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Abstract

This paper will discuss billiard systems, especially elliptical ones, with the
main focus on finding the mean minimal action function α of these systems.
This function plays a crucial role in understanding different rigidity phenom-
ena that appear in the study of convex billiards and is also widely used in
Aubrey-Mather theory. Billiard systems in general will be discussed before
deriving the α function. These results will then be illustrated using an exam-
ple of circular billiards. Then the elliptical billiard systems will be discussed
in detail, the mean minimal action α will be derived and results will be com-
pared with the circular billiards. Furthermore, chaotic micro-lasers will be
covered, what they are, and how they are related to billiard systems.
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1 Introduction

Billiard systems are a well-known subject in the area of physics and mathematics.
They are dynamical systems in which a particle switches between free motion and
reflections from a boundary. This concept can be used for quantum systems, as
well as classical systems, and for studying the classical limit of quantum mechanics
using semi-classical tools. These systems can capture the complexity of Hamilto-
nian systems without integrating the equations of motion and can be used to model
real-world systems.

In this paper, billiard systems will be discussed, with the main goal to determine
the mean minimal action function α in the case of an elliptical billiard system.

The first part of the paper will start by explaining the general notion of billiard
systems. Then the existence of so-called caustics in these systems will be discussed.
Then the mean minimal action function α will be introduced and be discussed in
some detail. To give some idea about these parts, an example of a circular billiard
will be given.

The second part of the paper will be covering the derivation of the mean mini-
mal action function α for the case of the elliptical billiard system. This will be done
by first introducing the billiard family, denoting the Hamiltonian of the system, and
use this to find the actions and winding number. Then these results will be used to
derive α and it will be compared to the circular case.

The last part of the paper will be about an application of the results from the
first two parts. It will cover the so-called chaotic micro-lasers. First, it will be
explained what they are and where they are used. Then the physics of the chaotic
micro-lasers will be discussed in detail, and the connection to the billiard systems
will be looked at.
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2 Billiards Systems

Before looking for the mean minimal action in a billiard system, first billiard systems
need to be discussed in general. A billiard system is a dynamical system in which
a particle alternates between free motion and specular reflections from a boundary.
These billiard systems are Hamiltonian idealizations of the game of billiards, but
the region contained by the boundary can have shapes other than rectangular, like
circular and elliptical, and they can even be multidimensional.

The motion of a particle in billiard systems can be seen as a straight line between
reflections with the boundary. All reflections are specular, which means that the
angle of incidence is equal to the angle of reflection, see Figure 1. Furthermore, the
energy of the particle is conserved during reflections. This sequence of reflections
is described by the billiard map, and it completely characterizes the motion of the
particle. This billiard map transforms the coordinates and incident angle of the
point of reflection into the coordinates and the incident angle at the point of the
next reflection from the boundary.

Figure 1: Billiard reflections.

Billiard systems are Hamiltonian systems, which have a potential V (q) that is equal
to zero within a domain, which will be denoted by Ω, and infinity outside. The dy-
namics of the billiard systems are completely defined by the shape of its boundary
∂Ω. It captures all possible behaviors of Hamiltonian systems, from integrable to
completely chaotic ones. One has to note, even though the dynamics is relatively
simple, without the difficulties of integrating the equations of motion, computation
of the billiard map can still be rather difficult.

Both classical and quantum billiard systems have several applications in physics,
where they are used to model many real-world systems, for example ray-optics,
lasers, or the study of quantum chaos [12]. One example that will be covered in this
paper is the case of chaotic micro-lasers. Billiard systems are thus widely used as
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physical models. This is because when there is little disorder or noise, the movement
of for example particles like electrons or light rays, is rather similar to the move-
ment of the point-particles in billiards. Furthermore, since the particle collisions in
a billiard system conserve energy, it can be seen as a reflection of the conservation
of energy in Hamiltonian mechanics.

In this paper, the focus will be on billiard systems for the case of convex boundaries,
especially the case when the boundary is elliptical. The motion in these systems is
sometimes called ”whispering gallery motion”. This name is due to the effect that is
usually called a ”whispering gallery”. When waves get reflected and travel along a
convex wall, they will always stay close to it. This phenomenon was first explained
for the case of St Paul’s Cathedral by Lord Rayleigh [9]. Furthermore, there is the
Birkhoff-Poritsky conjecture [8], which says that the ellipse is the only integrable
smooth convex billiard, where the circle is the special case of an ellipse. Whenever a
billiard system is integrable, the corresponding quantum system is completely solv-
able.

