

Proposition 2.8. Let E be an elliptic curve defined over a field K. Let N 6= 0 be a positive

integer. Let the multiplication by N on E be given by

N · (x, y) = (RN (x), ySN (x)).

Then
R′N (x)

SN (x)
= N.

This implies that the multiplication by N endomorphism is separable if and only if the charac-

teristic p of the field K does not divide N .

For the proof of Theorem 2.7 and the proof of Proposition 2.8, a proof by induction, see [26].

2.4.3 Frobenius endomorphism

Let E be an elliptic curve E defined over a finite field Fq, where q = pn for some prime p and

positive integer n. In Section 4, elliptic curves defined over a finite field will be explained in

detail. The Frobenius map φq is defined by

φq(x, y) = (xq, yq).
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Lemma 2.9. The Frobenius map φq is an endomorphism of E of degree q that is not separable.

Proof. Let E be an elliptic curve defined over a finite field, and let φq denote the Frobenius

map. Since φq(x, y) = (xq, yq), the Frobenius map is given by rational functions and the degree

of φq is equal to q. To check that φq is an homomorphism several different cases need to be

considered. First it needs to be checked that φq((x1, y1) + (x2, y2)) = φq(x1, y1) + φq(x2, y2)

using the addition formulas for adding two different points. To this end, let (x1, y1) and (x2, y2)

be two different points in E(Fq). Let their sum be equal to (x3, y3). Then using the group law

for adding two different points from Section 2.1.2, the coordinates of the sum are equal to

(x3, y3) = (m2 − x1 − x2,m(x1 − x3)− y1), where m =
y2 − y1
x2 − x1

.

Then

φq((x1, y1) + (x2, y2)) = φq(x3, y3) = (xq3, y
q
3) = ((m′)2 − xq1 − x

q
2, m

′(xq1 − x
q
3)− yq1),

where

m′ =
yq2 − y

q
1

xq2 − x
q
1

.

This can be rewritten to

φq((x1, y1) + (x2, y2)) = (xq1, y
q
1) + (xq2, y

q
2) = φq(x1, y1) + φq(x2, y2).

Next, it has to be checked that φq(2(x1, y1)) = 2φq(x1, y1) using the addition formulas for

adding a point to itself. Let (x1, y1) be a point on the elliptic curve and write (x3, y3) as the

sum of (x1, y1) with itself. Then using the group law for adding a point to itself from Section

2.1.2, the coordinates of (x3, y3) are equal to

(x3, y3) = (m2 − 2x1,m(x1, x3)− y1), where m =
3x21 +A

2y1
.

By applying the Frobenius endomorphism, it follows that

φq(2(x1, y1)) = φq(x3, y3) = ((m′)2 − 2xq1, m
′(xq1 − x

q
3)− yq1),

where

m′ =
3q(xq1)2 +Aq

2qyq1
.

Note that in a field Fq, a
q = a for all a ∈ Fq. Therefore

m′ =
3(xq1)2 +A

2yq1
.

Hence, the equation for φq(2(x1, y1)) can be rewritten to

φq(2(x1, y1)) = 2(xq1, y
q
1) = 2φq(x1, y1).

Therefore, it can be concluded that φq is an endomorphism of E of degree q.

The map φq is not separable since q is equal to zero in Fq. Hence the Frobenius map φq is an

endomorphism of E of degree q that is not separable.
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2.4.4 Complex multiplication

The set of all endomorphisms of an elliptic curve forms a ring, the endomorphism ring. Usually,

the endomorphism ring of an elliptic curve over Q is isomorphic to Z. However, sometimes the

elliptic curve has extra endomorphism, as in the next example.

Example 2.10. Consider the elliptic curve E : y2 = x3 + x over Q. This elliptic curve has an

extra endomorphism. Namely if the point (x, y) ∈ E(Q) is a point on the elliptic curve then

also the point (−x, iy), where i2 = −1, is a point on the elliptic curve. The map that maps

the point (x, y) to the point (−x, iy) can be seen as the multiplication by i endomorphism.

Applying this endomorphism twice to the point (x, y) gives (x,−y) which is the multiplication

of (x, y) by -1. In fact, for the elliptic curve E the endomorphism ring is isomorphic to Z[i].�

If the endomorphism ring of an elliptic curve is strictly larger than Z the elliptic curve is said

to have complex multiplication. So an elliptic curve with complex multiplication has extra

endomorphisms, its endomorphism ring contains integers and algebraic integers. Although

complex multiplication is not the main subject in this thesis, some important results will be

stated here regarding elliptic curves and complex multiplication.

2.4.5 Elliptic curves over Q with complex multiplication

Theorem 2.11. Let E be an elliptic curve over Q. Then the endomorphism ring of E is

isomorphic to Z or to an order in an imaginary quadratic field.

An imaginary quadratic field is a field that is given by

K = Q(
√
−d) = {a+ b

√
−d | a, b ∈ Q}.

An order in an imaginary quadratic field is a subring of K of the form Z[α], where α is an

algebraic integer, i.e. it is a root of a monic polynomial with integer coefficients. The ring of

integers Ok, is called maximal order of K as it contains all elements of K that are roots of

polynomials with integer coefficients, it is the largest subring of K that is a finitely generated

abelian group. This means that in fact an order is a subring of the ring of integers in K. For

the proof of Theorem 2.11, see [26].

It is possible to find all the j-invariants of elliptic curves over Q such that the elliptic curve

has complex multiplication (see Table 1, [22]). In Sections 4 and 5, the theory of complex

multiplication will be applied to elliptic curves defined over a finite field and in particular to

supersingular elliptic curves.

-262537412640768000 0

-147197952000 1728

-884736000 8000

-12288000 54000

-884736 287496

-32768 16581375

-3375

Table 1: CM j-invariants (over Q)
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The list of j-invariants in Table 1 is related to the class number one problem. A number field

has class number one if and only if its ring of integers is a principal ideal domain. The class

number one problem states that all imaginary quadratic fields Q(
√
−d), where d > 0 and d is

square-free, having class number 1 are given by {Q(
√
−d) | d = 1, 2, 3, 7, 11, 19, 43, 67, 163} [23].

The number fields with class number one correspond to endomorphism rings of elliptic curves

with complex multiplication. The class number problems are formulated and conjectured by

Gauss. Heegner, Baker and Stark proved the statement about number fields of class number

one. For the details of the (proof of the) class number one problem, see [23].

As a final remark regarding this topic, note that there are 13 j-invariants in Table 1, while

there are only 9 imaginary quadratic fields having class number one. This has to do with the

fact that some of the elliptic curves with j-invariant from Table 1 have endomorphism ring that

is not the ring of integers, but a subring of the ring of integers; for more details see [22].
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3 Torsion points

To get a better understanding of the group structure of an elliptic curve, the so-called torsion

points will be studied. The torsion points of an elliptic curve defined over a field K are all the

points of the elliptic curve with coordinates in the algebraic closure of K such that the order is

finite. The torsion points will be especially useful later on in this thesis when studying elliptic

curves over finite fields and the corresponding discrete logarithm problem. The torsion points

of an elliptic curve will also be essential to construct the Weil pairing in Section 3.2.

Let E be an elliptic curve defined over a field K and let N be a positive integer. An N -torsion

point of an elliptic curve is a point on the elliptic curve with coordinates in the algebraic closure

of K that has order dividing N . The group of N -torsion points of an elliptic curve is denoted

by E[N ], that is

E[N ] = {P ∈ E(K) |N · P =∞}.

3.1 Group structure

The group of N -torsion points of an elliptic curve has a very convenient group structure. In

fact, up to isomorphism, there are only two types of groups of N -torsion points. To give some

intuition on the group structure, first the group E[2] will be determined.

Example 3.1. Let E be an elliptic curve defined over a finite field (that has characteristic not

equal to 2). Then the Weierstrass equation can be written in the form

y2 = cubic equation in x = (x− λ1)(x− λ2)(x− λ3),

with λ1, λ2, λ3 element from K. A point P on this elliptic curve has order 2 if and only if

2 · P = ∞. From the group law, this is only possible when the tangent line at P is a vertical

line. This implies that the y-coordinate of P is equal to 0. Therefore

E[2] = {∞, (λ1, 0), (λ2, 0), (λ3, 0)}.

This group has order 4 and elements of orders 1 and 2. This implies that E[2] is isomorphic to

the Klein four-group:

E[2] ∼= Z/2Z⊕ Z/2Z.

�

Proposition 3.2. Let E be an elliptic curve over a field K and let N be a positive integer. If

the characteristic of K does not divide N , or is 0, then

E[N ] ∼= Z/NZ⊕ Z/NZ.

If the characteristic of K is p > 0 and p|N , write N = prN ′ with p - N ′. Then

E[N ] ∼= Z/N ′Z⊕ Z/N ′Z or Z/NZ⊕ Z/N ′Z.

Proof. A sketch of the proof will be given. The group E[N ] is the kernel of the multiplication

by N endomorphism. Using division polynomials (Appendix A.3), specific formulas for the
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multiplication by N endomorphism can be found. Recall that an endomorphism can be written

as α(x, y) = (R(x), yS(x)). For the multiplication by N endomorphism, it holds that

R(x) =
xN

2

+ . . .

N2xN2−1 + . . .
.

Then it follows that if the characteristic of K does not divide N , the multiplication by N

endomorphism is separable. From Proposition 2.6 and Corollary 3.3, which is stated below, it

follows that the kernel of the multiplication by N endomorphism has order N2. Now using the

Structure Theorem for finitely generated abelian groups (Appendix A.1) and a group structure

related argument it follows that

E[N ] ∼= Z/NZ⊕ Z/NZ.

If the characteristic of K does divide N , then multiplication by N is not separable. Let p denote

the characteristic of K, so that N = prN ′. The pr-torsion on the elliptic curve E is isomorphic

to {∞} or Z/prZ, which can be deduced via an induction argument. Hence it follows that

E[N ] ∼= Z/N ′Z⊕ Z/N ′Z or Z/NZ⊕ Z/N ′Z.

Corollary 3.3. Let E be an elliptic curve defined over a field K and let N be a positive integer.

The multiplication by N endomorphism of E has degree N2.

The proof of this corollary is also based on the division polynomials. Appendix A.3 offers

a short introduction to division polynomials and it states the most important results. More

theory on division polynomials, and also the proof of this corollary can be found in [26].

3.2 The Weil pairing

Bilinear pairings are maps that are important in different fields in mathematics. The dot

product from linear algebra is an example of a bilinear pairing on the vector space Rn [9].

It takes as input two vectors from the vector space Rn, and outputs a real number. For the

bilinearity of the dot product observe that

(av1 + bv2) · w = a(v1 · w) + b(v2 · w)

v · (aw1 + bw2) = a(v · w1) + b(v · w2).

Another example of a bilinear pairing is the determinant pairing on the vector space R2:

det

[
v1 v2
w1 w2

]
= v1w2 − v2w1.

It maps two vectors in R2 to a real number. For elliptic curves there also exists a bilinear

pairing, a map that takes as input two points on the elliptic curve and outputs an element of

the field K. This bilinear pairing, which is called the Weil pairing, the main ingredient of the

MOV attack, will be introduced in this section.
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The N ’th roots of unity of a field K are important to define the Weil pairing on an elliptic

curve. An N ’th root of unity is an element ζN in K such that (ζN )N = 1. These elements form

a cyclic group; µN = {x ∈ K|xN = 1} is a cyclic group of order N . A primitive N ’th root

of unity is a generator ζ of the group µN . This means that h = ζk for all h ∈ µN and some

integer k. The element ζ is a primitive N ’th root of unity if and only if ζN = 1 and ζk 6= 1 for

all 1 ≤ k < N .

Based on the N -torsion points of an elliptic curve and the N ’th roots of unity the Weil pairing

can be defined. Besides the fact that the Weil pairing is an important ingredient to attack the

elliptic curve discrete logarithm problem, it is also essential in the proof of Hasse’s theorem.

The Weil pairing is defined as a special bilinear map; it associates an N ’th root of unity with

a given pair of N -torsion points.

Theorem 3.4 (Weil Pairing). Let E be an elliptic curve defined over a field K and let N be a

positive integer. Assume that the characteristic of K does not divide N . Then there is a pairing

eN : E[N ]× E[N ]→ µN ,

that is called the Weil pairing. It satisfies the following properties:

1. eN is bilinear in each variable:

eN (P1 + P2, Q) = eN (P1, Q)eN (P2, Q)

eN (P,Q1 +Q2) = eN (P,Q1)eN (P,Q2)

2. eN is non-degenerate in each variable:

if eN (P,Q) = 1 ∀Q ∈ E[N ], then P =∞

if eN (P,Q) = 1 ∀ P ∈ E[N ], then Q =∞

3. eN (Q,Q) = 1 for allQ ∈ E[N ]

4. eN (Q,P ) = eN (P,Q)−1 for all P,Q ∈ E[N ]

5. eN (σP, σQ) = σ(eN (P,Q)) for all automorphisms σ of K s.t. σ is the identity on K.

6. eN (α(P ), α(Q)) = eN (P,Q)deg(α) for all separable endomorphisms α of E.

This theorem will be proven in Section 3.2.2. First, a few important corollaries will be stated,

and some more theory and notation needs to be introduced.

Corollary 3.5. Let {T1, T2} be a basis for E[N ]. This implies that eN (T1, T2) is a primitive

N ’th root of unity.

Note that such a basis {T1, T2} can be selected because of the group structure of the group of

N -torsion points (see Theorem 3.2).

Proof. Recall that ζ is a primitive N ’th root of unity if and only if ζN = 1 and ζk 6= 1 for

all 1 ≤ k < N . Equivalently, ζ is a primitive N ’th root of unity if and only if ζd = 1 implies

N |d. By definition of the Weil pairing, eN (T1, T2) is an N ’th root of unity. Suppose that
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eN (T1, T2) = ζ, with ζd = 1. Because of the bilinearity and property (3) of the Weil pairing

(see Theorem 3.4), the following two equalities hold:

eN (T1, d · T2) = eN (T1, T2)d = ζd = 1 (6)

eN (T2, d · T2) = eN (T2, T2)d = ζd = 1.

Let S be any point of order dividing N . Then S ∈ E[N ], so S can be written in the form

S = a · T1 + b · T2, since T1, T2 form a basis for E[N ]. Then

eN (S, d · T2) = eN (a · T1 + b · T2, d · T2)

= eN (a · T1, d · T2)eN (b · T2, d · T2),

= eN (T1, d · T2)aeN (T2, d · T2)b,

= 1

Here the second equality follows from the bilinearity property of the Weil pairing and the

third and fourth equalities follow from equation (6). Since this holds for any point S of order

dividing N , by property (2) of the Weil pairing it must be the case that d · T2 = ∞. Recall

that E[N ] ∼= Z/NZ⊕Z/NZ and {T1, T2} forms a basis for E[N ]. This implies that d · T2 =∞
if and only if d is a multiple of N . Therefore N divides d, and hence ζ is a primitive N ’th root

of unity.

