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Abstract

Weird galaxies are outliers that have either unknown or very uncommon features making them

different from the normal sample. These galaxies are very interesting as they may provide

new insights into current theories, or can be used to form new theories about processes in the

Universe. Interesting outliers are often found by accident, but this will become increasingly more

difficult with future big surveys generating an enormous amount of data. This gives the need

for machine learning detection techniques to find the interesting weird objects. In this work, we

inspect the galaxy spectra of the third data release of the Galaxy And Mass Assembly survey and

look for the weird outlying galaxies using two different outlier detection techniques. First, we

apply distance-based Unsupervised Random Forest on the galaxy spectra using the flux values

as input features. Spectra with a high outlier score are inspected and divided into different

categories such as blends, quasi-stellar objects, and BPT outliers. We also experiment with

a reconstruction-based outlier detection method using a variational autoencoder and compare

the results of the two different methods. At last, we apply dimensionality reduction techniques

on the output of the methods to inspect the clustering of similar spectra. We find that both

unsupervised methods extract important features from the data and can be used to find many

different types of outliers.
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1 Introduction

The most interesting discoveries in Astronomy are the accidental and unintended discoveries

of unknown objects never seen before. These unknown unknowns are interesting as they can

give new insights to our understanding of physical processes in the Universe, or introduce new

questions about current theories in Astronomy. Finding these unknown objects is not easy

as, by definition, there is no indication of what to look for. Whenever an unknown object is

found, it may easily be disregarded as an error as it might look very different from the expected

observations. It is up to the mind-set of the observer to either investigate the unknown finding

or disregard it as an anomaly and move on with the main objective of their observations. An

excellent example is the discovery of pulsars (Hewish et al., 1968), where due to good knowledge

of the equipment and a persistent open mindset (Norris, 2017) the new type of astronomical

object could be discovered. A more recent famous example is Hanny’s Voorwerp (Józsa et al.,

2009), which was accidentally found while looking through an enormous amount of data with the

citizen science project Galaxy Zoo1. This resulted in an extensive search for more Voorwerpjes,

of which multiple are found nowadays giving insight into the ionization processes of Active

Galactic Nuclei (Keel et al., 2012). With the increasing size of the already big Astronomical

surveys and the vast amount of data that comes from them, finding the interesting unknown

unknowns by accident will become more difficult. The traditional analysis on the data surveys

becomes too much work to do by hand, resulting in the need to develop new or use existing

visualization techniques.

1.1 Machine Learning in Astronomy

In the last decade, machine learning has been widely used in Astronomy (Baron, 2019). Ap-

plications range from supervised tasks, such as classifying galaxy types, to the unsupervised

tasks of clustering similar objects. Supervised learning is used to assign a specific class for a

set of data. A basic example is the classification of galaxy types based on their morphology.

Information about the shape of the galaxy can be learned from pictures, where a (non-)linear

relationship can be found between pixel values and galaxy types. Once the underlying rela-

tionship is found, the model can be applied to new data to predict galaxy morphology classes.

Learning this relationship requires prior knowledge of the data before training, as the classes

have to be known beforehand. For galaxy types, this is often done by eye by an expert in the

field, or via citizen-science projects like Galaxy Zoo. Supervised machine learning can be a very

strong method to automate the classification of new data as shown in Ksoll et al. (2018), where

three different supervised methods were successfully applied to identify the Pre-Main-Sequence

stars using photometric observations. Unsupervised learning is used to learn (complex) relation-

ships that exist in a data set. In contrast to supervised learning, there are no pre-defined classes

resulting in very different applications: clustering of similar objects, dimensionality reduction,

and anomaly detection. These applications are arguably more important for scientific research

than classification via supervised learning, as they can be used to extract new information from

a data set. For example, in Turner et al. (2018) they applied a simple clustering method using

nearest neighbors on galaxy feature data to find galaxies in their different evolutionary paths.

This robust method of early data inspection can easily be scaled for large data sets. This is an

excellent application of an unsupervised method, as they extracted information from a data set

without the need for prior knowledge or labeled data.

1https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
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1.2 Outlier Detection

One of the most interesting applications of unsupervised learning is novelty detection, or outlier

detection. Outliers are objects that have either weird or uncommon features, making them very

different from the normal sample. Many types of different algorithms can be applied to big data

sets, which learn the underlying rules of common features and find objects that fall outside of

these rules. Most of the outliers will consist of noisy or erroneous data, as these are simply not

comparable to the real data. Outlier detection is interesting for Astronomy as it can be used

to find uncommon objects, or common events that only happen on small timescales. Targeted

observations of these events can be very difficult, as one does not know where to look at which

time. Fortunately, the Universe is very big and with the use of big surveys, such as the Sloan

Digital Sky Survey (SDSS, Blanton et al., 2017) or Galaxy And Mass Assembly (GAMA, Baldry

et al., 2017), these rare events can still be observed by accident.

Next to the uncommon events and short events, a third interesting outlier category is the ’un-

known unknowns’. This category consists of objects that have never been observed before and

when found not, or only partly, understood. Finding these objects is exciting for Astronomers,

as new information can always confirm or shake up some theories about processes and events

in the Universe. Searching for ’unknown unknowns’ in a data set is not a trivial task as it is a

very advanced application of unsupervised learning with no indication of what to look for. Also,

different outlier detection techniques may identify different objects as outliers as the methods

inherently differ from each other. While each algorithm finds its own interesting outliers, there

is no single method to identify all the interesting objects at once. A review of novelty detection

methods is presented in Pimentel et al. (2014), where five different types of outlier detection

techniques are described and investigated. In this work, we will apply two of these methods,

distance based and reconstruction based novelty detection, on galaxy spectra to find outlying

objects.

Distance based outlier detection methods use an algorithm to determine distances between ob-

jects via their features or values and assign a score for their dissimilarities. An outlier score can

be determined for every object using these distances, representing its difference with all other

objects. The objects with the highest overall outlier scores can be considered the outliers of

the data set. In Baron & Poznanski (2016), they introduced a general distance based outlier

detection algorithm and applied it on galaxy spectra. This resulted in the findings of many

interesting outliers and their algorithm is used in our research.

Reconstruction based algorithms learn the underlying rules in the data and reconstruct the data

using these rules. The difference between the original input and the reconstructed data is used

to compute a reconstruction error. As the model is not trained to reconstruct the unknown or

uncommon features in outliers, the reconstruction error can be used as an outlier score. The

application of reconstruction based methods was tested in Ichinohe & Yamada (2019) and Por-

tillo et al. (2020), where variational autoencoders are applied on spectra and used for outlier

detection.

Both outlier detection methods result in an outlier score for each object, often normalized

between 0 and 1. It is up to the user to determine a cut-off value, for which all objects above

that value are considered to be outliers.
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1.3 Project Outline

In this project, we will use two outlier detection methods to find weird interesting objects in

a big astronomical survey. We try to find weird objects by looking at the spectra in the third

data release of the Galaxy and Mass Assembly (GAMA) survey (Baldry et al., 2017). Spectra

contain a lot of information and physical parameters of the observed objects and are therefore

very nice to use for outlier research. A description of the GAMA data and its content can be

found in Section 2. First, we inspect the data for possible instrumental errors, highly uncertain

redshift calculations, and inaccurate flux calibrations. We apply the distance-based outlier de-

tection algorithm developed in Baron & Poznanski (2016) on our GAMA data. In their work,

they applied an algorithm based on Unsupervised Random Forest (URF, Shi & Horvath, 2005)

on SDSS galaxy spectra and could find many outlying spectra, such as spectra with extreme line

emission ratios or galaxies with supernovae. Many of their findings were not earlier reported in

the literature. A comparison between this method and a few other conventional outlier detection

algorithms is provided in Reis et al. (2019b), which states that overall the URF performs the

best. A thorough explanation and our implementation of the URF can be found in Section 3.

In this section, we also test the algorithm using known outliers and self-generated weird spectra.

The results of the algorithm are inspected and the weirdest spectra are investigated in Section 4.

Next to the distance based URF method, we experiment with a reconstruction based outlier de-

tection technique utilizing a neural network. We apply an Information Maximizing Variational

Autoencoder (Zhao et al., 2017) on the galaxy spectra, which is a modified version of a varia-

tional autoencoder (Kingma & Welling, 2013). This method was demonstrated on SDSS data

in Portillo et al. (2020) and can map spectra to a (very) low dimension and fully reconstruct

different types of galaxies. We use the reconstruction error and low dimensional representation

to determine outliers and compare the results of both methods in Section 4.

Additional to the search for outliers, we also inspect the high dimensional output of the outlier

detection methods using t-SNE (van der Maaten & Hinton, 2008), a visualization technique

used to reduce high-dimensional data to a two or three-dimensional map. This was also done in

Reis et al. (2018), where they applied t-SNE on the output of the URF algorithm. They showed

that the high dimensional output contains a lot of complex information of the data. With the

map, the structure of the data can be projected and used to group and find similar galaxies.

We show the application of t-SNE and the maps in Section 5.

The main objective of this research is to find the outliers and weirdest objects in the GAMA

survey, but we also want to promote the use of outlier detection methods on spectroscopic data.

Spectra are very interesting to look at as they trace many physical properties of the object. In

the near future, new surveys like WEAVE (Dalton et al., 2014) and 4MOST (de Jong et al.,

2019) will generate an enormous amount of spectra. Finding interesting outliers or anomalies

becomes more difficult as more spectra have to be inspected. To convince people for citizen

science projects might be difficult, as spectra do not look as interesting as the sky pictures used

in the citizen science projects like GalaxyZoo. To cope with the amount of data we need good

machine learning techniques to automatically find the interesting outliers in future surveys. We

use and compare two outlier detection algorithms and explore their usability for the search of

outliers in the Universe.
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2 Data

We use data from the third data release (DR3) of the Galaxy and Mass Assembly (GAMA)

survey (Baldry et al., 2017). The GAMA survey is a spectroscopic and multiwavelength pho-

tometric survey, with the main objective to study cosmic structures on a scale of 1 kpc to 1

Mpc (Driver et al., 2009). This includes the study of galaxy clusters, groups, and mergers to

test the cold dark matter paradigm of structure formation. The third data release consists of

over 150000 spectra of objects with a reliable heliocentric redshift (Baldry et al., 2014) and

other additional photometric parameters (Hill et al., 2011). The objects are located in three

equatorial and two southern observational regions covering a total area of 286 deg2. Primary

observations were done using the AAOmega spectrograph at the Anglo-Australian Telescope

(Smith et al., 2004).

In total, the GAMA survey consists of more spectra than the observed spectra of the AAOmega

spectrograph. Before the survey started an input catalog was assembled of the objects in the

observation regions to make a highly complete redshift survey. The object locations were drawn

from the SDSS DR6 photometric observations and UKIDDS (Lawrence et al., 2007), with mag-

nitude limits of r < 19.5, z < 18.2 and KAB < 17.6 (Baldry et al., 2010). This is a very

high-density sample of the objects in the observational regions and therefore a nice survey to

use for outlier detection. Most objects in the observation regions overlap with earlier spec-

troscopic surveys, such as SDSS, the 2dF Galaxy Redshift Survey (Colless et al., 2003), and

Millennium Galaxy Catalogue (Driver et al., 2007). As a result, if an object is observed in

different surveys, the best spectrum can be chosen to get a complete data set with good spec-

tra. In this project, we only use the spectra from the main observations with the AAOmega

instrument, which has a spectral resolution of R ≈ 1300. These spectra make up over 78%

of the total spectra and is thus a sufficient representation of the survey, while also making it

easy for us to only have to work with data from a single instrument. In comparison with other

big surveys, the GAMA survey contains high-resolution spectra of fainter objects at a higher

median redshift. This makes it an interesting data set for this research, as we can search for

outliers deeper in space.

The data used in this project is obtained via the GAMA DR3 website2. We select the spectra

by setting the SURVEY CODE to 5, which represents spectra from the main observations, and

IS SBEST to be true, such that we only have the best spectrum for every single object. Another

important parameter is the nQ value, which represents the normalized quality factor of the

redshift value fitted to the spectra. For quality research, we only use spectra with a value of

nQ >= 3, as advised in Hopkins et al. (2013). The full data query can be found in Appendix

A, which gives a total of usable spectra to be just over 130000. The wavelength range of the

instrument, and therefore the observed wavelength range of the objects, is between 3750 Å and

8850 Å over 4954 pixels.

2http://www.gama-survey.org/dr3/
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Figure 1: Overview of distributions of GAMA parameters

2.1 Inspection

There is a vast amount of different spectra in the GAMA survey. We quickly inspect some

parameters that are already provided for each spectrum: a fitted redshift parameter and a

signal to noise ratio SNR. The distributions of these parameters are shown in Figure 1. Looking

at the redshift distribution we can see that the median redshift of GAMA objects is z = 0.21.

We also see two big global peaks and a few smaller local peaks in the histogram. The two big

peaks follow from clusters in the observed fields, while the smaller peaks represent clustering

on smaller scales. Note that there is also a peak at a redshift of z = 0. Objects with this

assigned redshift value are: foreground stars, point-like quasar potentials which turned out to

be stars, galaxy-star blends, and bad spectra with a wrong fitted redshift value. As a test,

we run these objects through our reconstruction based clustering algorithm. This resulted in

the classification of 1567 M-dwarfs, 144 O-stars, and 1118 stars that are either a type A, F or

G-star. These spectra will be left out of the final classification of galactic outliers in Section 4.

2.2 Pre-processing

In this project, we use the flux values of the spectra as the input of the outlier detection algo-

rithms to compute an outlier score for each spectrum indicating its weirdness. The output of

the algorithms is thus entirely based on the shape of, and features in, the spectrum. To get the

best unbiased results, all the raw flux values could be used as input for the outlier detection

algorithm. However, the raw data contains a lot of bad data points, or noisy continuum as

shown in Figure 2, which interfere with the results. A few bad pixels, for example due to a

cosmic ray, can cause a high outlier score for an otherwise normal spectrum. We apply a few

pre-processing steps on the raw data to make it suitable for our project. We try to keep the

processed data as close to the raw data as possible, as this will give the best relation between

an outlier score and the observed spectrum.

