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Abstract

In 2003 it was shown by Takayuki Yato that the sudoku puzzle is an NP-complete and ASP-
complete problem. The proof provided in this paper involved a reduction from the Latin Square
Completion problem, which is quite similar to a sudoku puzzle. However, as the paper was not
solely focused on the sudoku puzzle, the formulation of the proof was short and not very intuitive.
This paper will describe the method of proof in more detail and give more context, as to make it
more understandable. Additionally, because there has not been much research done into other ways
to prove the NP- and ASP-completeness of the sudoku puzzle, a different approach to the proof is
explored. After this, the solving procedure is explained and the performances of different solving
algorithms are compared to determine which is the most efficient method for solving a sudoku puzzle.
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1 Introduction
The sudoku puzzle is a logic puzzle popular all around the world, with hundreds of puzzles being printed
in newspaper puzzle pages every day. The goal of the puzzle is to complete a square grid, usually 9 by
9, with the integers 1 to 9 such that each integer only appears once in each row, column, and 3 by 3
sub-block. Even though no actual mathematics is required to solve a sudoku puzzle, it can be seen as a
mathematical problem. Because of this, its complexity has been studied by many mathematicians.

The field of complexity is a subject within computing science, which concerns itself with how fast or
efficiently a problem can be solved with an algorithm. In this field, the set of P-problems is defined such
that it contains all the problems that can be solved with a deterministic algorithm in polynomial time.
This set is a subset of the set of NP-problems, which consists of all the problems that can be solved by
guessing a candidate solution and then checking if it is valid in polynomial time. In 1971, Stephen Cook
proved in [3] that determining if a given Boolean formula is satisfiable is at least as hard as every other
problem in NP. This discovery created a new category, the set of NP-complete problems. These are the
problems in NP that every other problem in NP can be reduced to. This implies that, given a problem
Π in NP, if there exists an NP-complete problem that can be reduced to Π in polynomial time, then Π
is NP-complete. For this reason, NP-complete problems are seen as the hardest problems in NP.

For any problem Π, there is also an associated Another Solution Problem, often referred to as ASP-
Π. This problem is concerned with finding another solution S′ to Π when a solution S is already given.
Besides being NP-complete, a problem can also be ASP-complete, meaning its ASP is an NP-complete
problem.

The complexity of the sudoku puzzle has already been studied a lot and the most significant result un-
til now is that finding a solution to a puzzle is both NP-complete and ASP-complete. This was shown in
2003 by Yato in [11] and since then the result has been used in many research papers. However, the proof
provided in his paper is very theory-heavy and hard to understand on the first few readthroughs. Addi-
tionally, it seems like there has not been much further research done into the way the NP-completeness
of the sudoku puzzle can be proven.

The goal of this paper will be to dive deeper into the proof of the NP-completeness of the sudoku
puzzle. In Chapter 2, the sudoku puzzle is defined, along with the set of all sudoku solutions. Then
some transformations are defined that can be performed on these solutions in order to show that certain
solutions are transformations of each other and thus have a very similar solving procedure.

In Chapter 3, the subject of complexity is described in detail, specifically the categories of NP and
P. Then, the Boolean satisfiability problem (SAT) and a similar problem, called 3SAT, are defined and
it is shown that 3SAT is an NP-complete problem. Then, an attempt is made to reduce 3SAT to the
sudoku puzzle in order to show it is NP-complete as well. After this, a more detailed description of the
original proof by Yato from [11] will be given, such that it may be easier to understand how it works.

Next, in Chapter 4, the uniqueness of a sudoku puzzle solution is studied. This is done using
the Another Solution Problem (ASP) of the sudoku puzzle. It is shown how the original proof shows
ASP-completeness as well as NP-completeness, as the reduction used is parsimonious. After this, the
attempted proof from the previous chapter is expanded to also become parsimonious in order to show
ASP-completeness.

Finally, in Chapter 5, the solving procedure of the sudoku puzzle is explained step by step. After
this, the programming methods of backtracking, stochastic search, and constraint programming, which
can be used to solve a sudoku puzzle algorithmically are explained. These methods are then each tested
on a set of test puzzles and their results are compared.
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Figure 1: A sudoku puzzle

2 The Sudoku Puzzle
A sudoku puzzle of order n is an n2 × n2 grid, with some grid squares (the hints) filled in with one of
the labels, the integers from 1 to n2. A solution to such a puzzle is the same grid, but with each empty
square filled in with one of the labels, such that each label only occurs exactly once in each row, column,
and n × n sub-block. These groups, which contain only one of each label, are referred to as sub-lines.
A row of n sub-blocks next to each other is called a band and a column of n sub-blocks on top of each
other is a stack.

Usually, a sudoku puzzle will have one unique solution. If this weren’t the case, it wouldn’t be possible
for a human to solve the puzzle. However, in the definition of a sudoku puzzle this paper uses, this is
not a requirement. Most sudoku puzzles are of order 3, meaning they are a 9 × 9 grid. An example of
such a sudoku puzzle is given in Figure 1.

2.1 The Mathematics of the Sudoku Puzzle
A sudoku puzzle of order 3 can be represented mathematically by equating the grid to a matrix in R9×9.
By setting the following restrictions on this set, the set S of all the possible solutions S is obtained. In
the rest of this paper, the set of integers between n and m, {n, . . . ,m}, will be indicated by [n,m]. This
set usually contains the non-integers in this range as well, but in this paper these values will usually not
be necessary, so [n,m] will only contain the integers in this range.

• Each element of the matrix is one of the labels 1 to 9, so S(i, j) ∈ [1, 9] for all i, j ∈ [1, 9].
• Each label may occur only once in each column, so S(i, j) 6= S(k, j) for all i, j, k ∈ [1, 9] s.t. i 6= k.
• Each label may occur only once in each row, so S(i, j) 6= S(i, l) for all i, j, l ∈ [1, 9] s.t. j 6= l.
• Each label may occur only once in each of the 3 × 3 sub-blocks. To make the notation somewhat

easier, the sets D1, D2 and D3 are defined to be equal to [1, 3], [4, 6] and [7, 9] respectively. This
means that each sub-block can be written as Dn×Dm for some m,n ∈ [1, 3]. If there is a bijection
between a sub-block Dn×Dm and the set [1, 9], then these sets have the same number of elements,
so therefore each element of Dn×Dm will be distinct. If such a bijection exists for each sub-block,
then the sub-block rule is satisfied.

These restrictions are combined into the following set.

S = {S ∈ R9×9 | S(i, j) ∈ [1, 9], S(i, j) 6= S(k, j) ∀i, j, k ∈ [1, 9] s.t. i 6= k, S(i, j) 6= S(i, l) ∀i, j, l ∈ [1, 9] s.t. j 6= l,

there exists a bijection from Dn ×Dm to [1, 9] ∀m,n ∈ [1, 3]}

This set contains all possible solutions and must be a finite set, as there are not infinitely many possible
ways to assign digits to the grid squares and adding restrictions will only make the set smaller.

2.2 Equivalent sudoku puzzles
In [5], it was shown that there are 6.670.903.752.021.072.936.960 possible sudoku solutions. However,
many of these solutions have no significant differences. For example, if one were to change the order
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Figure 2: The same puzzle with the order of the labels 1-9 changed

of the labels 1 to 9, the result would be a different solution, but the order of the labels doesn’t affect
the solving process, so any sudoku puzzle with such a solution would be solved in the same way. In
Figure 2, an example of this is given. The grid on the right is the same as the one on the left, but each
label has been interchanged for the next one and 9 has been replaced by 1. Similarly, if two rows or
columns are swapped within a band or stack or two bands or stacks are swapped altogether, the method
of solving any puzzle with those solutions would essentially not become any different. Solutions like these
are called equivalent. If two solutions are not equivalent they are essentially different. The complete list
of transformations that preserve equivalence is as follows.

1. Changing the order of (permuting) the labels 1 through 9
2. Swapping rows in a band.
3. Swapping columns in a stack.
4. Swapping bands.
5. Swapping stacks.
6. Mirroring, both horizontally and vertically. These transformations can also be accomplished by

swapping rows/columns and bands/stacks.
7. Transposition. This transformation mirrors the sudoku through the diagonal from the upper left

to the lower right, the downward diagonal. A transformation that could also be considered is
a transposition through the upward diagonal, but this can also be achieved by horizontally and
vertically mirroring the transposition through the downward diagonal.

8. Rotations. There are four orientations for each sudoku, the original and rotations of 90, 180, and
270 degrees. It turns out that these transformations can also be accomplished by a combination of
mirroring and transposing.

These transformations can be described as functions. First, there are the swap functions, which corre-
spond to items 1 through 5 in the list.

Definition: For u, v ∈ [1, 9], the label swap function luv : S → luv(S) is defined such that

(luv(S))(i, j) =

 u if S(i, j) = v
v if S(i, j) = u
S(i, j) otherwise

Definition: For u, v ∈ Dn′ , for some n′ ∈ [1, 3],

• . . . the column swap function cuv : S → cuv(S) is defined such that

(cuv(S))(i, j) =

 S(i, v) if j = u
S(i, u) if j = v
S(i, j) otherwise
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• . . . the row swap function ruv : S → ruv(S) is defined such that

(ruv(S))(i, j) =

 S(v, j) if i = u
S(u, j) if i = v
S(i, j) otherwise

Definition: For u, v ∈ D1 such that u < v,

• . . . the band swap function buv : S → buv(S) is defined such that

(buv(S))(i, j) =

 S(i, j − 3(v − u)) if j ∈ Dv

S(i, j + 3(v − u)) if i ∈ Du

S(i, j) otherwise

• . . . the stack swap function suv : S → suv(S) is defined such that

(suv(S))(i, j) =

 S(i− 3(v − u), j) if i ∈ Dmax{u,v}
S(i + 3(v − u), j) if i ∈ Dmin{u,v}
S(i, j) otherwise

In all of the above definitions, it is assumed that u 6= v, otherwise the functions would simply be the
identity map I. Next, maps for mirroring, transposition, and rotation are defined.

Definition: The horizontal mirror function H : S → H(S) is defined s.t. (H(S))(i, j) = S(10− i, j).

Definition: The vertical mirror function V : S → V (S) is defined s.t. (V (S))(i, j) = S(i, 10− j).

Definition: The downward transposition function Td : S → Td(S) is defined s.t. (Td(S))(i, j) = S(j, i).

Definition: The upward transposition function Tu : S → Tu(S) is defined such that

(Tu(S))(i, j) = S(10− i, 10− j)

Definition: The quarter-rotation function R : S → R(S) is defined s.t. (R(S))(i, j) = S(j, 10− i).

