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Abstract

This thesis looks into factoring integers into their respective prime
factorisation using conics. Inspired by Lenstra’s Elliptic curve method,
a factorisation algorithm is constructed based on the group law on Pell
conics. It is found that this factorisation algorithm is actually a geometric
representation of Williams’ p + 1 method. Using the fact that we have
rediscovered Williams’ p + 1 method, a new proof for a theorem from
Lehmer is also presented.
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1 Introduction

This bachelor thesis looks into the construction of a integer factorisation algo-
rithm, based on conics defined over a commutative ring. Factorisation algo-
rithms have seen a resurgence in importance for numerous application such as
RSA. RSA (see [10]) is a public-key encryption algorithm that is used to safely
transfer data over a network. The algorithm relies on the difficulty of factorising
the product of large prime numbers, more on this in section 2. Due to this, more
research has gone into factorisation algorithms.

There are however already a lot of methods that are commonly used to
factorise integers. Think of Pollard’s Rho algorithm, Pollard’s p−1 method (see
[9]) or Williams’ p+ 1 method (see [14]), just to name a few. There is also (see
Lenstra’s elliptic curve method). This method defines an elliptic curve over the
commutative ring Z/NZ with appropriate group law to reach a factorisation
algorithm. Lemmermeyer shows in his Paper ”A Poor man’s elliptic curves”
(see [5]) that a similar group law exists for Pell conics using geometry. By
investigating the geometric structure of this group based on Pell conics, he finds
similarities when comparing it to elliptic curves in his paper. Combining his
unpublished notes (see [6]) with this paper, it becomes clear that a method can
be constructed using Pell conics by means of a similar approach. That is what
this thesis looks into.

The term Pell conic, comes from the term Pell’s equation which is given as
x2 − my2 = 1 for some integer m. The name of this equation came to be as
the mathematician Euler, wrongly attributed the findings of Lord Brouncker’s
solution of the equation to a mathematician named John Pell. Already in 400
BC, mathematicians in Greece studied the properties and points on the Pell
conic x2 − 2y2 = 1. Afterwards in 628 AC a scholar named Brahmagupta did
pioneering work in finding solutions for the Pell equation x2 − 92y2 = 1

In the thesis we initially describe conics and a group law on conics is con-
structed. Then some examples of conics are given, eventually zooming in on Pell
conics. The group order of a arbitrary Pell conic defined over the commutative
ring Z/NZ is also determined. From this group a condition can be found for
when a point contains a factor of the integer we would like to factor.

The end goal is to construct a factorisation algorithm in Sage that can
competitively factorise integers. For this, fast addition algorithms will be needed
to speed up the computation time. Hence this thesis also looks into these
methods.
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2 Integer Factorisation

The problem of factorising integer is indeed a well defined problem since Z is a
unique factorisation domain:

Definition 2.1. A unique factorisation domain is a domain R in which for
each element a ∈ R, a 6= 0 can be written uniquely as a product of a unit and a
finite number of irreducible elements:

a = u · s1 · s2 · ... · sn, u ∈ R×, si ∈ R irreducible for i ∈ 1, 2, ..., n

In the case of the ring Z, the units are -1,1 and the irreducible elements are
the prime numbers. Hence any integer can uniquely be written as a product of
prime numbers multiplied with either 1 or −1. The question remains as to how
integers can be factorised.

This knowledge is important as the prevalent encryption algorithm RSA
relies on the difficulty of doing so. To illustrate how the encryption works,
suppose person A would like to send the message M to person B over a public
network. person B first comes up with two distinct, large, prime numbers p, q
that are only known to him or her. The product n = pq is publicly shared
combined with an integer k. Person A can then encrypt the message M using
the equation:

Mk ≡ c mod n

The encrypted message c is then made publicly available again to be decoded by
person B. person B can decrypt the message by calculating the multiplicative
inverse of k in Z/(p− 1)(q − 1)Z:

ek ≡ 1 mod (p− 1)(q − 1),

because then ce ≡M mod n. Of course this can only be done if p, q are known.
The encryption relies on the fact that for outsiders, who don’t know p and q, it
is difficult to factorise n into p and q for large, complex prime numbers.

There are numerous methods that can do this efficiently, each with their
own advantage based on the integer to be factored (see [1] for an overview
of factorisation algorithms). Most important of those for this thesis are the
so called Algebraic-group factorisation algorithms. These methods utilize the
structure of groups to factorise integers. Among these are for example Pollard’s
p − 1 algorithm and William’s p + 1 method. A short description of these two
methods will shortly be presented. There is also Lenstra’s elliptic curve method
which defines an elliptic curve over a commutative ring to find a non-trivial
factor. Unfortunately this thesis will not be able to go further into this method.

2.1 Pollard’s p− 1 method

Suppose that N is the composite number we would like to factor. Pollard’s
algorithm works by using Fermat’s little theorem:
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Theorem 2.1 (Fermat’s little theorem). Let N be a composite number and
p ∈ Z>1 an integer such that p | N . Let a ∈ Z>1 be an integer coprime to N ,
i.e. gcd(a,N) = 1. Then for any k ∈ Z>0:

ak(p−1) ≡ 1 mod p

Let a be a coprime integer to N . The algorithm computes powers of this
point a, an, n ∈ Z>1. Then gcd(an−1, N) is computed. If (p−1) | n and N - n,
then this gcd will yield a non-trivial factor of N .

2.2 Williams’ p+ 1 Method

Williams’ p+ 1 method uses Lucas Functions to find a prime factor:

Definition 2.2 (Lucas Functions). For a quadratic polynomial X2 − Rx + 1,
R ∈ Z, with roots α, β ∈ C, the Lucas functions are defined by:

Un(R) =
αn − βn

α− β
∈ Z

Vn(R) = αn + βn ∈ Z

In other literature the Lucas functions are based on quadratic polynomials
of the form X2 − Rx + Q, Q ∈ Z. However, William proves in [14, section 3],
that any Lucas Function can be reduced to one where the quadratic polynomial
is of the form X2 − Rx + 1. So for simplicity, this paper will solely focus on
these. Later theorems can be proven exactly the same for a general Q ∈ Z
although will take more effort. Now consider the following theorem:

Theorem 2.2 (Lehmer). Let p be an odd prime and
(

∆
p

)
= ε, where ∆ =

R2 − 4, then:

U(p−ε)m(R) ≡ 0 mod p

V(p−ε)m(R) ≡ 2 mod p

Proof. See Lehmer [4].

The proof in Williams’ paper is quite dated and difficult to understand.
Later a simpler proof based on Pell Conics will be given. This theorem gives
a condition to find a non-trivial factor of an integer N using Lucas functions.
Since if n is a multiple of (p − ε), and N - n, then gcd(Vn(R) − 2, N) yields a
non-trivial factor of N .
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3 Conics

To construct a factorisation algorithm based on conics, one must first be familiar
with the notion of a conic over a ring. Conics are plane algebraic curves defined
by a polynomial of degree 2.