First, we mask three noisy regions in all spectra. The blue end of the spectra up to the observed

wavelength of 4050 Å is masked due to low flux values as a result of high sky absorption. We

also mask the region between 5570 Å and 5585 Å due to high residual sky emission seen in most

of the spectra. At last, the region with wavelengths larger than 8780 Å is masked as there are

noisy points at the end of most spectra. Other regions with bad pixels, which are not at the

end of the spectra, are linearly interpolated, to simulate as if those regions are normal.
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Next to removing the bad pixels, we smooth the data by applying a low pass filter. The raw

spectra show a lot of flux fluctuations in the parts where there are no emission lines, especially

in the blue end of the spectra. Due to the randomness of these fluctuations, spectra can be

assigned a high outlier score without the presence of real physical features. We smooth the flux

values in the spectra via convolution with the Gaussian kernel using the Astropy3 package in

Python. The kernel can be described as

g(x, σ) =
1√

2πσ2
e−

x2

2σ2 , (1)

where σ denotes the standard deviation in terms of pixels. This kernel suppresses the low-level

fluctuations, while keeping the shape of the emission lines intact. We test with different kernel

sizes, to find an optimal balance between suppressing noise and keeping the data close to the

original. This is seen in Figure 2, where the kernels with different pixel widths are applied on

the raw spectra and shown on top of each other. The important tasks are keeping the shape

of the emission lines as authentic as possible, while reducing the fluctuations on the continuum

level. We see that the Gaussian kernel g(x, 3) is a good trade-off, but we will also run tests with

smaller and bigger kernel widths.

Redshift is a non-linear variable, so we want to avoid working in the observed frame. We redshift

the spectra to their rest-frame wavelengths and interpolate all spectra to a common grid. As

flux values will be used as feature input for the outlier detection algorithms, it is important

to have all emission lines at the same input point. We interpolate all spectra between the

rest-frame wavelengths of 3500Å and 7500Åto 8000 data points, giving a slightly over sampled

resolution of 0.5Å per data point. This is to ensure that there are enough data points to probe

the width and separation of emission lines for all redshifted spectra. Missing flux values at the

ends of the spectra are extrapolated as a flat line with the average values of nearby points. At

last, the full spectrum is normalized by dividing by the median of the flux values. We use three

different subsets in this project based on the signal to noise ratio (SNR) of the spectra. An

overview of the subsets is shown in Table 1.

Figure 2: Different Gaussian kernel widths tested. The labels of the smoothed spectra refer

to the Gaussian kernel found in (1).

3https://docs.astropy.org/en/stable/convolution/
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2.3 Bad Spectra

During early inspection of the data, a few weird spectra were commonly found. These spectra

are shown in Figure 3 and trace four of the most recurring types of bad spectra. At first, we

have many fringed spectra shown by the top spectrum of Figure 3. These sine-like oscillations

arise from shortcomings in the AAOmega instrument and are present in observations of a few

specific fibers. The fringing arises from air gaps in the glue at the connection point of the fibers

and the prism causing high-frequency oscillations and poor removal of sky features (Hopkins

et al., 2013). For most fringed spectra, the redshift could still be determined as emission lines

are still visible. However, as the continuum clearly does not trace the physical properties of

a galaxy, we exclude these fringed galaxies from our outlier detection. As the fringed galaxies

have different shapes of oscillations, there is also no robust way to ”defringe” all galaxies in a

fully automated manner.

The next three classes of bad spectra are solely due to reduction errors. The second spectrum

of Figure 3 shows a very big change in continuum at 5700 Å. The left and right parts of the

spectra are observed by different arms of the instrument and have to be normalized to match

each other. Several spectra have this so-called bad splice, which is due to poor flat fielding in

one of the armsHopkins et al. (2013). Just as with the fringed spectra, a reliable redshift can

be determined as emission and absorption features are visible. The third spectrum of Figure 3

shows obvious sky emission lines have not been subtracted correctly.

The last group of bad spectra is an unexplained amount of spurious lines in a small observing

region in the sky. Also, a big continuum error between 6000 Å and 7000 Å can be seen. This

effect is not earlier reported and there seems to be no information about the source of the weird

features. This type of bad spectra is found in the specific observed region G15 Y1 DN1 nnn, with

G15 Y1 the observed field, DN1 the field identifier and nnn the fiber identifier. As each fiber in

this observed field shows the same errors we call this group the DN1 field error.

Initial random inspection only gave us a few spectra of each group. However, as these spec-

tra are very different than normal spectra, the outlier detection algorithms naturally picked

up these spectra as outliers. By iterative application of the algorithm and removal of the bad

spectra, we found all spectra belonging to the above groups. In total, we found that 4.5% of

the GAMA spectra are either affected by fringing, bad splicing, or other reduction errors. In

the GAMA spectroscopic analysis paper Hopkins et al. (2013) the amount of bad spectra was

reported to be around 3%, which shows that we have found a few more than earlier reported.

Furthermore, we find a total of 150 bad DN1 field errors.

Name Subset Objects GG Spectra med{SNR} med{z}
SNR2.5 SNR ≥ 2.5 115170 106093 5.88 0.204

SNR5 SNR ≥ 5 69560 63893 8.20 0.183

SNR10 SNR ≥ 10 23120 21226 12.98 0.158

Table 1: Subsets of GAMA AAOmega spectra. The GG spectra indicate the size of the subsets

with only good galactic spectra, excluding stars and bad spectra.
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Figure 3: Groups of bad spectra in GAMA survey. From top to bottom: fringed spectra, bad

splice between instrument arms, sky emission, DN1 field error. Pictures taken from the GAMA

DR3 Single Object Viewer4

4http://www.gama-survey.org/dr3/tools/sov.php
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3 Outlier Detection Methods

We apply two different algorithms on the GAMA spectra and try to find outliers. The first

algorithm we use is a distance-based algorithm using Unsupervised Random Forest (URF, Shi

& Horvath, 2005), which was developed in Baron & Poznanski (2016) and used to detect outliers

in SDSS spectra. The behavior of the algorithm is inspected via different tests to determine

its ability to detect outliers and its sensitivity to noisy data. We will show the used data sets

and explain the application of the algorithm on the data. We also use a reconstruction based

algorithm using an Information Maximizing Variational Autoencoder (InfoVAE, Zhao et al.,

2017), which was used as an experiment in Portillo et al. (2020) to synthesize SDSS spectra.

We apply this algorithm as an experiment on GAMA spectra to find outliers, spectra which

can not correctly be reconstructed, and to learn about the application of neural networks on

astronomical data. In this section, we only look at the application process and outputs of the

algorithms. The outliers of the GAMA survey are discussed in the next section.

3.1 Unsupervised Random Forest

The URF is used to generate the pair-wise distances between all objects by looking at the

features in the data, constructing a distance matrix. As shown in Baron & Poznanski (2016),

this distance matrix traces a lot of information of the objects and can be used to determine an

overall distance (or weirdness) score for each object. The fundamental part of the algorithm is

the Random Forest (RF, Statistics & Breiman, 2001). An RF is normally used as a supervised

application, in which an ensemble of decisions trees learn the rules in the data and determine the

class labels via a majority vote. Our data is not labeled, so we use the RF in an unsupervised

way as described in Shi & Horvath (2005). Instead of assigning different labels to the input

data, we generate synthetic spectra based on our real data and let the RF learn the difference

between the real spectra and the synthesized spectra. The RF is trained with a combination

of the real and synthetic data to learn the covariance in the real data and the importance of

different features. The synthetic data is generated by random sampling of each feature over all

spectra. This gives spectra-like shapes representing the important features in the data, while

also including minor details. A comparison between the real spectra and the generated synthetic

spectra is shown in Figure 4. Some aligned features as Hydrogen and Oxygen emission lines

can be traced in both the real and synthetic data.

Figure 4: Comparison between real data and synthetic data. 1000 spectra are stacked from

top to bottom with the input data points from left to right. The bottom picture is synthetic

data generated from the top picture. Normalized flux values are displayed by the color map.
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With the real and synthetic spectra, we prepare multiple chunks of 10000 objects via random

sampling without replacement to train the Random Forest. In each chunk, the objects are

unique, while they can still be included in multiple chunks. We train 200 decision trees on

each chunk and combine these to make up the full Random Forest. This approach improves

the quality and the computational time of the algorithm, as we train multiple times on small

amounts of data. The number of features used in the trees is the square root of the size of the

input data, which was also used in Baron & Poznanski (2016).

After training, only the real spectra are applied to the RF to trace their similarities. The

spectra propagate through all the decision trees and eventually end up in a terminal leaf, nor-

mally indicating an assigned label in supervised applications. In our application of RF, the

terminal nodes indicate if the input was either real or synthetic. This is visualized in Figure

5, where a small Random Forest is shown composed of only five decision trees. The terminal

leaves have an identifying number in each decision tree, and a pair-wise similarity between two

spectra can be determined by looking at how often they both end up in the same terminal

leaf. This value ranges from zero, indicating no similarities, to a maximum value of the number

of decision trees, indicating total similarity. This value is normalized by the number of trees,

and the distance score between the two objects is defined by subtracting 1 with the similarity

score. This yields a distance score between 0 and 1 for every pair of objects, giving a dis-

tance matrix. The distance matrix contains information about the clustering of the spectra and

can be used to trace a single outlier score for each spectrum by averaging over the dissimilarities.

A small improvement of the URF proposed and used in Baron & Poznanski (2016) is to only

count the terminal leaves of trees that label the spectra correctly as real. The decision trees

that label real spectra as synthetic for either of the two spectra in the pair-wise comparison

should be excluded from the similarity comparison, as they apparently can not be trusted to

identify the real features of the spectra. A very detailed description of the URF algorithm and

a nice example in 2D space is shown in Baron & Poznanski (2016), giving an excellent visual

insight of the application of the algorithm. We implement our own code for the URF, based

on the example code of the 2D example. It is fully written in Python using the scikit-learn5

Random Forest implementation and is run on a 64 core computer. The full algorithm can be

found on our Github page6.

Figure 5: Very basic Random Forest with 5 decision trees. The applied input propagates

through the decision nodes and ends up in a terminal leaf indicating whether it is either real or

fake. An identifying number is assigned to each terminal leaf in each decision tree.

5https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier
6https://github.com/Formsma/GAMA-outliers
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Primarily, we want to find outliers in the GAMA data, but we also want to investigate the results

of the URF algorithm to try to understand how the distance scores are determined. For the

algorithm tests, we use the high quality SNR10 subset with 23120 objects. After the synthetic

data generation the amount of objects is doubled, giving a data input of (46240 x 8000) pixels.

As stated in Baron & Poznanski (2016), dimensionality reduction of this input does not increase

the quality of the outlier results. The first runs of the URF algorithm resulted in a lot of bad

spectra and not very obvious outliers, so we want to explore how the URF works. Unsupervised

machine learning can often end up in stirring the algorithm parameters until the result is satis-

factory, but we prefer to explore how the algorithm works and reacts to different kinds of spectra.

To test the response of the algorithm, and therefore the outlier scores of the different spectra,

we apply a few different versions of our data set. We first try different levels of convolution and

see if the quality of the results are correlated with the amount of smoothing. Afterwards, we

test different input sizes for the features of the spectra by changing the amount of interpolation.

These tests only show how the URF responds to the data structure, but we also want to test

the ability to find outliers. We apply the GAMA data and look in the results for the already

known weird spectra reported in the GAMA database. Also, we generate fake spectra, which

are inserted into our data set acting as outliers. Note that these fake spectra are different from

the synthetic spectra shown in Figure 4, as the fake spectra are composed of our own invented

shapes and the synthetic spectra are derived from random sampling of our data set.

3.1.1 Format Tests

As discussed in Section 2, the smoothing of the data is important to suppress noise on the

continuum level, while keeping the emission line shapes intact. We smooth the data via con-

volution using a Gaussian kernel and apply the different kernel sizes shown in Figure 2 using

Equation (1). We apply the kernels on the SNR10 subset and use the data set on the URF

algorithm. The distributions of the outlier scores are shown in Figure 6. In terms of differences,

we can see that the higher the kernel, the smoother the score distribution and the lower the

average score. This is very logical as smoothing removes noisy fluctuations in the data giving

more similar continuum shapes. In every histogram, the main peak with the highest number

of scores traces the most similar galaxies. However, we also observe one or two smaller peaks

inside the distribution. After inspection, we can conclude that these smaller peaks trace the

clustering of very blue and red galaxies, clustered mostly based on their continuum shape. For

every distribution, except the kernel g(x, 3), the individual peaks trace either the very blue or

very red galaxies. For the g(x, 3) kernel both the blue and red galaxies are found in the single

peak. This will be more useful for our search for outliers, as these spectra are mixed and ordered

on other features instead of only the continuum. With these results and the knowledge that

the g(x, 3) kernel preserves the emission and absorption line structure as discussed in 2.2, we

decide to use this kernel in all future runs of the algorithm.
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Figure 6: Distributions of different kernels used for smoothing.

The second data structure test is the variation in the input size of data into the RF. This is

altered via the interpolation done on the original spectra. The more data points there are,

the better the width of features can be determined. The URF does not know that emission

lines can be fitted with a Gaussian, so having many data points per emission line lets the URF

learn about its width. During the project various amounts of data points are used, where we

eventually settled on a total of 8000. This gives around 20 data points for a strong Hα line,

while more subtle lines have at least 10 data points. By lowering the amount of data points we

can not trace the width of emission and absorption features accurately. Increasing the number

of data points results in increased storage space and computational time, while not increasing

the quality of the results as most points are interpolated from the observations.

With the set number of input data points, we also comment on the number of data points used

in the decision trees. Not all 8000 data points are used during learning, but a selection is made

of data points in each decision tree. Only data points with a high gain are used, which describes

the amount of information that can be learned from each data point. The selection is done by

taking the square root of the input as the number of decision points. This is the most common

method when using Random Forests, and was also used in Baron & Poznanski (2016). In our

tests with varying the number of features used for decisions, we observe that for a higher than

the default number of data points results in clustering based on the continuum. Keeping the

number of features to be the square root of the input size ensures that the algorithm learns the

best covariance of the data while we use a minimum amount of points and avoid overfitting.

After training the URF, an interesting question is: which of the data points are used as features

in the random forest and how important are the flux values at specific wavelengths? As the

URF consists of many decision trees, we can not simply display all the splits in the trees in

a figure. However, we can display the feature importance of each data point and get a simple

view of the usage of the features. In Figure 7 the normalized feature importance is shown for

the input data points. High values indicate a high entropy split and are used as first splits in

the trees, while low entropy splits are used as final deciders of the class. We can see that on a

continuum level the entropy is highest and for the well-known emission and absorption lines the

importance is lower. This overview shows that the initial decision is made on the continuum

of the spectra and the spectral lines decide the final classification. For the lower kernels, the

importance is higher at the red end of the spectra. This is probably due to the differences in

the redshift of the spectra where the ends of the spectra can have sharp cutoffs. This suggests

a correlation between outlier scores and redshift, which could be observed very marginally.
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Figure 7: Relative feature importance of input features indicating which data points are used

first. Hydrogen emission lines are indicated by red lines, Oxygen emission lines are indicated

by blue lines.

