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When I started this MSc project, I set out to investigate the impact of population turn-over on 

evolvability, by modelling the evolution of death rates. Now, at the end thereof, I find myself with 

three distinct projects, all approaching the topic of evolvability from different angles: the evolution of 

mutation rates, the evolution of death rates, and the evolution of a plastic trait under episodic 

selection. I would therefore like to take this opportunity to explain how these various projects came 

about, and how they fit together. 

I had no prior experience with computer models, hence as a stepping stone I started with a model 

examining evolvability in its simplest form: the spread of strains with different mutation rates. This 

was intended as a mere exercise which would allow me to explore the evolution of evolvability in 

fluctuating environments and would eventually inform me on how to build my model on death rate 

evolution. However, this simplified mutation rate model surprisingly yielded interesting results, 

prompting me to take mutation rate evolution as a second route (in addition to death rate evolution) 

–exploring the evolution of evolvability from a different angle. Both of these approaches highlight the 

role that population dynamics play in the evolution of evolvability. Any research into the evolution of 

evolvability through mutation rate is written up in Part I of the project.  

Subsequently I modelled my original idea concerning the impact of population turn-over on 

evolvability, exploring whether selection for evolvability can elicit an evolutionary response in the 

individual mortality through kin selection. Specifically, I tested my hypothesis that selection for 

evolvability increases death rates. Research into evolution of evolvability through population turn over 

is written up in Part II of the project. 

A few months into my MSc project, I was offered the exciting opportunity to work on a project on 

Dollo’s law, in collaboration with the research group of Dr. Bertanne Visser (Université catholique de 

Louvain, Belgium). As this fit well with my general overarching topic of evolvability, I developed a 

theoretical model together with Stephano Tiso and Timo van Eldijk (University of Groningen) to 

complement the empirical research carried out by Dr. Visser. This was a wonderful learning 

opportunity which allowed me to greatly improve my modelling skills as well as expand my theoretical 

knowledge. The paper resulting from this collaboration has since been submitted for publication to 

PNAS. Generally, this project explored how the evolvability of traits under episodic selection is 

mediated by plasticity, and how this explains apparent violations of Dollo’s law. The resulting 

manuscript is here submitted as Part III of the project. 

Overall, all three parts of my MSc project consider the question of how evolvability itself may evolve: 

evolvability achieved through mutation rate (part I), evolvability achieved through population turnover 

(part II), and the impact of episodic selection on evolvability (part III). In these projects I investigated 

how the evolution of evolvability is influenced by population dynamics, plasticity, and the assumption 

of the underlying genetic system, thus uniting the three different approaches in one overarching 

theme.  

Evolution of evolvability 
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Evolution of evolvability I: Evolution of the mutation rate 

Introduction 

Evolvability has recently come to the forefront of evolutionary biology. This is partly due to the growing 

popularity of the “Extended Evolutionary Synthesis (EES)” initiative, which has brought some 

previously neglected topics, such as evolvability, into the spotlight (Laland et al. 2015, Nuño de la Rosa 

2017). Further to this, evolvability is also starting to play a role in the conservation of threatened 

ecosystems (Wright et al. 2019) and climate change research (Stojanova et al. 2019).  

The concept of evolvability itself, however, is by no means new. Various papers from the 20th century 

explored this concept (see for example Hanson 1966, Schwabauer 1976, Swartout & Neches 1986, 

Kauffman 1990, Houle 1992 and Rowe et al. 1994), yet the use of the term “evolvability” differed 

widely in those early papers. Wagner and Altenberg (1996) subsequently clarified the terminology, 

defining evolvability as “a genome’s ability to produce adaptive variants”. This interpretation thus 

includes not only variation but crucially also variability, and can be rephrased as a system’s ability to 

change in response to selection pressures (Pigliucci 2008). Evolvability can be influenced by various 

traits and processes, including, but not limited to modularity (Parsons et al 2018, Verd et al. 2019), the 

type of genotype-phenotype mapping (Wagner & Zhang 2011), or plasticity (Van Gestel & Weissing 

2016). But perhaps the most intuitive change in evolvability is a change in mutation rate: a higher 

mutation rate increases variation and variability of traits, thus providing the raw material for evolution 

in greater amounts. In the first part of the report, I therefore want to focus on evolvability through 

mutation rate. 

One of the most important questions in relation to evolvability is whether evolvability itself can evolve 

– that is, change not only as a byproduct of selection on other traits, but in response to selection 

pressure for increased or decreased evolvability. A striking example of mutation rate evolution comes 

from experimental evolution: After 12 strains of an ancestral population of Escherichia coli evolved 

independently for 50,000 generations, 6 of the strains evolved hyper-mutability, with mutation rates 

orders of magnitude larger than those observed in the ancestral phenotype (Tenaillon 2016). This leads 

to the question of what selective forces shape mutation rates – are high mutation rates mal-adaptive 

side effects? Or are these high mutation rates adaptive, perhaps even an example of evolution of 

evolvability? 

One of the most prominent explanations for the maintenance of high but mal-adaptive mutation rates 

is based on the concept of “cost of fidelity”. This hypothesis postulates that there is a trade-off 

between replication speed and replication fidelity: Proof-reading mechanisms can be time consuming 

and therefore slow down cell division, imposing the cost of slower reproduction – a cost that can be 

critical especially in prokaryotes (Furió et al. 2005, Baer et al. 2007, Belshaw et al. 2008). In other 

words, selection for faster replication speed leads to the unfortunate but unavoidable side-effect of 

higher mutation rates. However, whilst this is a common and widely accepted explanation for high 

mutation rates in viruses, it is doubtful that it can satisfactorily explain high mutation rates in 

eukaryotic, and especially in multicellular organisms, in which speed of reproduction is dependent on 

many factors other than speed of cell division (Regoes et al. 2013). In addition to “cost of fidelity”, 

various other hypotheses have been put forward aiming to demonstrate how high mutation rates can 

arise without being adaptive. These include diverse mechanisms, including but not limited to variation 

in exposure to mutagens (Baer et al. 2007), specific aspects of DNA structure such as repetitive 

elements (Jeffreys et al. 1988), or relaxed selection on mutation rates due to buffers such as heat shock 
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proteins compensating for deleterious mutations (Rutherford 2003, Baer et al. 2007). Overall, all of 

these mechanisms, including the “cost of fidelity” hypothesis explain high mutation rates as a 

maladaptive by-product of other processes. 

However, there is also evidence that high mutation rates can be adaptive. Strains or populations with 

higher mutation rates outperform those with lower mutation rates in a variety of contexts, as 

demonstrated in both experimental evolution of mutator strains engineered in the lab, as well as in 

experiments using natural variation in mutation rates (see for example Desai et al. 2007, Maharjan et 

al. 2013, or Sprouffske et al. 2018). Furthermore, environmental stress can prompt a process termed 

stress-induced mutagenesis, a transient up-regulation of the mutation rate brought about by 

environmental stressors (Matic 2013). It is important to emphasize that these increased mutation rates 

are not due to a reduction of function caused by stress, but rather through evolved mechanisms linking 

stress and increased mutation rate, such as activation of error-prone DNA polymerases and down-

regulation of error-correcting enzymes (Foster 2007, MacLean et al. 2013). This mechanism is part of 

the organism’s defense mechanism, and facilitates faster adaptation to a changed environment. 

Overall, these lines of evidence indicate that higher mutation rates can indeed be adaptive, and might 

evolve in response to a selection pressure for evolvability. 

Yet this adaptiveness of high mutation rates can be of a transient nature: once a solution to a novel 

environmental challenge has been found, the high mutation rate is no longer required. Thus, mutation 

rates can be expected to rise only transiently by hitchhiking on the beneficial variants they produce, 

and to then be lowered again through selection for a reduction of deleterious mutations. However, 

this can be prevented by environmental fluctuations: a constantly changing environment necessitates 

constantly new adaptations, thus facilitating repeated hitchhiking events, and preventing transient 

mutation rate increases from being lost. And indeed, previous papers have succeeded in showing that 

fluctuating environments can allow the establishment of a stable, non-zero mutation rate, albeit under 

simplifying assumptions such as that of an infinitely large populations (Ishii et al. 1989, Carja et al. 

2014). Furthermore, variable environments are crucial to the concept of evolvability itself, as higher 

evolvability, i.e. a greater ability for adaptive change, is intrinsically liked to environments selecting for 

frequent changes, thus further cementing the role that environmental variation plays in the context of 

mutation rates. 

Considering that mutation rates may be an important target for evolvability selection, it is interesting 

to investigate the mechanism by which it can evolve. Mutation rates do not have a phenotype under 

direct selection: their phenotype only is expressed though their impact on the probability of a different 

phenotype changing. Selection on mutation rates can therefore only act indirectly, through selection 

on other loci. Mutation rates thus evolve through genetic “hitchhiking”: the phenomenon that an allele 

changes in frequency due to being linked to a different allele under direct selection (Johnson 1999, 

Gerrish et al. 2007, Cobben et al. 2017). In the case of mutation rates, genetic hitchhiking translates to 

a mutator allele inducing beneficial mutations and then hitchhiking along in the beneficial mutation’s 

selective sweep.  This concept first arose under the name periodic selection (Atwood et al. 1951), and 

has since gained support from both theoretical and empirical studies (see for example Johnson 1999 

and Shaver et al. 2002). Due to its dependence on genetic hitchhiking, the evolution of mutation rates 

is very sensitive to anything that might break the crucial linkage between mutator allele and beneficial 

mutation, such as high recombination rates or sexual reproduction. In fact, many studies find that the 

positive selection on mutation rates via hitchhiking should be absent or negligible in sexually 

reproducing populations (Sniegowski et al. 2000, Baer 2007, Martincorena & Luscombe 2013, Mujialli 

2019). Other papers do succeed in showing the evolution of high mutation rates via hitchhiking under 

sexual reproduction in theoretical models, however only under additional assumptions and special 
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circumstances, such as presuming an explicit link between mutation rate and mate choice as well as 

strong sexual selection (Petrie & Roberts 2007), or considering only population expansions and 

allowing mutation rate to coevolve with dispersal speed (Cobben et al. 2017).  

Overall, mutation rate evolution is an attractive approach to the concept of evolvability, which is 

supported by empirical data indicating that high mutation rates can be adaptive. Mutation rates can 

increase via hitchhiking with beneficial mutations, but these increases are only transient without 

repeatedly changing selection pressures in varying environments. Hitchhiking relies on linkage 

between mutator and beneficial mutation, casting doubt on the ability of mutation rates to evolve 

under recombination and sexual reproduction. Keeping this body of literature in mind, I here aim to 

see whether and how higher mutation rates evolve in a fluctuating environment, under explicit 

modelling of population dynamics (i.e. neither constant nor infinite population sizes). This topic is 

explored in three models, investigating a mutator invasion analysis (model 1), the evolution of 

mutation rate under asexual reproduction (model 2) and the evolution of mutation rate under sexual 

reproduction (model 3). 

Model 1: Invasion of a mutator strain in a periodically changing environment 

Model description 

Model structure 

The first model considers how the invasion of a strain in a resident population proceeds if the strain 

and resident population have different mutation rates, investigating whether the invading strain or 

resident population eventually outcompete the other. I analyzed this question using a continuous-time 

stochastic birth-death model written in R, tracking the number of individuals of each genotype through 

time. Each individual has two gene loci: one determining its ecological adaptation and one determining 

its mutation rate. The ecological adaptation is encoded at a single di-allelic locus, which can take the 

states A or B, thus determining whether the individual is adapted to resource A or B. The mutation 

locus determines whether the individual has a high or a low mutation rate. This results in four 

genotypes:  a mutator adapted to resource A, a mutator adapted to resource B, a non-mutator adapted 

to resource A, and a non-mutator adapted to resource B. Either the resident or the invading strain act 

as mutator. During a mutation event, an individual’s ecological adaptation allele changes from A to B 

or vice versa, with no lethal mutations. The individuals reproduce asexually with no recombination: 

during each birth event, the new individual inherits its parent’s mutation rate, and its parent’s 

ecological adaptation allele if there is no mutation event (or the opposite adaptation allele if there is 

a mutation event). Population growth is limited by carrying capacity: the birth rate is proportional to 

the fraction of the carrying capacity that is unoccupied, and decreases therefore with increasing 

population size. The carrying capacity for resource A and B are modelled separately. Both carrying 

capacities oscillate over time, and the oscillations are shifted such that the highest point of carrying 

capacity A coincides with the lowest point of carrying capacity B, and vice versa (see Figure 1). Thus 

the alleles A and B are selected in an alternating manner, as might be the case under, for example, 

seasonal selection pressures alternating between winter and summer, or wet and dry season. 

I repeated the analysis with a second version of the model, in which the oscillating selection pressure 

is caused not by changes in the environment but by negative frequency dependent selection. This 

allowed me to investigate not only the effect of external, environmentally driven oscillations, but also 

the effect of oscillating selection pressures arising from evolutionary dynamics within the system. In 
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this model, an individual’s birth rate depends inversely on the frequency of its ecological adaptation 

allele, rather than depending on ecological adaptation. 

To analyse the results, I focused on the relative frequency of the high mutation genotype at the end of 

each simulation. Higher frequencies were interpreted as a faster and more complete invasion by the 

genotype. 

Parameter values 

I used the following parameter values: all genotypes have an initial abundance of 50 individuals 

(resulting in an initial total population size of 200), a death rate d = 0.1, and a the unmodified (maximal) 

birth rate b = 0.5. The carrying capacity for carriers of allele A is given by 

K =  250 ∗ (sin(s ∗ time)) + 300. 

This results in oscillations in carrying capacity between 50 and 550 individuals, with the period length 

determined by the scaling factor s. I used two different values for s to investigate the effect of 

environmental oscillation speed: s = 0.05 (resulting in a period length of 125.66) and s = 0.1 (resulting 

in a period length of 62.83). The carrying capacity for carriers of allele B is given by the same formula 

but shifted by half the period length, allowing the two carrying capacities to fluctuate out of phase. 

The behaviour of the model was explored using different mutation rates between 0 and 0.1 for the 

resident mutation rate (M1) and the invading mutation rate (M2), with 200 replicates of 1500 time 

units for each parameter combination. To control for the influence of environmental oscillations, I 

implemented a simulation with a stable environment, in which the carrying capacities of both 

resources are stably at 300 individuals each. In the control simulation, I used M1 = 0 and M2 = 0.1, all 

other parameter values were left unchanged, including replicate number and simulation length. 

Figure 1: Changes in resource specific carrying capacities over time. This figure shows the oscillating carrying capacities of 
resources A (red) and B (black). The carrying capacities oscillate between 50 and 500 individuals, the period length is modified 
by s = 0.05 (i.e. period length = 125.66 time units). The carrying capacities for both resources oscillate out of phase so that the 
highest points of availability of resource A coincide with the lowest points of availability of resource B. This creates a variable, 
oscillating selection regime. 
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Simulation results 

Oscillating resources 

The four genotypes (mutator adapted to resource A, mutator adapted to resource B, non-mutator 

adapted to resource A, non-mutator adapted to resource B) start at equal frequencies and then evolve 

for 1500 time units. Figure 2 shows an example of how these four genotype frequencies change 

through time: in this case, the two non-mutator strains are lost early on, whereas the two mutator 

strains persist. Of the remaining strains, one is adapted to resource A and one is adapted to resource 

B, and their frequencies therefore show oscillations driven by the fluctuating carrying capacities of 

resources A and B.  

I analyzed the effect of mutation rate on spread of the genotype. To do so, I considered the number of 

individuals of each genotype at the end of the simulation runtime, comparing the frequencies of the 

mutator and non-mutator strains. Overall, mutator strains are able to successfully outcompete non-

mutator strains, with the mutator genotypes being strongly over-represented at the ends of most 

replicates (for an example, see Figure 3, for plots showing all invader/resident comparisons see 

Appendix Figure 1). The proportion of the invading mutation rate is significantly different form 0.5, this 

pattern holds regardless of the values chosen for M1 and M2, as long as one mutation rate is higher. 

If both mutation rates are of equal value, the any differences in the final numbers of individuals with 

either mutation rate are caused by drift, and are not statistically significant. For some parameter 

combinations, the invasion was complete by the end of the simulation, with the lower mutation rate 

gone from the population in all 200 replicates. This strong and consistent spread of high mutation rates 

cannot be observed in the control simulation, in which the population evolves in a stable environment 

(Figure 4). There seems to be a slight bias towards high mutation rates even amongst the mutation 

rate frequencies in the control simulation. Whilst this could potentially be explained by over-sampling, 

it necessitates further testing. Regardless of this, the difference between populations evolving in a 

fluctuating environment and those evolving in a stable control environment is striking, confirming that 

environmental oscillations are crucial in selecting for higher mutation rates. 

Figure 2: Representative simulations. A: Absolute numbers of individuals of each genotype over time: mutator adapted to 
resource A (red), non-mutator adapted to resource A (green), mutator adapted to resource B (yellow), and non-mutator 
adapted to resource B (blue). The non-mutator strains go extinct early on in the simulation, the abundance of the two mutator-
strains fluctuates in accordance with the fluctuations of the resources that they are adapted to. B: Absolute number of 
mutators (red) and non-mutators (blue). The non-mutator strain genotype lost early on in the simulation. 
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Figure 3: Frequencies of the invading mutation rate M2 at the simulation end points. This figure shows the frequencies of the 
invading mutation rate at the end of the simulation, for one resident mutation rate (M1 = 0.005), slow environmental 
oscillations (s = 0.05) and six different invading mutation rates, with 200 replicates each. For each value of M2, the mutation 
rate with the higher value, be it resident or invading, achieves a higher frequency at the end of the simulation. In cases where 
resident and invading mutation rate are of equal value (M1 = M2 = 0.005), the frequencies of the invading mutation rate are 
distributed evenly around 0.5. 

 

 

Figure 4: Frequencies of the invading mutation rate at the simulation end points. This figure shows the frequencies of the 
invading mutation rate at the end of the simulation, evolved under an oscillating environment and evolved under the stable 
environment of the control. The parameter values used here are: M1 = 0, M2 = 0.1, s = 0.05. The spread of the higher 
mutation rate is strongly reduced or absent in the control, demonstrating the crucial role that an variable environment plays 
in selecting for higher mutation rates.  

Varying the parameters influences the speed at which higher mutation rates can invade. Firstly, a larger 

difference between the invading and resident mutation rates leads to a more complete invasion after 

1500 time units (see Figure 5A). Secondly, slower oscillation speeds allow a faster and more complete 

invasion, both for each mutation rate difference (see Figure 5A) and overall (see Figure 5B). 
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Figure 5: Effect of the difference between resident and invading mutation rate and of the environmental oscillation speed on 
mutation rate invasion. Figure 5A: This figure shows the frequency of the mutator strain at the end of the simulation, for 
varying differences between the invading and the resident mutation rate. The frequencies of the mutator are higher for larger 
differences in mutation rate, this pattern is more pronounced under slower environmental oscillations (s = 0.05, red) than 
under fast environmental oscillations (s = 0.1, blue).The following differences in mutation rate are displayed: a = 0, b = 0.005, 
c = 0.01, d = 0.015, e = 0.020, f = 0.030, g = 0.040, h = 0.045, i = 0.050, j = 0.090, k = 0.095, l = 0.10. Figure 5B: Combining the 
entire data set shows that overall, slower oscillations (s = 0.05, red) allow a faster and more complete invasion of the higher 
mutation rate than fast oscillations (s = 0.1, blue). 

Negative frequency dependent selection 

The four genotypes (mutator adapted to resource A, mutator adapted to resource B, non-mutator 

adapted to resource A, non-mutator adapted to resource B) start at equal frequencies and then evolve 

for 1500 time units. Figure 6 shows an example of how these four genotype frequencies change 

through time: in this case, the non-mutator strains decline fast and finally are lost towards the end of 

the simulation, whereas the mutator strains persist. Of the remaining strains, one is adapted to 

resource A and one is adapted to resource B, and their frequencies therefore show slight oscillations 

consistent with negative frequency dependent selection.  