Except for quarter- rotation, all the defined maps are their own inverses. For quarter-rotation, an inverse
can easily be created, namely R−1 such that (R−1(S))(i, j) = S(10−j, i). As the functions have inverses,
they are bijective, which means that their range is equal to S. Therefore, any matrix these functions
produce is a valid sudoku solution.

Four of the last five functions can also be performed by using combinations of the first five trans-
formations and downward transposition. Firstly, the mirror functions can be performed by swapping
rows/columns and bands/stacks. This is intuitive and is not proven here, but it means that

H(S) = r89(r78(r12(r23(r46(b13(S)))))) and V (S) = c89(c78(c12(c23(c46(s13(S))))))

Similarly, the upward transposition can be performed by mirroring the downward transposition horizon-
tally and vertically. In other words, Tu(S) = V (H(Td(S))). This holds, as

(V (H(Td(S))))(i, j) = (H(Td(S)))(i, 10−j) = (Td(S))(10−i, 10−j) = S(10−j, 10−i) = (Tu(S))(i, j) ∀i, j ∈ [1, 9]

Lastly, the quarter-rotation function can be performed by first downward transposing and then mirroring
horizontally. This means that R(S) = H(Td(S)), which holds, because

(H(Td(S)))(i, j) = (Td(S))(10− i, j) = S(j, 10− i) = (R(S))(i, j) ∀i, j ∈ [1, 9]

As each rotation can be achieved by applying the quarter-rotation function multiple times, it has now
been shown that each rotation can be achieved by applying the other rules. By proving these three claims,
it becomes clear that there are only six actual transformations to consider when trying to discover how
many equivalent solutions there are.

1. Relabelling. Rearranging the order of the 9 labels creates groups of 9! equivalent solutions.
2. Row/column swaps. As there are three rows/columns in each band/stack, there are 3! ways to

rearrange the rows in each band. Therefore, both of these transformations create groups of (3!)3

equivalent solutions.
3. Swapping bands/stacks. As there are 3 bands/stacks, there are 3! ways to rearrange them, so both
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of these transformations create groups of 3! equivalent solutions.
4. Transposition. This only creates one other solution, so it makes pairs of 2 equivalent solutions.

This reduces the number of essentially different solutions to 1.218.998.108.160. The actual number of
essentially different solutions is lower, namely 5.472.730.538. This result was found in [10] by using group
theory.
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3 The existence problem
Proving that a given sudoku puzzle has a solution by simply looking at the given hints might seem like
a useful and simple problem to tackle. However, from the definition of a puzzle used in this paper it is
not given that the puzzle must be solvable, so to prove that there exists a solution, one would have to
show that there are no squares where no label would fit according to the rules. The process of doing this
essentially replicates the solving procedure a human solver would go through. This does not add much,
as in the process of trying to prove that a solution exists, a solution would have already been found.
Furthermore, multiple solutions may exist, which means that attempting to solve the sudoku will result
in certain squares still having multiple possible values, so then this method delivers no result. This gives
the impression that trying to prove that a sudoku puzzle has a solution is not a very interesting venture
and would certainly not result in an easily checkable list of requirements. Instead, this chapter seeks to
show the complexity of the Sudoku Puzzle Completion problem (SPC), which is defined as follows.

Given an order n, a matrix S ∈ Rn2×n2

and a set H of coordinates (i, j) s.t. S(i, j) ∈ [1, n2] and the
elements in HC are left blank, is there a way to assign the labels 1 to n2 to the elements in HC such

that the same label appears exactly once in each sub-line?

To find the complexity of this problem, the necessary theory will first be explained.

3.1 NP and P and the satisfiability problem
In the theory of computational complexity, decision problems are studied in order to classify their dif-
ficulty into different categories. These problems are questions that can be answered by "yes" or "no".
The SPC as defined above is one of these decision problems. The relevant categories for the topic of the
sudoku puzzle will be P and NP. The class P contains decision problems that can be solved in polyno-
mial time by a deterministic Turing machine. A Turing Machine is a theoretical computer that can run
algorithms to solve problems. It works with a string of tape squares, where a symbol could be written in
each square. An algorithm runs reads the symbol a in the square it is currently on and, depending on the
state q the Turing machine is in, determines which next state and tape square to move to. The machine
has two special states, the accept state qY and the reject state qN , which determine whether the input is
accepted and therefore what the answer to the decision problem is. In a deterministic Turing machine,
for every pair (q,a), there is only one next step possible. This means that the algorithm simply follows
the instructions it is given and therefore it could happen that it doesn’t reach qY or qN , but instead
gets stuck in an infinite loop. Because of this, it seems logical that not all problems can be solved by
a deterministic Turing machine. This means that the set of P-problems contains problems that could
be called "easy". On the other hand, there is the class NP, which contains problems that can be solved
in polynomial time by a non-deterministic Turing machine. In contrast to the deterministic machine,
machines like these have a set of steps they can take for each pair (q, a). This means that it accepts an
input if any of the possible consecutive step choices lead the program to qY . From this definition, it can
be inferred that every problem in P is also in NP, as any program the deterministic Turing machine runs
could also be run by a non-deterministic machine.

There is a subset of NP, which contains the "hardest" problems in NP. These problems are called
NP-complete and their defining property is that each problem in NP can be reduced to them. The
concept of reduction will be explained further on in this section. The first problem that was proven to
be NP-complete was satisfiability (SAT). This problem begins with the set U = {u1, . . . , um}, which
contains m Boolean variables. A truth assignment over this set U is a function t : U → {T, F} that
assigns a truth value to each variable. If t(u) = T , then the variable is true, if t(u) = F , then it’s false. A
literal is either a variable out of the set U , or the negation u for some u ∈ U , where t(u) = T iff t(u) = F .
A clause is a set of literals from U , which represents a disjunction and is satisfied by a truth assignment
t iff at least one of the literals in the set is true under that assignment. A collection C of clauses is
satisfied by a truth assignment t if all the clauses in C are satisfied by t. This collection is a different
way to represent a formula in CNF, as it is a conjunction of disjunctions. Using these definitions, the
SAT problem is defined as follows.

Given a set of Boolean variables U and a collection C of clauses with literals from U , does there exist a
truth assignment t such that C is satisfied?

In 1971, Cook proved that this problem is NP-complete, by showing that any problem in NP could be
reduced to it. A problem Π1 can be reduced to another problem Π2 if there exists a transformation that
transforms any input I for Π1 into an input I ′ for Π2, such that the answer that I ′ gives as an input
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for Π2 is the same answer that I would give as an input for Π1. It should be possible to perform this
transformation in polynomial time. If Π1 can be reduced to Π2, then Π2 is at least as hard as Π1, so
if it can be shown that an NP-complete problem reduces to another problem in NP, then that second
problem must also be NP-complete. This will be the strategy to prove the complexity of the Sudoku
Puzzle Completion problem.

3.2 A proposed reduction from 3SAT to an adjusted version of the SPC
problem

It is generally known that the sudoku problem is NP-complete [11]. To prove this, the first step is to
show that the problem is NP. This can be shown by proving that a solution to an instance of the problem
can be guessed and checked in polynomial time. Given a sudoku puzzle of order n, an algorithm could
guess the labels for the squares that have not been given, which would be at most n4 steps. Then, to
check whether it satisfies the sudoku rules, it would do n2 checks for the rows, n2 checks for the columns,
and n2 checks for the sub-blocks. This means that the algorithm would be at most O(n4), so a solution
for an instance of the Sudoku Puzzle Completion problem can be checked in polynomial time. Therefore,
the SPC problem is NP.

Next, to show that the SPC problem is NP-complete, SAT will be reduced to SPC. In [11] the SAT
problem is reduced to the 3SAT problem, which is defined similarly to the SAT problem, except that
the clauses may contain at most 3 literals each. As SAT is NP-complete, this would imply that 3SAT is
also NP-complete. Because this paper uses different notations and definitions, the proof is replicated here.

Claim: 3SAT is NP-complete.

Proof. Given an instance of SAT, a collection C of clauses with literals from the set U , reducing it to
3SAT would mean breaking every clause with 4 literals up into clauses with no more than 3 literals.
In [11], this is done two literals at a time. Given a clause with the literals u1, u2, . . . , um, a new variable
d is introduced and the clause is split up into

u1 ∨ u2 ∨ d, u1 ∨ d, u2 ∨ d and d ∨ u3 ∨ · · · ∨ um.

The conjunction of the first three clauses is equivalent to (u1 ∨ u2) ≡ d, ensuring the last clause has the
same truth value as the starting clause. This step can be repeated as many times as needed until the
last clause is reduced to 3 or fewer literals, which results in a new collection C ′ of clauses and a new
set of variables U ′. It is easily observable that this can be done in polynomial time, as for any clause
with m literals, the step needs to be repeated no more than 1

2m times. Therefore, SAT can be reduced
to 3SAT with a polynomial-time reduction and, because SAT is NP-complete, this proves that 3SAT is
NP-complete.

Now that this claim has been proven, reducing 3SAT to the Sudoku Puzzle Completion problem will
be enough to prove the latter is NP-complete. To reduce 3SAT to the SPC problem, the possible clauses
will be studied to find structures in a sudoku puzzle that could represent them. In 3SAT, the clauses
could contain at most 3 literals, so there are three cases to consider, a clause of 1, 2, or 3 literals. Next,
it is illustrated how these cases can be transformed into constructs placed in a sudoku puzzle solution
of order 2 and, through these examples, it shall be made clear how they can be expanded to a sudoku
puzzle of any size.

• A clause with 1 element, {u1}. To deal with this case, a variable s will be defined as follows.

s =

{
1 if t(u1) = T
5 if t(u1) = F

This way the variable will produce an invalid label for a sudoku of order 2 if the literal u1 is assigned
false by t. This means that the sudoku will not have a valid solution whenever the clause is not
satisfied by t. This variable is placed in a solution of order 2 in a grid square which originally
contained a 1, shown on the left in Figure 3, to make sure the rest of the sudoku is valid. If the
literal is assigned true, then the sudoku will already be its own solution.

• A clause with 2 literals, {u1, u2}. Two new variables a and b are defined as follows.

a =

{
1 if t(u1) = T
3 if t(u1) = F

b =

{
2 if t(u2) = T
3 if t(u2) = F
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Figure 3: Constructs to represent clauses with one, two or three literals

This means that they will only be the same if u1 and u2 are both assigned false. To place them in
a solution of order 2, every instance of the labels they can produce, namely 1, 2 and 3, will need
to be deleted. When the variables are then placed in adjacent squares as shown in the middle in
Figure 3, they will create a contradiction with the sudoku rules if both are assigned false, which
means that the sudoku won’t be solvable. As each instance of the used labels was removed, the
sudoku will be solvable as long as the two values are different and this is exactly the case whenever
at least one of the literals is assigned true under t, so when the clause is satisfied by t.