The last test we perform is the training with the spectra divided over signal to noise (SNR)

bins. As most spectra have a relatively low SNR (see Fig. 1), the URF will mostly train on

those spectra. This gives that the weak emission lines present in higher quality spectra will not

be used as an important feature and important information is lost. Also, a noisy continuum of a

low signal to noise ratio spectrum will have a big influence on its outlier score. By dividing the

spectra up into bins and train the URF on each individual bin we expect to have better results

in terms of important features. This method was suggested and used in Baron & Poznanski

(2016) to reduce the influence of low SNR spectra.

For the SNR10 subset, no difference was found in dividing into bins as all the spectra were

already of good quality. For the SNR5 and SNR2.5 subset, the training was done including

bins as a correlation between the SNR and weirdness score could be observed. However, even

with the binning of the spectra on their SNR, the URF algorithm is still biased towards the

low SNR spectra. This was also found in Reis et al. (2019b), where different algorithms are

compared. Nonetheless, even with a bias towards low SNR spectra, the algorithm can still find

weird spectra among the high SNR spectra as can be seen in Figure 11. The ranked distribution

shows that weird galaxies are also found among the high SNR spectra.

3.1.2 Searching for the Known

The last tests we perform is looking at already known and some self-made outliers. As outlier

detection is searching for the unknown unknowns, we can not directly see if the algorithm is

producing good results using the GAMA data. By inspecting the already known outliers and

inserting spectra (or spectra-like) shapes into the data set we can trace the outcome of different

features in the data.

In the GAMA database, there is already a COMMENT flag added to some spectra with a note or

remark. These comments were added during the redshift fitting and random inspection of the

spectra by the GAMA team. They trace some bad spectra, but also mention some weird spectra

shapes and physical events as AGNs. We apply the URF on the SNR5 subset and overlay the

known fringed spectra, bad splices, and other flagged spectra on top of the results.
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We also make six types of fake spectra, divided into two classes. The first class is composed of

real spectra which are transformed, as seen in the top three spectra of Figure 8. Spectra are

flipped from left to right (LR) by rotating around the central feature, resulting in that the most

right feature becomes the most left feature. Also, some spectra are flipped top to bottom (TB)

rotating along the horizontal axes, which results in that emission features become absorption

features. At last, we insert Gaussian features in some spectra, representing extra fake emission

lines. These three types can trace the sensitivity of the URF to either the total continuum or

emission lines. The second class of fake data has nothing to do with spectra, but merely are

some extreme cases we put in to see how the algorithm responds. The first type is a sine wave,

closely resembling the fringed spectra of the data set. The other two spectra are random noise

and a flat line. We generate 50 spectra of each type in both the classes resulting in a total of

300 fake spectra.

The score of all flagged spectra, from the GAMA team and our self-made ones, are shown on

the score distributions of the SNR5 subset in Figure 9. Overall we see that the outliers are all

assigned a high score, except for the added emission lines. This difference is probably due to

the randomness of the location of these extra emission lines and the fact that the other outliers

are very weird based on their continuum. As the URF was trained on all the extreme outliers

in the data set, the trained network has not learned all the real important features of the data.

A run without these fake spectra would give better results, but this test already showed that

the weird galaxies can be found.

Figure 8: Types of self-made fake spectra
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(a) Fringed (from GAMA) (b) Reduction Error (from GAMA)

(c) Left-right flip (d) Top-bottom flip

(e) Extra emission lines (f) Sine

(g) Random noise (h) Single line

Figure 9: Score distribution of the objects in the SNR5 subset. The location of the known

outliers and fake data are indicated by red lines. Known outliers in (a) and (b) are taken from

the GAMA comments. For the rest of the plots, the types of fake data are shown in Figure 8.
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3.1.3 Searching for the Unknown

To ensure real physical outlier results, the important step is to remove the bad spectra from the

data set, as these are natural outliers and clutter the real interesting results. This also gives that

the algorithm does not have to learn from those outliers, giving that the Random Forest is only

trained on real features. During the project we flagged the spectra that belong to the groups of

Section 2.3 and also remove spectra with a redshift z < 0.002, representing the star-like objects.

In total, we remove 8045 spectra from our subsets before applying the algorithm. We apply the

algorithm on each subset of Table 1 and show the output in the following figures. We expect to

get the best results with the high SNR subsets, as the quality of spectra is good. But, to ensure

we find the weirdest objects of the whole data set we also run on the lower signal to noise ratio

spectra.

For each subset, we show the distribution of the distance scores in Figure 10. The distance

scores are used as the outlier scores of the objects, and the 100 weirdest objects in each distri-

bution is indicated by the red line. With the increasing amount of objects going from left to

right, we see that the shape of the distribution changes drastically. Still, all distributions show

a tail of objects with a high outlier score that we will inspect. We also inspect the relation

between the outlier score and the signal to noise ratio of the spectra. We already hinted on

the correlation earlier in this section, which can clearly be seen in the SNR2.5 subset results in

Figure 11. Due to the bias towards lower signal to noise ratio spectra, finding the reason why

those spectra have high outlier score becomes increasingly more difficult as they contain many

fluctuations on a continuum level.

In Figure 12, we show a nice visual representation of the spectra sorted on their weirdness

scores after being run through the algorithm. In each color map, the objects with the highest

outlier scores are found at the bottom of the map. This can also be seen by the more chaotic

spectra found there. We also observe clustering on the continuum shape of extreme blue and

red galaxies, as can be seen in Figure 12. Even with extensive testing and hyperparameter

optimization, this problem persisted and this will be discussed in Section 6. However, we could

still find interesting outliers which are inspected in-depth in Section 4.

Figure 10: Score distributions of objects in the different subgroups. The 100 weirdest objects

are found on the right size of the red line.
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Figure 11: Relation between the distance score from the URF and the signal to noise ratio of

the objects for all subsets. From top to bottom: SNR10, SNR5 and SNR2.5. Note the increased

bias towards low SNR objects for the SNR2.5 subset.
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Figure 12: Normalized flux of the spectra of subsets (left to right) SNR10, SNR5 and SNR2.5

sorted on their outlier score in each subset. The weirdest spectra can be found at the bottom

of each plot. Note the presence of clustering on extreme blue and extreme red spectra in all

subsets. Due to the big amount of spectra in the subsets, our 250 inspected outliers are only a

single line of pixels in these plots.
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3.2 Variational Autoencoder

Additional to the URF algorithm, we also experiment with the application of a reconstruction-

based outlier detection technique on the spectra. This technique uses a variational autoencoder

(Kingma & Welling, 2013), which can reduce data to a (very) low dimension and fully recon-

struct the input. The difference between the reconstructed and input data can be used to

determine an outlier score. The method was demonstrated on X-ray spectra in Ichinohe & Ya-

mada (2019) and was reported as a good approach to find outliers. On top of outlier detection,

the variational autoencoder can also be used to generate synthetic spectra using the low dimen-

sional representation in the trained network. Varying the input on the low dimensional space

traces the important features in the data and can be used to construct spectra. The variational

autoencoder can thus be used for outlier research, while it is also very useful for dimensionality

reduction and feature importance analysis.

The variational autoencoder is a variant of the normal autoencoder (Hinton G.E., 2006). An

autoencoder is an unsupervised method and it utilizes a neural network architecture to learn

a (non-linear) encoding of data. It consists of two connected parts: an encoder that maps the

input data to a low dimensional representation and a decoder that can fully reconstruct the

original data based on this representation. As the encoded dimension is (much) lower than the

original dimension, the autoencoder has to learn the important features from the data to be

able to fully reconstruct the input. The simplest form of an autoencoder is a neural network of

three fully connected layers as shown in Figure 13. There is an input layer for the data, a single

intermediate layer with a lower dimension than the input layer, and an output layer with the

same dimension of the input layer. The layers are fully connected, as in that all the neurons

in each layer are connected to all other neurons in the next layer via a (non-)linear function.

The network is trained by adjusting the biases and weights of these functions to minimize a

loss function, which is often the reconstruction error between the input and the output. The

dimensions of the layers, the specific function that is used between the layers and its biases and

weights describe the full autoencoder. Two nice examples of the application of autoencoders in

Astronomy are inspecting properties of stellar spectra (Yang & Li, 2015) and classifying light

curves of variable stars (Tsang & Schultz, 2019). These networks are composed of multiple

layers between the input and the low dimensional layer to learn the more complex structures in

the data, giving a more complex neural network than shown in Figure 13.

Figure 13: Basic autoencoder. The input layer x with dimension 4 is encoded to the interme-

diate layer z of dimension 2 via the connected neurons. The output layer x’ is reconstructed

from the lower dimension to the dimension of the input.
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Figure 14: Variational autoencoder. The intermediate layers are two parallel layers repre-

senting the mean µ and log variance σ of a Gaussian generative inference model. The decoder

samples the latent vector z to reconstruct the input.

Variational autoencoders are a modified version of autoencoders in two technical ways: At first,

the encoder and decoder are not fully connected. Instead of encoding the input values to a

lower dimension, the input gets mapped onto a distribution. The decoder samples from this

distribution to reconstruct the input. This makes it that the neural network architecture has

a Bayesian modeling approach, where the best model is learned for the best representation of

the data. The second modification is that loss of the network is not solely based on the recon-

struction error, but also includes a loss term that restrains the mapped distribution of the low

dimension latent variables. The addition of the mapped distribution gives that the layout of

the variational autoencoder differs from the normal autoencoder, as can be seen in Figure 14.

The variational autoencoder consists of two coupled independent models: a recognition model

as an encoder and a generative model as a decoder (Kingma & Welling, 2019). The models work

together to compress the input into a lower latent dimension. The latent dimension consists of

latent variables, which are unobserved variables that represent the observed data. For example,

a physical unobserved variable in the data could be the star formation phase of a galaxy, by

learning from the ratios of the different emission lines. To relate the observed data with the

unobserved latent variables, the decoder tries to model the underlying processes in the data via

the model pθ(x). This is done via the marginal likelihood

pθ(x) =

∫
pθ(x, z) dz , (2)

where pθ(x, z) describes the decoder in the variational autoencoder and z denote the latent

variables. The structure of the decoder is described as

pθ(x, z) = pθ(z)pθ(x|z) , (3)

with pθ(z) the prior distribution of the latent variables. For the prior we use a Gaussian latent

space. This is a simple model, yet works very good in most applications. An overview of deeper

generative models is provided in Kingma & Welling (2019).
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Figure 15: Bayesian representation of the variational autoencoder

The encoder is an inference model qφ(z|x) that compresses the input data into two variables

µ and σ, which represent the mean and log variance for the Gaussian inference model in the

decoder. The variational autoencoder is trained by minimizing the following loss function, the

evidence lower bound (ELBO):

Lvae(φ, θ,x) = L(x,x′) +DKL(qφ(z|x)||p(z)) . (4)

This first part of loss function is the normal reconstruction loss of the autoencoder. The sec-

ond part is the Kullback–Leibler (KL, Kullback & Leibler, 1951) divergence of the variational

autoencoder, which traces two distances. By definition it traces the divergence between the

approximate posterior and the true posterior of the data, representing how good the model can

approximate the data. Additionally, it traces the difference between the encoder and decoder by

comparing the encoder qφ(z|x) and the expected input for the decoder pθ(z). A full Bayesian

representation of the variational autoencoder is shown in Figure 15.

The decoder is a probabilistic inference model by sampling the latent vector z from the encoded

means µ and log variance σ. The sampling gives that the reconstructed data can be made from

a continuous distribution, resulting in the ability to interpolate between the learned features.

For example, if a variational autoencoder is trained on galactic spectra, then the latent dimen-

sion can be used to generate synthetic spectra of any shape by choosing specific values as input.

In the ideal case, the latent variables would represent real physical parameters of galaxies that

can be tuned, but that requires a very complex network. Just as with the normal autoencoder,

if the variational autoencoder is applied to high dimensional data, then there are multiple layers

in the encoder and decoder to learn the complex patterns in the data.

We use a modified version of the variational autoencoder called Information Maximizing Varia-

tional Autoencoders (InfoVAE, Zhao et al., 2017). This method was used as an initial demon-

stration of variational autoencoders on galaxy spectra in Portillo et al. (2020) and showed good

results in greatly reducing the dimension of the spectra to only 6 variables and finding a few

outliers. InfoVAE addresses two potential problems with the application of variational autoen-

coders on big data problems. At first, the KL divergence is not strong enough to be able to map

the different kinds of spectra to a representative distribution. This is especially a problem if the

input dimension is much larger than the latent space dimension, as in our case. Also, the KL

divergence term does not take into account that for a complex network, the encoder can always

match the prior of the decoder. This means that the network did not learn any meaningful

latent variables that describe the features of the data and will result in similar findings as a

normal autoencoder.
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The modifications of InfoVAE are applied via adjustments of the ELBO function. An extra

term Maximum Mean Discrepancy (MMD) is added with additional weighting factors. This

term is based on the idea that two distributions are identical if their moments are the same.

It compares the outcome of the encoder qφ(z) with the expected distribution pθ(z) and forces

them to be similar via training of the variational autoencoder. The exact definitions of DKL

and DMMD as applied in our algorithm are thoroughly described in Kingma & Welling (2019)

and Zhao et al. (2017) and briefly shown in Appendix B. The full ELBO function to minimize

is given by

LInfoVAE(φ, θ,x, α, λ) = L(x,x′) + (1− α)DKL(qφ(z|x)||pθ(z))

+ (α+ λ− 1)DMMD(qφ(z)||pθ(z)) ,

(5)

where the exact value of the weighting values α and λ have to be found via hyperparameter

optimization. As recommended in Zhao et al. (2017) we will use α = 0, which gives that the

KL divergence is the same as in (4). For λ we test different values in the range λ = 5 − 15 to

search for the best latent variable representation.

3.2.1 Training

We train the InfoVAE with the SNR5 subset that was also used with the URF implementation.

This subset contains around 63839 good spectra with high signal to noise ratio, giving a big

data set with high quality data for this experimental method. We test two different networks,

one with the input dimension of 8000 points as used with the URF, and one with the input

dimension of 1000 points as used in Portillo et al. (2020). Lowering the input size reduces the

information put into the network, but greatly improves the training speed. We compare the

reconstruction capability of the networks and look if they can used for outlier detection.

The neural network structure in the variational autoencoder is very important for the perfor-

mance of the models and has to be carefully tuned to get the best results. We tested different

networks with multiple layers of varying sizes. The lowest reconstruction errors were found

with three fully connected layers with the dimensions 1000-500-100 converting the 8000 input

points to 6 latent variables. Even with the low number of 6 latent variables galactic spectra

can be fully reconstructed with low errors as shown in Portillo et al. (2020). The network

parameters used in their work are very similar to our optimal network, suggesting that we

also have a good network. For the network with only 1000 input points the network structure

is the same, but using the first encoding layer as the input layer omitting the first encoding step.