Definition 3.1 (Conic). Let a, b, ..., f ∈ R, R a commutative ring, such that
at least a, b or c is non-zero. The equation ax2 + by2 + cxy + dx + ey + f = 0
defines a conic C. We write C over R.

We define the set of R-rational points on a conic C to be:

Definition 3.2. Let R be a commutative ring. The set of R-rational points on
a conic C : ax2 + by2 + cxy + dx+ ey + f = 0 over R is denoted by:

C(R) := {(x, y) ∈ R×R | ax2 + by2 + cxy + dx+ ey + f = 0}

Now let R be a field, and let C over R be a conic. We now construct a
geometric abelian group law on C(R). We will later give explicit formulas for
this group law on specific conics. These formulas will show that there is in fact
an abelian group law on C(R) for arbitrary commutative rings.

Definition 3.3 (The group law on conics). Let P,Q ∈ C(R) and fix some
e ∈ C(R) to be (can be any element in C(R)) the unit element. The sum of P
and Q is defined as follows:

We draw a line between P and Q, say PQ. Then we draw a line parallel to
PQ that intersects with our unit element e, call it l(P +Q). This line l(P +Q)
intersects with our conic in at most two points. Indeed, intersecting a line with
a curve defined by a second degree polynomial yields two intersections at most.
If there is any other intersection than e, then this will be the sum of P + Q.
Else P +Q = e. If we take P = Q then the line PQ will simply be the tangent
at the point P .

To show that this group law is properly defined, we must go through the
axioms of what defines a group. First we need to show that P + Q ∈ C(R).
To do this, first note that for P,Q ∈ C(R), the line l(P + Q) trough e has
coefficients in R. One can construct this line simply enough by writing P =
(x1, y1), Q = (x2, y2), e = (e1, e2). Then if x1 6= x2:

y = mx+ g, where m =
y1 − y2

x1 − x2
and g = e2 −me1

Since R is a field, naturally b,m ∈ R since they are the result of additions and
multiplications of elements in R. In the case that x1−x2 = 0, the line l(P +Q)
is simply the line y = g intersecting e. Now the conic C : ax2 + by2 + cxy +
dx + ey + f = 0 can be intersected with l(P + Q): By construction (e1, e2) is
an element of C(R) and a point on the curve y = mx + g. Substituting for
y = mx + g on the conic C, we find a quadratic polynomial for which e1 is a
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zero. This polynomial can then be written as (x − e1)r(x), r(x) ∈ R[X]. Since
this polynomial has a zero in R, a field, then as this is a quadratic polynomial,
the other zero is contained in R as well. Suppose this other zero is x∗. Then
writing y∗ = mx∗ + g ∈ R, we have found the addition of P and Q, namely
P +Q = (x∗, y∗) ∈ C(R). Hence the addition is well defined.

Now the following theorem can be proven:

Theorem 3.1. Let C : ax2 +by2 +cxy+dx+ey+f = 0 be a conic defined over
a field R, C(R). Let e ∈ C(R). Then definition 3.3 defines an abelian group
law on C(R) with unit element e.

The thesis mainly discusses Pell conics so only a sketch of the proof will be
given below. Later the theorem will be explicitly proven for Pell conics, where
this theorem will also extend to Commutative rings:

Proof. The theorem can be proven by considering the axioms for a abelian
group.:

I. To show associativity is quite technical. For a proof of the associativity
see [11, section 3]; utilising Pascal’s Hexagon Theorem (see [12]) an easy proof
can be constructed. Later we will prove it for the special case of a Pell conic.

II. Trivially for P ∈ C(R), when wanting to compute P + e, simply note
that l(P + e) is equal to the line Pe. By construction, P + e = e+ P = P

III. The inverse of a point P ∈ C(R) can be computed as follows. Take
the tangent of the unit element e. Now construct a line with the slope of this
tangent intersecting P . Then P−1 is defined to be the other intersection this
line makes with the conic. If there is no other intersection except for P , then
P−1 = P . By construction P + P−1 = e.

IV. Commutativity is trivial because of the way this group law has been
constructed. For P,Q ∈ C(R). The slope between P and Q is the same as the
slope between Q and P . Hence, P +Q = Q+ P

Below some examples of Conics are presented.
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3.1 The Parabola

To illustrate the group law on conics we take the conic K : y = x2 over the
rational numbers Q. This then defines the Q-rational points K(Q) := {(x, y) ∈
Q × Q | y = x2}. Let the unit element be (0, 0). Take the two points P =
(−1, 1), Q = (2, 4) ∈ K(Q). The sum P +Q = (1, 1) is illustrated below:

Figure 1: Sum of P and Q on the conic x2 = y

This group law can also be written explicitly as:

Definition 3.4. Let P = (x1, x
2
1), Q = (x2, x

2
2) ∈ K(R), and let the unit element

be (0, 0). The sum of P and Q is then defined as:

(x1, x
2
1) + (x2, x

2
2) = (x1 + x2, (x1 + x2)2)

This defines a group for any commutative ring R (see [6, section 2.2]), and
is the same as definition 3.3 when R is a field.

3.2 The Hyperbola H
The formula for a hyperbola is given by: H : xy = 1. We can again define the
R-rational points H(R) = {(x, y) ∈ R×R | xy = 1}. In this case let’s compute
the group law explicitly, when R is a field.

Let the unit element be (1, 1) ∈ H(R) where 1 is the unit element of R Take
(a, a−1), (b, b−1) ∈ H(R). The slope m of the line between these points can then
simply be computed by:

m =
a−1 − b−1

a− b
= − 1

ab
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If a = b then (a, a−1) = (b, b−1). Hence the slope m will just be tangent of the
hyperbola at the point (a, a−1). Now we find the parallel line by plugging in
our unit element (1, 1) into the equation y = mx+ C to find:

y = − 1

ab
x+ C = − 1

ab
(x− 1) + 1

Then this line can be intersected with the hyperbola to obtain:

y = − 1
ab (x− 1) + 1

xy = 1

}
x− 1 =

1

ab
(x− 1)x

So either x = 1, yielding the unit element, or x = 1
ab . Thus we find:

Definition 3.5. Let (a, a−1), (b, b−1) ∈ H(R) where H(R) has unit element
(1, 1) the sum of (a, a−1) and (b, b−1) is defined as:

(a, a−1) + (b, b−1) = (ab, (ab)−1)

Holding on to our previous construction it’s clear that this will define an
abelian group (H(R),+, (1, 1)) for any commutative ring R. For the inverse of
an element P = (a, a−1) ∈ H(R), following the construction described in section
3, we find: P−1 = (a−1, a). It is also clear that P+(1, 1) = (1, 1)+P = P . I will
leave it as an exercise to the reader to completely show that this construction
indeed defines a group. It is trivial to see that in fact all elements that satisfy
the equation of the hyperbola over R correspond to a unique unit elements in
R, R× by definition. By definition 3.5:

H(R) ' R×

To illustrate this group law, take the Hyperbola over the rational numbers
Q, H(Q). Let P =

(
5
9 ,

9
5

)
, Q =

(
− 4

5 ,−
5
4

)
Then the sum P +Q =

(
− 4

9 ,−
9
4

)
:

Figure 2: Sum of P and Q on the conic xy = 1
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3.3 The Pell conic

Definition 3.6 (The Pell conic defined over R). Let R be a commutative ring.
A Pell conic Cm over R is defined by an equation x2 −my2 = 1, where m ∈ R

Hence, Cm(R) = {(x, y) ∈ R×R | x2 −my2 = 1},

Figure 3: The Pell conics x2 − 3y2 = 1 and x2 + 3y2 = 1 respectively.