• A clause with 3 literals, {u1, u2, u3}. For this case, a new variable c is defined as:

c =

{
3 if t(u3) = T
4 if t(u3) = F

To place this variable along with a and b into a solution of order 2, all instances of the labels they
use have to be removed. So, in this case, all the labels have to be removed, resulting in an empty
grid. Then the variables are placed in the grid as shown on the right in Figure 3. This way, the
sudoku has no contradictions as long as at least one of the variables is assigned true. If all are
assigned false, there is no place for a 3 in the first sub-block. Therefore, this sudoku has a solution
whenever the clause is satisfied.

Now, these methods work for the clauses individually, but for the transformation to work for a whole
collection of clauses, it should be possible to combine the constructs into one sudoku grid. In Appendix
A, pseudo-code is given for the full transformation from 3SAT to SPC. In short, the algorithm creates
a solution of appropriate size and then applies the constructs described above for each clause in given
input collection C. By emptying and changing some grid squares according to these steps, this algorithm
creates a sudoku puzzle. By way of illustrating this process, an example follows.

Example: Take the instance of the 3SAT with Boolean variables U = {u1, u2, u3} and the collection
C = {{u1, u2}, {u1, u2, u3}, {u3}}. This can be written in CNF as (u1 ∨ u2) ∧ (¬u1 ∨ u2 ∨ u3) ∧ (¬u3).
The size of this input, the sum of the number of elements of each clause, is 6, so the sudoku must be at
least of order 4. The algorithm generates a pre-existing solution of order 4, shown in Figure 4, in the
16 × 16 matrix S. This solution is created by filling the first row with the labels 1 to 16 in order and
then shifting the row 4 squares to the left to create the next row until the first band is filled. Then for
the first row of the next band, the first row of the previous band is shifted 1 to the left and the process
is repeated until the sudoku is filled.

The first clause {u1, u2} has size 2. The squares S(3, 1), S(3, 2) and S(4, 1) are chosen, as they are
three grid squares in the first sub-block that are not in any of the 2× 2 blocks along the diagonal. The
labels of these are 9, 10, and 13, so every instance of those labels is removed and then S(3, 1) and S(3, 2)
are replaced by a and b defined as follows.

a =

{
9 if t(u1) = T
13 if t(u1) = F

b =

{
10 if t(u2) = T
13 if t(u2) = F

The next clause {u1, u2, u3} has 3 elements and it is the first of this size. Therefore, the first 2× 2 block
along the diagonal, the one containing S(1, 1), S(1, 2), S(2, 1) and S(2, 2), will be chosen. The labels in
these squares are 1, 2, 5 and 6, so each instance of those labels is removed, and then S(1, 1) is replaced
by the variable c defined as follows.

c =

{
1 if t(u1) = T
2 if t(u1) = F

10



Figure 4: The generated solution of order 4 and the result of the transformation

The second column intersects with the 2 × 2 block, but not with S(1, 1). The first grid square in this
column, that previously contained 1, 2, 5 or 6, is S(13, 2), so this square will contain the variable d defined
as follows.

d =

{
5 if t(u2) = T
1 if t(u2) = F

Similarly, the second row intersects with the 2 × 2 block, but not with S(1, 1). The first grid square in
this column, that previously contained 1, 2, 5 or 6, is S(2, 13), so this square will contain the variable e
defined as follows.

e =

{
6 if t(u3) = T
1 if t(u3) = F

The last clause {u3} has 1 element, so all that is needed is a non-blank square in the first sub-block.
Take S(1, 3) and replace it with f defined as follows.

f =

{
3 if t(u3) = T
17 if t(ū3) = F

In this way, the generated solution shown on the left in Figure 4, is transformed into a sudoku puzzle.
However, the resulting puzzle contains some squares filled with the variables above, which are in essence
functions of the truth assignment t and a Boolean variable uk. This creates a problem, as these are not
a part of the problem definition for the SPC problem. What has now been created is a transformation
from 3SAT into the following problem.

Given an order n, a matrix S ∈ Rn2×n2

and a set H of coordinates (i, j) s.t. S(i, j) ∈ [1, n2] and the
elements in HC are left blank, does there exist a truth assignment t such that there is a way to assign
the labels 1 to n2 to the elements in HC such that the same label appears exactly once in each sub-line?

This adapted version of the SPC problem is at first sight more complex than the original SPC problem
and it does not seem possible to reduce it to the SPC problem, so this transformation is not successful in
proving the NP-completeness of the sudoku puzzle. As the goal of the 3SAT problem is to find a truth
assignment, this truth assignment should not be necessary to solve the instance of SPC, but this is the
case. It seems too difficult to adapt this transformation into one that doesn’t use the truth assignment.
As 3SAT is NP-complete, it is not possible to determine a truth assignment that satisfies C in polynomial
time and as the Boolean variables in U do not have any value without a truth assignment, it is difficult to
incorporate them into defining the sudoku solution. Therefore, this transformation is left here as proof
that the adapted version of the SPC problem is NP-complete.

3.3 Reducing the Latin Square Completion problem to the SPC problem
Although the proof in the previous chapter failed, it is already known that the problem of finding
a solution to a sudoku puzzle is NP-complete. This was first proven in [11] using the Latin square.
However, the proof is quite theory-heavy and though it is sound, the line of reasoning is hard to follow
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Figure 5: A Latin square of order 3 can be found in a sudoku puzzle of order 3

at times. This section will follow Chapter 3.2 from [11] and attempt to make it more accessible to people
just starting research into complexity.

The proof in [11] is based on the Latin square. A Latin square of order n is an n × n grid in which
each column and row contains each integer from 1 to n exactly once. From this definition it is easy to see
that it is quite similar to a sudoku puzzle, only missing the rule for sub-blocks, so making a connection
between them seems very logical. The Latin square also has a complexity problem similar to the SPC
problem, namely the Latin Square Completion (LSC) problem, which is defined as follows.

Given an order n, a matrix L ∈ Rn×n and a set H of coordinates (i, j) s.t. L(i, j) ∈ [1, n] and the
elements in HC are left blank, is there a way to assign the labels from 1 to n to the elements in HC

such that the same label appears exactly once in each row and column?

In [1] it was proven that the LSC is NP-complete with a reduction from the tripartite graph triangle-
partition problem. This means that giving a reduction, that can be computed in polynomial time, from
LSC to SPC will be enough to prove that the SPC problem is NP-complete.

In order to give a reduction, given an instance of the LSC problem, a sudoku puzzle should be
constructed that is solvable if and only if the Latin square is. Taking n as the order of the Latin square,
the starting point for this transformation is a sudoku puzzle solution of order n, which is constructed in
the same way as in the example in Section 3.2. In this solution, a Latin square can be found with non-
consecutive labels. In the top band, the leftmost columns of each sub-block contain the same integers,
all in different positions. Taking these squares out and pasting them next to each other creates a Latin
square. An example for order 3 is shown in Figure 5. If the marked grid squares are made blank, the
resulting puzzle has a solution. If the labels of the given LSC problem are then adjusted to fit those from
the sudoku puzzle and these labels are placed into the blank squares, the result is a sudoku puzzle which
is solvable only if the Latin square can be completed. This is the outline of how the transformation will
work. Now, it will be described mathematically and the proof of the complexity of SPC will follow.

What is given at the start is an instance I = 〈n,L,H〉 of the Latin Square Completion problem,
consisting of an n× n matrix L and a set H = {(i, j) | i, j, L(i, j) ∈ [1, n]}. All the squares that are not
in H are blanks, so HC = {(i, j) | i, j ∈ [1, n], L(i, j) = ⊥}, where ⊥ indicates a blank square. The first
step is to generate the sudoku solution S of order n as described in the previous paragraph, which can
be defined by the following formula.

S(i, j) =
((

j − 1 + ((i− 1) mod n) · n +

⌊
i− 1

n

⌋)
mod n2

)
+ 1

In this formula, j − 1 ensures that the labels are in order in each row, ((i − 1) mod n) · n ensures that
the rows within one band are each shifted n squares to the left. In the expression b i−1n c, the brackets
mean that the value is rounded down to the closest integer. This ensures that the first row of each band
is the first row of the previous band shifted one square to the left. The formulation is similar to the one
in [11], however in this version the +1 at the end and using j − 1 and i− 1 instead of just i and j keeps
the labels the same as in the original definition (1 to n2), where Yato used 0 to n2 − 1. The fact that
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this is a valid sudoku puzzle is left to the reader, as it is easy to observe from the example in Figure 5.
Next, a set B is defined which contains the grid squares that make up the Latin square.

B = {(i, j) | i ∈ [1, n], (j − 1) mod n = 0}

This set contains the intersection between the first band (i ∈ [1, n]) and the first column of each stack
((j − 1) mod n = 0). To complete the transformation, an instance I ′ = 〈n, S,H ′〉 of SPC is defined with
the same order n as the instance I of LSC. The other parts are defined as follows.

H ′ = BC ∪ {(i, 1 + (j − 1)n) | (i, j) ∈ H}

S(i, j) =


((j + ((i− 1) mod n) · n + b i−1n c − 1) mod n2) + 1 if (i, j) /∈ B

1 + (L(i, j−1
n + 1)− 1)n if (i, j) ∈ B ∪H ′

⊥ if (i, j) ∈ (H ′)C

In the second case in the definition of S, the labels from L are adjusted to fit into B inside the sudoku
S and, by the third case, the squares that are blank in L are left blank in S as well. The values that are
not in B are left unchanged from the original solution.

Claim: Instance I of the LSC problem is solvable if and only if instance I ′ of the SPC is solvable.

Proof. First, the proof from left to right. It is assumed that the instance I is solvable and it must be
shown that the instance I ′ is solvable. Say an n×n matrix L′ is a solution to I, then the goal is to prove
that there exists a solution to the instance I ′ of the SCP problem. The following suggested solution S′

is essentially defined as S above in the case that there are no empty squares, so when (H ′)C = ∅.