We build the neural network with Python using Keras7, a high-level API for the Tensorflow 2

platform. An overview of the full network is shown in Figure 41 in Appendix C. The layers

are connected with the non-linear ReLu activation function (Nair & Hinton, 2010) that can

learn the non-linear relationships between the input points. The output layer uses a linear

activation as some spectra can have negative values due to normalization. The network is

trained by minimizing the loss function shown in (5), using the built-in Adam optimizer with

default values. The code can be found on the Github page.

7https://www.tensorflow.org/api_docs/python/tf/keras
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Before training, we split the subset into a training set and validation set. We train on 95% of

the spectra and use the remaining 5% validation data to probe the performance of the network

on unknown data. We stop training if the performance on the validation set does not increase

for more than 30 epochs. For both input sizes, this happens at around 400 epochs given a batch

size of 2048.

The progress of loss minimization during the training is shown in Figure 16. The loss is composed

of three components, the standard MSE loss, the KL Divergence loss, and the MMD loss.

According to the theory, the MMD loss should be higher than the KLD loss as it is supposed to

support the convergence. However, this is not the case, making the MMD loss obsolete in our

training. This difference between theory and our observed MMD loss is due to different scaling

parameters in the loss function. Unfortunately, if we apply those correct scaling parameters,

then the MMD loss is dominating the loss function by a few magnitudes prohibiting the neural

network to learn anything from the data. The best performance was found without using the

MMD loss during training. This is different as reported in Portillo et al. (2020), but as they

did not show the loss minimization plots during training, we can not make a direct comparison

between the performances.

Figure 16: Loss minimization during training for both the training and validation data

3.2.2 Latent Space Representation

The trained variational autoencoder consists of two models, the recognition model and the

inference model. We can split these models and use one at the time to either convert the

spectra to their latent space representation using the encoder, or generate synthetic spectra

from (random) latent variables using the decoder. We first inspect the encoded latent space

representation of the data set to see if the network has learned features in the data. All the

spectra are converted to their 6-dimensional latent space vector, where ideally each variable or

a combination of variables trace the features in the data. We compute the mean and variance of

each individual latent variable and inspect the distribution of the values. In Figure 17 we show

the distribution of latent space values for all spectra. If the distribution of a latent variable

is similar to the normal distribution N (0, I) of the prior, then the latent variable represents

important features of the data set. If it is not similar, it is either not used for reconstruction,

or used as a support variable for a complex relationship in the data. For 4 of the 6 latent

variables, we see a good or similar shape for the distribution of the latent variable indicating

learned features.

24



Figure 17: Distribution of the values of each latent variable. If the distribution is similar

to the prior of the Gaussian inference model, then the latent variable traces is used to trace

important features.

We generate synthetic data using the information from the distributions and apply it on the

decoder. If we take the mean of the values for each latent variable and decode it to a spec-

trum, the decoded spectrum should represent the most common type of spectrum found in the

data. By tuning a single latent variable at a time using the variance of the distribution, we

can see the features that each individual latent variable traces. In Figure 18 we show generated

spectra from the latent space by changing only a single variable at a time and using the mean

of the other latent variable values. The value of the varied latent variable is shown for the

individual plots. This method of displaying the latent variable changes is directly taken from

Portillo et al. (2020), and we can compare the different features found by our network and theirs.

For 3 of our latent variables (z2, z3 and z4), we can easily see what features of the spectra

depend on the values of the latent variables as line intensities or continuum shapes vary a lot.

The other 3 do not show major differences at first sight, but show more subtle differences in

absolute values on a continuum level. The difference between the synthetic spectra of latent

space variable z1 is difficult to see in the representation of Figure 18, but the continuum is

either slightly flattened or curved depending on the value. For z5 and z6 we see a slight dif-

ference in the ratios between different emission lines and different heights of the continuum flux.

With both Figure 17 and Figure 18 we can see that the latent variables that have their distri-

bution matching the prior show the most obvious features when they are varied. For example,

latent variable z4 matches the prior perfectly and shows significant variation in the emission

line strengths and continuum shape. Unfortunately, we could not train the network to have all

6 latent variables matching the prior. As shown in Figure 16 and discussed in 3.2.1, the MMD

loss should have helped to force the distributions to match the prior, but this only resulted in

worse performance when applied in our algorithm. In Portillo et al. (2020), all latent variables

trace more obvious features such as line broadening or very big changes in line emission ratios.

Unfortunately, even with extensive comparison between our method and theirs we could not

reproduce this.
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Figure 18: Synthetic spectra generated from the trained variational autoencoder. In each

plot, we only change a single latent variable at a time. This shows the relation between the

inference model and the latent space. Note that is a similar representation as in Figure 14 in

Portillo et al. (2020) to compare the performances of the networks.
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In Figure 19 we cross-correlate two of the latent variables (z2 and z4). As shown, with only

these two latent variables we can already represent a good amount of types of spectra ranging

from blue galaxies to red galaxies, including and excluding emission lines. All 6 latent variables

trace some or multiple common features of the spectra, and combining them lets us generate

most types of galaxies found in our GAMA subset. As outliers have either uncommon features

or weird lines, we are confident that the variational autoencoder can not reconstruct those

correctly resulting in high outlier scores.

Figure 19: Synthetic spectra generate from the trained variatonal autoencoder changing mul-

tiple latent variables. With only two latent variables a huge range of spectra can be generated.

Note that no y-axis values are given as the absolute flux values are not real. We only want to

show the different shapes and features of the spectra using these two latent variables.
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3.2.3 Reconstruction Capability

We have shown that the variational autoencoder is capable of generating synthetic data given

only 6 parameters. But it is also important to check if the spectra are reconstructed correctly.

This will also be used for outlier detection, as uncommon features are not learned by the neural

network. We will look at the reconstruction of a few selected spectra, including either very

common, or uncommon shapes. We also compare the reconstruction capability between the

network with 8000 and 1000 input points.

First, we look at three spectra with clear emission lines visible to see if those are reconstructed

correctly. In Figure 20 the spectra are shown including the reconstructed interpretation using

the variational autoencoders with the inputs of 8000 data points or 1000 data points. From top

to bottom we show increasingly more complex emission lines. Overall, the continuum is traced

very well for each spectrum. Spectrum G12 Y1 DX1 211 has high emission for the most common

star formation lines and shows good results in the reconstructed version. In G09 Y4 249 125 the

Balmer emission lines are broadened due to activity in the galaxy. The reconstructed version

can trace some the broadening of the lines, but does not reconstruct it completely correct. For

G09 Y1 DS2 065, the additional complex structure at the Balmer lines is not reconstructed at

all, giving a high reconstruction error. The more the complexity in the emission lines, the more

the reconstruction error tracing a possible outlier.

In Figure 21 we show the spectra of a very ’normal’ galaxy and a blended system in which an

M-dwarf sits in front of a galaxy. Spectrum G12 Y1 DS1 268 is reconstructed very accurately,

where only very small fluctuations on the continuum level are missed. On the other hand,

spectrum G15 Y2 003 165 shows a big difference between the input and the reconstruction.

This is due to the foreground spectrum of the M-dwarf interfering with the flux of the galaxy.

For all blends, as the full spectrum is redshifted using the emission lines of the background

galaxy, the features of the M-dwarf will always be in seemingly random locations.

Figure 20: Reconstruction capability of the trained variational autoencoder for increasingly

more complex Balmer lines.
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Figure 21: Reconstruction capability of the trained network for a blended object. The top

spectrum is a very good reconstruction of a single galaxy, while the bottom spectrum is a galaxy

with an M-dwarf star in the foreground. While the x-axes indicated the rest-frame wavelength,

the foreground flux of the M-dwarf is redshifted giving the redshift of the background galaxy.

These examples of uncommon spectra show that the trained variational autoencoder can re-

construct common features in the data very accurate, but fails to reconstruct extra complex

structures or blended objects. The reconstruction errors of these objects are higher than those

for normal spectra, giving us great confidence in the usage of the variational autoencoder in the

search for outliers. Looking at the reconstructed spectra from variational autoencoder with 8000

input points and 1000 input points, we do not see any major differences in reconstruction er-

rors. On closer inspection, we do see an increased performance of the 8000 input network at the

heights of the emission lines. We can show many more examples of bad reconstructed spectra,

but we will refer the reader towards Section 4, in which the types of outliers are discussed.

3.2.4 Outlier Scores

The variational autoencoder is used as a reconstruction based outlier detection method. This

uses the fact that it learned the important features of the majority of the data, while lacking the

knowledge of weird shapes or features found in outliers. Besides computing the reconstruction

error, we also look at the latent space representation of all spectra. This low dimensional latent

space contains, just as with the distance matrix of the URF method, important information of

the spectra. We can use this information to find outliers inside the latent space, by looking at

points far from the mean of the distribution.

We start by looking at the reconstruction error of the spectra defined by a function that com-

putes the differences between the input flux values and the reconstructed flux values. Many

existing metrics can be used, but one could also make up one on their own. We use a comparable

metric as used in Ichinohe & Yamada (2019), where they defined the outlier score via a statistic

logarithmic chi-square metric.
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(a) Outlier scores computed via the reconstruc-

tion error of Equation (6)
(b) Outlier scores computed from the latent

variables using LocalOutlierFactor method.

Figure 22: Outlier score distributions based on the output of the variational autoencoder.

The 100 weirdest objects are found on the right side of the red lines.

We use a slightly modified version of their metric, omitting the logarithmic scaling, and apply

median

{(
(I −R)√

I

)2
}

, (6)

on the reconstructed spectra of the SNR5 subset as the outlier score, where I is the input and R

the reconstructed output. Another suggested metric in Ichinohe & Yamada (2019) is the maxi-

mum difference between the reconstructed and input via max(|R− I|), which can trace a single

high emission line that are not correctly reconstructed. Application of this simpler metric on

our data showed outliers that consist almost exclusively of spectra with a single extremely high

emission line most probable originating from bad reduction or a cosmic ray event. We normalize

the output of (6) such that weird spectra are assigned a score close to 1. The score distribution

is shown in Figure 22a, which shows a high peak of spectra with a similar reconstruction error

and a tail of outlying spectra with a high reconstruction error, indicating the outliers. Just

as with the URF, we also look at the relationship between the outlier scores and the signal to

noise ratio of the spectra to investigate any bias. In Figure 23 we can see that there is no bias

towards lower signal to noise ratio spectra as was found with the URF method.

Figure 23: Relation between the reconstruction outlier score and the signal to noise ratio of

the spectra. In comparison to the URF, we do not see any bias towards low signal to noise ratio

spectra.
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We also look at the latent space variables that trace the encoded features of the input spectra.

As the variational autoencoder is not trained to encode uncommon or weird features correctly,

spectra containing those can end up with very different latent space vectors in comparison to

the normal spectra. Using the latent space variables to find outliers is computational beneficial

as not all the spectra have to be reconstructed. However, the latent space has to be explored

with a simple unsupervised clustering method instead, adding up to the computational time.

A second disadvantage is that we can not see why a spectrum is assigned a high outlier score,

so reconstruction is still necessary in the end. We still want to explore this method to examine

the capabilities of outlier detection of spectra in an encoded space.

In Portillo et al. (2020), they briefly suggested and used the unsupervised outlier detection

method LocalOutlierFactor (LOF, Breunig et al., 2000), an easy to use algorithm found in the

scikit-learn package in Python8. In short, the method computes the local density of objects

by looking at its k nearest neighbors. For each object, its local density is compared to that of

its neighbors and a score is assigned based on this difference. The Python based method out-

puts a negative outlier factor for each object. We define our outlier score with log[−1 · NOF],

where NOF is the negative outlier factor, and get the score distribution as shown in Figure

22b. Normal objects can be found at an outlier score of 0, while outlying objects have higher

values. Similar to the reconstruction score, a high peak with normal galaxies is found with a

tail of outlying galaxies. The relation between the LOF score and signal to noise ratio of each

spectrum is shown in Figure 24, where again no correlation is found between the outliers and

its quality.

We show the spectra sorted on their outlier score for both the reconstruction based method and

the latent space method in Figure 25. In the overview, we see no obvious clustering on similar

types of spectra as was found in the overview in Figure 12. The main reason for this difference

is that the URF outlier algorithm method is distance-based, using pair-wise distances of the

spectra as the basis for the outlier scores. The variational autoencoder reconstructs all spectra

individually lacking any pair-wise information, resulting in less clustering of similar spectra.

Figure 24: Relation between the LOF score and the signal to noise ratio of the spectra. In

comparison to the URF, we do not see any bias towards low signal to noise ratio spectra.

8https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor
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Figure 25: Normalized flux of the spectra of subset SNR5 sorted on their outlier score. The

weirdest spectra with the highest outlier scores are found at the bottom of the maps. Left:

sorted on outlier score determined via reconstruction error. Right: sorted on outlier score

determined via LocalOutlierFactor.

At last, we show the correlation between the outlier scores computed from the latent space

vectors and the outlier scores computed from the reconstruction errors in Figure 26. While

both method find their own types of outliers, we do see an overlap of outliers in the grey colored

area. We also see that there is not a very strong correlation between the scores. This suggests

that, while the latent space vector represents the important features of the spectra, the decoder

adds another dependency to the types of outliers we find. Also, while the encoder will map

known features to a specific latent space vector, uncommon or weird features might be mapped

to a random value as it is unknown to the encoder. Another possible reason for the difference

is the specific metric we used to compute the outlier scores. We inspect the types of outliers

found by both methods in Section 4.
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Figure 26: Correlation between outlier score methods for the variational autoencoder
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4 Outliers

We inspect the spectra that have the highest outlier scores. The primary search for outliers was

done with the URF algorithm, so we inspect those first and compare them with the results of

the variational autoencoder afterward. As we used multiple subsets, we have to define a method

to find the weirdest spectra in the GAMA survey. First, we look at the highest quality subset

SNR10 and inspect the weirdest 100 spectra. Afterward, we inspect the SNR5 subset for another

100 weird spectra we did not find in the SNR10 subset. At last, we inspect the SNR2.5 subset,

in which we had a lot of difficulty in finding out why some spectra are assigned a high score.

Therefore, we only inspect the weirdest 50 spectra from the lowest quality subset. This gives a

total of 250 unique weird spectra when combined. We will discuss these decisions in Section 6.

We expect to find many outliers that can be explained, but hope to also find interesting outliers

that we do not understand. There are definitely more interesting outliers in the GAMA survey

that we do not inspect in this Section, but these are up for the reader to find as we provide a

full list the outlier scores on the Github page.

4.1 Unsupervised Random Forest

Before diving into the outliers, we note that a lot of the spectra are weird due to instrumental

or reduction errors. These spectra naturally came up with the highest weirdness scores and

had to be removed manually to ensure interesting outliers. This iterative procedure resulted in

a total of 2926 spectra that showed fringing, not earlier reported by the GAMA team. More-

over, 1283 spectra showed a bad splice in the continuum and were unusable, also not earlier

reported. Including the ND1 field and (sky) reduction errors, we conclude that at least 4.5%

of the AAOmega spectra in the GAMA survey can not be used for big data projects, unless a

reliable method can be developed to correct all the spectra. This percentage is slightly higher

as earlier reported in Hopkins et al. (2013). We attempted to defringe the fringed spectra, but

this introduced additional artifacts in the data due to the differences between the fringes. The

full list of bad spectra is provided on the Github page to be used in other projects.