 

Figure 6: Exemplary simulation behaviour. Figure 6A: This figure shows the absolute numbers of individuals of each genotype 
over time: mutator adapted to resource A (red), non-mutator adapted to resource A (green), mutator adapted to resource B 
(yellow), and non-mutator adapted to resource B (blue). The abundance of the two non-mutator strains declines fast and they 
ultimately go extinct towards the end of the simulation, the abundance of the two mutator strains fluctuates in a manner 
consistent with negative frequency dependent selection. Figure 6B: This figure shows the absolute number of mutators (red) 
and non-mutators (blue). The non-mutator strains is lost towards the end of the simulation. 
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I analyzed the effect of mutation rate on spread of the genotype. To do so, I considered the number of 

individuals of each genotype at the end of the simulation runtime, comparing the frequency of the 

mutator strains and the non-mutator strains. Overall, the mutator strains are able to successfully 

outcompete the non-mutator strains, with the mutator-strains being over-represented at the ends of 

most replicates (for an example, see Figure 7, for plots showing all invader/resident comparisons see 

Appendix Figure 2). The proportion of the invading mutation rate is significantly different form 0.5, this 

pattern holds for most parameter combinations regardless of the values chosen for the M1 and M2, 

as long as one mutation rate is higher. A larger difference between M1 and M2 leads to a more 

complete invasion after 1500 time units (see Figure 8). If both mutation rates are of equal value, the 

differences in the final numbers of individuals with either mutation rate are caused by drift, and are 

not statistically significant. In this model, it was not possible to implement a control with stable, 

constant selection pressures: the fluctuating selection pressures result from an intrinsic negative 

frequency dependency rather than from extrinsically implemented fluctuations in resource 

abundance. 

Overall, the spread of higher mutation rates under negative frequency dependent selection is clear, 

but less striking than under environmental oscillations.  

 

 
Figure 7: Frequencies of the invading mutation rate M2 at the simulation end points. This figure shows the frequencies of the 
invading mutation rate at the end of the simulation, for one resident mutation rate (M1 = 0.005) and six different invading 
mutation rates, with 200 replicates each. For each value of M2, the mutation rate with the higher value, be it resident or 
invading, achieves a higher frequency at the end of the simulation. In cases where resident and invading mutation rate are of 
equal value (M1 = M2 = 0.005), the frequencies of the invading mutation rate are distributed evenly around 0.5. 
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Figure 8: This figure shows the frequency of the mutator strain at the end of the simulation, for varying differences between 
the invading and the resident mutation rate. The frequencies of the mutator are generally higher for larger differences in 
mutation rate – however, this pattern is not as clear as it was for mutation rate evolution under environmental oscillations 
(see Figure 5A). The following differences in mutation rate are displayed: a = 0, b = 0.005, c = 0.01, d = 0.015, e = 0.020, f = 
0.030, g = 0.040, h = 0.045, i = 0.050, j = 0.090, k = 0.095, l = 0.10.  

Conclusions Model 1 

Overall, Model 1 shows that under periodically alternating selection pressures arising from 

environmental oscillations, higher mutation rates can efficiently invade. Slower environmental 

oscillations, and larger differences between invading and resident mutation rates, expedite this 

invasion. A similar though less efficient invasion of higher mutation rates can also be found under 

alternating selection pressures arising from negative frequency depending selection. 

Model 2: Evolution of mutation rate in a periodically changing environment 

Model description 

Model structure 

In the second model I use a simulation written in C++ to explore how the mutation rate evolves under 

selection for evolvability, by tracking a population of individuals in a habitat which is modelled spatially 

explicit as a 50x50 grid with a total of 2500 cells. Each cell can be occupied by only one individual, the 

maximal population size is therefore 2500.  

The second model bears several similarities to the one described in model 1: Again, each individual has 

two gene loci, one determining ecological adaptation either to resource A or to resource B, and one 

determining the mutation rate. The former locus operates in a similar manner to the ecological 

adaptation locus from model 1: depending on the allele at this locus the individual is either adapted to 

resource A or B, and has a birth rate proportional to the fitness payoff from the chosen resource. The 

fitness payoffs from the two resources fluctuate between zero and one, with the time-dependant 

fitness payoff from allele A given by 

𝑤 =
𝑠𝑖𝑛(𝑡𝑖𝑚𝑒 ∗ 𝑠 ∗

𝜋
2)  +  1

2
⁄  
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Figure 9: Changes in resource specific fitness over time. This figure shows the fitness pay-offs for individuals adapted to 
resource A (red) or B (green). These fitness pay-offs are normalized to lie between 0 and 1, and are here shown for 
environmental oscillations s = 0.01 (period length = 400 time steps). The fitness-payoffs are out of phase so that the highest 
pay-off from resource A coincides with the lowest pay-off from resource B. This creates a variable selection regime with 
alternating selection pressures. 

The parameter s refers to the oscillation speed. The fitness payoff from allele B is given by the same 

formula but shifted by half the period length, causing the fitness payoffs to fluctuate out of phase (see 

Figure 9). As in model 1, the two ecological adaptation alleles are thus selected in an alternating 

manner, as might be the case under, for example, seasonal selection pressures alternating between 

winter and summer, or wet and dry season. Multiplying the current resource-dependent fitness payoff 

with the unmodified birth rate gives the realised birth rate. Unlike in the previous model, the spatially 

explicit implementation allows for the carrying capacity to be implemented independently of the 

oscillating resources: As each cell can only be occupied by one individual, a reproduction event can 

only be completed if there is an empty cell within the neighbourhood (i.e. surrounding cells, see Figure 

10) of a reproducing focal individual. Effectively, this decreases the birth rate at high population sizes 

and in densely populated areas.  

 

 
Figure 10: Implementation of the neighbourhood. This figure shows a habitat modelled as a grid of size 5 x 5. Occupied cells 
are marked in grey, the cell occupied by the focal individual is marked in blue. The focal individual’s neighbourhood is indicated 
by a black square around it. Shown here is a neighbourhood with the neighbourhood size Nb = 1, i.e. the neighbourhood 
extends exactly one square above, below, to the right and to the left of the focal individual. The focal individual can only 
reproduce if there is at least one empty cell within the neighbourhood, this cell will then be occupied by the new offspring. In 
this case, the focal individual’s offspring can occupy either of the two orange cells in the right bottom corner of the black 
neighbouhood square. The arrow indicates one possible cell that the focal individual might choose for reproduction.  
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The second locus encodes the mutation rate, that is the rate at which the ecological adaptation locus 

mutates from being adapted to resource A to being adapted to resource B, with no lethal mutations. 

The implementation of this mutation rate is the key difference between this model and the previous 

one: rather than investigating the invasion of a mutator-strain, the mutation rate is free to evolve any 

biologically sensible value (between 0 and 1). This mutation rate determines the likelihood of a 

mutation at the ecological adaptation locus only: the rate at which the mutation rate itself mutates is 

implemented separately and kept constant, irrespective of the value taken by the mutation rate. 

Mutation step sizes are randomly drawn from a normal distribution centered around zero with a 

standard deviation of 0.005. The mutation rate is capped at zero and at one. 

As in the first model, the individuals reproduce asexually with no recombination: during each birth 

event, the new individual inherits its parent’s mutation rate (or a slightly different mutation rate if 

there is a mutation of the mutation rate), and its parent’s ecological adaptation allele if there is no 

mutation (or the opposite adaptation allele if there is a mutation of the ecological adaptation allele). 

During each time step, an individual is randomly chosen to undergo a birth event (depending on the 

realized birthrate and availability of space) and subsequently, a death event (depending on the death 

rate). This is followed by a second round of death events, occurring with different probabilities in 

different simulations, allowing me to investigate the effect of death rate and thus population turnover. 

Any dead individuals are removed from the population, thus freeing up the cell they were occupying. 

Now, the current focal individual has undergone all potential events for this timestep, and a new focal 

individual is sampled from the population (without replacement), which undergoes the same events 

outlined above. New focal individuals are sampled until every individual in the population has acted as 

the focal individual exactly once. After this, time is advanced to the next timestep. 

The results from this model with selection for evolvability were compared with those from a control 

simulation with no selection for evolvability: in the control scenario the sine curves, describing the 

oscillations in resource availability, are replaced with flat lines for both resource A and B. Without the 

environmental fluctuations, the payoffs of both resources are constant and equal to each other at all 

times – mutations from A to B or B to A therefore have no fitness consequences, and the mutation rate 

evolves under drift alone.  The fitness pay-off for both resources is kept at 0.5 in the control, an average 

of the fitness values given by a sine curve between zero and one. 

Parameter values 

I used the following values for the parameters and properties of initial individuals: a death rate of 0.05 

for the first round of death events, an unmodified birth rate of 0.9 (the realized birth rate is lower and 

depends on the availability of resource A or B and on the availability of space), an evolvable mutation 

rate initialized at a random value between 0.0010 and 0.0011, and a mutation rate specific mutation 

rate of 0.01 (the latter mutation rate is constant regardless of the value which the evolvable mutation 

rate takes). The population is initialized with hundred individuals placed in the center of the habitat in 

a 10 by 10 square, and is then allowed to evolve for 5000 timesteps.  

I tested the influence of the following parameter values on model behaviour: the neighbourhood size 

Nb (Nb = 1; Nb = 50), the speed of environmental oscillations s (s = 0.01; s = 0.05), and the death rate 

during the second round of death events d (d = 0, d = 0.001, d = 0.05, d = 0.075). The neighbourhood 

size determines how many rows the neighbourhood extends from the focal individual in any direction 

(see Figure 10). At the maximal neighbourhood size Nb = 50, i.e. the size of the entire habitat, the 

population is homogeneously mixed and has no spatial structure.  
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Statistical analysis 

I analysed the model behaviour statistically using a correlation analysis. The change in average 

mutation rate was calculated every 10 time steps as the average mutation rate after the next 10 time 

step minus the average mutation rate in the current time step, divided by the number of timesteps 

(i.e. 10). Data from the first 500 time steps were excluded, to avoid potential confounding effects 

resulting from initialising a small population which still needs to establish itself. Using data from 

timesteps 500 till 5000, I calculated the Pearson coefficient for the correlation between the change in 

average mutation rate and the number of individuals. For this analysis, I separated the data of 

individuals with different genotypes, i.e. I analysed the correlation between the number of individuals 

with genotype A and the change in mutation rate averaged over all individuals with genotype A, and 

analysed separately the correlation between the number of individuals with genotype B and the 

change in mutation rate averaged over all individuals with genotype B. I repeated this analysis for 30 

replicates. 

Simulation results 

I tested 24 parameter combinations, 16 with environmental oscillations (the test simulations) and 8 

without environmental oscillations (the control simulations). Under environmental oscillations, most 

parameter combinations show a marked increase in the population average of the mutation rate, as 

well as a striking pattern of step-wise growth (for an example see Figure 16).  

Mutation rate evolution and population dynamics 

Teasing apart the underlying population dynamics can explain this observed characteristic step-wise 

increase. Focusing on allele A shows that when the fitness gained from resource A is high, individuals 

with genotype A are abundant (Figure 11) and most new individuals born with allele A are the non-

mutated offspring of parents with allele A (Figure 12). Conversely, when individuals with genotype A 

are scarce, most new individuals born with allele A are the mutated offspring of parents with allele B 

(Figure 12), and the mutation rate – averaged over all individuals with genotype A – increases (Figure 

12). This holds for both alleles: when individuals with a particular genotype are abundant, the average 

mutation rate stays constant or decreases slightly, whereas when individuals with a particular 

genotype are rare, the average mutation rate shows a marked increase (Figure 13). Average mutation 

rate refers here to the mutation rate averaged across those individuals which have a particular 

genotype. The step-wise increase in average mutation rates for A and B occurs out of phase with each 

other (Figure 13) – when combining them, and averaging the mutation rate over the entire population, 

the population-wide step-wise increase seen in all simulations is recovered (Figure 14), with two steps 

per environmental oscillation period.  

I performed a correlation analysis using Pearson’s correlation coefficient to give statistical support to 

the observation that when a genotype is rare, the average mutation rate of individuals with this 

genotype increases. The correlation between the change in mutation rate (averaged across all 

individuals with a specific genotype) and the number of individuals with this genotype was highly 

significant and negative, for both the genotype A and B, and in all 30 replicates. This confirms that the 

dynamics explained above and in Figures 13 – 16 are indeed consistent across replicates. See Appendix 

Table 1 for a table of the p-values and correlation coefficients. I performed this analysis using the 

parameter values s = 0.01, Nb = 1, d = 0.  
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Figure 11: Linking allele fitness and abundance. This plot shows the change in allele fitness (black) and abundance (red, in 
absolute numbers) for allele A. The number of carriers of allele A tracks the fitness of allele A with a slight lag. 

 

 

Figure 12: Linking allele carrier abundance, parental genotypes and mutation rate. This plot shows the abundance of carriers 
of allele A (red), the proportion of new A-carriers born from A-carriers (yellow), the proportion of new A-carriers born from B-
carriers (blue), and the mutation rate averaged across all A-carriers (black). The average mutation rate increases when 
individuals carrying A are scarce and most newly-born A-carriers are the mutated offspring of B-carriers. When A-carriers are 
abundant and most newly born A-carriers are the offspring of other A-carriers, the mutation rate stagnates or falls. 
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Figure 13: Linking allele carrier abundances and mutation rates. This plot shows the abundance of carriers of allele A (red), 
the abundance of carriers of allele B (green), the mutation rate averaged across all A-carriers (yellow), and the mutation rate 
averaged across all B-carriers (purple). The mutation rate amongst A-carriers increases when they are scarce and stagnates 
or falls when they are abundant. The same pattern can be seen for the mutation rate amongst, and abundance of, B-carriers. 
The mutation rates averaged across A-carries and B-carriers fluctuate out of phase. 

 

Figure 14: Linking allele abundances and population-wide mutation rate averages. This plot shows the abundance of carriers 
of allele A (red), the abundance of carriers of allele B (green), the mutation rate averaged across the entire population (black). 
When either abundance decreases, the mutation rate increases in a step wise manner. 

Dependence on parameters 

The increase of average mutation rate is influenced by various parameters. The increase is steeper for 
a higher death rate (see Figure 15) and for slower environmental oscillations (see Figure 17). These 
two parameters interact: a decreased death rate slows down mutation rate evolution under fast 
environmental oscillations (see Figure 15) but not under slow environmental oscillations (see Figure 
16), indicating that these parameters can compensate for one another to some extent. Neighbourhood 
size does not affect mutation rate evolution (see Figure 18). The figures shown in this section are 
examples illustrating the influence of the tested parameters, not all explored parameter combinations 
are displayed. Plots of all parameter combinations and controls are available in the data archive. 
Overall, 12 out of 16 parameter combinations show a clear increase in mutation rate as well as 
behavior evidently different from the control simulations. No increase in mutation rate can be 
observed only when fast oscillations are combined with low death rates. Finally, the controls did not 
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show an increase in mutation rate, beyond that which is consistent with drift and a bounded random 
walk (see Appendix Figure 3). 
 

 
Figure 15: The effect of death rate on mutation rate evolution under fast environmental oscillations. This figure shows the 
increase in the population average of the mutation rate over the course of the simulation, for two different death rates with 
30 replicates each. A low death rate (Figure 15A, d = 0) does not allow the mutation rate to rise as far as a high death rate 
(Figure 15B, d = 0.05). Parameters other than death rate are kept constant (s = 0.05, Nb = 1). 

 

 
Figure 16: The effect of death rate on mutation rate evolution under slow environmental oscillations. The figure shows the 
increase in the population average of the mutation rate over the course of the simulation, for two different death rates with 
30 replicates each. In contrast to figure 15, there is no observable difference in the pattern of mutation rate evolution under 
a lower death rate (Figure 16A, d = 0) or a high death rate (Figure 16B, d = 0.05). Parameters other than death rate are kept 
constant (s = 0.01, Nb = 1). 
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Figure 17: The effect of environmental oscillation speed on mutation rate evolution. This figure shows the increase in the 
population average of the mutation rate over the course of the simulation, for two different environmental oscillation speeds 
with 30 replicates each. Slow environmental oscillations (Figure 17A, s = 0.01) allow the mutation rate to rise further than fast 
environmental oscillations (Figure 17B, s = 0.05). Parameters other than the speed of environmental oscillations are kept 
constant (d = 0, Nb = 1). 

 

 
Figure 18: The effect of neighbourhood size on mutation rate evolution. This figure shows the increase in the population 
average of the mutation rate over the course of the simulation, for two different neighbourhood sizes with 30 replicates each. 
There is no observable difference in the pattern of mutation rate evolution under small neighbourhood sizes (Figure 18A, Nb 
= 1) or large neighbourhood sizes (Figure 18B, Nb = 50). Parameters other than the neighbourhood size are kept constant (s = 
0.01, d = 0.05).  

Conclusions Model 2 
Overall, Model 2 shows that under periodically alternating selection pressures arising from 

environmental oscillations, the population average of the mutation rate increases, in a striking step-

wise pattern. The mutation rate, averaged across all carriers of a specific allele, increases when the 

allele is selected against. Slower environmental oscillations and a higher death rate, allowing a higher 

population turnover, allow steeper mutation rate growth. 
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Model 3: Evolution of mutation rate in a complex, variable environment 

Model description 

The third model, also written in C++, explores how the mutation rate evolves under selection for 

evolvability, similar to the second model. However, this model considers the evolution of mutation 

rate under the more realistic conditions of recombination, multi-locus genetics, non-linear genotype-

phenotype mapping and random environmental fluctuations, as well as implementing sexual 

reproduction.  

Model structure 

Some aspects of the second model were retained in the third: The habitat is again modelled spatially 

explicit as a 50x50 grid with a total of 2500 cells with maximally one individual per cell (resulting again 

in a maximal population size of 2500). Most traits and parameters are implemented in the same way: 

again, there is a globally fixed birth rate, two population-wide fixed death rates determining the chance 

of dying during the two rounds of death events, an individually evolvable mutation rate, and a globally 

fixed rate at which the mutation rate mutates. However, this model has three crucial differences: the 

non-linear genotype-phenotype map, the fitness seascape undergoing random oscillations, and sexual 

reproduction with recombination. 

Genotype-phenotype mapping 

There are 20 loci involved in determining the ecological adaptation, each of which has two alleles (1 

and 0). The ecological adaptation loci are represented by a bit string with 20 positions. Each position 

is a locus, with the possible binary alleles 1 and 0. This 20 bit long string is interpreted as a binary 

number and translated into one single decimal number, which represents the individual’s phenotype. 

For example, a genotype of 00110011101011101011 is translated into the phenotype of 211691. This 

way, 1048576 different phenotypes can be encoded (1048575 being the largest decimal number that 

can be represented as a bit string with 20 positions). The genotype to phenotype mapping is therefore 

non-linear and allows for a variety of mutational step sizes: a mutation at the 20th position of the bit 

string is far less influential than a mutation at the first position. This was a deliberate choice: this 

genotype-phenotype map not only reflects natural complexity and variation in mutation step sizes, but 

is also an important factor favoring the evolution of evolvability. The link between various types of 

genotype-phenotype mapping, evolvability and the evolution of evolvability is well established (see for 

example Crombach & Hogeweg 2008 and Pigliucci 2010). A mixture of small and large mutation step 

sizes allow mutator strains to explore their immediate surroundings in the fitness landscape, as well 

as far away peaks and valleys. This is especially important under random environmental fluctuations: 

At times when the population is strongly maladapted, large mutation steps are required to find the 

optimal phenotype, and the fitness difference between mutators and non-mutators is especially stark 

– it is in such situations that the selection for higher mutation rates is especially strong, and a non-

linear genotype-phenotype map which facilitates these situations is therefore an important aspect of 

the evolution of mutation rates. 

Phenotype-fitness mapping and the fitness seascape 

To implement selection for evolvability, I modelled random environmental fluctuations, using a fitness 
seascape that changes in the following way: one peak and one valley slowly appear and grow until they 
reach their maximal size, then they slowly shrink again until the fitness landscape is flat. After this, a 
new peak and a new valley appear in a new location. The fitness seascape at any given point is 
represented by a sine curve, mapping a fitness value between zero and one to each phenotype: 
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w =
sin((

2 ∗ 𝜋
1048575

 ∗  phenotype +  α)  ∗  G(t))  +  1

2
⁄  

The term 
2∗𝜋

1048575
 normalizes the sine curve to give fit exactly one sine period length over all phenotypes 

(1048575 being the maximal phenotype), resulting in a fitness seascape with maximally one optimum 
(see Figure 19A).  

