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Abstract 

Aging is a natural process that leads to morphological and functional changes of the cells. Research 

regarding aging is expanding rapidly due to the increasing number of individuals over 65 of age, resulting 

in a burden on health care costs and a dramatic increase in age-related diseases (ARDs) like Alzheimer’s 

disease, cancer and other chronic diseases. In order to reduce the health costs and improve the quality of 

elderly by preventing ARDs, more reseach focuses on the epigenetic mechanism: DNA methylation 

(DNAm). DNAm involves the process of adding a methyl-group to a 5’ cytosine at a CpG site and is 

associated with genomic stability and regulation of gene expression. Changes in methylation of the CpG 

sites are observed regarding to age. Several epigenetic ‘clocks’ have been composed allowing the 

prediction of chronological age of an individual based on the methylation status of a selection of age-

related CpG sites. Factors like smoking, education, gender and disease have been found to influence 

these epigenetic clocks. Intriguingly, it is now possible to calculate all-cause mortality risk based on the 

difference between the predicted and chronological age and even time-to-death with an epigenetic clock. 

Furthermore, DNAm could be reversed using a recombinant growth hormone, opening up opportunities 

to slow down aging and extend lifespan. Future perspective of the applications of the epigenetic clocks 

might be regarding the fields of personalized medicine, forensics and generate possible to ways to slow 

down aging; improving health and elongate lifespan.  
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1. Introduction to aging 

 

The amount of elderly is ever increasing. In the Netherlands in 2017, 2,4 million people which accounted 

for respectively 14% of the population was above 65 years old and in 2060 it is estimated that this 

number will increase to 5,2 million people (28% of the population) (CBS, 2017). When individuals reach 

the age of 65, it is estimated that they live for another 20 years (CBS, 2017). Importantly, life expectancy 

does not equal health expectancy (HALE) e.g. how long an individual will live in good health. The WHO 

estimated that in 2016, men were healthy till the age of 77.8 and women till 79.9 years when they had 

reached the age of 60 (WHO, 2018). This results in a discrepancy of 7.2 and 5.1 years respectively. 

This discrepancy results in rising health care 

costs as aging is associated with certain age-

related diseases (ARDs) including diabetes, 

cancer, cardiovascular diseases, neurological 

diseases like Alzheimer’s disease, 

Parkinson’s Disease and other chronic 

diseases (Bana and Cabreiro, 2019; Gadecka 

and Bielak-zmijewska, 2019). For instance, 

the annual medical costs for elderly was 17 

billion in 2015 and is estimated to increase 

to 43 billion in 2040 in the Netherlands 

(RIVM, 2018). 

In order to improve the quality of life by 

reducing ARDs and reduce health costs, 

healthy aging needs to be top priority of the 

government. Before ARDs can be reduced 

and health improved, first a thorough 

understanding of what aging actually is 

needs to be established (Gadecka and 

Bielak-zmijewska, 2019). To investigate aging, 

a clear definition has to be established. For 

instance, common age-related health 

problems like impaired vision and hearing, 

impaired wound healing, osteoporosis and increased vulnerability to infections are consequences of aging 

but do not define aging itself (Gadecka and Bielak-zmijewska, 2019).  

To define aging, nine hallmarks of aging were described by López-Otín et al. (2013) including: genomic 

instability, telomere attrition, epigenetic alterations, loss of proteostatis, deregulated nutrient sensing, 

mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular 

communication (See Figure 1). 

The past few years, extensive research has been conducted regarding epigenetic alterations (Bocklandt et 

al., 2011; Koch and Wagner, 2011; Hannum et al., 2013; Horvath, 2013). Several studies reported that 

epigenetic alterations could be correlated with chronological age (Bocklandt et al., 2011; Hannum et al., 

2013; Horvath, 2013). Based on these epigenetic alterations, a ‘clock’ could be established to predict the 

Figure 1. The nine hallmarks of aging. Adapted from 

López-Otín et al. (2013). 
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chronological age of an individual (Hannum et al., 2013; Horvath, 2013). Furthermore, this clock could 

also be used to calculate all-cause mortality risk (Zhang et al., 2017; Levine et al., 2018) and even time-to-

death (Lu et al., 2019) (See Figure 2). Research also shows that different factors like smoking, education, 

ethnicity and diseases affect the epigenetic clock (Gao et al., 2016; Horvath et al., 2016). In the future, 

epigenetic clocks could possibly be used to develop personalized medicine based on the individual clock. 

Furthermore, the epigenetic clock has shown potential for forensics to estimate the chronological age 

based on a biological sample on a crime scene. Lastly epigenetic clocks will help clarify the process of 

aging and generate possibly to ways to slow down aging; improving health and elongate lifespan. 