From the properties of the Weil pairing, in particular property 6, it is possible to connect the

degree of an endomorphism to the determinant of a related endomorphism.

Remark. Let E be an elliptic curve defined over the field K and let α : E(K) → E(K) be

an endomorphism. Then α maps group of N -torsion points of E to itself. The restriction

endomorphism αN : E[N ] → E[N ] can be represented by a matrix. Pick a basis {β1, β2} for

the N -torsion points of an elliptic curve. Such a basis exists since E[N ] ∼= Z/NZ⊕ Z/NZ (see

Theorem 3.2). This means that there exist elements a, b, c, d ∈ Z/NZ such that

α(β1) = aβ1 + cβ2

α(β2) = bβ1 + dβ2.

Hence the action of α on the n-torsion points of the elliptic curve E is represented by the matrix

αN =

[
a b

c d

]
.

Proposition 3.6. Let E be an elliptic curve defined over a field K and let α be an endomor-

phism of E. Let N be a positive integer such that the characteristic of K does not divide N .

Then

det(αN ) ≡ det(α) mod N.

Proof. The element ζ = eN (T1, T2) is a primitive N ’th root of unity by Corollary 3.5. From
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properties of the Weil pairing, Theorem 3.4 and the observation, it now follows that

ζdeg(α) = eN (T1, T2)deg(α)

= eN (α(T1), α(T2))

= eN (a · T1 + c · T2, b · T1 + d · T2)

= eN (T1, T1)abeN (T1, T2)adeN (T2, T1)cbeN (T2, T2)cd

= eN (T1, T2)adeN (T2, T1)cb

= eN (T1, T2)adeN (T1, T2)−cb

= eN (T1, T2)ad−cb

= ζad−cb.

For the element ζ it holds that ζx = ζy if and only if x ≡ y mod N , since ζ is a primitive N ’th

root of unity. Therefore deg(α) ≡ ad− cb = det(αN ) mod N .

Let α and β be two endomorphisms of the elliptic curve E. Then mα+nβ is an endomorphism

of E that is defined by (mα + nβ)(P ) = mα(P ) + nβ(P ) for all points P of the elliptic curve

E.

Proposition 3.7. deg(mα+nβ) = m2 deg(α)+n2 deg(β)+mn(deg(α+β)−deg(α)−deg(β))

The proof of this proposition can be found in [26], it is a straightforward computation.

From the properties of the Weil pairing, it follows that the Weil pairing defines a surjective

map as can be seen from Theorem 3.8 (see [21]).

Theorem 3.8. There exist N -torsion points S and T such that eN (S, T ) defines a primitive

N ’th root of unity. In particular, if E[N ] ⊂ E(K), then µN ⊂ K×.

Proof. Let σ be an automorphism of K such that σ is the identity map on K and let T1, T2
denote a basis for E[N ]. Denote ζ = eN (T1, T2). The points T1 and T2 both are N -torsion

points of E, so they have coordinates in K. Therefore σT1 = T1 and σT2 = T2. From property

(5) of the Weil pairing it now follows that

ζ = eN (T1, T2) = eN (σT1, σT2) = σ(eN (T1, T2)) = σ(ζ).

The fundamental theorem of Galois theory implies that ζ ∈ K. According to Corollary 3.5, ζ

is a primitive N ’th root of unity, so ζ is the generator of µN . Since the generator of µN is in

K it follows that µN ∈ K, and this concludes the proof of the theorem.

3.2.1 Divisors

To construct the Weil pairing and prove the properties of the Weil pairing, the divisors of an

elliptic curve need to be introduced. After defining the notion of a divisor of an elliptic curve,

some important properties of divisors will be stated.

Let E be an elliptic curve defined over a field K. For each point P ∈ E(K), a formal symbol

[P ] can be defined. A divisor D of the elliptic curve E is defined as a formal sum

D =
∑
j

aj [Pj ], aj ∈ Z.
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The coefficients aj in the sum satisfy the property that aj = 0 for all but finitely many values

of j, therefore D is a finite formal sum. The set of all divisors of an elliptic curve forms a

group, denoted Div(E). This group contains formal sums of points in E(K), counting multi-

plicities, so the group is freely generated by the formal symbols [P ]. A divisor has two main

characterizations, its degree and its sum:

deg(
∑
j

aj [Pj ]) =
∑
j

aj ,

sum(
∑
j

aj [Pj ]) =
∑

ajPj .

The degree of a divisor is an integer and the sum of a divisor is an element of E(K). An

important subgroup of the group of divisors is the subgroup that contains all divisors of degree

zero, denoted by Div0(E). An important subgroup of the degree zero divisors is the group of

principal divisors, which is introduced below.

A function on an elliptic curve is defined as a rational function f(x, y) = g(x,y)
h(x,y) that is defined

for at least one point of E(K). The function takes values in K ∪{∞}. A function on an elliptic

curves can have zeros and poles. A zero of a function is a point P such that the function

takes the value 0 at P and a pole of a function is a point Q such that the function takes the

value ∞ at the point Q. Now the order of a function f at a point P can be defined. Write

f(x, y) = u(x, y)r · g(x, y), where u(P ) = 0 and g(P ) 6= 0,∞. Then the order of f at P is

defined as ordp(f) = r.

A divisor of a function is defined in the following way

div(f) =
∑

P∈E(K)

ordP (f)[P ].

A divisor is called a principal divisor if and only if it is a divisor of a function. A principal divisor

describes the zeros and poles of a function (counting multiplicities). The principal divisors of

an elliptic curve form a subgroup of the group of degree 0 divisors, denoted by Princ(E).

Theorem 3.9. Let E be an elliptic curve defined over a field K. Then D =
∑
j aj [P ] is a

divisor of a function if and only if deg(D) = 0 and sum(D) =∞.

In other words, this theorem says that a divisor D of degree zero is describing zeros and poles

of a function if and only if sum(D) =∞.

Corollary 3.10. Let E be an elliptic curve defined over the field K. Then the following map

describes a group isomorphism:

φ : E(K)→ Div0(E)/Princ(E), P 7→ [P ]− [∞].

The proof of Theorem 3.9 and Corollary 3.10 can be found in [21].

3.2.2 Explicit description of the Weil pairing

Proof of Theorem 3.4. In the first place Theorem 3.4 claims the existence of a bilinear pairing

on an elliptic curve. The existence of this pairing will now be proven. The proof here follows

the same strategy as in [18] (and the alternative description of the Weil pairing from [21]).
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Let E denote an elliptic curve defined over a finite field Fq and let P and Q be two N -torsion

points. Let DP and DQ be two degree 0 divisors on E such that the sum of DP is equal to P

and the sum of DQ is equal to Q. In other words, DP and DQ can be written as

DP = [P ]− [∞] and DQ = [Q]− [∞].

Then according to Theorem 3.9 there exist rational functions fP and fQ such that

div(fP ) = N ·Dp and div(fQ) = N ·DQ.

The Weil pairing can be now be defined as

eN (P,Q) =
fP (DQ)

fQ(Dp)
. (7)

To show that the Weil pairing indeed maps N -torsion points to N ’th roots of unity, a result

from [18] is used. This result states that if f and g are two rational functions on an elliptic

curve, then f(div(g)) = g(div(f)). Then eN (P,Q) is an N ’th root of unity since

eN (P,Q)N =
(fP (DQ)

fQ(DP )

)N
=
fP (N ·DQ)

fQ(N ·DP )

=
fP (div(fQ))

fQ(div(fP ))
=
fP (div(fQ))

fP (div(fQ))
= 1.

This means that the Weil pairing in equation (7) defines a pairing that associates an N ’th root

of unity with a given pair of N -torsion points. According to [18] and [10], the Weil pairing can

be defined equivalently as the quantity

eN (P,Q) =
fS(Q+R)

fS(R)

/
fT (P −R)

fT (−R)
, (8)

where R is any point in E(K) satisfying R 6∈ {∞, P,−Q,P −Q}. Note that this condition on

R implies that the quantity eN (P,Q) is well-defined. In [10] it is shown that the quantity does

not depend on the choice of the functions fP , fQ or the choice of the point R. This definition

of the Weil pairing is often useful when the Weil pairing actually needs to be computed, as in

Example 3.11.

Besides the existence of the Weil pairing, the properties of the Weil pairing were also stated in

Theorem 3.4. Here, properties 1, 3 and 4 will be proven explicitly. For the details of the proofs

of the other properties, [21], [18] or [10] can be consulted. The proofs here closely follow the

proof as given in [18].

Property 1: To be shown: eN is bilinear in each variable, i.e.

eN (P1 + P2, Q) = eN (P1, Q)eN (P2, Q) and

eN (P,Q1 +Q2) = eN (P,Q1)eN (P,Q2).

To prove the bilinearity in the first variable, let P3 = P1 +P2. Then according to equation (7),

eN (P1 + P2, Q) can be written as

eN (P1 + P2, Q) = eN (P3, Q) =
fP3(DQ)

fQ(DP3
)
. (9)
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The function fP3
can be written as the composition of the function fP1

and fP2
. Theorem 3.9

implies that there exists a rational function h that satisfies

div(h) = [P3]− [P1]− [P2] + [∞].

Then

div
( fP3

fP1fP2

)
= N [T3]−N [∞]−N [T1] +N [∞]−N [T2] +N [∞] = Ndiv(h) = div(hN ),

since the functions fPi
for i = 1, 2, 3 are defined such that div(fPi

) = N [Pi]−N [∞]. Therefore

fP3 = cfP1fP2h
N ,

for some constant c in K. Substituting this into equation (9) yields

eN (P1 + P2, Q) =
fP1(DQ)fP2(DQ)

fQ(DP3
)

=
fP1(DQ)fP2(DQ)

fQ(DP1+P2
)

=
fP1(DQ)fP2(DQ)

fQ(DP1)fQ(DP2)
= eN (P1, Q)eN (P2, Q).

Bilinearity in the second variable can be proven by using exactly the same reasoning.

Property 3. To show: eN (P, P ) = 1 for all P ∈ E[N ].

By definition of the Weil pairing from equation (8) it holds that

eN (P, P ) =
fP (P +R)

fP (R)

/
fP (P −R)

fP (−R)
=
fP (−R)

fP (R)

fP (P +R)

fP (P −R)
.

If S is a point of order 2 in E(K), then S = −S, which implies that eN (P, P ) = 1. Such a point

S of order 2 always exists because of the following reasoning. If the Weil pairing is constructed

for N -torsion points, for an odd integer N , then a point S of order 2 in E(K) can always

be selected in such a way that S 6∈ {∞, P,−P}. If the Weil pairing is constructed for even

N -torsion points, then the characteristic of the field K is odd. For a field of odd characteristic,

there are 3 nontrivial points of order 2 in E(K) (see Example 3.1), so one of these points must

be not equal to P or −P . This point can be selected as the point S. Thus, a required point S

of order 2 always exists, and therefore eN (P, P ) = 1.

Property 4: To show: eN (Q,P ) = eN (P,Q)−1 for all P,Q ∈ E[N ].

From the third property of the Weil pairing it follows that eN (P + Q,P + Q) = 1. By using

the bilinearity of the Weil pairing, this can be rewritten as

eN (P +Q,P +Q) = eN (P, P +Q)eN (Q,P +Q)

= eN (P, P )eN (P,Q)eN (Q,P )eN (Q,Q)

= eN (P,Q)eN (Q,P ).

In the last equality, property 3 of the Weil pairing was again used. This implies that eN (Q,P ) =

eN (P,Q)−1 for all P,Q ∈ E[N ].

This concludes the proof of the properties 1,3 and 4 of the Weil pairing.
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3.2.3 Computing the Weil pairing

From Theorem 3.4 and the definitions of the Weil pairing in equations (7) and (8) it is not

immediately clear if and how the Weil pairing can actually be computed. However, Miller [18]

constructed a method, which is known as Miller’s algorithm, to efficiently calculate the Weil

pairing. Example 3.12 presents the idea of this algorithm. First, by using equation (8) directly,

the Weil pairing will be derived explicitly for the 2-torsion points of an elliptic curve given by

a Weierstrass equation.

Example 3.11. Let E : y2 = x3 + Ax + B be an elliptic curve over a field K. The equation

for the curve can be rewritten in the following form

y2 = (x− λ1)(x− λ2)(x− λ3),

where λ1, λ2, λ3 are elements of K. Observe that λ1 +λ2 +λ3 = 0 since the left hand side of the

equation does not contain the term x2. In Example 3.1 it was derived that the set of 2-torsion

points of E is given by

E[2] = {∞, (λ1, 0), (λ2, 0), (λ3, 0)}.

Let Pi = (λi, 0) denote an arbitrary nontrivial 2-torsion point. Of course, for any point Pi, it

holds that e2(Pi, Pi) = 1. In [10] it is proven that the function fPi
= x− λi satisfies

div(fPi) = div(X − λi) = 2[P ]− 2[∞],

so this function can be used to construct the Weil pairing. To compute the Weil pairing

e2(P1, P2), let R = (a, b) be an arbitrary point on E. Then

e2(P1, P2) =
fP1(P2 +R)

fP1
(R)

/
fP2(P1 −R)

fP2
(−R)

=
x(P2 +R)− λ1
x(R)− λ1

/
x(P1 −R)− λ2
x(−R)− λ2

.

Using the formulas from Section 2.1.2, the x-coordinate of the point P2 +R is given by

x(P2 +R) =
( b

a− λ2

)2
− a− λ2

=
b2 − (a− λ1)2(a+ λ1)

(a− λ1)2

=
(a− λ1)(a− λ2)(a− λ3)− (a− λ1)2(a+ λ1)

(a− λ1)2

=
λ1a+ λ2λ3 + λ21

a− λ1
,

and similarly, the x-coordinate of the point P1 −R is given by

x(P2 −R) =
λ2a+ λ1λ3 + λ22

a− λ2
.
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Now the Weil pairing can actually be computed for two points P1, P2 on E such that P1 6= P2:

e2(P1, P2) =
x(P2 +R)− λ2
x(R)− λ1

/
x(P1 −R)− λ2
x(−R)− λ2

=

λ1a+λ2λ3+λ
2
1

a−λ1
− λ1

a− λ1

/ λ2a+λ1λ3+λ
2
2

a−λ2
− λ2

a− λ2

=
(λ2 − λ1)a+ λ1λ3 + λ22 + λ1λ2
(λ1 − λ2)a+ λ2λ3 + λ21 + λ1λ2

=
(λ2 − λ1)a+ λ22 + λ1(λ3 + λ2)

(λ1 − λ2)a+ λ21 + λ2(λ3 + λ1)

=
(λ2 − λ1)a+ λ22 − λ21
(λ1 − λ2)a+ λ21 − λ22

= −1.