Let us go through the steps to find the group law on a Pell conic. To this
end we let our unit element e = (1, 0) ∈ Cm(R) where 1 and 0 are the unit and
zero element of R respectively.

Definition 3.7. For (x1, y1), (x2, y2) ∈ Cm(R), the sum is defined to be:

(x1, y1) + (x2, y2) = (x1x2 +my1y2, x1y2 + x2y1)

Van der Sluis proved that in the case for m = 3, (C3(R),+, e), with addition
+ as above, defines a group in [13]. Now we will prove the general case.

Theorem 3.2. (Cm(R),+, e) is a group.

Proof. I. Indeed, for (x1, y1), (x2, y2), (x3, y3) ∈ Cm(R) we have:

((x1, y1) + (x2, y2)) + (x3, y3) =(x1x2 +my1y2, x1y2 + x2y1) + (x3, y3)

=(x1(x2x3 +my2y3) +my1(x3y2 + y3x2),

x1(x3y2 + x2y3) + y1(x2x3 +my2y3))

=(x1, y1) + ((x2, y2) + (x3, y3))

II. For e = (1, 0) and (x1, y1) ∈ Cm(R) we have:

e+ (x1, y1) = (x1, y1) = (x1, y1) + e

III. For P = (x1, y1) ∈ Cm(R) Let P−1 = (x1,−y1). Then:

P + P−1 = (x1, y1) + (x1,−y1) = (x2
1 −my2

1 , 0)

= (1, 0)

= (x1,−y1) + (x1, y1)
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IV. Trivially for (x1, y1), (x2, y2) ∈ Cm(R):

(x1, y1) + (x2, y2) = (x1x2 +my1y2, x1y2 + x2y1) = (x2, y2) + (x1, y1)

, since R itself is commutative. Hence (Cm(R),+, e) is a group.

If R is a field, then this group law is the same as the group law constructed
in Definition 3.3. To show this group law is the same, it can be checked that
the slope t = y1−y2

x1−x2
is in fact the same slope as the slope obtained from the line

intersecting e = (1, 0) and (x1x2 + my1y2, x1y2 + x2y1) which is x1x2+my1y2
x1y2+x2y1−1 .

Note that for checking

x1x2 +my1y2

x1y2 + x2y1 − 1
=
y1 − y2

x1 − x2
,

we can check the following:

(x1x2 +my1y2)(x1 − x2) = (y1 − y2)(x1y2 + x2y1 − 1)

x2
1y2 + x1x2y1 − x1x2y2 − x2

2y1 = x1x2y1 +my2
1y2 − y1 − y2x1x2 −my1y2 + y2

(x2
1 −my2

1 − 1)y2 = (x2
2 −my2

2 − 1)y1

0 = 0

Hence the slopes are equal and therefore (x1x2 +my1y2, x1y2 +x2y1) is the point
we find by geometrically calculating the sum (x1, y1) + (x2, y2).

3.3.1 Relation between R[α] and Cm(R)

Points on a Pell conics Cm(R) are often studied as a subset of the ring R[α].
As before, let R be a commutative ring and consider the polynomial ring:

S = R[x]/(x2 −m)

Let α ∈ S such that α2 = m. Define:

R[α] := {x+ yα | x, y ∈ R}

Proposition 3.1. (R[α],+, ·, 0, 1) is a commutative ring with 0, 1 ∈ R and
addition and multiplication rules:

(x1 + y1α) + (x2 + y2α) =x1 + x2 + (y1 + y2)α

(x1 + y1α)(x2 + y2α) =x1x2 +my1y2 + (x1y2 + x2y1)α

It is trivial to see that this indeed yields a ring. Let the norm map N over
this ring be defined as:

N : R[α]→ R

x+ y
√
m→ (x+ y

√
m)(x− y

√
m)
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This map N is multiplicative; we have that for (x1 + y1α), (x2 + y2α) ∈ R[α]:

N ((x1 + y1α)(x2 + y2α)) =N (x1x2 +my1y2 + (x1y2 + x2y1)α)

=(x1x2 +my1y2)2 −m(x1y2 + x2y1)2

=x2
1x

2
2 −mx2

1y
2
2 −mx2

2y
2
1 +m2y2

1y
2
2

=(x2
1 −my2

1)(x2
2 −my2

2)

=N (x1 + y1α)N (x2 + y2α)

Hence the map N restricted to the units:

N : R[α]× → R×,

is a group homomorphism and ker(N ) is a subgroup of R[α]×. Define Tm(R) :=
ker(N ). We can now prove the following:

Theorem 3.3. Let R be a commutative ring, and let m ∈ R. Then:

Tm(R) ' Cm(R) (1)

Proof. Consider the homomorphism:

Θ : Tm(R)→ Cm(R)

x+ yα→ (x, y)

This map is well defined since by definition N (x + y
√
m) = x2 − my2 = 1,

so Θ(x + y
√
m) = (x, y) ∈ Cm(R). Now to show Θ is a homomorphism, let

x1 + y1
√
m,x2 + y2

√
m ∈ Tm(R):

Θ((x1 + y1α)(x2 + y2α)) = Θ(x1x2 +my1y2 + (x1y2 + x2y1)α)

= (x1x2 +my1y2, x1y2 + x2y1)

= (x1, y1) + (x2, y2)

= Θ(x1 + y1α) + Θ(x1 + y2α)

So Θ is a homomorphism. Bijectivity is trivial, hence is therefore left as an
exercise for the reader. Hence Θ is an Isomorphism.

The extension R[α] is equal to R if m is a square in R as then α ∈ R. Hence
Tm(R) = R×. This set Tm(R) will however not be trivial if m is not a square.