 

This essay will first discuss DNA 

methylation, the epigenetic 

alteration that is the basis for 

the epigenetic clocks and how 

age influences DNA 

methylation. Second, the 

important studies regarding the 

development of the epigenetic 

clocks and their applications will 

be described. Third, examines 

the future perspectives 

regarding epigenetic clocks and 

aging. 

  

Figure 2. Visual representation of the chronological, biological and 

hybrid chronological-biological clock. Adjusted from: Field et al. (2016) 

A) Two timelines are visualized of two different individuals with the 

same chronological age at baseline result in different time-of-deaths. 

B) The chronological clock is the same for blue and orange. The 

biological clock however shows differences between orange and blue 

that eventually will result in the different time-of-death which is 

combined in the hybrid clock. 
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2. Aging, DNA methylation and the epigenetic clock 

 

2.1 History of epigenetics 

The field of epigenetics is a hot topic nowadays, but the term was coined over half a century ago. Conrad 

Waddington was the first to use the term epigenetics in 1939 in an attempt to link genotype with 

phenotype (Waddington, 1939). Importantly, the molecular structure of the DNA was not elucidated until 

at least 14 years later. Epigenetics for Waddington was involved in developmental processes and the 

differentiation of cells (Waddington, 1939; Villota-salazar et al., 2016). Years later, David Nanney stated 

that there were two cell regulatory mechanisms, one was based on the DNA (genetic) and the other 

determined which information would be expressed in a particular cell (epigenetic), which is more in 

agreement with the current definition (Nanney, 1958). Both Waddington and Nanney tried to answer the 

question how genetics was involved in phenotypic development, but looked at it from different levels 

(Villota-salazar et al., 2016; Nicoglou and Merlin, 2017). Waddington was more focused on Mendelian 

genetics while Nanney focused on molecular genetics which was possible because of the advances on 

molecular level (e.g. the elucidation of the DNA structure) (Nicoglou and Merlin, 2017). Although Nanney 

had more insight in the molecular level, he still thought that the epigenetic mechanisms took place in the 

cytoplasm (Nanney, 1958).  

More insight in the epigenetic mechanisms came in the 70’s when the structure of DNA was further 

elucidated and the importance regarding condensed DNA (euchromatin) which is linked with repression 

of genes opposed to open chromatin (heterochromatin) which is linked with activation of genes was, 

discovered. Nucleosomes, proteins with DNA wrapped around it, were discovered and it was found that 

modification of these proteins, histones, result in euchromatin or heterochromatin formation (Allfrey et 

al., 1964). DNA methylation, cytosine residues to which a methyl-group was attached, appeared to be 

another epigenetic mark contributing to genome stability (Holliday and Pugh, 1975; Riggs, 1975). Much 

later, RNA-based mechanisms were identified as the third epigenetic mechanism regulating gene 

expression (Lee et al., 1993). All of the epigenetic mechanisms have in common that they do not alter the 

DNA sequence (Villota-salazar et al., 2016). Epigenetics nowadays is defined as the study of heritable 

changes in gene expression that do not involve changes to the underlying DNA sequence (See Figure 3) 

(Villota-salazar et al., 2016; Nicoglou and Merlin, 2017). This essay will only discuss DNA methylation and 

its relation to aging. 
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Figure 3. Schematic overview of epigenetic mechanisms. Adapted from: (Yan et al., 2010) 

DNA is wrapped around proteins called nucleosomes, that consists of 8 histones. The histone tails can be modified 

which results in a more condensed chromatin (euchromatin), linked to the repression of genes or more accessible 

chromatin (heterochromatin) linked to the activation of genes. DNA methylation takes place on the cytosine of the 

DNA and is associated with the regulation of gene expression. The third epigenetic mechanism is RNA-based 

mechanisms. 

2.2 DNA methylation 

DNA methylation (DNAm) is essential for the following, first DNAm ensures DNA stability by silencing 

transposable elements (transposons) that can cause instable DNA. Second, DNAm is also involved in X 

chromosome inactivation of females and regulating gene expression. DNAm regulates gene expression by 

methylating promoter regions, thereby repressing a gene. Third, gene repression is especially important 

in the germ cell line to activate and repress the appropriate gene sets from paternal and maternal origin 

(genomic imprint) (Benayoun et al., 2015; Edwards et al., 2017). DNAm gene repression is also important 

in tissues, whereby non-essential genes are methylated which results in tissue-specific gene expression 

(Benayoun et al., 2015; Edwards et al., 2017).  