�

This example shows that for the 2-torsion points of an elliptic curve over an arbitrary field K

it is possible to construct the Weil pairing.

In the next example, the Weil pairing will be computed for the 3-torsion points of an elliptic

curve defined over a finite field.

Example 3.12. In general, third roots of unity are given by the roots of the polynomial

f(x) = x3 − 1. In every field Fp, 1 is of course a third root of unity. Since

f(x) = x3 − 1 = (x− 1)(x2 + x+ 1),

the other two third roots of unity are given by the roots of the polynomial h(x) = x2 + x+ 1.

Consider the finite field F31. By using the reasoning above, the third roots of unity of F31 can

be obtained:

µ3 = {1, 5, 25}.

Let E denote the elliptic curve given by the Weierstrass equation y2 = x3 + 1 over the field

F31. The group structure of the 3-torsion points of E is given by (Theorem 3.2)

E[3] ∼= Z/3Z⊕ Z/3Z.

The set of all 3-torsion points of E is given by

E[3] = {∞, (0, 1), (0, 30), (3, 11), (3, 20), (13, 11), (13, 20), (15, 11), (15, 20)}.

This set can be found manually, by finding all points of E and computing their orders, or by

using software like SageMath to automatically compute the set of 3-torsion points.

Now let us compute the Weil pairing for the two 3-torsion points P1 = (0, 1) and P2 = (15, 20)

of E. In order to compute the Weil pairing, two rational functions f(0,1) and f(15,20) that satisfy

div(f(0,1)) = 3[(0, 1)]− 3[∞] and div(f(15,20)) = 3[(15, 20)]− 3[∞]
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need to be found. These rational functions will be derived by following the strategy from [15],

which follows the approach of Miller’s algorithm [18]. In short, let D1 and D2 denote two degree

0 divisors which are given by

D1 = [P1]− [∞] + div(f1) and

D2 = [P2]− [∞] + div(f2).

Let P3 = P1 + P2 and let l be the polynomial that defines the line through the points P1 and

P2. Let v polynomial that defines the vertical line through P3. If P1 = P2, then l is the tangent

line of E at the point P2. If P3 =∞, then put v = 1, i.e. a vertical line at 1. The sum of the

divisors D1 and D2 is now given by

D1 +D2 = [P3]− [∞] + div(f1f2f3),

where f3 = l
v . See [15] for a detailed explanation. Note that the point P3 and the (tangent)

line l can be found by using the formulas from Section 2.1.2. By using exactly this reasoning,

the functions f(0,1) and f(15,20) can be found.

For the point P1 it holds that

[P1]− [∞] = [P1]− [∞] + div(1),

2[P1]− 2[∞] = ([P1]− [∞]) + ([P1]− [∞])

= [2P1]− [∞] + div
(y − 1

x

)
= [(0, 30)]− [∞] + div

(y − 1

x

)
,

3[P1]− 3[∞] = ([P1]− [∞]) + (2[P2]− 2[∞])

= [P1 + 2P1]− [∞] + div
(y − 1

x

x

1

)
= [∞]− [∞] + div(y − 1)

= div(y − 1).

This implies that f(0,1)(x, y) = y − 1. For the point P2 the derivation is a little bit more

involved,

[P2]− [∞] = [P2]− [∞] + div(1),

2[P2]− 2[∞] = ([P2]− [∞]) + ([P2]− [∞])

= [2P2]− [∞] + div
(13x− y + 11

x+ 16

)
= [(15, 11)]− [∞] + div

(13x− y + 11

x+ 16

)
,

3[P2]− 3[∞] = ([P2]− [∞]) + (2[P2]− 2[∞])

= [P2 + 2P2]− [∞] + div
(13x− y + 11

x+ 16

x− 15

1

)
= [∞]− [∞] + div

( (13x− y + 11)(x− 15)

x+ 16

)
= div

( (13x− y + 11)(x− 15)

x+ 16

)
.
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Therefore the function f(15,20) is given by

f(15,20)(x, y) =
(13x− y + 11)(x− 15)

x+ 16
.

Now the Weil pairing can be computed

e3((0, 1), (15, 20)) =
f(0,1)(15, 20)

f(15,20)(0, 1)
=

19

10
= 5,

which is indeed a third root of unity. �
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4 Elliptic curves over finite fields

In Section 6 it will be shown that the discrete logarithm problem for an elliptic curve defined

over a finite field is a lot more complex than the same problem for an elliptic curve defined over

a field of infinite order. Hence, for cryptographic purposes, the elliptic curves that are most

interesting are the elliptic curves defined over a finite field.

Let Fq be a finite field, where q = pn for some prime p and a positive integer n. Let E be an

elliptic curve defined over this finite field. A first observation is that the number of points in

a finite field is finite, which implies that the number of points of E will also be finite. More

specifically, the claim is that the number of points in E(Fq) is at most 2q + 1. The finite field

Fq contains at most q elements. For each x ∈ Fq, there exist at most two points on the elliptic

curve, (x, y) and (x,−y). Including the point at infinity yields the claim.

In the rest of this paper, Fq will always denote a finite field as described previously. As

mentioned before, for convenience, the finite field Fq will be assumed to have characteristic not

equal to 2 or 3.

The points in E(Fq) do not lie on a ‘nice curve’ as was the case when considering an elliptic

curve over the field Q (Section 2). Elliptic curves defined over a finite field are thus less intuitive

than elliptic curves over R or Q. However, it is possible to find, or rather to count the points

of an elliptic curve over a finite field. The order of the group E(Fq) is information that will

turn out to be crucial for cryptographic applications.

When the number of elements in the finite field is small it is possible to list all to points of an

elliptic curve easily.

Example 4.1. Let E be the elliptic curve given by y2 = x3 + x + 1 over the finite field F7.

The points of E can be counted using a table that contains all possible values of x, all values

of x3 + x+ 1 and the corresponding square roots y. This means that E(F7) has order 5.

x x3 + x+ 1 y Points

0 1 ± 1 (0, 1), (0, 6)

1 3 - -

2 4 ± 2 (2, 2), (2, 5)

3 3 - -

4 6 - -

5 5 - -

6 6 - -

∞ ∞

Table 2: The points of E(F7)
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Figure 5: Elliptic curve E : y2 = x3 + x+ 1 over F7

Figure 5 shows a plot of the elliptic curve E. Using the formulas for the group law from Section

2.1.2, it can be derived that the point (0, 1) is the generator of the group. Hence the elliptic

curve is cyclic of order 5, E(F5) ∼= Z/5Z. �

The strategy of trying to find all the points of the elliptic curve as in Example 4.1 is not a good

strategy when the finite field is very large. The goal of the remaining part of this section is to

explain and prove certain properties and tools concerning the order of the group E(Fq).

4.1 Estimate for the order of the group

The number of points on an elliptic curve over a finite field Fq is at most 2q+ 1. However, this

upper bound on the order of E(Fq) is not really optimal. Hasse’s theorem gives a more useful

bound on the order of E(Fq).

Theorem 4.2 (Hasse’s theorem). Let E be an elliptic curve defined over the finite field Fq.

Then the order of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√
q.

The quantity a = q + 1 − #E(Fq) is called the Frobenius trace of the elliptic curve E. The

proof of Hasse’s theorem is not very complicated, but it does require some theory about the

Frobenius endomorphism that will be explained first.

4.1.1 Frobenius homomorphism

In Section 2.4.3 the Frobenius endomorphism was defined as the map φq that acts on the points

of an elliptic curve in the following way

φq(x, y) = (xq, yq), φq(∞) =∞.

From this same section it is known that φq is an endomorphism of degree q that is not separable.

The Frobenius endomorphism will allow for an identification of the group of points of an elliptic

curve and the kernel of an endomorphism. This will be essential in the proof of Hasse’s theorem.
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Proposition 4.3. Let E be an elliptic curve defined over a finite field Fq and let n be a

positive integer. Let φnq = φq ◦ φq ◦ · · · ◦ φq. Then φnq is a separable endomorphism and

ker(φnq − 1) = E(Fqn).

The proof here closely follows the proof from [26], although the proof in this thesis will elaborate

more on some preliminary theory, also from [26], that was not discussed before.

Proof. First note that the composition of endomorphisms is an endomorphism. Therefore φnq is

an endomorphism for all n ≥ 1. Also multiplication by the integer −1 is an endomorphism, and

the sum of two endomorphisms is an endomorphism. Therefore φnq − 1 is an endomorphism.

The claim that ker(φnq − 1) = E(Fqn) is equivalent to saying that

(x, y) ∈ ker(φnq − 1)⇔ (x, y) ∈ E(Fqn).

To show the latter, note that x ∈ Fqn if and only if φnq (x) = x. This implies that

(x, y) ∈ E(Fqn)⇔ x, y ∈ Fqn
⇔ φnq (x) = x and φnx(y) = y

⇔ φnq (x, y) = (x, y)

⇔ φnq (x, y)− (x, y) = 0

⇔ (x, y) ∈ ker(φnq − 1).

Since an endomorphism rφq + s is separable if and only if p - s (Proposition 2.29 in [26]), it

follows that φnq − 1 is a separable endomorphism, which concludes the proof.

There is a relation between the number of points of an elliptic curve and the Frobenius endo-

morphism.

Theorem 4.4. Let E be an elliptic curve defined over a finite field Fq and write a = q + 1−
#E(Fq). Then a is the unique integer for which it holds that φ2q − aφq + q = 0.

The proof of this theorem, which makes use of Cayley-Hamilton, can be found in [26]. The

polynomial X2 − aX + a = 0 is called the characteristic polynomial of Frobenius and as

mentioned before the integer a is called the Frobenius trace of an elliptic curve.

4.1.2 Proof of Hasse’s theorem

One last lemma that is needed in the proof of Hasse’s theorem is a lemma that follows from

property 6 of the Weil pairing.

Lemma 4.5. If r and s are integers with gcd(r, s) = 1, then deg(rφq − s) = r2q + s2 − rsa.

Proof. From Proposition 3.7 if follows that

deg(rφq − s) = r2 deg(φq) + s2 deg(−1) + rs(deg(φq − 1)− deg(φq)− deg(−1)).

Proposition 2.9 implies that φq is an endomorphism of degree q and the multiplication by −1

endomorphism is an endomorphism of degree 1 (it is therefore an automorphism). Furthermore,

the endomorphism φq − 1 is separable by Proposition 4.3, so it follows from Proposition 2.6

and Proposition 4.3 that deg(φq − 1) = #E(Fq). Write a = q + 1−#E(Fq). It follows that
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deg(rφq − s) = r2q + s2 + rs(#E(Fq)− q − 1)

= r2q + s2 + rs(−a+ q + 1− q − 1)

= r2q + s2 − rsa.

Now Hasse’s theorem can be proven.

Proof of Theorem 4.2. Let E be an elliptic curve defined over a finite field Fq. Let a = q+ 1−
#E(Fq). According to Proposition 4.3 this can be rewritten as a = q + 1 − deg(φq − 1). The

goal is to show that |a| ≤ 2
√
q. Since deg(rφq − s) ≥ 0 it follows from Lemma 4.5 that

r2q + s2 − rsq ≥ 0,

or equivalently

q
(r
s

)2
− a
(r
s

)
+ 1 ≥ 0.

If the rational numbers of the form r
s such that gcd(s, q) = 1 are dense in the real numbers,

then this inequality can be rewritten to

qx2 − ax+ 1 ≥ 0, ∀x ∈ R.

In order for this inequality to hold, the discriminant of the quadratic equation, D = q2 − 4q,

needs to have a negative value

D = a2 − 4q ≤ 0 ⇔ |a| ≤ 2
√
q.

The only thing that is left to show in the proof is showing that the rational numbers r
s such

that gcd(s, q) = 1 are dense in R. A subset S ⊂ R is called dense in R if for every x ∈ R there

is a sequence sn of numbers in S such that sn converges to x [1].

Let S be the set of rational numbers r
s such that gcd(s, q) = 1. Write s = 2m or s = 3m, then

for each integer s at least one of those has gcd 1 with q. Pick an arbitrary real number x and

construct the sequence sn as follows

x− 1

m
<

r

2m
< x+

1

m
or x− 1

m
<

r

3m
< x+

1

m
.

According to the squeeze theorem [1], the sequence sn converges to x, which means that S is

dense in R. This completes the proof of Hasse’s theorem.

4.2 Computing the order of the group

Hasse’s theorem provides a bound for the order of an elliptic curve over a finite field. However,

in many cryptographic contexts the actual value of the order of the group of points of an elliptic

curve is needed. There are methods that precisely compute the order of the group of points of

an elliptic curve.
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4.2.1 The order of twists

If the elliptic curve is defined over a finite field then there exists a relation between the order

of the twist and the order of the original elliptic curve [2]. Let E be an an elliptic curve over

the field Fq and let Ẽ denote a twist of E. Then

#E(K) + #Ẽ(K) = 2q + 2. (10)

This equation will be very useful in Section 7, where examples are generated. Equation (10)

can be easily verified.

To this end, let g(x) = x3 +Ax+B, so the equation of E is given by E : y2 = g(x). Moreover,

write gµ(x) = µ3g(x/µ), so the equation of Ẽ is given by Ẽ : y2 = gµ(x). If gµ(x) is a square

in Fq for x ∈ Fq \ {0}, then this gives two points on the elliptic curve Ẽ. On the other hand,

g(x/µ) = gµ(x)/µ3 is not a square and hence for this value of x, E has no points. This means

that for every x ∈ Fq \ {0}, either E has two points and Ẽ has none, or Ẽ has two points and

E has none. If gµ(x) = 0 then also g(x/µ) = 0, giving one points on Ẽ and one point on E.

Therefore, for each of the q possible values x ∈ Fq, there are two point in the union of E(Fq)

and Ẽ(Fq). Both curves also contain the point at infinity, which yields equation (10).

4.2.2 Elliptic curves over subfields

Let E be an elliptic curve defined over a finite field Fq. The field Fqn is an extension of Fq.

The goal in this section is to find the number of elements in E(Fqn) given that the order of

E(Fq) is known [8].