It can be very difficult to determine why a spectrum was assigned a high outlier score, as it

might not be obvious why the algorithm has set a specific score for a spectrum. We try our best

at investigating what makes the outlying spectra interesting and comment on its presence in the

literature using SIMBAD (Wenger et al., 2000). First, we classify a great amount of spectra via

visual inspection, as there are obvious features like extreme emission lines or very broad features.

For the more difficult spectra, we look in-depth at the flux values of the known emission lines,

additional emission lines, or other weird features in the continuum. We find many similar types

of spectra as in Baron & Poznanski (2016) and the classification groups will be very similar. The

different types of outliers are extensively described in the next parts and tables of the inspected

spectra are provided in Appendix D. Overall, we divide the spectra into 4 groups that define

the main characteristics of the spectra. The first group is composed of spectra with unusual

velocity structures or broadened emission lines, tracing different active processes in the galaxies.

The second group consists of spectra with extremely strong emission lines, uncommon emission

lines, or unusual emission lines ratios. Some spectra show characteristics of two objects types,

like a star in front of a galaxy, and are grouped as blends. The remaining spectra are grouped

mainly on their unusual continuum shapes, or contain weird non-physical features.
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Figure 27: Three types of spectra with unusual features from kinematic processes inside the

galaxy. G09 Y4 226 135 is a QSO at relatively high redshift showing broad Ly-α and Carbon

emission. The spectra G09 Y4 215 016 and G09 Y1 DS2 065 show broadening of, or additional

structure at the Balmer lines tracing active processes in the galaxy.

4.1.1 Unusual Velocity Structure

The first and most obvious outliers are due to different kinematic processes in the galaxies

giving rise to unusual velocity structures or line broadening. These are the easiest to inspect

as there is clearly some additional structure in an otherwise normal spectrum. Among these

spectra, we find many Quasi-Stellar objects (QSOs), different Active Galactic Nuclei (AGNs),

and a few spectra that show minor broadening in their emission lines.

In total, we have 50 spectra with features that can be traced back to different kinematic pro-

cesses going on in the galaxies. We find 14 Quasi-Stellar Objects at relative high redshift with

Carbon and Silicon emission, whereof 7 objects are Lyman-α emitters. These high redshift

spectra are actually not found due to the emission lines, but are assigned a high outlier score

as they are a flat line in our interpolated wavelength range. Of the spectra in our wavelength

range, we find 27 spectra with additional (complex) structure at either Hα or all the Balmer

lines. At last, 9 objects have slight broadening at the most common emission lines.

The 14 high redshift QSOs are easily found, as they fall outside of our interpolation range. Note

that the term ’high redshift’ is only relative to the other objects in the GAMA survey. These

objects could also be found by looking at the redshift values, but the GAMA survey provides

no information about the flux of the emission lines in these spectra and classifying still has

to be done via visual inspection. These spectra show broad emission lines for Carbon, while

the spectra at slightly higher redshift also show broad Silicon, Lyman-α, and even Lyman-γ

emission. Out of these 14, only two are earlier reported in the 2dF QSO survey (Croom et al.,

2004) and 9 are flagged as QSO in the GAMA database. We show an example of the QSO

spectrum G09 Y4 226 135 in Figure 27 and can easily see the broad emission lines.
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Additional to high redshift QSOs, we find 27 spectra with unusual velocity structure features

originating from active galaxies. Of these spectra, 19 have extreme broadening of the Balmer

lines and 8 show a more complex structure around the Balmer lines. Two examples of broad-

ening and an asymmetric additional structure at the Balmer lines are shown in Figure 27. The

extreme broadening of Balmer lines is due to active galactic nuclei, of which most spectra are

of Seyfert-1 galaxies. Additional to the broadened Balmer lines, we also observe other velocity

structures in the continuum of G09 Y4 215 016. These can not directly be traced to specific

emission lines and probably trace more outflows of the active galaxy. The complex structure in

G09 Y1 DS2 065 is found at both the Hα and Hβ lines, indicating a relation between the struc-

ture and the Balmer lines. A different spectrum with this structure was also found in Baron

& Poznanski (2016) and was modeled to be a combination of both broad Balmer emission seen

in Seyfert-1 galaxies, and Balmer absorption in supernova ejecta (Faran et al., 2014). Most of

the spectra are already reported in the quasar catalogs of Rakshit et al. (2017) and Toba et al.

(2014), but 9 of these spectra have either no notable references or are classified as stars.

A special mention is the spectrum G09 Y6 090 043, which showed a broad emission structure at

the MgII emission line not recognized by GAMA. This line is often very variable (Homan et al.,

2019), so this spectrum could be an example of an observation of an event that only exists on

a short timescale. However, as there are no other spectra of this galaxy in other surveys, this

variability can not be checked.

At last, we find 9 spectra with a slight broadening of emission lines or minor additional structure

in the Hα and NII structure. The spectrum G12 Y1 DS2 080 showed minor broadening of high

emission lines, tracing star formation and some activity. This spectrum is of a rare type called

Green Bean Galaxies and is one of the 14 spectra studied in Prescott & Sanderson (2019).

These Green Beans have a very blue continuum, making them a subtype of Type 2 AGNs.

Figure 28: Three types of spectra classified based on their emission lines. From top to bottom:

Extreme star formation and BPT outlier, Iron emission lines presence, and a post-starburst

spectrum. Emission lines: red = Hydrogen, blue = Oxygen, orange = Helium, grey = Iron.
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4.1.2 Emission Lines

Most of the outliers show a range of different emission lines with different intensities, but do not

show any obvious unusual velocity structures. This big group is composed of spectra that have

very strong or uncommon emission lines, including spectra with unusual emission line ratios

tracing the different star formation phases. We find 114 spectra with very high emission lines

of the common elements: Hydrogen, Helium, Oxygen, Nitrogen, and Sulfur. Of these, 29 are

outliers on the BPT diagram (Baldwin et al., 1981) and can be classified via their location on

the diagram. Another interesting type of galaxies in this group is the post-starburst (E+A)

galaxy. The spectra of these 8 galaxies show Hδ absorption tracing recent star formation, with

sometimes still showing on-going star formation via the strong Hα emission. At last, we have 4

galaxies showing either uncommon or unknown emission lines in their spectra.

Many spectra show signs of star formation, as seen by the dominating strong Balmer emission

lines present in the spectra. Additional to the Balmer lines, there are often many other emission

lines. This often leads to looking like the continuum is a flat line, as can be seen in spectrum

G02 Y5 114 291 in Figure 28. The heights and ratios of all these emission lines can be used

to study the processes in the galaxies and trace the star formation phase or presence of active

galaxies. We compute the ratios of a few emission lines and plot them on the BPT diagram.

The BPT diagram is a popular method to classify emission line spectra as they can classify

spectra very good based on simple observations. We use the provided emission line fluxes from

the GAMA survey where available and compute the line emission ratios of NII/Hα against

OIII/Hβ. In Figure 29 we show the line emission ratios of all weird objects that belong to our

kinematics and emission line groups. In the background, the distribution of the emission lines

ratios of all GAMA spectra is shown as a comparison. For some objects, we have no emission

line information as they fall outside of the observed wavelength range due to high redshift.

Figure 29: BPT diagram of the ratio NII[6548]/Hα versus OIII/Hβ. Both the axes are in

log space and the background is composed of the distribution of these ratios for all GAMA

spectra. Two theoretical lines (Kewley et al., 2001 and Kauffmann et al., 2003) probe the

division between the star formation region and active galactic nuclei. The colored points are

spectra from the groups described in Section 4.1.1 (red) and Section 4.1.2 (green).
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Many of the high emission line spectra, shown as green in Figure 29, sit along the star forma-

tion track. The star formation track and AGN area in the BPT plot are divided by the purple

(Kauffmann et al., 2003) and orange (Kewley et al., 2001) lines originating from earlier studies

on galaxies. As the points in the BPT diagram indicate the classes we assigned to them, we

can see that some of them are wrong as a few green points lie within the AGN region. This

shows that some of the spectra we initially grouped by eye on the strong emission lines also

have active processes in the galaxy. In total, there are 29 spectra that are on the extreme ends

on in the BPT diagram and can be considered weird as they have very extreme line ratios. Only

10 of the spectra with strong emission lines are classified as either an emission-line Galaxy or

HII Galaxy in the literature.

A special type of spectra not captured by the BPT diagram, but one with interesting emission

line ratios, originates from port-starburst galaxies. These spectra have a strong Hδ absorption

line, which is an indication of an A-star dominated galaxy. These galaxies are often called E+A

galaxies, as they originally thought that this type is only composed of Elliptical galaxies with A-

type stars. Models suggest that this absorption is only possible for galaxies with a recent burst

of star formation and now goes trough either none, or passive evolution of star formation (Goto

et al., 2003). We can differentiate two sub-types by looking at the presence of Hα and Oxygen

emission lines tracing ongoing star formation. We find 8 spectra with strong Hδ absorption

tracing recent a recent burst of star formation. Of these, 3 spectra show ongoing star forma-

tion, as emission lines are present. An example of an E+A galaxy, spectrum G15 Y4 210 008,

is shown in Figure 28.

Additionally to spectra with high emission lines, we also find 17 spectra with either weird line

ratios or additional unknown lines. Of these 17 spectra, we have 10 spectra that lack any other

emission line other than the Hα-NII structure. We also find 3 spectra that have complex NII

emission structure dominating over Hα. Unfortunately, these spectra do not show up on the

BPT diagram in Figure 29 as there is no flux information of these spectra due to the noisy

additional structure. The last 4 spectra include uncommon or weird single emission lines and

we look at these individually.

Spectrum G09 Y1 CN2 290 has numerous Iron lines along its broad emission lines. The Iron lines

are present at 5303Å, 5722Å, 6088Å, and 6376Å as can be seen in Figure 28. These coronal

lines originate from gas exposed to X-ray radiation and is investigated in Wang et al. (2012).

The Iron lines fade out over a time scale of years suggesting a transient nature. This is again a

nice example of an observation of an event on a short time scale.

In both the spectra G15 Y1 CS2 180 and G12 Y1 GND1 125 we observe a single unusual strong

emission line which aligns with an Iron line. The spectra are shown in Figure 30, where the

single emission lines sit at 5304Å and 5435Å tracing FeXIV and FeI respectively. In contrary

to spectrum G09 Y1 CN2 290, there is only a single Iron line suggesting either a different origin

of the emission or absorption of the other emission lines in the line of sight. Also, the FeI

line is very easy to ionize and will only be visible in very cool regions, making it a very weird

observation.

38



Figure 30: Two spectra with unusual single emission lines.

The last spectrum with an uncommon line is G12 Y1 HND1 169, which shows strong NI[5200]

emission along the usual emission lines. This line is unusual, as atomic Nitrogen is easy to ionize

and therefore not often observed. It can only exist in cool regions inside the galaxy shielded

from ionizing sources. None of the spectra with unusual extra lines have been mentioned or

investigated in the literature. As we primarily search for the outliers, we will not elaborate on

the sources of these unusual lines.

4.1.3 Blends

We find 8 spectra that show features of two different objects. Almost all of the blends are

composed of a foreground star in front of a galaxy. There are 6 spectra with an M-dwarf and 1

with an A-type star in front of a galaxy. The spectrum of an M-dwarf can easily be observed via

its characteristic features. In Figure 31 we show the spectrum G15 Y2 003 165 redshifted based

on the emission lines of the background galaxy. In spectrum G09 Y5 018 163 (not shown here)

an A-type star is found in front of a Galaxy which shows very blue emission, stellar absorption

lines, and galactic emission lines. Visual inspection at the coordinates of the blended spectra

give nice pictures of the stars in front of the galaxies. For the spectrum in Figure 31, the target

object was actually the fore-ground star itself, as can be seen by the central marker in the image.

At last, we also find 1 blended object in which a small galaxy is in front of a bigger galaxy.

While the foreground galaxy is targeted, it is unknown if the emission lines originate from the

foreground or background galaxy as the galaxies are almost at the same distance. None of the

blended objects are found in the literature.

Figure 31: Example of an M-dwarf star in front of a galaxy. Note that we can see the

characteristic star spectrum including emission lines of a galaxy. Balmer emission is indicated

by red, OIII by blue, NII by green, and SII by yellow lines.
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Figure 32: Two examples of galaxies we classify as extremely blue or diagonal red

4.1.4 Continuum

The last group of weird spectra is composed of (weird) features on a continuum level. This

group mainly consists of extremely blue and diagonal red galaxies, as well as spectra with weird

continuum shapes. In total, we have 33 spectra that probably have a high outliers score due to

their continuum. Of these, 21 spectra have very high flux values in the blue end and 7 spectra

are diagonal lines with high flux values at the red end of the spectra, as can be seen in Figure

32. These two types have high outlier scores as the URF algorithm showed clustering based on

a continuum level. This could also be seen in the visualizations of the sorted spectra on their

weirdness scores in Figure 12. Along with these extreme galaxies, we also have 3 galaxies with

high continuum flux at both the blue and red end making a sort of valley shape. In contrary

to this, we also have a hill shaped spectrum with no emission lines present.

Most of these spectra are unwanted as outliers, as they are solely outliers due to their continuum

shape without interesting features. However, we did find an object with a very weird structure

which is shown in Figure 33. Spectrum G15 Y6 082 045 has a very big unexplained feature

around 7000Å. This spectrum had the highest outlier score in all of our runs and absorbed

much of our time thinking about what this unknown unknown could be. Sadly, this weird

feature does not trace any physical process going on in the galaxy, as we eventually found three

more spectra that show a very similar structure in the same position in the observed frame.

Looking at those spectra combined, we also notice that this feature goes along with a bad splice.

We classified the other three spectra as bad spectra, but keep G15 Y6 082 045 as an outlier as

it could have been a very interesting find if it was real.

Figure 33: Spectrum with a seemingly weird velocity structure. We also show an SDSS DR9

picture of the galaxy, showing no extreme outflows.
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Figure 34: Overview of the types of outliers.

4.1.5 Summary of Findings

In our search of the weirdest galaxies in GAMA, we found many different types of galaxies.

The overall findings are summarized in Figure 34. Along with the real outliers, we also find 19

spectra that contain weird reduction errors or artifacts from reduced skylines causing a high

outlier score. These spectra are different than the systematic bad spectra we flagged earlier

and remain in the data set. Overall, the URF algorithm could find a lot of outliers as shown

in the previous sections. However, as can be seen in the pie chart and in the visualizations of

the algorithm runs (see Fig. 12), we also find a few spectra that contain no interesting features.