Taking a billiard system with a strictly convex boundary, suppose there is a smooth,
strictly convex domain in R2, denoted by Ω. Then a closed geodesic in this domain
is a broken geodesic in R2, which is reflected at the boundary according to the law
that the angle of reflection is equal to the angle of incidence. To distinguish these
geodesics in the system, to each geodesic one can assign a rotation number, which
will be denoted by ω and is given by

ω =
m

n
=

winding number

number of reflections
∈ (0,

1

2
].

Here, the winding number is defined by fixing the positive orientation of ∂Ω and
picking any corner point of the closed geodesic on ∂Ω. Then one follows the geodesic
and measures how many times it goes around ∂Ω until it comes back to the starting
point.

Furthermore, closed geodesics maximize the length of the perimeter of the inscribed
n-gons in Ω with winding number m. The billiard map associated to Ω is then
denoted by

φ : S1 × (0, π)→ S1 × (0, π),

(s1,Φ1) 7→ (s2,Φ2)
(1)

where (s,Φ)=(arclength on ∂Ω, angle with the positive tangent of ∂Ω).

Let
h(s, s′) = −|P (s)− P (s′)|

denote the negative Euclidean distance between two reflection points on ∂Ω.
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Then one has that

∂1h(s0, s1) = cos(Φ0) and ∂2h(s0, s1) = − cos(Φ0).

In other words, in new coordinates

(x, y) = (s,−cos(Φ)

one has
y1dx1 − y0dx0 = dh(x0, x1). (2)

Then φ is exact symplectic [11] on S1 × (−1, 1) and has generating function being
the negative Euclidean distance between two points on ∂Ω and is denoted by

h(s, s′) = −|P (s)− P (s′)|. (3)

If a billiard system is integrable, then by the Liouville-Arnold Theorem [1] there
exists a canonical transformation to action-angle coordinates. Here the transformed
Hamiltonian is dependent only upon the action coordinates and the angle coordi-
nates evolve linearly in time. Then for such an integrable system in R2, the motion
of the billiard system is confined in a two-dimensional manifold, called a 2-torus, as
can be seen in Figure 2. Here I1 and I2 are the actions associated to the system.

Figure 2: In R2, integrable motion is confined within a 2-torus.

One more characteristic of the billiard system is the so-called caustic, as can be seen
in Figure 3. A convex caustic c is a closed convex C l-curve in the interior of Ω with
the property that every trajectory tangent to c stays tangent after each reflection.
The existence of these caustics is not proved in this paper, but for the proof one can
refer to the paper by Lazutkin [5].
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Figure 3: A convex caustic

Given such a convex caustic c, the following parameters can be defined:

1. its rotation number ω ∈ (0, 1
2
);

2. its length L(c);

3. its Lazutkin parameter Q(c) = |A− P |+ |P − B| − |ÂB|, with A,B ∈ c and

P ∈ ∂Ω as in Figure 1. Here |ÂB| denotes the length of the caustics part from
A to B, where the caustic is oriented according to the geodesics touching it.

If c is a caustic, then the Lazutkin parameter is well defined, i.e., it does not depend
on the point P ∈ ∂Ω [5].

Now, the next goal will be to derive the so-called mean minimal action function
α, especially for the case of an elliptical billiard system. This function is related
to the maximal length of periodic orbits with a given rotation number, which are
called marked length spectra. Furthermore, it plays a crucial role in understanding
different rigidity phenomena that appear in the study of convex billiards. The mean
minimal action α also contains several geometric parameters of Ω. Some of those
are for example its diameter, its boundary length, and the parameters of the convex
caustic. To be more precise, the mean minimal action associated to Ω is a strictly
convex function

α : [0, 1]→ R

with convex conjugate
α∗ : [−1, 1]→ R.