4 Factorisation algorithms based on conics

The main focus of this thesis is to compute the prime factorisation of integers.
So let N be a composite number, the integer we wish to factor. Two algorithms
are discussed, one less interesting method based on the hyperbola H, and one
based on Pell conics Cm. As prerequisite we only need one elementary theorem
from Group Theory, generalising Theorem 2.1:
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Theorem 4.1. Let G be a finite group with order #G = g and unit element e.
Then for any element x ∈ G:

xg = e

For the algorithms to succeed, we restrict to integers N not divisible by 2. If
N does contain factors of 2 we can simply divide N by 2 until that is no longer
the case.

4.1 Rediscovering Pollard’s p− 1 method with H(R)

Let N be the composite number to be factored. Take H as before but now with
R = Z/NZ. Since Z/NZ is a commutative ring this again defines an abelian
group (H(Z/NZ),+, (1, 1)) with addition + defined as before. For n ∈ Z>0 let
nP denote a point P ∈ Z/NZ added to itself n many times. Let nP = (b, b−1),
then −nP = (b−1, b).

Lemma 4.2. Let (a, a−1) ∈ H(Z/NZ), (a, a−1) 6= (1, 1). Suppose p is a prime
divisor of N . Let k be a multiple of p − 1 and kP = (b, b−1) mod N for some
b ∈ Z/NZ. Then:

(b, b−1) ≡ (1, 1) mod p

Proof. Since (a, a−1) ∈ H(Z/NZ), a 6= 1 we have that a is coprime to N. But
then a must also be coprime to p so (a mod p, a−1 mod p) ∈ H(Z/pZ). Trivially
#H(Z/pZ) = p− 1 so by theorem (3.1), (p− 1)(a, a−1) ≡ (1, 1) mod p.

Note that in this case b−1 ≡ 0 mod p, meaning p | b−1. Combined with the
fact that p | N we have now found a condition for finding a non-trivial divisor.
Namely:

Corollary 4.2.1. Let kP = (b, b−1) be as before where k is a multiple of p− 1,
P ∈ H(Z/NZ) and p a non-trivial divisor of N . Then:

gcd(b− 1, N) is a non-trivial divisor of N⇔ b− 1 6≡ 0 mod N

So to get a factorisation algorithm, one can simply take an integer a coprime
to N and compute multiples, an mod N . Then gcd(an − 1, N) will most likely
deliver a non-trivial divisor if p | an − 1, meaning that n is a multiple of p− 1.
Of course p− 1 is unknown so an appropriate guess has to be made. In practice
one can do no better than to guess n = b!, for some integer b ∈ Z>0. For big
enough b there is a good chance that p − 1 is a factor of n if p − 1 is smooth.
An integer is smooth if all its prime divisors are small.
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4.1.1 Sketch of factorisation algorithm using H

Below a sketch of the algorithm is presented based on the Hyperbola H:

Data: Integer N
Result: Non-Trivial factor of N
b = 2;
a = 2 (integer such that gcd(a,N) = 1);
P = (a, a−1) ∈ H(Z/NZ);
while No non-trivial factor has been found do

compute b!P = (ab!, (a−1)b!);
if gcd((b!P )x − 1, N) 6= 1 then

if gcd((b!P )x − 1, N) = N then
print(multiple of N);
Take a new P ;

else
non-trivial factor has been found;
print(gcd((b!P )x − 1, N))

end

else
b = b+ 1;

end

end
Algorithm 1: To factorize an integer N

Trivially if an = 1 then (a−1)n = 1 so we don’t have to test for (a−1)n as
well. Typically one takes a = 2, since it is easy to check whether N is divisible
by 2 and earlier we assumed that 2 - N , but a can also be chosen differently. In
fact this whole description is equivalent to Pollard’s p− 1 method described in
section 2.1 (see [9]). Hence a geometric description of Pollard’s p − 1 method
has been found.

4.2 Factorisation algorithm on Pell conics

Again, let N be the composite number to be factored, let m ∈ Z/NZ and con-
sider Cm(Z/NZ). A similar factorisation can be established using Pell conics:

Lemma 4.3. Let p be a prime factor of N. Then there exists a group homo-
morphism between Cm(Z/NZ) and Cm(Z/pZ) namely:

φ : Cm(Z/NZ)→ Cm(Z/pZ)

(x, y)→ (x mod p, y mod p)

Proof. To show this homomorphism is well defined let (x, y) ∈ Cm(Z/NZ).
Then:

x2 −my2 ≡ 1 mod N

≡ 1 mod p
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So φ((x, y)) = (x mod p, y mod p) ∈ Cm(Z/pZ). Now let (x1, y1), (x2, y2) ∈
Cm(Z/NZ). Then:

φ((x1, y1) + (x2, y2)) = φ((x1x2 +my1y2, x1y2 + x2y1))

= (x1x2 +my1y2 mod p, x1y2 + x2y1 mod p)

= (x1 mod p, y1 mod p) + (x2 mod p, y2 mod p)

= φ((x1, y1)) + φ((x2, y2))

Hence φ is a homomorphism between Cm(Z/NZ) and Cm(Z/pZ), proving the
claim.

So reducing points P ∈ Cm(Z/NZ) modulo p yields points on the Pell conic
Cm(Z/pZ). Also adding a point on the Cm(Z/NZ) k many times and then
taking the reduction map, is equivalent to first reducing the point and then
adding it to itself k many times on Cm(Z/pZ). This will be useful for proving
the following lemma.

Lemma 4.4. Let P ∈ Cm(Z/NZ). Suppose that p is a prime factor of N and
let #Cm(Z/pZ) = g. Then take k to be some multiple of g. Let kP = (x, y)
where x, y ∈ Z/NZ. Then:

(x, y) ≡ (1 mod p, 0 mod p)

Proof. Let P = (x, y) ∈ Cm(Z/NZ); then (x mod p, y mod p) ∈ Cm(Z/pZ) by
lemma 4.3. Because Cm(Z/pZ) has finite order, this implies by theorem 4.1
that :

φ(gP ) = (1 mod p, 0 mod p)

where φ is the homomorphism defined in in Lemma 4.3. So also φ(kP ) =
(1 mod p, 0 mod p), proving the lemma.

Hence, as long as the order of Cm(Z/pZ) is known we have a condition for
finding a non-trivial divisor. Because when (x, y) ≡ (1, 0) mod p then as long as
x 6≡ 1 mod N and/or y 6≡ 0 mod N , taking the gcd with N yields a non-trivial
divisor:

Corollary 4.4.1. Let P ∈ Cm(Z/NZ), where N is the integer to be factored.
Suppose that p is a prime factor of N and let #Cm(Z/pZ) = g. Then take k to
be some multiple of g. Also let kP = (x, y) where x, y ∈ Z/NZ. Then:

gcd(x− 1, N) is a non-trivial divisor of N ⇔ x 6≡ 1 mod N

gcd(y,N) is a non-trivial divisor of N ⇔ y 6≡ 0 mod N

So computing multiples of a point P on a Pell conic Cm(Z/NZ) gives a
method for finding factors out of N . We can be almost sure that x 6≡ 1 mod N
as long as a point P with high enough order in Cm(Z/NZ) is taken. If x− 1 is

15



a multiple of N then either n is too big or the order of P is too small. Then one
can first try to use factors of n and if that does not yield a non-trivial divisor
then try a different point P .