These spectra are clustered on their continuum as many spectra with either high blue flux values

or high red flux values are found together. As this behavior was not inspected or mentioned

in Baron & Poznanski (2016), we do not know if this is a problem or feature of the algorithm

itself or due to our implementation.

4.2 Variational Autoencoder

We also investigate the weirdest spectra found by the variational autoencoder. We will not

investigate the top outliers as in-depth as done with the URF, but rather look at the performance

of the variational autoencoder and the different types of outliers it can find. Therefor, we will

not provide the tables of the weirdest spectra as done with the URF method, but refer the

reader to the outlier scores provided on the Github page. We computed the outlier scores with

the variational autoencoder using two different methods: via the reconstruction error, and by

applying LocalOutlierFactor (LOF) on the latent space variables. Using the reconstruction

based outlier scores we find 14 spectra within the weirdest 100 objects that were already found

with the URF algorithm and were inspected in Section 4.1. For the LOF based scores, this is 15

spectra. Looking at the weirdest spectra from both the scores of the variational autoencoder,

and the inspected spectra from the URF, we find 5 spectra that are outliers in all of the methods

used in this research. Of these spectra, 2 have extremely high emission lines, and 3 show active

processes.
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4.2.1 Reconstruction Error

The most common way to use the variational autoencoder for outlier detection is by looking

at the reconstruction error of the individual objects. Spectra containing either uncommon or

weird features will not be reconstructed properly and its reconstruction error can be used as

an outlier score. In Section 3.2.3 we showed the reconstruction capability of the variational

autoencoder on two types of spectra: blended spectra with a foreground star and galaxy, and

spectra of different types of active processes in the galaxy. These examples showed that spectra

with complex structure or emission at uncommon wavelengths will have a high reconstruction

error, resulting in a high outlier score. We expect to find many spectra with these types of

broad features, as those generate high errors. We also expect to find spectra with many strong

or uncommon emission lines, as these can give a high outlier score via the squared relationship.

We inspect the 100 weirdest spectra with the highest reconstruction errors to look at the global

performance of this outlier detection method. As we can inspect the reconstructed output of the

variational autoencoder, this method makes it very easy to investigate why the input spectra

are considered outliers. Of the outlying spectra, 64 spectra have a high outlier score due to

either a weird continuum shape, or weird features originating from reduction errors. We show

a few selected spectra in Figure 35 including their reconstructed version from the variational

autoencoder. A (slightly) weird continuum shape can result in a high outlier score as almost all

data points have a high reconstruction error. Among the reduction errors, we find many single

high emission lines originating from inaccurate sky reduction or possible cosmic ray events. Also,

the weird spectrum G15 Y6 082 045 (see Fig. 33) is again found as an outlier. Note that, while

we also found many outliers based on their continuum with the URF method, the continua we

find with the variational autoencoder always have very unusual shapes. The outlying continua

found by the URF were mostly based on the clustering of very blue or red galaxies.

Figure 35: Examples of spectra with high reconstruction error primarily based on their con-

tinuum shapes. From top to bottom: Spectrum with a higher continuum at high wavelengths

as reconstructed, a very nice edge-on spiral with more complex continuum as reconstructed,

and noisy fluctuations at low wavelengths contributing significantly to the reconstruction score.
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Figure 36: Selection of outliers found via the reconstruction error of the variational autoen-

coder, not found by the URF method. From top to bottom: blended spectrum containing an

M-dwarf, AGN, and strong emission lines. Balmer line locations are indicated with the red line.

The other 36 outliers, that contain no major reduction errors or unusual continuum shapes, are

very similar to the types of spectra found by the URF. A selection of these outliers is shown

in Figure 36. As expected, we find many spectra with high or broad emission lines, including

spectra with complex structures at the emission lines. We also find two E+A galaxies, of which

only one was found by the URF. At last, we find 8 blended objects consisting of an M-dwarf in

front of a galaxy.

Overall, using the reconstruction errors as the outlier scores gives many weird spectra have

unusual continuum shapes. This is expected, as for a weird continuum shape all of the data

points contribute to the reconstruction error. We also find many interesting outliers, similar

to the types of outliers found by the URF method. Using the reconstruction errors of the

variational autoencoder as an outlier score can give good results, given that all the spectra with

reduction errors are removed and weird continuum shapes are considered interesting.

4.2.2 Latent Space Clustering

The second method of outlier detection using the variational autoencoder is looking at the

clustering of the latent space variables. This method completely omits the inference model of

the variational autoencoder, using only the encoded latent variables to find outliers. Outlying

spectra have either uncommon or weird features that are not recognized by the encoder, and

might be encoded to a weird latent space vector. If we have found the outlying latent space

vectors, then we have to use the inference model to decode the spectrum to try to understand

why it is an outlier. So, while not using the inference model in the search of outliers, we still

need it to investigate the outcome.
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Figure 37: Spectrum showing double peaked emission lines. An extra blue-shifted component

can be seen at the Oxygen emission lines (indicated by blue).

We inspect the 100 weirdest latent space vectors by reconstructing them to spectra using the

decoder. In comparison to the reconstruction errors as outlier scores, we quickly see that there

is a lower amount of outliers based on their continuum or containing reduction errors. A total

of 42 spectra are outliers due to this, while for 58 spectra we see other interesting features. The

major difference between the reconstruction based and the latent based outlier scores is that

we find more outliers based on their emission line strength and ratios. For example, there is

not a single spectrum containing a blend of two objects, while we do find many spectra with

weird emission line ratios. A few spectra show very strong OII emission relative to the other

emission lines or strong NII emission in comparison to Hα. On top of this, we find a type

of spectrum that we have not found before with any other method. As shown in Figure 37,

spectrum G15 Y3 007 236 shows double peaked emission lines. The oxygen lines show an extra

blue-shifted component, while the Hα structure and SII emission lines are more complex than

expected. We note, again, that the outlier scores of all spectra can be found on the Github page.

Comparing the outlier types found via the reconstruction error and the latent space, we note

one fundamental difference. The reconstruction based method finds more outliers with an

unusual continuum, as can be seen by the number of blends and weird continuum shapes that

were found. This follows naturally from how the reconstruction error is defined, as all the

data points contribute to the reconstruction error. Also, it might be that the encoder can not

recognize the unusual continuum and maps it to random latent space variables, resulting in

fewer spectra with an unusual continuum using the latent space approach. Depending on the

types of outliers the user wants to find, both methods can be used to find interesting outliers.
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5 Visualization

Data visualization is very important in either understanding or communicating complex data.

Especially in big data projects with many objects, visualizing important features of all the data

at once can be very complicated. The outlier detection algorithms we have used in this research

generate high dimensional data that is not easily visualized. For example, the Unsupervised

Random Forest algorithm produces a complex high dimensional distance matrix with the pair-

wise distance between all objects. In Reis et al. (2018), they produced a similar distance matrix

of APOGEE spectra and visualized it using t-distributed Stochastic Neighbor Embedding (t-

SNE, van der Maaten & Hinton, 2008). t-SNE reduces high dimensional data into a 2D map

while preserving the distances and similarities between the objects. With the maps, they showed

that the distance matrix contains information of different physical properties of the objects.

We visualize the high dimensional data from the URF and the variational autoencoder on a 2D

map using t-SNE and inspect the clustering of similar objects. The distance matrix contains

a lot of information about the objects and we expect to find many relations in the maps. For

the variational autoencoder, the spectra are already mapped to the 6-dimensional latent space.

These can also be mapped and visualized on a 2D map to inspect the clustering of similar spectra.

t-SNE is a non-linear dimensionality reduction algorithm capable of reducing high dimensional

data into two or three dimensions for visualization. We will reduce our data to two dimensions

and visualize the results on a map. The parameter space of the map itself does not trace any

physical properties, but similar objects are found in clusters on the map. t-SNE tries to pre-

serve the nearest-neighbors of each point, while forcing them to a lower dimension. Object far

away from each other are less similar, but there is no relationship between the absolute distance

between the points and their dissimilarity. The first step of the t-SNE algorithm is constructing

a pair-wise probability distribution indicating the similarity between objects. The second step

is to define a similar distribution of points in a two or three-dimensional map and minimize the

KL divergence between the distributions. The KL divergence was mentioned and explained in

Section 3.2.

We apply t-SNE on our data using the Python implementation in the scikit-learn9 package.

Two important hyperparameters are the perplexity and the learning rate. The perplexity is

related to the amount of nearest-neighbors used as similar objects. This controls the size of

clusters on the final mapped representation of the input. A higher perplexity results in more

global clustering, while low perplexity shows clusters on smaller scales. This parameter is very

sensitive and has a big influence on the results. The learning rate is, as in any other machine

learning application, important for the convergence of the algorithm. If the learning rate is set

to high, then the final map will look like a ball in which all points have the same distance from

each other. If the learning rate is set to low most of the points are found in dense clusters with a

few outliers. In our application, we tried different values for these parameters and we will show

the best visualization of our data. The best visualization is a t-SNE map that shows clustering

of similar objects on both a global, and a local scale. We try to not have any dense regions

due to overfitting, or have any significant sparse region without data points. For the distance

matrix, we get a map that fits these requirements using a perplexity of 200 and a learning rate

value of 5000.

9https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Figure 38: Left: distance matrix from all objects in SNR5 subset (including bad spectra and

stars). The objects are sorted on signal to noise ratio, so we can even see the bias of the URF

algorithm as higher distance scores are shown in the top left corner. Right: t-SNE representation

of the distance matrix including flagged objects. Note the grouping of similar objects.

5.1 Distance Matrix

The URF outlier detection method produces a distance matrix with the pair-wise distance be-

tween each object. We used this distance matrix to compute the distance (weirdness) score of

each individual object and inspect the weirdest objects. We will reduce the distance matrix of

the SNR5 subset to a 2D map and inspect the clustering of similar objects. The SNR5 subset is

composed of good signal to noise ratio spectra, and its big size makes it a nice data set for the

visualization.

The t-SNE map of the distance matrix is shown in Figure 38, which represents the full SNR5

subset including bad spectra and stars. As stated earlier in Section 3, the URF algorithm

assigns higher distance scores to lower signal to noise ratio galaxies. This can be seen in the

distance matrix where higher distance scores are assigned to the lower SNR galaxies in the

top-left corner. In the t-SNE map in Figure 38 three groups of spectra are marked. These

are the fringed spectra, spectra with reduction errors, and the stars in the GAMA survey. We

included these spectra to show that the URF algorithm is capable of grouping similar types of

galaxies based on their common features.

For the best results, we flagged the bad spectra and stars during this research to ensure that

they do not interfere with learning the features of good spectra. This resulted in the removal

of 5667 spectra from the SNR5 subset, giving a slightly smaller distance matrix after a new run

with the URF algorithm. We use t-SNE on the new distance matrix to compute the map of

only good spectra. As the dimension of the distance matrix has been lowered, the new t-SNE

map will look different as the map shown in Figure 38. The new map is shown multiple times in

Figure 39 with features of the objects to inspect the clustering in the map and the correlations

between different parameters and the t-SNE space.
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Figure 39: Mapped distribution of the distance matrix via t-SNE. The objects are mapped

onto a two-dimensional plane in which similar objects are clustered locally. Different data

parameters or galaxy feature data is shown as color maps to indicate the amount of information

the distance matrix contains.
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In Figure 39, we show the t-SNE map of the SNR5 subset with the following parameters as color

map, from top-left to bottom-right: the 250 outliers, the weirdness score, the signal to noise

ratio of spectra, the color of objects, D4000 break index, Hα line emission, SII line emission, and

OIII line emission. While the signal to noise ratio is not a physical parameter of the objects, it

is included to show the correlation between the weirdness score and its quality. The color maps

are chosen as they represent the characteristics and features of the spectra. As the distance

matrix is reduced from a high dimension to only two dimensions, much hidden information is

lost. Still, we find parameters that show structure on the map and we comment on each of them

and explain the findings.

The weirdness score overview in map (b) shows three regions in which the scores are the high-

est. These regions can also be traced back by the highlighted outliers in map (a), in which the

marked points are the 250 outliers that were inspected in Section 4. The outliers are found in

different places in the t-SNE map with big distances in-between them, suggesting that they are

composed of different types of outliers. This corresponds to the different groups of outliers we

found and similar outliers in these groups are found in small clusters on the t-SNE map. We

also included a color map of the signal to noise ratio of each object in map (c). The higher

signal to noise spectra are found at the outskirts of the map. When looking at map (b) and (c),

we can see the correlation between the low signal to noise spectra and high outliers scores. In

map (d) the color of the objects are shown using the SDSS g and r -band photometry. Galaxies

with similar color are also grouped along the edge of the t-SNE map. There is also a relation

between the high signal to noise ratio and the color. Red galaxies tend to have an overall higher

signal to noise ratio, as the signal is better at higher wavelengths relative to lower wavelengths.

At last, we have four maps based on the features in the spectra. These maps trace the physical

properties of the spectra and can be used to trace the information contained in the distance

matrix. The D4000 break index is used to determine the star formation characteristics of galax-

ies. It is defined as the flux at the wavelengths 3750Å-3950Å divided by the flux at wavelengths

4050Å-4250Å (Bruzual A., 1983). These regions trace many lines that correspond to either

young bright stars or an older population of metal-rich stars. An interesting observation is that

while there is a clear distinction between the two types of galaxies, for both types we have a

region with high weirdness scores and objects marked as outliers as seen in (a). The following

three maps (f), (g), and (h) show the flux values of the emission lines Hα, SII, and OIII respec-

tively. These lines are present during star formation and a young star population. Note that

for the Hα line and OIII line, the regions of the highest intensities do not always correspond

to each other. They do overlap in the rightmost part of the map indicating the star formation

region.

The clustering of the groups of outliers indicates that there are more similar objects nearby.

Inspecting the nearby points indeed gives us more similar objects. The region with star-forming

galaxies is pretty global and easily spotted by the flux maps. More star-forming galaxies are

easily found by inspecting points close to the marked outliers. The BPT outliers are clustered

at the tip of the star formation region. The quasars and active galaxies can not be found on

a global scale and reside in a small group. More interesting spectra containing very broad

emission lines or extra structure could be found by inspecting the points close to our outliers

with unusual velocity structure. Overall, the t-SNE map of the distance matrix is very useful

in finding more interesting spectra, while also looking very pretty.
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5.2 Latent Variables

We also want to test the dimensionality reduction of the 6 latent variables representing the

encoded spectra. In Portillo et al. (2020), the latent variables were plotted using a corner plot,

showing the pair-wise relationships between them. Instead, we will use the latent space vectors

in a similar way as the distance matrix of the URF and try to make a nice t-SNE map. As we

could find interesting outliers with the latent space vectors, we expect to find a good map in

which we can find more interesting outliers. We apply t-SNE on the encoded spectra and used

different learning rates and perplexity values to find the best map. The best t-SNE map we

found is shown in Figure 40, using a perplexity of 200 and learning rate value of 1000.