S′(i, j) =

{
1 + (L′(i, j−1

n + 1)− 1)n if (i, j) ∈ B
((j + ((i− 1) mod n) · n + b i−1n c − 1) mod n2) + 1 if (i, j) /∈ B

For this to be a valid solution, the labels should only take values from 1 to n2 and each label should
only occur once in each sub-line. The first fact can be easily shown. For (i, j) ∈ B, as L′ is a solution
of order n, 1 ≤ L′(i, j) ≤ n and L′(i, j) ∈ Z. This means that S(i, j) = 1 + (L′(i, j) − 1)n ∈ Z
1 ≤ 1 + (L′(i, j) − 1)n ≤ 1 + (n − 1)n ≤ n2, so S′(i, j) ∈ [1, n2]. As the values for (i, j) /∈ B were
defined to already be a valid solution, S′(i, j) = S(i, j) ∈ [1, n2] for all i, j /∈ B. This also means that
the sub-lines that contain no elements of B do not need to be considered in the proof.

Assume i ∈ [1, n], which means that the coordinates are in the top band. With i fixed, take j, k ∈
[1, n2] such that j 6= k. The row rule states that S′(i, j) 6= S′(i, k) should hold for all such i, j, k. If
(i, j), (i, k) /∈ B, then this fact follows from the fact that all labels outside B are defined to give a valid
solution. Instead, say (i, j), (i, k) ∈ B. These squares in S correspond with ((i, j−1

n + 1)), (i, k−1
n + 1) in

L′. As j 6= k, it holds that j−1
n + 1 6= k−1

n + 1, so, as L′ is a solution to I, L′(i, j−1
n + 1) 6= L′(i, k−1

n + 1),
so

S′(i, j) = 1 + (L′(i, j−1
n + 1)− 1)n 6= 1 + (L′(i, k−1

n + 1)− 1)n = S′(i, k)

For the last case, without loss of generality, say that (i, j) ∈ B and (i, k) /∈ B. This means

S′(i, j) = 1 + (L′(i, j−1
n + 1)− 1)n and S′(i, k) =

((
j + ((i− 1) mod n) ·n+

⌊
i− 1

n

⌋
− 1
)

mod n2
)

+ 1

It is easy to see that S′(i, j) mod n = 1. Say S′(i, j) = S′(i, k), implying S′(i, k) mod n = 1, and then
work towards a contradiction. Note that i ∈ [1, n] means that b i−1n c = 0, so this term can be left out.

S′(i, k) mod n = 1⇒
(((

k + ((i− 1) mod n) · n− 1
)

mod n2
)

+ 1

)
mod n = 1

⇒
((

k + ((i− 1) mod n) · n− 1
)

mod n2
)

mod n = 0

⇒ ∃s ∈ Z s.t.
(
k + ((i− 1) mod n) · n− 1

)
mod n2 = sn

⇒ ∃t ∈ Z s.t. k + ((i− 1) mod n) · n− 1 = sn + tn2

⇒ k − 1 = sn + tn2 − ((i− 1) mod n) · n = n(s + tn + (i− 1) mod n)

This last equation shows that there exists a u ∈ Z s.t. k−1 = un, so (k−1) mod n = 0. But, as (i, k) ∈ B,
(k − 1) mod n = 0, so a contradiction is reached. Therefore, S′(i, j) 6= S′(i, k) for all i, j, k ∈ [1, n2] s.t.
j 6= k, so the row rule is satisfied.
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For the column rule, only the first columns of each stack are considered, so (j− 1) mod n = 0. Given
i, k ∈ [1, n2] such that i 6= k, the column rule states that S′(i, j) 6= S′(k, j). Just like the row rule, if
(i, j), (k, j) /∈ B the column rule already holds. If (i, j), (k, j) ∈ B, the corresponding squares in L′ are
(i, j−1

n + 1), (k, j−1
n + 1). As i 6= k and L′ is a solution to I, L′(i, j−1

n + 1) 6= L′(k, j−1
n + 1), so

S′(i, j) = 1 + (L′(i, j−1
n + 1)− 1)n 6= 1 + L′(k, j−1

n + 1)− 1)n = S′(k, j)

For the last case, say that (i, j) ∈ B and (k, j) /∈ B, then i ∈ [1, n] and k ∈ [n + 1, n2]. This implies that
S′(i, j) mod n = 1, so if it is assumed that S′(i, j) = S′(k, j), then S′(k, j) mod n = 1. Again, this leads
to a contradiction.

S′(k, j) mod n = 1⇒
(((

j + ((k − 1) mod n) · n +

⌊
k − 1

n

⌋
− 1
)

mod n2
)

+ 1

)
mod n = 1

⇒
((

j + ((k − 1) mod n) · n +
⌊
k−1
n

⌋
− 1
)

mod n2
)

mod n = 0

⇒ ∃s ∈ Z s.t.
(
j + ((k − 1) mod n) · n +

⌊
k−1
n

⌋
− 1
)

mod n2 = sn

⇒ ∃t ∈ Z s.t. j + ((k − 1) mod n) · n + bk−1n c − 1 = sn + tn2

(j − 1) mod n = 0⇒ ∃u ∈ Z s.t. ((k − 1) mod n) · n + bk−1n c+ un = sn + tn2

⇒ bk−1n c = sn + tn2 − un + ((k − 1) mod n) · n = n(s + tn− u + (k − 1) mod n)

This last equation shows that there exists a v ∈ Z s.t. bk−1n c = vn, so bk−1n c mod n = 0. However, as
k ∈ [n + 1, n2], 1 ≤ bk−1n c ≤ n − 1. This is a contradiction, as it would mean that bk−1n c mod n 6= 0.
Therefore, S′(i, j) 6= S′(k, j) for all i, j, k ∈ [1, n2] s.t. i 6= k, so the column rule is satisfied.

For the sub-block rule, only the top band needs to be considered, so i, k ∈ [1, n]. The sub-block rule
states that S′(i, j) 6= S′(k, l) should hold for all (i, j), (k, l) in the same sub-block s.t. i 6= k and j 6= l.
Again, if (i, j), (k, l) /∈ B, then this rule already holds. As, j 6= l, (i, j) and (k, l) must be in different
columns, but they are in the same sub-block, so only one of them can be in B. This leaves the case where
(i, j) /∈ B and (k, l) ∈ B. This means S′(k, l) mod n = 1, but (i, j) /∈ B means that (j − 1) mod n 6= 0.
For the row rule, it was shown that

i ∈ [1, n]
(j − 1) mod n 6= 0

}
⇒ S′(i, j) mod n 6= 1

This means that S′(i, j) 6= S′(k, l) for all (i, j), (k, l) in the same sub-block such that i 6= k and j 6= l.
All the sudoku rules have been shown to hold, so S′ is a valid solution to I.

Next, the proof from right to left. Say the n2 × n2 matrix S′ is a solution to the instance I ′ of SPC,
then a solution L′ to the LSC problem can be formulated by rewriting the definition of S′ in the first
part of the proof. The squares of the sudoku that are not in B are not considered, as they will not affect
the solution L′. This means S′(i, j) = 1 + (L′(i, j−1

n + 1)− 1)n, which can be rewritten as

L′(i, j) = 1 +
S′(i, j′)− 1

n

For ease of notation j′ denotes 1+(j−1)n−1. It will be assumed that i ∈ [1, n], so that only the squares
in B are considered. The coordinates (i, j′) are in B as

(j′ − 1) mod n = ((1 + (j − 1)n)− 1) mod n = ((j − 1)n) mod n = 0.

For L′ to be a valid solution, the labels should only take values from 1 to n and each label should only occur
once in each row and column. To show the first fact, consider that (i, j′) ∈ B means that S′(i, j′) ∈ Z
and S′(i, j′) mod n = 1. This means that S′(i, j′) − 1 mod n = 0, so L′(i, j) = 1 + S′(i,j′)−1

n ∈ Z. The
first two facts combined with the fact that S′(i, j′) ∈ [1, n2], as S′ is a solution to I, show that

S′(i, j′) ∈ [1, 1 + (n− 1)n]⇒ L′(i, j) = 1 + S′(i,j′)−1
n ∈ [1 + 1−1

n , 1 + 1+(n−1)n−1
n ] = [1, n]

So the labels of L′ are all in [1, n]. The row/column rules follow from the row/column rules in S′.

j 6= k ⇒ j′ 6= k′ ⇒ S′(i, j′) 6= S′(i, k′)⇒ 1 +
S(i, j′)− 1

n
6= 1 +

S(i, k′)− 1

n
⇒ L′(i, j) 6= L(i, k)

i 6= k ⇒ S′(i, j′) 6= S′(k, j′)⇒ 1 +
S(i, j′)− 1

n
6= 1 +

S(k, j′)− 1

n
⇒ L′(i, j) 6= L(k, j)

So L is a valid solution to I, which means the claim has been proven.

14



It has now been shown that the instance I ′ = 〈n, S,H ′〉 of the SPC problem as defined at the start
of this section is solvable if and only if the instance I = 〈n,L,H〉 of the LSC problem is solvable. This
means that this transformation from I to I ′ is a reduction from LSC to SPC.

Claim: The SPC problem is NP-complete

Proof. As stated earlier, the LSC problem has been proven to be NP-complete. At the start of section
3.2, it was shown that the SPC problem is NP, by showing a solution could be checked in polynomial
time. In this section, it has been shown that there is a reduction from LSC to SPC. This reduction
can be easily performed in polynomial time. Given an instance of the LSC problem, the input size is
polynomially related to the order n. An n2 × n2 matrix is created (O(n4)) and the appropriate labels
are assigned according to the definition of S(i, j) (O(n4)). This means the process is of time complexity
O(n4). As the reduction can be performed in polynomial time, this shows that the SPC problem is
NP-complete.
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4 The uniqueness problem
Now the problem of finding a solution to a sudoku puzzle has been discussed. However, there is an
important difference between the existence of a solution and solvability. For a puzzle to be solvable,
there can’t be more than one solution. If a puzzle were to have multiple solutions, a person solving it
would eventually get stuck, as some squares would have multiple possible labels. This brings up the
question of uniqueness, in other words, given a solution S1 to an instance I of a problem, does there
exist another solution S2 such that S1 6= S2? This problem is called the Another Solution Problem and
for any problem, there is an associated ASP version of that problem. So, to study the uniqueness of a
solution to the SPC problem, the complexity of ASP-SPC will be investigated.

The ASP version of a problem can be shown to be NP-complete in a similar way to the problem
itself. The main distinction is that a normal reduction from problem A to problem B is not enough, but
a special case of reduction is needed, namely a parsimonious reduction, which has the special property
that the number of solutions to instance I of problem A is the same as the number of solutions to the
transformed instance I ′ of problem B. In other words, a parsimonious reduction is a bijection between
the sets of solutions of both problems. If A can be reduced to B with such a reduction and ASP-A is
NP-complete, then ASP-B is also NP-complete. So, to construct a proof that ASP-SPC is NP-complete,
or in other words, SPC is ASP-complete, the strategy is to find a problem whose ASP is NP-complete
and that can be reduced to SPC parsimoniously.