Theorem 4.6. Let #E(Fq) = q + 1 − a, and write X2 − aX + q = (X − α)(X − β). Then

#E(Fqn) = qn + 1− (αn + βn).

This theorem only makes sense if αn + βn is an integer.

Lemma 4.7. Let sn = αn + βn, then s0 = 2, x1 = a and sn+1 = asn − qsn−1 for all n ≥ 1.

Proof. By the equality X2 − aX + q = (X − α)(X − β), it follows that α and β are roots of

the polynomial X2 − aX + q, so α2 − aα+ q = 0 and β2 − aβ + q = 0. By multiplying the first

equality by αn−1 and the second equality by βn−1 it follows that

αn+1 = aαn − qαn−1 and βn+1 = aβn − qβn−1.

When these two equations are added the required equality is obtained:

αn+1 + βn+1 = a(αn + βn)− q(αn−1 + βn−1) = asn + qsn−1.

From Lemma 4.7, the element αn + βn can be written recursively, as a linear combination of

integers, which implies that αn + βn is an integer. Now Theorem 4.6 can be proven.

Proof of Theorem 4.6. Let E be an elliptic curve defined over the finite field Fq. Then E is

also an elliptic curve over the finite field Fqn . Let a = qn + 1 − #E(Fqn). From Theorem
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4.4 it is known that a is the unique value such that φ2qn − aφqn + q = 0. This means that

showing that φ2qn − (αn+βn)φqn + qn = 0 implies that a = αn+βn. Now it will be shown that

φ2qn − (αn + βn)φqn + qn = 0.

Let

f(X) = (Xn − αn)(Xn − βn) = X2n − (αn + βn)Xn + qn,

then the characteristic polynomial of Frobenius, g(X) = X2 − aX + q divides f(X). The

characteristic polynomial of Frobenius has the property that g(φq) = 0, by Theorem 4.4 This

implies that

f(φq) = (φnq )2 − (αn + βn)φnq + qn = Q(φq)(φ
2
q − aφq + q) = 0.

Here Q(X) denotes the quotient of the polynomial f(x) and the characteristic polynomial of

Frobenius. This means that

(φnq )2 − (αn + βn)φnq + qn = (φqn)2 − (αn + βn)φqn + qn = 0.

According to the argument at the beginning of the proof this implies that a = αn + βn.

Therefore the order of the elliptic curve E over the finite field Fqn is given by

#E(Fqn) = qn + 1− (αn + βn),

which concludes the proof.

4.2.3 Schoof’s algorithm

The most commonly used algorithms for computing the order of a finite group, such as the

baby step, giant step method [26], are not very efficient when applied to elliptic curves over

large finite fields. In 1985, Schoof [20] introduced an algorithm for computing the order of the

group E(Fq) that was a lot more efficient in comparison to existing algorithms. To be precise,

Schoof’s algorithm computes the order of E(Fq) in polynomial time [21]. The basic idea for

Schoof’s algorithm will be sketched below.

Let E be an elliptic curve defined over a finite field Fq and let a = q + 1 − #E(Fq). From

Hasse’s theorem, it is known that |a| ≤ 2
√
q. The idea is to compute

a mod l

for sufficiently many primes l and use the Chinese Remainder Theorem to compute

a mod
∏

l,

which uniquely determines a, using Hasse’s bound.

It suffices to run the algorithm for the smallest set of all primes l such that
∏
l > 4

√
q [21]. The

values a mod l are computed using the Frobenius endomorphism in a special ring R, which is

defined in terms of the division polynomials.

For a more detailed explanation of Schoof’s algorithm and a proof of the running time, see [21]

and [20].
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4.3 Complex multiplication and elliptic curves over Fq
An elliptic curve over Q does not always have complex multiplication, as was shown in Section

2.4.4. To be precise, only a finite number of elliptic curves over Q does have complex multipli-

cation. However, an elliptic curve E over a finite field Fq always has complex multiplication.

The Frobenius endomorphism is an “extra” endomorphism. From Theorem 4.4, the Frobenius

endomorphism is a root of the characteristic polynomial

X2 − aX + q = 0.

Hasse’s theorem states that |a| ≤ 2
√
q. If the Frobenius trace of E strictly satisfies this bound,

so |a| < 2
√
q, then the discriminant of the characteristic polynomial of Frobenius is less than 0.

This means that if |a| < 2
√
q, then the characteristic polynomial of Frobenius only has complex

roots, so in this case the Frobenius endomorphism provides complex multiplication. In fact,

according to [26], if a = ±2
√
q, the elliptic curve also has complex multiplication. If a = ±2

√
q,

then the characteristic polynomial can be factored as

X2 ∓ 2
√
qX + q = (X ∓√q)2.

In fact, this is the characteristic polynomial for a supersingular elliptic curve as will be explained

in Section 5.

For an elliptic curve over a finite field, the endomorphism ring is an order in an imaginary

quadratic field or an order in a quaternion algebra. Washington [26] presents a complete

explanation regarding elliptic curves defined over a finite field and complex multiplication. In

Section 5 it will be explained that elliptic curves with endomorphism ring that is a quaternion

algebra are the special type of elliptic curves called supersingular elliptic curves.
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5 Supersingular elliptic curves

In general, the order of an elliptic curve not straightforward to compute. Algorithms like

Schoof’s algorithm and the baby step, giant step method can be applied to compute the order

of the group of points of an elliptic curve, but it still remains a nontrivial task. However, there

are exceptions to this: there exist different families of elliptic curves for which the order of

the elliptic curve is immediately clear from the definition. A particularly interesting family

of elliptic curves is the family of supersingular elliptic curves. These curves will be the main

interest in the remaining part of this paper.

5.1 Definitions and characterizations

Let E be an elliptic curve defined over a finite field of characteristic p. The elliptic curve is

called a supersingular elliptic curve if E contains no points of order p with coordinates in the

algebraic closure of the field K. In other words, for supersingular elliptic curves, the point at

infinity is the only element in the group of p-torsion points: E[p] = {∞}. This definition gives

an important characterization for supersingular elliptic curves, namely a characterization based

on the number of points of order p on an elliptic curve. There are also other ways to identify

a supersingular elliptic curve.

Proposition 5.1. Let E be an elliptic curve defined over a finite field Fq, where q is a power

of a prime p. Then E is a supersingular elliptic curve if and only if a ≡ 0 mod p which holds

if and only if #E(Fq) ≡ 1 mod p.

Proof. Let E be an elliptic curve defined over the finite field Fq and write a = q+ 1−#E(Fq)

for the Frobenius trace of the elliptic curve E.

The equivalence a ≡ 0 mod p ⇔ #E(Fq) ≡ 1 mod p is straightforward from the definition of

the Frobenius trace of the elliptic curve.

It remains to show that a ≡ 0 mod p if and only if E is a supersingular elliptic curve. The

same notation as in Section 4.2.2 will be used. So write X2 − aX + q = (X − α)(X − β) and

sn = αn + βn. From Lemma 4.7, sn is an integer as it can be written recursively as

s0 = 0,

s1 = 1,

sn+1 = asn − qsn−1,

for all n ≥ 1. Assume that a ≡ 0 mod p. This implies that sn+1 ≡ 0 mod p for all values of

n, since q ≡ 0 mod p. Therefore, by Theorem 4.6, the order of the elliptic curve E over Fqn

satisfies

#E(Fqn) = qn + q − sn ≡ 1 mod p.

The order of an element always divides the order of the group [19]. This means that there is

no point of order p in E(Fqn) for any field extension Fqn of Fq. Since Fq =
⋃
n Fqn it follows

that there is no point of order P in E(Fq). Therefore E is supersingular.

43



5.1 Definitions and characterizations 5 SUPERSINGULAR ELLIPTIC CURVES

The other direction will be proven using contraposition. Assume that a 6≡ 0 mod p so that

sn+1 ≡ asn mod p. Since s0 = a this implies that sn ≡ an mod p for all values of n. So the

number of points on the subfield curve can be written as #E(Fqn) = qn + 1 − sn = 1 − an.

Fermat’s little theorem states that ap−1 ≡ 1 mod p (see Appendix A.2). This implies that the

group of points E over a particular subfield, namely E(Fqp−1), has order that is divisible by

the prime p, hence E(Fqp−1) contains a point of order p. Using again the argument that Fq
can be written as a union of its subfields, this implies that E(Fq) contains a point of order p,

so E is not supersingular.

When there is a certain constraint on the size of the prime p, supersingular curves can be

characterized even more conveniently.

Corollary 5.2. Let p ≥ 5 be a prime and let E be an elliptic curve over a finite field Fp. Then

the following are equivalent:

• E is a supersingular curve

• a = 0

• #E(Fp) = p+ 1.

Proof. Let E be an elliptic curve defined over a finite filed Fp, where p ≥ 5. If a = 0, then

Proposition 5.1 can be applied to conclude that the elliptic curve E is supersingular. The

remaining part of the corollary will again be shown using contraposition. Assume that E is a

supersingular elliptic curve, but a 6= 0. Then by proposition 5.1, a ≡ 0 mod p, which means

that |a| ≥ p. Now Hasse’s theorem says that |a| ≤ 2
√
p, so p ≤ 2

√
p, and therefore p ≤ 4.

Example 5.3. The elliptic curve E : y2 = x3−x+1 defined over the field F97 is a supersingular

elliptic curve. This can be verified using for example Schoof’s algorithm [26] [20], which is

implemented in SageMath, to check that the curve has 98 points. It is also feasible to check all

possible x, y ∈ F97 and see how many satisfy the equation, as in Example 4.1, not forgetting

the point at infinity (see Figure 6). �

Figure 6: Elliptic curve y2 = x3 − x+ 1 over F97.
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5.2 Computing multiples of a point

One of the reasons why supersingular elliptic curves are such interesting curves is that for these

curves, there exist a fast method for computing multiples of a point. Normally a multiple of a

point can be computed relatively fast using the successive doubling method (Section 2.1). In

this subsection an algorithm to compute a multiple of a point, for points on a supersingular

elliptic curve, will be described [26].

Let E be a supersingular curve over a finite field Fp, and let P = (x, y) be a point in E(Fqn)

for some integer n ≥ 1. Let k be a positive integer. The goal is to compute the point k · P .

Let a = q + 1 − #E(Fq). Then according to Theorem 4.4, the characteristic polynomial of

Frobenius can be written in the following form

φ2q − aφq + q = 0.

Assume that a = 0, then this equation reduces to

φ2q + q = 0

This can be written equivalently as

q · (x, y) = −φ2q(x, y) = (xq
2

,−yq
2

).

Expanding the integer k in the base q will now yield the faster method of computing a multiple

of a point on this elliptic curve. The algorithm is as follows:

Computing multiples of a point algorithm

1. Expand the integer k in the base q. This gives k = k0 + k1q + k2q
2 + · · ·+ krq

r.

2. Compute ki · P = (xi, yi) for each value of i.

3. Compute qi(kiP ) = (xq
2i

i , (−1)iyq
2i

i ) for each value of i.

4. Sum the elements qi(ki · P ) for 0 ≤ i ≤ r.

This algorithm of course makes sense because k ·P = k0 ·P+q(k1 ·P )+q2(k2 ·P )+· · ·+qr(kr ·P ),

when k is expanded in the base q.

The method described above yields a faster algorithm for multiples of a point for points on a

supersingular elliptic curve than successive doubling since in the third step of the algorithm all

computations are done in a finite field instead of on the elliptic curve. In general computations

in a finite field are faster than elliptic curve computations.

5.3 Constructing supersingular elliptic curves

Since supersingular elliptic curves are such special elliptic curves, especially in cryptographic

applications, it would be nice to have a method that immediately constructs supersingular

elliptic curves.

Proposition 5.4. Suppose p is an odd prime and p ≡ 2 mod 3. Let B ∈ F×p . Then the elliptic

curve that is given by y2 = x3 +B is supersingular.
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Proof. First note the assumption p is odd and p ≡ 2 mod 3 implies that Corollary 5.2 can be

applied. Let E be the elliptic curve given by the equation y2 = x3 + B over the finite field

Fp. Corollary 5.2 says that showing that the elliptic curve E is supersingular is equivalent to

showing that #E(Fp) = p+1, therefore the number of points of E(Fp) has to be counted. This

can be done using the homomorphism ψ : F×p → F×p that is defined by ψ(x) = x3. In fact the

map ψ is an isomorphism.

First the injectivity will be shown. The order of the multiplicative group F×p is equal to p− 1.

By the assumption that p ≡ 2 mod 3, it follows that the order of F×p is not a multiple of 3,

so there are no elements of order 3 in the group F×p . This means that the only element that

is mapped to zero by the map ψ is the identity element, so the kernel of ψ is trivial, which

means that the map ψ is injective. The map ψ is surjective since it maps a finite group to

itself. Now, using the isomorphism ψ, it is clear that every element of F×p has a cube root in

F×p , so also every element of Fp has a cube root in Fp. For this reason, for every y ∈ Fp there

is exactly one x ∈ Fp such that (x, y) lies on the elliptic curve. In particular, for y ∈ Fp, the

point ( 3
√
y2 −B, y) lies on the elliptic curve. There are precisely p values of y in the field Fp,

so there are p points (x, y) on the elliptic curve E obtained using this reasoning. Including the

point at infinity implies that there are p + 1 points on the elliptic curve. Therefore the curve

given by the equation y2 = x3 +B is supersingular.

Example 5.5. The elliptic curve E : y2 = x3 + 1 defined over the field F101 is a supersingular

elliptic curve. Since 101 ≡ 2 mod 3, this is immediately clear from Proposition 5.4. It can also

be verified by using Schoof’s algorithm as in the previous example (see Figure 7). �

For Weierstrass equations of the form y2 = x3 +Ax there is a statement similar to Proposition

5.4.

Proposition 5.6. Let p ≥ 5 be a prime. Let A ∈ F×p , then the elliptic curve that is given by

y2 = x3 +Ax is supersingular if and only if p ≡ 3 mod 4.

Figure 7: Supersingular elliptic curve y2 = x3 + 1 over F97

The proof of Theorem 5.6 makes use of the Hasse invariant, which will not be introduced in

this thesis. For the details, see [26] and [21].
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By means of Proposition 5.4 and 5.6, supersingular elliptic curves can be constructed over a

finite field Fp for an enormous prime p. The only thing that is needed is to check whether the

prime satisfies p ≡ 2 mod 3 or p ≡ 3 mod 4 (or neither).