To find such a function, let us look again at the billiard map. The billiard map as
defined in (1) is a monotone twist map on S1 × (−1, 1) with twist interval [ω−, ω+]
[11]. Furthermore, it was noted that the billiard systems contain geodesics that
maximize the perimeter. Maximizing length means minimizing the action, which is
defined as the sum of the generating function h along the orbit. Using the results
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from Aubry-Mather theory [2], there are minimal orbits of all rotation numbers.
The mean minimal action can then be defined as

α : [ω−, ω+]→ R

by associating to ω the mean action of a minimal orbit (xi, yi) of rotation number
ω

α(ω) = lim
N→∞

1

N

N−1∑
i=0

h(xi, xi+1). (4)

Furthermore, its convex conjugate function

α∗ : [−1, 1]→ R

is the Legendre transformation of α. The convex conjugate of a function is then
a generalization of the Legendre transformation, which applies to non-convex func-
tions. It is commonly used to go from Lagrangian to Hamiltonian dynamics. The
convex conjugate is then defined by

α∗(I) = max
ω

[ωI − α(ω)] (5)

Since one has that α is continuous and is everywhere differentiable [6], equation (5)
can also be written as

α∗(I) = (Iω − α(ω))|ω=(α′)−1(I) . (6)

Now, let us look at the relation between this mean minimal action function and
the geometric parameters of the convex caustic. If one has a convex caustic of ro-
tation number ω denoted by cω, then one has that the length of the caustic is given
by

L(cω) = −α′(ω) (7)

and its Lazutkin parameter is given by

Q(cω) = α∗(α′(ω)). (8)

Furthermore, given such a convex caustic cω, one can reconstruct ∂Ω by wrapping
a string of length L(cω) +Q(cω) around cω, pulling it tight and going along cω.

To give an example of the derivation of the mean minimal action α for a billiard
system, let us look at the following example of a circular billiard system.

Example: Take a circular billiard with perimeter 1 in R2. The whispering gallery
motion in such a circular billiard can be seen in Figure 4.
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Figure 4: Whispering gallery motion for a circular billiard.

Furthermore, the billiard map is given by

(s1, φ1) = (s0 +
φ0

π
, φ0),

with generating function

h(s, s′) = − 1

π
sin π(s− s′).

Since the whole space is covered by rotational invariant curves, the minimal action
can be given by

α(ω) = − 1

π
sinπω.

Furthermore, the derivative of α is given by

α′(ω) = − cos(πω) ≡ I.

The convex conjugate α∗ can be determined using the Legendre transform of α,
yielding

α∗(I) =
1

π

(
arccos(−I) · I +

√
1− I2

)
.

The graphs of these functions are plotted in Figure 5.

By equation (7), one has that the length of the caustic in this system is given
by

L(cω) = −α′(ω) = cos(πω).

For ω = 0 on has the sliding motion along the boundary, thus the length of the
caustic should be 1. For ω = 1

2
, one has the motion of the ball bouncing between

two fixed points, thus the length of the caustic should be 0. For values of ω between 0
and 1

2
, the length will be between 0 and 1, hence L(cω) = cos(πω) correctly describes

the length of the caustic. Furthermore, by equation (8) the Lazutkin parameter is
given by

Q(cω) = α∗(− cos(πω)) = α∗(I).
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(a)

(b)

Figure 5: (a) α as a function of the winding number ω and (b) α∗ as a function of
the action I for circular billiards.
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3 Elliptical Billiards

Normally, when deforming the circular billiard, one would destroy the 2-tori in the
billiard system, and hence destroy the whispering gallery motion. However, in the
special case of the elliptical billiard, some of these 2-tori remain intact, and the
whispering gallery motion can again be observed. Thus, one can also obtain the
minimal action function α for the elliptical billiard system.

To illustrate this fact, let one take the billiard family with boundary

x2 +
y2

1− a2
= 1,

where 0 ≤ a < 1. Here, a is called the eccentricity of the ellipse and the foci of
the ellipse are at (x, y) = (±a, 0). This can then be written in terms of orthogonal
coordinates (ξ, η), where ξ = constant and η = constant are sets of confocal ellipses
and hyperbolas. Then the elliptic coordinate system can be denoted by

(x, y) =
(1

a
ξη,±1

a

√
(ξ2 − a2)(a2 − η2)

)
,

where a ≤ ξ ≤ 1 and −a ≤ η ≤ a. The Hamiltonian of this systems in terms the
(ξ, η)-coordinates and corresponding momenta (pξ, pη) is given by

H =
1

2

1

ξ2 − η2
(

(ξ2 − η2)p2ξ + (a2 − η2)p2η
)
. (9)