Also note that computing gcd(y,N) is equivalent to computing gcd(x+1, N)
and gcd(x−1, N). This is because if y ≡ 0 mod p, then x2 ≡ 1 mod p, implying
x ≡ 1 mod p or x ≡ −1 mod p. Alternatively to computing gcd(x + 1, N), we
can compute gcd(x′ − 1, N) where x′ is the x-coordinate of 2nP . This will be
useful later when speeding up the algorithm. Now all that is left is to find this
order #Cm(Z/pZ)

4.2.1 Finding the order of Cm(Z/pZ)

To find the Z/pZ-rational points on the Pell conic Cm, a parameterisation is
constructed. This can be done geometrically by intersecting a line with the Pell
conic. Note that for any m ∈ Z, we have that P = (−1, 0) ∈ Cm(Z/pZ). Let
p - m. Let y = tx + b be a line intersecting this point P . Then b = t, which
implies y = t(x+ 1). Intersecting this line with the Pell conic yields:

x2 − 1−mt2(x+ 1)2 = 0

Clearly x = −1 is a solution so this can be rewritten to be:

(x+ 1)(x(1−mt2)− 1−mt2) = 0

Hence a solution x 6= 1 must satisfy:

x(1−mt2) = 1 +mt2

This yields x = 1+mt2

1−mt2 and therefore y = 2t
1−mt2 . Hence the parameterisation

is given by:

Z/pZ→ Cm(Z/pZ)

t→
(

1 +mt2

1−mt2
,

2t

1−mt2

)
Of course this only works for values t ∈ Z/pZ such that 1 − mt2 6= 0. All
p points in Z/pZ give points on the Pell conic except if there is an element
t ∈ Z/pZ such that t2 = 1

m . If there is such an element then there are exactly
two. Combined with the point (−1, 0), the order of Cm(Z/pZ) will either be
p− 1 or p+ 1. This gives rise to the following theorem:

Theorem 4.5. Suppose that m ∈ Z, p - m. Then:

#Cm(Z/pZ) = p−
(
m

p

)
=

{
p− 1 if t2 ≡ m mod p has a solution
p+ 1 if t2 ≡ m mod p has no solutions

Here,
(
m
p

)
stands for the Legendre Symbol.
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Proof. Before we showed if 1
m is a square in Z/pZ, then the order of Cm(Z/pZ)

is p−1 and p+1 if 1
m is not a square. But 1

m is a square, if and only if 1
mm

2 = m
is also square.

4.2.2 Sketch of a factorisation algorithm using Cm

From the previous theorem it becomes clear that the order of Cm(Z/pZ) is de-
termined by whether m mod p is a quadratic residue mod p in Z/pZ; in other

words it is determined by the Legendre Symbol
(
m
p

)
. Let ε =

(
m
p

)
. Suppose n

is a multiple of p− ε. Then gcd((nP )x − 1, N) will likely result in a non-trivial
factor of N , for P ∈ Cm(Z/NZ). If ε = 1, then n needs to be such that p−1 | n.
This is then however the same as the p− 1 method; we take n = b!, for b ∈ Z>0

and hope that p − 1 is smooth. Therefore applying this method when ε = 1
yields the same factors of N as the p−1 would. Hence we prefer ε = −1 because
then we find factors p of N where p + 1 is smooth. Of course it is not known
whether or not m is a quadratic residue mod p before we know p. To increase
the chances of ε = −1, a random Pell conic Cm is taken. A sketch of the initial
algorithm is given below:

Data: Integer N
Result: Non-Trivial factor of N
b = 2;
Take random m ∈ (Z/NZ),m 6= 0;
Take random P ∈ Cm(Z/NZ);
while No non-trivial factor has been found do

compute b!P = (x, y);
if gcd((b!P )x − 1, N) 6= 1 then

if gcd((b!P )x − 1, N) = N then
print(multiple of N);
Take a new P ;

else
non-trivial factor has been found;
print(gcd((b!P )x − 1, N))

end

else
b = b+ 1;

end

end
Algorithm 2: To factorize an integer N

Note that optimally we want the point P ∈ Cm(Z/NZ) to have high order
in Cm(Z/NZ). However we cannot be sure of the order because the group
structure of Cm(Z/NZ) relies on the prime factors of N .
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Lemma 4.6. Let n, l ∈ Z where n and l are pairwise coprime. Then:

Cm(Z/nlZ) ' Cm(Z/nZ)× Cm(Z/lZ)

Proof. The map is given by:

φ((a, b)) = ((a mod (n), b mod (n)), (a mod (l), b mod (l)))

Now we show that φ is indeed a homomorphism and bijective:
I.

φ((1, 0)) = ((1 + k ∗ nl, 0) mod n, (1 + k ∗ nl, 0) mod l)

= ((1, 0) mod l, (1, 0) mod l))

II.

φ((a1, b1)⊕ (a2, b2)) = ((a1a2 + db1b2, a1b2 + a2b1) mod n, (a1a2 + db1b2, a1b2 + a2b1) mod l

= ((a1, b1) mod n, (a1, b1) mod l)⊕ ((a2, b2) mod n, (a2, b2) mod l)

= φ((a1, b1))⊕ φ((a2, b2))

So φ is indeed a homomorphism. Surjectivity is shown as follows: Let ((a1, b1), (a2, b2)) ∈
Cm(Z/nZ)×Cm(Z/lZ). Note, by Bezout’s theorem since n, l are coprime, there
exist integers t and s such that nt+ls=1.