Example 5.7. Consider p = 282589933 − 1, which is the largest prime number largest prime

number known today. Over Fp, a supersingular elliptic curve can easily be constructed. Since

p ≡ 3 mod 4, the elliptic curve given by

E1 : y2 = x3 + ax,

where a ∈ F×p , is supersingular. �

5.4 Supersingular curves and complex multiplication

From Section 4.3, elliptic curves over a finite field always have complex multiplication, and in

some cases, the endomorphism ring is an order in a quaternion algebra. In fact, this happens

exactly when the elliptic curve is supersingular [26].

The next two examples will show that for elliptic curves that have complex multiplication over

Q, reducing the elliptic curve modulo p will yield a supersingular elliptic curve quite often.

Example 5.8. Consider the elliptic curve E : y2 = x3 +x over Q. The j-invariant of E is given

by j(E) = 1728. This elliptic curve has complex multiplication. The extra endomorphism

in this case is the multiplication-by-i endomorphism. Now reduce the elliptic curve modulo a

prime p, and determine what happens to the endomorphism ring.

First consider the specific case when p = 11. Then E has 12 points over Fp,

E(Fp) = {∞, (0, 0), (5, 3), (5, 8), (7, 3), (7, 8), (8, 5), (8, 6), (9, 1), (9, 10), (10, 3), (10, 8)},

so E is a supersingular elliptic curve. The Frobenius endomorphism satisfies φ◦φ(P ) = −11 ·P ,

i.e. φ2 = −11, and there is another algebraic integer e that satisfies e2 = −1. The algebraic

integer e gives rise to another endomorphism α : (x, y) → (−x, ey). Since φ ◦ α = −α ◦ φ, the

ring of endomorphisms is a quaternion algebra.

It turns out that only for the elements p that are still primes in Z[i] (or irreducible, since Z[i]

is a unique factorization domain), the endomorphism ring of E is larger than just Z[α]. This

means that for these primes a supersingular elliptic curve is obtained after reducing modulo p.

Equivalently, only for primes that can not be written as the sum of two squares, the elliptic

curve E modulo p is supersingular. These are exactly the primes such that p ≡ 3 mod 4. Thus,

E is a supersingular elliptic curve over Fp if and only if p ≡ 3 mod 4. �

Example 5.9. Consider the elliptic curve E : y2 = x3 + 1. The j-invariant of E is given by

j(E) = 0. This curve has complex multiplication and the extra endomorphism is given by the

multiplication by a third root of unity ζ3. So the endomorphism ring of this elliptic curve is

isomorphic to Z[ζ3]. A supersingular elliptic curve is obtained when reducing the elliptic curve

E modulo p if and only if p ≡ 2 mod 3. The reasoning behind this is similar to the previous

example. This implies that E over the finite field Fp is supersingular if p ≡ 2 mod 3. �
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Remark. Note that the claims in these two examples were already stated in Proposition 5.4

and Proposition 5.6.

Approximately half of the primes satisfy p ≡ 3 mod 4 and also approximately half of the primes

satisfy p ≡ 2 mod 3, asymptotically. The two examples suggest that if an elliptic curve over

Q has complex multiplication, then it is supersingular modulo p for approximately 50% of the

primes. In fact, this is true, as was claimed in [21] and proven by Deuring [26]. For an elliptic

curve E that has complex multiplication over Q, the general statement states the following. If

E (that has complex multiplication) is given by a Weierstrass equation with integer coefficients,

then reducing the elliptic curve modulo a prime p (to obtain an elliptic curve over Fp) will yield

a supersingular elliptic curve for approximately half of the primes.

In Table 1 all j-invariants are given for elliptic curves over Q that have complex multiplication.

Reducing the elliptic curve with these j-invariants modulo any prime p will give a supersingular

elliptic curve for approximately half of the primes.

If the elliptic curve over Q does not have complex multiplication, then supersingularity of the

elliptic curve modulo p is a lot more rare. This set of supersingular curves is even so small

that it has density 0. This is an important result that is due to Elkies [5]. Elkies showed that

despite the set of this supersingular elliptic curves having density 0, there are still infinitely

many primes for which the reduction modulo p of a given elliptic curve E, defined over Q, is

supersingular.

In Section 7, where supersingular curves will be generated for demonstrational purposes, it

will be important to take the possibility of larger endomorphism rings and elliptic curves with

complex multiplication over Q into account in order to construct novel supersingular elliptic

curves.
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6 The Discrete logarithm problem

Recall from the introduction that for a group G, the discrete logarithm problem is defined as

the following problem. Given group G and a given element g in the group, someone computes

h = gn for a secret integer n. Then, given the elements g and h, the goal is to find the positive

integer n such that h = gn. The complexity of the discrete logarithm problem is often defined

in terms of the time it takes the currently best known algorithm to solve the problem.

For the safety of a cryptographic application such as the public key cryptography, it is essential

that the discrete logarithm problem is difficult to solve. This means that the currently known

algorithms should not be able to solve the problem in a reasonable amount of time, say 10 years

(in reality this requirement is a lot more strict).

For a group like the real numbers, the discrete logarithm problem is not that complicated. To

compute the range of the integer n, one can look at the size of the element h. Here the size

of an element means the numbers of digits of the element before the decimal point. In fact,

over R the power series of the logarithm function can be used to find the exact solution to

the discrete logarithm problem very efficiently. For an arbitrary group the discrete logarithm

problem is a lot more complicated. An example of a discrete logarithm problem in an arbitrary

group is the discrete logarithm problem for the integers modulo a prime p. In this case the

discrete logarithm problem is defined as follows: given integers a and b, find an integer k such

that ak ≡ b mod p. A particularly important and difficult discrete logarithm problem is the

discrete logarithm problem for the group of points of an elliptic curve over a finite field.

There are different approaches for solving the discrete logarithm problem. First of all there

are methods for solving the discrete logarithm problem in an arbitrary group, such as brute

force searching, the baby step, giant step algorithm and Pollard’s algorithms. There are also

algorithms that work in arbitrary groups with a certain condition on the order of the group,

details on such algorithms, for example Pohlig-Hellman algorithm, can be found in [26] or [16];

they will not be discussed here. Furthermore there are algorithms that can only solve the

discrete logarithm problem in certain groups, such as the Index Calculus methods [16].

6.1 Discrete logarithm problem in an arbitrary group

For an arbitrary finite group, for example the group of points of an elliptic curve defined over

a finite field, the discrete logarithm problem is a very complex problem.

Brute-force or exhaustive search is the most obvious approach that can be used to solve this

problem. Given a group G and the element g, the elements g1, g2, g3, . . . can be computed

consecutively until the element h is found. This method is not very efficient if the order of

the group is large: the number of multiplications that are needed is O(N), where N denotes

the order of the group. In other words, the number of multiplications needed is bounded by a

constant times the group order.

Two different, more efficient, methods for solving the discrete logarithm problem in an arbitrary

finite group will be described. Both of these methods are collision algorithms that run in
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exponential time. The methods need O(
√
N) group multiplications, where N denotes the

order of the group.

6.1.1 The “baby step, giant step” method

The baby step, giant step method is a deterministic algorithm for solving the discrete logarithm

problem, described by Shanks in 1971 [26]. The algorithm is deterministic since it is guaranteed

to find the solution to the discrete logarithm problem in a certain amount steps. The baby

step, giant step method requires approximately
√
N steps, where N is the order of the group.

Let G be a group of order N and let P,Q be two given elements in the group. The goal is to

find an integer n such that n · P = Q.

Baby step, giant step algorithm

1. Pick an integer b ≥
√
N .

2. The baby steps: compute j · P for 0 ≤ j < b.

3. The giant steps: compute Q− kb ·P for k = 0, 1, 2..., until one of the giant steps is equal

to one of the baby steps.

4. If j · P = Q− kb · P , it follows that have that Q = n · P , with n ≡ j + kb mod N .

It is not very hard to see why there always is a collision between a baby step and a giant step

of the algorithm. The integer n can be written as n = n0 + bn1, with n0 ≡ n mod b, and let

n1 = (n− n0)/b. When j = n0 and k = n1 in the algorithm, there is a match:

Q− n1b · P = n · P − n1b · P = n0 · P.

The careful reader may have noticed that the baby step, giant step algorithm only requires

an upper bound for the order of the group G. This means that it in not necessary to use an

algorithm like Schoof’s algorithm to find the exact order of G. For an elliptic curve E defined

over a finite field Fq such an upper bound for the order of E(Fq) can be found easily using

Hasse’s theorem.

6.1.2 One of Pollard’s methods

The mathematician Pollard described two related probabilistic algorithms for solving the dis-

crete logarithm problem in an arbitrary finite group G of order N . The advantage of both of

these methods is that they use a relatively small amount of storage compared to the baby step,

giant step method. The algorithms described by Pollard are probabilistic algorithms since they

will find the solution with high probability within a certain amount of steps. However, it is

not guaranteed that the algorithms will have success in the predicted time. A sketch of the

approach for Pollard’s λ method will be given in this section. The details can be found in [26].

Pollard’s λ method mainly relies on finding elements in the group G by iterating a random

function on G. Let f : G → G be a random function on the elements of G. Start with an

arbitrary element P0 in G and find other elements in G using the function f iteratively

Pi+1 = f(Pi).
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Since G is a finite group the following scenario will occur: for some indices m < n, it holds that

Pm = Pn. The iterative property of the elements Pi implies that Pm+l = Pn+l for all l ≥ 0. The

sequence of elements Pi that is obtained by applying the function f is thus a periodic sequence.

Finding a match, i.e indices m,n such that Pm = Pn will take approximately a multiple of√
N steps. Using the periodicity of the sequence of elements Pi and by clever storing of only

a current pair of elements, this method takes a lot less storage than the baby step, giant step

method.

6.2 Finite field discrete logarithm problem

For the discrete logarithm problem in a finite field there exists a sub-exponential solving algo-

rithm, Index Calculus. Index Calculus methods first appeared in 1968, even before the public

key cryptography was discovered [10].

Let p be a prime and let g and h be two elements in Fp. The problem is to find an integer k

such that gk ≡ h mod p. Let log(h) = k denote the discrete logarithm of h with respect to the

element g and the prime p. One important observation is that log(h) changes multiplication

into addition, similar to the normal logarithm function:

glog(h1h2) ≡ h1h1 ≡ glog(h1)+log(h2) mod p ⇒ log(h1h2) ≡ log(h1) + log(h2) mod p− 1.

The group F×p is cyclic, meaning that there is some generator g such that h = gk for all h ∈ F×p
and some integer k. This means that g be can taken as a generator of the group F×p , and the

discrete logarithm problem can be defined in terms of this generator g. Before describing the

algorithm of the Index Calculus, two additional definitions are needed [10].

Definition 6.1. Let B be an integer. Then an element x ∈ Fp is called B-smooth if all its

prime factors are less than or equal to B.

Definition 6.2. For an integer B, the factor base is the set that contains all primes and prime

powers less than or equal to B. The factor base will be denoted by B.

Now the algorithm for finding the discrete logarithm log(h) with respect to a generator g and

the prime p will be described.

The Index Calculus algorithm takes as input the two elements g and h and outputs the discrete

logarithm log(h), which satisfies glog(h) ≡ h mod p.

The first step is to select an integer B and to solve the discrete logarithm problem

gk ≡ m mod p for all elements m ∈ B.

The next step is to compute g−j · h for some arbitrary values of j until a B-smooth element is

obtained. For this value of j it holds that

g−j · h ≡
∏
m∈B

mam mod p,

for certain exponents am, depending on the element m. Then the problem can be rewritten as

log(h) ≡ j +
∑
m∈B

am · log(m) mod p− 1.
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This solves the discrete logarithm problem in the group F×p .

One difficulty that remains is solving the discrete logarithm problem for the elements in the

factor base. These discrete logarithms can be solved by first finding x such that gx is B-smooth,

gx ≡ ±
∏
m∈B

mam mod p. (11)

Finding such values of x can be done by computing gx for some random exponents and only stor-

ing the B-smooth elements. These equations can then be transformed into discrete logarithm

equations, that is

x ≡ ±
∑
m∈B

am log(m) mod p− 1. (12)

If the number of such equations is equal to, or higher than the number of elements in the factor

base, then the linear that consists of all these equations can be solved. In other words, linear

algebra can be used to find the solutions for log(m) from the linear system. This will yield

log(m) for all m ≤ B.

There is one subtlety. The system of equations (12) is a system of equations modulo p−1. When

solving this linear system with standard linear algebra methods such as Gaussian elimination,

a lot of inverses need to be computed. However, since p − 1 is composite, there are a lot of

numbers that do not have an inverse modulo p − 1. This problem can be solved by applying

the Chinese remainder theorem to deal with simultaneous congruences [26] [10].

Theorem 6.3 (Chinese Remainder Theorem). Let p1, p2, . . . , pk be pairwise distinct primes.

Let a1, a2, . . . , ak be arbitrary integers and mi = peii for some positive integer exponents ei.

Then the system

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . , x ≡ ak mod mk

has an integer solution x = c.

Hence to find a solution to the system of equations (12), first the congruences can be solved

modulo r, for each prime r dividing p−1. If ri divides p−1 for some integer i, then the solution

can be found in Z/riZ rather than Z/rZ. As a final step, the Chinese remainder can be applied

to combine the different solutions into a solution modulo p− 1.

The following examples shows how Index Calculus works in practice.

Example 6.4. Consider the prime p = 607 and g = 5. The goal is to solve the discrete

logarithm problem 5x ≡ 31 mod 607. Pick B = 11, this means the factor base is the set

{2, 3, 5, 7, 11}. The first step is to find elements 5x that are B-smooth for some integers x. This

yields the following relations modulo 607:

55 ≡ 2 · 32 · 5 mod 607,

522 ≡ 25,

532 ≡ 11,

575 ≡ 33 · 7,
580 ≡ 2 · 7,
593 ≡ 24 · 3 · 7.

52



6.2 Finite field discrete logarithm problem 6 THE DISCRETE LOGARITHM PROBLEM

Changing these relations into a system of discrete logarithm equations gives the following system

of congruences modulo 606:

5 ≡ log(2) + log(3) + log(5) mod 606,

22 ≡ 5 log(2),

32 ≡ log(11),

75 ≡ 3 log(3) + log(7),

80 ≡ log(2) + log(7),

93 ≡ 4 log(2) + log(3) + log(7).

The number 606 is a composite number, it can be factored as 606 = 2 · 3 · 101. Hence the linear

system needs to be solved modulo 2, modulo 3 and modulo 101. This can be done easily by

performing Gaussian elimination. The solutions to the three linear systems are given by

(log(2), log(3), log(5), log(7), log(11)) = (0, 1, 1, 0, 0) mod 2,

(log(2), log(3), log(5), log(7), log(11)) = (2, 1, 1, 0, 2) mod 3,

(log(2), log(3), log(5), log(7), log(11)) = (65, 20, 1, 15, 32) mod 11.