This Hamiltonian is only the product of the kinetic energy, since inside the boundary
of a billiard system, the potential energy is zero. Furthermore, two types of reflection
have to be considered. The first one is the reflection at the boundary ξ = 1, where
pξ changes sign, and can be denoted by

(ξ, η, pξ, pη)→ (ξ, η,−pξ, pη). (10)

The second one is the reflection at either ξ = a or η = ±a. In the case that ξ = a,
one gets the same as in equation (10). For the case that η = ±a, there is instead a
change of sign of pη, which can be denoted by

(ξ, η, pξ, pη)→ (ξ, η, pξ,−pη). (11)

This system is integrable since the two coordinates (ξ, η) can be separated. This
can be done by equating H to E and then multiplying by ξ2 − η2. Then, using a
separation constant K, one gets the following equations
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2Eξ2 − (ξ2 − a2)p2ξ = K ≡ 2Eκ2 (12)

2Eη2 + (a2 − η2)p2η = K ≡ 2Eκ2, (13)

where κ2 is the scaled constant of motion, which has allowed values 0 ≤ κ2 ≤ 1. This
can easily be seen since κ2 > 0 and by noting that for κ2 > 1 one must have that
p2ξ or p2η are negative to satisfy both equations, which is mathematically not possible.

Since the system is integrable, one has that the energy surface is foliated by in-
variant 2-tori, which are defined by the values of E and κ2. One can characterize
these tori by looking at the fundamental actions, which are defined by

Ij =
1

2π

∮
pdq, (14)

where the integral is taken along fundamental paths on the tori.

Their intersections with the (ξ, pξ)- and (η, pη)-plane can be found by solving equa-
tions (12) and (13) for the corresponding momenta. This yields the following

p2ξ = 2E
ξ2 − κ2

ξ2 − a2
(15)

p2η = 2E
κ2 − η2

a2 − η2
(16)

Using equations 15 and 16, one can construct the phase portraits in Figure 6.

Figure 6: Phase portraits for the elliptical billiards. Left : Intersection of invariant
2-tori with (ξ, pξ)-plane. Right : Intersection of invariant 2-tori with (η, pη)-plane.

From this figure, one can also see that there are two types of tori in this case, with
a seperatix dividing them. For κ2 > a2, there is the whispering gallery motion seen
before in the circular billiards. Here the geodesics avoid the region in the interior

13



of the ellipse, touching the boundary of this between consecutive reflections at the
billiard boundary. In configuration space, the confocal ellipse ξ = κ can be seen as
an inner envelop, where the momentum pξ along a solution curve goes to zero and
changes sign. The other type of tori is obtained when κ2 < a2, representing the so-
called bouncing ball motion. Here, the geodesics always cross the x-axis between the
foci, they are confined to the domain enclosed by the hyperbolas given by η = ±κ.
The motion of the whispering gallery and bouncing ball in configuration space can
be seen in Figure 7, The special case when κ2 = 0 represents the stable oscillation
along the y-axis. The other special case, when κ2 = 1 represents the sliding motion
along the boundary. In the system, there is also a seperatix motion when κ2 = a2.
The seperatix consists of the stable and unstable manifolds of the unstable periodic
orbit. This unstable periodic orbit runs along the horizontal symmetry line which
contains the two foci and the orbits in the stable/unstable manifolds alternately go
through one of the two focus points between every two consecutive reflections. In
this paper, only the whispering gallery motion will be discussed in detail.

Figure 7: Motion in configuration space for elliptical billiards. Left : Whispering
gallery. Right : Bouncing ball.

Knowing the types of motions in the elliptical billiard system, let us now look at
the derivation of the actions. The actions for the whispering gallery motion can be
found by using equations (12), (13), and (14) and both actions are scaled by energy.
For the action related to ξ, one gets the following

I1 =
1√
2E

Iξ =
1

2π

∮
pξ√
2E

dξ

=
2

π

∫ 1

κ

√
ξ2 − κ2
ξ2 − a2

dξ

=
1

π

(
sinφ− κE(φ,

a

κ
)
)

(17)

where sin2φ = 1−κ2
1−a2 .
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For the action related to η, one gets the following

I2 =
1√
2E

Iη =
1

2π

∮
pη√
2E

dη

=
2

π

∫ a

0

√
κ2 − η2
a2 − η2

dη

=
2κ

π
E(
a

κ
).