4.1 The original proof of NP-completeness as a proof of ASP-completeness
In the original paper [11], Yato’s goal was not to simply prove the NP-completeness of the sudoku
puzzle. The paper was focused on the Another Solution Problem and considered many different logical
puzzles and their ASPs. The reduction, used in section 3.2 of this paper, was used in [11] to prove the
ASP-completeness of SPC. When observing this reduction again, it seems reasonable to say that it is
parsimonious, as any solution to the instance of LSC can be transformed into a solution to the instance
of SPC, implying the number of solutions each problem has would be the same.

So, the reduction is parsimonious, but it should also be shown that the LSC problem itself is ASP-
complete. In [11], Yato points to [2], a paper similar to [1]. In this paper, Colbourn proves not only
that the Latin Square Completion problem is NP-complete, but that its Another Solution Problem is
NP-complete as well. He reduces the satisfiability problem UNIQUE 1-IN-4 SAT, which is NP-complete,
to the problem of unique partition into triangles of tripartite graphs, which is then in turn reduced to the
Latin Square Completion uniqueness problem. The problems in this paper are all in the form of finding
out if there are multiple solutions, in other words, they are ASPs. Every reduction preserves the number
of solutions each problem has, which effectively proves that ASP-LSC is NP-complete. So, as ASP-LSC
was reduced with a parsimonious reduction in section 3.3, the fact that ASP-SPC is NP-complete follows.

It seems as if, after [11] was published, not much further research has been done on how to prove
the SPC problem and its ASP are NP-complete. This does make sense, as when something is proven,
researchers can simply point to who proved it and assume the claim holds from there. It is however
quite important that a proof can be easily understood. If it is difficult to understand the way something
is proven, a researcher may use the claim, without truly understanding why it holds. Furthermore,
continuing research into these proofs may reveal problems with the original proof, easier alternative
proofs, or completely separate conclusions. With this in mind, the proof from the previous chapter will
not be abandoned and it will be attempted to adapt it into a parsimonious reduction to use it to show
the ASP-completeness of the adapted SPC problem.

4.2 Expanding the suggested transformation to prove the adapted SPC is
ASP-complete

To be able to use the transformation from the previous chapter, it should be shown that the ASP for
3SAT is NP-complete. In the first proof that SAT is NP-complete by Cook, the reduction used is a
parsimonious one, as it preserves the number of solutions. This means that the ASP for SAT is NP-
complete. In section 3.2, it was shown that 3SAT is NP-complete by reducing SAT to it, and the reduction
from that proof turns out to be parsimonious. A truth assignment t over U can only be extended to
U ′ in one way, as all the new variables are equivalent to a disjunction of literals from U , so their truth
assignment is already fixed. This means that the number of truth assignments that satisfy C is the same
as the number that satisfy C ′, so therefore the transformation retains the number of solutions and is a
parsimonious reduction. So, as SAT can be reduced to 3SAT with a parsimonious reduction, ASP-3SAT
is NP-complete. With this proven, it is only necessary to find a parsimonious reduction from 3SAT to the
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Figure 6: New constructs for clauses of 2 and 3 literals

adapted version of the SPC problem to show that the ASP for the SPC problem would be NP-complete.
If it has to be shown that a transformation conserves the number of solutions, it must be clear

what constitutes a solution. For 3SAT, the solution would be a truth assignment t which satisfied the
collection. The solution to the adapted version of the SPC problem from Chapter 3 is a pair (t, S) of a
truth assignment t and a sudoku puzzle solution S. Because of the way the transformation is defined,
the truth assignment is the same in both problems, so for the transformation to be parsimonious, there
should be only one possible sudoku solution for each truth assignment t. This means the transformation
from Chapter 3 turns out not to be parsimonious. This can be easily seen from the construct for a clause
of 2 literals in Figure 3, which has multiple possible solutions. Only row and column 1 can be filled in
with numbers that certainly belong there, but the remaining squares leave different possibilities. To be
able to use this transformation, it will need to be adapted.

To ensure that there is only one possible sudoku solution for each truth assignment, the constructs
for clauses of 2 and 3 literals will need to be changed. The construct for 1 literal already works as needed,
as it leaves no empty squares, thus creates no extra solutions.

• The construct for a clause with 2 literals will be changed by not removing all instances of each
label that is used. Instead, all squares that contained the same label, will now contain the same
variable. As a and b are placed in the squares where 1 and 2 were, every instance of 1 and 2 will
be replaced by a and b respectively. For the remaining squares, a new variable will be introduced.

d = 6− a− b

Each instance of the label 3 will be replaced with this variable. This results in the construct in
Figure 6. As there are no empty squares, this construct doesn’t allow for multiple solutions.

• The construct for a clause with 3 literals will have to be changed more. As a sudoku puzzle of
order 2 only has 4 different labels, placing more than two of the variables defined in section 3.2
in one block will create contradictions even if one of the variables is true. A possible construct is
similar to the construct for a clause of 1 literal. A new variable e is defined as follows.

e =

{
1 if t(u1) = T, t(u2) = T or t(u3) = T
5 otherwise

This is not the most interesting solution, but it does assure that every time one of the variables is
true, the sudoku is unsolvable. One might note that this strategy could also be used for any other
clause, but this would make the transformation less efficient computationally.

With these new constructs, a new reduction has been defined, which will ensure that each sudoku has
only one solution if the clause is satisfiable. This parsimonious reduction shows that the adapted SPC
problem defined in Chapter 3 is also an ASP-complete problem. However, it is of course still not enough
to show that the original SPC problem is NP-complete.
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Figure 7: A sudoku puzzle Figure 8: A sudoku puzzle with candidates

5 The solving procedure
Now that the complexities of the existence and uniqueness questions have been found, the solving proce-
dure can be studied next. In this chapter, the steps of this procedure will be explained from those that
are easy to observe, like one missing element in a sub-line, to the more complex steps, like colorings.
These steps are taken from [4], in some cases slightly redefined, and some examples from that paper
are also used here. The more complex steps will usually not be necessary for solving an average sudoku
puzzle, but to make sure that for any sudoku with a unique solution this solution can be found, all the
steps will be explained. After the solving procedure has been explained, several solvers will be compared
on their efficiency in solving a set of test puzzles.

5.1 Solving steps
5.1.1 Unique Missing Labels

The most obvious step when solving a sudoku puzzle is to see if there are any sub-lines which already
contain eight of the nine labels. Remember, the term sub-line not only refers to a row or column, but
also a sub-block. If this is the case, the ninth empty square can be filled in automatically with the one
label that is missing. In Figure 7, this is the case in the middle sub-block, where the only missing label
is 6, so it can be filled in immediately.

5.1.2 Naked or Hidden Singles

A big part of the strategy for solving a sudoku puzzle is noting in each square which labels could be
filled in with the information given thus far, also called candidates. An example of how this is done is
shown in Figure 8. When this has been done, there may be a square that contains only one candidate,
meaning that it can only contain that label and the square can be filled in. This is called a naked single.
In Figure 8, a naked single appears in S(6, 9), so 3 can be filled in. Whenever a square is filled in, it
affects the candidates of other squares, which may result in more naked singles.

Similarly, there might be a sub-line in which a certain candidate appears only once. This means that
there is no other square this label could occur in that sub-line, so therefore it must be in this square.
This is called a hidden single. In Figure 8, there are a few hidden singles, for example in S(1, 1). This
square contains the only instance of a 3 in the upper left sub-block. As the sub-block must contain a 3,
it must be in S(1, 1), so it can be filled in.

5.1.3 Locked Candidates

If a sub-block contains multiple instances of a certain candidate, it is still possible to gain information
from it. If a candidate only appears in one row or column within the sub-block, then the instance of that
label in that sub-block must be in that row or column. The position of this candidate is locked in that
sub-block. This means that in the other sub-blocks this row or column intersects with, that label can’t
be in the same row or column. So the candidate can be removed from all squares in the row or column
that are not in the original sub-block.
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Figure 9: An X-Wing Figure 10: An XY-Wing

This can also occur with a candidate that appears only in one sub-block in a certain row/column. In
this case, all the instances of that label in the rest of the sub-block can be removed, as otherwise there
would be no place for the candidate in that row/column.

In Figure 8, the first kind of locked candidate occurs in the lower right sub-block. The candidate 1
only appears in the middle column in this block, meaning that it can not occur in that column in the
sub-blocks above it. So the candidate 1 can be removed from S(5, 8) and S(6, 8).

5.1.4 Naked and Hidden Groups

Similarly to the naked and hidden singles, there may be i squares in a sub-line that together have only i
distinct candidates. In this case, all these labels must be contained in the i squares, so they can not occur
in another square in the same sub-line. This means the candidates can be removed from all other squares
in the sub-line. Depending on the value of i, these groups of squares are called naked pairs, triplets or
quads. The most easily spotted are naked pairs, as they consist of two squares that contain the same two
candidates. For triplets, it is sufficient for the squares together to contain only three (or in the case of
quads, four) candidates. In Figure 8, some naked pairs can be spotted fairly quickly, for example S(1, 5)
and S(2, 5), which both only contain only the candidates 3 and 7. There are also some naked triples,
like in column 6. Because the squares S(7, 6), S(8, 6) and S(9, 6) only contain the candidates 1, 6 and 7,
those candidates can be removed from the other squares in the sub-block, S(8, 5) and S(9, 5).

It can also be the case that there are i candidates that only appear in i squares in one sub-line. The
difference here is that other candidates may also appear in the squares, as long as the i candidates do
not appear in any other squares in the sub-line. These are called hidden pairs, triplets, or quads. In
the case of a hidden pair, there would be two candidates that only appear in two squares. This again
means that those labels must be in those squares, so the squares can have no other candidates. From
these definitions, it might be easy to see that if a naked group occurs, the other squares in that sub-line
are automatically a hidden group, as the remaining labels only occur in those squares. As the squares
S(1, 8) and S(1, 9) in Figure 8 contain a naked pair with 2 and 9, the other blank squares in the first row
contain a hidden triple with 1, 3, and 7. Those three labels only appear in S(1, 1), S(1, 2), and S(1, 5)
in that row, so no other labels could be filled in in those squares.

