
UNIVERSITY OF GRONINGEN

MASTER’S THESIS

Exploring the Relation between
Co-changes and Architectural Smells

Authors:
Ronald KRUIZINGA,
Ruben SCHEEDLER

Supervisors:
Prof. dr. ir. Paris AVGERIOU,

Darius SAS

A thesis submitted in fulfillment of the requirements
for the Master’s Degree in Computing Science

in the

Faculty of Science and Engineering

Department of Computing Science

July 17, 2020

i

Exploring the Relation between Co-changes and Architectural Smells

by Ronald KRUIZINGA, Ruben SCHEEDLER

In the last decade, the technical debt metaphor has gradually grown in popularity and
is now become the preferred way for both practitioners and researchers to discuss
the effort, costs and issues arising during software development activities. Detecting
technical debt is one of the first steps to limit its growth and eventually pay it back.
Co-changes are artefacts that over time change in a similar way and are an indicator
of technical debt. Architectural smells are combinations of architectural decisions
that reduce system maintainability, and are a form of technical debt.
The goal of this thesis is twofold, namely to investigate the possible relationship be-
tween co-changes and architectural smells and to compare different ways of mining
co-changes. If co-changes are related to architectural smells, detecting co-changes
can be used to trace technical debt.

To this end, this research introduces a novel way of detecting co-changes called
“Fuzzy Overlap”. This approach is compared with state-of-the-art approaches such
as Market Basket Analysis and Dynamic Time Warping.

Regarding the relation between co-changes and architectural smells, this study at-
tempts to analyze its direction, whether co-changes are more often found in smelly
artefacts, and whether the smells are introduced before or after file pairs start to co-
change.

From this analysis, it has become clear that the output produced by the Fuzzy Over-
lap algorithm tends to vastly differ from that generated by Market Basket Analysis
and Dynamic Time Warping. For 50% of the projects analyzed, a relation between
architectural smells and co-changes was found and for 100% of the projects it was
found that co-changing precedes the introduction of architectural smells.

ii

Acknowledgments

We would like to thank the Center for Information Technology of the University of
Groningen for their support and for providing access to the Peregrine high perfor-
mance computing cluster. We would like to thank Darius Sas as our supervisor for
the large amount of advice, tips and feedback given for the duration of the project.

iii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Figures vi

List of Tables viii

List of Abbreviations ix

1 Introduction 1
1.1 Technical Debt . 1
1.2 Software systems evolution . 2

1.2.1 Version Control Systems 2
1.2.2 Co-changes . 3

1.3 Goals & Motivation . 3
1.4 Approach . 4
1.5 Outline . 4

2 Related Work 5
2.1 Background . 5
2.2 VCS . 6
2.3 Co-changes . 7
2.4 Architectural Smells . 8

3 Research Methodology 10
3.1 Case Study Design . 10
3.2 Goal and Research Questions . 11
3.3 Analyzed Projects . 11
3.4 Approaches to detect co-changes 12

3.4.1 Fuzzy Overlap . 12
Hyperparameters . 15
Commit Distance . 16
Time Distance . 16
Time Range . 17
Match Threshold . 17

3.4.2 Market Basket Analysis 18
3.4.3 Dynamic Time Warping 18

iv

3.5 Data Collection . 19
3.5.1 Architectural smells . 19

Smell-scopes . 19
Smell-affected pairs . 19

3.5.2 File Changes . 20
3.5.3 Co-changes . 20

Fuzzy Overlap . 20
Market Basket Analysis 20
Dynamic Time Warping 20

3.5.4 Overlapping pairs . 21

4 Data Analysis 22
4.1 RQ1 - What are the differences between the three co-change detec-

tion algorithms FO, MBA, DTW? 22
4.2 RQ2 - Are artefacts affected by architectural smells co-changing? . 22
4.3 RQ3 - Are co-changes more often found in smelly artefacts? 23
4.4 RQ4 - Are smells introduced before or after files start co-changing? 24

5 Results 27
5.1 RQ1 - What are the differences between the three co-change detec-

tion algorithms FO, MBA, DTW? 27
5.1.1 Overlap . 28
5.1.2 Co-changes over time . 29

5.2 RQ2 - Are artefacts affected by architectural smells co-changing? . 30
5.2.1 Results for Class AS . 30

FO . 30
DTW . 31

5.2.2 Results for Package AS . 32
FO . 32
DTW . 32

5.2.3 Results for Class and Package AS 33
FO . 33
DTW . 33

5.3 RQ3 - Are co-changes more often found in smelly artefacts? 34
5.3.1 Result for Class AS . 34

FO . 34
DTW . 36
MBA . 36

5.3.2 Result for Package AS . 37
FO . 37
DTW . 38
MBA . 38

5.3.3 Result for Class and Package AS 39
FO . 39
DTW . 40
MBA . 40

5.3.4 Summary . 40
5.4 RQ4 - Are smells introduced before or after files start co-changing? 41

v

6 Discussion 44

7 Study Limitations 47
7.1 Construct Validity . 47
7.2 External Validity . 48
7.3 Reliability . 49

8 Conclusion 50
8.1 Future Work . 51

A RQ4 Results 52
A.1 RQ4a Results . 52

A.1.1 FO . 52
A.1.2 DTW . 52
A.1.3 MBA . 53

A.2 RQ4b Results . 53
A.2.1 FO . 53
A.2.2 DTW . 53
A.2.3 MBA . 54

B Hyperparameter Analysis Results 55

Bibliography 56

vi

List of Figures

2.1 Mapping between changeset histories of two files [45]. 6

3.1 Setup of the case study using examples. 10
3.2 The basic idea of fuzzy mapping. The circles represent commits in

which the files changed. In commit #1, both files change. After that,
they do not change in the same commits, but file B always changes
just before file A. 13

3.3 This figure compares two typical file history types. Files B and C
(orange) are spotted by DTW as co-changing as their history is iden-
tical. However, the support of the similarity is minimal. Files A
and D are less likely to be matched by DTW as their paths differ;
however, FO will pick up such file pairs. 13

3.4 Flowchart of the FO algorithm. 15
3.5 Difference between commit distance and time distance hyperparam-

eters used by FO. 16
3.6 Distribution of observed match counts among co-change candidate

pairs. A threshold of 12 was selected for this dataset. 17
3.7 The two conditions for an overlapping pair (OP). 21

5.1 Overlap of output of the algorithm on three projects. 28
5.2 Co-changes over time. 29
5.3 File pairs affected by class-level smells also reported as co-changing

by FO. 30
5.4 File pairs affected by class-level smells also reported as co-changing

by DTW. 31
5.5 File pairs affected by package-level smells also reported as co-changing

by FO. 32
5.6 File pairs affected by package-level smells also reported as co-changing

by DTW. 32
5.7 File pairs affected by class- or package-level smells also reported as

co-changing by FO. 33
5.8 File pairs affected by class- or package-level smells also reported as

co-changing by DTW. 33
5.9 Percentages of projects for which at least one relation between smells

and co-changes was found. 41
5.10 FO Results for projects with a large amount of overlapping file pairs. 41
5.11 FO Results for projects with a smaller amount of overlapping file pairs. 42
5.12 DTW Results for projects with a large amount of overlapping file pairs. 42

vii

5.13 DTW Results for projects with a smaller amount of overlapping file
pairs. 42

viii

List of Tables

3.1 Analyzed projects for the case study. 12

4.1 Example contingency table. 24

5.1 Percentage of all file pairs reported as co-changing. Values over 5%
are marked in bold. 27

5.2 Results of testing HRQ3 with co-changes reported by FO and class-
level AS. The threshold values for the four conditions can be found
in Section 5.3. 34

5.3 Results of testing HRQ3 with co-changes reported by DTW and class-
level AS. The threshold values for the four conditions can be found
in Section 5.3. 36

5.4 Results of testing HRQ3 with co-changes reported by FO and package-
level AS. The threshold values for the four conditions can be found
in Section 5.3. 37

5.5 Results of testing HRQ3 with co-changes reported by DTW and package-
level AS. The threshold values for the four conditions can be found
in Section 5.3. 38

5.6 Results of testing HRQ3 with co-changes reported by DTW and all
AS. The threshold values for the four conditions can be found in
Section 5.3. 39

5.7 Results of testing HRQ3 with co-changes reported by DTW and all
AS. The threshold values for the four conditions can be found in
Section 5.3. 40

B.1 Result of the hyperparameter analysis for all projects. 55

ix

List of Abbreviations

Abbreviation Meaning Definition
AS Architectural Smell Section 1.1
CPI Code Problem Indication Section 1.1
DTW Dynamic Time Warping Section 2.1
FO Fuzzy Overlap Subsection 3.4.1
MBA Market Basket Analysis Section 2.1
OP Overlapping Pairs Subsection 3.5.4
TD Technical Debt Section 1.1
VCS Version Control System Subsection 1.2.1

1

Chapter 1

Introduction

1.1 Technical Debt
Technical debt (TD) was first introduced by Ward Cunningham in 1992 [12], defined
as “software development compromises in maintainability to increase short term pro-
ductivity”. It can be compared to regular debt, but instead of borrowing money, it
is development time. Just like regular debt, technical debt often comes with inter-
est. Even though a dirty yet quick implementation might save an hour right now,
extending it down the road could cost another two hours instead of merely one.

Cunningham’s definition does not state what these compromises might look like.
Which implementations increase technical debt? And which implementations de-
crease technical debt? These questions have been subject to research themselves.

To help answer these questions, researchers have started to adopt metrics as indica-
tors of the quality of a codebase and thereby of the amount of TD contained in it
[22]. Two of these metrics in particular have been widely adopted [41, 27] and ex-
tended: coupling and cohesion. Coupling can be defined as the manner and degree of
interdependence between software modules and cohesion as the manner and degree
to which the tasks performed by a single software module are related to one another
[23].

Coupling and cohesion can be measured in terms of modularity and dependencies.
Low levels of modularity imply low cohesion, high levels imply high cohesion. The
same relation exists between the levels of dependency and the amount of coupling.
Low cohesion and high coupling are useful indicators for technical debt. To avoid
these, concrete structures have been defined that yield better maintainability when
they are correctly applied in a codebase [18, 14]: design patterns. These patterns can
be seen as best-practice solutions for common problems.

For the aforementioned common problems, many other solutions exist. Some of
these may be tempting to implement, yet they worsen maintainability. These are
called anti-patterns, which have been documented as well as design patterns [43,
10]. Besides anti-patterns, there are so-called code smells: a code smell is a surface
indication that usually corresponds to a deeper problem with the system [16]. Both
elements are interesting when it comes to identifying technical debt.

A relatively new type of smell that has emerged in the field of TD is the architec-
ture smell. Architecture smells (AS) are smells that indicate a problem within the

Chapter 1. Introduction 2

system’s architecture [29], and they are usually caused by decisions that may not
always have been intentional. Contrary to code smells, AS impact the maintainabil-
ity of the system in the long term. Some examples of AS are: Cyclic Dependency
(CD), which occurs when two architectural modules depend on each other; Hub-Like
Dependency (HLD), which occurs when a component has many dependencies; and
Cyclic Hierarchy (CH): a supertype directly referring to a child type [6].

Although all anti-patterns, code smells, and AS indicate problems within a codebase,
they are not the same. As stated above, anti-patterns are ineffective solutions to
common problems. AS, on the other hand, are solutions to problems that are not
properly implemented and thus negatively impact system quality. They consist of
hidden structures in a system which only become visible through thorough analysis
of the system’s internal interactions. Both anti-patterns and AS differ from code
smells in the sense that they appear on a higher level: they generally affect multiple
components, whereas code smells can be found on the level of single lines of code.
Code Problem Indications (CPI) will be used as an umbrella term for all three in this
document.

1.2 Software systems evolution

1.2.1 Version Control Systems
In recent decades, researchers have started to look for more obscured indicators
of TD. With the introduction of version control systems, new analysis types could
be performed on systems to locate TD. Version control systems (VCS) track each
change a developer makes to the system and, as a result, can recreate a consistent
snapshot of any point in time [7]. Another term for such systems is Concurrent Ver-
sion System (CVS), which is sometimes used instead of VCS [17]. This thesis treats
them as the same and only uses the term VCS.

VCS are useful when working on systems with multiple collaborators/contributors
residing at different physical locations. Typically, a system contains one remote
repository, which is a centralized location where the source code and its revisions
are stored. Collaborators check out (make copies/snapshots from) this remote state,
thereby creating a local repository in which they can start making local changes.
Changes that are made locally are tracked by the VCS. Once the collaborator wants
to share their changes with other collaborators, the VCS bundles the tracked changes
into a changeset (commit; modification record), which in turn can be checked in to
the remote repository.

So what new information does a VCS offer? The most interesting added dimension is
a project’s evolution over time. A VCS facilitates the analysis of different snapshots
of the same system at different points in time. A VCS also allows for zooming in on
the difference between, for example, two major versions. Instead of just having two
codebases, now a chain of time-labeled changesets which steps a state goes through
in order to pass over into the next.

Chapter 1. Introduction 3

1.2.2 Co-changes
Researchers have used this new evolution information in several ways. One research
topic that has emerged is the concept of co-changes. Co-changes find their origin
in the term logical coupling, which is defined by Gall et al. as “observed identical
change behavior of different elements during system evolution” [17].

Co-changes are noteworthy because they uncover hidden dependencies between arte-
facts. Two classes A and B may have 0 references to one another, but it might turn
out that whenever class A changes, class B changes as well. With the introduction
of VCS, co-changes could be mined on a lower level: that of changesets instead of
versions. This is what makes co-changes stand out, seeing as changesets normally
contain directly related changes.