 

DNAm entails the process whereby a methyl-group is added to the fifth position of a cytosine (5mC) in a 

cytosine-phosphate-guanine (CpG) dinucleotide site  The CpG sites can be located in CpG islands (CGIs). 

CGIs are regions of high CG density (over 200 basepairs) and are often found in promoters. CGIs are often 

not methylated as transcription factors (TFs) are then unable to bind and transcribe the gene (Bana and 

Cabreiro, 2019; Gadecka and Bielak-zmijewska, 2019) (See Figure 4). However, a change in CGI 

methylation in promoters does occur in pathologies like cancer and aging, silencing tumor supressor 

genes for example (Christensen et al., 2009; Kim and Costello, 2017).  
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Figure 4. Repression of gene expression by DNA methylation. 

Adapted from: Ushijima et al. (2003) 

Cytosines, indicated with white or black coloured bulbs, are 

present in the promoter region. When the cytosines are not 

methylated (as shown above) genes can be expressed whereas 

cytosines that are methylated (as shown below) repress gene 

expression. 

DNA methylation occurs by DNA methyltransferases 

(DNMTs) that transfer the methylgroup from S-

adenosylmethionine (SAM) to the cytosine. DNMT1 

methylates new synthesized strands and is therefore 

involved in mainting global DNA methylation, whereby 

DNMT3A and DNMT3B are involved in de novo 

methylation as shown in Figure 5 (Chen et al., 2003; 

Anderson et al., 2012).  

 

 

Figure 5. Maintenance and de novo 

methylation during DNA replication. 

Adapted from: Chen et al. (2003). 

DNA methyltransferases (DNMTs) 3A and 

3B are involved in de novo methylation and 

proof-reading of newly methylated DNA 

strands, whereas maintenance methylation 

after DNA replication is carried out by 

DNMT1. Dark coloured balls represent 

methylated cytosines and white balls 

unmethylated cytosines. 

 

 

 

DNA demethylation takes place through passive and active mechanisms. Passive DNA demethylation 

occurs when the DNA is replicated but no maintenance methylation takes place. Active DNA 

demethylation occurs through Ten-eleven translocation (TET) enzymes, which remove or modifies the 

methyl-group from 5mC as shown in Figure 6 (Bana and Cabreiro, 2019; Gadecka and Bielak-zmijewska, 

2019).   
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Figure 6. Cycle of DNA methylation and demethylation in 

mammals. Adapted from: Ravichandran et al. (2017). 

DNA methyltransferases (DNMTs) add a methyl-group to 

cytosine. Active demethylation is carried out by ten-eleven 

translocation (TET) enzymes which remove the methyl-group 

from the cytosine in several steps. Base excision repair (BER)/ 

Thymine DNA glycosylase (TDG) can also be involved in the 

demethylation process. Passive demethylation takes place in 

the absence of maintenance methylation DNMTs during DNA 

replication. 

 

 

 

2.2.1 Factors that influence DNAm 

Besides DNMTs and TET enzymes, diet plays an essential role in DNAm. Folate is converted to 

dihyrdofolate (DHF) to tetrahydrofolate (THF) by vitamin B6 and vitamin B2. THF is converted to 

methionine by vitamin B12.. Methionine is then converted to SAM; the universal methyldonor (Bana and 

Cabreiro, 2019; Gadecka and Bielak-zmijewska, 2019) (See Figure 7). In Figure 7, in yellow indicated are 

the micronutrients that are needed from the diet to ensure a functioning one-carbon metabolism 

(Anderson et al., 2012). Studies have shown that the availability of the micronutrients can alter DNA 

methylation (Anderson et al., 2012; Mahmoud and Ali, 2019). Besides diet, studies have shown that 

smoking, stress and exercise influence DNAm also (Ambatipudi et al., 2016; Bakusic et al., 2017; Mcgee 

and Hargreaves, 2019). 

 

Figure 7. Micronutrients involved in one-carbon metabolism. (Adapted from: Anderson et al. (2012)) 

The (dietary) micronutrients involved in one-carbon metabolism are highlighted in yellow. 

THF: tetrahydrofolate, DMG: dimethyl glycine, SAH: S-adenosylhomocysteine, SAH: S-adenosylmethionine 
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2.2.2 DNA methylation & analysis 

DNAm can be examined with various methods, many of them make use of a bisulfite (BS) conversion step. 

(Kim and Costello, 2017). Sodium bisulfite converts the unmethylated cytosine to uracil, which becomes a 

thymidine upon PCR amplification and sequencing. The cytosine of 5mC does not convert to an uracil and 

can therefore be distinguised from unmethylated cytosine (See Figure 8) (Frommer et al., 1992). 