Then the Chinese remainder theorem can be used to combine the solutions into a solution

modulo 606:

(log(2), log(3), log(5), log(7), log(11)) = (368, 121, 1, 318, 32).

The goal in this example was to compute 5x ≡ 31 mod 607. The next step in Index Calculus is

to compute 31 · 5−x for natural numbers x until a B-smooth number is obtained. After a few

attempts, this gives

31 · 5−37 = 24 · 11 mod 607,

or equivalently, in terms of discrete logarithms

log(31) = 37 + 4 log(2) + log(11) mod 606.

Now the previously solved discrete logarithms can be substituted to obtain the final answer:

log(31) = 37 + 4 · 368 + 32 ≡ 329 mod 606.

To check the solution, compute 5329 ≡ 31 mod 607. �

The choice of B is essential. If B is too small then it will be very complicated to find powers of

g that factor into primes in the factor base. On the other hand, if B is too large, then it will

not be hard to find suitable powers of g, but a lot of linear algebra will be needed to compute

the discrete logarithms.

Remark. Finding B-smooth numbers is not a trivial task. For small examples such as Example

6.4, B-smooth number can be found with trial division. This is not very efficient in a large field.

Section 6.2.1 will mention and briefly explain sieving methods, such as the quadratic sieve, as

an efficient method for finding B-smooth numbers. Moreover selecting the optimal size of B is

not a trivial task. Section 6.2.2 will explain more about the optimal choice of B.
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6.2.1 Sieving methods

A major part of the Index Calculus relies on finding B-smooth numbers. Not only in the first

step of the Index Calculus, where smaller discrete logarithm problems need to be solved, but

also when computing g−j · h. There are different methods for finding all B-smooth numbers in

a field. Most of these methods are based on a sieving method or sieve. Sieving methods were

already described by the ancient Greeks. The sieve of Erastosthenes is a well-known ancient

Greek sieving method for making a list of prime numbers less than a certain integer [10]. The

idea of this method is to mark all composite numbers iteratively, starting with the numbers

divisible by the first prime, 2. Next mark all the numbers divisible by the second prime, 3, and

so on. By adapting the Sieve of Erastosthenes slightly, a sieving method for prime factorization

can be found.

Commonly used sieving method in the Index Calculus are the Quadratic Sieve and the Number

Field Sieve [10]. The Quadratic Sieve works quite well for relatively small numbers. The

Number field Sieve on the other hand is a lot more complicated, but works faster for really big

numbers.

6.2.2 Running time

There are a few steps in the Index Calculus that can influence the running time of the method.

In the first place finding enough equations such that gx is B-smooth, i.e. relations of the form

of equation (11). Finding these equations depends mainly on the choice of B. From [10], the

optimal choice of B can be found.

It turns out that there is an algorithm such that finding the suitable number of equations , i.e.

as many as the number of elements in the factor base or more, of the form

gx = (product of primes in the factor base)

takes sub-exponential time.

Another time consuming step in the Index Calculus method is checking whether elements are

B-smooth. A sieving method like the number field sieve can decrease the running time of this

step enormously.

Overall, the running time of the Index Calculus can be approximated by c ·exp
{√

2 ln p ln ln p
}

,

where c is a constant, hence the Index Calculus is a sub-exponential solving algorithm for the

discrete logarithm problem in a finite field.

Note that all the best known algorithms to solve general discrete logarithm problems are expo-

nential. This means that if there is the possibility of reducing the discrete logarithm problem to

a problem over a finite field, the complexity of the discrete logarithm problem might decrease

a lot. This is a crucial observation regarding the elliptic curve discrete logarithm problem, as

will become clear in Section 6.4.
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6.3 Elliptic curve discrete logarithms

Based on two examples, it will now be shown that especially the elliptic curve discrete loga-

rithm problem for an elliptic curve defined over a finite field is interesting for cryptographic

applications. The examples will compare the complexity of the discrete logarithm problem for

an elliptic curve defined over a field of infinite and finite order.

Example 6.5. Consider the elliptic curve E : y2 = x3 − x + 1 over Q. An obvious point on

this curve is the point (1, 1). Start adding the point P = (1, 1) to itself. To find the point

2 · P , the third point of intersection of the tangent line at P and the elliptic curve E has to be

found. The tangent line at P is given by y = x. This line intersects the elliptic curve in the

points P = (1, 1) (intersection point of multiplicity 2) and (−1,−1). Hence the x-coordinate of

the point 2 · P is given by -1. To find the x-coordinate of 3 · P , the third point of intersection

of the line through P and 2 · P needs to be found. The line through P and 2P is given by

y = 1, which intersects the curve in the points P = (1, 1), 2 ·P = (−1, 1) and (0, 1). Hence the

x-coordinate of 3 · P is equal to 0, etc. The x-coordinates of the points k · P for k = 1, . . . , 12

are given in Table 3.

Multiples of P x-coordinate

1·P 1

2·P -1

3·P 0

4·P 3

5·P 5

6·P 1/4

7·P -11/9

8·P 19/25

9·P 56

10·P 159/121

11·P -255/361

12·P -223/784

Table 3: The complexity of multiples of P ∈ E(Q)

Keep adding P to itself and observe that the size of the x-coordinate of k ·P grows. For points

of infinite order, this happens in general. If R is an arbitrary point of infinite order on an

elliptic curve, the size of the coordinates of k ·R get larger as k gets larger.

Now consider the discrete logarithm problem for two points P and Q on an elliptic curve, i.e.

the goal is to find an integer n such that n · P = Q. The previous observation implies that

to find the range of n, one can look at the size of the x-coordinate of P and Q. This means

that solving the discrete logarithm problem for an elliptic curve over Q is not computationally

expensive. �

On the other hand, when working over a finite field, this property is absent and therefore cannot

be used to solve the discrete logarithm problem. This makes the problem a lot harder to solve

over a finite field. The next example will demonstrate this.
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Example 6.6. Consider the elliptic curve E : y2 = x3 − x+ 1 defined over the finite field F97.

Adding the point P = (1, 1) on the elliptic curve to itself now yields the x-coordinates given

in Table 4. The strategy for finding these points is similar to the previous example, but the

computations are now over the field F97.

Multiples of P x-coordinate

1 ·P 1

2 ·P 96

3 ·P 0

4 ·P 3

5 ·P 5

6 ·P 73

7 ·P 85

8 ·P 90

9 ·P 56

10 ·P 43

11 ·P 31

12 ·P 57

Table 4: The complexity of multiples of P ∈ E(F97)

There seems to be almost no structure to the x-coordinates of subsequent multiples, and there

is no obvious way, other than brute-force searching, to gain information about the integer k

when looking at the x-coordinate of k · P . �

Examples like this suggest that the discrete logarithm problem for an elliptic curve defined

over a finite field is more complicated and hence it is a more suitable problem for cryptographic

applications.

6.4 The MOV attack

Finally the MOV can be properly introduced. The idea of the MOV attack is to reduce discrete

logarithms in the group of points of an elliptic curve over a finite field to logarithms in the

multiplicative group of a (perhaps larger) finite field. The MOV attack is based on establishing

an isomorphism between a subgroup of E(Fq) and a subgroup of the field K. The Weil pairing

introduced in Section 3.4 will be essential in the MOV attack. Recall that for a point P ∈ E(Fq)

of order N , the Weil pairing is described by a special bilinear map that associates an N ’th root

of unity with a given pair of N -torsion points. So if gcd(N, q) = 1 and R,S ∈ E[N ], then

eN (R,S) is an N ’th root of unity. Furthermore, for a field K, recall that the group of N ’th

roots of unity is given by µN = {x ∈ K | xN = 1}. This is a cyclic group of order N . The

N ’th root of unity ζN is a primitive N ’th root of unity if and only if ζN = 1 and ζk = 1 for all

1 ≤ k < N .

Let E be an elliptic curve defined over a finite field Fq, let P and Q be two points in E(Fq).

Let N be the order of the point P , and to apply the Weil pairing, assume that gcd(N, q) = 1.
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6.4.1 Embedding degree

The embedding degree of an integer in a finite field is the basis of the MOV attack [21].

Definition 6.7. The embedding degree of an integer N in the finite field Fq is defined as the

smallest positive integer d such that

µN ⊆ F×qd .

Remark. The embedding degree can be defined equivalently as the smallest positive integer d

such that

qd ≡ 1 mod N.

This holds since the group F×
qd

is cyclic of order qd − 1.

Lemma 6.8. Let E be an elliptic curve defined over a finite field Fq and assume that

gcd(N, q) = 1. Let d be the embedding degree of the integer N in the field Fq. Then

E[N ] ⊂ E(Fqd).

Proof. By showing that a basis of E[N ] is contained in E(Fqd), it will be shown that E[N ] ⊂
E(Fqd).

Let P ∈ E(Fq) be a point of order N and pick T ∈ E[N ] such that {P, T} forms a basis

for E[N ]. As usual, let φq denote the Frobenius endomorphism. The goal is to show that

φqd(T ) = T , because this would imply that T ∈ E(Fqd). For the Frobenius endomorphism it

holds that

φq(P ) = P,

since P ∈ E(Fq), and

φq(T ) = a · P + b · T,

for some elements a, b ∈ Z/NZ.

Since {P, T} forms a basis for E[N ], the Weil pairing eN (P, T ) is a primitive N ’th root of unity,

as in Corollary 9. By the properties of the Weil pairing from Theorem 3.4, the Weil pairing of

P and T satisfies

eN (P, T )q = φq(eN (P, T ))

= eN (φq(P ), φq(T ))

= eN (P, a · P + b · T )

= eN (P, P )aeN (P, T )b

= eN (P, T )b.

The fact that eN (P, T ) is a primitive N ’th root of unity now implies that b ≡ q mod N .

Therefore

φq(T ) = a · P + q · T
φq(φq(T )) = a · P + q(a · P + q · T )

= a · P + qa · P + a2 · T (13)

(14)
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In general, it holds that

(φq ◦ · · · ◦ φq)(T ) = (a(q + · · ·+ qd−1)) · P + qd · T.

The integer d is the embedding degree of N in Fq, so

qd ≡ 1 mod N,

and furthermore

q + q + q2 + · · ·+ qd−1 ≡ 0 mod N.

This last congruence holds since xd−1 can be factored as (x−1)(1+x+x2 + · · ·+xd−1) in Fq.

From equation 13 the Frobenius endomorphism satisfies φqd(T ) = (a(q+ · · ·+qd−1)) ·P +qd ·T .

The reasoning above implies that φqd(T ) = T , which proves that T ∈ E(Fqd).

Therefore the basis of E[N ] given by {P, T} is contained in E(Fqd) and hence E[N ] ⊂ E(Fqd).

6.4.2 The algorithm

Recall that E is an elliptic curve over Fq, P and Q are two points in E(Fq) and N is the order

of the point P . The goal of the MOV attack is to find the integer n such that Q = n ·P . Before

describing the algorithm for the MOV attack, it will be verified that such an integer exists.

Lemma 6.9. There exists an integer n such that Q = n · P if and only if N · Q = ∞ and

eN (P,Q) = 1, where eN is the Weil pairing.

Proof. Assume that Q = n · P . Then N · Q = nN · P = ∞. By using the bilinearity of the

Weil pairing and property 3 of the Weil pairing from Theorem 3.4, the Weil pairing of P and

Q satisfies

eN (P,Q) = eN (P, n · P )

= eN (P, P )n

= 1n = 1

For the other direction of the proof assume that N ·Q =∞ and eN (P,Q) = 1. This immediately

implies that Q ∈ E[N ]. For the N -torsion points of the elliptic curve E it holds that E[N ] ∼=
Z/NZ⊕ Z/NZ, since the characteristic of Fq does not divide N (see Theorem 3.2). Hence the

element Q can be written in the form Q = a · P + b · R, for some integers a and b, where R

is chosen such that {P,R} forms a basis for E[N ]. This means that if it can be shown that

b ≡ 0 mod N , then the lemma follows. By Corollary 3.5, ζ := eN (P,R) is a primitive N ’th

root of unity. From the assumption that eN (P,Q) = 1 it now follows that

1 = eN (P,Q)

= eN (P, a · P + b ·R)

= eN (P, P )aeN (P,R)b

= eN (P,R)b

= ζb,
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where moreover the bilinearity and property 3 of the Weil pairing as in Theorem 3.4 were

used. Since ζ is a primitive root N ’th root of unity it follows that b ≡ 0 mod N , and therefore

Q = a · P .

Thus, to use the MOV attack to solve the discrete logarithm problem Q = n · P , let P and Q

be two N -torsion points on the elliptic curve E. First the basic idea of the MOV attack will

be described.

Let d be the embedding degree of the integer N in Fq. Suppose that it is possible to find

an element T ∈ E[N ] such that P and T generate E[N ], or equivalently eN (P, T ) has order

N . From the definition of the Weil pairing the elements eN (P, T ) and eN (Q,T ) are N ’th

roots of unity and since d is the embedding degree, eN (Q,T ) and eN (P, T ) are elements in

the multiplicative group F×
qd

. Now the discrete logarithm problem eN (Q,T ) = eN (P, T )n is

a discrete logarithm problem in the multiplicative group of a finite field extension. Then, to

solve the discrete logarithm problem, all the computations are in Fqd since by Lemma 6.8 it

follows that the embedding degree d of the integer N in Fq is the smallest integer d such that

E[N ] ∈ E(Fqd).

This method solves the correct discrete logarithm problem since by the bilinearity of the Weil

pairing, it follows that

ζ1 = eN (Q,T ) = eN (n · P, T ) = eN (P, T )n = ζn2 .

The complete algorithm for the MOV attack also contains a method on how to find the point

T such that eN (P, T ) has order N . It takes as input the two points N -torsion points P and Q

of the elliptic curve and outputs the integer n such that Q = n ·P . It can be found in [17] and

[26]. The algorithm that implements the MOV attack consists of the following steps.

MOV attack algorithm

1. Choose a random point T ∈ E(Fqd), where d is the embedding degree of the integer N

in Fq.

2. Compute the order M of the point T .

3. Compute r = gcd(M,N) and T1 = (M/r)T . Then the point T1 is a point of order r.

Since r divides N this means that T1 ∈ E[N ].

4. Compute ζ1 = eN (Q,T1) and ζ2 = eN (P, T1). Then both ζ1 and ζ2 are N ’th roots of

unity, hence ζ1, ζ2 ∈ F×qd .

5. Solve the discrete logarithm problem ζ1 = ζn2 in F xqd . This gives as a solution n mod r.

6. Continue the same process with random points T until the least common multiple of the

subsequent values of r is equal to N . This determines the value of n mod N .