The parameters G(t) and α allow this fitness seascape to change randomly with time. G(t) depends on 
a “time factor”, a variable between zero and four, which grows by a fixed small amount s in each time 
step. For example, for s = 0.01, the time factor would grow starting from time factor = 0 in timestep 
zero, to time factor = 4 in timestep 400, and would be re-set to time factor = 0 in timestep 401. The 
parameter s therefore gives the oscillation speed. For 0 < time factor < 2:  

𝐺(𝑡) = 1 − 𝑡𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

causing the sine curve to change gradually first to a flat line and then to – sin(x). For 2 < time factor < 
4: 

𝐺(𝑡) = 𝑡𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 − 3 

resulting in the opposite movement, a curve changing gradually from – sin(x) first to a flat line and then 
to sin(x). This way, the fitness function encodes a fitness seascape with slowly appearing and 
disappearing peaks and valleys. Furthermore, the locations of each new peak and valley are 
randomized, in order to select for different phenotypes at different time points. To do so, the 
parameter α  is randomly re-assigned a new value each time the fitness seascape is flat (i.e. when G(t) 
= 0). This way, each new growing fitness peak is shifted to a new phenotype.  

Finally, the fitness value given by the function w is modified depending on the selection strength k, a 

parameter determining the gradient of the fitness peak. Under strong selection (k = 3), the sine curve 

is taken to the power of 3, creating a steeper peak (see Figure 19B). The selection is thus more rigorous, 

and even small deviations from the optimal phenotype are penalized with greater severity. Under weak 

selection (k = 1), the sine curve is not modified, i.e. taken to the power of 1. 

 
Figure 19: The phenotype-fitness map. This figure shows a snapshot of the phenotype-fitness map, or fitness seascape, at one 
particular point in time. A sine function is used to map a fitness value to each phenotype. At this particular time, the fitness 
seascape has one high hill and one deep valley. Over time, the hill and valley will disappear and be replaced with new hills and 
valleys. Figure 19A shows the phenotype-fitness map under weak selection, i.e. k = 1. Figure 19B shows the phenotype-fitness 
map under strong selection, i.e. k = 3: the sine curve is taken to the power of 3 resulting in a steeper fitness gradient. The 
selection is thus more rigorous, and even small deviations from the optimal phenotype are penalized with greater severity. 
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Sexual reproduction 

As in model 2, birth events occur at a rate determined by the realized birth rate (i.e. the globally fixed 

birth rate multiplied by the individual’s fitness), with the added condition of an empty cell in the 

neighbourhood for the offspring to occupy. Under sexual reproduction, there is a second condition: 

the presence of another individual within the neighbourhood, to act as the focal individual’s mate. I 

did not implement discrete sexes or minimal ages of sexual maturity, hence any individual that has not 

undergone a death event may act as a mate. If there is more than one empty cell or more than one 

potential mate, then one of them is chosen randomly as location of the offspring, or as mate, 

respectively. 

Once a mate has been found, the resulting offspring’s traits need to be determined. First, the 

offspring’s ecological adaptation loci are assigned, by randomly choosing one of the two parental sets 

of ecological adaptation loci for the offspring. With a probability equal to the recombination rate r, a 

recombination event occurs prior to inheritance. During recombination, a short sequence is exchanged 

between the parental bit strings. The start position is randomly drawn, the length of the sequence is 

randomly drawn between one and five. Furthermore, with a probability equal to the focal individual’s 

mutation rate, the offspring’s ecological adaptation loci contain a mutation. During mutation, one 

position of the bit string is randomly selected and flipped (i.e. a 0 becomes a 1 and a 1 becomes a 0), 

with no lethal mutations. The mutation rate is per “genome”, not per “gene” (i.e. in each timestep 

there is the potential for one mutation event per individual per bit string, not per bit string position). 

Next, the offspring’s mutation rate is determined. As in model 2, “mutation rate” refers to the 

ecological-adaptation-loci specific mutation rate, an evolvable property of the individual which is 

implemented separately from the rate at which the mutation rate itself mutates. The offspring inherits 

the mutation rate and ecological adaptation loci from the same parent, unless a second recombination 

event occurs, in which case the mutation rate and ecological adaptation loci are inherited from 

different parents. After inheritance, the ecological-adaptation-loci specific mutation rate can itself 

mutate, with a probability equal to the mutation-rate-specific mutation rate. Mutation step sizes are 

randomly drawn from a normal distribution centered around zero with a standard deviation of 0.005, 

and the mutation rate is capped at zero and at one. The offspring is now ready to be added to the 

population. 

Parameter values 

All fixed parameter settings from model 2 were kept unchanged, except for the simulation run time 

which increased to 10000 timesteps. In addition to this, the ecological adaptation loci in the initial 

population are set by randomly choosing a decimal number for each individual between 0 and 1048575 

(the maximal decimal number that can be represented as a bit string with 20 positions), and translating 

it into a bit string. Individuals at later stages obtain their ecological adaptation loci from their parents, 

they therefore do not need to be set externally.  

The results from this model with selection for evolvability were compared with those from a control 

with no selection for evolvability: similar to the control from model 2, the fitness seascape is replaced 

with a flat fitness landscape without environmental fluctuations. All phenotypes receive equal fitness, 

mutations have no fitness consequences, and the mutation rate evolves under drift alone.  The fitness 

pay-off was kept at 0.5 at all times, an average of the fitness values given by a sine curve between zero 

and one. 

As in model 2, I studied how model behaviour is influenced by the neighbourhood size Nb, the speed 

of environmental oscillations s, and the death rate d, although the parameter s is encoded slightly 

differently in this model, due to the more complex phenotype-fitness mapping. In addition to these 



24 
 

parameters, I studied the effect of the selection strength k and the recombination rate r. I used the 

following values: Nb = 1, Nb = 10, Nb = 50; s = 0.01, s = 0.05, s = 0.1; d = 0, d = 0.001, d = 0.05; k = 1, k 

= 3; and r = 0, r = 0.01, r = 0.3. At the maximal neighbourhood size Nb =  50 the population is 

homogeneously mixed and has no spatial structure. Overall, I tested 90 different combinations of 

parameter values. Furthermore, I tested these parameter combinations in several different variations 

of this model – with and without selfing, with bitstrings with 10 or 20 positions as ecological adaptation 

loci, and with different mutation mechanisms. Since I could not identify a qualitative difference 

between those scenarios, I selected one scenario (no selfing, 20 positions, capped mutation rates) for 

a more in-depth quantitative analysis. 

Statistical analysis 

I analysed the model behaviour statistically using a correlation analysis, similar to the analysis carried 

out in model 2. The change in average mutation rate was calculated every 10 time steps as the average 

mutation rate after the next 10 time step minus the average mutation rate in the current time step, 

divided by the number of timesteps (i.e. 10). Data from the first 500 time steps were excluded, to avoid 

potential confounding effects resulting from initialising a small population which still needs to establish 

itself. Using data from timesteps 500 till 10000, I calculated the Pearson coefficient for the correlation 

between the change in average mutation rate and the population size. I repeated this analysis for 30 

replicates. Furthermore, I analysed how those parameters that were varied between simulations 

affected the outcome. To do this, I carried out an anova on the mutation rates obtained at the end of 

the simulations for different parameter values, with 30 replicates for each parameter value. I used 

Tukey’s range test for post-hoc analysis. 

Simulation results 

Overall, the mutation rate showed a striking increase over the course of the simulation for most 

parameter combinations. This increase was not seen in the control simulations without environmental 

oscillations, which instead showed behavior consistent with drift and a bounded random walk (see 

Appendix Figure 4).  

I performed a correlation analysis using Pearson’s correlation coefficient, to test the correlation 

between the change in mutation rate (averaged across the entire population) and the population size. 

In 26 out of 30 replicates, this correlation was significantly negative, showing that the mutation rate 

increases at times of low population sizes, i.e. during population crashes. There were no significantly 

positive correlations. For a table showing correlation coefficients and p-values see Appendix Table 2. I 

performed this analysis using the parameter values s = 0.01, Nb = 1, d = 0.05, k = 1, and r = 0. 

To what extent the mutation rate increases depends on the parameter values. Slower oscillations 

(Figure 20 & Figure 21), higher death rates (Figure 22 & Figure 23), stronger selection (Figure 24 & 

Figure 25), and lower recombination rates (Figure 26 & Figure 27) all lead to higher mutation rates at 

the end of the simulation run time. No effect can observed for neighbouhood size (Figure 28 & Figure 

29). Surprisingly, even under non-zero recombination rates, the mutation rates obtained at the end of 

the simulation are significantly higher than in the control (Figure 30). I tested different death rates by 

varying the death rate in the second round of death events whilst keeping the death rate in the first 

round constant, all values for death rates given in this section therefore refer to the death rate during 

the second round of death events only. Certain parameter combinations caused the populations to go 

extinct, in which case the final average mutation rate was not taken into consideration, as such 

averages are liable to be misleading. When strong selection was combined either with slow oscillations 
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or with high death rates, most or all replicates went extinct relatively early in the simulation. The 

figures shown in this section are example plots illustrating the influence of the tested parameters, not 

all explored parameter combinations are shown here. Plots of all parameter combinations and controls 

are available in the data archive. 

Regardless of the parameter values, the increase in mutation rate does not proceed along a linear or 

repeatable trajectory, but shows instead irregular fluctuations, periods of stasis interspersed with brief 

bursts of steep increases or decreases (see Figure 31). This is also evident in the “fuzzy” appearance of 

those plots showing the average mutation rate over time for 30 replicates (Figures 20, 22, 24, 26, 28). 

This pattern of irregular fluctuations and burst-like evolution is typical for genes evolving via genetic 

hitchhiking. 

 

 
Figure 20: The effect of environmental oscillation speed on mutation rate evolution. This figure shows the increase in the 
population average of the mutation rate over the course of the simulation, for three different environmental oscillation speeds 
with 30 replicates each. Slow environmental oscillations (Figure 20A, s = 0.01) allow the mutation rate to rise further than 
medium (Figure 20B, s = 0.05) or fast environmental oscillations (Figure 20C, s = 0.1). Parameters other than the speed of 
environmental oscillations are kept constant (d = 0, Nb = 1, k = 1, r = 0). 

 

Figure 21: The effect of environmental oscillation speed, statistical analysis. This figure shows the population average of the 
mutation rate at the end of the simulation, for three different environmental oscillation speeds with 30 replicates each. Slow 
environmental oscillations (s = 0.01) allow the mutation rate to rise further than medium (s = 0.05) or fast environmental 
oscillations (s = 0.1). The average mutation rates in the final time step are significantly larger for s = 0.01 compared with s = 
0.05 (p = 0.0003) or compared with s = 0.1 (p = 0.0004), there is no significant difference between the final average mutation 
rate for s = 0.05 and s = 0.1 (p = 0.9932). Parameters other than oscillation speed are kept constant (k = 1, Nb = 1, d = 0, r = 
0). 
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Figure 22: The effect of death rate on mutation rate evolution. This figure shows the increase in the population average of the 
mutation rate over the course of the simulation, for three different death rates with 30 replicates each. Low death rates (Figure 
22A, d = 0) or medium death rates (Figure 22B, d = 0.001) do not allow the mutation rate to rise as far as high death rates 
(Figure 22C, d = 0.05). Parameters other than the death rate are kept constant (s = 0.01, Nb = 1, k = 1, r = 0). 

 

 

Figure 23: The effect of death rate, statistical analysis. This figure shows the population average of the mutation rate at the 
end of the simulation, for three different death rates with 30 replicates each. Low death rates (d = 0) or medium death rates 
(d = 0.001) do not allow the mutation rate to rise as far as high death rates (d = 0.05). The average mutation rates in the final 
time step are significantly larger for d = 0.05 compared with d = 0 (p < 0.0001) or compared with d = 0.001 (p < 0.0001), there 
is no significant difference between the final average mutation rate for d = 0 and d = 0.001 (p = 0. 9106). Parameters other 
than death rate are kept constant (s = 0.01, Nb = 1, k = 1, r = 0). 
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Figure 24: The effect of selection strength on mutation rate evolution. This figure shows the increase in the population average 
of the mutation rate over the course of the simulation, for two different selection strengths with 30 replicates each. Weak 
selection (Figure 24A, k = 1) does not allow the mutation rate to rise as far as strong selection (Figure 24B, k = 3). Parameters 
other than the death rate are kept constant (s = 0.05, Nb = 1, d = 0.001, r = 0.01). 

 

 

Figure 25: The effect of selection strength, statistical analysis. This figure shows the population average of the mutation rate 
at the end of the simulation, for two different selection strengths with 30 replicates each. Weak selection (k = 1) does not 
allow the mutation rate to rise as far strong selection (k = 3) (p = 0. 0013). Parameters other than selection strength are kept 
constant (s = 0.05, Nb = 1, d = 0.001, r = 0.01). 
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Figure 26: The effect of recombination rate on mutation rate evolution. This figure shows the increase in the population 
average of the mutation rate over the course of the simulation, for three different recombination rates with 30 replicates 
each. Low recombination rates (Figure 26A, r = 0) and medium recombination rates (Figure 26B, r = 0.01) allow the mutation 
rate to rise further than high recombination rates (Figure 26C, r = 0.3). Parameters other than the recombination rate are kept 
constant (s = 0.01, d = 0.05, Nb = 1, k = 1). 

 

Figure 27: The effect of recombination rate, statistical analysis. This figure shows the population average of the mutation rate 
at the end of the simulation, for three different recombination rates with 30 replicates each. Low recombination rates (r = 0) 
or medium recombination rates (r = 0.01) allow the mutation rate to rise further than high recombination rates (r = 0.3). The 
average mutation rates in the final time step are significantly larger for r = 0 or r = 0.01 compared with r = 0.3 (p < 0.0001 in 
both cases), there is no significant difference between the final average mutation rate for r = 0 and r = 0.01 (p = 0. 7927). 
Parameters other than recombination rate are kept constant (s = 0.01, Nb = 1, d = 0.05, k = 1). 
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Figure 28: The effect of neighbourhood size on mutation rate evolution. This figure shows the increase in the population 
average of the mutation rate over the course of the simulation, for three different neighbourhood sizes with 30 replicates each 
(Figure 28A: Nb = 1, Figure 28B: Nb = 10, Figure 28C: Nb = 50). The increase in mutation rate is not affected by neighbourhood 
size. Parameters other than the neighbourhood size are kept constant (s = 0.01, d = 0, r = 0, k = 1). 

 

 

Figure 29: The effect of neigbourhood size, statistical analysis. This figure shows the population average of the mutation rate 
at the end of the simulation, for three different neigbourhood sizes with 30 replicates each. There is no significant difference 
between the final average mutation rate for Nb = 1, Nb = 10 and Nb = 50 (p = 0.9606), showing that neighbourhood size does 
not affect mutation rate evolution. Parameters other than neighbourhood size are kept constant (s = 0.01, d = 0, k = 1, r = 0). 
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Figure 30: Evolution of high mutation rates even under sexual reproduction and moderate non-zero recombination rates. The 
mutation rates observed under environmental fluctuations are significantly higher than those observed in the control scenario 
under constant environmental conditions (p < 0.0001), even under sexual reproduction and a non-zero recombination rate of 
r = 0.01. All parameters are kept constant (s = 0.01, d = 0.05, k = 1, Nb = 1, r = 0.01). 

 

Figure 31: Mutation rate evolution under random environmental fluctuations - example trajectories. This plot shows the 
trajectories of mutation rate evolution of three independent trajectories, evolving under identical conditions and parameter 
values (s = 0.01, d = 0, k = 1, Nb = 50, r = 0). The trajectories differ strongly, and show irregular fluctuations and unpredictable 
bursts of sudden steep increases or decreases, patterns commonly observed in genes evolving via genetic hitchhiking. 

Conclusions Model 3 

Overall, Model 3 shows that under fluctuating selection pressures arising from random environmental 

oscillations, the population average of the mutation rate rises. Increases in mutation rate correlate 

with lower population sizes. Slower environmental oscillations, higher death rates (allowing a higher 

population turnover), stronger selection and reduced recombination rates all allow steeper mutation 

rate growth. 
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Discussion 

In all three models, I found a consistent increase over time in the population average mutation rate 

under environmental oscillations. A weaker effect was also observed under fluctuating selection 

pressures caused by negative frequency dependence. This increase in mutation rate is favoured by 

high death rates, strong selection, slow environmental oscillations and low recombination rates, and 

is not influenced by spatial processes. Correlation analyses between population sizes and changes in 

the average mutation rate reveal the link between mutation rate evolution and population dynamics. 

The results were repeatable across vastly differing scenarios, including sexual and asexual 

reproduction, single locus and multi-locus systems, spatially structured populations and spatially 

homogenous populations, and predictable and random environmental fluctuations. 

Population dynamics as driving force in mutation rate evolution 

I here propose environmentally induced repeated founder effects as a novel mechanism for mutation 

rate evolution. This mechanism can be best understood by considering first a scenario in which the 

environmental adaptation is encoded at a single di-allelic locus, as simulated in models 1 and 2. 

Whenever allele A has higher fitness gains, individuals with allele A are more common than those with 

allele B, and have a larger absolute number of births: most new individuals will be born to parents with 

allele A, since they are more abundant and have a higher, fitness-dependent per capita birth rate. Let 

us consider now that individuals born with allele B can come from two sources: they can be the un-

mutated offspring of parents with allele B, or they can be the mutated offspring of parents with allele 

A. Since individuals with allele A have a higher absolute number of births, most individuals born with 

allele B are likely to be the mutated offspring of a parent with allele A rather than the un-mutated 

offspring of a parent with allele B. Parents with higher mutation rates are more likely to have mutated 

offspring. Therefore, the majority of newly born individuals with allele B are not only likely to have had 

parents with allele A, but will also inherit their higher-than-average mutation rate. This creates a 

situation in which there are few, maladapted individuals with allele B which mostly have high mutation 

rates. Next, due to the implemented oscillations in the environment, allele B becomes the new 

adaptive allele. The number of individuals with allele A dwindles, and the population is taken over by 

a growing number of individuals with allele B, all seeded from the small pool of previously maladapted 

B carriers with high mutation rates. The allele for higher mutation rate, overrepresented amongst 

carriers of B, spreads together with the now adaptive B allele. Now are back in the starting conditions, 

as the adaptive allele is more common, and the process repeats. For a schematic visualization of the 

process, see Figure 32. Continuous environmental oscillations ensure repeated events in which the 

population is “re-founded” from a small pool of individuals with high mutation rates, leading to the 

step-wise spread of higher mutation rates seen in model 2. Support for this mechanism comes from 

the correlation analysis carried out in the second model. As predicted, the majority of individuals born 

with the rare allele are the mutated offspring of individuals with the common allele (see Figure 12), 

and the average mutation rate of individuals with a particular allele increases when the allele is rare 

(see Figure 13).  
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Figure 32: Evolution of increased mutation rates through population dynamics: a schematic diagram. Individuals carrying 
allele A are displayed in blue, individuals carrying allele B are displayed in green, new births are displayed in red. The size of 
the circle or arrow indicates the number of individuals. Let us assume that allele A is favoured by selection in the current 
environment. In this case, there are many carriers of allele A (large blue circle) and few carriers of allele B (small green circle). 
Most newly born individuals are the offspring of A carriers rather than of B carriers, as A carriers are both more abundant and 
have, due to their higher fitness, higher birth rates. This is shown graphically by the red arrows departing from A, which are 
broader than the arrows departing from B. The majority of newly born B-carriers (indicated by the red arrows entering the B 
circle) are therefore not offspring of B-carriers (thin arrow entering the B circle) but rather mutated offspring of A-carriers 
(thick arrow going from the A circle to the B circle). Most newly born B-carriers are therefore likely to have a higher mutation 
rate, since individuals with high mutation rates are more likely to be mutated than individuals with low mutation rates. This 
way, higher mutation rates accumulate amongst the B-carriers. Once the environment changes, the B allele will be selected 
for, and the few B-carriers (the green circle) will act as founder population. 

This mechanism of repeated founder effects can be extended to multi-locus systems, as explored in 

model 3. Unlike models 1 and 2, model 3 does not ensure that all mutated individuals are likely to be 

optimally adapted under the next environmental state, since there are many more than two possible 

phenotypes. However, one crucial aspect remains the same: after an environmental change, the 

population is re-founded by a mutated individual which is likely to carry an allele for a high mutation 

rate in addition to the mutated allele adapting it to the new environment. In other words: the rugged 

and periodically changing fitness seascape created by varying environmental conditions generates 

selection for evolvability which leads to an increase in the mutation rate. This is driven by population 

dynamics: lack of environmental adaptation causes population crashes, after which the population is 

founded anew from mutated and thus better adapted individuals. Those individuals are likely to have 

higher mutation rates, and during the population recovery phase, the higher mutation rate hitchhikes 

along with the environmental adaptation allele. Thus a higher mutation rate evolves through a series 

of population crashes and founder events. Support for this mechanism comes from the correlation 

analysis carried out in the third model. As predicted, the change in population average mutation rate 

is inversely related to population size, i.e. the population average mutation rate increases during 

population crashes. 