(18)

Here, E( a
κ
) denotes the complete elliptic integral of first kind and E(φ, a

κ
) denotes

the incomplete elliptic integral of second kind, where φ is the amplitude and κ the
modulus. Furthermore, the rotation number is

ω =
ωη
ωξ

= −Iξ
Iη

∣∣∣∣
E

=
1

2

F(φ, a/κ)

K(a/κ)
. (19)

Having found the formulas for the actions and winding number, the next step will
be to get the minimal action function α for the case of an elliptical billiard. To find
α, one first has to find the generating function, which was defined to be the negative
Euclidean distance between two consecutive reflection points. Let γ be a path be-
tween two consecutive reflection points in configuration space, with parametrization
given by

t 7→
(
x(t), y(t)

)
, t ∈ [0, T ],

where T is some parameter which will be sent to infinity. This parametrization is

such that
(
dx(t)
dt
, dy(t)

dt

)
=: ⇀v(t) has constant norm ||⇀v(t)|| =:

√
2E
m

. Then the length

of γ can be computed in several steps. First one has∫
γ

ds =

∫ T

0

(
(
dx

dt
)2 + (

dy

dt
)2
) 1

2
dt

=

∫ T

0

||⇀v(t)||dt
(20)

since
(
dx(t)
dt
, dy(t)

dt

)
=: ⇀v(t). Furthermore, since by definition ⇀p(t) = m⇀v(t) and ||p|| =

√
2mE, one has ∫ T

0

||⇀v(t)||dt =
1

m

∫ T

0

||⇀p(t)||dt

=
1

m||p||

∫ T

0

⇀p(t) · ⇀p(t)dt

=
1√

2mE

∫ T

0

⇀p(t) · ⇀v(t)dt

(21)
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Now, assume that γ̃ is a path in phase space different from the fundamental paths on
the torus. Let β = ⇀p·d⇀q =

∑
i pidqi be the tautological 1-form with dβ =

∑
i dpi∧dqi

being the a canonical 2-form. Then β is conserved under cotangent lifts of point
transformations. Using this fact, one has that

1√
2mE

∫ T

0

⇀p(t) · ⇀v(t)dt =
1√

2mE

∫
γ̃

⇀p · d⇀q

=
1√

2mE

∫
γ̃

pξdξ + pηdη

=
1√

2mE

(∫
γ̃

pξdξ +

∫
γ̃

pηdη
) (22)

Since γ̃ is a path in phase space different from the fundamental paths on the 2-torus,
it can be seen as a combination of those fundamental paths. One can also look at
the 2-torus as a square, where the fundamental paths corresponding to ξ and η go
horizontal and vertical respectively along the square. The path γ̃ can then be seen
as a sloped line on the square, where instead of a reflection at ∂Ω, the square is
reflected and the particle will move straight into this mirror image. This can be
seen in Figure 8.

Figure 8: Unfolding a path on the 2-torus.

The slope can then be accounted for by multiplying vertically by the rotation num-
ber ω. Thus the path γ̃ can be seen as a combination of the fundamental paths. This
allows us to do the integrals in equation (22) with respect to their corresponding
fundamental path, where the integral relating to η needs to be multiplied by ω. One
can then use equation (14), (17) and (18) and assuming m = 1 to get

1√
2mE

(∫
γ̃

pξdξ +

∫
γ̃

pηdη
)

=
2π√
2mE

(Iξ + ωIη)

= 2π(I1 + ωI2)

(23)

Combining (20), (21), (22) and (23), one has the following for the length of γ∫
γ

ds = 2π(I1 + ωI2) (24)
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Now, as the generating function was defined as the negative Euclidean distance
between two reflection points, it is computed to be

h = −2π(I1 + ωI2) (25)

Having found the generating function for the elliptical billiards, the mean minimal
action α can be computed by using equation (4). This gives the following

α(ω) = −2π(I1 + ωI2) (26)

where ω, I1, I2 are given by equation (19), (17), (18) respectively. Furthermore, the
derivative of α is given by

α′(ω) = −2π(I1 + ω
dI1
dω

+
dI2
dω

).

As ω, I1 and I2 are functions of the separation constant κ, applying the chain rule
yields

dω

dκ
= − d

dκ

dI1
dI2

= − d

dκ

dI1/κ

dI2/κ
=
I ′2I1”− I2”I ′1

(I1)2
.