1.3 Goals & Motivation
On average, the maintenance of a software system takes up more than 50% of its life-
cycle time [42] and this maintenance comes down to, among other tasks, resolving
technical debt. Curtis et al. estimate that a typical large scale application contains
$3.61 of technical debt per line [13]. Since technical debt comes with interest, the
detection and early resolution of technical debt can save money.

Previous research has already established a relation between co-changes and tech-
nical debt, as co-changes were found to be a good indicator of unexpected defects
[40] and a complex change history in general was associated with a greater amount
of faults in the system [20].

Although co-changes are technically a form of technical debt, they are merely a
symptom. To find the underlying cause of co-changes, researchers have explored
several potential causes of and relations between co-changes. They looked at code
smells [33, 25], anti-patterns [26], and the relation between system faults and co-
changes [40].

Since it is still difficult to accurately predict which files will co-change, exploring
new relations might yield more predictive power. An interesting relation that still
has unexplored territory is the one between AS and co-changes. Therefore, the first
goal of this thesis is to bridge this gap and explore the relation between AS and co-
changes.

As explained in Subsection 1.2.2, different approaches are being used to determine
which file pairs are co-changing. No studies were found where more than one al-
gorithm was applied to mine co-changes, so there exists little knowledge regarding
the differences in reported co-changes by the algorithms being used. Therefore, the
second goal of this thesis is to explore the differences between co-change mining
algorithms.

Chapter 1. Introduction 4

1.4 Approach
To accomplish these goals, several applications and analyses will be used. Three dif-
ferent co-changes mining algorithms are implemented and applied on several open
source projects: two existing algorithms (Market basket analysis (MBA) and Dy-
namic time warping (DTW)) and a new algorithm, Fuzzy Overlap (FO). A Java tool
(CoCo) will be developed for this research. Furthermore, a pipeline will be set up
to mine AS from the relevant open source projects, using existing tools. Finally,
an analysis is carried out that analyzes the relationship between different co-change
mining approaches and the relation between AS and co-changes.

1.5 Outline
The rest of this document is structured as follows: in Chapter 2, related work is dis-
cussed including studies related to mining VCS data, co-changes and different types
of CPI. The next chapter (Chapter 3) entails the research questions, the design of the
case study and an elaborate explanation of the Fuzzy Overlap algorithm. This chap-
ter also contains a thorough analysis of the data collection. Chapter 4 then contains
an in-depth description of how the analysis of the research questions will be exe-
cuted. What follows (Chapter 5) are the results of the proposed research questions
and finally a discussion (Chapter 6) and conclusion (Chapter 8).

5

Chapter 2

Related Work

In this section, previous research related to this thesis is discussed. First, a brief
overview of the background of several co-change detection algorithms is given. Then,
some uses of VCS data are discussed. This is followed by various applications of co-
change mining. Finally, architectural smells are discussed, focusing on the most
relevant research.

2.1 Background
An algorithm that is often used to determine association between changes of file pairs
is Market-Basket Analysis (MBA) [47, 32]. As the name suggests, MBA analyzes a
collection of baskets. A basket in the context of mining co-changes typically comes
down to a changeset, which is a set of files being modified simultaneously. For all
possible pairs of files in a codebase, two properties are calculated.

support =
A+B
total

(2.1)

con f idence =
A+B

A
(2.2)

Support (Equation 2.1) measures how often (percentually) two files occur together
in all (analyzed) changesets. High support indicates that the two files often change
simultaneously with respect to all changesets. Confidence (Equation 2.2) measures
how often file B changes whenever file A changes. High confidence indicates a pos-
sible directional relationship between both files. The apriori algorithm is commonly
used to discover which pairs meet given thresholds for support and confidence. Apri-
ori is a breadth-first algorithm that depends on the fact that a file set can never have
a support value above threshold-level if any of its subsets does not reach the thresh-
old. This allows the algorithm to quickly prune the list of candidates, leading to an
efficiently calculated set of changesets that meet the threshold.

Other researchers use Dynamic Time Warping (DTW) for mining co-changes. DTW
is more lenient than MBA in acknowledging co-changes over multiple changesets.
This leniency stems from the fact that it compares the change histories of files as a
whole and does not require exact overlap in changesets.

Chapter 2. Related Work 6

FIGURE 2.1: Mapping between changeset histories of two files [45].

Figure 2.1 shows the inner workings of the DTW algorithm. Assume a system con-
tains two separate files: file 1 and file 2. Through the history of their system, both
files were modified in certain changesets. This is represented as the two timelines at
the top of Figure 2.1. The black dots represent the points in time (i.e. changesets) in
which the files were changed. The bottom half of Figure 2.1 shows the warp matrix.

The algorithm works as follows: the warp matrix contains all distances (measured
in time) between the changesets pertaining to file 1 and file 2. Starting at the left
bottom square, the three adjacent squares (top, right, top-right) are considered as
the next steps in the warp path. The one with the lowest value is included. This
process is repeated until the end of both paths (the top right corner of the matrix) is
reached. The result is a path in which changesets are mapped to the closest (in time)
changesets of the other file. For DTW the difference in change history between the
two files is the length of the path, often normalized against the length of the change
history. This value can be held against a threshold and, if low enough, the file pair is
marked as co-changing.

Note that DTW could very well mark the example of Figure 2.1 as co-changing,
whereas MBA most likely would not; the path chosen by DTW shows that the
changes of both files rarely overlap, even though they are close in time. The total
difference would still be small, even with just one overlapping changeset between
the files. MBA is bound only to exact matches in changesets and would rate this pair
less likely to co-change.

2.2 VCS
VCS offer datasets rich in information that can be used for all sorts of research.
Various studies have therefore been conducted examining the evolution of systems
over time. For example, Zimmermann et al. created a tool that extracts coupling
between artefacts and is able to predict future changes [47]. Mockus et al. started

Chapter 2. Related Work 7

to look at changesets more in-depth [31]. They developed a system that labeled
changesets according to the type of change it made. Weißgerber et al. shed light
on a different part of data offered by VCS [44]. They found that, for some projects,
certain developers only worked on certain modules of the system and were able to
mark one or more contributors as the main developers of a project.

2.3 Co-changes
Researchers tend to agree that co-changes describe similarly changing artefacts. How-
ever, this definition lacks clear boundaries as to what ’similarly’ exactly means. Over
the years, researchers have therefore used a variety of approaches and boundaries in
mining co-changes.

Jaafar et al. propose two types of co-changes: MCC (Macro Co-Changing) and
DMCC (Dephase Macro Co-Changing) [24]. These concepts describe two files
changing simultaneously (MCC) or nearly simultaneously (DMCC). The authors ex-
plain what Macocha, their approach to mining these co-changes, does. They attempt
to find files that are MCC or DMCC using a sliding window approach, splitting up
the history of the project into periods of 5.17 hours and then defining a profile/vec-
tor that for each period contains whether the file has changed (1) or not (0), finally
resulting in a binary string. These strings can be compared to find co-changes. If the
strings match exactly, they are marked as DMCC. If they have a Hamming distance
< 3, they are marked as MCC.

Bouktif et al. undertake another approach to mine co-changes, focusing on reducing
computation time [9]. One typical problem with co-changes which they manage to
solve is that the examined window of time can influence the results. Taking a larger
window of time means including (co-)changes that might no longer be relevant. Tak-
ing a smaller window might result in missing important changesets, resulting in a
typical horizon effect. The authors find that larger windows result in better accu-
racy, but of course require more computation. They present Dynamic Time Warping
(DTW) as an algorithm for finding co-changes, thereby solving the task in quadratic
time respective to the length of the history (time window).

Zimmermann et al. [47] also look at mining co-changes using Market Basket Anal-
ysis (MBA). Every changeset is treated as a ’basket’ containing several changes.
Using the apriori, algorithm they are able to mine association rules from histories of
these changesets. For a changed file, they are able to predict 26% of co-changed files.
Moreover, 70% of the generated top three guesses turn out to be indeed co-changing.
Ajienka et al. mine co-changes from VCS and relate those to semantic coupling [1].
They also use MBA to mine the co-changes and have found that certain semantic
relations between artefacts are related to artefacts being co-changing.
Mondal et al. use MBA to mine co-changing method groups [32]. They analyze the
changesets of 7 open source projects and compare the lifetime and change-proneness
of co-changing methods with those of not co-changing methods. They have found
that co-changing methods indeed live longer and are more prone to change.

Co-changes are typically mined from VCS data, but Robbes et al. also try to find co-
changes on a more fine-grained level [35]. They implemented extra software in the

Chapter 2. Related Work 8

IDE of developers allowing them to see when changes occur within a development
session. They constructed detailed metrics based on the amount of changes per file
in a session and determined co-changes based on these. Although this approach
provides more detailed data, it is also harder to collect this data. The collected data
can also be dependent on the monitored developers. For this reason, the research for
this thesis utilizes ’traditional’ VCS data.

2.4 Architectural Smells
(Architectural) smells find their origin in the code smells and anti-patterns. Anti-
patterns date back to the 1990s when Webster [43] and Brown et al. [10] published
books which laid out guidelines for development in an object-oriented fashion and
provided a catalog of code structures to avoid or remove during development. Code
smells were first introduced in the early 2000s as part of a manual on refactoring
[15].

Other researchers investigated relations between CPI and other codebase-attributes.
Closely related to the goal of this thesis, Khomh et al. explore the relation between
code smells and software change-proneness [25] as well as the relation between anti-
patterns and software change-proneness [26]. They find that smelly artefacts (arte-
facts containing a code smell) are more prone to change. Similarly, they conclude
that artefacts containing anti-patterns are in general more prone to fault and change
than other artefacts.

While many studies focus on class- and package-level CPI, some research focuses
on other levels. Brown et al. already labeled their anti-patterns with seven different
levels on which they can occur [10]. CPI can, for example, only affect either a single
class (object level), multiple classes (micro-architecture/package level) or entire sys-
tems (system level). Fontana et al. researched so-called micro patterns, which entail
patterns as small as single method invocations [3]. They have developed a plugin for
Eclipse that detects these patterns in codebases and connect the found anti-patterns
to code quality metrics of the respective codebases. Hecht et al. focus on class-level
smells. Their tool Paprika automatically detects eight anti-patterns in Android apps
[21]. Nayrolles et al. then take on a higher-level perspective [34], by analyzing Ser-
vice Based Systems (SBSs) in order to locate SOA (Service Oriented Architecture)
anti-patterns. These patterns are mostly based on incoming and outgoing coupling.

Garcia et al. introduce the term architectural bad smell and propose four instances
of such AS [19]. In continuation, other catalogs of such AS are proposed [29, 28]
and combined [6].

Subsequently, tools were developed for detecting AS in codebases [30, 5]. One of
these, Arcan, requires special attention. Created by, Fontana et al., this tool is able
to detect three types of AS in codebases [5, 4]: Cyclic Dependencies, Hub-Like
Dependency and Unstable Dependency. The tool analyzes a system’s source code
per version and outputs its results as a graph of smells and affected artefacts.

While Arcan’s output has by itself been used for predicting future AS [2], it can also
be used by a second tool: ASTracker [37]. ASTracker shows the evolution of smells

Chapter 2. Related Work 9

throughout the history of a system. In the paper in which the tool was introduced
[37], several attributes of AS were discussed. With regards to some of their findings,
they stated that AS tends to move to the more centrally located parts of a system over
time, while generally staying the same size.

Sas et al. intend to use the output of ASTracker [38]. Their research (at the moment
of writing still under review) investigates relations between change rate and change
size of artefacts by comparing them against the evolution of the architectural smells
in which they are or are not contained. This thesis is closely related to this research,
as it explores how co-changes relate to architectural smells and their evolution.

10

Chapter 3

Research Methodology

This chapter explains the design of the case study used for this research. Then the
goal and the research questions of this study are discussed. Finally, the methods used
to collect all the data necessary for the analysis are described.

3.1 Case Study Design
This case study is set up according to the guidelines for case study design as de-
scribed by Runeson et al. [36]. The general structure is displayed in Figure 3.1. In
this study, software projects function as cases and their packages and files function as
units of analysis. By analyzing a multitude of projects, we are setting up a multiple-
case study. Furthermore, since each case contains many different units of analysis,
the study is an embedded case study.

We have chosen this setup to avoid bias in our results. Software projects can vary
in size, style and structure and this is why the results of a case study with a single
case are not significant, as these results can hardly be projected onto other projects.
Analyzing a single unit of analysis per case yields similar problems, seeing as dif-
ferent units can internally also be radically different from others in many aspects.
Therefore, we deem it important to review many different units per case, and so end
up with the embedded multiple-case study setup.

FIGURE 3.1: Setup of the case study using examples.

Chapter 3. Research Methodology 11

3.2 Goal and Research Questions
The goal of this study is to understand the relation between co-changes and archi-
tectural smells. In order to do so, architectural smells have to be extracted and co-
changes need to be identified. This study serves as a continuation of a previous study
done by Sas et al. [38] which locates architectural smells according to specific met-
rics. This process is performed by an application called ASTracker.

Our goal is to analyze the change history of projects by means of identifying co-
changing artefacts, comparing different co-change detection algorithms, and by ulti-
mately studying the relation between co-changes and architectural smells. To achieve
this goal, we have formulated four research questions:

• RQ1 What are the differences between the three co-change detection algo-
rithms FO, MBA, DTW?

• RQ2 Are artefacts affected by architectural smells co-changing?

• RQ3 Are co-changes more often found in smelly artefacts?

• RQ4 Are smells introduced before or after files start co-changing?