To some extent, these models explore an already canonical concept: In all three models, the evolution 

or spread of the mutation rate proceeds via hitchhiking with beneficial mutations, for a detailed 

explanation of this mechanism see the introduction. Hitchhiking itself is well-established, and widely 

regarded as the standard mechanism underlying mutation rate evolution. What is new is the emphasis 

on population dynamics: the consistent and rapid spread of higher mutation rates arises through serial 

founder events facilitated purely by population dynamics. 
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Considering the significance of population crashes in these models, it is worth examining them more 

closely. Interestingly, the population crashes observed in the single-locus models (models 1 and 2) are 

starkly different from those observed in the multi-locus model (model 3), see Figure 33. In the multi-

locus model, irregular severe reductions of population size occur: when the environment changes and 

the population is strongly maladapted, then the birthrates are low enough to cause a crash. This does 

not occur at regular intervals, as some new environments are sufficiently close to the old one to 

prevent a full crash (Figure 33C). The situation in single-locus models is quite different: here, there are 

no population crashes in the conservative sense, as there are no strong fluctuations in total population 

size (Figure 33A and 33B). Nevertheless, there are functional population crashes. When the 

environment changes, it is merely a small minority which reproduces: since reproductive rates are 

fitness dependent, the majority of the population is functionally gone –they do not reproduce and are 

therefore invisible to selection. They merely linger for the rest of their lifespan, and their replacement 

proceeds too fast to allow a drop in total population size. Yet, if one considers the carries of the allele 

A and the carries of allele B as two subpopulations, these subpopulations undergo separate crashes, 

with peaks in population sizes of one subpopulation masking the crash of the other (see Figure 13 or 

Figure 14). Overall, both types of population crashes, overt ones and masked ones, lead to the same 

population dynamics of repeated founder events and an associated increase in the mutation rates. 

 

Figure 33: Population dynamics in different models. These plots show examples of the population size changes over time for 
model 1 (Figure 33 A), model 2 (Figure 33 B) and model 3 (Figure 33 C). Model 3 shows severe population crashes, whereas in 
model 1 and 2 the population size stays approximately constant. The x-axes of the plots differ due to the differences in 
simulation run time (1500 time steps in model 1, 5000 time steps in model 2 and 10000 time steps in model 3). 
 

Mutation rate evolution under sexual reproduction 

This reliance on population dynamics plays a decisive role in the topic of mutation rate evolution under 

sexual reproduction. Much of the literature on mutation rate evolution considers the evolution of high 

adaptive mutation rates under sexual reproduction unlikely (Sniegowski et al. 2000, Baer 2007, 

Martincorena & Luscombe 2013).  Genetic hitchhiking relies, by definition, on linkage between the 

mutator allele and the beneficial mutation, and recombination during sexual reproduction breaks this 

linkage (for a more in depth discussion of the literature, see the introduction). However, in my model 

extensive evolution via genetic hitchhiking can be observed despite sexual reproduction (model 3). I 

propose that this results from the population dynamics: the mutator allele spreads via a rapid genetic 

sweep after a population crash. It is a well-documented phenomenon in population genetics that such 
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population bottlenecks and inbreeding often go hand in hand (see for example Frankham 1998, Triest 

& Tim 2015) – and inbreeding reduces the effective amount of recombination caused by sexual 

reproduction, allowing the linkage to be maintained. Thus mutation rate evolution via repeated 

founder events might circumvent the challenges posed by sexual reproduction. Further to this, a 

second type of linkage can be observed in those models in which the environmental adaptation is 

encoded in a single di-allelic locus. As explained above, most instances of mutation are from the fit to 

the unfit environmental adaptation allele, since carriers of the fit allele are more common. This gives 

rise to a statistical linkage between the mutator allele and the currently detrimental mutation – 

however, due to the alternating selection pressure, this mutation will soon be selected for, producing 

a statistical linkage between the mutator and the now beneficial mutation. This linkage crucially does 

not arise from a physical connection, and thus cannot be broken by recombination or sexual 

reproduction. Whilst I did not test the combination of a single-locus di-allelic environmental adaptation 

gene and sexual reproduction, I predict based on my results that such a statistical linkage may be able 

to compensate for recombination during sexual reproduction. A similar statistical linkage between 

mutator allele and beneficial mutation in connection with repeated founder events was already found 

in a previous study, but arose there through a different mechanism which operates through spatial 

sorting in an expanding population (Cobben et al. 2017). Overall, these connections between 

population dynamics and linkage demonstrate that population dynamics do indeed play a crucial role 

in mutation rate evolution. 

The influence of model parameters 

The steepness of mutation rate increase, and the mutation rate values obtained at the end of the 

simulation, are influenced by several different parameters. In fact, all parameters other than 

neighbourhood size had statistically significant impacts on the mutation rate values at the end of the 

simulation. Furthermore, the impact of the tested parameters on mutation rate evolution was 

repeatable across model types, despite the differences between models, increasing the robustness of 

these results. This does not apply to selection strength and recombination rate, which were tested in 

the third model only. First I want to consider the effect of recombination rate: high recombination 

rates break the linkage between mutator and beneficial mutation, and thus prevent the spread of 

higher mutation rates. This link between recombination and mutation rate evolution is already well-

established (see for example Gerrish et al. 2007). However, varying recombination rates in this model 

demonstrates that the population dynamics discussed above allow high mutation rates to evolve, 

despite non-zero recombination rates and sexual selection, something that is traditionally thought to 

be unlikely (Sniegowski et al. 2000, Martincorena & Luscombe 2013). 

The next parameter of interest is the speed at which the environment changes. Generally, the mutation 

rate increases less under faster environmental oscillations. I suggest that under fast oscillations, the 

population is no longer forced to adapt to the changed environment  via mutation, since soon enough 

a more favourable environment will return: instead of genetic adaptation, the population can simply 

bide their time unchanged. Environmental oscillations therefore need to be slow enough compared to 

life span to encourage genetic adaptation. This also explains the interaction between oscillation speed 

and the population-wide death rate observed in model 2: environmental oscillations occurring at the 

same speed did not lead to a mutation rate increase in populations with low death rates, and to a 

strong increase in populations with high death rates. This shows that high death rates prevent the 

ability of a population to “bide their time unchanged”, environmental oscillation speeds should 

therefore be considered in relation to the death rate. Indeed, in models with especially high death 

rates, mutation rates actually increased more under fast oscillations – presumably due to the larger 

total number of founder effects: doubling the oscillation speed doubles the number of founder events 
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occurring in the simulation time span. The interaction of lifespan and speed of environmental 

oscillations is therefore crucial to understanding how a changing environment impacts mutation rate 

evolution.  

In addition to their interaction with oscillation speed, higher population-wide death rates favour higher 

mutation rates through a second mechanism: increased death rates cause increased population 

turnover, thus exacerbating the severity of population crashes and allowing high-mutator strains to 

replace the previous population more efficiently during the founder event following the population 

crash. This is mirrored by the effect of selection strength: in the third model, increasing selection 

strength lead to steeper mutation rate increases. As with higher death rates, stronger selection, i.e. a 

steeper fitness gradient, deepens population crashes and thus helps the mutation rate to spread. Both 

high death rates and strong selection thus favour those population dynamics that, as discussed above, 

lie at the very heart of mutation rate evolution in these models. 

The role that death rate plays in the evolution of mutation rates is especially interesting considering 

the large body of literature linking stressful environmental conditions and the evolution of mutation 

rates. A range of experimental studies found that in both prokaryotes and eukaryotes, stressful 

environmental conditions are associated with high mutation rates (Hoffman & Hercus 2000, Lamb et 

al. 2008, Matic 2013, Swings et al. 2017). This result is often explained either as a maladaptive failure 

of replication faithfulness assurance mechanisms, or as an adaptive response allowing organisms to 

adapt to a new environment. In addition to those explanations, my study proposes population 

dynamics as a novel link between stressful environments and mutation rate evolution: in stressful 

environmental conditions, death rates are higher. This allows population dynamics with frequent and 

severe population crashes to emerge, which in turn favours the evolution of higher mutation rates. 

Interestingly, one empirical paper on the link between stressful environmental conditions and 

mutation rates did indeed find an association between hypermutator strains and increased death rates 

(Swings et al. 2017). However, the authors suggest that this is due to the accumulation of deleterious 

mutations caused by the high mutation rate, casting high death rates as a cost of mutation selecting 

against higher mutation rates. This is in contrast to my models where high death rates, induced 

environmentally rather than through genetic load, favour higher mutation rates. 

Implications for other fields of study 

The findings of this study have exciting implications for other fields and topics. For example, it is an 

established result in population genetics that bottlenecks cause inbreeding and thus a loss of diversity. 

However, based on my results showing that both bottlenecks and inbreeding allow the evolution of 

larger mutation rates, one might speculate that after the population bottleneck, elevated mutation 

rates might generate increased amounts of novel variation, which could compensate for this loss of 

diversity. On the other hand, increased mutational loads caused by the elevated post-bottleneck 

mutation rates might compound problems in populations already suffering from inbreeding 

depression. Considering the link between population dynamics and mutation rate evolution in the 

context of population genetics of endangered species might thus open up new avenues for 

conservation related research. Furthermore, this study shows a link between mutation rate evolution 

and population dynamics, especially population crashes. Therefore, anything that buffers population 

crashes might reduce evolvability, such as plasticity (Nicotra et al. 2010), life-history strategies (Ferrer 

et al. 2004), or buffer effects created by environmental conditions like variation in territory quality (Gill 

et al. 2001). Conversely, anything that might induce population crashes, or at least oscillations in 

population size, might increase evolvability, including patterns of synchronized dispersal or predation 

(Huitu et al. 2005), environmental, biophysical or climatic fluctuations (Robinson 2012), and chaotic 

population dynamics (Tilman & Wedin 1991). 



36 
 

Conclusion 

Overall, this study shows the evolution of elevated mutation rates under environmental fluctuations, 

facilitated by population dynamics displaying repeated population crashes followed by repeated 

founding events. Parameter combinations that heighten these population dynamics further mutation 

rate evolution, including slower environmental oscillations, higher population wide death rates, 

steeper selection gradients and lower recombination rates. Emphasizing the role of population 

dynamics in mutation rate evolution opens up new avenues for further research, including new facets 

of how linkage may affect genetic hitchhiking under sexual reproduction, and implications for 

population genetics and conservation studies of species undergoing population bottlenecks. 
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Evolution of evolvability II: Selection for enhanced mortality? 

Introduction 

Delaying death, or even attaining immortality, has attracted the fascination of scientists and artists 

alike throughout human history. Researching the evolutionary origins of ageing and the mechanisms 

determining lifespan is also of great medical relevance: a greater understanding of ageing might help 

us to potentially reverse some of the effects, giving us a new approach for age-related deteriorations 

in health. These implications for the medical field and human well-being has led to the science of 

ageing receiving increasing attention (Goldsmith 2008, Lopez-Otin et al. 2013, Grey 2015, Rando & 

Chang 2012). 

Ageing can be defined as an age-related increase in mortality. I will here consider literature not only 

on ageing, but on mortality, lifespan and death rates as well, since despite subtle differences they are 

essentially closely related ways of approaching the same concept. I will also focus on intrinsic mortality, 

distinct from extrinsic mortality, i.e. distinct from mortality due to outside influences such as predation 

or accidents. From an evolutionary point of view, intrinsic mortality poses a puzzling question: 

considering that immortal beings could, theoretically, live and reproduce forever, why do we see 

intrinsic mortality at all? The answers to this question are manifold, but can be split into two opposing 

sides:  explanations considering intrinsic death maladaptive (also referred to as non-programmed 

death), and explanations considering intrinsic death as adaptive (also referred to as programmed 

death).  

The former explanations are well established in the literature on death rates and ageing, and are 

commonly categorized into three classical theories of ageing: the mutation accumulation theory, the 

antagonistic pleiotropy theory and the disposable soma theory. The first of these, the mutation 

accumulation theory, suggests that mutations acting late in life cannot be removed efficiently by 

selection and thus accumulate: most individuals die by a certain age due to external factors, and 

mutations acting after this age are shielded from selection by virtue of not being expressed sufficiently 

often (Medawar 1952, Medawar 1946). In other words, late-acting mutations lie in the selection 

shadow of extrinsic mortality. The second of the classical theories suggests an antagonistic pleiotropy 

between traits which are beneficial at early life stages but disadvantageous at later stages. Such genes 

might still be favoured by evolution, as early life stages are critical to overall fitness, even if it comes a 

survival cost in later life stages (Williams 1957). Finally, the disposable soma theory proposes a similar 

trade-off, with the role of the early life benefit played by an increase in reproductive output. The idea 

here is that resources can be invested either in reproduction or repair, and any increase in fertility is 

paid for with a reduction in lifespan (Kirkwood 1997). From a gene’s point of view, so to speak, the 

germline is crucial for evolutionary success, whereas the survival of the individual, i.e. the soma, is 

secondary – reproduction may be valued over repair, leading to the term “disposable soma”. The 

common theme throughout these three theories is that any intrinsic death is necessarily maladaptive 

and would be selected against, were selection not bound in its efficiency by selection shadows or trade-

offs. 

However, there is also some indication that intrinsic mortality rates need not be determined by the 

maladaptive but inevitable processes assumed in the classical ageing theories. First evidence comes 

from the various species which do not show the classical intrinsic death rates or age induced increases 

in mortality observed in most other animal species, such as famously the “immortal jellyfish” 

Turritopsis dohrnii, as well as various species of rockfish, sturgeon, or bivalves (Finch & Austad 2001). 
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Indeed, some species even show negative senescence: an age-related decrease in mortality (Vaupel et 

al. 2004, Jones et al. 2014). These species thus offer support to the idea that intrinsic immortality might 

not be as fundamentally impossible as often assumed, and ageing might not be an universal 

unavoidable constraint but rather a unique feature of a limited number of species. Furthermore, even 

species which at first glance seem to fit the model of inevitably and maladaptively short lifespans, such 

as mice, rats or fruit flies, can experience greatly extended lifespans through caloric restrictions 

(Masoro 2003) or through specific mutations (Bartke 2001, Lithgow & Gill 2003) – demonstrating that 

observed constraints on lifespan are not necessarily unavoidable, and therefore require an explanation 

beyond the ones given in the classical theories of ageing. Some studies also tested the underlying 

assumptions of the classical theories of ageing, and found them not to be universal: for example, both 

intra- and interspecies comparisons show that there is no general inverse relationship between fertility 

and lifespan, confirming that the repair-reproduction trade-off is not compelling (Ricklefs & Cadena 

2007, Mitteldorf 2010, Tarín et al. 2014). Finally, some indication for pathways by which such adaptive, 

programmed lifespan restrictions might be realised come from studies into cellular senescence (Rhinn 

et al. 2019), conserved mechanisms of ageing in protists (Clark 2004) as well as from research on 

epigenetic clocks (Lowe et al. 2016). 

These studies, attesting to the discrepancies between purely maladaptive death theories and empirical 

data, give rise to an intriguing question: if intrinsic mortality is indeed not as unavoidable as postulated 

in classical ageing theories, then why do we observe any intrinsic mortality or programmed lifespan 

limitations in the first place? In answer to this question various adaptive ageing hypotheses have been 

proposed, which can be classified broadly into three categories: evolution through group selection, 

through kin selection, or through selection for evolvability (see amongst others Goldsmith 2014). 

Group selection arguments suggest a role for ageing in preventing resource depletion and group 

extinction and ultimately in stabilizing population dynamics (Mitteldorf 2006, Werfel et al. 2015). Kin 

selection arguments were first brought forward by Wallace in the 1860s, suggesting that intrinsic 

mortality may prevent parents from competing with their offspring (Wallace 1889). This and similar 

ideas were tested in various theoretical papers (see for example Travis 2004), however under strongly 

simplifying assumptions such as young offspring being intrinsically more valuable than older parents, 

invoking, for example, age-related declines in reproductive fitness. This is problematic as fundamental 

aspects of ageing (i.e. age-related declines in fitness) must be presumed in order to explain the 

evolution of ageing. Finally, there have been to date several attempts to explain adaptive ageing using 

the concept of evolvability. In the 1880s, before the concept of evolvability was first established, 

Weisman first proposed that aging might allow a faster spread of new alleles, and be favoured by 

selection on this basis (Weisman 1889). Evolvability has since frequently been mentioned or discussed 

in various reviews on death rate evolution (for example Goldsmith 2014), but surprisingly only few, 

partially not peer-reviewed papers aimed to investigate this link between evolvability and death rate 

(Libertini 1983, Libertini et al. 2017). These papers addressed important parts of the question about 

how evolvability and death rates are linked, such as the extent to which favourable alleles spread faster 

under higher death rates. However, to the best of my knowledge, no paper so far has explicitly tested 

whether selection for evolvability can cause elevated death rates. 

I here want to investigate the hypothesis that the joint action of selection for evolvability and kin 

selection lead to the evolution of elevated death rates in kin structured and resource limited 

environments. The underlying mechanism that I propose is the following: In a resource limited and kin 

structured population, related individuals share and compete over resources. The death of one 

individuals thus frees up resources for its relatives, increasing the indirect fitness of the dead individual 

– kin selection hence alleviates the fitness costs of dying. On its own, this would not be enough to give 

rise to elevated death rates, as replacing oneself with a non-identical relative generally decreases 
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fitness. However, in a variable environment selecting for evolvability such non-identical kin are of great 

value: each extra relative represents another opportunity to find a novel solution to the constantly 

changing ecological challenges. These kin, in turn, will generate new variation by reproducing and 

freeing up resources for the future generations through their own early death. In other words: early-

death lines experience greater population turnover, allowing them to cycle through more genetically 

different sets of offspring than longer-lived lines. They thus experience a greater deal of genetic 

variation and are more likely to chance across novel solutions to ecological challenges: higher death 

rates increase their ability to keep up with the changing selection pressures of a changing environment, 

ultimately increasing evolvability. From a gene’s point of view, a novel allele for ecological success in 

the current environment is more likely to arise in a genome containing an allele for earlier death than 

in a genome containing an allele for delayed death, and the earlier death allele can then hitchhike 

along with the selective sweep of the novel ecological adaptation allele. To sum up: I here test the 

hypothesis that in a kin-structured population in a resource-limited environment, fluctuating 

environmental conditions select for increased evolvability which is achieved through a decreased 

lifespan. 

Model description 

Model structure 

T The fourth model, exploring death rate evolution, is largely identical to the third model, showing 

mutation rate evolution under sexual selection. Thus, this model too features sexual reproduction, 

multi-locus genetics, non-linear genotype-phenotype mapping and random environmental 

fluctuations – with one difference: the mutation rate is set at a constant value, and instead the death 

rate (specifically, the death rate during the second round of death events) is allowed to evolve. 

Parameter values 

All fixed parameter settings from model 3 were kept unchanged, including the simulation run time of 

10000 timesteps. As in model 3, I studied how model behaviour is influenced by the neighbourhood 

size Nb, the speed of environmental oscillations s, the selection strength k, and the fixed death rate 

during the second round of death events d. Separating the evolvable death rate and the fixed death 

rate into two separate rounds of death events allows me to implement different levels of maximal 

lifespans, without interfering with the evolution of the evolvable death rate in the first rounds of death 

events. This way, the evolution of the evolvable death rate remains comparable between simulations 

with different parameter settings. Unless specified, “death rate” refers to the evolvable death rate in 

the rest of the report, and not to the population-wide fixed death rate. Varying neighbourhood size 

allows me to manipulate the strength of kin selection: smaller neighbourhoods result in increased kin 

structure, and thus more powerful kin selection. At maximal neighbourhood size Nb = 50 the 

population is homogeneously mixed and has no spatial structure, kin selection is hence absent. Overall, 

I tested 180 different combinations of parameter values. 