Remark. When the least common multiple of the subsequent values of r is equal to N , the

element eN (P, T ) has order N . Using the Chinese remainder theorem, the value of n mod N

can be determined.
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Remark. The algorithm does not always find a point T such that P and T generate E[N ]

on the first attempt, potentially r = 1 could occur often. However, this is not the case as the

algorithm finds the desired point T with a very high probability [26]. This means that only

after a few iterations of the algorithm, n will be found and the discrete logarithm problem will

be solved.

The embedding degree d of the integer N in the field Fq determines the complexity and running

time of the the MOV attack. In [21] it was shown that for an arbitrary chosen elliptic curve

E over Fq, the embedding degree of an integer N , where N is a large prime divisor of the

order of E(Fq), is proportional to N . This implies that for an arbitrary elliptic curve E over

a finite field, the MOV attack reduces the discrete logarithm problem in E(Fq) to a discrete

logarithm problem in a much larger finite field, so the MOV attack has exponential running time.

Therefore, in general, the MOV attack does not give computational advantage for solving the

discrete logarithm problem, compared to solving the discrete logarithm problem with a collision

algorithm. However, if the embedding degree of the integer d in Fq is reasonably small then

the MOV attack could possibly yield a large computational advantage for solving the elliptic

curve discrete logarithm problem.

6.4.3 The MOV attack for supersingular curves

The MOV attack is only a feasible method for solving the elliptic curve discrete logarithm

problem if the field Fqd is not much larger than the original field Fq. Elliptic curves for which

this holds are called pairing-friendly elliptic curves [21]. For pairing-friendly elliptic curves,

Index Calculus methods can be applied to efficiently solve the discrete logarithm problem in

Fqd . This will result in a much faster solving algorithm for the elliptic curve discrete logarithm

problem. An interesting family of pairing friendly elliptic curves is the family of supersingular

elliptic curves. In the course of this section it will be shown that for supersingular elliptic curve,

the embedding degree of an integer N in the field Fq can in general be taken as a very small

integer. This means that for supersingular elliptic curves, the extension field Fqd of Fq is not

much larger than the original field, as desired.

For supersingular elliptic curves with trace identically zero, the embedding degree takes a

conveniently small value.

Proposition 6.10. Let E be an elliptic curve defined over the finite field Fq, and suppose that

a = q + 1−#E(Fq) = 0. If there exists a point P of order N in E(Fq), where N is a positive

integer, then E[N ] ⊆ E(Fq2).

Proof. First note that for the Frobenius endomorphism φq it holds that (x, y) ∈ E(Fq) if and

only if φq(x, y) = (x, y). This follows from a property of the Frobenius homomorphism on a

finite field: x ∈ Fq if and only if φq(x) = x. The curve E is a supersingular and E(Fq) has q+1

points. Let S be an N -torsion point on the elliptic curve. If the point S satisfies φq2(S) = S,

then by the previous argument S ∈ E(Fq2). Recall from Theorem 4.4 that the Frobenius trace

a of an elliptic curve is the unique integer that satisfies

φ2q − aφq + q = 0.
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As a is equal to zero, this equality is equivalent to

φ2q = −q.

Substituting the N -torsion point S into this equality gives

φ2q(S) = −qS.

The fact that there exists a point of order N on the elliptic curve implies that N divides q+ 1,

that is q ≡ −1 mod N . Therefore

φ2q(S) = S,

which concludes the proof.

For a prime p < 5 there are supersingular elliptic curves defined over the field Fp with trace

not identically equal to zero. This was shown in Corollary 5.2. In cryptographic applications

based on the discrete logarithm problem, such curves will never occur, but for completeness

it is good to mention what values the embedding degree can take for these curves. For such

supersingular elliptic curves, the argument is similar to before, but the embedding degree d can

take the values in {2, 3, 6}. Details of this argument can be found in [17].

The following two results from [17] fully determine the running time of the MOV attack for

supersingular elliptic curves.

Theorem 6.11. Let E be an elliptic curve defined over a finite field Fq. Then the reduction

of the discrete logarithm problem for E(Fq) to a discrete logarithm problem an extension Fqm

of the finite field Fq takes probabilistic polynomial time.

Theorem 6.12. By using the MOV attack the discrete logarithm problem for a supersingular

elliptic curve E defined over a finite field Fq can be solved in probabilistic sub-exponential time.

Full proofs can be found in [17]. The next section contains examples of the MOV attack on

supersingular curves over finite fields with large order, which will show the validity of the

theorems in particular examples.

It can be concluded that for supersingular elliptic curves, the elliptic curve discrete logarithm

problem can in most cases be translated to a discrete logarithm problem over the finite field

Fq2 . In this field the discrete logarithm can be solved in sub-exponential time using Index

Calculus methods. Hence, from the MOV attack it follows that supersingular elliptic curves

are not safe to use in cryptographic applications base on the discrete logarithm problem.
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7 Examples of the MOV attack

The algorithm of the MOV attack for solving the discrete logarithm problem in case of supersin-

gular elliptic curves has been described theoretically in the previous section. Several different

statements were made regarding the complexity of the elliptic curve discrete logarithm problem

when the MOV attack is applied. The efficiency of this strategy will now be shown in practice.

In other words, for different examples of supersingular elliptic curves, the running time of the

MOV attack will be compared to the the running time of a general solving method for the

discrete logarithm problem.

Note that to actually compare the running times of different algorithms, the supersingular

elliptic curve needs to be constructed over a finite field that is considerably large. Otherwise,

the running times will be too short.

7.1 Generating supersingular elliptic curves

In order to perform the MOV attack on a discrete logarithm problem for supersingular elliptic

curves, suitable supersingular elliptic curves need to be generated. In Section 5, several different

characterizations of supersingular curves were given. In particular, Proposition 5.4 allowed for

constructing supersingular elliptic curves over a finite field Fq with a certain restriction on

q. These special supersingular elliptic curves could be used to verify the efficiency of the

MOV attack. Also complex multiplication methods according to [24] can be used to generate

supersingular elliptic curves. The method described by Sutherland in [24] is probably the best

known method nowadays for generating supersingular elliptic curves.

However, in this thesis, a slightly different approach is taken to construct supersingular elliptic

curves that are suitable for demonstrational purposes. In other words, supersingular elliptic

curves with small coefficients are generated over a large field Fp. This means that ‘new’ su-

persingular elliptic curves are generated, the curves are ‘new’ in the sense that they are not

constructed by means of the previously mentioned methods.

Together with a fellow student, Sven Hofman [11], who was studying anomalous elliptic curves,

an algorithm was implemented that generates supersingular and anomalous elliptic curves.

Our approach for finding these supersingular and anomalous elliptic curves can be described

in the following way. For a prime p in a range of large primes, Weierstrass equations with

coefficients A,B both ranging from −100 to 100 are constructed over the field Fp. For each

pair of coefficients it has to be verified whether the corresponding Weierstrass equation defines

an elliptic curve. Recall from the introduction and Section 2, that only a Weierstrass equation

with coefficients A,B that satisfy the condition 4A3 +27B2 6= 0 defines an elliptic curve. Then,

by using Schoof’s algorithm, the order of the elliptic curve can be computed. If the order of

the elliptic curve is equal to p+ 1, then a supersingular elliptic curve is found (Corollary 5.2).

If the order of the elliptic curve is equal to p, then an anomalous elliptic curve is found [11].

Then exactly the same steps are repeated for the next prime in the range of primes. As for

the starting prime, a prime in the range 248 was chosen to make it feasible to find multiple

examples of supersingular elliptic curves within a few weeks.
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Remark. To verify the number of points of an elliptic curves, Schoof’s algorithm is not the

only method that can be used. Another method that can be used is based on selecting random

point on the elliptic curve.

If the elliptic curve has prime order p (which happens if the curve is anomalous) then points on

the elliptic curve can only have order 1 or p. If multiplying a random point of the elliptic curve

by p gives the identity element then indeed the curve has order p. However, this method is not

very efficient in case of supersingular elliptic curves, since the order of supersingular elliptic

curve is a composite number. For a supersingular curve, the points on the curve can have as

order every divisor of p+ 1. Therefore multiplying a random point by p+ 1 does not give much

information in this case. The only thing that is certain is that if multiplying a random point

on the elliptic curve by p + 1 does not give the identity element, then the curve can not have

order p+ 1.

Because of this slight inconvenience for supersingular elliptic curves when using random points,

the implementation of the method for generating supersingular (and anomalous) elliptic curves

combines multiplying by random points with Schoof’s algorithm to determine the order of the

elliptic curves.

7.1.1 Finding the prime range

It will be briefly explained here why a prime of size 248 was used in the code.

Assume that the method for finding supersingular elliptic curves is implemented in a code

that will run for 15 days. What is desired range of primes to look in to almost certainly find

supersingular elliptic curves and anomalous curves by using the method as described above?

In other words, the goal is to find the right balance between the available time and the size of

the prime such that supersingular elliptic curves (and anomalous curves) are found with a high

probability. For the details of finding anomalous elliptic curves, see [11].

To find this balance one has to look at the complexity of the implemented code. The complexity

is mainly determined by the complexity of Schoof’s algorithm. All the other steps in the code

have a running time that is negligible. The running time of Schoof’s algorithm depends on

the order of magnitude of the prime. Let us say that Schoof’s algorithm in the field Fp takes

approximately m steps to find the order of the elliptic curve.

For a prime of size p ≈ 2n, the probability of finding a supersingular curve is approximately

equal to [24]:

Prob = c · 1

4
√

2n
,

where c is a constant. Therefore, for a prime of size p ≈ 2n the number of curves that needs to

be checked approximately to find one supersingular curve can be given in terms of n and Prob.

This exact value will not be given here. Let us denote the number of curves that need to be

checked for p ≈ 2n by R.

For each of these curves, finding the order of the elliptic curve requires approximately m steps.

This gives a total number of steps that is needed to find at least one supersingular elliptic curve

for a prime of size p ≈ 2n, namely for p ≈ 2n approximately R ·m steps are needed. The desired
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value of n is the value such that the required number of curves can be checked in the given

amount of time. In other words, this is the value n such that the total amount of steps that is

needed to find the desired curves, R ·m, can be executed in the given amount of time.

It turns out that for primes of size 250, the code would be feasible with the software on the

available computers. To be completely safe, primes in the range 248 are used.

7.1.2 Implementing the MOV attack

The code is implemented in SageMath, see Appendix A.4.1. There are a few subtleties regarding

the implementation of this code.

First of all, using Schoof’s algorithm to find the order of an elliptic curve can be seen as an

experiment with outcome success (if the curve is supersingular) or failure (if the curve is not

supersingular). If the experiments are not independent, the code does not work as desired.

Here two experiments are independent if there is not relation between the number of points for

different elliptic curves. Therefore, elliptic curves that are isomorphic need to be avoided; for

such curves there clearly is a relation between the order of the elliptic curves. From Theorem

2.2 it is clear how isomorphism between elliptic curves are defined. An elliptic curve defined

over a field Fp defined by the Weierstrass equation with coefficients (A,B) is isomorphic to an

elliptic curve defined by the Weierstrass equation with coefficients (d2A, d3B), over the field

Fp, where d ∈ Fp. Moreover, two elliptic curves with coefficients (A,B) and (d2A, d3B) are

isomorphic over Fp if d is a square in Fp [2].

For supersingular elliptic curves there two important statements regarding isomorphisms. Any

curve isomorphic to a supersingular elliptic curve is still supersingular and furthermore any

twist of a supersingular elliptic curve is still supersingular and in particular also has p + 1

points. This can be seen from equation (10) in Section 2.2, which describes a relation for the

number of points of two elliptic curves with the same j-invariant. It also follows from the

fact that supersingular elliptic curves have a quaternion endomorphism ring. So, if E is a

supersingular curve, E has p+ 1 points, then any elliptic curve with the same j-invariant also

has p+ 1 points. For supersingularity is does not matter if the curve is defined over Fp, Fq or

an algebraic closure, the endomorphism ring either is a quaternion algebra or it is not.

This means that in the code in SageMath, for a certain prime p, Schoof’s algorithm is only

applied to an elliptic curves with a j-invariant that did not occur before.

Furthermore, elliptic curves with complex multiplication need to be taken into account, these

curves do not need to be checked. In Table 1, all j-invariants of elliptic curves over Q that have

complex multiplication are given. Therefore, in the code in A.4.1, the j-invariant of the elliptic

curve over Q is checked before actually constructing the elliptic curve over Fp.

After running the code for a few weeks, the code resulted in nine supersingular elliptic curves,

which are listed in Table 5.
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Prime p Supersingular curve

E1 p = 248 + 180307 y2 = x3 − 44x+ 9

E2 p = 248 + 188323 y2 = x3 + 76x+ 25

E3 p = 248 + 228055 y2 = x3 − 11x+ 67

E4 p = 248 + 241647 y2 = x3 − 8x+ 20

E5 p = 248 + 244627 y2 = x3 − 69x+ 16

E6 p = 248 + 293053 y2 = x3 + 32x+ 90

E7 p = 248 + 356437 y2 = x3 − 83x+ 27

E8 p = 248 + 389671 y2 = x3 + 65x+ 51

E9 p = 248 + 417547 y2 = x3 − 11x+ 89

Table 5: Supersingular elliptic curves

Only the first two curves are suitable for demonstrational purposes since these curves are

generated by an integral point with small coefficients over Fp. The other curves do not have

useful integral points or convenient generators.

7.1.3 Comparing the running times

Example 7.1. Consider the supersingular elliptic curve E1 : y2 = x3 − 44x + 9 from Table

5. The group of points E2(Q) is generated by P = (0, 3) and Q = (8, 13). Over Q, these two

points are independent, meaning that there does not exist an integer n such that Q = n · P or

P = n·Q. However, E2(Fp) is generated by the point P . This means that over Fp, the integer n

such that Q = n ·P does exist. The MOV attack is applied to find this integer. Appendix A.4.2

contains the implemented MOV attack for this particular example. From Appendix A.4.2, the

solution is given by

n = 2141618601636,

The solution can be verified by computing n · P for this value of n, and observing that this

equal to Q, as expected. �

Example 7.2. Consider the supersingular elliptic curve E3 : y2 = x3 + 76x + 25. The points

P = (0, 5) and Q = (7, 30) are two points on this curve. As in the previous example, the group

of points E(Q) is generated by P and Q. Over the field Q, these two points are independent,

so there does not exist an integer n such that Q = n · P or P = n · Q. However, over the

finite field Fp for p = 248 + 188323, the group of points of the elliptic curve is generated by

P . Therefore, the MOV attack can be applied to find the integer n such that Q = n · P . In

Appendix A.4.3, the MOV attack is implemented for this particular example. From Appendix

A.4.3, the solution is given by

n = 142967077962838,

The solution is verified by checking the equality Q = n · P for n = 142967077962838. �

Of course, the goal in this section is to compare the running time of the MOV attack for

these two particular examples to the running time of a general solving algorithm. To this end,

the baby step, giant step method will now be applied to the elliptic curve discrete logarithm

problem for the elliptic curves E1 and E2 with the points P and Q as described in the examples.
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Appendix A.4.2 implements the baby step, giant step method for Example 7.1 and Appendix

A.4.3 implements the baby step, giant step method for Example 7.2.

