
QVA-learning for playing the game of Snake

Bachelor’s Project Thesis

Ilse Pubben, ilse.pubben@gmail.com,

Supervisors: Marco A. Wiering

Abstract: In this thesis we will introduce a new reinforcement learning algorithm, QVA-learning,
which is a combination of QV-learning and advantage updating. We will test this algorithm on
the game of snake and compare its performance with Q-learning and QV-learning. The state
will be represented with vision grids of size 3 × 3, 5 × 5 and 7 × 7. We will also make use of
an MLP as function approximator. We found that overall QVA-learning did not perform better
than Q-learning or QV-learning. We also found that QVA-learning started learning earlier than
the other algorithms when using a vision grid of size 7× 7 (i.e., with more input nodes).

1 Introduction

Reinforcement learning algorithms are used to
teach an agent certain behaviour by letting it in-
teract with its environment (Sutton and Barto,
2018). One of the oldest and most well-known al-
gorithms is Q-learning (Watkins and Dayan, 1992).
Q-learning is an off-policy algorithm which tries
to learn the state-action value function. Another
more recent reinforcement learning algorithm is
QV-learning (Wiering, 2005). QV-learning is an
on-policy algorithm which learns the state-value
function through temporal difference methods and
uses this value function to learn the state-action
value function. Another fairly old algorithm is ad-
vantage updating. Advantage updating learns the
state-value function and the advantage function.
The advantage function estimates the increase of
the value function when a certain action is taken
as opposed to the action that is considered the best
(Harmon, III, and Klopf, 1995).

QV-learning has higher convergence rates than
Q-learning (Wiering, 2005) and advantage updat-
ing learns faster than Q-learning (Baird, 1994).
Therefore it would be interesting to see if combining
these two algorithms will lead to faster and better
results. This is exactly what we aim to do with
the new reinforcement learning algorithm, QVA-
learning, which we will introduce in this thesis.

QVA-learning aims to learn both the state-value
function and the state-action value function just
like QV-learning. On top of that it also aims to
learn the advantage function based on the state and
state-action value function.

In this thesis we want to answer the following
research question: does QVA-learning begin earlier
with learning and does it lead to better results than
Q-learning and QV-learning? We will test this on
the game of Snake using vision grids of several sizes
as state representation. Vision grids have proven to
be effective on the game of Tron, a similar grid-
based game (Knegt, Drugan, and Wiering, 2018).

2 The game of snake

Snake is a well-known video game concept where
the player has to maneuver an object on a bordered
plane. As the object moves it leaves a trail behind.
The objective of the game is to ’eat’ items (apples
in our case) by running into them, while avoiding
hitting the borders of the plane and the trail the
object is leaving behind. ’Eating’ the items causes
the trail to become longer. This concept originates
from the arcade game ’Blockade’ in 1976.

For the experiments performed in this thesis we
implemented the concept as follows: the playing
field is 12×12; the agent starts out with a head and
a tail of length three; the goal is to ’eat’ as many ap-
ples as possible, each time an apple is eaten the tail
of the agent increases by one. The agent can choose
between four actions: moving up, down, right and
left. The starting location of the agent is always in
the middle of the playing field. Figure 2.1 shows a
snapshot of the game.

The playing field is relatively small, but we chose
it to be this size to reduce training time. A small
playing field increases the chance that the agent
will stumble upon the apple while exploring, which
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is necessary for the agent to start learning.

Figure 2.1: Snapshot from the game of snake.
The yellow square represents what an agent
with a 5× 5 vision grid can see.

3 Preliminaries

In this section we will explain some of the main
principles used in this thesis.

3.1 Reinforcement learning

Reinforcement learning is a machine learning
paradigm which aims to teach an agent certain
behaviour by letting it explore and interact with
its environment. Such an environment is often ex-
plained in terms of a Markov decision process
(MDP). For the experiments in this thesis we use
a finite MDP which has the following components
(Bellman, 1957):

• A finite set of states S, where St ∈ S is the
state at time t.

• A finite set of actions A, where At ∈ A is the
action taken at time t.

• A reward function R(s, a, s′), representing the
reward achieved when taking action a in state
s which leads to state s′. In the MDP we use

for the game of snake the reward is 5 for scor-
ing a point (e.g., ’eating’ the apple), -10 for
dying and -0.01 otherwise. Why the rewards
are chosen as such will be explained in section
5.

• A transition function T (s, a, s′), which speci-
fies the probability that we will end up in state
s′ when we are in state s and take action a.

• A discount factor 0 ≤ γ ≤ 1, which discounts
future rewards. Increasing γ increases the im-
portance of future rewards.

The aim of the reinforcement learning agent is to
learn the optimal policy π∗. A policy is a mapping
of states to actions, π : S → A. An optimal pol-
icy is the policy which leads to the maximum (dis-
counted) cumulative reward Gt. Gt is calculated as
follows:

Gt = Rt + γRt+1 + γ2Rt+2 + γ3Rt+3...

We will now look at the value function, also
called the state-value function (vπ). A value func-
tion is the expected(E) (discounted) cumulative re-
ward when starting from state s and following a
certain policy.

vπ(s) = E[Gt|St = s]

We will also look at the state-action value function
(qπ), the expected (discounted) cumulative reward
from state s when taking action a under policy π.

qπ(s, a) = E[Gt|St = s,At = a]

As mentioned before, we want the agent to learn
the optimal policy π∗. An optimal policy is a policy
which maximizes the state-value function V∗ and
the state-action value function Q∗.