Furthermore, I explored different variations of this model – with and without selfing, with bitstrings 

with 10 or 20 positions as ecological adaptation loci, with different mutation mechanisms, and with 

and without a trade-off between reproduction and life span. Since I could not identify a qualitative 

difference between those scenarios, I selected one scenario (no selfing, 20 positions, capped death 

rates, no trade-off between reproduction and life span) for a more in-depth quantitative analysis. 
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Control simulations 

The results from this model were compared with those from two different controls: firstly, a simulation 

without selection for evolvability, and secondly a simulation without kin selection. In the first control, 

the oscillating fitness seascape is replaced with a flat fitness landscape, and the environment is thus 

stable. The fitness pay-off is kept at 0.5 at all times, an average of the fitness values given by a sine 

curve between zero and one. In the second control, a homogeneously mixed population is achieved by 

setting the neighbourhood size to the maximum value of 50. This absence of kin structure does not 

allow for kin selection to act. 

Differences in death rate between the model and the first control show the effect of an oscillating 

environment selecting for evolvability. In the case of selection for evolvability overpowering selection 

for immortality, leading to increasing death rates, this is a decisive control. However, in the case of 

decreasing death rates, the situation is not entirely clear yet: a less steep decline in death rates could 

be due to selection for higher death rates caused by selection for evolvability – or it could be due to 

repeated founder events in oscillating environments increasing the strength of drift and hence 

reducing the efficiency of selection for immortality. The second control is then used to separate the 

action selection for evolvability from the action of drift. As kin selection is not acting in the second 

control, selection for evolvability cannot act on death rates. Any differences between simulations 

evolving under stable and under oscillating environments is then merely due to the differences in the 

strength of selection for immortality. To summarise, the hypothesis is accepted if there is a difference 

in model behaviour between the model and control 1, and if this difference is not evident in the 

comparison of control 2 and control 1. 

Data analysis 

The most obvious data analysis – comparing the evolved values of the death rate at the end of the 

simulation – was not feasible in this model. Overall, all simulations lead to the evolution of very low 

death rates. Once death rates have dropped below a certain value, they are unlikely to respond to any 

selection pressure: elongating lifespans follows the law of diminishing returns (Olshansky 2018), 

weakening the selection for longer lifespans. Furthermore, once the duration of the lifespan 

approaches the remaining duration of the simulation, the lifespan phenotype is not expressed 

sufficiently often to be acted upon by selection. In fact, in most simulations, the death rates rapidly 

achieve a value that translates to a lifespan close to the remaining simulation run time. The remaining 

analysis of the simulation results therefore focuses not on the death rate obtained at the end of the 

simulation run time, since these might be subject more to drift than selection and thus uninformative, 

but rather on a two-pronged approach: the slope of the death rate trajectory, and the change in death 

rate between timesteps. 

The slopes of the death rate trajectory are calculated in the following way: I used the lm() function in 

R to fit a linear regression model to the data from each replicate separately. The slope of this model 

can be considered to be the slope of the death rate trajectory, resulting in 30 trajectory slopes for the 

30 replicates from each parameter combination. For this analysis, the data on death rates below 0.01 

were excluded, allowing me to avoid regions of low selection strength and consider only the linear 

section of the death rate trajectory. I confirmed the fit of the linear model slope to the corresponding 

trajectory through visual inspection for a sample of the data. Certain parameter combinations caused 

the populations to go extinct, those replicates were excluded from the analysis, as such averages are 

liable to be misleading. In cases where more than 5 replicates went extinct, the entire parameter 

combination was excluded from the analysis. The thus obtained data on the death rate trajectory 

slopes was analysed using the Wilcoxon test for pair-wise comparisons and ANOVA with post-hoc 

Tukey tests for comparisons of more than two parameter combinations. 



45 
 

The second approach to this project focuses on the change in death rate between timesteps, relating 

it to the population dynamics. The question here is how death rate changes during population crashes: 

does it increase (Figure 1 A) or decrease (Figure 1 B)? For this analysis I combined the data of all 30 

replicates for each parameter combination tested, but excluded data from the first 500 time steps. 

This ensures that only established population dynamics are included, i.e. it prevents artefacts caused 

by the initial population size which is small not due to the underlying population dynamics but due to 

the initialization process. For the remaining simulation length, I calculated every ten time points: the 

difference in death rate ∆𝑑 =
𝑑(𝑡 + 10) −  𝑑(𝑡)

10
⁄ , the absolute population size N(t), and the 

difference in population size ∆𝑁 =
𝑁(𝑡 + 10) −  𝑁(𝑡)

10
⁄ . Next, the data is divided according to the 

population dynamics, using two different classification methods. In the first method, I separate stable 

phases and crash phases according to the population size, using a threshold 𝑥 = 𝑝 ∗ 𝑚𝑁, where mN is 

the median population size and p is either 0.8 or 0.9. If the number of individuals is above the 

threshold, the population is stable (N(t) > x), elsewise it is undergoing a population crash (N(t) < x). 

Varying the value of p did not affect the results. In the second method, I separated stable phases, 

phases of population decline and phases of population recovery according to the changes in population 

size rather than according to the absolute population size: stable phases are defined as −10 < ∆𝑁 <

10, phases of population decline as ∆𝑁 < −10, and phases of population recovery as ∆𝑁 > 10. I 

performed a t-test on the changes in death rate ∆𝑑 from each of the two (classification by population 

size) or three (classification by change in population size) population dynamics categories, to test 

whether the values of ∆𝑑 are significantly above or below zero. To counteract possible oversampling 

errors, I drew 1000 subsamples for each population dynamics category, performing the t-test for each 

subsample. I repeated the subsampling analysis for different subsample sizes Ns = 100, Ns = 200, or Ns 

= 500. Furthermore, the entire analysis of the change in death rate between timesteps was repeated 

for different parameter values: Nb = 3, Nb = 10, Nb = 50, and the control simulation with a flat fitness 

landscape. 

 

Figure 1: Example plots showing death rate trajectories (red) during population crashes (population 

size in black). The second approach to data analysis considers how the population average of the death 

rate changes during a population crash: does it increase (Figure 1 A) or does it decrease (Figure 1 B)? 

In other words, across all thirty replicates for one parameter combination, do cases such as Figure 1 A 

or cases such as Figure 1 B predominate? 
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Simulation results 

Evolution of immortality 

Across all replicates of all parameter combinations, two main simulation outcomes can be observed: 

extinction (see Figure 2 A) or immortality (see Figure 2 B). In the majority of parameter combinations, 

the population average of the death rate declines sharply, allowing the population to reach literal 

immortality (death rate = 0) or functional immortality (extremely low death rates). Once death rates 

have dropped below a certain value, they are unlikely to respond to any selection pressure. The 

remaining analysis of the simulation results therefore focuses not on the death rate obtained at the 

end of the simulation run time, since these might be subject more to drift than selection, but rather 

on the slope of the death rate trajectory. 

Figure 2: Typical simulation outcomes. Under all tested parameter combinations, the population meets 

one of two evolutionary fates. Either all populations in all replicates go extinct early in the simulation 

(Figure 2 A), or the populations evolve immortality by the end of the simulation (Figure 2 B). 

Testing selection for evolvability  

The hypothesized evolution of adaptive high death rates necessitates two prerequisites. The first one 
is selection for increased evolvability – otherwise, the death rate would be exposed to selection for 
elongated lifespans only. The results of model 3 (which differs merely in allowing the mutation rate to 
evolve, rather than the death rate) show that under environmental oscillations, increased mutation 
rates evolve, indicating that this model does indeed select for increased evolvability. 

Testing kin selection 

The second prerequisite is the presence of kin structured populations and kin selection. The death rate 
shows a shallow decline in small neighbourhood sizes with strong kin structure,  and a steep decline in 
large neighbourhood sizes with weak kin structure (Figure 3). This indicates the presence of kin 
selection in strongly kin-structured populations, counteracting and weakening selection for 
immortality: the cost of dying earlier is mitigated if it benefits related individuals by increasing their 
resource availabilities. This pattern is clearly evident under population-wide low fixed death rates, but 
less clear under population-wide high fixed death rates and oscillating environments, likely due to 
death rates and population crashes facilitated by the changing environment increasing population 
turnover and hence diluting the population kin structure (Figure 4). Overall, this shows that kin 
selection does indeed act in this system, and is stronger in simulations with smaller neighbourhood 
sizes.  
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Figure 3: Comparison of death rate evolution under different levels of kin selection, under low fixed 

death rates. This plot shows the slope of the evolutionary trajectory of the death rate, for simulations 

with different neighbourhood sizes. In simulations with small neighbourhood sizes (Nb = 1) the 

population has a pronounced kin structure, leading to strong kin selection. In simulations with large 

neighbourhood sizes (Nb = 10) the population is largely homogeneous, leading to weak kin selection. 

Whilst all trajectory slopes are negative, those from simulations with strong kin selection show a much 

more shallow decline: strong kin selection thus allows higher death rates to be maintained. Parameters 

other than the neighbourhood size are kept constant (s = 0.1, d = 0.001, k = 1). 

 

 
Figure 4: Comparison of death rate evolution under different levels of kin selection, under high fixed 

death rates. This plot shows the slope of the evolutionary trajectory of the death rate, for simulations 

with different neighbourhood sizes. Whilst slopes of death rate trajectories evolved in small 

neighbourhood sizes (Nb = 1) are less steep than those evolved in large neighbourhood sizes (Nb = 10), 

the pattern is much less pronounced than the one seen in Figure 3 (low fixed death rate). A high fixed 

death rate thus weakens the impact of kin selection. Parameters other than the neighbourhood size 

are kept constant (s = 0.1, d = 0.05, k = 1). 
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The impact of oscillating environments on the slope of death rate trajectories 

In kin structured populations (i.e. Nb ≠ 50), the death rate declines significantly slower under 

environmental oscillations compared with under stable environments. This difference in death rate 

slope is influenced by several different parameters: slower environmental oscillations (Figure 5), higher 

population-wide fixed death rates (Figure 7), and stronger selection (Figure 9) all allow the death rate 

to decline slower. In populations without kin structure (i.e. Nb = 50), the same patterns can be 

observed: a significantly slower decline of the death rate under environmental oscillations, enhanced 

by slower environmental oscillations (Figure 6), higher population-wide fixed death rates (Figure 8), 

and stronger selection (Figure 10). 

Under several parameter combinations, the populations of most or all replicates went extinct. Nearly 

all populations both with and without kin-structure went extinct when evolving under a combination 

of high population-wide fixed death rates (d = 0.05 or d = 0.075) and strong selection (k = 3). No 

extinctions happened in the control simulations with a stable environment, regardless of parameter 

combination. 

 

 
Figure 5: The effect of environmental oscillation speed on death rate evolution, in kin structured 

populations. The figure shows the slope of the death rate trajectory for 4 different environmental 

oscillation speeds as well as for the control in which the environment remains stable, with 30 replicates 

for each. All death rate trajectories show a decline, however, under slow environmental oscillations the 

decline is less steep. Parameter values for which the slopes of the death rate trajectories are 

significantly different from those in the control simulations are marked with an asterisk. Parameters 

other than the speed of environmental oscillations are kept constant (d = 0.075, Nb = 1, k = 1). 
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Figure 6: The effect of environmental oscillation speed on death rate evolution, in populations without 
kin structure. The figure shows the slope of the death rate trajectory for 4 different environmental 
oscillation speeds as well as for the control in which the environment remains stable, with 30 replicates 
for each. The results are comparable to those from Figure 5 with kin structure: All death rate trajectories 
show a decline, under slow environmental oscillations the decline is less steep. Parameter values for 
which the slopes of the death rate trajectories are significantly different from those in the control 
simulations are marked with an asterisk. Parameters other than the speed of environmental oscillations 
are kept constant (d = 0.075, Nb = 50, k = 1).  

Figure 7: The effect of the fixed population-wide death rate on death rate evolution, in kin structured 
populations. The figure shows the slope of the trajectory of the individually evolvable death rate for 4 
different environmental oscillation speeds as well as for the control in which the environment remains 
stable, with 30 replicates for each. Figure 7 A: under low fixed death rates (d = 0), the slopes of the 
death rate trajectory for any environmental oscillation speed are not different from those in the control. 
Figure 7 B: under high fixed death rates (d = 0.075), the slopes of the death rate trajectory are 
considerably less steep under environmental oscillations than in the control, especially under slow 
environmental oscillations. Parameter values for which the slopes of the death rate trajectories are 
significantly different from those in the control simulations are marked with an asterisk. Parameters 
other than the fixed death rate and the speed of environmental oscillations are kept constant (Nb = 3, 
k = 1). 
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Figure 8: The effect of the fixed population-wide death rate on death rate evolution, in populations 
without kin structure. The figure shows the slope of the trajectory of the individually evolvable death 
rate for 4 different environmental oscillation speeds as well as for the control in which the environment 
remains stable, with 30 replicates for each. The results are comparable to those of Figure 7: under low 
fixed death rates (d= 0), there is no difference in the slopes of the death rate trajectory between 
simulations with environmental oscillations and control simulations (Figure 8 A). Under high fixed death 
rates (d = 0.075), the slopes are less steep under environmental oscillations compared with the control 
simulations (Figure 8 B). Parameter values for which the slopes of the death rate trajectories are 
significantly different from those in the control simulations are marked with an asterisk. Parameters 
other than the fixed death rate and the speed of environmental oscillations are kept constant (Nb = 50, 
k = 1). 

Figure 9: The effect of selection strength on death rate evolution, in kin structured populations. The 
figure shows the slope of the death rate trajectory for 2 different levels of selection strength, as well as 
for the control in which the environment remains stable, with 30 replicates for each. All death rate 
trajectories show a decline, however, under strong selection the decline is less steep. Parameter values 
for which the slopes of the death rate trajectories are significantly different from those in the control 
simulations are marked with an asterisk. Parameters other than the selection strength are kept 
constant (s = 0.01, d = 0.001, Nb = 10). 
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Figure 10: The effect of selection strength on death rate evolution, in populations without kin structure. 
The figure shows the slope of the death rate trajectory for 2 different levels of selection strength, as 
well as for the control in which the environment remains stable, with 30 replicates for each. The results 
are comparable to those from Figure 9 with kin structure: All death rate trajectories show a decline, 
under stronger selection the decline is less steep. Parameter values for which the slopes of the death 
rate trajectories are significantly different from those in the control simulations are marked with an 
asterisk. Parameters other than the selection strength are kept constant (s = 0.01, d = 0.001, Nb = 50). 

Linking population dynamics and death rate evolution 

Investigating the change in death rate during different phases of population dynamics can reveal more 
subtle effects of the selection for evolvability. In the first approach I separated stationary phases and 
crash phases according to the population size at any given point. I will present the results from setting 
the threshold at 80% of the median, changing the threshold to 90% of the median did not affect the 
results. For this analysis I chose to concentrate on simulations with fast oscillations (s = 0.1), high fixed 
death rates (d = 0.05) and strong selection (k = 3). In the control simulations with constant selection 
pressures and a fixed, flat fitness landscape, the population remains in the stationary phase, i.e. the 
population is stable and near its maximum during the entire simulation length (Figure 11). The change 
in death rate is significantly different from zero and negative. Under environmental oscillations, both 
stationary and crash phases can be observed (Figure 12). During the stationary phase, the change in 
death rate is significantly different from zero and negative; during the crash phases, the change in 
death rate is not significantly different from zero. This is observed both in simulations with kin structure 
(Figure 12 A), and in simulations without kin structure (Figure 12 B). The figures shown in this section 
are example plots illustrating the influence of the tested parameters, not all explored parameter 
combinations are shown here. Plots of the other parameter combinations are available in the data 
archive.  

These results are based on a large sample size – during one simulation run time (disregarding the first 
500 time steps), 950 data points for the change in death rate are calculated, which for 30 replicates 
results in a sample size of 28500 for each parameter combination (distributed unevenly across 
stationary and crash phases). To control for oversampling, I subsampled the dataset 1000 times and 
repeated the analysis. For histograms of p-values and mean changes in average death rate please see 
Appendix Figure 5 and Appendix Figure 6, as well as the data archive. Overall, the subsampling analysis 
confirms the results given above: most subsamples from stationary phases show significantly negative 
changes in death rate, whereas most subsamples from crash phases do not show changes in death rate 
that are significantly different from zero. This is true for simulations with and without kin structure.  
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Figure 11: This figure shows the change in average death rate during intervals of 10 timesteps for 

control simulations with a stable environment. In control simulations, the population is in the 

stationary, stable phase only. The change in average death rate is significantly different from zero and 

negative (p < 0.001, mean = − 5.19 ∗ 10−6). In other words, during the control simulations populations 

are consistently stable and the population average death rate declines, indicating evolution of 

immortality. 

 

Figure 12: This figure shows the change in average death rate during intervals of 10 timesteps for 

populations with kin structure (Figure 12 A, Nb = 10) and without kin structure (Figure 12 B, Nb = 50). 

There is no clear difference between results shown in Figure 12 A and Figure 12 B, indicating that kin 

structure has no impact on the results. During stationary phases, the mean change in average death 

rate is negative  (Figure 12 A: p <  0.001, mean = − 5.67 ∗ 10−6; Figure 12 B: p <  0.001, mean = − 5.53 ∗

10−6). During the crash phase, the mean change in average death rate is not significantly different 

from zero (Figure 12 A: p = 0.141, mean = 2.47 ∗ 10−6 ; Figure 12 B: p = 0.662, mean = 6.04 ∗ 10−7).  

In the second approach I separated stationary phases, crash phases and recovery phases according to  

the change in population size at any given point. As in the first approach, I chose to concentrate on 
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simulations with fast oscillations (s = 0.1), high fixed death rates (d = 0.05) and strong selection (k = 3). 

In the control simulations with constant selection pressures and a fixed, flat fitness landscape, the 

population remains in the stationary phase, i.e. the population is stable during the entire simulation 

length (Figure 13). The change in death rate is significantly different from zero and negative. Under 

environmental oscillations, stationary phases, crash phases and recovery phases can be observed 

(Figure 14). During the stationary phase, the change in death rate is significantly different from zero 

and negative. During the crash phases, the change in death rate is not significantly different from zero. 

This is observed both in simulations with kin structure (Figure 14 A), and in simulations without kin 

structure (Figure 14 B). Finally, during the recovery phase, the change in death rate is not significantly 

different from zero in simulations without kin structure (Figure 14 B), but is significantly different from 

zero and positive in simulations with kin structure (Figure 14 A). The figures shown in this section are 

example plots illustrating the influence of the tested parameters, not all explored parameter 

combinations are shown here. Plots of the other parameter combinations are available in the data 

archive. 

As in the first approach, these results too are based on a large sample size, with 28500 data points for 

each parameter combination (distributed unevenly across stationary, crash and recovery phases). I 

again subsampled the dataset and repeated the analysis to control for oversampling. Overall, the 

subsampling analysis confirms the results given above: most subsamples from stationary phases show 

significantly negative changes in mean death rate, and most subsamples from crash phases do not 

show changes in mean death rate that are significantly different from zero. This is true for simulations 

with and without kin structure. Interesting are the results from the recovery phase: in simulations with 

kin structure, despite not all mean changes in death rate during the recovery phase being significantly 

positive, there is a clear bias towards low p values  (Figure 15) – a pattern not seen without kin structure 

(Figure 16). Histograms of p-values and mean changes in average death rate for other parameter 

combinations and other subsample sizes are available in the data archive. 

 

Figure 13: This figure shows the change in average death rate during intervals of 10 timesteps for 

control simulations with a stable environment. In control simulations, the population is in the 

stationary, stable phase only. The change in average death rate is significantly different from zero and 

negative (p < 0.001, mean = − 5.24 ∗ 10−6). In other words, during the control simulations populations 
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are consistently stable and the population average death rate declines, indicating evolution of 

immortality. 

Figure 14: Change in average death rate during intervals of 10 timesteps for populations with kin 

structure (Figure 14 A, Nb = 10) and without kin structure (Figure 14 B, Nb = 50). During stationary 

phases, the mean change in average death rate is negative, regardless of kin structure (Figure 14 A: p 

<  0.001, mean = − 6.43 ∗ 10−6; Figure 14 B: p <  0.001, mean = − 6.06 ∗ 10−6). During the crash 

phase, the mean change in average death rate is not significantly different from zero, regardless of kin 

structure (Figure 14 A: p = 0.378, mean = 9.65 ∗ 10−7 ; Figure 14 B: p = 0.829, mean = − 9.97 ∗ 10−7). 