Using this in combination with the previous found derivative yields

α′(ω) = −2πI1 ≡ I. (27)

Furthermore, the convex conjugate of α, denoted by α∗ can be determined using the
Legendre transform of α. This then yields the following

α∗(I) ≡ Iω − α = 2πI2. (28)

To compare these results with the example of a circular billiard, before plotting the
function α(ω) and α∗(I), a scaling will be introduced, such that the perimeter of the
elliptical billiards becomes unity. This is done by taking (x, y) → (x/c, y/c) where
c = 8E(a) is the perimeter of the original billiard boundary. The scaled actions are
then given by I1/c and I2/c. The resulting figures for α(ω) and α∗(I) are shown in
Figure 9. It can be seen that for a = 0, indeed the same result as for the circular
billiard in Figure 5 is obtained.

Having found the mean minimal action α, one can also say something about the
geometric properties of the elliptic billiard and its caustic. According to equation
(7), the length of the caustic should be equal to −α′(ω) = 2πI1. The caustic in
this case is an ellipse that is given by the elliptic coordinate line denoted by ξ = κ.
Its length is L(c) = 4κE( a

κ
), which is indeed equal to 2πI1. The action I1 can thus

be described as the length of the caustic, up to a factor of 2π. Furthermore, by
equation (8), the Lazutkin parameter is given by Q(cω) = α∗(−2πI1) = α∗(I).
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(a)

(b)

Figure 9: (a) α as a function of the winding number ω and (b) α∗ as a function of
the action I for elliptic billiards with eccentricity n/7, n=0,1,2,3,4,5,6, where n=0
is the circular billiard.
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4 Chaotic Micro-lasers

One application of the billiard systems covered up till now are so-called chaotic
micro-lasers. In these lasers, one can see similar motion for light to the whispering
gallery motion in the billiard systems

Starting in the mid 1990s, chaotic micro-lasers have been established as an alter-
native to the conventional and well-known Fabry-Perot lasers, in the course of the
ongoing miniaturization of devices. Chaotic micro-lasers are typically realized as
so-called micro-cavity lasers. These are essentially planar systems, so the third di-
mension can be neglected, of a slightly deformed disk shape, which can be seen in
Figure 10.

Figure 10: Different types of lasers.

Micro-cavity lasers are a new way to look at the fields of chaos and quantum chaos,
because they basically represent open two-dimensional billiards systems. Therefore,
the theoretical description of chaotic micro-lasers turns out to be very closely re-
lated to the fields of dynamical systems. As in micro-disk lasers light may escape by
means of diffraction, they can be seen as intrinsically open systems. Furthermore,
the hard-wall case is only reached in the limit of an (infinitely) large refractive index.
This can then be seen as a closed billiard system, as studied in this paper.

These chaotic micro-lasers thus exploit the total internal reflection of light to achieve
mirror reflectivity. Micro-disk lasers are a class of lasers that are based on circularly
symmetric resonators, which lase on whispering gallery modes of the electromag-
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netic field. In the whispering gallery modes, light circulates around the curved inner
boundary of the resonator, reflecting from the walls of the resonator. This reflec-
tion always has an angle of incidence greater than the critical angle, to ensure the
total internal reflection. Thus light remains trapped inside the resonator. There
are only small losses of light caused by evanescent leakage and scattering from sur-
face roughness. The whispering gallery modes can thus be related to the whispering
gallery motion as discusses in this paper for the circular and elliptical billiard system.

The evanescent light escape in this micro-disk lasers is thus by tunneling. This
preserves the rotational symmetry of the system, giving rise to a uniform light out-
put in all directions. This however is not yet a useful laser, because the characteristic
directionality of light emission is missing. To account for this fact, one can look at
the domain of chaos. In order to obtain a suitable modulation of the laser’s far
field [4], one has to break the rotational symmetry, i.e. deform the circular shape of
the resonator. These systems are then called chaotic micro-lasers. To achieve this,
very little deformation suffices in order to drastically change the far field, as can be
seen at the bottom of Figure 10. This causes the resonator shape to be still rather
circular, thus light still can be confined in the whispering gallery modes. However,
the rotational symmetry is sufficiently broken such that one can obtain a reasonable
directional far-field emission from such modes.