5.1.5 X-Wings

Another situation is where one candidate appears exactly i times in i rows, in the same columns in each
row. In this case, the instance of that label in each column must be in one of the i rows. So, in the
squares in those columns that are not in one of the i rows, the candidate should not occur. The same
holds if "row" and "column" are interchanged. If i is equal to 2, the squares form a rectangle and two
opposing corners must contain the label. This pattern is where the name X-Wing comes from. In Figure
9, an X-Wing is formed by S(2, 4), S(2, 6), S(8, 4), and S(8, 6). As the candidate 1 only appears twice in
the columns 4 and 6, it can be removed from any other squares in the rows 2 and 8, particularly S(2, 7)
and S(2, 9).
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Figure 11: A single coloring Figure 12: Multi-coloring

5.1.6 XY-Wings

For the next few steps, the procedure becomes a bit more like guessing, where a square is filled in and the
consequences are observed. However, these steps are more structured than simply guessing and seeing
what happens. For XY-wings, the general idea is that, given a square which has only two candidates, if
the first candidate is filled in and this leads to a conclusion, which also holds if the second candidate is
filled in, then that conclusion holds in either case, so it can be applied.

In an XY-wing, a square XY with two candidates, x and y, influences two other squares, XZ and YZ,
who contain two candidates: x and z, respectively y and z. If x is filled in, then in the first square z
will be filled in. If y is filled in, z will be filled in the second square. This means that no matter which
label is filled in into square XY, an instance of the label z will follow in either XZ or YZ. Then, in the
intersection of any of the sub-lines that contain XZ and YZ, there can not exist an instance of z, as this
would mean z can’t occur in XZ and YZ. So, the candidate z should be removed from the intersection of
the sub-lines XZ and YZ are in. This intersection could be between a row/column and a sub-block, or
between a row and a column. If XZ and YZ were in the same sub-block, this would simply be a case of
a naked triple with labels x, y, and z.

In Figure 10, an XY-wing occurs in the middle band. The square S(4, 8) has two candidates, 8 and
9, and if one of them is filled in, then a 3 will be filled in in either S(4, 1) or S(6, 7). This means that
the squares where their sub-lines overlap could not contain a 3. These squares are S(6, 1), S(6, 2), and
S(6, 3).

5.1.7 Coloring

If there is a sub-line where one candidate appears only two times, then filling in one of them with that
label, means the other will not contain that label. This may lead to another square becoming the only
one containing an instance of that candidate in a certain sub-line, so then that one can be filled in as
well. In this way, a chain can be constructed of cells that alternate between being filled in and not being
filled in. If instead of filling in the first square, the candidate was removed from this square, then the
chain would be the same, but with the filled in and not filled in squares reversed. This means that some
squares are always the same "color" (filled in or not) as each other. This can lead to contradictions, as
the intersection of the row and column of two differently colored squares can not contain the label, as
that would mean neither of the colored squares can contain the label. In Figure 11, a coloring is shown
starting with S(4, 1). If a 1 is filled in in this square, then all the blue squares will contain a 1. If the
candidate 1 is removed from the square, then all the red squares will contain a 1. This means that S(3, 5)
and S(7, 5) can’t contain a 1, as they are on the intersection of differently colored squares.

If one chain does not lead to a conclusion, multiple chains can be constructed for the same candidate.
Then, if any two differently colored squares are in the same sub-line, they can not both contain the
label, so connections can be made between the different chains and conclusions may be drawn from it.
An example is shown in 12 for the candidate 9, where three different chains are shown, indicated with
interchanging capital and lowercase letters. There are many places where different letters appear in the
same sub-line, for example A and E in the first row. This means that if the squares with an E contain a
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Figure 13: Avoiding multiple solutions

9, then the squares with an A can’t contain a 9. This will be written as A!E (or E!A, interchangeably).
By definition X!x for any of the letters a through e. By looking at other places where different letters
overlap, the following connections can be made.

A!a B!b C!c D!d E!e
A!b A!C A!c A!D A!E a!b C!D D!e E!b

Now, this set of connections can be expanded, using the fact that the connection ! is transitive. For
example, take A!a, A!C, and a!b. If square C contains a 9, then squares A don’t contain a 9, which
means that squares a contain a 9, so squares b can’t contain a 9. So it can be concluded that C!b.
Applying this method wherever possible yields the following full set of connections.

A!a B!b C!c D!d E!e
A!b A!C A!c A!D A!E a!b C!D D!e E!b

b!b b!C b!c b!D C!e
A!A A!b b!e b!b A!e

With this full set of connections, contradictions can be found. For example, A!A and b!b imply that
squares with A or b can’t contain 7, so then it must be filled in in the squares with a and B. Besides these
cases, for each connection, the intersection of the sub-lines with their opposites can’t contain the label.
For example, as A!e, any intersection between a square with a and E can not contain the candidate 7.
This means that 7 can’t be filled in in S(3, 6).

5.1.8 Uniqueness of the solution

Though this assumption is not made in this paper, it is usually given when one is solving a sudoku
puzzle, that there is only one solution. As was stated in Chapter 4, if a sudoku puzzle has multiple
solutions, it is not solvable. So, it should not be possible that there are squares that could be filled in in
two ways, no matter the rest of the puzzle. Such a situation happens when there is a rectangle of four
squares which all contain the same two candidates. In this case, these squares could be filled in in two
ways, which contradicts the assumption that there is only one solution.

If there is such a rectangle, with the exception that in one of the rows or columns, both squares
contain one other candidate, then that candidate must be in one of the two squares. If this is not the
case, the result is a rectangle as described above. This means that all instances of that candidate in
the same row or column must be removed. In Figure 13, this is the case with the rectangle containing
S(3, 4), S(3, 6), S(7, 4), and S(7, 6). This square contains the candidates 1, 2, and 8. If the instances of
8 were removed, the rectangle would have two possible solutions. This means that an 8 can’t be placed
in another square in row 7, so the candidate 8 is removed from S(7, 8).

5.1.9 Guessing

If applying all the steps above does not yet yield a solution, then the last possibility is simply guessing.
In this case, a label is assigned to a square at random and then the solving procedure continues until
a contradiction is reached or until the entire grid is filled in. This is similar to the way some solvers
approach a sudoku puzzle, known in computing science as backtracking or brute-forcing.
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5.2 The approach of different solvers
There are a few different approaches to solve a sudoku puzzle with an algorithm. The three methods
that will be studied here are backtracking, stochastic search, and constraint programming. In the next
sections, examples of such solvers will be shown and tested, by solving six test puzzles with each code.

5.2.1 Backtracking

On techwithtim.net/tutorials/python-programming/sudoku-solver-backtracking/, a code by a
programmer known online as Tech With Tim can be found. This code solves a sudoku puzzle using
backtracking. This method finds the first empty square and fills The first candidate. If no contradiction
is created, it moves on to the next square and fills in the first candidate there. If a contradiction is
created, it fills in the next candidate, until there is no more contradiction. Whenever every candidate
has been tried for a certain square, but a contradiction is created every time, the algorithm returns to
the previous square and fills in the next candidate there. In this way, the algorithm runs through the
entire grid, until it reaches the bottom right square and fills in a successful value there. If this happens,
a solution has been found and the algorithm ends and shows the solution it has found. This method will
from now on be referred to as BAC.

From the way this algorithm works, some observations/predictions can be made. Firstly, as the
program runs until it finds one solution, given a puzzle that has multiple solutions it would give only
one. However, its run-time would likely not be affected by the fact that there are multiple solutions, as
the procedure is not affected by one cell having multiple possible labels. As long as one label works, it can
continue. Secondly, as the program has to try values in each empty square, the number of empty squares
would likely affect the run-time. In each empty square, each possible candidate is checked. Therefore,
each extra empty square adds a factor between 1 and 9 to the run-time. Additionally, if there are more
empty squares, there are fewer hints, so the other empty squares will also have more candidates. The
exact increase depends on if the square appears early in the puzzle (in a higher row and/or in a column
more towards the left) and on the number of candidates that are smaller than the (smallest) value the
square takes in (one of) the solution(s). A backtracking algorithm would always find a solution if there
is one, but as it may spend a long time assuming a value which is wrong and it does not apply much
logic in deciding the value in each square, it would likely spend more time on finding a solution than
other methods.

5.2.2 Stochastic Search

On github.com/ananthamapod/Sudoku, a code written by Ananth Rao can be found. This code can
solve a sudoku puzzle with a stochastic search, more specifically a genetics algorithm. This algorithm
starts off by creating a series of n candidate boards by randomly filling in the empty squares in the
puzzle. It then checks how many mistakes each board has and if this number is zero, the puzzle is solved.
If a board does have mistakes, a set of m successors is generated from it by taking two squares in the
same row that were not given in the original puzzle and switching their labels. These successors are
added to the set of candidate boards, which is then again sorted by the number of mistakes and the n
boards with the least mistakes are taken. With this new set of n boards, the process is then repeated,
until a solution is found. This method will from now on be referred to as STO.

Due to the relative randomness in choosing the successors, it does not seem this method would be
as reliable as BAC. It is dependent on chance how fast the algorithm would be able to solve a sudoku
puzzle, as it could repeatedly happen that the successors are less accurate than the original boards,
which means the algorithm would not get closer to a solution. Also, just like with BAC, the more empty
squares a puzzle has, the more time the algorithm would likely take, as for each solution there are more
possible successors and thus the chance of picking the right one is smaller. Additionally, the sudoku
puzzle having more than one solution seems like it could pose a problem for the algorithm. The set of
boards may become essentially divided into two groups, the ones that are close to the one solution and
the ones that are close to the other. This means that each group gets less successors, so the chance of
finding a correct solution is divided across the two groups. This would not actively stop the algorithm
from finding a valid solution, although it seems it would decrease the chance of the solution being found
in any next generation.

5.2.3 Constraint Programming

On gist.github.com/ksurya/3940679, a code written by Surya Kasturi can be found, which can solve
a sudoku puzzle using constraint programming. In this algorithm, the sudoku rules are first written as
constraints, rules that a possible solution must adhere to. Then, the algorithm looks for any possible
solutions using the GetSolutions function in python. In this algorithm, the specific method used to
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Figure 14: The given test puzzles
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find solutions is the RecursiveBacktrackingSolver. This means that this program essentially combines
constraints with backtracking. This method will from now on be referred to as CON.

Because of the use of the backtracking solver, this algorithm does not operate very differently from
the backtracking algorithm. One important difference to note is that GetSolutions function gives every
solution to a problem, so given a sudoku puzzle with multiple solutions, this algorithm would find each
of them. In this case, the algorithm likely has a higher run-time than the backtracking algorithm, as the
latter would simply stop after one solution. Outside of this difference, CON will likely perform about as
well as the backtracking algorithm.