During the recovery phase, the mean change in average death rate is positive in kin structured 

populations (Figure 14 A: p = 0.001, mean = 8.63 ∗ 10−6), but not significantly different from zero in 

populations without kin structure (Figure 14 B: p = 0.086, mean = 3.34 ∗ 10−6). Kin structure thus 

impacts the change in average death rate during the recovery from a population crash. 

 

 
Figure 15: Histograms showing the distribution of p values (Figure 15 A) and of mean changes in 

average death rate (Figure 15 B) for 1000 subsamples of size 200. These data show how death rate 

changes in populations with kin structure (Nb = 10). Figure 15 A: despite over half of p values being 

above α = 0.05 (indicated by the red line), the abundance of p values declines sharply with increasing 

value, showing a clear bias towards low p values. Figure 15 B: The mean change in average death rate 

is clearly shifted to positive values (the red line indicates zero). 
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Figure 16: Histograms showing the distribution of p values (Figure 16 A) and of mean changes in 

average death rate (Figure 16 B) for 1000 subsamples of size 200. These data show how death rate 

changes in populations without kin structure (Nb = 50). Figure 16 A: only few of the p values are above 

α = 0.05 (indicated by the red line), and there is no bias towards low p values. The distribution of p 

values hence contrasts the one seen in Figure 15 A. Figure 16 B: The mean change in average death 

rate is shifted slightly to positive values (the red line indicates zero), but the shift is less obvious than 

the one observed in Figure 15 B. 

Discussion 

In this project I hypothesize that kin and evolvability selection combined lead to the evolution of 

increased death rates. This hypothesis could not be confirmed: In test and control scenarios alike the 

death rate declined until functional immortality was reached, with neither the shape of the 

evolutionary trajectory nor the final value reached showing an influence of selection for evolvability. 

There may be a transient effect of evolvability observed during population crashes, however this effect 

if indeed present is very slight. Overall, the question whether selection for evolvability can influence 

the evolution of death rates cannot be conclusively answered and merits further investigation. 

Analysing the evolutionary trajectory of death rates 

More specifically, there are indeed differences in death rate evolution between scenarios with 

oscillating and stable environments, as death rates decline less steeply in changing environments. 

Whilst this is in accordance with the tested hypothesis, this difference is observed even without kin 

structure, i.e. even in simulations in which kin selection cannot act. Since kin selection is an essential 

component of the proposed mechanism, the observed change in death rate evolution is not due to the 

evolvability effect that I here set out to test. Instead I propose that it may be explained by the selection 

for immortality being rendered less efficient by population dynamics induced by the oscillating 

environment: under sufficiently rapid and unpredictable environmental changes large parts of the 

population are maladapted, causing population crashes. During these population crashes, the 

efficiency of selection is reduced through increased drift in the small population, slowing down the 

evolution towards immortality. This is sufficient to explain the steeper decline in death rate in stable 

environments, observed both with and without kin selection, without the need to invoke evolvability. 

Furthermore, this explanation is compatible with the patterns seen for different parameter values: the 

least steep slopes of death rate trajectories are observed for fast environmental oscillations, high fixed 
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death rates and stronger selection. Fast oscillations increase the incidence of population crashes, as 

the population struggles more to adaptively track the environmental change, and high fixed death 

rates and stronger selection increase the severity of the population crashes, by increasing the overall 

death rate and reducing birth rates respectively. In other words, the least steep declines in death rates 

are observed under parameter values maximizing the strength of drift, and thus minimizing the 

strength of selection for immortality. These results also match the conclusions drawn from the 

mutation rate models, in which the same parameter values also lead to more frequent or severe 

population crashes, however here with the consequence of maximizing selection for higher mutation 

rates. 

Analysing the change in death rate in relation to population dynamics 

Somewhat more promising results can be obtained from a second approach: instead of considering 

the slope of the death rate trajectory during the entire simulation run time, the dynamics are analysed 

in small time slices at a time. When splitting the simulation according to whether the population is 

stable, declining or recovering, the changes in death rate for each of those categories show patterns 

supporting the hypothesized effect of selection for evolvability on death rates: in stable populations, 

the death rate declines in disproportionally many time slices. This reflects the observation discussed 

above: overall, death rates decline and immortality evolves. In other words, negative changes in death 

rate (declining death rates) are the norm. In contrast to this, the changes in death rate during the 

recovery phase are predominantly positive or at least not significantly different from zero, depending 

on the parameter combination. This suggests that there are different selective forces acting on the 

death rate during phases with different population dynamics: in stable populations, selection for 

immortality acts alone and drives death rates lower. However, if the population is maladapted to the 

current environment and hence undergoes a population crash, the situation is complicated by the 

addition of selection for evolvability: individuals carrying high-evolvability traits are more likely to find 

the correct phenotypic “solution” to the novel environmental challenge, and the evolvable trait can 

then hitchhike with this beneficial mutation during the population recovery. The increase in mean 

death rate during most recovery phases suggest that in most cases, the new phenotypic solution was 

found by individuals carrying a higher death rate – casting higher death rates as the high-evolvability 

trait and demonstrating that death rates can and do increase in response to selection for greater 

evolvability. Thus, the selection for evolvability counteracts, and partly even overrides, selection for 

immortality during the recovery from a population crash. Similar results are obtained when separating 

only stable populations and populations undergoing a crash (i.e. combining declining and recovering 

phases), but the results are less clear. 

These patterns attest to the same principle observed in the stepwise increase in mutation rate in model 

2 or the burst-like increases in mutation rate in model 3: Otherwise mal-adaptive alleles (increasing 

the number of deleterious mutations or reducing lifespan) can hitchhike with beneficial mutations, a 

process facilitated by oscillating environments and the resulting population crashes. It therefore fits 

the common theme that considering and explicitly modelling population dynamics can be of great 

importance in the field of evolvability. 

However, there are various unresolved issues that may cast doubt on the validity of the results 

discussed in this section. The first, perhaps most glaring one, is the large sample size: whilst the 

differences between stable and crash phases are indeed significant, they are very slight, raising the 

concern that they might be an artefact of oversampling, rather than an indication of a true pattern. To 

control for this, I subsampled repeatedly with smaller sample sizes. The interpretation of the resulting 

histograms of p values and mean changes in death rate is not straight-forward, but in general a visual 

inspection shows that the same results discussed above can also be recovered for smaller sample sizes. 
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This holds true despite most p-values being non-significant: it is important to realise here a significantly 

negative change in death rate is the norm due to the selection for immortality, and changes in death 

rate not significantly different from zero are therefore also a potential result, and can indicate that 

selection for immortality and selection for evolvability cancel each other out enough to allow a 

constant death rate to be maintained. The second concern pertains distinguishing these results from 

the kin-selection control. As with the results discussed in the previous section on analyzing the death 

rate trajectory, it is necessary for these results as well to only be observed in kin structured 

populations, i.e. under the action of kin selection: selection for evolvability here acts via kin selection, 

and any effect observed in the absence of the latter thus cannot be attributed to the former. 

Interpreting the results from simulations without kin structure is not trivial and subject to some 

ambiguity: on the one hand, even without kin structure changes in death rate not significantly different 

from zero are observed, and stationary and recovery phases show clearly different patterns especially 

when inspecting the histograms of p values and mean changes in death rate – suggesting that the 

difference between stationary and recovery phases discussed above cannot be credited to evolvability 

selection in its entirety. Yet on the other hand, the pattern is far clearer in simulations with kin 

structure than in simulations without, demonstrating that kin selection is at least of some 

consequence. This is especially evident in the histograms of p values for the subsamples, which show 

obviously different patterns for simulations with and without kin structure. Based on these 

deliberations, no definite answer can be reached. The results from this analysis can thus be seen as 

weak and not entirely conclusive evidence in favor of death rates increasing under selection for 

evolvability – but evidence nonetheless. 

This is, of course, still subject to the caveat that even if death rates do increase during the recovery 

from a population crash due to selection for evolvability, the effect would be of a very transient nature, 

as it neither prevents the end result of immortality nor slows down the evolution thereof. 

Testing the model assumptions 

Overall, no approach to the data yielded a conclusive proof of selection for evolvability causing 

elevated death rates. To confirm that this lack of effect is not merely due to errors in the model design, 

I tested that both selection for evolvability and kin selection are indeed acting. The former is confirmed 

by the results of the third model on mutation rate evolution: using the same model, but allowing 

mutation rate instead of death rate to evolve, I found a steep increase in mutation rate, demonstrating 

selection for evolvability. The latter is shown by death rates declining less rapidly in kin-structured 

populations: kin selection mitigates the cost of cost of dying earlier as it benefits related individuals by 

increasing their resource availabilities. Additional support comes from a previous paper using a very 

similar model design, which found both evidence of kin selection and of kin selection increasing death 

rates (Travis 2004). A comparison with this paper can be illuminating: Travis uses a very similar 

approach (a spatially explicit patch occupancy model in which limited dispersal distances give rise to 

kin structure) to test the hypothesis that dying, and thus freeing up resources for (future) relatives, is 

selected for assuming that future relatives are of high value. In Travis’ study, this high value is 

implemented directly, by making reproductive success inversely proportional to age. Under these 

conditions, higher death rates evolve, as older individuals die to make space for new, related and more 

valuable ones (Travis 2004). This is strikingly similar to the hypothesis tested in this project, which 

essentially only replaces the value of future relatives: instead of a directly implemented reproductive 

benefit, younger individuals are of greater value in this study due to them representing a chance to be 

better adapted to the novel environment through mutation. It is puzzling therefore that the increase 

in death rate observed in Travis 2004 cannot be recovered in this project, despite the similarities in 

both approach and model design. 
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Interactions between population dynamics and immortality 

The lack of effect of selection for evolvability on death rate evolution might be, at least partially, due 

to interference by the evolution of immortality. Not only does the selection for immortality overwhelm 

the opposed selection for evolvability, but more importantly immortality makes the population 

immune to population crashes: adaptation to the environment affects birth but not death rates, and 

if the current generation is immortal and not in need of replacing, then the population can persist even 

in absence of any reproduction, allowing maladapted populations – which would otherwise undergo a 

population crash – to maintain a stable size. This poses a technical problem for this model: evolution 

of higher death rates through selection for evolvability is absolutely dependant on population crashes, 

as it is during the recovery phases of these that higher death rates spread. In other words, as the 

simulation progresses, death rates decline, the population dynamics stabilize and selection for 

evolvability, facilitated by those dynamics, is stalled (see Figure 17).  

Different parameter combinations amplify or dampen population crashes. I tried to counteract the 

effect of immortality by choosing parameter combinations optimally suited to promote population 

crashes. Unfortunately, this was not possible, as parameter combinations minimizing the actions of 

immortality later in the simulation (when individuals already have low death rates) also maximise the 

probability of extinctions early in the simulation (when individuals have high death rates and 

population crashes are therefore already severe). Simulations with the most promising and interesting 

parameter values hence had very short run times, hampering the understanding gained from the 

model. Despite exhaustively exploring the parameter space, I could not find any combination allowing 

something besides the extremes of immortality or extinction.  

 

 

Figure 17: The effect of immortality on population dynamics. This plot shows the change in population 

size over time, for one example simulation (parameters: s = 0.1, d = 0.05, Nb = 3, k = 3). As the simulation 

progresses, death rates decline, eventually resulting in (functional) immortality. This has a profound 

effect on the population dynamics: In the beginning, the population undergoes severe population 

crashes, even approaching extinction at times. In the second half of the simulation, however, the 

population is largely stable, with barely any fluctuations in population size. Immortality thus markedly 

alters the population dynamics. 
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It is possible that the lack of elevated death rates under selection for evolvability stem from selection 

for immortality preventing the conditions facilitating the evolution of evolvability in the first place. 

Whilst this was indeed unfortunate with regards to this project, it opens up avenues for future 

research: There are already models developed in other contexts in which death rates evolve non-zero 

values (for an example, see Mitteldorf 2006). Implementing the here explored ideas in such a system 

can give an opportunity to study the impact of death rate without interference of the adverse effects 

immortality has on model behaviour. 

Conclusion 

Overall, this study investigates the effect of kin and evolvability selection on death rates. As death rates 

universally evolve values low enough to result in functional immortality, no strong effect of selection 

for evolvability can be observed. However, investigating the population dynamics more closely reveals 

that during the recovery from population crashes the death rate increases disproportionally often – 

potentially a subtle and transient signature of the selection for evolvability, thus lending some support 

to the hypothesis proposed in this study. Unfortunately, the analysis is hampered by the evolution of 

immortality impairing model function, and I therefore suggest that future studies could explore this 

question in settings preventing the evolution of immortality. 
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Abstract 

Dollo’s law of irreversibility states that once a complex adaptation has been lost in evolution, it will not 

be regained. Recently, various violations of this principle have been described. Here, we argue that the 

logic underlying Dollo’s law only applies to traits that are constitutively expressed, while it fails in case 

of ‘plastic’ traits that are up- or downregulated according to needs. We tested this hypothesis for an 

archetypal violation of Dollo’s law, the loss and regain of fat synthesis in parasitic wasps. Wasps from 

lineages that supposedly had lost lipogenic ability more than 200 million years ago were grown under 

various conditions. In line with our hypothesis, it turned out that fat synthesis had not been lost but 

was only switched on in low-fat environments. Such plasticity cannot only explain supposed violations 

of Dollo’s law, but also the maintenance of adaptations to rarely occurring extreme events. 
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Main text 

Universal laws are rare or absent in ecology and evolution, but Dollo’s principle of the irreversibility of 

evolution seems to come close to such a law (1, 2) (Dollo 1893 Bull Soc Belge Geolog; Gould 1970 J Hist 

Biol). In the numerous cases where a complex adaptation has been lost in the evolutionary history of 

a lineage (3) (Ellers et al 2012 Ecol Lett), there are only a handful examples where the adaptation has 

later been regained (4, 5) (Collin and Miglietta 2008 TREE; Esfeld et al 2019 Curr Biol). Snakes did not 

regain legs, birds did not regain teeth, and ratites did not regain the ability to fly. Complex adaptations 

seem to be highly vulnerable: if they are of no use for an extended period of time, they can be expected 

to be selected against and/or to decay by genetic drift and the accumulation of deleterious mutations 

(6)(Lahti et al 2009 TREE); if they are later needed again, they cannot easily re-evolve (7)(Tan et al 2011 

Phys Rev Lett), since the build-up of a complex trait requires the co-evolution of whole sets of genes 

that have to work together in harmony. If this logic is indeed correct, Dollo’s principle may have 

important implications. In times of global climate change, previously rare and extreme events (like 

periods of drought or flooding) are expected to occur much more frequently. How can organisms cope 

with such events, if their adaptations to such events are irreversibly lost in the intervening period 

between such events? 

The line of argumentation behind Dollo’s law sounds plausible for constitutively expressed organs like 

legs or teeth. It is not surprising that cave fish lose their eyes when living in complete darkness over 

many generations, and that new eyes do not easily evolve once they change to a habitat where vision 

is an advantage. However, for three reasons the situation is different for adaptations that are 

phenotypically plastic (like most physiological and behavioral traits) and expressed according to the 

‘needs’ of the local environment. First, such adaptations are not costly to maintain (and therefore only 

weakly selected against) in times when they are not needed, since they can just be switched off in such 

periods. Second, such adaptations will sporadically be expressed (and, hence, tested by selection) 

when some population members are exposed to non-standard conditions. And third, the regulatory 

pathways underlying these adaptations tend to combine the properties of robustness and evolvability, 

meaning that they do not easily decay when subjected to the accumulation of mutations and that only 

few mutational steps are required for restoring their function when conditions change (8)(Wagner 

2007 Princeton book). Therefore, we hypothesize that (i) phenotypically plastic traits are much less 

affected by evolutionary decay and irreversible loss than constitutively expressed traits, and that (ii) 

many supposed violations of Dollo’s law are unrecognized instances of phenotypic plasticity. 

In the light of these considerations, we scrutinize an archetypal violation of Dollo’s law, the apparent 

loss and regain of an essential metabolic trait: the synthesis of fat (9, 10)(Visser, Ellers 2008; Visser et 

al 2010). Fat is synthesized when a surplus of sugars and other carbohydrates is available in the diet 

(11)(Turkish, Sturley 2009 Am J Physiol Gastrointest Liver Physiol), providing a reserve for future use. 

Fat is critical for survival and reproduction in nearly all living organisms. Fat reserves are built up, for 

example, in anticipation of periods when food is scarce, e.g., diapause in insects or hibernation in 

mammals, to fuel intense activities, including flight, as well as being a major component of egg cells in 

oviparous animals, such as birds, reptiles and insects (12, 13)(Arrese, Soulages 2010; Muller et al 2017 

JIP). The importance of fat and the ability to synthesize fat de novo explains why underlying metabolic 

and genetic pathways for fat synthesis are typically highly conserved, from bacteria to humans (14–

17)(Jenke-Kodama et al 2005 Mol Biol Evol; Maier et al 2008 Science; Maier et al 2010 Q Rev Biophys; 

Bukhari et al 2014 Struct Des). Therefore, it came as a surprise that the ability to synthesize fat for 

storage appeared to have been repeatedly lost and regained in parasitic insects (10)(Visser et al 2010). 

Parasitic wasps lost the ability to synthesize fat more than 200 million years ago (MA) (18) (Peters et 
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al 2017 Curr Biol) and the trait re-appeared in several lineages, including in the genus Leptopilina (12, 

21) (Buffington et al 2007 Cladistics; Visser et al 2010) (about 80 MA). Replicated experiments with 

different populations of two Leptopilina species then revealed that some populations synthesized fat, 

while others did not (10, 20–23)(Visser et al 2010; Eijs et al 1998 Ecol Entomol; Moiroux et al 2010 Ecol 

Entomol; Le Lann et al 2014 Oecologia; Visser et al 2018 Ecol Evol).  

We hypothesized that these findings do not reflect the constitutive loss and regain of fat synthesis due 

to mutational changes in the metabolic pathway, but rather the plastic expression of fat synthesis in 

response to the local environment. Wasp development occurs in or on a host insect (24)(Godfray 

1994); hence stored fat of the host can be carried over directly by the wasp. If the host contains plenty 

of fat, there is no need for de novo fat synthesis and the pathway should be shut off. If in contrast a 

fat-poor host is encountered, the wasp has to synthesize additional fat itself by activating the pathway. 

It is, therefore, conceivable that fat synthesis became plastic when the wasps started to parasitize fat-

rich hosts (more than 200 MA) and that it was switched off except when the wasps encountered fat-

poor hosts. 

The question arises whether a switching device that is not used for extensive periods of time (more 

than 100 MY) should not be lost in the course of evolution. To investigate this, we ran individual-based 

simulations that monitored the sustained functionality of a switching device (a gene regulatory 

network that could decay by mutation) that is only sporadically used in evolutionary time (for 

modelling details see Supplementary Material 1: Modelling Study). Figure 1 shows that the switching 

device rapidly disintegrates (red simulations) if it is never used. However, even very infrequent use 

(pink: every 100 generations; purple: every 1000 generations) suffices to keep the switching device 

largely intact. Interestingly, the switching device does not erode gradually, but instead slowly evolves 

an improved performance over evolutionary time. An inspection of the evolving gene regulatory 

networks reveals that they become more and more robust (i.e., less and less affected by mutational 

decay), in line with earlier findings on network evolution (8). 