Nowadays high-throughput and whole genome BS sequencing are applied. The Infinium methylation 450k 

microarray is a cost-effective, high-throughput method for detecting DNAm and is suitable for human 

samples which is now replaced by the MethylationEPIC (EPIC) BeadChip which covers over 850,000 CpG 

sites (Pidsley et al., 2016). The advances in technique facilitated the opportunity to examine individual 

CpGs. In turn, the focus of studies shifted to specific DNAm instead of global methylation. Because of the 

amount of data, bioinformatics play a bigger role nowadays, for example in extracting CpGs that correlate 

significantly with aging (Kim and Costello, 2017). This essay will, however, not discuss these bioinformatic 

analyses. 

 

 

 

 

 

 

 

 

2.2.3 DNA methylation & aging 

The link between aging and DNAm was established almost 50 years ago. It was hypothesized that 

organisms that lived longer should have a more stable DNAm pattern then shorter-lived organisms, since 

DNAm ensures DNA stability (Richardson, 2003). Several studies showed that DNAm decreased with age 

in different tissues in salmon, rats and mice, but in the liver of the rat, an increase in methylation was 

observed (Berdyshev et al., 1967; Vanyushin et al., 1973; Wilson et al., 1987). These studies measured the 

total DNAm, but it was not clear what the effect was on gene expression. 

To invesitage the effect of DNAm on gene expression, methylation sensitive endonucleases, which 

recognized CG sites but would only cleave the site if the cytosine was unmethylated, were used. This 

allowed the comparison of the methylation of restriction sites between young and old individuals. Tissue-

specific methylation of certain restriction sites were observed (Richardson, 2003). For example, the β-

actin gene was found to be demethylated with age in the spleen of rats but not brain or liver. Besides 

changes in DNAm in coding sequences of the DNA, there were also changes found in non-coding DNAm. 

Demethylation of repetitive DNA sequences were found in liver, thymus and heart, which could result in 

chromosal translocations with aging (Romanov and Vanyushin, 1981; Mays-hoopes et al., 1986; Rath and 

Kanungo, 1989; Lengauer, Kinzler and Vogelstein, 1997; Richardson, 2003). 

Figure 8. Schematic overview of bisulfite 

sequencing. (Diagenode, 2020) 

Sodium bisulfite converts the 

unmethylated cytosines to uracil, but not 

the methylated cytosines. After 

sequencing, the methylated cytosines can 

then be distinguished from the 

unmethylated cytosines. 
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With the development of BS sequencing and especially high throughput BS sequencing (Frommer et al., 

1992) DNAm could be more accurately studied. Instead of the global methylation, the focus shifted to 

specific DNAm of CGI in promoters from certain genes and especially in humans. A study with 

monozygotic (MZ) twins showed that DNAm was altered in humans by age. Whereby, young MZ had 

similar DNAm and the DNAm differed more with age in older twins (Fraga et al., 2005). Therefore, 

underlining the environmental influences on DNAm. Several studies showed that certain genes were 

hypermethylated, for example, tumor suppressor genes in elderly compared to young indiviuals and a 

global loss of methylation was also observed (Lopatina et al., 2002; Christensen et al., 2009; Ashapkin, 

Kutueva and Vanyushin, 2015). 

2.3 Epigenetic clocks 

Despite the new advances in techniques and analyzing methods, it was still not clear which genes were 

involved in the aging process and what role DNAm plays in aging. In 2011, the link between DNAm and 

aging was confirmed when Bocklandt and collegues showed that DNAm could be correlated with 

chronological age (e.g. an individual’s actual age) (Bocklandt et al., 2011). This accellerated the 

understanding of the role of DNAm in aging and was used to generate epigenetic clocks (e.g. a ‘clock’ that 

can predict the chronological age and later all-cause mortality risk and time-to-death based on 

biomarkers) (Bocklandt et al., 2011; Hannum et al., 2013; Horvath, 2013; Zhang et al., 2017; Levine et al., 

2018; Fahy et al., 2019; Lu et al., 2019). 

In order to understand how and why epigenetic clocks are important regarding the research of aging, 

several epigenetic clocks that had a significant influence in the research regarding epigenetic clocks and 

their results are highlighted. 

2.3.1. Epigenetic predictors of age: correlating DNA methylation with chronological age 

Bocklandt et al. (2011) were the first group of researchers who correlated DNAm with chronological age 

and their results can be acknowledged as a predecessor of the epigenetic clock. The methylation status of 

over 27,000 CpG loci in saliva of 34 pairs of biological twins between the age of 21-55 years were 

quantified. A total of 88 novel loci that correlated with age were identified, whereby 19 of the CpGs were 

negatively correlated, and thus hypomethylated and 69 were positively correlated and therefore 

hypermethylated with age. Further analysis indicated that, the gene-loci correlated with age were mainly 

involved in cardiovascular disease, neurological disease and genetic disease. After validation of the 

model, the error between the predicted age and chronological age concerned 5.3 years for males, 6.2 for 

females and 5.2 years combined. The error was even reduced to 3.5 years after adding another 

toppredictor of age. 