Then take P = (a1ls + a2nt, b1ls + b2nt) ∈ Cm(Z/nlZ). Now to show that
P is in the group:

(a1ls+ a2nt)
2 −m(b1ls+ b2nt)

2 = a2
1l

2s2 + 2a1a2lnst+ a2
2n

2t2 −mb21l2s2

− 2mb1b2lnst−mb22n2t2

= a2
1l

2s2 −mb21l2s2 + a2
2n

2t2 −mb22n2t2 mod ln

= l2s2 + n2t2 mod ln

= (ls+ nt)2 mod ln

= 1 mod ln

Hence P ∈ Cm(Z/nlZ). We also have that φ(P ) = ((a1, b1), (a2, b2)). So φ is
surjective. Injectivity is done as follows: Suppose we have (a1, b1), (a2, b2) ∈
Cm(Z/nlZ) such that φ((a1, b1)) = φ((a2, b2)). This means:

(((a1, b1) mod n, (a1, b1) mod l) = ((a2, b2) mod n, (a2, b2) mod l

Then,

a1 ≡ a2 mod n which implies a1 = a2 + k1n, k1 ∈ Z
a1 ≡ a2 mod l which implies a1 = a2 + k2l, k2 ∈ Z

Hence, a1 ≡ a2 mod nl

Similarly, b1 ≡ b2 mod nl

So we have that (a1, b1) = (a2, b2) and hence φ is isomorphic, proving the
statement.
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Theorem 4.7. Let n1, ..., nr ∈ Z where n1, ..., nr are pairwise coprime. Then:

Cm(Z/n1...nrZ) ' Cm(Z/n1Z)× · · · × Cm(Z/nrZ)

Proof. The proof requires induction where lemma 3.5 serves as the base case.
As induction hypothesis, suppose that:

Cm(Z/n1...nrZ) ' Cm(Z/n1Z)× · · · × Cm(Z/nrZ)

for n1, ..., nr pairwise coprime. Then let nr+1 be pairwise coprime to n1, ..., nr−1

and nr. But then nr+1 is coprime to n1n2...nr−1nr. By lemma 3.5 we have:

Cm(Z/n1...nrnr+1Z) ' Cm(Z/n1...nrZ)× Cm(Z/nr+1Z)

Hence by assumption:

Cm(Z/n1...nrnr+1Z) ' Cm(Z/n1Z)× · · · × Cm(Z/nr+1Z)

Hence the order of points in Cm(Z/NZ) will depend on the prime divisors
of N.

5 Rediscovering Williams’ p+ 1 method

Williams’ p+1 method also tends to find factors of integers where either p−1 or
p+ 1 is smooth. In fact a really interesting relation exists between this method
and the factorisation algorithm based on Pell Conics. The Lucas functions
discussed in section 2.2 actually represent points on a Pell conic:

Theorem 5.1. Let Un, Vn be the Lucas functions for some quadratic polynomial
X2 − Rx + 1, R ∈ Z, where Un = Un(R), Vn = Vn(R) and let ∆ = R2 − 4.
Then: (

Vn
2

mod N,
Un
2

mod N

)
∈ C∆(Z/NZ)

Proof. Taking (X,Y ) =
(
Vn
2 ,

Un
2

)
mod N , plugging this into the Pell conic C∆

we find:

X2 −∆Y 2 =
1

4
(αn + βn)2 − 1

4
∆

(αn − βn)2

∆
=

1

4
4αnβn = 1 (αβ = 1),

where x2 −Rx+ 1 = (x− α)(x− β)

Hence for any n ∈ N, the Lucas functions provide a point on the Pell conic,(
Vn
2 mod N, Un2 mod N

)
∈ C∆(Z/NZ). Not only that but we can also prove

the following:
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Theorem 5.2. Take Vn
2 ,

Un
2 ,

Vm
2 , Um2 ∈ Z/NZ such that

(
Vn
2 ,

Un
2

)
,
(
Vm
2 , Um2

)
∈

C∆(Z/NZ) for some n,m ∈ N. Then:(
Vn
2
,
Un
2

)
+

(
Vm
2
,
Um
2

)
=

(
Vn+m

2
,
Un+m

2

)
Proof.(
Vn
2
,
Un
2

)
+

(
Vm
2
,
Um
2

)
=

(
1

4
(αn+m + βmαn + αmβn + βn+m) +

1

4
(αn − βn)(αm − βm), ∗

)
=

(
1

4
(2αn+m + 2βn+m), ∗

)
=

(
Vn+m

2
, ∗
)

Where ∗ =
1

4

(
αn+m − αnβm + αmβn − βn+m

α− β

)
+

1

4

(
αn+m + αnβm − αmβn − βn+m

α− β

)
=

1

4

2αn+m − 2βn+m

α− β

=
Un+m

2

Now an alternative proof for Lehmer’s theorem can be given:

Proof of theorem 4.1. Let p be an odd prime and
(

∆
p

)
= ε, where ∆ = (R2−4).

Previously we showed that
(
Vn
2 ,

Un
2

)
∈ C∆(Z/pZ), for n ∈ N. Specifically if

m ∈ Z>0, then
(
V(p−ε)m

2 ,
U(p−ε)m

2

)
∈ C∆(Z/pZ). The order of C∆(Z/pZ) will

be p−1 if ∆ is a quadratic residue mod p, and will be p+1 if ∆ is not a quadratic
residue mod p. Therefore (p− ε)m is a multiple of the order of C∆(Z/pZ). By
Lemma 3.3 we find:(

V(p−ε)m

2
,
U(p−ε)m

2

)
= (p− ε)m

(
V1

2
,
U1

2

)
≡ (1, 0) mod p

This means:

V(p−ε)m

2
≡ 1 mod p

U(p−ε)m

2
≡ 0 mod p

Hence,

V(p−ε)m ≡ 2 mod p

U(p−ε)m ≡ 0 mod p

20



In fact, our factorisation algorithm is a geometric interpretation of Williams’
p + 1 method. A rediscovery of the p + 1 method has been found that does
not require the Lucas Functions and instead functions by applying basic group
theory rules. Now that the structure of this algorithm is evident, attempts can
be made to make this algorithm more competitive with other methods.

6 Speeding up the factorisation algorithm based
on Pell conics

Seeing that this algorithm is in fact a rediscovery of the p+ 1 method, speeding
up the factorisation algorithm based on Pell conics will therefore be very similar,
if not the same, as speeding up Williams’ p+1 method. A few of these methods
are discussed below.

6.1 Fast scalar multiplication

Previously it was noted that for the factorisation algorithm, only the x-coordinate
is needed. The y-coordinate can therefore by discarded, and in fact, to find the
x-coordinate of the sum of two points, only the x-coordinate is needed as well.
To see this, consider P = (xP , yP ), Q = (xQ, yQ) ∈ Cm(Z/pZ). Then:

P +Q = (xP , yP ) + (xQ, yQ) = (xPxQ +myP yQ, xP yQ + xQyP )

But we also have:

P −Q = (xP , yP ) + (xQ,−yQ) = (xPxQ −myP yQ, xP yQ + xQyP )

Hence, to find the x-coordinate of P +Q, we only need xP−Q, xP , xQ:

xQ+P = 2xPxQ − xQ−P

Let (xn) define the sequence of x−coordinates of multiples of P , i.e. (x0, x1, x2, ...) =
(1, Px, (2P )x, ...). Let Q = nP and P = mP , where n,m ∈ Z. Then we find the
recurrence relation:

x(n+m)P = 2xnPxmP − x(n−m)P

xn+m = 2xnxm − xn−m (2)

The P is removed since at this point we only consider multiples of P . So we have
confirmed that the y-coordinate can be safely discarded as it is not required to
compute multiples of P ∈ Cm(Z/pZ). Also note that the recurrence relation is
not dependent on m for the conic Cm(Z/pZ). Alternatively to finding a random
point P ∈ Cm(Z/pZ) for random m, described in the sketch in section 4.2.2,
one can take a random integer x ∈ [2, N−2]. There is always a y ∈ Z/NZ, such
that (x, y) ∈ Cm(Z/NZ) for at least one m. To prove this let x ∈ [2, N − 2].
Then:

y2 =
x2 − 1

m
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If x2−1 is coprime to N , then let m be m = 1
(x2−1) . Then (x, 1) ∈ Cm(Z/NZ).