RQ1 requires us to compare the output of the FO algorithm for detecting co-changes
with the output of MBA and DTW. Both MBA and DTW have their own recom-
mended values for their thresholds based on earlier research. The results of this
comparison will offer insight into the accuracy of the novel FO algorithm and its
impacts on the results of the other research questions compared to state-of-the-art
algorithms.

RQ2 requires us to explore co-change and smell data and the overlap between them.
We will investigate which artefacts are affected by smells and which of those also
co-change. The results of this data exploration will likely generate insights that are
useful for answering the other RQs and form a critical piece of the puzzle in under-
standing the relation between AS and CC.

RQ3 can be considered an extension of RQ2. Here, we not only look at the co-
occurrence of smells and co-changes, but also attempt to determine whether a rela-
tionship between them exist.

RQ4 requires us to compare the starting dates of co-changes and code smells. Based
on those results, we check which one of the two typically occurs before the other.
This will give us insight into the temporal emergence of co-changing file pairs that
are also part of architectural smells.

3.3 Analyzed Projects
As described in the introduction of this section, software projects can differ from
each other considerably. Analyzing a wide variety of projects (cases) for our study is
therefore important. Runeson et al. present different methods for selecting projects
[36]. For our study, we have adopted the method of aiming for maximal variance

Chapter 3. Research Methodology 12

between our cases. We want to achieve variance in the distribution of the following
properties:

• Project size - We want to analyze projects with a smaller amount of artefacts
and projects with a larger amount of artefacts.

• Domain - We want to analyze projects within different domains.

• Owner - We want to analyze projects belonging to different owners and au-
thors.

Project Description Owner Changesets Domain
ArgoUML UML modelling tool Tigris-org 17814 Documentation
Cassandra NoSQL rowbased database Apache 25081 Databases
Druid Realtime analytics database Apache 10202 Databases
Hibernate-ORM Object Relational Mapping Hibernate 10167 Databases
Jackson-databind JSON library FasterXML 6387 Formatted Data
JUnit5 Unit testing framework JUnit-Team 6143 Testing
MyBatis-3 SQL object mapper MyBatis 3346 Databases
PDFBox PDF manipulation Apache 8778 Formatted Data
POI MS Office interaction Apache 10163 Formatted Data
PgJDBC Postgresql Java Driver Pgjdbc 2638 Databases
Robolectric Android unit testing Robolectric 10101 Testing
RxJava Reactive JVM Extensions ReactiveX 5741 General purpose
Sonarlint-IntelliJ Linter for IntelliJ SonarSource 1102 General purpose
Spring-Framework Enterprise framework Spring-Projects 20479 General purpose
Swagger-Core API-documentation Swagger-API 3683 Documentation
TestNG Testing Framework Cbeust 4752 Testing
Xerces2-j Java XML parser Apache 6374 Formatted Data

TABLE 3.1: Analyzed projects for the case study.

3.4 Approaches to detect co-changes
In order to validate and compare the results of our algorithm, we compare our out-
put with the output of two other commonly used algorithms. These are the Market
Basket Analysis (MBA), using the apriori algorithm, and a Dynamic Time Warping
(DTW) algorithm, which calculates the distance between two commit sets. From
this moment on, commit will be used rather than changeset, seeing as all analyses are
performed on data gathered using Git, which uses “commit” to refer to a changeset.

3.4.1 Fuzzy Overlap
The Fuzzy Overlap (FO) algorithm is an algorithm that tries to formalize certain
intuitive assumptions regarding co-changes in a domain-focused fashion. These as-
sumptions cannot be satisfied using more generic algorithms such as MBA and DTW.

Chapter 3. Research Methodology 13

FIGURE 3.2: The basic idea of fuzzy mapping. The circles represent
commits in which the files changed. In commit #1, both files change.
After that, they do not change in the same commits, but file B always

changes just before file A.

This algorithm is based on the observation that co-changes can occur in a range of
situations. They can occur either within the very same commit, when for example
files A and B change at the same time, or there can be a short “delay” between the
changes. For instance, if a change in File B is typically followed by a change in
file A, then a relationship between the two might exist and intuitively these two files
would then be considered to be co-changing. This is depicted in Figure 3.2. The
MBA algorithm cannot pick up on these kinds of co-changes as it only incorporates
changes within the same commits.

FIGURE 3.3: This figure compares two typical file history types. Files
B and C (orange) are spotted by DTW as co-changing as their history
is identical. However, the support of the similarity is minimal. Files
A and D are less likely to be matched by DTW as their paths differ;

however, FO will pick up such file pairs.

Of course, if two files only change together once, this can easily be attributed to
chance, instead of it being an actual co-change. In order to prevent this, FO imple-
ments a threshold for co-changes, filtering out all pairs that do not change together
often enough. DTW is not capable of this distinction and will report every set of two
files that change simultaneously as a co-change, as long as that change is their only
change in that time period, as both will have identical change histories at that point.
An example of this can be found in Figure 3.3. MBA can filter out these changes due
to the support threshold.

Chapter 3. Research Methodology 14

This algorithm is implemented in the form of a Java application called CoCo1. CoCo
acquires co-changes in two steps. First, it collects the commit history of a project,
optionally starting from a certain date, and up to a certain commit. This is done in or-
der to limit projects that have a great amount of commits compared to other projects
analyzed. For all files present at a certain point in the project, CoCo determines by
which commits they were affected (added, modified or moved to a different direc-
tory). The raw change data is the collection of all changes within the given time win-
dow, together with their dates. Commits related to the merging of two Git branches
are excluded, as these should be considered noise, based on research by Zimmerman
et al. [46].

Next, the accepted co-changes are generated from the raw changes. For every pair of
files, the changes are compared in order to spot overlapping commits. An instance
of the files changing in the same commit is always considered a co-change, but files
that change shortly after one another can also be co-changing. In order to limit these
changes over time, two variables must be considered. The first is the time difference
between two commits. This parameter needs to be flexible, as different projects have
different times between commits. The second is the number of commits in between
the two commits. If there is a large number of commits in between them, this instance
is less likely to be a co-change as compared to two changes that occur immediately
after each other.

Finally, the co-changes are compared to a final filter, that of the co-change threshold.
The goal of this threshold is to filter out noise and co-changes occurring purely by
chance.

Pseudocode for the FO algorithm can be found in Listing 3.1 and a visual overview
can be seen in Figure 3.4.

1https://github.com/RonaldKruizinga/CoSmellingChanges

https://github.com/RonaldKruizinga/CoSmellingChanges

Chapter 3. Research Methodology 15

FIGURE 3.4: Flowchart of the FO algorithm.

Hyperparameters

From Subsection 3.4.1 several hyperparameters can be selected which require ex-
ploration to find the optimal values. As soon as we determine appropriate values
for each of them, we can start analyzing the space bounded by these values. The
following hyperparameters are important for the FO algorithm:

• Commit Distance - The number of commits between two analyzed commits.

• Time Distance - The maximum time between two commits for them to be
marked as co-changing.

Chapter 3. Research Methodology 16

• Time Range - Interval of development time which bounds the sampled com-
mits.

• Match Threshold - The minimum number of overlapping commits of two files
for them to marked as co-changing

FIGURE 3.5: Difference between commit distance and time distance
hyperparameters used by FO.

Commit Distance

This hyperparameter is one of the two constraints that bounds the leniency of the co-
change detection. Setting it to a higher value means that more files will be marked
as co-changing, since more distance may be present between two commits to be
marked as related. Lowering the value tightens the detection. Ultimately, when this
number set to 0, files must change within exactly the same commit to be marked as
a co-change. This parameter is set by looking at how many commits there are on the
average, on a day which has commits, as that gives an indication of the grouping of
the commits. This average therefore ignores days without commits.

Time Distance

While this hyperparameter also constrains the distance between two commits, it cal-
culates a commit’s distance in time rather than counting the number of intermediary
commits. Note that the same configuration of these two distance metrics can yield
notably different results in different projects. Some projects contain relatively few
commits in their main branch, each with a large amount of time in between them.
Others might not stick to a few strict releases and accept pull requests on a daily
basis. A larger commit distance does not necessarily equate to a large timespan be-
tween commits, as some projects have five commits on a single day, whereas others
have five spread out over a week. With regards to the time distance, the same is true
the other way around: a time distance of a week might be necessary to capture all
co-changes in the first type of projects, while in the second type of project this might
result in a far too lenient detection procedure. This parameter is set by looking at the
time intervals between commits and taking the third quartile of those, as suggested
by Bird et al.[11].

Chapter 3. Research Methodology 17

Time Range

This hyperparameter determines the overall time range that is analyzed in the VCS,
based on a start date and an end date. If this parameter is too broad, especially with
high distance bounds, it might yield irrelevant co-changes. If the window is made
too small, it is possible that essential co-changes are left out. The optimal value lies
somewhere in between and highly depends on the project analyzed.

Match Threshold

Given a large enough time window, most files will co-change occasionally. We are
not interested in coincidental co-changes, but rather in the ones that occur repeatedly.
The goal is to find the co-changes that occur more often than merely at random
and we want to only keep these co-changes in our results by filtering out ”noise”
(=coincidental co-changes).

FIGURE 3.6: Distribution of observed match counts among co-change
candidate pairs. A threshold of 12 was selected for this dataset.

We therefore introduce a threshold which maintains a required minimum amount of
overlapping commits between two files needed to be marked as co-change. When
set correctly, this hyperparameter filters out noise; however, if it is set too high or
too low, it yields too few or too many results. This hyperparameter is found by first
running CoCo without a threshold. This yields co-change candidates: file pairs with
at least one (fuzzy) overlapping commit. The distribution of match counts occurring
in this dataset is typically exponentially distributed, as shown in Figure 3.6. The
match count at the 95th percentile of this dataset is chosen as the threshold for the
project. This is based on related research [11] and on empirical experiments.

Chapter 3. Research Methodology 18

1 Calculate_FO_CoChanges(githubRepository){
2 for each commit in githubRepository within time range{
3 Calculate fileChanges and store them
4 }
5

6 Export changes to CSV to be used by DTW and MBA
7

8 // i is a file with its changes
9 for i in fileChanges{

10 // j is a file with its changes that comes after i in the list
11 for j > i in fileChanges{
12 // All combinations consist of one commit from i and from j
13 Calculate all combinations of two commits
14 // No more than x hours apart
15 Filter commit pairs on time distance
16 // No more than x other commits inbetween
17 Filter commit pairs on commit distance
18 if number of incidents exceeds threshold{
19 Store co-change
20 }
21 }
22 }
23

24 for each co-change{
25 Calculate start and end date
26 }
27

28 Export co-changes to CSV to analyze
29 }

LISTING 3.1: FO pseudocode

3.4.2 Market Basket Analysis
The market basket algorithm is based on association rules and calculates how often
two items in a set occur together and whether the presence of one item is likely to
predict the presence of another item in the same basket. This algorithm has tradition-
ally been used to analyze which items are commonly bought together and what kind
of promotions would therefore be likely to improve sales.
This is calculated using the apriori algorithm, limited on sets of length two (one an-
tecedent, one consequent) in order to improve performance. Based on a 2013 case
study by Bavota et al. [8], a good value for the support for a rule is at least 2% of
the commits, with a confidence of at least 80%. These values are chosen to pick up
changes in a low amount of commits (hence the low support), yet with a high con-
fidence to still ensure preciseness. For the purpose of comparing algorithms, these
values will therefore be used.

3.4.3 Dynamic Time Warping
Another alternative algorithm is that of dynamic time warping, which is a way of
measuring similarity between two time series, even if the speed of these time series

Chapter 3. Research Methodology 19

varies. Traditionally, this algorithm has been used for automatic speech recognition,
but it is also applied to a wide variety of other purposes, such as video, audio and
graphics.
It calculates the distance between two time series and provides a normalized version
of the distance. This is the value we use to threshold and find co-changes.
Based on a 2006 case study by Bouktif et al. [9], a threshold of 86400 seconds
provides a good balance between accuracy and performance.

3.5 Data Collection
Various sorts of information need to be collected for the analysis, such as information
on the architectural smells and the co-changes within a project. The calculations will
be run on the Peregrine cluster of the University of Groningen.

3.5.1 Architectural smells
For this research we will relate co-changes to architectural smells. The architectural
smell data will be collected using the tools ASTracker2 and Arcan3. ASTracker ana-
lyzes projects per version. The term “version”, in this context, refers to snapshots of
the source control taken at given time intervals. We set this interval to the minimum
value, being one day, which means ASTracker will analyze every day a project was
modified.

The collected smell data tells us which artefacts are affected by a smell (this can be
one or several artefacts per smell) and tells us during which commit(s) the smell was
present. This procures a time range during which a smell was present. It also stores
the date of each version.

Smell-scopes

Every smell has its own level: class or package. The reported affected artefacts are
of one of these types. We distinguish three smell-scopes in this context: class (C),
package (P), and class plus package (CP). The scopes correspond with a subset of
the collected smell data where one or both levels are included.

Smell-affected pairs

As our research focuses on the relationship between smelly (file) pairs and co-changing
file pairs, we need to convert the smells to file pairs that are affected by the smells.
For class-level smells, this is merely a matter of creating all combinations of files
affected by the smell, thereby creating a set of affected file pairs. For package-level
smells, however, this process is somewhat more complicated; since entire packages
are affected by the smell, all file combinations between those packages are consid-
ered affected pairs.

2https://github.com/darius-sas/astracker
3https://gitlab.com/essere.lab.public/arcan

https://github.com/darius-sas/astracker
https://gitlab.com/essere.lab.public/arcan

Chapter 3. Research Methodology 20

3.5.2 File Changes
CoCo is capable of tracking when certain files change over time. It outputs this
information per file and per version (in our case, per commit). This is used as input
for the DTW and MBA algorithms that will be used during the analysis phase.