2.3.2. The epigenetic clocks of Hannum and Horvath 

To create a model that can be used to predict age based on DNAm, Hannum et al. (2013) used 

methylome-wide profiles of whole blood of 426 Caucasian and 230 Hispanic individuals aged between 19 

and 101 years. Out of the 485,577 CpG markers, 71 methylation markers were found that were highly 

predictive of age. The correlation between chronological age and predicated age was 96% with an error 

of 3.9 years. Almost all the markers of the model were within or in close proximity of genes that are 

known for functions in age-related conditions, including Alzheimer’s disease, tissue degradation, DNA 

damage, oxidative stress and cancer. A second cohort was included to validate the model, the correlation 

between chronological age and predicted age was still high: 91% but the error increased to 4.9 years. 

Besides the age-related markers, the study also found that gender significantly contributed to the aging 

rate. The methylome of men appeared to age 4% faster than that of women.   
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To test whether the model was also suitable for other tissues Hannum et al. (2013) tested breast, kidney, 

lung and skin samples with the same model. Although the correlation between chronological age and 

predicted age was still high (R=0.72), a clear linear offset from the expectation was seen in every tissue. 

The effect that men age quicker than women was, however, found again in these tissues. Lastly, Hannum 

et al. (2013) created de novo models for breast, kidney and lung tissues. Most of the markers in the 

model differed, although some were the same. 

DNAm is shown to differ between tissues, however studies had found that there were also age-

dependent DNAm changes independent of tissue (Teschendorff et al., 2010; Koch and Wagner, 2011). In 

an attempt to create a multi-tissue age predictor, Horvath (2013) assessed the DNAm in more than 7000 

healthy samples corresponding to 51 tissues and cell-types. 

Using a mathematic model, 353 CpGs were selected that combined could best predict age, also called 
clock CpGs. A weighted average of the clock CpGs was calculated, put in an self-learning algorithm and 
then calibrated by using training data. Three prediction measures were used: first the correlation 
between the clock CpGs (DNAm age) and the chronological age, second the median difference between 
the predicted age and the chronological age. Lastly, average age accelleration defined by the difference 
between the predicted and chronological age to determine whether the age of a tissue was higher or 
lower than expected. The epigenetic model of Horvath (2013) had an error rate of approximately 3.6 
years and proved highly accurate in heterogenous tissue, even in tissues/fluid that have a high turnover 
rate. The DNAm model was however less accurate in breast tissue, uterine endometrium, dermal 
fibroblasts, skeletal muscle tissue and heart tissue.  
 
193 clock genes were hypermethylated with age and 160 hypomethylated. The hypomethylated CpGs 
varied more than the hypermethylated CpGs across tissues which was also found in Weidner et al. (2014). 
Further analysis indicated that hypermethylated CpGs were more likely to be in poised promoters, 
meaning that the promoters can be repressed as well as activated, whereby the hypomethylated CpGs 
are more likely to be in either weak promoters or strong enhancers.  
 
The DNAm model of Horvath (2013) showed some more insight in aging. The 353 clock CpGs vary greatly 

across ages, it was then proposed that DNAm is logarithmic until adulthood and after adulthood it slows 

to a linear dependence (See Figure 9). Horvath (2013) proposed a theory for the switch from logarithmic 

to linear dependence. The switch is based on the epigenetic maintenance system (EMS) which is crucial 

regarding the growth of an individual, which Horvath (2013) called the ticking rate. The ticking rate 

corresponds with the ‘work’of DNMTs, especially DNMT1. In early life during development, DNMTs’ 

activity is required to maintain epigenetic stability, since there is high cell turnover which results in a high 

ticking rate and a logaritmic dependence. However, once development is completed, the ‘workload’ and 

therefore the ticking rate, can decrease to a linear dependence to maintain epigenetic stability.  