Overall, we see the same types of relations as shown for the distance matrix in Figure 39. The

outliers, as shown in (a), seem to be at random places, but are mostly found at the edges of the

whole map or at the edges of dense regions in the map. This can also be seen by the LOF outlier

scores of the spectra in (b). The flux values of the emission lines Hα, OIII and SII are shown in

(f), (h) and (g) respectively. The objects with high flux values for these emission lines are mostly

found in the bottom-right corner of the map, tracing the star formation region of the t-SNE map.

Many similar objects can be found in the star-forming region of the distance map, which was also

possible with the map in Figure 39. Unfortunately, we could not find any more double peaked

emission lines in the neighborhood of the found spectrum. The maps show a very nice global

distribution and clusters of the different parameters, but the 6 latent parameters contain less

information about the spectra than the distance matrix, as the encoder and decoder also contain

much information about relations in the data. This gives that there is almost no clustering of

similar objects on a small scale. The best t-SNE map is made with the very detailed distance

matrix, but Figure 40 shows that the latent variables also nicely trace features and cluster

similar objects on a larger scale.

Figure 40: Mapped distribution of the latent vectors via t-SNE. Different data parameters or

galaxy feature data is used as color maps. We do not show (c) and (d), as the objects are the

same as already shown in Figure 39.
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6 Discussion

In this section, we discuss the decisions made during the project and interpret our results. We

comment on the acquisition of the GAMA data and the pre-processing steps done on the spec-

tra. We discuss our application of the URF outlier detection method and compare the results

with Baron & Poznanski (2016). Also, the choices made on defining our outlier groups are dis-

cussed, along with comparing the different outliers found between the two detection methods.

At last, we comment on the t-SNE maps and discuss the application of all our methods for

future projects.

While using a major part of the GAMA survey, we did not use all spectra of the survey. We

limited ourselves to only use the data of the main observations originating from a single instru-

ment, making up 78% of the spectra. The decision was made for the following two reasons. At

first, all spectra are taken with the same instrument and have the same resolution and overall

data shapes. If data from multiple instruments were used, the outlier detection methods could

be biased towards the data of a single instrument. Secondly, we only have to work with the

instrumental errors of a single instrument, making masking of bad spectra easier.

The GAMA survey is composed of objects at a broad range of redshifts. To learn the important

features, the spectra had to be converted to their rest-frame such that all emission lines are

aligned. To ensure the same input space of each spectrum, the spectra were interpolated with

the rest frame wavelengths between 3500Å and 7500Å. This ensured that the interesting emis-

sion lines are captured for all the objects at different redshifts and excluded regions without flux

values. In an ideal world, we would use the raw flux values of the spectra for the outliers search,

as they ensure the best relationship between what is observed and an assigned score. However,

many spectra showed either bad regions or noisy parts that had to be accounted for. Therefore

we masked bad regions and smoothed the spectra with a Gaussian kernel. The fluctuations in

the continuum were removed successfully and the emission line shapes stayed intact, but the

absolute flux values were slightly lowered. This had no impact on the results, as all fluxes were

lowered with the same ratio. We think we made a good trade-off between the pre-processing of

the data and keeping it as close to the observed values.

We implemented the full URF algorithm in Python using multiprocessing to boost its perfor-

mance. A basic example of the algorithm was provided in Baron & Poznanski (2016), in which

they described simple steps to build the algorithm. While the URF outlier detection method

was already proven to be working in their work, we also wanted to explore how the algorithm

works. Therefore, we applied different tests by changing the input shape of the data, using

different hyperparameters in the Random Forest, and inserting self-made spectra that look very

weird. The tests showed that spectra with broad features are easily found as outliers, while

unusual single lines do not necessarily show up as outliers. Overall, the tests gave good insight

into the processing of the data and the application on the URF.

Initial runs on all our GAMA data only showed outliers due to very noisy fluctuations. We

observed that the URF algorithm is biased towards low signal to noise ratio spectra, which was

coincidentally confirmed during this project by Reis et al. (2019b). To ensure that we find the

best outliers, we used three different subsets based on the signal to noise ratio of the spectra.

While the subset with the high signal to noise spectra showed the best results, we also had to
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use the lower quality spectra to ensure we find the weirdest spectra in the GAMA survey. As

we ran the algorithm on different subsets based on a lower limit of their signal to noise ratio,

we had to carefully define which spectra are considered weird. For the three subsets SNR10,

SNR5 and SNR2.5, in which the number indicates the lower limit of the signal to noise ratio, we

defined the weirdest spectra as the 100 highest scoring spectra of SNR10, the 100 highest scoring

spectra of SNR5 not found earlier, and the 50 highest scores spectra of SNR2.5 not found earlier.

While this seems arbitrary, this allowed us to learn the workings of the algorithm, as we first

applied good quality data to test the algorithm. Additionally, we only used 50 spectra of the

SNR2.5 subset, as the results were not great due to bias towards lower signal to noise galaxies.

We also noticed clustering on the continuum of spectra in the outlier scores as many similar

blue or red spectra are grouped together. These also came up as the weirdest spectra, but were

in itself not very interesting. This behavior was not reported in Baron & Poznanski (2016),

while Reis et al. (2019b) shows similar behavior in the score distribution. Overall, interesting

weird spectra still dominated the results, and we could still inspect spectra of many different

types of objects.

The inspected outliers are grouped and categorized by their most obvious features. Note that,

while we inspected the weirdest spectra thoroughly, we can not guarantee that we always no-

ticed the exact reason why the URF algorithm assigned a high outlier score. As many features

are obvious to spot by eye, it is entirely possible that the URF found a weird combination of

flux values that determined its high score. We are however very confident that we grouped and

classified the 250 weirdest spectra correctly. We provide a full list of the weirdest spectra on

the Github page for the reader to explore themselves. We found many different types of spectra

among the outliers, such as: additional complex structure at emission lines, line broadening

due to activity, blends of different objects, and BPT outliers. While the tests showed that

the algorithm does not assign high outlier scores to galaxies with unusual lines, we still find a

few spectra with unusual Iron lines and NI[5200] emission. Many types of outliers we found

are similar to the outliers found in Baron & Poznanski (2016), but unfortunately there was no

overlap of objects in our GAMA data and their SDSS data, so no direct comparisons could

be made. As most weird spectra showed interesting features, we have great confidence in the

application of the URF outlier detection method on spectroscopic data. One could argue that

for all the weird spectra we found, simple models specific for each type of object could be used

instead. While this is true for known objects, the outlier detection methods can find all types of

objects, including unknowns. Unfortunately, we did not find any Nobel prize winning unknown

unknown in our research.

We also applied a more experimental outlier detection method on the galaxy spectra of the

GAMA data using a reconstruction-based variational autoencoder to inspect more outliers and

learn about the application of neural networks on this type of data. Using a reconstruction

based method would make it easier for us to investigate why a spectrum is considered an out-

lier. We applied our self-made algorithm in a similar method as in Portillo et al. (2020), but

with the primary goal of finding outliers. During training, we noticed that the MMD loss term,

which is supposed to help the network with learning, did not contribute enough. At first, we

did not include a scaling term in the loss function that uses the batch size as a multiplier. How-

ever, when we did implement it correctly the results worsened significantly and were unusable.

We could not find why this was happening and applied the InfoVAE as a normal variational

autoencoder. We used the trained network to compute outlier scores for the spectra in the SNR5
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subset via two methods: the conventional reconstruction error, and via clustering of the latent

space variables. We could find interesting outliers with both methods, but also found many

spectra with a weird continuum shape or weird features due to reduction errors. We used a

modified reconstruction metric as was found in the literature to normalize the scores between 0

and 1. To improve these results, the flux errors could be included in the reconstruction metric,

or a completely different metric could be used. Due to time constraints, we have not tested a

different metric.

We expected that the results would be very different between the URF and variational au-

toencoder techniques as they are completely different methods. However, we found that both

methods find very similar types of outliers, and even had overlapping results. In terms of in-

teresting outliers, the URF did perform better, while the variational autoencoder had some

bias towards continuum based outliers. Still, the experimental reconstruction based method

showed good results, and can possibly be improved with more training and research into the

hyperparameter optimization of a bigger, more complex, network.

The visualization of the distance matrix with t-SNE showed good results, as the spectra in

the different groups of outliers were all clustered on the map. Also, we could find more simi-

lar spectra by inspecting nearby points in the maps. While the t-SNE parameter space itself

does not have any physical meaning, we could find many correlations with the features of the

objects. Visualization of complex data is very handy and can be used to explore more data

and find more interesting objects. Our results are similar to Reis et al. (2018), in which they

applied t-SNE on the distance matrix of stellar spectra. During our project, they published an

interactive page (Reis et al., 2019a) using a different dimensional reduction technique, where

the user can inspect the parameter space of SDSS galaxy spectra. This interactive page can be

used to generate similar maps as we made in Section 5, and is a very nice application of data

visualization. We also applied t-SNE to the latent space vectors of the encoded spectra from

the variational autoencoder. The results were very similar, as the latent space variables could

also trace the features in the spectra. The latent space variables do not make up all of the

information of the spectra, as the encoder and decoder are also composed of many relations of

the data. Therefore, the t-SNE maps using the distance matrix contain more information and

have better local clustering of similar objects.

The outlier detection methods we used show great potential to cope with many spectroscopic

observations of objects. These methods will be very useful for future surveys that generate

thousands of spectra. Combining the outlier detection algorithms and good visualization tools

helps enormously with either finding interesting objects or disregarding common ”boring” ob-

jects. While we had a few issues with the URF with a bias towards low signal to noise ratio

spectra and clustering on the continuum, the distance matrix still traced many physical param-

eters and gave interesting outliers. We also did a very informative experimental application of

the variational autoencoder on spectral data to find outliers, and think that even with the brief

overview of the results, it works very well.
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7 Summary and Conclusion

We applied two different outlier detection methods on spectroscopic data from the GAMA

survey to find weird galaxies in the Universe. The first method was a distance-based outlier

detection technique based on an Unsupervised Random Forest. This method computes a pair-

wise distance between all objects resulting in a high-dimensional distance matrix. We used the

distance matrix to determine an outlier score for each individual object and inspected the 250

weirdest galaxies. We found many different types of interesting outliers, such as: quasi-stellar

objects, active galaxies, blends of different objects, and BPT outliers. The method also assigned

high outlier scores to objects clustered on their continuum and we observed a bias towards low

signal to noise ratio spectra, which was also confirmed by others during the span of this project.

Both these issues did not have any significant impact on the quality of the outliers. The second

method is a reconstruction-based outlier detection technique using a variational autoencoder.

The network was trained using the spectra and learns to reconstruct the important and com-

mon features. Spectra with weird or uncommon features will have a high reconstruction error

and are considered outliers. We used the reconstruction errors, and the encoded representation

of the spectra, to compute outlier scores and compared the outcome with the Unsupervised

Random Forest. While the methods are inherently very different, they both found similar types

of outliers and even had some overlap in the weirdest spectra.

We visualized the high dimensional output of the algorithms on a two-dimensional map using

the dimensionality reduction technique t-SNE. This gave a great overview of all the information

contained in the output and gave a nice insight into the relations found in the data. We could

point out multiple correlations in the output using galaxy feature data. The maps could also

be used to find even more interesting outliers by looking at points clustered on the map.

In this project, we successfully showed the application of two outlier detection techniques for

spectroscopic data. These will be very useful for future surveys in which a lot of objects will be

observed. Combining these methods with good visualization techniques gives a very robust way

of finding many interesting objects. While we did not find the weirdest galaxy in the Universe

in this project, we found many different interesting objects via a single method without the

need for prior knowledge of any of them. Outlier detection is a very interesting application of

unsupervised machine learning, and will be essential for finding the unknown unknowns of the

future.
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Appendix A: GAMA Data

SQL query for http://www.gama-survey.org/dr3/query/

SELECT SPECID, RA, DEC, Z, NQ, PROB, URL, URL_IMG, CATAID,

GAMA_NAME, IC_FLAG, DIST

FROM SpecAll

WHERE SpecAll.NQ >= 3

AND SpecAll.SURVEY_CODE = 5

AND SpecAll.IS_SBEST = 1

Appendix B: Evidence Lower Bound in Practice

We shortly relate the theory of the Evidence Lower Bound (ELBO) function contents to their

application in the code of the variational autoencoder. The following functions and theory is

shortly summarized out of Zhao et al. (2017), Ichinohe & Yamada (2019) and Kingma & Welling

(2019).

Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KL Divergence) assigns a distance between the approximate

posterior and true posterior, and determines the distance between the ELBO and the marginal

likelihood. As the prior is set to be the normal distribution p(z) = N (0, I), the KL Divergence

is:

DKL(q(z|xi)||p(z)) = −1

2

J∑
j=1

(
(1 + log

[
(σij)

2
]
− (µij)

2 − (σij)
2
)
, (7)

where µij and σij are the j th element of the mean µ and variance σ calculated in their corre-

sponding layer for each spectrum i in the data set. For reference, the variable J denotes the

amount of latent space variables and is set to J = 6 in our variational autoencoder.

Maximum-Mean Discrepancy

The Maximum-Mean Discrepancy (MMD) computes the distance between two probabilities by

comparing their momentum. It is efficiently implemented using a kernel trick with k any positive

definite kernel. The MMD between the output q(zφ) of the encoder and the prior p(zθ) of the

decoder is

DMMD(q(z)||p(z)) = Ep(z),p(z′)[k(z, z′)] + Eq(z),q(z′)[k(z, z′)]− 2Eq(z),p(z′)[k(z, z′)] , (8)

with E the expectation value of the output of kernel k. We use a Gaussian kernel that computes

the similarity of the two samples as in

k(z, z′) = exp

(
−|z − z

′|2

2σ2

)
(9)

The MMD loss is computed in our variational autoencoder by comparing the momentum of the

sampled latent variable layer (z sampler) with the normal distribution N (0, I) of the prior.
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Appendix C: Variational Autoencoder

Figure 41: The layers and their sizes of our optimal variational autoencoder with input size

8000. For the network with input size of 1000, the network looks similar with the first hidden

layer as the input layer. The question marks in the layer sizes indicate the batch size, which

can be varied.
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Appendix D: Weirdest Galaxies in the Universe GAMA

In the following tables we list the weirdest spectra we found with the URF algorithm. Additional

information is shown that is relevant for each group and comments are provided that determined

the placement of the spectra in their particular group.