5.2.4 Test puzzles and predictions

To test these three solving algorithms, the test puzzles shown in Figure 14 will be run through each of
them and the resulting solutions and run-times will be compared. These puzzles have been chosen to
test the range of applicability of the given codes and to see what would happen if the algorithms get an
input they don’t expect.

The first three puzzles were chosen to have increasing difficulty. While the first can be solved by
applying the Naked/Hidden Singles rule, the second has an instance of an X-Wing, which needs to be
found to solve the puzzle. The third puzzle is such that the solving procedure would have to include
guessing. The fourth test puzzle contains as little hints as possible, which is 17, as shown in [7]. The
fifth and sixth puzzles are chosen not to have a unique solution. For the fifth puzzle, two solutions are
possible and in the sixth there is a contradiction in the hints, meaning there is no solution. The relevant
data for each test puzzle is given in Table 1. These puzzles will be run through each of the algorithms

Sudoku # of hints Hardest rule # of solutions

Test Puzzle 1 38 Hidden single 1
Test Puzzle 2 24 X-Wing 1
Test Puzzle 3 30 Guessing 1
Test Puzzle 4 17 Hidden Group 1
Test Puzzle 5 77 - 2
Test Puzzle 6 79 - 0

Table 1: Qualities of the test puzzles

ten times, while being timed and the average of these times will be used to compare the algorithms.
With the observations made about each algorithm, some predictions can be made about the results. For
BAC, the main determining factor for the run-time seems to be the number of empty squares, so TP4
will likely take the most time out of the solvable puzzles. As TP5 has multiple solutions, it will find one
of them quite fast, but not both. For TP6, BAC will likely give some sort of error. STO may perform
slightly worse with fewer hints, but will probably have similar times for the first four puzzles. For TP5
a solution will likely be found quickly, maybe even in the first generation, and for TP6 STO will run
infinitely, as it can never find a candidate board with no errors. CON will probably perform similarly
to BAC on the first four puzzles. For TP5 CON will by design give both solutions and for TP6 it will
likely return an empty set, as no solutions exist.

5.2.5 Results

The three algorithms given above have been altered slightly before using them in this paper. As STO and
CON were written for Python 2.7, they were updated to Python 3 to run them. Additionally, as STO
turned out to often get stuck on a certain board when all similar candidates would have more mistakes,
it was rewritten slightly to restart when it got stuck. Then, the codes were combined into one program,
that can run all methods, where the desired method can be specified in the input. Some lines were also
added to allow an input file with the sudoku puzzle. This code is given in Appendix B. Using this code,
each method was used ten times to solve the test puzzles. The average times and results can be found
in Table 2.
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Average run-time (s) Result
BAC STO CON BAC STO CON

Test Puzzle 1 0.372 3.971 0.377 Solved Solved Solved
Test Puzzle 2 0.767 - 0.447 Solved Local Minimum Solved
Test Puzzle 3 0.339 - 0.321 Solved Local Minimum Solved
Test Puzzle 4 224.541 - 30.619 Solved Local Minimum Solved
Test Puzzle 5 0.366 0.374 0.328 Solved Solved Solved
Test Puzzle 6 0.364 - - Not Solved Error Error

Table 2: Test results

Firstly, the times for BAC mostly confirm the intuition that the number of empty squares greatly
influences the run-time. The sudoku with the least hints, TP4, has the longest run-time out of all the
puzzles by a large margin. For the other puzzles, the times are quite similar, where TP2, which also
doesn’t have too many hints, takes about twice as long as the others. This gives the impression that the
number of empty squares and the run-time are exponentially related. This seems reasonable, as each new
empty square multiplies the number of states the algorithm has to run through by a factor between 1 and
9. Furthermore, the algorithm finds a solution whenever there is one. In the case of TP6, the algorithm
returns the same puzzle that was entered. This happens because the program checks every label for the
first empty square, but because no value is valid in this square. After the solver runs through the loop,
it returns false and prints the original board.

For STO, the results are quite surprising. It seems that the stochastic algorithm is very unreliable,
as most of the puzzles did not return a solution even after running the algorithm for a long time. This
happens because the algorithm gets stuck at a board that has some mistakes, but each board that it
can be transformed into for the next generation has the same number of mistakes or more. This means
that the number of mistakes has reached a local minimum. This problem seems to be worsened by the
fact that there is no check if the boards are different. Whenever the algorithm gets stuck, all the boards
that are generated are very similar and many of them are the same. To try and make the algorithm
reach a solution eventually, it was rewritten slightly to restart when it got stuck. However, it still gets
stuck on a local minimum almost every time, so it simply keeps restarting. The first and fifth puzzle
can be solved somewhat reliably on the first try, although there are cases where the program gets stuck
on a local minimum in the first run. The fact that these puzzles can be solved, unlike others, could be
because of the high number of hints, which causes less possible different boards and so a lower chance
of getting stuck on a local minimum. In the case of TP6, which has no solution, the program results in
an error when it has to pick a random square to switch around, as there are no two empty squares in
any row. This is not necessarily tied to there not being a solution, so it might behave differently given
a sudoku puzzle without a solution that has more empty squares.

The times for CON are quite similar to those for BAC. This is reasonable, as the constraint algorithm
uses a backtracking solver. However, for TP2 and TP4 the times are lower than those for BAC. This
likely means that the backtracking algorithm CON uses is more efficient than BAC. Also, running SP5
doesn’t give multiple solutions. The hypothesis about this in the previous section was likely based on a
misunderstanding of the way the RecursiveBacktrackingSolver and the constraint library in Python
work. However, the solution that is returned is a valid one, the same as the one that is returned by BAC.
Lastly, the program returns an error when running SP6. This happens because getSolutions returns
an empty set, as there are no solutions, and then the algorithm tries to normalize this set to make sure
it has the right layout. As the set is empty, it fails at this step and returns an error. This could be fixed
by entering an if-clause that returns the empty set if the input to the function is the empty set.

From these results, it seems that in this case, the constraint algorithm is the most reliable program.
It returns a solution whenever there is one, although it can take a little longer if there are too few hints,
but not nearly as long as the backtracking algorithm takes with the same number of hints. The stochastic
search algorithm is completely unreliable, takes longer than both others (if it even returns a solution),
and therefore works the least efficiently.
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6 Conclusion
The complexity of the sudoku puzzle, as shown in [11] by Yato, is indeed NP-complete and ASP-
complete. This original proof used the fact that the Latin Square Completion problem is NP- and
ASP-complete to show the same for the Sudoku Puzzle Completion problem, by reducing the first to the
second parsimoniously. However, the original proof is short and the context is not very clear. This paper
makes is clear, after explaining the proof in more detail, that it is indeed valid and thus the resulting
NP- and ASP-completeness of the sudoku puzzle are true.

A different approach to the proof was tried, involving the 3SAT problem, which is known to be NP-
and ASP-complete, and reducing it to the Sudoku Puzzle Completion problem. However, in the attempt
to construct a different proof, it was found that this approach did not result in a sound proof of the
NP-completeness of the sudoku puzzle. The main problem with the attempted proof was the fact that
the Boolean variables from 3SAT needed a truth assignment t in order to have an assigned value, but
this truth assignment is the result of the 3SAT problem and is therefore unknown during the solving
procedure. Nevertheless, the constructs described in Chapter 3 and 4 may be found to be useful to use
in a different approach to the proof, or possible for a different goal entirely.

Though the sudoku puzzle is NP-complete, there exist algorithms that can solve a puzzle in quite a
short time. Usually, a sudoku puzzle is not very big, ensuring that the computation time stays small.
There are quite a few different algorithms that can find solutions to a sudoku puzzle. Among the ones
considered in this paper, the constraint solver was the most time-efficient. The stochastic search is
unreliable, as it relies on randomness and it can easily get stuck on a result with few mistakes, which is
still quite far off from the actual solution. The backtracking algorithm is more reliable, but as it uses
brute force, it has a lot of situations to consider, especially when there are a lot of empty squares. Though
the constraint solver also uses backtracking to find solutions, it goes about finding these solutions a bit
smarter and thus takes less time.

Though the attempt made in this paper at a new proof did not give the desired result, the investigation
into different ways to prove the NP- or ASP-completeness of the sudoku puzzle should not be abandoned.
Finding new ways to prove certain claims, though seemingly unnecessary, is an important goal in research,
if not to make the proof more understandable to those who use the result for their own research, then to
simply increase the knowledge about certain subjects. For this particular proof, combining this reduction
with some other NP-complete problem may make it successful at proving the NP-completeness of the
Sudoku Puzzle Completion problem.
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A Pseudo-code for the proposed transformation
1: function Transformation
2: INPUT: C = {C1, . . . , Cm}, with all Ci in the form of a set of no more than 3 literals
3: set the input length I to

∑m
i=1 |C1|

4: set the sudoku order n to RoundUp(2 ∗ (I/3))
5: create an empty matrix S of size n2 × n2

6: for i from 1 to n2 do
7: for j from 1 to n2 do
8: Assign Sij =

(
j + ((i− 1) mod n) · n + RoundDown( i−1

4 )
)

mod 16
9: if Sij = 0 then

10: Assign Sij = n2

11: else
12: Don’t change Sij

13: end if
14: end for
15: end for
16: define a(s1, s2, u, t), which returns s1 if t(u) = T and s2 if t(u) = F
17: define D to contain the 2× 2 blocks in the first sub-block whose first element is on the diagonal
18: for i from 1 to m do
19: if |Ci| = 1 then
20: read the one element of the set Ci, called u
21: find a non-blank element s in the first sub-block (if I ≤ 3, not in D)
22: replace this element with a(s, n2+1, u, t) (doesn’t have an outcome, so will stay a function)
23: else
24: if |Ci| = 2 then
25: read the two elements of the set Ci, called u1 and u2

26: find a 2× 2 block containing s1, s2, s3 non-blank in the first sub-block and not in D
27: find every instance of s1, s2, s3 and make those blank elements
28: replace s1 and s2 by a(s1, s3, u1, t) and a(s2, s3, u2, t) respectively
29: else[|Ci| = 3]
30: read the three elements of the set Ci, called u1, u2 and u3

31: find a 2× 2 block in D in the first sub-block with non-blank elements s1, s2, s3, s4
32: find every instance of the values s1, s2, s3, s4 and make those blank elements
33: replace s1 with a(s3, s4, u1, t)
34: find the first blank element in the same row as s2 and replace it with a(s1, s3, u2, t)
35: find the first blank element in the same column as s3 and replace it with a(s2, s3, u3, t)
36: end if
37: end if
38: end for
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B Combined code for solvers

from random import rand int
from math import s q r t
import sys
from f un c t o o l s import reduce
from c on s t r a i n t import ∗
import numpy