From the simulations, we conclude that phenotypic plasticity (i.e., switching on or off of a metabolic 

pathway) can be maintained over long evolutionary time periods, even if plasticity is only needed 

sporadically. We, therefore, tested whether wasps that seemingly had lost the ability of fat synthesis 

were still able to synthesize fat in a low-fat environment. To this end, we let females from four field-

caught populations of L. heterotoma develop on two naturally co-occurring host species: low-fat 

(“lean”) Drosophila simulans and high-fat (“fat”) D. melanogaster (containing 63 ± 3 μg and 91 ± 4 μg, 

mean ± 1SE storage fat, respectively; F1,17 = 35.95; p < 0.0001). When developing on the low-fat D. 

simulans host, the fat content of the wasps was in three of the four populations significantly higher 

after feeding than at emergence, indicating that fat synthesis had indeed occurred (Table 1). In 

contrast, the wasps showed only a marginal (and non-significant) increase when developing on the 

fatter D. melanogaster. These data suggest that fat synthesis does indeed depend on the host 

environment, at least in some wasp populations.  
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Fig. 1: Sporadic activation is sufficient for the maintenance of adaptive plasticity. Long-term 

individual-based simulations showing how the performance of a gene-regulatory network (GRN) 

underlying adaptive plasticity changes in time when plasticity is only sporadically activated. We first 

evolved replicate GRNs in a variable environment where it is adaptive to switch on a metabolic pathway 

(fat synthesis) under low-fat conditions and to switch it off under high-fat conditions. In generation 0, 

a monomorphic population was established, where all N=10,000 individuals were endowed with the 

same well-performing GRN (different across replicates). Subsequently, the population evolved subject 

to selection, mutation (μ=0.001 per gene locus) and genetic drift in a fat-rich environment, where it is 

adaptive to constitutively switch off the metabolic pathway. Every 100 generations, we monitored the 

performance of a representative sample of GRNs (percentage correct decisions) in the original (fat-

variable) environment: 1.0 means that the GRN is still making 100% adaptive decisions; 0.5 means that 

the GRN only makes 50% adaptive decision, as would be expected by a random GRN or a GRN that 

switches the pathway constitutively on or off. The colored graphs show the average performance (± 

standard deviation) of the GRNs for three scenarios (100 replicates per simulation). Red: the population 

never again encounters the fat-variable environment, leading to the loss of adaptive plasticity 

(convergence to 0.5). Pink: the individuals encounter a fat-variable environment on average every 100 

generations; after an initial rapid drop in performance, a sustained high performance (>90% correct 

decisions) of the GRNs is regained after about 100,000 generations. Purple: the individuals encounter 

a fat-variable environment on average every 1000 generations; after an initial rapid drop in 

performance, an intermediate performance (>75% correct decisions) is regained gradually. 
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Table 1: Wasps supposedly having lost lipogenic ability synthesize fat in a fat-poor environment. 

Mean absolute fat amount ± 1se (in μg) was quantified in adult wasps from field-caught L. heterotoma 

populations  raised on two hosts (fat-poor D. simulans, left part of the table; fat-rich D. melanogaster, 

right part of the table) and at two developmental stages (Emerged: just after emergence; Fed: having 

fed for 7 days after emergence). P-values reveal whether 7 days of feeding led to a significant increase 

in fat content, indicating the occurrence of fat synthesis. Three of the four populations tested on D. 

simulans exhibited fat synthesis on the lean host but no fat synthesis on the fat host, that is, plasticity 

in fat synthesis.  (*) T-tests were performed when data was normally distributed and variances equal 

with (^) or without log transformation. The non-parametric Mann-Whitney U test was used for non-

normal data or data with unequal variances (*). 

 

The population-level comparison of wasp fat content at two points in time is only a crude measure 

that not always detects the occurrence of fat synthesis reliably. Even in case of active fat synthesis, fat 

content can stay constant or even decrease if, for example, fats are burned at a faster rate than at 

which they are produced (25)(Ament et al 2011 J Exp Biol). To unequivocally demonstrate that fat 

synthesis can be induced plastically, we turned to stable isotope tracing followed by GC-MS analyses 

(26, 27) (Visser et al 2012 GBE; Visser et al 2017 Roy Soc Open Sci). Incorporation of stable isotopes 

after feeding depends on fat synthesis; hence a significant increase in stable isotope levels compared 

to controls (without access to stable isotopes) demonstrates active fat synthesis, even when lipids are 

burned. We used a split-brood family design where daughters of a single mother were allowed to 

develop on either lean D. simulans or fat D. melanogaster. Seventeen families, belonging to five field-

caught populations, showed a (much) higher fat metabolism in the fat-poor environment (D. simulans) 

than in the fat-rich environment (D. melanogaster) (Figure 2; see supporting online table 1 for a 

statistical analysis). These results confirm that fat synthesis is indeed a plastic trait that is induced in 

response to low host fat content. Notice that the 17 families strongly differ in their environmental 

response, both in their baseline level of fat synthesis (on fat D. melanogaster) and in the slopes of their 

reaction norms. We conclude that fat synthesis is plastic and that there is (across-family) genetic 

variation in the degree of plasticity.  

To rule out the possibility that the above results reflect a host-species effect (rather than an effect of 

the fat content of the environment), we repeated the experiment reported in Table 1, but now 

replacing lean D. simulans by lean D. melanogaster hosts. By reducing the sugar content in the diet of 

D. melanogaster, we were able to generate leaner flies (i.e. pupae containing 52 ± 3 μg storage lipids, 

mean ± 1SE, compared to 91 ± 4 μg storage lipids, mean ± 1SE; F1,22 = 71.18, p < 0.0001). In line with 

our earlier results, three out of four wasp populations showed indeed fat synthesis on these leaner D. 

melanogaster hosts (supporting online table 2). We conclude that plastic fat synthesis is induced by 

host fat content, rather than other traits differing between D. melanogaster and D. simulans. 

 

Population Sample size Emerged Fed p-value Sample size Emerged Fed p-value

Belgium 1** 10 17.50 ± 6.84 43.50 ± 11.38 0.043 38 36.00 ± 2.54 40.00 ± 3.22 0.336

Belgium 2 38 15.60 ± 1.02 36.83 ± 4.86 <0.001 (*) 32 38.50 ± 4.24 43.91 ± 3.45 0.331

UK 1 21 24.20 ± 1.49 30.91 ± 3.22 0.142 (^) 29 40.00 ± 4.41 44.30 ± 2.09 0.375

UK 2 - - - - 17 33.60 ± 3.82 39.50 ± 1.50 0.522

Japan 20 12.20 ± 1.55 24.80 ± 4.86 0.011 (^) 13 29.17 ± 6.27 28.67 ± 8.19 0.964

Development on D. melanogasterDevelopment on D. simulans
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Fig. 2: Phenotypic plasticity in five field-caught wasp populations. Incorporation of stable isotopes 

into the fatty acid fraction of offspring from 17 families developing in a fat-rich environment (fat host 

Drosophila melanogaster, left in each graph) and in a fat-poor environment (lean host D. simulans, 

right in each graph; n = 138). The horizontal gray line indicates that a stable isotope incorporation 

below 10% is considered insufficient evidence for the occurrence of fat synthesis.  
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Fig. 3: Conservation of two genes crucial for fatty acid synthesis in four parasitoid insects that 

supposedly had lost lipogenic activity. Long evolutionary divergence times (up to 350 MA) separate 

the insect Drosophila melanogaster (that synthesizes lipids constitutively) and 4 parasitoid insects that 

were assumed to have lost the ability to synthesize lipids (10)(A). Acetyl coenzyme A carboxylase (ACC) 

and fatty acid synthase (FAS) are two essential genes for the production of fatty acids: the presence of 

all domains of ACC (B) and FAS (C) genes from D. melanogaster in the four parasitoid genomes reveals 

that the functional activity of the two genes is conserved in these insects. A table containing the detailed 

length and position of the different functional domains forming the two genes, as well as conservation 

level of the nucleotide sequence of the domains (e-values; the lower the e-value, the higher the 

significance of the match) are shown for each species. Abbreviations: BC = Biotin carboxylase; BCCP = 

Biotin carboxyl carrier protein; ACCC = Acetyl-coA carboxylase central region; CT = Carboxyl transferase 

domain; KS = Ketoacyl synthase; AT = Acyl transferase; DH = Dehydratase; ER = Enoyl reductase; KR = 

Ketoacyl reductase; ACP = Acyl carrier protein; TE = Thioesterase. Accession numbers refer to the 

conserved domain identifier on NCBI’s Conserved Domain Database. Parasitoid transcript identifiers 

are provided underneath each species name. 
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The ability to synthesize fat when being placed in a non-standard (low-fat) environment indicates that 

the key genes for fat synthesis have not lost their functionality in the Leptopilina genus. Making use of 

the fact that the genetic molecular pathway underlying fatty acid synthesis is highly conserved across 

animal taxa (14–17)(Jenke-Kodama et al 2005 Mol Biol Evol; Maier et al 2008 Science; Maier et al 2010 

Q Rev Biophys; Bukhari et al 2014 Struct Des), we conducted a comparative analysis of coding 

sequences of acetyl coenzyme A carboxylase (ACC) (28)(Abu-Elheiga et al 2005 PNAS) and fatty acid 

synthase (FAS) (16)(Maier et al 2010 Q Rev Biophys), two enzymes that are critical for the production 

of fatty acids, the raw materials for storage fat. We used the acc and fas gene coding sequences of D. 

melanogaster as a starting point, because this fly readily synthesizes fat. Similar gene sequences were 

indeed found in the genome of L. clavipes, a sister species of L. heterotoma, and all functional domains 

of ACC and FAS enzymes were recovered, suggesting fully functional coding sequences in the L. clavipes 

genome (Figure 3). We then expanded our search for acc and fas functional coding sequences and 

protein domains to more distantly related parasitoids presumed to have lost fat synthesis 

independently (10)(Visser et al 2010): the hymenopteran Goniozus legneri (family Bethylidae), the 

dipteran Paykullia maculata (family Rhinophoridae), and the coleopteran Aleochara bilineata (family 

Staphilinidae)(Figure 3). ACC and FAS amino acid sequences of all these species aligned, suggesting 

that these two critical genes for fat synthesis have been conserved throughout the repeated evolution 

of parasitism in insects.  

Summarizing, we have provided compelling evidence that parasitoid wasps have not lost their ability 

to synthesize storage fat in the distant past (>200 MA ago), but that fat synthesis is a plastic trait that 

is switched off when the wasps are developing in a fat-rich environment. It may come as a surprise 

that a crucial pathway like fat metabolism is not constitutively expressed, but activated or deactivated 

in response to environmental conditions. However, for parasitoid wasps this makes perfect sense, 

since they typically develop on fat-rich hosts that provide all the storage fat needed by the wasps. Yet, 

plasticity is required since there is considerable spatio-temporal variation in host availability and 

quality. L. heterotoma is a generalist wasp that can parasitize more than ten different Drosophila 

species that differ substantially in size and fat availability (29)(Fleury 2009 Adv Parasitol). Moreover, 

there is considerable geographic and seasonal variation in species diversity and community 

composition (30)(Lue et al 2018 Environ Entomol). Hosts are further patchily distributed with 

overlapping generations, suggesting considerable spatial variation at a local scale (29)(Fleury 2009). 

Drosophila are further well known to show large variation in starvation resistance, which is typically 

correlated with fat content (31)(Hoffmann et al 1999 Heredity). Plasticity in wasp fat synthesis is thus 

likely adaptive and evolved in response to highly variable environmental conditions in host fat content.  

Previous documented cases of trait regain over long evolutionary time, in addition to the regaining of 

fat synthesis in parasitoids (10)(Visser et al 2010), include the regaining of wings in stick insects (32), 

the evolution of sexual reproduction from asexuality in mites (33)(Domes et al 2007 PNAS), and others 

(34)(Collin et al 2003 Proc R Soc B). These cases were all based on comparative analyses, which was 

shown to be problematic, because phylogenies do not necessarily provide a reliable representation of 

trait evolution (35–38)(Stone, French 2003 Curr Biol; Goldberg, Igic 2008 Evolution; Christin et al 2010 

TREE; Galis et al 2010 Evolution; ). Our results provide the first experimental evidence that macro-

evolutionary patterns of trait reversals may in fact reflect trait plasticity: the trait is not “lost” or 

“regained” but is rather switched off or on, depending on environmental conditions. Intriguingly, such 

a regulatory switch can remain largely intact, even if it is only sporadically activated (Fig. 1). We 

consider it plausible that our findings are not restricted to fat metabolism in parasitoid wasps: the 

plastic regulation of trait expression could explain more cases of apparent trait loss and reappearance 

at macro-evolutionary time scales. Wing formation, for example, is often observed as an atavism (the 

sporadic occurrence of an ancestral phenotype) in otherwise wingless insects (39)(Hall 1984 Biol Rev), 



71 
 

and wing polymorphism, i.e. plasticity in wing development, is common in insects in general (40)(Zhang 

et al 2019 Ann Rev Entomol). Similarly, many asexual populations sporadically produce sexually 

reproducing individuals and plasticity in reproductive mode has evolved in several insect systems (41–

43). Hence, plasticity may be a common principle explaining apparent violations of Dollo’s law. As 

indicated by our simulation study plasticity can also explain the puzzling fact that adaptations to rare 

and extreme events are not lost, even if they are only sporadically used.  
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Materials and Methods 1: Modelling study 

We consider the general situation where phenotypic plasticity is only sporadically adaptive and ask the 

question whether and under what circumstances plasticity can remain functional over long 

evolutionary time periods when the regulatory processes underlying plasticity are gradually broken 

down by mutations. To fix ideas, we consider a regulatory mechanism that switches on or off a pathway 

(like fat synthesis) in response to environmental conditions (e.g. fat content). 

Fitness considerations 

We assume that the local environment of an individual is characterized by two factors: fat content F 

and nutrient content N, where nutrients represent sugars and other carbohydrates that can be used 

to synthesize fat. Nutrients are measured in units corresponding to the amount of fat that can be 

synthesized from them. We assume that fitness (viability and/or fecundity) is directly proportional to 

the amount of fat stored by the individual. When fat synthesis is switched off, this amount is equal to 

F, the amount of fat in the environment. When fat synthesis is switched on, the amount of fat stored 

is assumed to be (1 )− + −N c k F . This expression reflects the following assumptions: (i) fat is 

synthesized from the available nutrients, but this comes at a fitness cost c; (ii) fat can still be absorbed 

from the environment, but at a reduced rate (1-k). It is adaptive to switch on fat synthesis if 

(1 )− + −N c k F  is larger than F, or equivalently if 1 ( ) −
k

F N c . 

 

Supp Fig. 1: Environmental conditions encountered by the model organisms. For a given combination 

of environmental nutrient content N and environmental fat content F, it is adaptive to switch on fat 

synthesis if (N, F) is below the blue line (corresponding to 1 ( ) −
k

F N c ) and to switch it off otherwise. 

The three boxes illustrate three types of environment: a low-fat environment (red) where fat synthesis 

should be switched on constitutively; a high-fat environment (yellow) where fat synthesis should be 

switched off constitutively; and an intermediate-fat environment (orange) where a plastic switch is 

selectively favored. 
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The right-hand side of this inequality is a straight line, which is illustrated by the blue line in 

Supplementary Figure 1. The three boxes in this figure illustrate three types of environmental 

conditions. 

• Red box: low-fat environments. Here, 1 ( ) −
k

F N c  is always satisfied, implying that fat synthesis 

should be switched on constitutively. 

• Yellow box: high-fat environments. Here, 1 ( ) −
k

F N c , implying that fat synthesis should be 

switched off constitutively. 

• Orange box: intermediate-fat environments. Here, fat synthesis should be plastic and switched on 

if for the given environment (N, F) the fat content is below the blue line and switched off otherwise. 

The simulations reported here were all run for the parameters 1 1
2 4

 and = =k c . 

Gene regulatory networks (GRN) 

In our model, the switching device was implemented by an evolving gene regulatory network (as in 

REF: Van Gestel & Weissing 2016). The simulations shown in Fig. 1 of the main text are based on the 

simplest possible network that consists of two receptor nodes (sensing the fat and the nutrient content 

in the local environment, respectively) and an effector node that switches on fat synthesis if the 

combined weighted input of the two receptors nodes exceeds a threshold value T and switches it off 

otherwise. Hence, fat synthesis is switched on if + F Nw F w N T  (and off otherwise), where the 

weighing factors  and F Nw w  and the threshold T are genetically determined evolvable parameters. 

We considered many alternative network structures (all with two receptor nodes and one effector 

node) and obtained very similar results (see below). 

For the simple GRN described above, the switching device is 100% adaptive when the switch is on (i.e. 

+ F Nw F w N T ) if 1 ( ) −
k

F N c  and off otherwise. A simple calculation yields that this is the case 

if: 0,  and  = − =N F N Nw w kw T cw . 

Evolution of the GRN 

For simplicity, we consider an asexual haploid population with discrete, non-overlapping generations 

and fixed population size 10,000=N . Each individual has several gene loci, each locus encoding one 

parameter of the GRN. (In case of the simple network described above, there are three gene loci, which 

encode the parameters ,  and F Nw w T .) At the start of its life, each individual is placed in a randomly 

chosen environment (N, T). Based on its (genetically encoded) GRN, the individual decides on whether 

to switch on or off fat synthesis. If synthesis is switched on, the individual’s fitness is given by 

(1 )− + −N c k F ; otherwise its fitness is given by F. Subsequently, the individuals produce offspring, 

where the number of offspring per individual is proportional to the individual’s fitness. Each offspring 

inherits the genetic parameters of its parents, subject to mutation. With probability μ (per locus) a 

mutation occurs. In such a case the parental value is changed by a certain amount; the mutational step 

size is drawn from a normal distribution with mean zero and standard deviation σ. In the reported 

simulations, we chose 0.001=  and 0.1= . 
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Preadaptation of the GRNs 

Starting with randomly initialized population, we first let the population evolve in the intermediate-fat 

environment (orange box in Supp. Fig. 1) for 10,000 generations. In all replicate simulations, “perfectly 

adapted switch” (corresponding to 0,  and  = − =N F N Nw w kw T cw ) evolved, typically within 1,000 

generations. These evolved networks were used to seed the populations in the subsequent “decay” 

simulations. 

Evolutionary decay of the GRNs 

For the decay experiments reported in Fig. 1 of the main text, we initiated a large number of 

monomorphic replicate populations with one of the perfectly adapted GRNs from the preadaptation 

phase. These populations were exposed for an extended period of time (1,000,000 generations) to a 

high-fat environment (yellow box in Supp. Fig. 1), where all GRNs switched off fat synthesis 

constitutively. However, in some scenarios, the environmental conditions changed back sporadically 

(with probability q) to the intermediate-fat environment, where it is adaptive to switch on fat 

metabolism in half of the environments. In Fig. 1, we report on the changing rates 0.0=q  (no 

changing back; red), 0.001=q  (changing back once every 1,000 generations; purple), and 0.01=q  

(changing back once every 100 generations; pink). When such a change occurred, the population was 

exposed to the intermediate-fat environment for t generations (Fig. 1 is based on t = 3). 

Throughout the simulation, the performance of the network was monitored every 100 generations as 

follows: 100 GRNs were chosen at random from the population, and each of these GRNs was exposed 

to 100 randomly chosen environmental conditions from the intermediate-fat environment. From this, 

we could determine the average percentage of “correct” decisions (where the network should be 

switched on if and only if 1 ( ) −
k

F N c . 1.0 means that the GRN is still making 100% adaptive 

decisions; 0.5 means that the GRN only makes 50% adaptive decision, as would be expected by a 

random GRN or a GRN that switches the pathway constitutively on or off. This measure for 

performance in the “old” intermediate-fat environment was determined for 100 replicate simulations 

per scenario and plotted in Fig. 1 (mean ± standard deviation). 

Evolving robustness of the GRNs 

The simulations in Fig. 1 are representative for all networks and parameters considered. Whenever 

0.0=q , the performance of the regulatory switch eroded in evolutionary time, but typically at a much 

lower rate in case of the more complex GRNs. Whenever 0.01=q , the performance of the switch 

went back to levels above 90% and even above 95% for the more complex GRNs. Even for 0.001=q , 

a sustained performance level above 75% was obtained in all cases. 

Intriguingly, in the last two scenarios the performance level first drops rapidly (from 1.0 to a much 

lower level, although this drop is less pronounced in the more complex GRNs) and subsequently 

recovers to reach high levels again. Apparently, the GRNs have evolved a higher level of robustness, a 

property that seems to be typical for evolving networks (REF: Book by Andreas Wagner). For the simple 

GRN studied in Fig. 1, this outcome can be explained as follows. The initial network was characterized 

by the genetic parameters 0,  and  = − =N F N Nw w kw T cw  (see above), where Nw  was typically a 

small positive number. In the course of evolutionary time, the relation between the three evolving 

parameters remained approximately the same, but Nw  (and with it the other parameters) evolved to 

much larger values. This automatically resulted in an increasingly robust network, since mutations with 

a given step size distribution affect the performance of a network much less when the corresponding 

parameter is large in absolute value. 
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Materials and Methods 2: Experiments 

Insects 

Hosts and parasitoids were maintained as previously described (1). Five Leptopilina heterotoma 

(Hymenoptera: Figitidae) populations were used for experiments: a population from Japan (Sapporo), 

two populations from the United Kingdom (1: Whittlesworth; 2: Great Shelford) and two populations 

from Belgium (1: Wilsele; 2: Eupen). Information on collection sites, including GPS coordinates, can be 

found in (1).  