It turns out that for the Examples 7.1 and 7.2 the running time of the MOV attack is approx-

imately equal to

trun = 0.1s,

while the running time of the baby step, giant step method for Example 7.1 is approximately

equal to

trun = 12761.5s ≈ 3.5h.

The MOV attack thus yields a significantly faster solving algorithm for the elliptic curve discrete

logarithm problem compared to the baby step, giant step method.

Remark. The implementations of the MOV attack and the baby step, giant step method in

Appendix are naive implementations; the running times of these codes are not optimal.

Remark. One thing that was not mentioned before is that for a cyclic group G, whose order

is a composite integer N , the discrete logarithm problem can be reduced to a small number

of simpler problems by means of the Pohlig-Hellman method, which was not discussed in this

thesis. The Pohlig-Hellman method reduces the problem to a discrete logarithm problem in

different groups with prime-power order. For details on the Pohlig-Hellman method [26] can be

consulted. The Pohlig-Hellman method implies that the complexity of the discrete logarithm

problem for supersingular elliptic curves (but also in general groups) also depends on the

factorization of p+1. If the largest prime factor of p+1 is considerably smaller than p+1, then

Pohlig-Hellman can efficiently solve the discrete logarithm problem. The largest prime factor

of p+ 1 determines the running time of the Pohlig-Hellman method.

In Example 7.1, it holds that N = p + 1 = 22 · 3 · 41 · 6661 · 85888547. The Pohlig-Hellman

method can efficiently solve the discrete logarithm problem by reducing the problem to 5

smaller discrete logarithm problems in groups of order respectively 22, 3, 41, 6661, 85888547. In

Example 7.2 the same thing happens. Here N = p + 1 = 22 · 32 · 5 · 5701 · 274293961. This

means that Pohlig-Hellman reduces the problem to discrete logarithms problems over groups

of size 22, 32, 5, 5701, 274293961. This implies that it is also necessary to compare the running

time of the MOV attack to the running time of the Pohlig-Hellman method. This will be done

for both examples. It turns out that for Example 7.1 the running time of the Pohlig-Hellman

method is approximately equal to

trun = 10.5s.

For Example 7.2, the running time of the Pohlig-Hellman method is approximately equal to

trun = 6.5s.

The Pohlig-Hellman method is a lot faster than the baby step, giant step method. However,

the MOV attack still yields a significantly faster method for solving the elliptic curve discrete

logarithm problem.

Therefore, as is also clear from the examples, by means of the MOV attack, the elliptic curve

discrete logarithm problem for supersingular elliptic curves can be solved too fast for crypto-

graphic applications.
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8 Conclusion and discussion

Elliptic curves have been used in cryptography for a several decades. Following the suggestion

of Koblitz and Miller the elliptic curve discrete logarithm problem has been used for this

purpose. Elliptic curves defined over a finite field have proven to give an interesting and complex

discrete logarithm problem. Supersingular elliptic curves, the special family of elliptic curves

characterized by having Frobenius trace equal to zero in the finite field, were once thought to

be very promising to use for this purpose (because of the ease of computations on them).

However, the algorithm introduced in 1996 by Menezes, Okamoto and Vanstone, known as the

MOV attack yields a sub-exponential solving algorithm for solving the elliptic curve discrete

logarithm problem for supersingular elliptic curves. By means of the Weil pairing, the MOV

attack reduces the elliptic curve discrete logarithm problem to a discrete logarithm problem

in a finite field. In case of supersingular elliptic curves, the discrete logarithm problem in the

finite field can be solved efficiently by applying Index Calculus methods since the embedding

degree is small.

By constructing examples of supersingular elliptic curves, the power of the MOV attack was

shown in practice. This allowed for comparing the running times of the MOV attack to the run-

ning time of a general method for solving the elliptic curve discrete logarithm problem. From

these comparisons, the theoretical results were confirmed; the MOV solved the elliptic curve

discrete logarithm problem significantly faster. Therefore, to guarantee the safety of a crypto-

graphic system, supersingular elliptic curves should not be used in cryptographic applications

based on the discrete logarithm problem.

It is important to note that the implementation of the methods in SageMath does not give a

completely accurate representation of the running time of the described methods. This has to

do with the fact that SageMath has a lot of pre-implemented methods available, some of which

are used in the codes in the Appendix A.4.1. The running times of these pre-implemented

methods of course slightly influences the running time of the complete program, which could

lead to a perturbation of the results. However, the results are assumed to be good enough to

at least say something about the running times of both methods.

It is also worth noting that supersingular elliptic curves have proven to be very useful in other

areas of cryptography. In particular the supersingular isogeny key exchange [13] is a very

promising cryptographic system suitable for post-quantum cryptography.

It will be very interesting to follow the developments and the “fall and rise and fall and rise”

[7] of supersingular elliptic curves in cryptography in the future.
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A APPENDIX

A Appendix

A.1 Finite abelian groups

This section gives a brief overview of the most important statements regarding finitely generated

abelian groups.

Theorem A.1. Let G be a finite abelian group. Then G has the following structure

G ∼= Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nsZ,

where the integers n1, n2, . . . ns satisfy ni|ni+1 for i = 1, 2, . . . s− 1.

Definition A.2. The group G is called finitely generated if there exist integers m1,m2, . . .mk

and elements g1, g2, . . . , gk from G such that every element g ∈ G can be written in the form

g = m1g1 +m2g2 + · · ·+mkgk.

Theorem A.3. Let G be a finitely generated abelian group, then G has the following structure

G ∼= Zr ⊕ Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nsZ

The integer n is called the rank of the group G and the subgroup of G that is isomorphic to

Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nsZ is called the torsion-subgroup of G.

For more details, and the proof of Theorem A.1 and Theorem A.3, [19] can be used.
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A.2 Fermat’s little theorem

Fermat’s little theorem is a theorem that was first stated in 1640, it can be very useful for

computations in a field of nonzero characteristic [25].

Theorem A.4. If p is a prime and gcd(a, p) = 1, then an−1 ≡ a mod p.

There exist a lot of different proofs of Fermat’s little theorem. For example, Ivory [12] proved

Fermat’s little theorem using the Euler totient function.
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A.3 Division polynomials

Division polynomials were essential in the proof of Proposition 3.2, where the general structure

of the group of n-torsion points of an elliptic curve was proven. This section provides a short

introduction to division polynomials and it states the most important results. For more details,

and the proofs of the statements, see [26].

Division polynomials are polynomials in Z[x, y,A,B] that are defined recursively in the follow-

ing way

ψ0 = 0

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1 for m ≥ 2

ψ2m = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ2

m+1) for m ≥ 3.

Lemma A.5. The polynomial ψn is a polynomial in Z[s, y2, A,B] when n is odd, and ψn is a

polynomial in 2yZ[x, y2, A,B] when n is even.

Furthermore, define the polynomials

φm = xψ2
m − ψm+1ψm−1

ωm = (4y)−1(ψm+2ψ
2
m−1 − ψm−2ψ2

m+1).

For an elliptic curve E : y2 = x3 +Ax+B, every term y2 in these polynomials can be replaced

by a polynomial in x. This means that the polynomials φ and ψ2 are polynomials only in x.

Lemma A.6.

φn(x) = xn
2

+ terms of lower degree

ψ2
n(x) = n2xn

2−1 + terms of lower degree

The multiplication by n endomorphism can be described in terms of the division polynomials

ψn and the polynomials φn and ωn.

Theorem A.7. Let E : y2 = x3 + Ax+ B be an elliptic curve defined over some field K with

characteristic not equal to 2. Let P = (x, y) be some point on the elliptic curve E and let n be

a positive integer. Then

n · P =
(φn(x)

ψ2
n(x)

,
ωn(x, y)

ψn(x, y)3

)
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A.4 Codes

The codes in Appendices A.4.1 and A.4.4 were constructed in collaboration with fellow student

Sven Hofman who was working on anomolous elliptic curves at the time [11].

A.4.1 SageMath - “curvefinder”

This code in SageMath implements the method described in Section 7.1 to find supersingular

(and anomolous) elliptic curves. Note that avoidInvariant is constructed to avoid checking

isomorphic curves and CM invariants is constructed to avoid checking curves that have complex

multiplication over Q.

import time

P = Primes();

p = 1009 #162259276829213363391578010295031

CM_invariants = cm_j_invariants(QQ)

tStart=time.time()

while p < 2000:

print(’prime:’,p);

K = GF(p)

avoidInvariant = set()

for i in range(1,100):

for j in range(1,100):

for power1 in range(0,2):

for power2 in range(0,2):

coeff1 = (-1)^(power1)*i;

coeff2 = (-1)^(power2)*j;

discriminant = K((4*coeff1^3+27*coeff2^2));

if discriminant != 0:

jInvariant = K(1728*(4*coeff1^3/discriminant));

if jInvariant not in avoidInvariant

and jInvariant not in CM_invariants:

E = EllipticCurve(GF(p),[coeff1,coeff2])

avoidInvariant.add(jInvariant)

cardinality = E.cardinality();

if cardinality in [p,p+2]:

print(’anomalous:’,[coeff1,coeff2,p]);

elif cardinality == p+1:
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print(’supersingular:’,[coeff1,coeff2,p]);

p = P.next(p);

tEnd=time.time()

print("totalTime = " + str(tEnd-tStart))

A.4.2 SageMath - Example 2

The MOV attack

This SageMath code implements the MOV attack as described in Section 6.4.2 for the first

example in Section 7.1.3.

from sage.arith.functions import LCM_list

import time

p = 2^48+180307

F.<t> = GF(p^2)

E = EllipticCurve(F,[-44, 9])

P = E(0,3)

N = P.order() # N = p+1

Q = E(8,13)

print("P = " + str(P.xy()) + " is the fixed generator, of order " + str(N))

print("Q = " + str(Q.xy()))

lcm=N+1

L1=[]

L2=[]

tStart=time.time()

while True:

T = E.random_point()

M = T.order()

d = gcd(M,N)

T = ZZ(M/d)*T

print("T = " + str(T.xy()) + ", a (random) point of order " + str(d))

a = P.weil_pairing(T,N)

n = a.multiplicative_order()

if 0 not in [x%n for x in L2]:

b = Q.weil_pairing(T,N)

l=log(b,a)

L1.append(l)

L2.append(n)

if LCM_list(L2)==N:

m=crt(L1,L2)
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print("a = e_N(T,P) = " + str(a))

print("b = e_N(T,Q) = " + str(b))

print("b = a^"+str(l))

print(’solution = ’ + str(m))

break

tEnd=time.time()

tTotal=tEnd-tStart

print("Total time = " + str(tTotal))

Baby step, giant step method

This SageMath code implements the baby step, giant step method as described in Section 6.1.1

for the first example in Section 7.1.3.

reset()

import time

from sage.groups.generic import bsgs

p=2^48+180307

F.<t> = GF(p^2)

E = EllipticCurve(F,[-44,9])

P = E(0,3)

N = P.order() # N = p+1

Q = E(8,13)

tStart=time.time()

a=bsgs(P,Q,[0,p],operation=’+’)

tEnd=time.time()

totalTime=tEnd-tStart

print(’time’,totalTime)

print(’solution’,a%(p+1))

A.4.3 SageMath - Example 3

The MOV attack

This SageMath code implements the MOV attack as described in Section 6.4.2 for the second

example in Section 7.1.3.

from sage.arith.functions import LCM_list

import time

p = 2^48+188323

F.<t> = GF(p^2)

E = EllipticCurve(F,[76,25])

P = E(0,5)

N = P.order() # N = p+1

Q = E(7,30)
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print("P = " + str(P.xy()) + " is the fixed generator, of order " + str(N))

print("Q = " + str(Q.xy()))

lcm=N+1

L1=[]

L2=[]

tStart=time.time()

while True:

T = E.random_point()

M = T.order()

d = gcd(M,N)

T = ZZ(M/d)*T

print("T = " + str(T.xy()) + ", a (random) point of order " + str(d))

a = P.weil_pairing(T,N)

n = a.multiplicative_order()

if 0 not in [x%n for x in L2]:

b = Q.weil_pairing(T,N)

l = log(b,a)

L1.append(l)

L2.append(n)

if LCM_list(L2) == N:

m=crt(L1,L2)

print("a = e_N(T,P) = " + str(a))

print("b = e_N(T,Q) = " + str(b))

print("b = a^"+str(l))

print(’solution = ’ + str(m))

break

tEnd=time.time()

tTotal=tEnd-tStart

print("Total time = " + str(tTotal))

Baby step, giant step method

This SageMath code implements the baby step, giant step method as described in Section 6.1.1

for the second example in Section 7.1.3.

reset()

import time

from sage.groups.generic import bsgs

p=2^48+188323

F.<t> = GF(p^2)

E = EllipticCurve(F,[-44,9])
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P = E(0,5)

N = P.order() # N = p+1

Q = E(7,30)

tStart=time.time()

a=bsgs(P,Q,[0,p],operation=’+’)

tEnd=time.time()

totalTime=tEnd-tStart

print(’time’,totalTime)

print(’solution’,a%(p+1))

A.4.4 Mathematica

The Mathematica code below computes the desired order of magnitude of the starting prime

for the method of finding supersingular elliptic curves. It takes as input

NumberOfOperationsAvailable, which is the number of seconds in 15 days, and outputs i.

The desired order of the prime is equal to 2i.

ClearAll["Global’*"]

NumberOfOperationsAvailable=15*86500;

GuessPrimeRange=2^40;

NumberOfOperationsPerSecond=10^13;

prob=1;

i=Log[2,GuessPrimeRange];

While[prob>0.95,

i=i+1;

SizeOfPrime=2^i;

NumberOfCurvesAvailable=N[(NumberOfOperationsAvailable)/

NumberOfOperationsPerSecond^-1,50];

prob1=N[(1 - 1/(4Sqrt[SizeOfPrime]))^(NumberOfCurvesAvailable), 50];

prob=N[1-prob1,10];

];

i
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