3.5.3 Co-changes
All three algorithms have a similar way of generating co-changes from the list of
changes. For FO, this is done within CoCo. For MBA and DTW, this is done in the
analysis script we have written in Python4. We analyze all systems listed in Table 3.1
and gather information regarding co-changes from them.

Fuzzy Overlap

Data collection is done using the Java CoCo application, wherein we collect raw
co-change data and then apply a collection of filters (defined per project by the hy-
perparameters in Section 3.4.1) to obtain the accepted co-changes of each project.

The input for this algorithm are the hyperparameters discussed in Subsection 3.4.1
and metadata regarding the location of the Git repository. All co-change data for
this algorithm is outputted as a CSV containing the list of co-changing file pairs,
including the packages in which the files can be found. This file also contains a start
and end date for each co-changing file pair. These dates are determined by the first
date and the last date on which the file pair reports a co-change.

Market Basket Analysis

Data collection is performed using the mlxtend5 package for Python. This package
implements all the necessary algorithms including flexible support and confidence
thresholds. The values for these thresholds are discussed in Subsection 3.4.2.

The input for this algorithm is the list of changes outputted by CoCo. The algorithm’s
output is then stored as a CSV containing the list of co-changing file pairs, including
the packages in which the files are found. This file also contains a start and end date
for each co-changing file pair. These dates are determined by the first date and the
last date on which either of the files in the pair reports a change.

Dynamic Time Warping

Data collection is performed using the dtw-python6 package, which provides the
necessary time warp comparison, including a normalized distance threshold and plot-
ting functions to visualize the results. The threshold value is discussed in Subsec-
tion 3.4.3.

4https://github.com/rubenscheedler/CoChangeAnalysis
5http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.frequent_

patterns/
6https://dynamictimewarping.github.io/python/

https://github.com/rubenscheedler/CoChangeAnalysis
http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.frequent_patterns/
http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.frequent_patterns/
https://dynamictimewarping.github.io/python/

Chapter 3. Research Methodology 21

The input for this algorithm is the list of changes outputted by CoCo. The output of
the algorithm is then stored as a CSV containing the list of co-changing file pairs,
including the packages in which the files are found. This file also contains a start and
end date for each co-changing file pair. These dates are determined by the first date
and the last date on which either of the files in the pair reports a change.

3.5.4 Overlapping pairs

FIGURE 3.7: The two conditions for an overlapping pair (OP).

The final piece of data we need to collect is the overlap between file pairs that are
co-changing and file pairs that are part of an architectural smell. We call such pairs
Overlapping Pairs (OP). The process of collecting these pairs is the same for all three
algorithms. First, the list of co-changes is matched with the list of file pairs affected
by architectural smells on filenames. These smells can be on either class or package-
level, or both, as discussed in Subsection 3.5.1. Secondly, the time ranges of a pair’s
co-change and smell are checked for overlap. A co-change’s time range starts at the
first (fuzzy) overlapping change and ends at the last. A smell’s time range starts at
the first commit in which it is detected and ends at the last in which it is detected.
The two conditions for an OP are visualized in Figure 3.7.

22

Chapter 4

Data Analysis

As mentioned before, our goals are to compare co-change mining algorithms and to
determine whether a relationship between co-changes and architectural smells (AS)
exists. These goals are covered by our four research questions. First, a data explo-
ration into smells and co-changes and the various algorithms that are necessary to
detect those co-changes is performed. Next, we perform a statistical analysis in an
attempt to discover a correlation between co-changes and AS. Finally, we perform
an analysis to determine whether AS do, in fact, occur before co-changes rather than
after. The scripts used for these analyses can be found on GitHub 1.

4.1 RQ1 - What are the differences between the three
co-change detection algorithms FO, MBA, DTW?

In order to answer RQ1, we need to perform an exploration and comparison of the
three co-change detection algorithms. This analysis concerns the set of co-changes
outputted by each algorithm. Moreover, each project is analyzed separately. We then
compare the overlap between the algorithms and which percentage of all file pairs is
reported as co-changing.

Every co-change is bound to a time interval, which is reported together with the
files it concerns. Different algorithms might report different time intervals for the
same files. Moreover, different algorithms might report more co-changes in certain
periods of a project’s history. For RQ1, we therefore also look at the distribution of
co-changes over time.

4.2 RQ2 - Are artefacts affected by architectural smells
co-changing?

For this research question we will construct two datasets. The first consists of the the
file pairs affected by at least one architectural smell. The second is a subset of the
first, created by determining which file pairs are also marked as co-changing. RQ2
is answered by looking at the ratio between these two datasets and by calculating

1https://github.com/rubenscheedler/CoChangeAnalysis

https://github.com/rubenscheedler/CoChangeAnalysis

Chapter 4. Data Analysis 23

which percentage of the architectural smells is also co-changing.

StartDateco−change ≤ EndDatesmell ≤ EndDateco−change (4.1)

StartDateSmell ≤ EndDateco−change ≤ EndDatesmell (4.2)

Every detected architectural smell and every co-change has a date-range during which
it was observed. In order for a file pair to be considered a match, the relevant period
of its smell and co-change has to overlap. A smell and co-change are considered
overlapping once Equation 4.1 or Equation 4.2 holds.

RQ2 serves mostly as an exploratory question leading up to RQ3. It provides insight
in where the most overlap is found between AS and co-changes. Therefore, this
analysis is performed for all three algorithms (FO, MBA, DTW) and all three subsets
of AS (class-level, package-level and both together). This will yield nine overlap
ratios per project.

4.3 RQ3 - Are co-changes more often found in smelly
artefacts?

To answer RQ3, we strive to compare two binary categorical variables. The first
variable is whether a file pair is co-changing. The other variable is whether two files
belong to the same architectural smell. It is our aim to establish whether smelly
artefacts are more likely to co-change than clean artefacts. Several statistical tests
exist to determine this. The two best candidates are the χ2-test and the Fisher’s exact
test.

Based on the size of our data set, we have decided to go with the χ2-test. Fisher’s
test is best to be used with a sample size ≤ 20 [39]. Our data set is orders of mag-
nitudes larger as our sample consists of all possible pairs of files in a repository
(changed in the relevant time frame) meaning this test would be unsuitable. For our
analyzed projects, the amount of pairs per project lies somewhere between 10,000
and 2,000,000.

The input for a χ2-test is a two by two contingency table containing the counts of
observations with one of the four possible combinations of our variables. An example
of such a contingency table can be found in Table 4.1.

The null hypothesis and alternative hypothesis are as follows for this research ques-
tion:

• HRQ3 [algorithm] [scope]
0 : Artefacts affected by AS are as likely to co-change as

artefacts not affected by AS.

• HRQ3 [algorithm] [scope]
1 : Artefacts affected by AS are more likely to co-change

than artefacts not affected by AS.

Chapter 4. Data Analysis 24

RQ3 will be answered for all three co-change detection algorithms and all three
smell-scopes. In total, RQ3 will thus be answered nine times, namely for every com-
bination of algorithm (FO, DTW, MBA) and smell-scope (C, P, CP). These parame-
ters are added as labels ([algorithm] and [scope]) to the hypotheses when considering
only one algorithm and/or smell-scope.

Normally, one would reject HRQ3
0 when the test results in a χ-value > 3.84 (critical

value) and a p-value < 0.05. However, since we are dealing with a considerable
sample size, we will also calculate a corresponding effect size φ as defined by Equa-
tion 4.3.

φ =

√
χ2

n
(4.3)

In Equation 4.3, χ2 is the value returned by our test and n is the sample size. The
resulting value φ can take values in the interval [−1,1]. The value indicates effect
size in the following manner: 0.1 ≤ φ < 0.3 means a small effect, 0.3 ≤ φ < 0.5
means an average effect and φ ≥ 0.5 means a large effect [39]. To reject HRQ3

0 φ

needs to be ≥ 0.1.

Moreover, to accept HRQ3
1 , we need to know the direction of the association our test

might find. We calculate its odds ratio.

Co-changed Not Co-changed
No Smell x z
Smell w y

TABLE 4.1: Example contingency table.

Say we have Table 4.1 and want to calculate the odds ratio of this, we use the follow-
ing formula:

o =
x∗ y
w∗ z

(4.4)

o can vary between 0 and infinity. When it is larger than 1, it indicates a higher
than 50 percent chance that a co-change will be present whenever a smell is present.
Since HRQ3

1 states that containing a smell increases the change for a co-change, we
can accept this when o (odds ratio) is larger than 1 [39].

4.4 RQ4 - Are smells introduced before or after files
start co-changing?

In order to answer RQ3, it is required to find overlap in time between co-changing
artefacts and artefacts affected by architectural smells. The file pairs which overlap
can be investigated further. Most pairs are not permanently co-changing, nor smelly.
RQ4 raises the question whether one of these tends to happen before the other, or
whether they happen at the same time. For all overlapping pairs, it can be determined
whether they first start smelling or first start co-changing. The dataset of overlapping
co-changes and AS can be categorized into three groups:

Chapter 4. Data Analysis 25

1. Emergencesmell < Emergenceco−change (smell-earlier)

2. Emergencesmell > Emergenceco−change (co-change-earlier)

3. Emergencesmell = Emergenceco−change (neither-earlier)

Emergencesmell is the date of the commit in which the smell is introduced.
Emergenceco−change is the date of the first commit in which both files of the co-
change changed. Not all file pairs are suitable for this analysis. For certain projects,
only part of their history was analyzed. This means that co-changes and smells de-
tected at the start of the analyzed window might have emerged earlier. Co-changes
and smells for which this holds are therefore ignored. Furthermore, co-changes and
smells that have no overlap are also left out of this analysis.

RQ4 indirectly asks for two things to be explored: are file pairs co-changing before
they start smelling (1) or are file pairs smelly before they start co-changing? (2).
These become two separate sub-RQs:

RQ4a - Are smells introduced before files start co-changing?
RQ4b - Are co-changes introduced after files start smelling?

The dataset for both RQ4a and RQ4b is binomially distributed since, for every file
pair, one of two things holds: success, where one phenomenon indeed precedes the
other, and failure, for which this is not true. Ties are logically included in the failure
group. The binomial distribution implies that RQ4a and RQ4b can be answered using
the binomial sign test [39].

For the null hypothesis, the expected balance between the two outcomes is 1 to 1. In
other words, it is expected that in 50% of overlapping pairs the smell is introduced
first and in the other 50% the co-change comes first.

Say that π1 is the probability of a pair falling in category 1, π2 the probability of it
falling into category 2 and π1 +π2 = 1. A null hypothesis can then be formed based
on the expected value for π1. This value is set to 0.5, capturing the equal distribution
of earlier co-changes and earlier smells.

We are not merely interested in whether the distribution of earlier co-changes and
smells matches the expected one, but also in the skewing direction if it does not
match. Therefore, two one-tailed tests are used instead of one two-tailed test. This
gives rise to the following hypotheses:

RQ4a - Are smells introduced before files start co-changing?

HRQ4a [algorithm]
0 : πs ≤ 0.5

HRQ4a [algorithm]
1 : πs > 0.5

RQ4b - Are co-changes introduced after files start smelling?

HRQ4b [algorithm]
0 : πc ≤ 0.5

HRQ4b [algorithm]
1 : πc > 0.5

Chapter 4. Data Analysis 26

πs is the probability of a smell occurring before a co-change and πc the probability
of the co-change coming first. Note that the null hypotheses include πs < 0.5. This
is explained in the next paragraph. The analyses will be performed in threefold,
namely for the reported overlapping pairs of FO, DTW and MBA (represented by
[algorithm] in the hypotheses). With respect to the smells that are considered, both
package-level and class-level smells are included.

For RQ4a and RQ4b, the null hypothesis is rejected when two conditions are met.
Firstly, earlier smells and earlier co-changes must occur more often, respectively, for
RQ4a and RQ4b. Secondly, the probability of the observed amount of successes or
more must be lower than 0.05. Say, for example, for RQ4a that m smells occurred
earlier and n co-changes. HRQ4a

0 may then be rejected when the probability (p-value)
of observing m or more smell-earlier pairs is lower than confidence level α = 0.05.
This comes down to calculating the cumulative probability of observing m, m+1,
... up to m+n smell-earlier pairs. When only the p-value is evaluated, the direction
of skewing remains unknown, and this would correspond with a null hypothesis of
the form π 6= 0.5. The extra condition validates the direction and means that either
HRQ4a

1 or HRQ4b
1 can be accepted.

27

Chapter 5

Results

This chapter covers the results obtained in our research. They are reported according
to their corresponding research question and the significance of each result is dis-
cussed. All results have been collected and analyzed with the methods described in
Chapter 3.

For Cassandra, Hibernate-ORM and Spring-Framework, memory constraints made
it impossible to calculate the Overlapping Pairs. Due to this, RQ2, RQ3 and RQ4
did not consider these projects. In addition, similar memory constraints made it
impossible for RQ4 to be answered for ArgoUML, PDFBox, POI and Robolectric.