If x2 − 1 is not coprime to N then gcd(x2 − 1, N) = a for some a 6= 1. Then
we just found a non-trivial divisor of N . This case is quite unlikely but good to
note.

The above recurrence relation (2) can now be used to create fast addition
chains.

6.2 The Binary Method

Montgomery introduces in [8] a faster addition method when we have a recur-
rence relation of the form:

xn+m = f(xn, xm, xn−m)

Where f is a continuous function. But equation (2) is exactly such a function.
Note that any xn+m can be computed as long as xn, xm and xn−m are known.
In the Binary Method we permit the difference between n and m to be either
0 or 1. Initially the x-coordinates x1, x2, x3 are computed and stored for P, 2P
and 3P respectively. Then multiples xn can recursively be computed with xm
and xm+1 where m = bn/2c. Then xm can be computed the same way, iterated
until we reach x1, x2 or x3. Let Lb(n) denote the number of uses of (2) required
to compute xn. Montgomery finds in [8] that:

Lb(n) =

{
2 log(n)− 1 if n < 3 · 2log(n)−1

2 log(n) if n ≥ 3 · 2log(n)−1

Computing the x-coordinate of nP using the group law requires n iterations.
Hence, less iterations are required to compute the x-coordinate of nP . The
code can be found in the appendix. This allows the computer to easily compute
the x-coordinate of large multiples such as 500!P . However, this is still not the
fastest addition chain. Computing xm+n we only permit a difference of either
1 or 0 between m and n. To illustrate the potential of our recurrence relation
suppose that we want to compute x13. The Binary method would compute x13

by the addition chain x1, x2, x3, x4, x6, x7, x13, needing 7 iteration. However the
optimal addition chain is in fact x1, x2, x3, x5, x8, x13 needing only six iterations.
Here we permit the difference between m and n to be 3 or more. Faster addition
chains exist using continued fractions (see [8, section 5]).

6.3 Stage 2 to conic factoring

A stage 2 is often applied to methods such as Pollard’s p − 1 method, and
Williams’ p + 1 method (see [7, sections 4,5 and 6]). Say we have computed a
large multiple of P , nP . In Stage 2, it is assumed that n is a multiple of p− 1
except for one large prime factor, call it s. Then p ± 1 = Qs (± based on the
group order of Cm(Z/pZ)) for some Q ∈ Z>0 where Q | n. If this is the case,
computing the multiple gives:

s(nP ) =
n

Q
(QsP ) ≡ (1, 0) mod p
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Hence p | (xsn − 1) and a non-trivial factor is most likely found with gcd(xsn −
1, N). The challenge is to find s. Let us assume that all prime-factors of p− 1
except for s are smaller or equal to some bound B0. Then another bound B1

can be defined and in stage 2 all prime numbers s ∈ [B0, B1] are tried. Com-
puting snP one-by-one is very time consuming, but luckily this can be sped up
significantly. The following lemma is necessary:

Lemma 6.1. Let p be a prime number and x, y ∈ Z. Then:

p | gcd(xy mod N,N)⇔ p | gcd(x mod N,N) and/or p | gcd(y mod N,N)

The proof is trivial so is left as an exercise to the reader. The following
lemma is also necessary:

Lemma 6.2. Let (xm) be the sequence of x−coordinates for multiples of a point
P ∈ Cm(Z/NZ) and let xn, xk ∈ (xm). Then:

xn−k =
xn
xk

Proof. To prove this we can use the recurrence relation (2) from section 6.1 to
compute:

xn = xn−k+k = 2xn−kxk − x−n

Then using the fact that x−n = xn, and that m is not a square we get:

2xn−kxk = 2xn and hence xn−k =
xn
xk

To efficiently compute xsn, start by re-writing s = vw−u, where v, w, u ∈ Z.
Let nP = B, and denote the x value of mB as bm. Select w to be close to

√
B1,

w ≈
√
B1. Let v0 =

⌈
B0

w

⌉
and v1 =

⌈
B1

w

⌉
. Then store the values bu mod N

where 0 ≤ u < w and the values bvw mod N where v0 ≤ v ≤ v1. Then for each
prime s ∈ [B0, B1] we can compute the gcd by:

bs − 1 = bvw−u − 1 =
bvw
bu
− 1

Computing the gcd(bvw − bu, N) will then give the same non-trivial factor as
gcd(bs − 1, N) by theorem 6.1, since

(
bvw
bu
− 1) ∗ bu = bvw − bu

This will massively reduce the memory and computations needed to compute all
values s ∈ [B0, B1], since a table can be saved of values bu and bvw representing
the primes instead of computing primes separately. Why w is chosen close to
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√
B1 is explained by Montgomery in [7].

To reduce computations even more, u and vw can be chosen such that pairs
of primes s1, s2 can be found where s1/2 = vw± u. Both gcd computations can
then be combined into:

gcd(b2vw − b2u, N)

An algorithm has been constructed in Sage, incorporating everything discussed
in this thesis.

7 Examples

Big composite numbers of the form N = pq p, q prime are here attempted to
be found by the computer program based on Pell conics. In section 4.2, it was
confirmed that the y-coordinate can be safely discarded. Now, alternatively to
the algorithm discussed in section 4.2.2 we take a random x ∈ [2, N − 1]. As
earlier noted the algorithm makes most sense for values m such that m is not a
quadratic residue mod p.

Remark. If m is quadratic residue modulo p, the method based on Pell conics
reduces to a slower version of Pollard’s p− 1 method

If a random integer x is taken, then the chance that this x coordinate with
designated y value lies on a Pell conic P ∈ Cm(Z/NZ) where m is not a
quadratic residue mod p is exactly 1

2 . This is because half of integers m ∈ Z/NZ
are a quadratic residue in Z/pZ and half are not. Therefore multiple values for
x may have to be chosen to find a non-trivial factor. In practice we take a
random x at most 4 times, then the chance is 15

16 that at least one of those
x ∈ Z/NZ lies on a Pell conic Cm where m is a quadratic residue mod p. The
following factors are obtained by running the program, found in the appendix,
for different integers N . The factor p is found by the algorithm:

Integer N Factor p Other factor q Run-time(s)
1333333333333333333333 4363363 305574698537191 101.45
4559454071533639 1357278899 3359261 105
1970048572989576571 2357278249 835730179 103
1270043339081464043 1357277791 935728373 109

It is interesting to see that it is actually very rare for p+ 1 or p− 1 to only
contain small prime factors and instead quite common that there is only one
big prime factor in p ± 1. In around 4 out of 5 cases that I ran big composite
numbers of the form pq which yielded non-trivial divisors, a non-trivial factor
was found at stage 2. Of course the method still pales in comparison with
the built in factorisation method from Sage. The examples given above were
calculated almost instantly with Sage’s built in factorisation method. There
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are however integers that this algorithm can factor faster than Sage. Van der
Sluis, a peer who has done work on primality testing, shows that 23217 − 1
and 24423 − 1 are both prime numbers in [13, section 4], where 24423 − 1 has
roughly 1331 digits. The algorithm on Pell conics was able to easily factorise
the product (23217 − 1)(24423 − 1) in 3 minutes whereas Sage’s algorithm was
not able to complete as it ran out of memory.