GENERATION_SIZE = 50
BRANCHING_FACTOR = 4

def heu r i s t i c_s ( board , g r i d s i z e =9, b l o c k s i z e =3) :
c o l l i s i o n s = 0
for i in range ( g r i d s i z e ) :

for j in range ( g r i d s i z e ) :
va l = board [ i ] [ j ]
for n in range ( g r i d s i z e ) :

i f n != i and board [ n ] [ j ] == va l :
c o l l i s i o n s += 1

for m in range ( g r i d s i z e ) :
i f m != j and board [ i ] [m] == val :

c o l l i s i o n s += 1
squareX = j // b l o c k s i z e
squareY = i // b l o c k s i z e
for n in range ( b l o c k s i z e ) :

for m in range ( b l o c k s i z e ) :
i f not ( b l o c k s i z e ∗ squareX + m == j or b l o c k s i z e ∗

squareY + n == i ) and board [ b l o c k s i z e ∗ squareY + n
] [ b l o c k s i z e ∗ squareX + m] == val :
c o l l i s i o n s += 1

return c o l l i s i o n s

def deepcopy_board_s ( board ) :
r e t = [ ]
for row in board :

ret_row = [ ]
for elem in row :

ret_row . append ( elem )
r e t . append ( ret_row )

return r e t

def generate_successor_s ( board , s i z e , f i x e d ) :
cho i c e s = [ [ y for y in x [ 1 ] i f ( x [ 0 ] , y ) not in f i x e d ] for x in

enumerate ( [ l i s t ( range ( s i z e ) ) for x in range ( s i z e ) ] ) ]
row = randint (0 , s i z e −1)
index1 = randint (0 , len ( cho i c e s [ row ] )−1)
cho i ce1 = cho i c e s [ row ] [ index1 ]
del cho i c e s [ row ] [ index1 ]
index2 = randint (0 , len ( cho i c e s [ row ] )−1)
cho i ce2 = cho i c e s [ row ] [ index2 ]
del cho i c e s [ row ] [ index2 ]
r e t = deepcopy_board_s ( board )
r e t [ row ] [ cho i c e2 ] , r e t [ row ] [ cho i c e1 ] = r e t [ row ] [ cho i c e1 ] , r e t [ row ] [

cho i c e2 ]
return r e t

def generate_board_s ( or ig ina l_board , s i z e , f i x e d ) :
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board = deepcopy_board_s ( or ig ina l_board )
cho i c e s = [ [ y for y in range (1 , s i z e +1) i f y not in x ]

for x in or ig ina l_board
]
for i in range ( s i z e ) :

for j in range ( s i z e ) :
i f ( i , j ) not in f i x e d :

index = randint (0 , len ( cho i c e s [ i ] )−1)
board [ i ] [ j ] = cho i c e s [ i ] [ index ]
del cho i c e s [ i ] [ index ]

return board

def so lver_s ( s i z e =9) :
i f len ( sys . argv ) >1:

f i leName = sys . argv [ 1 ] . upper ( )
else :

print ( "No␣ input ␣ puzz l e ␣ g iven " )
e x i t ( )

board = open( f i leName ) . read ( )
board = [ int ( i ) for i in board . s p l i t ( ) ]
board = [ board [ i ∗ 9 : ( i + 1) ∗ 9 ] for i in range ( ( len ( board ) + 9 − 1)

// 9 ) ]
or ig ina l_board = board
f ixed_va lues = set ( [ ] )
for i in range ( s i z e ) :

for j in range ( s i z e ) :
i f or ig ina l_board [ i ] [ j ] != 0 :

f ixed_va lues . add ( ( i , j ) )
so lved = False
s o l u t i o n = None
boards = [ ]
for i in range (GENERATION_SIZE) :

board = generate_board_s ( or ig ina l_board , s i z e , f ixed_va lues )
boards . append ( board )

boards = [ ( h eu r i s t i c_s ( board , g r i d s i z e=s i z e , b l o c k s i z e=int ( s q r t ( s i z e ) ) )
, board ) for board in boards ]

l owest = 0
m = 1
while not so lved :

boards . s o r t ( key=lambda x : x [ 0 ] )
lowest_ = boards [ 0 ] [ 0 ]
i f lowest_ == lowest :

m = m + 1
else :

m = 1
lowest = lowest_
i f m > 200 :

print ( "Local ␣minimum" )
so lver_s ( )
e x i t ( )

boards = boards [ :GENERATION_SIZE]
i f boards [ 0 ] [ 0 ] == 0 :

so lved = True
s o l u t i o n = boards [ 0 ] [ 1 ]
print ( "" )
print ( "" )
print ( " So lu t i on " )
print_board_b ( s o l u t i o n )
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else :
s u c c e s s o r s = [ ]
for board in boards :

for i in range (BRANCHING_FACTOR) :
s u c c e s s o r s . append ( generate_successor_s ( board [ 1 ] , s i z e ,

f ixed_va lues ) )
for s in s u c c e s s o r s :

boards . append ( ( h eu r i s t i c_s ( s , g r i d s i z e=s i z e , b l o c k s i z e=int (
s q r t ( s i z e ) ) ) , s ) )

return s o l u t i o n

def solve_b (bo ) :
f i nd = find_empty_b (bo )
i f not f i nd :

return True
else :

row , c o l = f i nd
for i in range (1 , 10 ) :

i f valid_b (bo , i , ( row , c o l ) ) :
bo [ row ] [ c o l ] = i
i f solve_b (bo ) :

return True
bo [ row ] [ c o l ] = 0

return False

def valid_b (bo , num, pos ) :
for i in range ( len ( bo [ 0 ] ) ) :

i f bo [ pos [ 0 ] ] [ i ] == num and pos [ 1 ] != i :
return False

for i in range ( len ( bo ) ) :
i f bo [ i ] [ pos [ 1 ] ] == num and pos [ 0 ] != i :

return False
box_x = pos [ 1 ] // 3
box_y = pos [ 0 ] // 3
for i in range (box_y∗3 , box_y∗3 + 3) :

for j in range (box_x ∗ 3 , box_x∗3 + 3) :
i f bo [ i ] [ j ] == num and ( i , j ) != pos :

return False

return True

def print_board_b (bo ) :
for i in range ( len ( bo ) ) :

i f i % 3 == 0 and i != 0 :
print ( "−␣−␣−␣−␣−␣−␣−␣−␣−␣−␣−␣−␣−␣" )

for j in range ( len ( bo [ 0 ] ) ) :
i f j % 3 == 0 and j != 0 :

print ( "␣ | ␣" , end="" )
i f j == 8 :

print ( bo [ i ] [ j ] )
else :

print ( str ( bo [ i ] [ j ] ) + "␣" , end="" )

def find_empty_b (bo ) :
for i in range ( len ( bo ) ) :

for j in range ( len ( bo [ 0 ] ) ) :
i f bo [ i ] [ j ] == 0 :

return ( i , j )
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return None

def dataNormalize_c ( data ) :
sudoku_nums = [ eachPos [ 1 ] for eachPos in sorted ( data [ 0 ] . i tems ( ) ) ]
sudoku = [ ]
for s tep in range (0 , 81 , 9 ) :

sudoku . append ( sudoku_nums [ s tep : s tep +9])
print_board_b ( sudoku )

def sudoku_solve_c ( ) :
i f len ( sys . argv ) >1:

f i leName = sys . argv [ 1 ] . upper ( )
puzzleNums = open( f i leName ) . read ( )
puzzleNums = [ int (eachNum) for eachNum in puzzleNums . s p l i t ( ) ]
sudoku = Problem ( Recurs iveBacktrack ingSo lver ( ) )
sudokuIndex = [ ( row , c o l ) for row in range (9 ) for c o l in range (9 ) ]
for eachIndex , eachNum in zip ( sudokuIndex , puzzleNums ) :

i f eachNum == 0 :
sudoku . addVariable ( eachIndex , range (1 , 10 ) )

else :
sudoku . addVariable ( eachIndex , [ eachNum ] )

var = 0
for aCount in range (9 ) :

rowInd ices = [ ( var , c o l ) for c o l in range (9 ) ]
sudoku . addConstraint ( A l lD i f f e r e n tCon s t r a i n t ( ) , rowInd ices )
c o l I n d i c e s = [ ( row , var ) for row in range (9 ) ]
sudoku . addConstraint ( A l lD i f f e r e n tCon s t r a i n t ( ) , c o l I n d i c e s )
var+=1

rowStep = 0
co lS tep = 0
while rowStep < 9 :

co lS tep = 0
while co lS tep < 9 :

boxInd ice s = [ ( row , c o l ) for row in range ( rowStep , rowStep+3)
\

for c o l in range ( co lStep , co lS tep+3) ]
sudoku . addConstraint ( A l lD i f f e r e n tCon s t r a i n t ( ) , boxInd ice s )
co lS tep+=3

rowStep+=3
return sudoku . g e tSo l u t i on s ( )

i f __name__ == "__main__" :
i f len ( sys . argv ) >1:

i f len ( sys . argv ) >2:
method = sys . argv [ 2 ] . upper ( )
i f method == "BAC" :

i f len ( sys . argv ) >1:
f i leName = sys . argv [ 1 ] . upper ( )

else :
print ( "No␣ input ␣ puzz l e ␣ g iven " )
e x i t ( )

board = open( f i leName ) . read ( )
board = [ int ( i ) for i in board . s p l i t ( ) ]
board = [ board [ i ∗ 9 : ( i + 1) ∗ 9 ] for i in range ( ( len ( board

) + 9 − 1) // 9 ) ]
print ( "Backtracking " )
i f solve_b ( board ) :

print_board_b ( board )
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else :
print ( "No␣ s o l u t i o n ␣ found" )
e x i t ( )

e l i f method == "STO" :
print ( " S to cha s t i c ␣ Search " )
so lver_s ( )

e l i f method == "CON" :
print ( "Constra int ␣Programming" )
dataNormalize_c ( sudoku_solve_c ( ) )

else :
print ( " Inva l i d ␣method . ␣Val id ␣ inputs ␣ are ␣BAC, ␣CON␣or ␣STO" )

else :
print ( "No␣method␣ s p e c i f i e d " )
e x i t ( )

else :
print ( "No␣ input ␣ puzz l e ␣ g iven " )
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