5.1 RQ1 - What are the differences between the three
co-change detection algorithms FO, MBA, DTW?

Project % of files (number) Total file pairs
FO DTW MBA

ArgoUML 4.48 (140,710) 0.55 (17,258) x (0) 3,140,960
Cassandra 0.80 (22,515) 0.14 (4,056) < 0.01 (1) 2,811,467
Druid 3.73 (69,567) 2.05 (38,259) x (0) 1,866,807
Hibernate-ORM 2.15 (137,411) 1.71 (108,771) x (0) 6,378,904
Jackson-databind 2.46 (3,474) 0.3 (497) x (0) 141,353
JUnit5 3.45 (11,506) 0.74 (2,477) < 0.01 (1) 333,580
MyBatis-3 38.22 (25,497) 0.19 (126) x (0) 66,703
PDFBox 0.76 (2,790) 0.12 (470) x (0) 368,982
PgJDBC 12.25 (17,247) 0.17 (236) < 0.01 (6) 140,824
POI 1.52 (11,404) 0.27 (2,029) x (0) 747,846
Robolectric 2.14 (41,071) 0.06 (1,236) x (0) 1,918,436
RxJava 3.24 (43,457) 4.07 (54,644) x (0) 1,341,238
Sonarlint-IntelliJ 3.58 (1,109) 0.26 (82) < 0.01 (1) 30,987
Spring-Framework 5.02 (380,201) 0.84 (63,456) x (0) 7,566,671
Swagger-Core 2.35 (1,395) 1.13 (673) 0.01 (4) 59,439
TestNG 2.85 (69,047) 8.03 (194,655) x (0) 2,425,206
Xerces2-j 3.37 (8,792) 2.19 (5,716) x (0) 260,670

TABLE 5.1: Percentage of all file pairs reported as co-changing. Val-
ues over 5% are marked in bold.

Chapter 5. Results 28

All three algorithms were run on the file changes reported by CoCo and report a
large variety of co-changes, as can be seen in Table 5.1. With the exception of four
results regarding the MyBatis-3, PgJDBC, Spring-Framework and TestNG projects,
all results were below 5% of all pairs.

Considering the various algorithms, MBA reported a maximum of 6 co-changes for
the PgJDBC project and did not report any co-changes for 12 out of 17 projects. We
further discuss this lack of co-changes for MBA in Chapter 6.
In general, FO reported more co-changes than DTW did, except for the RxJava and
TestNG projects. Aside from Cassandra and PDFBox, FO reported more than 1% of
all pairs to be co-changing, whereas DTW only reported 6 projects above 1%.

5.1.1 Overlap
Only three projects of those analyzed had an overlap between algorithms of more
than 5% of the union of the algorithms, which can be seen in Figure 5.1. it can
be concluded that overlap is rare and the algorithms generally return significantly
different co-changes.

FIGURE 5.1: Overlap of output of the algorithm on three projects.

Chapter 5. Results 29

5.1.2 Co-changes over time

FIGURE 5.2: Co-changes over time.

Chapter 5. Results 30

Some interesting information can be gleaned from Figure 5.2. Visible in the graphs
is that the development of ArgoUML and Xerces2-j was halted during the analysis
period, due to which no co-changes were reported after the clear cut-off. While the
algorithms have significantly different graphs, certain things are notable regardless
of the algorithm. Some notably steep drops and climbs can be seen in the graphs
when the number of co-changes greatly changes. Looking at the commits close to
the day on which these notable changes occurred, it becomes noticeable that these
changes are caused by considerably large commits, in which a significant number of
files gets moved, added or deleted. Common occurrences are renames of folders or
packages or restructurings of the repository.

The differences between the algorithms become notably more pronounced when
looking at the co-changes over time. The lack of MBA results is clearly visible
in the graphs, although some interesting patterns can be seen as well. In general, FO
reports co-changes over a wider timespan, whereas with DTW, shorter ‘spikes’ of
co-changes occur more often. However, in a number of graphs, it is clear that both
algorithms report the same patterns and peaks in the number of co-changes, even if
these patterns differ in magnitude.

5.2 RQ2 - Are artefacts affected by architectural smells
co-changing?

In this section the results are given for RQ2. The percentage of relevant smelly pairs
(i.e. falling in the right smell-scope) that is also co-changing is given per project and
per algorithm. MBA is left out of the results because there were too few co-changes
reported.

5.2.1 Results for Class AS
FO

FIGURE 5.3: File pairs affected by class-level smells also reported as
co-changing by FO.

Figure 5.3 shows the overlap for class-level smells using FO co-changes per project.
On average, 26% of relevant smelly pairs was also reported as co-changing per

Chapter 5. Results 31

project by FO. Figure 5.3 demonstrates that the actual percentage per project varied
greatly. TestNG’s class-level smells are fully contained in its FO co-changes (100%
overlap) but for Druid and PgJDBC no overlap was found. As it turns out, these are
three projects with some of the lowest amounts of class-level smells; TestNG con-
tains just one relevant smelly pair, and Druid and PgJDBC respectively contain 19
and 66. The average number of smelly pairs is 2490. To account for outliers with few
relevant smelly pairs, all project datasets were combined into one and the overlap of
the newly combined dataset was determined. This yielded a weighted average of
15% when weighted by the number of relevant smells per project.

DTW

FIGURE 5.4: File pairs affected by class-level smells also reported as
co-changing by DTW.

The results for DTW and class-level AS differed from the ones of FO. Figure 5.4
exhibits there was hardly any overlap in most projects, except for a few outliers.
PgJDBC had an overlap of over 60%, although this still may have been caused by the
small amount of smelly pairs (66). The same situation is true for JUnit5 , containing
only 49 relevant smelly pairs. Xerces2-j, on the other hand, contains 1910 smelly
pairs and still reports a more significant overlap of 11%. In total this came down
to an unweighted average of 6% and a weighted average of 1% of overlapping
smells and DTW co-changes.

Chapter 5. Results 32

5.2.2 Results for Package AS
FO

FIGURE 5.5: File pairs affected by package-level smells also reported
as co-changing by FO.

The ratio of package-level smells matching with FO co-changes was significantly
lower than for class-level smells, as can be seen in Figure 5.5. Most projects re-
ported around 10% overlap, with a few exceptions. JUnit-5, MyBatis-3 and PgJDBC
again contained relatively low amounts of relevant smelly pairs: between 9,000 and
26,000, whereas the overall average was around 232,000. ArgoUML on the other
hand contained more than 1,000,000 smelly pairs and still had an overlap of 8%.
Overall, an unweighted average of 10% was found and a weighted average of
5%.

DTW

FIGURE 5.6: File pairs affected by package-level smells also reported
as co-changing by DTW.

For DTW, the results again were lower than the respective ones produced by FO (Fig-
ure 5.6). For only one project the overlap reached the 10%: RxJava. This deserves
mentioning as the project contains around 386,000 smelly pairs, which is high given
the average of 232,000. Still, since this is the only project with such a percentage,
the unweighted and weighted average came out at 1%.

Chapter 5. Results 33

5.2.3 Results for Class and Package AS
FO

FIGURE 5.7: File pairs affected by class- or package-level smells also
reported as co-changing by FO.

The results for the CP smell scope mostly follow those of the package-level scope
for FO (Figure 5.7). However, since relatively more overlap was reported in the case
of class-level smells, a slight increase in overlap can be noticed here compared to
package-level only smells. The unweighted average for this scope and FO was
10% and the weighted average was 6%.

DTW

FIGURE 5.8: File pairs affected by class- or package-level smells also
reported as co-changing by DTW.

Concluding the results of RQ2, Figure 5.8 paints a similar picture to Figure 5.6.
Although DTW also reported slightly higher values for the class-level scope, the
results for this scope still resemble the ones of the package-level: an unweighted
and weighted average of 1%.

Chapter 5. Results 34

5.3 RQ3 - Are co-changes more often found in smelly
artefacts?

The results of this RQ consist of the result of the χ2-test and of the underlying re-
quired conditions to reject its null hypothesis. As mentioned before in Section 4.3,
HRQ3

0 is rejected when the following conditions are met:

1. χ-value > 3.84

2. p-value < 0.05

3. φ -value > 0.1

4. o (odds ratio) > 1

The following tables capture these results, which are reported per algorithm and
smell-scope. In the tables, a bold value indicates that the value passed the condi-
tion required to reject the null hypothesis. A dash (-) means that the required value
could not be calculated. In the context of this RQ, this implies that one of the values
of the contingency table of the χ2 was 0; for example, all co-change pairs were also
smelly, no co-changes were smelly, etc. Whenever a test could not be computed, no
hypothesis is rejected nor accepted.

5.3.1 Result for Class AS
FO

Project HRQ3 FO C
0 χ-value p-value o φ -value

ArgoUML Accepted 9025.77 <0.01 9.99 0.06
Cassandra Accepted 16342.81 <0.01 13.48 0.08
Druid - - - - -
Hibernate-ORM Accepted 2971.66 <0.01 6.88 0.02
Jackson-databind Rejected 1282.91 <0.01 24.97 0.10
JUnit5 Accepted 4.46 0.03 3.06 <0.01
MyBatis-3 Accepted 3.09 0.08 0.84 <0.01
PDFBox Accepted 2220.97 <0.01 10.90 0.08
PgJDBC - - - - -
POI Accepted 1812.87 <0.01 13.91 0.05
Robolectric Accepted 169.62 <0.01 9.59 <0.01
RxJava Accepted 2758.90 <0.01 5.93 0.06
Sonarlint-IntelliJ Rejected 758.38 <0.01 30.10 0.16
Spring-Framework Accepted 341.45 <0.01 3.65 <0.01
Swagger-Core Rejected 2059.78 <0.01 71.98 0.20
TestNG - - - - -
Xerces2-j Accepted 417.93 <0.01 3.89 0.04

TABLE 5.2: Results of testing HRQ3 with co-changes reported by FO
and class-level AS. The threshold values for the four conditions can

be found in Section 5.3.

Chapter 5. Results 35

Table 5.2 shows that the null hypothesis is rejected for 21% of the projects. For the
other projects, at least one of the conditions required to do so did not hold. This is
mostly due to the required value of the φ -coefficient, which often is smaller than the
required 0.1 and was the deciding factor for accepting the null hypothesis for 64% of
the projects.

3 out of the 17 tested projects (18%) did not yield proper data for the test to be
executed. 2 other projects (MyBatis-3 and JUnit5) reported a minimal χ-value, one
of which even lower than the critical value. For 4 out of 5, this can be explained
by the lack of detected class-level AS: these projects reported between 1 and 100
file pairs affected by such smells. Most other projects reported between 1,000 and
20,000. However, this does not explain the results of MyBatis-3, which reported
442 smelly pairs, whereas Sonarlint-IntelliJ and Swagger-Core reported less and
achieved χ- and φ -values orders of magnitudes higher. The reason for MyBatis-3 is
that it reported 26,581 co-changed file pairs, while Sonarlint-IntelliJ and Swagger-
Core only reported 913 and 1,280. This explains why MyBatis-3 scored low on the
χ-test.

3 projects had a significant φ -value: Sonarlint-IntelliJ, Swagger-Core and Jackson-
databind. These projects share certain properties within our dataset. Firstly, they
contain a relatively small amount of files, causing them to be 3 out of the 5 smallest
projects. Secondly, the amount of co-changes for them lies between 1000 and 3000
and the amount of smells between 100 and 250. Thirdly, the threshold applied when
filtering FO co-changes is high for all three of them: respectively 12, 12 and 14.
Although the threshold always results in roughly 5% of the most co-changing files
of a project, a higher threshold might prevent more false positives.

So even though there is a significant relation between co-changes and class-level AS
in some projects, in general there appears to be no relation between class-level AS
and FO co-changes.

Chapter 5. Results 36

DTW

Project HRQ3 DTW C
0 χ-value p-value o φ -value

ArgoUML Accepted 25.52 <0.01 0.07 <0.01
Cassandra Accepted 15.72 <0.01 0.22 <0.01
Druid - - - - -
Hibernate-ORM Accepted 88.85 <0.01 0.01 <0.01
Jackson-databind Accepted 8.24 <0.01 4.78 <0.01
JUnit5 Accepted 274.76 <0.01 37.60 0.03
MyBatis-3 - - - - -
PDFBox Accepted 171.30 <0.01 7.09 0.02
PgJDBC Rejected 17240.34 <0.01 1522.98 0.36
POI Accepted 0.06 0.80 1.02 <0.01
Robolectric - - - - -
RxJava Accepted 101.89 <0.01 0.35 0.01
Sonarlint-IntelliJ - - - - -
Spring-Framework Accepted 4.14 0.04 0.35 <0.01
Swagger-Core Accepted 0.06 0.81 1.10 <0.01
TestNG - - - - -
Xerces2-j Accepted 628.35 <0.01 5.45 0.05

TABLE 5.3: Results of testing HRQ3 with co-changes reported by
DTW and class-level AS. The threshold values for the four conditions

can be found in Section 5.3.

Table 5.2 shows that for 8% of the projects the null hypothesis is rejected. For the
other projects, at least one of the conditions required for this rejection did not hold.
Interestingly, compared to the FO result, the average φ -value was lower yet only 7
out of 12 projects met the other three conditions compared to 12 out of 14 for FO
as well. However, when the co-changes reported by FO did not match a single AS,
the null hypothesis for DTW was rejected for the project PgJDBC, with an average
to large affect size. Despite this, we conclude class-level AS do not contain more
DTW co-changes as this conclusion is in line with 92% of the data.

MBA

As reported earlier, the MBA algorithm barely produced any co-changes for any of
the analyzed projects. This means there is no overlap between AS and co-changes for
this algorithm. We therefore had to accept HRQ3 MBA C

0 for all projects and concluded
that MBA co-changes do not occur more often in artefacts with class-level AS.