Following the EMS theory, Horvath (2013) proposed that DNAm age should be accelerated by many 

perturbations that affect epigenetic stability, for example cancer. Each tissue affected by cancer showed 

evidence of significant age acceleration with an average age of 36.2 years. Furthermore, the number of 

mutations per cancer sample tends to be inversely correlated with age acceleration, which would fit the 

hypothesis that DNAm age acceleration results from processes that promote genome stabiltiy.  
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2.3.3. Insights of centenarians 

With regards to longevity, centenarians are an interesting subject to study because assing the differences 

between centenarians and elderly could give more insight in which genes and methylation patterns are 

involved in longevity. Studies including centenarians are scarce, because there are not many 

centenarians. The largest study conducted, was by Horvath et al. (2015b). 75 participants between the 

age of 99-113 years, 63 offspring of the centenarians between the age of 50-89 years and 46 participants 

between the age of 52-85 years old (control) participated. Previous research showed that DNA 

methylation is for 40% heritable (Fraga et al., 2005), in this study the offspring of the centenarians had a 

predicted age 5.1 years younger than age matched controls. Analysis showed that the centenarians were 

8.6 years on average younger than expected based on their chronological age. Moreover, the DNAm age 

of centenarians differed significantly from the DNAm age of the controls, but not compared with their 

offspring. It has to be noted that confounders can play a role since there are no suitable controls for 

participants over 105+ years and it has to be repeated with particpants with a different genetic 

background, lifestyle and cultural habits. 

Other studies with centenarians found enriched DNAm regions in pathways associated with ARD, like 

type-2 diabetes, cardivascular and Alzheimer’s disease, which when suppressed could lead to longevity 

(Xiao et al., 2016). Moreover, a slower cell growing/metabolism, better control in signal transmission and 

a better preservation of DNAm status is proposed to contribute to human longevity. Preservation of 

DNAm status in centanarians was found as the DNA global hypomethylation associated with age, was 

delayed in centenarians (Gentilini et al., 2013). Furthermore, it was found that age-related DNA 

hypermethylation occurs predominantly in genes involved in the development of anatomical structures, 

organs and multicellular organisms and genes involved in nucleotide biosynthesis, metabolism and 

control of signal transmission were differently methylated between centenarians’ offspring and offspring 

of non-long-lived parents (Gentilini et al., 2013).  

 

Figure 9. Deviations of epigenetic age regarding to 

chronological age. Adapted from: Horvath and Raj 

(2018) 

When the epigenetic age is higher than the 

chronological age, it is associated with comorbidities 

and worse health than when the epigenetic age is 

lower than the chronological age. 
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2.3.4. Factors that influence the epigenetic clocks 

Several studies investigated factors that influence the epigenetic clock as shown in Table 1. The influence 

of ethnicity and education was also assessed but with a different method. Horvath et al. (2016) used 

whole blood, whereby they calculated the intrinsic epigenetic age accelleration (IEAA) which captures the 

DNAm and extrinsic epigenetic age accelleration (EEAA) which also captures the changes of the 

composition in blood. The study found that Hispanics and Tsimane (an indigenous population of the 

lowlands of Bolivia) based on DNAm aged slower than Caucasians however if the changes in blood where 

taken into account Caucasians aged slower than Hispanics and Tsimane. African Americans had the lowest 

EEAA. Furthermore, higher education was associated with decreased EEAA in every ethnic group. 

Factors that influence the epigenetic clock Studies 

Gender (Hannum et al., 2013) 

Cancer  (Hannum et al., 2013; Levine et al., 2015a) 

Genetics  (Horvath et al., 2015a) 

Obesity  (Horvath et al., 2014) 

Down’s syndrome  (Horvath et al., 2015b) 

HIV infection  (Horvath and Levine, 2015) 

Parkinson’s disease  (Horvath and Ritz, 2015) 

Alzheimer’s disease  (Levine et al., 2015b) 

Life time stress  (Zannas et al., 2015) 

Smoking  (Gao et al., 2016) 

Coronary heart disease (CHD)  (Horvath et al., 2016) 

Table 1. Factors that influence the epigenetic clock. 

2.3.5. All-cause mortality risk prediction based on the epigenetic clocks 

After validation of the epigenetic clocks and assessing which factors influence the epigenetic clocks, 

Marioni et al. (2015) tested if all-cause mortality risk could be calculated by using the epigenetic clocks of 

Hannum et al. (2013 and Horvath (2013). Marioni et al. (2015) tested if Δage, the difference between 

predicted age and chronological age, or other DNA methylation biomarkers could be significant predictors 

of all-cause mortality using four cohort studies.   

A 5-year higher Hannum Δage, which indicated that the predicted age was 5 years higher than the 

chronological age, was associated with a 21% greater mortality risk after adjusting for chronological age 

and sex, whereas  a 5-year higher Horvath’s Δage was associated with 11%. After creating a fully adjusted 

model which also controlled for smoking, education, childhood IQ, APOE, cardiovascular disease, high 

blood pressure and diabetes, the hazard ratio (HR) per 5-year difference was 1.16 for Hannum and 1.09 

for Horvath. The study did not find a difference in the Δage and survival by sex. However they did find 

that women had a significantly lower Δage than men. 