8 Discussion

Algorithms such as Pollard’s p− 1 method, and Williams’ p+ 1 combined with
trial testing are usually attempted first when factoring integers as they are quite
fast at finding factors for very special prime factors, namely prime factors such
that p± 1 is smooth. For example, prime factors of the form Mn = 2n − 1, also
known as the Mersenne Numbers can be found quickly using our factorisation
algorithm. Afterwards more sophisticated methods are attempted. Unfortu-
nately this program based on Pell conics is no different, making applications of
this algorithm quite limited. The major flaw this method has is that for any
integer m, Cm(Z/NZ) either has order p−1 or p+1. This means that if p±1 is
not (semi-)smooth, this algorithm would not be much faster compared to trial
division. Lenstra’s elliptic curve algorithm [3], that is based on elliptic curves,
is in this aspect superior as the order of your group changes when a different
elliptic curve is chosen. Elliptic curves are more complicated curves compared
to Pell conics so it would be interesting to investigate algorithms based on third
degree polynomials such as Lenstra’s elliptic curve method.

Improvements in the addition chain the thesis uses, can also be made. It
was explained in section 6.2 that the Binary method is not the fastest as it only
allows a difference of either 1 or 0 between computing multiples of nP . In the
end the computer program spent the most time on computing stage 2 of the
algorithm. Perhaps adjustments in the code can be made to make this section
of the code faster as well.

Integer factorisation is not the only application the group law over Pell conics
has. Pell conics can also be used to prove that certain integers are prime. Peers
from previous years (see [2, 13]) show how Pell conics can be used for primality
testing. They test integers of the form 2n − 1, 3 · 2n + 1, 3 · 2n − 1, n ∈ Z>0 and
provide conditions for when they are prime using Pell conics.
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9 Appendix

Listing 1: Computer program in Sage computing a factor of an integer N

%time
sys . s e t r e c u r s i o n l im i t (6000)
def f r e c (xm, xn , xm n ,N) : #To compute x (m+n)

return ( (2∗xm∗xn)%N−xm n%N)%N

def i s ev en (n ) :
i f n%2==0:

return True
else :

return False

def b inaryt (n ,N) : #For computing nP in some conic mod N
global my ev
i f n in my ev :

return my ev [ n ]
else :

m=n//2
i f i s ev en (n ) :

xm=binaryt (m,N)
my ev [ n]= f r e c (xm,xm, 1 ,N)
return my ev [ n ]

else :
my ev [ n]= f r e c ( b inaryt (m,N) , b inaryt (m+1,N) , my ev [ 1 ] ,N)
return my ev [ n ]

def get pr imes (B0 ,B1 ) : #Stage 2 f a c t o r i z a t i o n
p r im e l i s t =[ ]
P=Primes ( )
for i in range (B0 ,B1+1):

i f i in P:
p r im e l i s t . append ( i )

return p r im e l i s t

def pa i r p r imes ( p r ime l i s t ,w) : #Algorithm tha t pa i r s primes in a range o f primes
p r im e l i s t s=p r im e l i s t [ : ]
l i s t u =[ ]
l i s t v =[ ]
no t pa i r ed =[ ]
while p r im e l i s t s != [ ] :

s=p r im e l i s t s [ 0 ]
for i in p r im e l i s t s [ 1 : ] :

i f ( s+i )%(2∗w)==0:
v=(s+i )/(2∗w)
u=v∗w−s
l i s t u . append (u)
l i s t v . append (v )
p r im e l i s t s . remove ( i )
p r im e l i s t s . remove ( s )
break

i f s in p r im e l i s t s :
no t pa i r ed . append ( s )
v=s //w
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l i s t v . append (v )
l i s t u . append ( s−v∗w)
p r im e l i s t s . remove ( s )

return l i s t u , l i s t v , no t pa i r ed

N=1270043339081464043 #N, the i n t e g e r to be f a c t o r ed

l i s t o f f a c t o r s =[ ] #The l i s t o f f a c t o r s we found in N
xP=sage . misc . prandom . randint (2 , N−1) #Random integer , r ep re s en t ing the i n i t i a l po in t P
n=f a c t o r i a l (300)
my ev={0 :1 ,1 :xP , 2 : f r e c (xP , xP , 1 ,N) , 3 : f r e c ( f r e c (xP , xP , 1 ,N) ,xP , xP ,N)}
#The d i c t i ona ry conta in ing a l l computed x−va lue s o f mu l t i p l e s o f P
for s in range ( 3 , 1 0 0 ) :

n=n∗ s
nPx=binaryt (n ,N)
v=gcd (nPx−1,N)
i f v>1:

i f v!=N:
print (v , nPx , n)
l i s t o f f a c t o r s . append (v )
N=N//v
break

else :
print ( ”mu l t ip l e o f N” )
break

l i s t o f f a c t o r s . append (N)
print ( l i s t o f f a c t o r s )

#Performing Stage 2
BP=my ev [ n ]
print (BP)
my new ev={0 :1 ,1 :BP, 2 : f r e c (BP,BP, 1 ,N) , 3 : f r e c ( f r e c (BP,BP, 1 ,N) ,BP,BP,N)}
my ev=my new ev
print (my ev )

p r im e l i s t=prime range (400 , 1000000) #Generates a l i s t o f a l l primes in a range [B0 ,B1 ]
w=int (100000∗∗0 .5)
l i s t u , l i s t v , no t pa i r ed=pa i r p r imes ( p r ime l i s t ,w)

print ( len ( l i s t v ) )
for i in range ( len ( l i s t v ) ) :

vw=int ( l i s t v [ i ]∗w)
u=int ( l i s t u [ i ] )
vwBPx=binaryt (vw ,N)
uBPx=binaryt (u ,N)
Ts=(vwBPx∗vwBPx−uBPx∗uBPx)%N
i f Ts !=0:

f=gcd (Ts ,N)
i f f >1:

print ( f )
%time
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