Knowing that the defining property of a laser is coherent light emission in a certain
direction, the question arises how one can fulfill this requirement with a chaotic
micro-disk laser. Chaotic implies that the far-field characteristics are sensitive to
the slightest changes in the shape of the micro-cavity. At this point, let one look
back at what was discusses previously, chaotic micro-disk lasers as billiards for light.
Since the light is confined by total internal reflection as long as the angle of incidence
is larger than a certain critical angle. But for smaller angles of incidence, the light
is at least partially transmitted outside the micro-laser according to Fresnel’s laws.
As discussed before in this paper, for the circular and elliptical billiard systems,
the angle of incidence is conserved in circular micro-lasers. However, this varies in
chaotic micro-cavities. If we start a light ray starts well above the critical angle,
at one point its angle of incidence will drop below, and thus the light ray can then
refractively escape. When perturbed whispering gallery mode, the refractive escape
will occur likely at boundary regions with higher curvature [7].

The far-field characteristics of the chaotic micro-lasers are mostly determined by
how the light rays cross from the case of total internal reflection to the case of
refractive escape, which is also called the critical line. In the field of dynamical sys-
tems, this is called an unstable manifold, the collection of all unstable directions of
the billiard systems. The micro-disk laser can be seen as a Hamiltonian system with
two degrees of freedom, where its configuration space is spanned by the arc length
position along the boundary and the angle of incidence for each reflection. For each
point in this phase space, one can find a stable and an unstable direction. The origi-
nal shape of this point cloud will very soon be deformed and develop filaments. This
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has to happen because without the expanding direction there would be no chaos,
and a contracting direction is then needed to fulfill Liouville’s theorem [1]. This will
be the unstable direction, i.e. the one in which the filaments grow such that they
eventually cross the critical line, which determines the far-field characteristics of the
micro-laser.

This fact explains the robustness of the far field. If one has an individual light
ray, it will react very sensitively to the slightest changes in the resonator shape
since the system is chaotic. However, the unstable manifold sort of averages over,
and their filaments remain rather robust. The characteristics of the far-field can be
optimized via the unstable manifold by varying the resonator shape.

Until now the explanation was done with the use of light rays, but light can also be
seen as a wave. This however is not a problem, as ray simulations agree remarkably
well both with experimental data and wave simulations. This is a nice example of
the power of the concept of ray-wave correspondence. The agreement between the
far fields obtained from wave computations and ray simulations, and the experimen-
tal results can be seen in Figure 11 for the case of Limaçon-shaped micro-disk lasers
[4].

Figure 11: Far-field emission pattern of Limaçon-shaped micro-lasers.

21



Examples of the use of chaotic micro-lasers are quantum mechanics of electrons that
are confined in asymmetric “boxes”, such as quantum-dots, stadia, and quantum
corrals. Furthermore, one can look at the asymmetric microwave cavities with their
strong connection to quantum chaos theory. Looking at future applications, micro-
lasers have possible applications in optical computing and networking. However,
they are also of strong interest in research problems of cavity quantum electrody-
namics, such as resonator-enhanced spontaneous emission and threshold-less lasers
[16]. They may also serve as model systems for the study of wave phenomena in
mesoscopic systems, particularly in the regime where motion is fully or partially
chaotic.

5 Conclusion

In the first part of the paper, the general notion of billiard systems was explained,
together with the existence of caustics in these systems. The mean minimal action
function α was introduced and discussed in some detail. Furthermore, an example
of a circular billiard was given.

The second part of the paper covered the derivation of the mean minimal action
function α for the case of the elliptical billiard system. This was done by first intro-
ducing the billiard family, denoting the Hamiltonian of the system, and using this
to find the actions and winding number. Then these results were used to derive α
and it was compared to the circular case.

The last part of the paper was about an application of the results from the first two
parts, the chaotic micro-lasers. The concept of micro-lasers was explained, what
they are and where they are used, and then the physics of the chaotic micro-lasers
was discussed in detail. At the end, the connection of micro-lasers to the billiard
systems was looked at.

It can be said that the main goal of my research was completed. I learned more
about the billiard systems, what they are, and where they are used. I also learned
what the mean minimal action of these systems are, and how this relates to other
fields of study. First I used this knowledge to work out the case of a circular billiard,
and then used this knowledge to work out the more complicated case of the elliptical
billiards. At the end, I was able to find the mean minimal action for these elliptical
billiards and compared it with the circular case. To finish off the research it was
interesting to see that billiard systems are even related to something like lasers, and
to find out how they work and where they are and can be used.
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