The study of Zhang et al. (2017) looked at mortality related DNAm signatures from blood samples and 

generated a new predictor to predict all-cause mortality risk based on DNAm. 58 CpGs were found in the 

baseline blood samples associated with mortality. Of the risk factors, 23 and 25 of the CpGs were 

associated with age and sex, 48 associated with smoking and 5 with alcohol consumption. 

10 CpGs were eventually put in a model to calculate the mortality risk. Participants were then screened if 

they had aberrant methylation at the 10 CpGs and allocated a mortality score of 1-10. Whereas 

participants without aberrant methylation at any of the 10 CpGs had a score of 0. Participants that had a 

score of 1, 2-5 and 5 had a 2-, 3- and 7-fold risk of dying compared to participants with a score of 0. In the 
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fully adjusted model, the HR score for participants with a score of 5+ was 7.41. The all-cause mortality 

associations indicated stronger to be among women than among men. 

Following these studies, other studies also investigated all-cause mortality risk based on DNAm. However, 

studies had indicated that biomarkers could be a better indicator for all-cause mortality than 

chronological age (Ferrucci et al., 2010; Levine, 2013; Belsky et al., 2015; Li et al., 2015; Sebastiani et al., 

2017). Therefore, the following two studies that are highlighted here, will use biomarkers instead of 

chronological age.  

 

2.3.6. Next generation epigenetic clocks based on biomarkers instead of chronological age 

Levine et al. (2018) used the whole blood method based on IEAA and EEAA markers. Out of 42 

biomarkers, 10 variables were selected for the phenotypic age predictor, one of the biomarkers was 

chronological age. They found that 1 year increase in phenotypic age was associated with a 9% increase in 

the risk of all-cause mortality from ARD, a 10% increase in the risk of CVD mortality, a 7% increase in the 

risk of cancer mortality, a 20% increase in the risk of diabetes mortality and a 9% increase in the risk of 

chronic lower respiratory disease mortality. The top 5%, the fast agers, had a mortality hazard of death 

1.62 times that of the average person, opposed to 2.58 of the slowest agers. When compared to the 

epigenetic clocks of Hannum et al. (2013) and Horvath (2013), PhenoAge predicted 10- and 20-year 

mortality risk significantly better. 41 of the 513 CpGs were shared with the Horvath clock (Horvath, 2013), 

5 CpGs were shared between all three (Hannum et al., 2013; Horvath, 2013; Levine et al., 2018). Besides 

ethnicity, education, the influence of exercise and dietary habits on PhenoAge were assessed. Whereby 

increased exercise and fruit and vegetable consumption were associated with a lower PhenoAge.  

To identify the years left, based on all-cause mortality, DNAm GrimAge was created by Lu et al. (2019). To 
create the DNAm GrimAge, DNAm biomarkers of physiological risk factors and stress factors were 
determined. 12 out of the 88 corresponding plasma protein variables, generated by blood samples, were 
correlated with chronological age, sex and CpG levels from the training data. The 12 plasma protein 
variables were then put together with the DNAm estimator of smoking pack-years, chronological age and 
sex.  
 
Before it was tested if the DNAm GrimAge was a better predictor of lifespan than chronological age, 

DNAm GrimAge was regressed on chronological age to define epigenetic age acceleration (AgeAccelGrim) 

and used in association tests with ARD, since age is a confounding factor. Using the blood samples of 

Caucasians, African Americans and Hispanics, it was found that AgeAccelGrim predicted lifespan better 

than chronological age. AgeAccelGrim was also accurate in predicting the lifespan of never-smokers and 

the surrogate marker was a better predictor of lifespan than self-reported smoke pack-years. 

Furthermore, AgeAccelGrim was also highly predictive of CHD incidence, which is also associated with 

hypertension, Type 2 Diabetes and physical functioning. Higher values of AgeAccelGrim were associated 

with lower physical functioning levels and menopause at an early age as well. In regards to dietary habits, 

AgeAccelGrim showed a strong relationship with mean carotenoid levels whereas a higher intake resulted 

in a lower AgeAccelGrim and a higher carbohydrate intake was associated with lower AgeAccelGrim this 

was the opposite for fat.  

DNAm GrimAge was compared to the epigenetic clocks of Horvath (Horvath, 2013), Hannum (Hannum et 

al., 2013) and PhenoAge (Levine et al., 2018) and DNAm GrimAge outperformed the others with respect 

to predict time-to-death. 
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As showed above, epigenetic clocks can predict the chronological age using a biological sample and even 

calculate the all-cause mortality risk and time-to-death based on DNAm. Which leaves the next question, 

is it possible to reverse the epigenetic clock? 