Chapter 5. Results 37

5.3.2 Result for Package AS
FO

Project HRQ3 FO P
0 χ-value p-value o φ -value

ArgoUML Rejected 16505.71 <0.01 8.56 0.11
Druid Accepted 515.35 <0.01 5.01 0.03
Jackson-databind - - - - -
JUnit5 Accepted 1201.97 <0.01 2.78 0.09
MyBatis-3 Accepted 29.01 <0.01 1.10 0.02
PDFBox Accepted 697.80 <0.01 56.18 0.05
PgJDBC Rejected 1472.92 <0.01 2.37 0.16
POI Accepted 2498.55 <0.01 11.20 0.07
Robolectric Rejected 33703.90 <0.01 8.85 0.19
RxJava - - - - -
Sonarlint-IntelliJ Rejected 192.27 <0.01 3.75 0.12
Swagger-Core Rejected 298.44 <0.01 3.02 0.14
TestNG Rejected 18187.27 <0.01 3.76 0.11
Xerces2-j Accepted 144.08 <0.01 0.76 0.02

TABLE 5.4: Results of testing HRQ3 with co-changes reported by FO
and package-level AS. The threshold values for the four conditions

can be found in Section 5.3.

Table 5.4 shows that HRQ3 FO P
0 was rejected for 50% of the projects. This is signif-

icantly higher than the percentage of rejections for class-level AS. For two projects,
no smells that were not co-changing were present: Jackson-databind and RxJava.
The deciding factor in the other projects was always the φ -value.

The common denominator between the projects with a significant φ appears to be
that they have a high percentage of files that is affected by AS. For some projects
this is true for over 75% of all files. In the same line, RxJava and Jackson-databind
report so many AS that it would appear that all files are affected by these, making the
χ2-test impossible to calculate for these projects.

Based on these results, it is hard to draw a decisive conclusion as to answer RQ3. 6
out of 12 projects for which the analysis could be performed are shown to be related,
some projects approach the values necessary for a relation (JUnit5 and POI) while
others are far from it (MyBatis-3, Xerces2-j and Druid). It can therefore be stated
that artefacts affected by package-level AS might contain more FO co-changes.

Chapter 5. Results 38

DTW

Project HRQ3 DTW P
0 χ-value p-value o φ -value

ArgoUML Accepted 159.23 <0.01 5.11 0.01
Druid Accepted 7885.66 <0.01 0.16 0.11
Jackson-databind - - - - -
JUnit5 Accepted 389.84 <0.01 5.62 0.05
MyBatis-3 Accepted 22.52 <0.01 2.76 0.02
PDFBox Accepted 358.28 <0.01 0.15 0.04
PgJDBC Accepted 9.07 <0.01 1.99 0.01
POI Accepted 156.94 <0.01 9.65 0.02
Robolectric Accepted 19.42 <0.01 0.63 <0.01
RxJava Accepted 136.20 <0.01 0.64 0.02
Sonarlint-IntelliJ Accepted 2.23 0.14 0.61 0.01
Swagger-Core Accepted 2.32 0.13 1.25 0.01
TestNG Accepted 267.45 <0.01 0.50 0.01
Xerces2-j Accepted 1157.93 <0.01 0.32 0.07

TABLE 5.5: Results of testing HRQ3 with co-changes reported by
DTW and package-level AS. The threshold values for the four con-

ditions can be found in Section 5.3.

Although one relation was found on class-level AS, on package-level none were
found for DTW. This can be explained by the smell and co-change ratio. As dis-
cussed for FO, some projects report an enormous amount of smelly artefacts (be-
tween 20,000 and 1,100,000). On the other hand, 10 out of 14 analyzed projects
reported around 1000 co-changing pairs, which means that the overlap in terms of
files was low. One clear exception to this rule is Druid, for which around 31,000
co-change pairs were reported, but for which the odds ratio was below 1. Gener-
ally speaking, we can conclude that artefacts affected by package-level AS are not
more likely to contain DTW co-changes.

MBA

Because no overlap was found between co-changes and package-level AS in any of
the 14 projects we accept HRQ3 MBA P

0 and conclude that MBA co-changes are not
more likely to be found in package-level smelly artefacts.

Chapter 5. Results 39

5.3.3 Result for Class and Package AS
FO

Project HRQ3 FO CP
0 χ-value p-value o φ -value

ArgoUML Rejected 55067.14 <0.01 3.75 0.14
Druid Accepted 399.77 <0.01 0.10 0.02
Jackson-databind Accepted 1133.84 <0.01 6.33 0.09
JUnit5 Rejected 4073.88 <0.01 5.65 0.11
MyBatis-3 Rejected 1237.40 <0.01 1.79 0.14
PDFBox Accepted 1708.49 <0.01 18.53 0.07
PgJDBC Rejected 4431.60 <0.01 3.61 0.18
POI Accepted 5336.27 <0.01 12.37 0.09
Robolectric Rejected 71237.67 <0.01 10.85 0.20
RxJava Accepted 2833.66 <0.01 0.20 0.06
Sonarlint-IntelliJ Rejected 883.96 <0.01 6.11 0.17
Swagger-Core Rejected 2944.03 <0.01 12.44 0.24
TestNG Accepted 12252.85 <0.01 2.65 0.08
Xerces2-j Accepted 8.40 <0.01 0.94 <0.01

TABLE 5.6: Results of testing HRQ3 with co-changes reported by
DTW and all AS. The threshold values for the four conditions can

be found in Section 5.3.

When considering both types of smells, 50% of the analyzed project passed all four
conditions that needed to be met in order to reject HRQ3 FO CP

0 . Furthermore, an extra
28% came close to the required φ -value and passed the remaining three conditions.
Two projects stand out due to their relatively low φ -value: Xerces2-j and Druid,
two projects of respectively average and large size. The results did not show a clear
reason as to why the relation between AS and FO co-changes was so much weaker
than for other projects. Since these two represented a mere 14% of the data, however,
it is likely there exists a relationship between AS and FO co-changes.

Chapter 5. Results 40

DTW

Project HRQ3 DTW CP
0 χ-value p-value o φ -value

ArgoUML Accepted 5655.45 <0.01 0.15 0.04
Druid Accepted 42.54 <0.01 1.42 <0.01
Jackson-databind Accepted 620.30 <0.01 0.05 0.07
JUnit5 Accepted 86.55 <0.01 2.19 0.02
MyBatis-3 Accepted 28.94 <0.01 2.82 0.02
PDFBox Accepted 106.66 <0.01 0.34 0.02
PgJDBC Accepted 121.88 <0.01 4.13 0.03
POI Accepted 340.64 <0.01 0.42 0.02
Robolectric Accepted 41.38 <0.01 0.55 <0.01
RxJava Rejected 26641.13 <0.01 5.76 0.17
Sonarlint-IntelliJ Accepted <0.01 0.96 1.02 <0.01
Swagger-Core Accepted 6.83 <0.01 1.33 0.01
TestNG Accepted 15129.81 <0.01 0.04 0.09
Xerces2-j Accepted 830.31 <0.01 0.39 0.06

TABLE 5.7: Results of testing HRQ3 with co-changes reported by
DTW and all AS. The threshold values for the four conditions can

be found in Section 5.3.

When relating DTW co-changes to AS of both levels, the results in Table 5.7 demon-
strate that HRQ3 DTW CP

0 was rejected for only one project (7%). For most other
projects, the null hypothesis was accepted with a low (< 0.05) φ -value and low
odds-ratio (< 1). This implies that there is no increased chance of co-changing
in artefacts affected by AS, considering DTW co-changes.

MBA

Although there was enough data to perform the χ2-test for 2 projects (PgJDBC and
Swagger-Core) both tests failed all four conditions and these results therefore were
left out of this section. The other projects again did not contain any overlap between
co-changes and AS, hence we accept HRQ3 MBA CP

0 .

5.3.4 Summary
This section presents a summary of the results presented in the previous sections.

Chapter 5. Results 41

FIGURE 5.9: Percentages of projects for which at least one relation
between smells and co-changes was found.

Figure 5.9 shows the amount of projects that are somehow related related to AS. In
65% of the analyzed projects, certain co-changes are more often found in cer-
tain smelly artefacts. However, the nature of this relationship varies per project. For
most of these relationships, package-level smells are the major correlator. However,
for certain smaller projects only class-level AS contain more co-changes. Most rela-
tions were found between FO co-changes and AS. DTW co-changes are only related
to AS in 18% of all cases. No relation was found between MBA co-changes and AS.

5.4 RQ4 - Are smells introduced before or after files
start co-changing?

FIGURE 5.10: FO Results for projects with a large amount of over-
lapping file pairs.

Chapter 5. Results 42

FIGURE 5.11: FO Results for projects with a smaller amount of over-
lapping file pairs.

FIGURE 5.12: DTW Results for projects with a large amount of over-
lapping file pairs.

FIGURE 5.13: DTW Results for projects with a smaller amount of
overlapping file pairs.

Figures 5.10, 5.11, 5.12, 5.13 show the results collected for RQ4. They demonstrate
the amount of file pairs per project in case of which the smell was introduced before
they started co-changing (earlier smell), for how many this was not the case (Earlier

Chapter 5. Results 43

co-change) and finally for how many they were introduced at the same time (Tied
smells and co-changes).

The results for RQ4a and RQ4b are straightforward: for 100% of the tested projects
and algorithms, RQ4a0 was accepted, whereas RQ4b0 was rejected for 100% of the
analyzed projects and algorithms. All p-values were minimal (<< 0.01), regard-
less of which project and algorithm was considered. As shown by the figures, the
difference between the two counts is significant: nearly all projects featured multi-
tudes more earlier co-changes than smells. The amount of ties was always signifi-
cantly lower than the amount the earlier co-changes, although it was higher than the
amount of earlier smells for certain specific projects and algorithms (e.g. PgJDBC
using DTW and JUnit5 using FO). One result stands out: RxJava using DTW, which
contained 654 earlier smells and 961 earlier co-changes. For the exact numbers per
project and algorithm, please refer to Appendix A.

The results for MBA are not included in this chapter. The reason for this is, once
again, the minuscule amount of reported co-changes. For four projects, results were
gathered in the first place, but after examining the data more closely these were
deemed meaningless.

44

Chapter 6

Discussion

This chapter discusses and interprets the results presented in Chapter 5 in more detail.

Comparing Co-change Detection Algorithms

The results obtained from RQ1 show a clear distinction between the co-change min-
ing algorithms. Although related research has already applied the MBA and DTW
algorithms for mining co-changes [47, 32, 9, 24], this study provides the first compar-
ison of them with respect to mining co-changes. Furthermore, they were compared
to a new algorithm, FO, which was specifically developed for this research.

Given that the co-changes in each of the three approaches barely overlapped (only
incidentally above 5%) and that the reported co-change density also radically differed
over time, it is implied that the choice of co-change mining algorithm highly impacts
which co-changes are reported. The quality of the reported co-changes is hard to
determine, so it is premature to express a value judgment regarding which algorithm
would be preferred over the others.

Besides comparing output, the results of RQ1 gave insight in the configuration of
the different algorithms. As repeatedly mentioned before, MBA offered no real re-
sults to speak of. This implies that the suggested configuration of Bavota et al. [8]
(confidence ≥ 80%, support ≥ 2%) is not suitable for samples as large as the ones
used in this case study. In general, the two thresholds given are too strict to make
it possible to report co-changes. Which rule is the limiting factor depends on each
project individually. Some projects contain many small commits, making the support
the bottleneck (this is also suggested by Bavota et al.). For other projects, files are
modified frequently but not relevantly. Frequently fixing typos or code style in sin-
gular files requires a lower confidence. The takeaway here is that different projects
require different configurations.

The configuration of DTW also requires more attention if it is applied to co-change
mining. This is implied by the results of RQ1, specifically Figure 5.2. This figure
demonstrates large differences in certain projects’ co-changes over time that were
reported by DTW, which can likely be attributed to the configuration.

The threshold used by DTW is fixed for all projects, even though their histories take
different shapes. Although DTW normalizes for the amount of steps (commits), it
does not for the average distance (time) between commits. Concretely, this means
that different projects require different DTW thresholds. Bouktif et al. [9] fine-tuned

Chapter 6. Discussion 45

the threshold for a specific project and our data suggests project-specific fine-tuning
is indeed required. Moving on to how these different co-changes relate to AS, in the
past other research has already related co-changes to different kinds of CPI, but not
to AS. The data collected for this research has shown that a correlation between AS
and co-changes likely exists, but that it is only small in effect.

Overlap Between Architectural Smells and Co-changes

This can be concluded from the results of RQ2 and RQ3. RQ2 served as an ex-
ploration for RQ3 in that it indicated the overlap between AS and co-changes of
different algorithms; for FO, between 5 and 15% of smelly pairs was also found to
be co-changing and for DTW around 1%. This indicates that FO co-changes are
more strongly related to AS, when compared to DTW or MBA, the latter of which did
not yield enough co-changes.

Besides reestablishing the clear difference in co-change algorithms, these results
shed light on co-changing among smelly pairs: smelly pairs are occasionally co-
changing. However, this does not imply any relationship between the two, since the
percentage should be compared to the overlap of non-smelly pairs as explored in
RQ3.

These results do require an important side note. The difference in overlap between
the different smell-scopes shows that the mapping between package-level smells and
file pairs requires more fine-tuning. For class-level smells, the overlap is three times
higher than for package-level smells. This might be connected to the fact that all file
pair combinations in a package are marked as smelly when, for example, a package-
level’s cyclic dependency only effects a few files in the relevant packages. When
only the actually affected files in a package are considered smelly, this drastically
decreases the amount of smelly pairs per project. Of course this does not guarantee
more overlap, but it might result in more realistic data.

Earlier research established a relationship between some CPI and change-proneness
[25, 26] and our research continues to explore this by looking for a correlation be-
tween AS and co-changes. The results of RQ3 show that in a significant percentage
(50%) of projects a correlation exists between FO co-changes and AS. However, the
effect size is rather small, but that may well be attributed to the large amount of
package pairs, which heavily impacts the φ -value.