SPECID z Comments

G02 Y5 083 265 0.185 M dwarf in front of Galaxy
G09 Y1 AX2 002 0.006 M dwarf in front of Galaxy
G12 Y1 DS2 320 0.179 M dwarf in front of Galaxy
G15 Y1 BS2 010 0.357 M dwarf in front of Galaxy
G15 Y2 003 165 0.049 M dwarf in front of Galaxy
G15 Y2 013 324 0.082 M dwarf in front of Galaxy
G15 Y3 021 053 0.235 M dwarf in front of Galaxy
G09 Y5 018 163 0.040 Bright star in front of Galaxy
G09 Y1 HS1 004 0.018 Tiny galaxy in front of big one, Hα source unknown

Table 2: Blended objects

SPECID z Comments

G09 Y1 FS1 085 0.199 Broadening of emission lines
G09 Y4 212 273 0.158 Broadening of emission lines
G09 Y6 063 013 0.334 Broadening of emission lines
G12 Y1 DS2 080 0.306 Broadening of emission lines
G12 Y1 IS1 080 0.282 Broadening of emission lines
G15 Y2 007 169 0.330 Broadening of emission lines
G12 Y1 BX1 127 0.153 Complex and high NII
G02 Y3 015 210 0.043 Hα and NII are complex lines
G15 Y4 206 189 0.180 Hα and NII are complex lines

Table 3: Minor broadening of, or minor additional structure in, emission lines

SPECID z Comments

G02 Y5 080 045 0.075 Additional structure at Balmer lines
G12 Y1 BN1 366 0.243 Additional structure at Balmer lines
G15 Y1 BN2 004 0.270 Additional structure at Balmer lines
G15 Y6 093 351 0.317 Additional structure at Balmer lines
G09 Y6 090 043 0.549 Additional structure at Hβ and broad MgII
G02 Y3 005 005 0.330 Broadened Balmer lines
G02 Y3 015 281 0.325 Broadened Balmer lines
G02 Y5 094 233 0.157 Broadened Balmer lines
G02 Y5 111 257 0.331 Broadened Balmer lines
G09 Y1 BS1 152 0.176 Broadened Balmer lines
G09 Y4 208 024 0.295 Broadened Balmer lines
G12 Y6 040 320 0.106 Broadened Balmer lines
G15 Y1 FN2 029 0.331 Broadened Balmer lines
G15 Y1 GN1 046 0.144 Broadened Balmer lines
G15 Y4 236 287 0.323 Broadened Balmer lines
G15 Y5 003 263 0.300 Broadened Balmer lines
G15 Y5 029 255 0.279 Broadened Balmer lines
G15 Y5 061 182 0.220 Broadened Balmer lines
G15 Y6 088 158 0.140 Broadened Balmer lines
G15 Y6 100 268 0.235 Broadened Hα
G09 Y3 015 229 0.762 Broadened Hβ
G09 Y1 DS2 065 0.225 Extra complex structure around Balmer lines
G12 Y1 FN1 127 0.270 Extra complex structure around Balmer lines
G12 Y1 IS2 153 0.103 Extra structure at Balmer lines
G09 Y4 215 016 0.284 Extremely broadened Balmer lines
G12 Y1 AT 117 0.135 Extremely broadened Balmer lines and fringing
G09 Y4 249 125 0.260 Extremely broadened Hα
G15 Y6 083 065 1.345 High redshift quasar: CIII and extra structure
G09 Y3 015 281 1.128 High redshift quasar: CIII and MgII
G12 Y3 006 046 1.535 High redshift quasar: CIII and MgII
G09 Y2 017 284 0.906 High redshift quasar: CIII and MgII
G15 Y4 212 020 1.885 High redshift quasar: CIV high and sharp
G15 Y5 035 226 2.031 High redshift quasar: CIV high and sharp
G15 Y6 094 029 1.995 High redshift quasar: CIV high and sharp
G09 Y4 226 135 2.563 High redshift quasar: Lyman-α and broad C
G12 Y6 073 125 2.232 High redshift quasar: Lyman-α and Silicon
G09 Y4 201 018 2.102 High redshift quasar: Lyman-α emitter
G09 Y4 212 196 2.238 High redshift quasar: Lyman-α emitter
G15 Y6 086 131 3.059 High redshift quasar: Lyman-α emitter
G15 Y4 203 235 2.932 High redshift quasar: Lyman-γ emitter
G15 Y5 021 245 2.837 High redshift quasar: Lyman-γ emitter

Table 4: Quasi-Stellar Objects. These objects are either at high redshift of show activity via

extremely broadened emission lines.
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SPECID z Comments SPECID z Comments

G02 Y4 021 114 0.006 G15 Y1 GS1 095 0.180
G02 Y4 029 209 0.012 G15 Y1 GX2 192 0.027
G02 Y4 034 330 0.056 G15 Y1 IN1 030 0.035
G02 Y4 040 299 0.026 G15 Y1 IN2 106 0.119
G02 Y4 041 266 0.183 G15 Y2 001 254 0.030
G02 Y4 043 105 0.078 G15 Y2 013 055 0.041
G02 Y4 043 105 0.078 G15 Y2 022 031 0.049
G02 Y5 079 023 0.015 G15 Y3 005 049 0.176
G02 Y5 082 208 0.073 G15 Y3 005 049 0.176
G02 Y5 091 065 0.078 G15 Y3 014 270 0.086
G02 Y5 114 257 0.083 G15 Y3 021 322 0.130
G02 Y5 114 291 0.166 G15 Y3 037 237 0.156
G02 Y6 004 067 0.297 G15 Y3 050 003 0.244
G09 Y1 AS2 047 0.077 G15 Y4 203 262 0.087
G09 Y1 BS1 271 0.052 G15 Y4 214 347 0.045
G09 Y1 CX2 244 0.028 G15 Y4 216 266 0.061
G09 Y1 EN2 104 0.013 G15 Y4 224 130 0.063
G09 Y1 EN2 256 0.035 G15 Y4 234 096 0.185
G09 Y1 ES2 147 0.070 G15 Y5 003 334 0.084
G09 Y1 FS1 037 0.123 G15 Y6 073 241 0.058
G09 Y1 FS1 089 0.028 G15 Y6 073 391 0.073
G09 Y1 FS2 387 0.018 G15 Y6 075 075 0.139
G09 Y1 IS2 176 0.076 G15 Y6 088 096 0.048
G09 Y2 042 055 0.024 G15 Y6 088 271 0.107
G09 Y4 205 318 0.123 G15 Y6 097 155 0.042
G09 Y4 207 223 0.332 G15 Y6 099 116 0.369
G09 Y4 215 073 0.065 G15 Y6 100 125 0.032
G09 Y4 251 217 0.012 G15 Y6 100 221 0.025
G12 Y1 AN1 102 0.027 G02 Y3 018 304 0.139 BPT Outlier
G12 Y1 AN1 392 0.018 G02 Y4 002 108 0.005 BPT Outlier
G12 Y1 AS2 046 0.118 G02 Y4 042 264 0.007 BPT Outlier
G12 Y1 CN1 078 0.006 G02 Y5 061 198 0.013 BPT Outlier
G12 Y1 CN1 102 0.040 G09 Y1 CN1 168 0.132 BPT Outlier
G12 Y1 CND1 285 0.103 G09 Y1 DX1 117 0.008 BPT Outlier
G12 Y1 CS2 163 0.013 G09 Y4 207 303 0.246 BPT Outlier
G12 Y1 DND1 283 0.011 G09 Y4 207 339 0.157 BPT Outlier
G12 Y1 DX1 211 0.140 G09 Y4 207 347 0.190 BPT Outlier
G12 Y1 FX1 031 0.080 G09 Y4 207 378 0.273 BPT Outlier
G12 Y1 GN1 263 0.044 G09 Y4 231 266 0.012 BPT Outlier
G12 Y1 HS2 086 0.190 G12 Y1 AN1 124 0.076 BPT Outlier
G12 Y1 IS1 301 0.021 G12 Y1 AN1 254 0.004 BPT Outlier
G12 Y1 IS2 193 0.088 G12 Y1 AS2 119 0.006 BPT Outlier
G12 Y1 ND1 188 0.027 G12 Y1 BS1 058 0.072 BPT Outlier
G12 Y3 014 242 0.179 G12 Y1 CN1 079 0.013 BPT Outlier
G12 Y4 210 280 0.249 G12 Y1 IS1 078 0.006 BPT Outlier
G12 Y6 056 022 0.312 G12 Y1 IS2 123 0.008 BPT Outlier
G12 Y6 060 295 0.049 G12 Y1 ND8 039 0.022 BPT Outlier
G15 Y1 BS1 108 0.066 G12 Y6 050 014 0.004 BPT Outlier
G15 Y1 CN1 059 0.052 G15 Y1 CX1 053 0.030 BPT Outlier
G15 Y1 CN2 291 0.116 G15 Y1 GN1 001 0.032 BPT Outlier
G15 Y1 CS1 112 0.133 G15 Y3 009 097 0.026 BPT Outlier
G15 Y1 CS1 149 0.051 G15 Y3 016 128 0.033 BPT Outlier
G15 Y1 CX1 125 0.091 G15 Y3 047 035 0.037 BPT Outlier
G15 Y1 DS2 286 0.029 G15 Y4 205 288 0.007 BPT Outlier
G15 Y1 FS1 068 0.103 G15 Y4 234 172 0.035 BPT Outlier
G15 Y1 FS1 102 0.037 G15 Y6 088 244 0.038 BPT Outlier
G15 Y1 FS2 134 0.082 G15 Y6 089 265 0.099 BPT Outlier

Table 5: Star-Formation Galaxies. Objects with at least very high and narrow Balmer lines.

A few of these objects are also BPT outliers as commented on in Section 4.

SPECID z Comments

G09 Y4 240 259 0.084 Dominating NII
G02 Y3 013 192 0.070 Dominating NII, no Hα
G09 Y1 CN2 290 0.209 High emission lines and Iron lines
G02 Y3 016 160 0.055 Low Hα and no Oxygen
G12 Y1 GND1 125 0.050 Mysterious emission line at 5435Å
G12 Y1 HND1 169 0.199 NII 5200 emission and other emission lines
G02 Y3 014 029 0.056 NII much bigger than Hα
G09 Y2 016 087 0.052 Only Hα/NII structure
G12 Y1 CX1 394 0.132 Only Hα/NII structure
G12 Y1 DS2 363 0.132 Only Hα/NII structure
G12 Y6 052 104 0.038 Only Hα/NII structure
G15 Y1 FS2 063 0.081 Only Hα/NII structure
G15 Y4 204 298 0.136 Only Hα/NII structure
G09 Y4 207 090 0.245 Only Hα/NII structure
G09 Y6 093 017 0.019 Only Hα/NII structure
G09 Y4 207 260 0.246 Only Hα/NII structure
G15 Y1 CS2 180 0.139 Additional Iron line at 5304Å

Table 6: Galaxies grouped on unusual extra lines or weird line fluxes
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SPECID z Comments

G09 Y4 215 048 0.194
G09 Y4 215 057 0.238
G12 Y1 AN1 085 0.294
G12 Y1 CS1 087 0.084 Minor absorption in Hδ and Hα emission
G12 Y2 041 076 0.133
G15 Y4 210 008 0.186 Hα emission
G09 Y1 FN2 235 0.293
G12 Y1 CN1 175 0.177 Hα emission

Table 7: Spectra showing Hδ absorption

SPECID z Comments

G09 Y1 IS2 022 0.055 Blue galaxy
G15 Y1 DS2 125 0.086 Blue galaxy
G15 Y4 211 119 0.068 Blue galaxy
G12 Y1 BD1 108 0.264 Blue galaxy
G15 Y1 CS1 071 0.085 Blue galaxy
G15 Y1 DS2 102 0.138 Blue galaxy
G02 Y4 043 333 0.206 Diagonal blue end with sky lines in red
G09 Y4 211 013 0.186 Diagonal red
G09 Y5 015 117 0.035 Diagonal red
G12 Y1 DS2 367 0.165 Diagonal red
G02 Y3 018 233 0.087 Diagonal red, no emission lines but strong NaID
G09 Y4 207 387 0.405 Diagonal red, no emission lines but strong NaID
G12 Y4 205 395 0.238 Diagonal up to 7000A and then flat
G02 Y4 043 265 0.260 High blue end
G09 Y4 215 246 0.018 High blue end
G15 Y1 DS2 097 0.053 High blue end
G15 Y1 DS2 106 0.193 High blue end
G15 Y1 DS2 123 0.179 High blue end
G15 Y1 DS2 124 0.053 High blue end
G15 Y4 202 230 0.204 High blue end
G15 Y4 202 266 0.099 High blue end
G15 Y4 202 314 0.025 High blue end
G15 Y4 204 220 0.085 High blue end
G15 Y6 074 314 0.027 High blue end
G15 Y6 088 239 0.025 High blue end
G15 Y4 237 091 0.224 Mountain shape
G09 Y1 DS2 261 0.108 Noisy blue end
G15 Y4 204 386 0.122 Noisy blue end
G15 Y4 204 396 0.053 Noisy blue end
G02 Y3 019 369 0.323 Valley shape
G09 Y4 212 315 0.079 Valley shape
G09 Y4 212 321 0.040 Valley shape
G15 Y6 082 045 0.025 Very weird feature

Table 8: Outlying spectra based on their continuum. These are either extremely blue or

diagonal red galaxies due to clustering of the URF algorithm, or weird features on a continuum

level.

SPECID z Comments

G15 Y2 009 099 0.256 Blue end of spectrum diagonal
G12 Y1 HS2 140 0.074 Dominating spurious line
G12 Y1 CND1 092 0.060 Noisy continuum
G15 Y2 020 394 0.179 Reduction error with sky line 5578
G15 Y4 215 093 0.312 Sky absorption at 5578
G15 Y6 081 395 0.052 Sky absorption at 5578
G02 Y5 079 376 0.142 Sky lines not reduced correctly
G12 Y1 AS2 129 0.076 Sky lines not reduced correctly
G12 Y1 GS1 117 0.186 Sky lines not reduced correctly
G15 Y2 008 251 0.145 Sky lines not reduced correctly
G15 Y4 207 028 0.249 Spectral arms peak at splice
G09 Y1 AN1 378 0.201 Very dominant sky absorption
G09 Y1 AX2 247 0.190 Very dominant sky absorption
G09 Y1 CN1 233 0.166 Very dominant sky absorption
G15 Y1 BS2 216 0.135 Very dominant sky absorption
G02 Y5 060 294 0.013 Weird absorption feature (all fibre 294?)
G15 Y2 009 294 0.166 Weird absorption feature (all fibre 294?)
G15 Y2 020 294 0.208 Weird absorption feature (all fibre 294?)
G15 Y3 051 294 0.144 Weird absorption feature (all fibre 294?)

Table 9: Spectra containing reduction errors or other features not belonging to the objects
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