Determination of host fat content 

D. simulans and D. melanogaster hosts were allowed to lay eggs over 24 hours in glass flasks containing 

~50mL standard medium (described in (1)). After two days, developing larvae were sieved and ~200 

were larvae placed in a Drosophila tube (ø x h 25x95; Dominique Dutscher) containing ~10mL medium. 

Seven days after egg laying, newly formed pupae were frozen at -18˚C, after which fat content was 

determined as described in (1), where dry weight before and after neutral fat extraction was used to 

calculate absolute fat amount (in μg) for each host. The host pupal stage was chosen for estimating fat 

content, because at this point the host ceases to feed, while the parasitoid starts consuming the entire 

host (2). All data were analyzed using R Project version 3.4.3 (3). Fat content of hosts was compared 

using a one-way ANOVA with host species as fixed factor.  

Manipulating host fat content 

To generate leaner D. melanogaster hosts, we adapted our standard food medium (1) to contain 100 

times less (0.5g) sugar per liter water. Manipulating sugar content did not alter the structure of the 

food medium, thus maintaining similar rearing conditions, with the exception of sugar content. Fat 

content of leaner and fatter D. melanogaster hosts was determined and analyzed as described above.  

Fat synthesis quantification with wasp populations  

Mated female L. heterotoma were allowed to lay eggs on host fly larvae collected as described above 

with ad libitum access to honey as a food source until death. Honey consists of sugars and other 

carbohydrates that readily induce fat synthesis. After three weeks, adult offspring emergence was 

monitored daily and females were haphazardly placed in experimental treatments: emergence or 

feeding for 7 days on honey. Wasps were frozen at -18˚C after completion of experiments. Fat content 

was determined as described above. The ability for fat synthesis was then determined by comparing 

fat levels of recently emerged and fed individuals, similar to procedures described in (4, 5). An increase 

in fat levels after feeding is indicative of active fat synthesis; equal or lower fat levels suggest fat 

synthesis did not take place. Each population was analyzed separately (1, 4) for each host species using 

one-way ANOVAs with treatment as a fixed factor.  

Fat synthesis quantification using a familial design and GC-MS analyses 

To tease apart the effect of wasp genotype and host environment, we used a split-brood design where 

the offspring of each mother developed on lean D. simulans or fat D. melanogaster hosts. Two 

experiments were performed, one in which mothers were reared on D. melanogaster (experiment 1) 

and one in which mothers were reared on D. simulans (experiment 2). In both experiments, mothers 

were allowed to lay eggs in ~200 2nd to 3rd instar host larvae of one species for four days, after which 

~200 host larvae of the other species were offered during four days. The order in which host larvae 

were presented was randomized across families. Following offspring emergence, daughters were 

allocated into two treatment groups: a control where females were fed a mixture of honey and water 
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(1:2 m/m) or a treatment group fed a mixture of honey and deuterated water (Sigma Aldrich)(1:2 m/m; 

stable isotope treatment) for 7 days. Samples were prepared for GC-MS as described in (6). 

Incorporation of up to three deuterium atoms can be detected, but percent incorporation is highest 

when only 1 deuterium atom is incorporated. As incorporation of a single atom unequivocally 

demonstrates active fat synthesis, we only analyzed percent incorporation (in relation to the parent 

ion) for the abundance of the m+1 ion. Percent incorporation was determined for five fatty acids, C16:1 

(palmitoleic acid), C16:0 (palmitate), C18:2 (linoleic acid), C18:1 (oleic acid), and C18:0 (stearic acid), 

and the internal standard C17:0 (margaric acid). Average percent incorporation for C17:0 was 19.4 (i.e. 

baseline incorporation of naturally occurring deuterium) and all values of the internal standard 

remained within 3 standard deviations of the mean (i.e. 1.6). Percent incorporation of control samples 

was subtracted from treatment sample values to correct for background levels of deuterium (i.e. only 

when more deuterium is incorporated in treatment compared to controls fat is actively being 

synthesized).  

For statistical analyses, percent incorporation was first summed for C16:1, C16:0, C18:2, C18:1 and 

C18:0 to obtain overall incorporation levels, as saturated C16 and C18 fatty acids are direct products 

of the fatty acid synthesis pathway (that can subsequently be desaturated). We then used a linear 

mixed effects model (% incorporation ~ host environment (fixed) + family (random) + population 

(random) + experiment (random) and found that neither population nor experiment contributed 

significantly to the model. The random term family contributed significantly to the model (Χ = 8.697; 

df = 1; p = 0.003), as did the fixed factor host environment (t-value = 4.346). To be able to determine 

the role of potential genotype by environment interactions, for subsequent analysis of interactions 

wasps developing on either lean or fat hosts were grouped according to percent deuterium 

incorporation: <10% incorporation is indicative of lacking fat synthesis, >10% incorporation is 

indicative of active fat synthesis. A threshold of 10% incorporation was chosen, because the range of 

natural variation in deuterium incorporation is ~2% (i.e. differences between the minimum and 

maximum percent incorporation of the internal standard C17:0). As we sum percent incorporation for 

five fatty acids the threshold value for active fat synthesis is thus 10%. More variation was observed 

for wasps developing on lean hosts, typically leading to higher standard errors compared to wasps 

developing on fat hosts. We then used a linear mixed effects model (GLMM, lme4 package) to test for 

the fixed effects of host (lean D. simulans and fat D. melanogaster) and family (--, -+, or ++), as well as 

the random effects of population (Japan, United Kingdom 1 and 2, Belgium 1 and 2) and experiment 

(experiment 1 and experiment 2)(n = 138). Non-significant terms (i.e. population and experiment) were 

sequentially removed from the model to obtain the minimal adequate model (a GLM for which values 

are reported in Table 2). 

Identification of functional acc and fas genes in distinct parasitoid species 

To obtain acc and fas nucleotide sequences for L. clavipes, G. legneri, P. maculata and A. bilineata, we 

used D. melanogaster mRNA ACC transcript variant A (NM_136498.3 in Genbank) and FASN1-RA 

(FBtr0077659 in FlyBase) and blasted both sequences against transcripts of each parasitoid (using the 

blast function available at parasitoids.labs.vu.nl (7, 8)). Each nucleotide sequence was then entered in 

the NCBI Conserved Domain database (9) to determine the presence of all functional protein domains. 

All sequences were then translated using the Expasy translate tool (web.expasy.org/translate/), where 

the largest open reading frame was selected for further use. Protein sequences were then aligned 

using MAFFT v. 7 (10) to compare functional amino acid sequences between all species. 
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Supplementary Table 1  

Supplementary table 1: Fat synthesis is induced plastically based on host fat content. We analyzed 

the data presented in Figure 2 in the main text statistically by means of a linear mixed effects model 

(GLMM, lme4 package) with host (lean D. simulans and fat D. melanogaster) as fixed effect, population 

(Japan, United Kingdom 1 and 2, Belgium 1 and 2), family within population, and experiment (each 

experiment was conducted twice) as random factors, and incorporation of stable isotopes as dependent 

variable  (n = 138). Non-significant terms (i.e. population and experiment) were sequentially removed 

from the model to obtain the minimal adequate model (the GLM reported in the table). When referring 

to “families,” we are referring to the comparison of daughters of singly inseminated females, which (in 

these haplodiploid insects) share 75% of their genome. 

 

  Estimate Std. error t-value p 

Intercept 1.602 0.327 4.905 < 0.001 

Host simulans 1.802 0.391 4.607 < 0.001 

Group “- -“ for lipid synthesis -0.785 0.566 -1.389 0.169 

Group “+ +” for lipid synthesis 1.208 0.400 3.020 0.003 

Host simulans x Group “- -“ -1.499 0.738 -2.033 0.045 

Host simulans x Group “+ +” -1.040 0.505 -2.061 0.043 

 

Supplementary Table 2 

Supplementary table 2: Fat synthesis is plastically induced in lean D. melanogaster hosts. Mean 

absolute fat amount ± 1se (in μg) was quantified in adult wasps from field-caught L. heterotoma 

populations raised on lean D. melanogaster hosts at two developmental stages (Emerged: just after 

emergence; Fed: having fed for 7 days after emergence). Lean D. melanogaster hosts were created by 

rearing the larvae on a medium containing 100 times less sugar than usual P-values based on t-tests 

(with log-transformed data in case of the Belgium 2 population) reveal whether 7 days of feeding led 

to a significant increase in fat content, indicating the occurrence of fat synthesis. 

 

Population n Emerged Fed p-value 

Belgium 2 31 27.40 ± 1.82 38.08 ± 3.50 0.018 (^) 

UK 1  33 25.09 ± 2.51 40.50 ± 2.66 <0.001 

UK 2  35 27.25 ± 2.60 38.62 ± 2.70 0.006 

Japan 31 34.70 ± 2.72 34.36 ± 3.69 0.943 
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Evolution of evolvability : Appendix 

 

Appendix Figure 1: Frequencies of the invading mutation rate at the simulation end points, under 

oscillating resource levels. This figure shows the frequencies of the invading mutation rate at the end 

of the simulation, for six different invading mutation rates, four different resident mutation rates and 

two different oscillations speeds, with 200 replicates for each parameter combination. In plots A – D, 

the period length of the environmental oscillations is 125.66, in plots E – H the period length of the 

environmental oscillations is 62.83. The resident mutation rates are the following: in plots A and E: 0, 

in plots B and F: 0.005, in plots C and G: 0.01, and in plots D and H: 0.05. In all plots, the higher 

mutation rate, be it resident or invading, achieves a higher frequency at the end of the simulation. In 

cases where resident and invading mutation rate are of equal value, the frequencies of the invading 

mutation rate is distributed evenly around 0.5. 
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Appendix Figure 2: Frequencies of the invading mutation rate at the simulation end points under 

negative frequency dependent selection. This figure shows the frequencies of the invading mutation 

rate at the end of the simulation, for six different invading mutation rates and four different resident 

mutation rates, with 200 replicates for each parameter combination. The resident mutation rates are 

the following: in plot A: 0, in plot B: 0.005, in plot C: 0.01, and in plot D: 0.05. Generally, the higher 

mutation rate, be it resident or invading, achieves a higher frequency at the end of the simulation. 

However, this pattern is not as clear as it was for mutation rate evolution under environmental 

oscillations. In cases where resident and invading mutation rate are of equal value, the frequencies of 

the invading mutation rate are distributed evenly around 0.5. 
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Appendix Table 1: The correlation between the change in mutation rate (averaged across all 
individuals with a specific genotype) and the number of individuals with this genotype in Model 2. 
This table shows the p-values and correlation coefficients for 30 replicates of a correlation analysis 
testing the correlation between the change in mutation rate, averaged across all carriers of genotype 
A, and the number of individuals carrying genotype A (second and third column), and the correlation 
in mutation rate, averaged across all carriers of genotype B, and the number of individuals carrying 
genotype B (fourth and fifth column). In the correlation analysis I used Pearson’s correlation 
coefficient. 

Replicate 
Number 

Gen. A  
p-value 

Gen. A 
Correlation 
Coefficient 

Gen. B  
p-value 

Gen. B 
Correlation 
Coefficient 

1 < 0.0001 -0.2795 < 0.0001 -0.2756 

2 < 0.0001 -0.2219 0.0001 -0.1784 

3 < 0.0001 -0.2026 < 0.0001 -0.2288 

4 < 0.0001 -0.2753 < 0.0001 -0.2794 

5 < 0.0001 -0.2604 < 0.0001 -0.2608 

6 < 0.0001 -0.2313 < 0.0001 -0.2221 

7 < 0.0001 -0.2506 < 0.0001 -0.2821 

8 < 0.0001 -0.2813 < 0.0001 -0.2579 

9 < 0.0001 -0.3156 < 0.0001 -0.3010 

10 < 0.0001 -0.2612 < 0.0001 -0.2554 

11 < 0.0001 -0.2244 < 0.0001 -0.2178 

12 < 0.0001 -0.2265 < 0.0001 -0.2431 

13 < 0.0001 -0.2681 < 0.0001 -0.3274 

14 < 0.0001 -0.2410 < 0.0001 -0.2400 

15 < 0.0001 -0.2842 < 0.0001 -0.2721 

16 < 0.0001 -0.2134 < 0.0001 -0.2501 

17 < 0.0001 -0.2698 < 0.0001 -0.2491 

18 < 0.0001 -0.2459 < 0.0001 -0.2681 

19 < 0.0001 -0.2324 < 0.0001 -0.2592 

20 < 0.0001 -0.2582 < 0.0001 -0.2430 

22 < 0.0001 -0.2716 < 0.0001 -0.2732 

23 < 0.0001 -0.2237 < 0.0001 -0.2748 

24 < 0.0001 -0.2623 < 0.0001 -0.2513 

25 < 0.0001 -0.2427 < 0.0001 -0.2522 

26 < 0.0001 -0.2638 < 0.0001 -0.2282 

27 < 0.0001 -0.2479 < 0.0001 -0.2780 

28 < 0.0001 -0.2897 < 0.0001 -0.2852 

29 < 0.0001 -0.2434 < 0.0001 -0.2682 

30 < 0.0001 -0.2258 < 0.0001 -0.2682 
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Appendix Figure 3: Evolution of the mutation rate in the control scenario of Model 2, with a constant 

fitness pay-off without environmental fluctuations. In the control scenario, no increase in mutation 

rate is observed beyond what is consistent with drift and a bounded random walk. Parameter values 

for these two plots are: k=1, Nb= 50, d=0.075. Appendix Figure 3A: In the control scenario, some 

replicates seem to evolve a higher mutation rate, however this increase is very weak, especially 

compared to the strong increase seen under environmental fluctuations. This weak increase is 

consistent with a bounded random walk: through drift alone some replicates will achieve a higher 

mutation rate, and some replicates will achieve a lower mutation rate. However, since the mutation 

rate was initialized close to zero, replicates which through drift achieve a lower mutation rate stop at 

zero (since negative mutation rates are biologically not sensible) – the random walk is bounded at 

zero. The lower half of the random walk is therefore effectively “chopped-off”, resulting in the 

semblance of a weak increase in mutation rate. Appendix Figure 3B: To check that the weak increase 

in the mutation rate in the control simulations is indeed due to it being a bounded random walk, I 

repeated the control scenario but initialized the mutation rate at a higher value (0.5). In this scenario, 

the replicates of mutation rate show a “cone shape” centered around the value of initialization 

(shown by the red line at average mutation rate = 0.5), demonstrating that the mutation rate does 

indeed not evolve a higher average value, and changes through drift in a random manner. Essentially, 

the difference between 3A and 3B is that in 3A the random walk is bounded at zero, removing the 

lower half of the cone shape seen in 3B. 
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Appendix Figure 4: Evolution of the mutation rate in the control scenario of Model 3, with a constant 

fitness pay-off without environmental fluctuations. In the control scenario, no increase in mutation 

rate is observed beyond what is consistent with drift and a bounded random walk. Parameter values 

for these two plots are: k=1, Nb= 1, d=0.001. Appendix Figure 4A: In the control scenario, some 

replicates seem to evolve a higher mutation rate, however this increase is very weak, especially 

compared to the strong increase seen under environmental fluctuations. This weak increase is 

consistent with a bounded random walk: through drift alone some replicates will achieve a higher 

mutation rate, and some replicates will achieve a lower mutation rate. However, since the mutation 

rate was initialized close to zero, replicates which through drift achieve a lower mutation rate stop at 

zero (since negative mutation rates are biologically not sensible) – the random walk is bounded at 

zero. The lower half of the random walk is therefore effectively “chopped-off”, resulting in the 

semblance of a weak increase in mutation rate. Appendix Figure 4B: To check that the weak increase 

in the mutation rate in the control simulations is indeed due to it being a bounded random walk, I 

repeated the control scenario but initialized the mutation rate at a higher value (0.5). In this scenario, 

the replicates of mutation rate show a “cone shape” centered around the value of initialization 

(shown by the red line at average mutation rate = 0.5), demonstrating that the mutation rate does 

indeed not evolve a higher average value, and changes through drift in a random manner. Essentially, 

the difference between 4A and 4B is that in 4A the random walk is bounded at zero, removing the 

lower half of the cone shape seen in 4B. 
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Appendix Table 2: The correlation between the change in average mutation rate and population size 
in Model 3. This table shows the p-values and correlation coefficients for 30 replicates of a correlation 
analysis testing the correlation between the change in average mutation rate and population size. In 
the correlation analysis I used Pearson’s correlation coefficient. Statistically significant replicates are 
shown in green. 

Replicate 
Number 

p-  
value 

Correlation 
Coefficient 

1 < 0.0001 -0.1534 

2 0.0671 -0.0595 

3 < 0.0001 -0.2711 

4 < 0.0001 -0.2216 

5 0.0246 -0.0730 

6 0.5689 0.0185 

7 < 0.0001 -0.2270 

8 < 0.0001 -0.3569 

9 0.0237 -0.0734 

10 0.0104 -0.0832 

11 < 0.0001 -0.2024 

12 < 0.0001 -0.4149 

13 < 0.0001 -0.1686 

14 < 0.0001 -0.3385 

15 < 0.0001 -0.2180 

16 < 0.0001 -0.1485 

17 < 0.0001 -0.3089 

18 < 0.0001 -0.3766 

19 < 0.0001 -0.2335 

20 < 0.0001 -0.2371 

21 < 0.0001 -0.2916 

22 < 0.0001 -0.4310 

23 < 0.0001 -0.1589 

24 0.4837 0.0228 

25 < 0.0001 -0.1913 

26 0.0064 -0.0884 

27 < 0.0001 -0.1757 

28 < 0.0001 -0.1631 

29 < 0.0001 -0.3157 

30 0.1060 -0.0525 
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Appendix Figure 5: Subsampling the analysis of the change in average death rate during stationary 

population dynamic phases in Model 3. As the analysis of the change in death rate during different 

population dynamic phases (see Part 2 of the thesis, subheading “Linking population dynamics and 

death rate evolution”), I subsampled the dataset 1000 times and repeated the analysis on each 

subsample, resulting in 1000 p-values and 1000 mean changes in death rate. This figure thus shows 

histograms of the p-values (Appendix Figure 5A & 5C) and of the mean changes in death rate 

(Appendix Figure 5B & 5D) for 1000 subsamples of subsample size Nsub=100 (Appendix Figure 5A & 

5B) and for 1000 subsamples of subsample size Nsub=500. Histograms for other subsample sizes are 

available in the data archive. The red line indicates 0.05 in Appendix Figure 5A and 5C, and 0 in 

Appendix Figure 5B and 5D. The parameter values used in this analysis are s = 0.1, k = 3, Nb = 10 and 

d = 0.05, histograms for other parameter combinations are available in the data archive. The 

histograms shown here pertain to the subsampling analysis carried out in Approach 1 (categorizing 

population dynamic phases by population size), histograms for the second approach are available in 

the data archive. Overall, most subsamples in the here shown stationary phase show significantly 

negative changes in death rate. 
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Appendix Figure 6: Subsampling the analysis of the change in average death rate during population 

crash phases in Model 3. As the analysis of the change in death rate during different population 

dynamic phases (see Part 2 of the thesis, subheading “Linking population dynamics and death rate 

evolution”), I subsampled the dataset 1000 times and repeated the analysis on each subsample, 

resulting in 1000 p-values and 1000 mean changes in death rate. This figure thus shows histograms of 

the p-values (Appendix Figure 6A & 6C) and of the mean changes in death rate (Appendix Figure 6B & 

6D) for 1000 subsamples of subsample size Nsub=100 (Appendix Figure 6A & 6B) and for 1000 

subsamples of subsample size Nsub=500. Histograms for other subsample sizes are available in the 

data archive. The red line indicates 0.05 in Appendix Figure 5A and 5C, and 0 in Appendix Figure 5B 

and 5D. The parameter values used in this analysis are s = 0.1, k = 3, Nb = 10 and d = 0.05, histograms 

for other parameter combinations are available in the data archive. The histograms shown here 

pertain to the subsampling analysis carried out in Approach 1 (categorizing population dynamic 

phases by population size), histograms for the second approach are available in the data archive. 

Overall, most subsamples in the here shown population crash phase do not show changes in death 

rate that are significantly different from zero – in contrast to most subsample from stationary phases, 

as shown in Appendix Figure 5.  

 

 

 

 

 