2.3.7. Reversing the epigenetic clock 

In response to this question Fahy et al. (2019) tried to reverse the epigenetic clock by using recombinant 

human growth hormone (rhGH) in 51-61 year old healthy men. At baseline the DNAm ages of the 

participants were lower than their chronological ages however after treatment the DNAm age decreased 

even further based on the Hannum, Horvath, PhenoAge and GrimAge clock (Hannum et al., 2013; 

Horvath, 2013; Levine et al., 2018; Lu et al., 2019). After 12 months the mean Δage was approximately 

2.5 years and even after 6 months discontinuation of the treatment, the Δage remained 1.5 years. 

Moreover, the GrimAge clock that predicts life expectancy, stayed even after 6 months on 2.1 years gain 

(Lu et al., 2019). Interestingly, the rate of aging regression appeared to accelerate with increasing 

treatment time, respectively -1.56 +/- 0.46 years/year in the first 9 months to -6.48 +/- 0.34 years/year in 

the last 3 months of treatment. 
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3. Conclusions and future perspectives 

To conclude, DNAm plays an important role in the aging process (Christensen et al., 2009). Epigenetic 

clocks, based on DNAm, showed that DNAm could be used to estimate chronological age of an individual 

(Hannum et al., 2013; Horvath, 2013), calculate all-cause mortality risk (Zhang et al., 2017; Levine et al., 

2018) and time-to-death (Lu et al., 2019). Lastly, studies also found that several factors influence the 

epigenetic clock (Hannum et al., 2013; Gao et al., 2016; Horvath et al., 2016). 

Although epigenetic clocks are very promising to study aging but there are still some limitations. First, 

epigenetic clocks need to be used accordingly, since the clocks are trained on different databases and 

tissues resulting in different results. For instance, Figure 10 shows the differences between the Hannum, 

Horvath and Levine’s (PhenoAge) clock; because the clocks used different datasets and tissues this results 

in different outcomes with the same dataset.  

Second, Caucasians are overrepresented in the used datasets which could result in a bias. Third, the 

epigenetic clock is not suited for single-cell or individual use yet. To make the epigenetic clocks clinically 

relevant, individual tissue-, disease- and mechanism specific clocks should be created. The strenghts and 

weaknesses should be indicated per clock, then improved in order to create the tissue-, disease- and 

mechanism specific clocks as needed (Bell et al., 2019).  

 

 

 

 

 

Figure 10. Comparison between Horvath’s, Hannum’s and Levine’s clock. 

Adapted from Horvath and Raj (2018) 

This figure shows the differences in the Horvath’s (Horvath, 2013), 

Hannum’s (Hannum et al., 2013) and Levine’s clock (Levine et al., 2018). 
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Besides technical improvements, the future of the epigenetic clocks lies in slowing down aging by 

rejuvinating the predicted age. Fay et al. (2019) showed that it is possible to slow down and even reverse 

the epigenetic clock with the use of a growth hormone. However, it is not likely that a growth hormone 

will be administerd to individuals. Therefore, research should focus on finding other compounds/things 

that could be used to rejuvinate the predicted age. One method that have been proven effective to 

extend lifespan in animals is caloric restriction (CR) (Hahn et al., 2017). The effect of CR on lifespan is 

studied in yeast, worms, flies, mice and monkeys, in which animals that followed the CR diet had an 

increased lifespan (Fontana et al., 2010). During World War 1 and 2 a drop in death rates was observed 

by the Danish and Norwegians that were forced to restrict their intake due to foodshortage (Hindhede, 

1920; Strom and Jensen, 1951). In humans, the effect of a CR diet is only studied by coincidence since it is 

hard to find participants to study CR effects longterm, since CR is very invasive as the diet contains usually 

10-40% less calories than the recommendations (Cava and Fontana, 2013; Most et al., 2017). A drug that 

mimicks the CR effects would be optimal since it would not be as invasive. Metaformin is used to treat 

diabetes, but research showed that it could also be used to improve age-related symptoms, however no 

research has been conducted in combination with epigenetic clocks (Barzilai et al., 2016).  

To conclude, DNAm and especially epigenetic clocks are promising targets to study aging and can 

hopefully be used to improve the quality of life in elderly and to extend lifespan. However, to gain a 

broader understanding of aging, future research should also assess the influence of the epigenetic clock 

on the 9 hallmarks of aging (López-Otín et al., 2013) as DNAm can not fully account for the aging process. 

So that in the future, the HALE can be equal to life expectancy. 
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