One implication of these results is that AS only partially answer the question regard-
ing the origin of co-changes. This follows from the small effect size of the reported
relationships between AS and co-changes and from the lack of relationships in some
projects. In certain projects, AS might play a big role in co-changing, but in oth-
ers it could be a different CPI: Knomh et al. have shown that artefacts containing
code smells[25] and anti-patterns[26] are more likely to change, indicating these CPI
could also be related to co-changing. Such other potential causes of co-changing
might explain why no relationship with AS was found for certain projects in this
research.

A second implication of these results is that AS results in higher maintenance effort
for a software project. AS are considered an example of TD and as long as they

Chapter 6. Discussion 46

are not resolved, TD interest is being paid. This research shows that co-changes are
one manifestation of this interest being paid, as smelly artefacts were found to co-
change more often when compared to artefacts unaffected by AS. When files are co-
changing, it implies that changing one file, often requires changing the other as well,
which means more work has to be done. This demonstrates the potential increase in
maintenance effort AS can bring.

Co-changes Before Architectural Smells

The goal of RQ4 was to look for a temporal connection between AS and co-changes,
i.e. to see if one tends to precede the other. Such a connection was indeed reported
by the data, but although the results appear straightforward, we refrain from drawing
conclusions from them.

The major caveat here, which is why we do not draw conclusions, is found in deter-
mining the beginning of the time ranges of co-changes. While AS are clearly defined
structures that can either be present or not, co-changes are not as well defined. Even
if it is known when two files change together, it is still not known if this happens
because of chance or because of some (hidden) internal dependency. Without look-
ing at the internal structure of two changes, we cannot know whether a co-change
is merely a coincidence. For all three algorithms used in this research, the first over-
lapping change of the two files was chosen as the start date of the co-change. This
is the best the algorithms can do without looking at the internal change, but there is
no guarantee this is correct. It could be that the two files were just added in the same
commit. One coincidental overlapping change early in a project’s history is enough
for a pair to ’start co-changing’ before it is affected by a smell, rendering the results
of RQ4 potentially unreliable.

If the results are correct in the sense that co-changing indeed precedes AS, this would
present some interesting implications. Since co-changing is typically a symptom of
a CPI, it might be the case that a lower-level CPI precedes a higher-level AS, yet still
generates the result of files co-changing, which would imply a shared cause. Another
possibility is that co-changes themselves cause AS. If three artefacts always change
together, it might feel intuitive and harmless to introduce a cyclic dependency or
some other form of coupling among them, since a relationship already exists. Such
implications, however, would require more research.

Although there is still much uncertainty regarding the relationship between AS and
co-changes, the results of this research demonstrate that a link between them cer-
tainly exists and that smelliness in artefacts increases the chance of co-changing.
This implies that there are indeed negative consequences to introducing TD (in the
form of AS) with regards to maintainability. Moreover, the results show that co-
changing can be an indication of future AS. Untangling co-changing files in time
might therefore avoid the introduction of extra TD.

47

Chapter 7

Study Limitations

In this section, the limitations and threats to validity of the study are discussed as
described by Runeson et al. [36]. These are split up in terms of reliability, external
validity and construct validity. As we did not look at causal relationships, internal
validity is not relevant to this study [36].

7.1 Construct Validity
Construct validity reflects to what extend the study measures what it is claiming to
be measuring and what is being investigated according to the research questions. To
ensure construct validity, we adopted the case study design guidelines by Runeson
et al. [36], and improved the study in iterations during the process. This way, the
data collection and analysis was planned out in advance in order to closely match the
research questions.

However, we did identify certain threats to the construct validity. The first can be
found in the detection of file changes. CoCo is capable of detecting file additions,
moves and modifications. However, it is not capable of detecting when a file is
deleted. This means that certain changes will not be detected by the application,
which equally impacts the number of co-changes detected by all three algorithms.
The impact of this threat is mitigated by its very nature. Deletes are rare compared
to modifications, meaning that their impact on the co-change detection is relatively
small. In addition, a deleted file can never change afterwards, reducing the chance
that it will become a part of a co-changing pair.

Secondly, the choice of having ASTracker analyze each day instead of each commit
separately could mean that information from certain other commits on the same day
is lost. However, as ASTracker is only used to detect architectural smells, we con-
sider the likelihood of this threat having impact on the results small. This is because
architectural smells are unlikely to appear and disappear within the same day. There-
fore, ASTracker will most likely correctly pick up all architectural smells, with only
a small loss in accuracy as to when exactly the smell starts and stops appearing.

The third threat is found when co-changing files and files affected by an architectural
smell are matched (i.e. finding OP). This match is performed based on the filename
only, with no regards to package or directory. In order to prevent duplicates, only
unique file pairs are kept. Therefore, if files with the same name exist within different

Chapter 7. Study Limitations 48

locations, information will be lost. However, this information is only lost if the
equally named files co-change with the same files, as the duplicate pairs will then
be filtered. If they co-changed with different files, no information would be lost.
Duplicate filenames appear to be rare and in the projects selected in this study, they
were only found in the Sonarlint project.

The next threat is related to the mapping of architectural smells to file pairs. For
class-level smells, the overlap is three times higher than for package-level smells.
This can be caused when all file pair combinations in a package are marked as smelly,
even though, for example, a package-level cyclic dependency only affects a few files
in the relevant packages. The current approach is not indisputably wrong, as some
package-level smells do affect all files in the package, but further research into the
correct way of converting package-level smells to file pairs is needed.

In the current study design, the co-change threshold (see Subsection 3.4.1) is set to
the 95th percentile. Using a consistent percentage means that we ignore differences
between projects, as a different percentile could be needed for different projects. The
current static percentile is not a great threat in and by itself, but it could cost us some
nuances in the results that could be of interest. However, the fact that the percentile
is calculated per project instead of once for all projects mitigates some problems.

The start and end dates of a co-change also pose a possible threat. These dates are
set to the first and last moment when the pair (co-)changes. However, this ignores
the content of these changes and the distances between co-changes. Due to this, the
date ranges can easily become enormous, possibly skewing the results, which can
nevertheless be partially mitigated if the threshold percentile filters out file pairs that
do not change often enough.

The final threat to construct validity is found in the implementation of the FO al-
gorithm. The comparison and the results depend on the algorithm being correctly
implemented. In order to guarantee that our implementation is close to optimal, we
have developed system and unit tests to verify the results produced by CoCo1. Man-
ual verification of detected outliers was also performed to verify correctness.
However, even that comes with its own footnotes. As mentioned in Chapter 6, we
have no way of verifying the quality of the reported co-changes, as co-changes lack
a clear definition. This makes it challenging to express a value judgment with regard
to the output of the analyzed algorithms, without further in-depth research.

7.2 External Validity
External validity is a reflection of how well the results of this study can be extended
to other projects, given a similar context.

A few possible threats can be identified. The first involves the choice of projects.
All are open source projects, which means that the results can only be generalized
to other open source projects, and not necessarily to other kinds of projects. In ad-
dition, 5 out of 17 projects are owned by the Apache Foundation, which impacts the
generalization of results to other authors. We have, however, made sure to mitigate

1https://github.com/RonaldKruizinga/CoChangeDetectTest

https://github.com/RonaldKruizinga/CoChangeDetectTest

Chapter 7. Study Limitations 49

this by choosing projects from various domains, from which we identified 5 specific
domains, each with a similar number of projects.
The second threat is related to the size of projects. Care was taken to choose projects
with various repository sizes and commit histories of varying lengths. However,
the larger projects with longer histories, such as Cassandra, Hibernate and Spring
proved too large to analyze with the current application and hardware, due to which
only RQ1 and parts of RQ2 and RQ3 could be answered for these projects. There-
fore, the results of the other research questions cannot be generalized to these large
projects with long histories.
The third threat is regarding the specific architectural smells that were chosen to an-
alyze. It is incredibly difficult, if not impossible, to generalize the results unto other
architectural smells as the results greatly depend on the type of smell and its detec-
tion strategy.

7.3 Reliability
Reliability concerns the extent to which the data collected and the analysis performed
are dependent on the specific researchers.

All tools and scripts used for this study are freely available. Hyperparameters for
all projects analyzed are also available in Appendix B. This allows researchers to
replicate results using the same data and parameters, and to run the same analysis on
a different set of projects.
Intermediate findings and data analysis steps were inspected and discussed by the
thesis authors and discussed on a weekly basis with the thesis supervisor in order to
ensure reliability.

In addition, similar data collection and analysis techniques have been used in previ-
ous studies on architectural smells [38] and co-change detection [8, 9], assuring that
such an approach to the analysis of these artefacts is possible.

50

Chapter 8

Conclusion

This research has intensively investigated co-changes and their relation to architec-
tural smells (AS). A case study was set up analyzing 17 open source projects and
an accumulated 20,000 changesets (commits), capturing decades of software change
history. From this dataset, file pairs were mined that changed synchronously: co-
changes. Three different algorithms were used for this: two state-of-the-art ap-
proaches (Dynamic Time Warp and Market Basket Analysis) and a new algorithm
that intends to combine the best of the two worlds: Fuzzy Overlap (FO).

This new FO algorithm was implemented in CoCo, a publicly available application
that reports changes and co-changes in Git projects. This data was combined with
AS information generated by two other tools: Arcan and ASTracker.

This dataset was then explored and statistically analyzed from several perspectives.
The results of this elaborate analysis yielded the first comparison of co-change min-
ing approaches (1), showing that the algorithms report highly diverse co-changes and
that their configuration is paramount to getting the right data.

The results have also shown that co-changes are found more often in certain smelly
artefacts (2), indicating that AS increases maintenance effort in certain projects. The
temporal relationship between AS and co-changes was also investigated (3) but, al-
though the findings appeared unanimous, no conclusions could be drawn from this
due to the still complex nature of co-changes.

The complexity of co-changes and their underlying causes introduced challenges dur-
ing the study and certain remarks are still required to be made regarding the methods
and results. Package-level AS has turned out to be challenging to properly relate to
co-changes and the influence of the chosen algorithm configurations remains ques-
tionable.

After all, however, this research has still given a broad overview of co-changes and
how to mine them and has found that, in extension to lower-level smells, AS are in
fact related to co-changes.

Chapter 8. Conclusion 51

8.1 Future Work
For future research, several improvements to this study could be made. The threats
to validity discussed in Chapter 7 should be tackled by, for example, further research
into the proper co-change threshold and the best way to map package-level AS to file
pairs.

To improve on the FO algorithm, the relationship between several commit and project
attributes should be investigated. In particular, co-change detection could take into
account the author of a commit, since commits from different authors could be less
likely to be part of a co-change. The size of a file could also be taken into account
when looking at co-changes, since a file with more lines of code could be more likely
to change in general, impacting how often it gets reported in a co-changing pair.
A possible relationship with the domain of a project would also be interesting to look
into. Different domains could have a different change patterns and thus require dif-
ferent hyperparameters.
A final thing to look into for the purpose of improving FO is the existence of exceed-
ingly large commits. Most projects have a commit in which most, if not all, files are
moved to a different directory. This happens, for example, when a major release is
completed or a major refactoring is done. This causes all files to change together with
every other file, which has a large impact on the start and end dates of a co-change.
It would be interesting to investigate whether these should be excluded from the file
history, similar to merge commits.

Further research into proper thresholds for the MBA and DTW algorithms could
also prove useful. Choosing the right thresholds for those algorithms could be done
dependent on the project to be analyzed.

More work could also be done regarding the architectural smells analyzed. Only 3
types are currently reported by ASTracker, yet many more exist. Analyzing more
smells could offer more insight in the relationship between AS and co-changes.
Similarly, more projects should be analyzed in order to increase the sample size. It
has become clear that there exist large differences between certain projects, due to
which some interesting insights could surface when more projects are analyzed. In
order to properly support this hypothesis, the analysis should be improved as to no
longer be limited due to memory constraints.

Finally, RQ4 implies that CC and AS could share a common cause, since for all
projects it held that CC precede AS. This could prove an interesting topic for further
research into the origins of both CC and AS.

52

Appendix A

RQ4 Results

This appendix contains the tabulated data collected for Section 5.4.

A.1 RQ4a Results

A.1.1 FO

Project H0 Smell < CC Smell ≥ CC p-value
Druid Accepted 8 166 <<0.01
Jackson-databind Accepted 450 11718 <<0.01
JUnit5 Accepted 58 276 <<0.01
MyBatis-3 Accepted 600 12158 <<0.01
PgJDBC Accepted 87 446 <<0.01
RxJava Accepted 173 1502 <<0.01
Sonarlint-IntelliJ Accepted 139 595 <<0.01
Swagger-Core Accepted 29 391 <<0.01
TestNG Accepted 850 5360 <<0.01
Xerces2-j Accepted 565 33285 <<0.01

A.1.2 DTW

Project H0 DTW earlier smell pairs DTW cc or tied DTW p smell first
Druid Accepted 18 193 <<0.01
Jackson-databind Accepted 82 1344 <<0.01
JUnit5 Accepted 15 131 <<0.01
MyBatis-3 Accepted 148 11637 <<0.01
PgJDBC Accepted 25 1099 <<0.01
RxJava Accepted 654 964 <<0.01
Sonarlint-IntelliJ Accepted 47 381 <<0.01
Swagger-Core Accepted 0 146 <<0.01
TestNG Accepted 198 3983 <<0.01
Xerces2-j Accepted 264 23851 <<0.01

Appendix A. RQ4 Results 53

A.1.3 MBA

Project H0 MBA earlier smell pairs MBA cc or tied MBA p smell first
Druid - - - -
Jackson-databind - - - -
JUnit5 Accepted 0 7 0.016
MyBatis-3 - - - -
PgJDBC Accepted 0 165 <<0.01
RxJava - - - -
Sonarlint-IntelliJ Accepted 3 249 <<0.01
Swagger-Core Accepted 0 125 <<0.01
TestNG - - - -
Xerces2-j - - - -

A.2 RQ4b Results

A.2.1 FO

Project H0 FO earlier ccs pairs FO smell or tied FO p cc first
Druid Rejected 166 8 <<0.01
Jackson-databind Rejected 11533 635 <<0.01
JUnit5 Rejected 198 136 <<0.01
MyBatis-3 Rejected 11922 836 <<0.01
PgJDBC Rejected 422 111 <<0.01
RxJava Rejected 1453 222 <<0.01
Sonarlint-IntelliJ Rejected 499 235 <<0.01
Swagger-Core Rejected 378 42 <<0.01
TestNG Rejected 4882 1328 <<0.01
Xerces2-j Rejected 31681 2169 <<0.01

A.2.2 DTW

Project H0 DTW earlier ccs pairs DTW smell or tied DTW p cc first
Druid Rejected 193 18 <<0.01
Jackson-databind Rejected 1310 116 <<0.01
JUnit5 Rejected 123 23 <<0.01
MyBatis-3 Rejected 11633 152 <<0.01
PgJDBC Rejected 1024 100 <<0.01
RxJava Rejected 961 657 <<0.01
Sonarlint-IntelliJ Rejected 371 57 <<0.01
Swagger-Core Rejected 146 0 <<0.01
TestNG Rejected 3911 270 <<0.01
Xerces2-j Rejected 23238 877 <<0.01

Appendix A. RQ4 Results 54

A.2.3 MBA

Project H0 MBA earlier ccs pairs MBA smell or tied MBA p cc first
Druid - - - -
Jackson-databind - - - -
JUnit5 Rejected 7 0 0.016
MyBatis-3 - - - -
PgJDBC Rejected 165 0
RxJava - - - -
Sonarlint-IntelliJ Rejected 244 8 <<0.01
Swagger-Core Rejected 125 0 <<0.01
TestNG - - - -
Xerces2-j - - - - <<0.01

55

Appendix B

Hyperparameter Analysis Results

Project Startdate1 Co-change
Threshold

Total number
of commits to
analyze

Commits
Analyzed2

Time between
commits
in hours

Commits
between
commits

ArgoUML 17/09/2004 6 12000 1661 5 6
Cassandra 14/08/2014 15 11000 2089 2 9
Druid 02/01/2013 4 10000 1591 6 6
Hibernate 27/02/2013 33 6000 2142 8 5
Jackson 18/07/2012 14 6000 1173 10 5
JUnit5 31/10/2015 16 6039 884 3 6
MyBatis-3 10/05/2010 5 3339 992 22 3
PDFBox 13/10/2011 6 8000 1652 11 4
PgJDBC 16/05/2001 9 2538 1048 65 3
POI 20/05/2011 4 6000 1322 14 4
Robolectric 06/01/2015 14 5796 979 6 5
RxJava 10/04/2012 7 5734 1231 7 5
Sonarlint 30/10/2013 12 1200 290 20 4
Spring 12/04/2015 5 10743 1250 4 7
Swagger 28/07/2011 12 4000 884 12 4
TestNG 30/07/2006 4 5000 1001 19 4
Xerces2-j 22/01/2004 4 2000 860 15 4

TABLE B.1: Result of the hyperparameter analysis for all projects.

1All projects have an enddate of 14/05/2020.
2Note that this is always less than the total number of commits, since ASTracker only analyzes

one commit per day.
3For this project the 96th percentile was taken, as the 95th percentile was the same as the 85th,

which would cover too much of the data.

56

Bibliography

[1] N. Ajienka, A. Capiluppi, and S. Counsell. An empirical study on the inter-
play between semantic coupling and co-change of software classes. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pages 432–432, May 2018.

[2] F. Arcelli Fontana, P. Avgeriou, I. Pigazzini, and R. Roveda. A study on ar-
chitectural smells prediction. In 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 333–337, 2019.

[3] F. Arcelli Fontana and S. Maggioni. Metrics and antipatterns for software qual-
ity evaluation. In 2011 IEEE 34th Software Engineering Workshop, pages 48–
56, 2011.

[4] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni, and E. Di
Nitto. Arcan: A tool for architectural smells detection. In 2017 IEEE In-
ternational Conference on Software Architecture Workshops (ICSAW), pages
282–285, 2017.

[5] F. Arcelli Fontana, I. Pigazzini, R. Roveda, and M. Zanoni. Automatic detection
of instability architectural smells. In 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 433–437, 2016.

[6] U. Azadi, F. Arcelli Fontana, and D. Taibi. Architectural smells detected by
tools: a catalogue proposal. In 2019 IEEE/ACM International Conference on
Technical Debt (TechDebt), pages 88–97, 2019.

[7] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your version control system
could talk... In ICSE Workshop on Process Modelling and Empirical Studies of
Software Engineering, volume 11, 1997.

[8] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia.
An empirical study on the developers’ perception of software coupling. In
2013 35th International Conference on Software Engineering (ICSE), pages
692–701, 2013.

[9] A. Bouktif, Y. Gueheneuc, and G. Antoniol. Extracting change-patterns from
CVS repositories. In 2006 13th Working Conference on Reverse Engineering,
pages 221–230, 10 2006.

[10] W. J. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray. AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley
& Sons, Inc., USA, 1st edition, 1998.

BIBLIOGRAPHY 57

[11] T. Z. C. Bird, T. Menzies. The Art and Science of Analyzing Software Data.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2015.

[12] W. Cunningham. The WyCash portfolio management system. In Addendum
to the Proceedings on Object-Oriented Programming Systems, Languages, and
Applications (Addendum), OOPSLA ’92, page 29–30, New York, NY, USA,
1992. Association for Computing Machinery.

[13] B. Curtis, J. Sappidi, and A. Szynkarski. Estimating the size, cost, and types of
technical debt. In 2012 Third International Workshop on Managing Technical
Debt (MTD), pages 49–53, 2012.

[14] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., USA, 2002.

[15] M. Fowler. Refactoring: Improving the design of existing code. In D. Wells
and L. Williams, editors, Extreme Programming and Agile Methods — XP/Ag-
ile Universe 2002, pages 256–256, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[16] M. Fowler. Codesmell. https://martinfowler.com/bliki/CodeSmell.html, 2006.
Last accessed on 2020-07-03.

[17] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for detecting
logical couplings. In Sixth International Workshop on Principles of Software
Evolution, 2003. Proceedings., pages 13–23, Sep. 2003.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing
Co., Inc., USA, 1995.

[19] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Identifying architec-
tural bad smells. In 2009 13th European Conference on Software Maintenance
and Reengineering, pages 255–258, 2009.

[20] A. E. Hassan. Predicting faults using the complexity of code changes. In 2009
IEEE 31st International Conference on Software Engineering, pages 78–88,
2009.

[21] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien. Detecting antipatterns in
android apps. In 2015 2nd ACM International Conference on Mobile Software
Engineering and Systems, pages 148–149, 2015.

[22] IEEE. Standard for a software quality metrics methodology. IEEE Std 1061-
1992, pages 1–96, 1993.

[23] ISO, IEC, and IEEE. International standard - systems and software engineering
– vocabulary. ISO/IEC/IEEE 24765:2010(E), pages 1–418, 2010.

[24] F. Jaafar, Y. Gueheneuc, S. Hamel, and G. Antoniol. An exploratory study of
macro co-changes. In 2011 18th Working Conference on Reverse Engineering,
pages 325–334, 2011.

https://martinfowler.com/bliki/CodeSmell.html

BIBLIOGRAPHY 58

[25] F. Khomh, M. Di Penta, and Y. Gueheneuc. An exploratory study of the impact
of code smells on software change-proneness. In 2009 16th Working Confer-
ence on Reverse Engineering, pages 75–84, Oct 2009.

[26] F. Khomh, M. Di Penta, Y. Gueheneuc, and G. Antoniol. An exploratory study
of the impact of antipatterns on class change- and fault-proneness. Empirical
Software Engineering, 17(3):243–275, Jun 2012.

[27] C. Larman. Applying UML and Patterns – An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall PTR, 2004.

[28] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic. Relating architectural
decay and sustainability of software systems. In 2016 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pages 178–181, 2016.

[29] M. Lippert and S. Roock. Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully. John Wiley & Sons, 2006.

[30] R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The formal def-
inition and automatic detection of architecture smells. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture, pages 51–60, 2015.

[31] A. Mockus and L. G. Votta. Identifying reasons for software changes using
historic databases. In Proceedings 2000 International Conference on Software
Maintenance, pages 120–130, 2000.

[32] M. Mondal, C. K. Roy, and K. A. Schneider. Insight into a method co-change
pattern to identify highly coupled methods: An empirical study. In 2013 21st
International Conference on Program Comprehension (ICPC), pages 103–112,
2013.

[33] M. Mondal, C. K. Roy, and K. A. Schneider. A fine-grained analysis on the
evolutionary coupling of cloned code. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 51–60, 2014.

[34] M. Nayrolles, N. Moha, and P. Valtchev. Improving SOA antipatterns detection
in service based systems by mining execution traces. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages 321–330, 2013.

[35] R. Robbes, D. Pollet, and M. Lanza. Logical coupling based on fine-grained
change information. In 2008 15th Working Conference on Reverse Engineering,
pages 42–46, Oct 2008.

[36] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study Research in Soft-
ware Engineering: Guidelines and Examples. Wiley Publishing, 1st edition,
2012.

[37] D. Sas, P. Avgeriou, and F. Arcelli Fontana. Investigating instability architec-
tural smells evolution: An exploratory case study. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 557–567,
2019.

[38] D. Sas, P. Avgeriou, I. Pigazzini, and F. Arcelli Fontana. (under review) on the
relation between architectural smells and source code changes. In TechDebt

BIBLIOGRAPHY 59

2020: Proceedings of the Third International Conference on Technical Debt,
2020.

[39] D. J. Sheskin. Handbook of PARAMETRIC and NONPARAMETRIC STATIS-
TICAL PROCEDURES. CHAPMAN & HALL/CRC, 2000.

[40] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan. High-impact
defects: A study of breakage and surprise defects. In SIGSOFT/FSE 2011 -
Proceedings of the 19th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 300–310, 09 2011.

[41] I. Sommerville. Software Engineering. Pearson, 10th edition, 2016.

[42] H. van Vliet. Software engineering: principles and practice, volume 13. John
Wiley & Sons, 2008.

[43] B. F. Webster. Pitfalls of object-oriented development. M & T Books, 1995.

[44] P. Weißgerber, M. Pohl, and M. Burch. Visual data mining in software archives
to detect how developers work together. In Fourth International Workshop
on Mining Software Repositories (MSR’07:ICSE Workshops 2007), pages 9–
9, 2007.

[45] Z. Zhang, P. Tang, L. Huo, and Z. Zhou. MODIS NDVI time series clustering
under dynamic time warping. International Journal of Wavelets, Multiresolu-
tion and Information Processing, 12(05), 2014.

[46] T. Zimmermann and P. Weißgerber. Preprocessing CVS data for fine-grained
analysis. In MSR, volume 4, pages 2–6, Los Alamitos CA, 2004. IEEE Press.

[47] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version histo-
ries to guide software changes. In Proceedings of the 26th International Con-
ference on Software Engineering, ICSE ’04, page 563–572, USA, 2004. IEEE
Computer Society.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Technical Debt
	Software systems evolution
	Version Control Systems
	Co-changes

	Goals & Motivation
	Approach
	Outline

	Related Work
	Background
	VCS
	Co-changes
	Architectural Smells

	Research Methodology
	Case Study Design
	Goal and Research Questions
	Analyzed Projects
	Approaches to detect co-changes
	Fuzzy Overlap
	Hyperparameters
	Commit Distance
	Time Distance
	Time Range
	Match Threshold

	Market Basket Analysis
	Dynamic Time Warping

	Data Collection
	Architectural smells
	Smell-scopes
	Smell-affected pairs

	File Changes
	Co-changes
	Fuzzy Overlap
	Market Basket Analysis
	Dynamic Time Warping

	Overlapping pairs

	Data Analysis
	RQ1 - What are the differences between the three co-change detection algorithms FO, MBA, DTW?
	RQ2 - Are artefacts affected by architectural smells co-changing?
	RQ3 - Are co-changes more often found in smelly artefacts?
	RQ4 - Are smells introduced before or after files start co-changing?

	Results
	RQ1 - What are the differences between the three co-change detection algorithms FO, MBA, DTW?
	Overlap
	Co-changes over time

	RQ2 - Are artefacts affected by architectural smells co-changing?
	Results for Class AS
	FO
	DTW

	Results for Package AS
	FO
	DTW

	Results for Class and Package AS
	FO
	DTW

	RQ3 - Are co-changes more often found in smelly artefacts?
	Result for Class AS
	FO
	DTW
	MBA

	Result for Package AS
	FO
	DTW
	MBA

	Result for Class and Package AS
	FO
	DTW
	MBA

	Summary

	RQ4 - Are smells introduced before or after files start co-changing?

	Discussion
	Study Limitations
	Construct Validity
	External Validity
	Reliability

	Conclusion
	Future Work

	RQ4 Results
	RQ4a Results
	FO
	DTW
	MBA

	RQ4b Results
	FO
	DTW
	MBA

	Hyperparameter Analysis Results
	Bibliography