π∗(s) = arg max
a∈A

q∗(s, a)

When the transition function is known V∗ and Q∗
can be computed using the Bellman optimality
equation (Sutton and Barto, 2018):

V∗(s) = max
a∈A(s)

∑
s′

T (s, a, s′)[R(s, a, s′) + γv∗(s
′)]

Q∗(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′)+γmax
a′

q∗(s
′, a′)]

However often the transition function is unknown
and will have to be learned by the agent by interact-
ing with the environment and gathering experience.
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3.2 Algorithms

In this section we will explain the reinforcement
learning algorithms that we compare in this thesis.
Q-learning: Q-learning was originally designed

by Watkins (1989). It is an off-policy reinforcement
learning algorithm, meaning that the policy used
for generating the behaviour, the behaviour policy,
differs from the policy that is improved, the target
policy (Sutton and Barto, 2018). Q-learning aims
to learn the action value function through the fol-
lowing update rule:

Q(s, a)← Q(s, a) + α[R+ γmax
a∈A

Q(s′, a)−Q(s, a)]

where 0 ≤ α ≤ 1 is the learning rate. With a
lookup table Q-learning is guaranteed to converge
to the optimal policy when the agent visits each
state-action pair an infinite number of times. With
a function approximator it might not converge but
it will approach the optimal policy (Jaakkola, Jor-
dan, and Singh, 1994).
QV-learning: QV-learning is an on-policy rein-

forcement learning algorithm designed by Wiering
(2005). QV-learning aims to learn both the state-
action value function and the state value function.
The state-action value function is updated with the
value function as opposed to temporal difference
(TD) methods which are used by Q-learning.

Q(S,A)← Q(S,A) + α[R+ γV (S′)−Q(S,A)]

The state value function itself is learned through
TD methods.

V (S)← V (S) + β[R+ γV (S′)− V (S)]

where 0 ≤ β ≤ 1 is the learning rate. Because
QV-learning is an on-policy algorithm it is more
likely to converge to the optimal policy than Q-
learning when using function approximators (Wier-
ing, 2005).
QVA-learning: QVA-learning aims to combine

QV-learning and advantage updating. Advantage
updating was shown to converge faster than Q-
learning (Baird, 1994). The way QVA-learning
is implemented is similar to QV-learning, but it
uses an additional function, the advantage function
A(s, a). The advantage function is updated as fol-
lows:

A(s, a)← A(s, a) + α[Q(s, a)− V (s)−A(s, a)]

The actions are chosen based on the advantage
model instead of the Q-model which is used by Q-
learning and QV-learning. Algorithm 3.1 shows the
full QVA-algorithm.

3.3 Multi-layer perceptron

As mentioned before, reinforcement learning aims
to learn the state value function, state-action value
function and/or advantage function, depending on
the algorithm used. We could store these values in
a lookup table. However, for the state-action value
function (q(s,a)) alone this would lead to |A| × |S|
entries and even more policies. For many problems,
the state space is extremely large and therefore this
is not practical. There is also no guarantee that we
will encounter all state-action pairs while training.
Therefore it is better to approximate these values
with a function approximator. In our case this will
be done with a multi-layer perceptron (MLP).

An MLP is a neural network with an input layer,
at least one hidden layer and an output layer for
which every node in a layer is connected to ev-
ery node in the next layer. It attempts to match
the actual output vector to the target output vec-
tor using backpropagation. Backpropagation is a
learning procedure which tries to minimize the dif-
ference between the actual output vector and the
target output vector by adjusting the weights of
the connections between the nodes. Due to this the
hidden nodes start to represent important features
of the presented problem (Rumelhart, Hinton, and
Williams, 1986).

The MLPs used for the experiments in this thesis
will have one hidden layer with 100 nodes. The out-
put layer of the MLP representing the state-value
function will have one node, while the MLPs repre-
senting the state-action value function and advan-
tage function will have four nodes, one for each ac-
tion (figure 3.1). The number of nodes in the input
layer will depend on the state representation which
will be described in the next section. The hidden
layer of the MLPs will use the sigmoid activation
function:

sigmoid(x) =
1

1 + e−x

which returns a value between 0 and 1. The input
and output layer both use a linear activation func-
tion.
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Algorithm 3.1 QVA-learning

Require: Q learning rate lrQ ∈ (0, 1], V learning rate lrV ∈ (0.1], A learning rate lrA ∈ (0, 1], discount
factor γ ∈ [0, 1]
for all episodes do
S ← initial state
for all steps of episode do

Choose action a ∈ A from S using policy derived from A (e.g. ε-greedy)
Take action a, observe R,S′

A(S, a)← A(S, a) + lrA[Q(S, a)− V (S)−A(S, a)]
Q(S, a)← Q(S, a) + lrQ[R+ γV (S′)−Q(S, a)]
V (S)← V (S) + lrV [R+ γV (S′)− V (S)]
S ← S′

end for
end for

...

...

q(s,up)

q(s,down)

q(s,left)

q(s,right)

Hidden
layer

Input
layer

Output
layer

Figure 3.1: MLP to approximate q(s,a) with an
output node for each action.

4 State representation

In this section we will describe the state represen-
tation that is used to teach the agent to play the
game of Snake.

First we will look at the different elements of
the game that are relevant to the agent. The agent
needs to recognize the apple, the tail of the snake,
the borders of the playing field and the head of the
snake. For the game of snake we want the agent
to avoid moving into a space with a tail or a bor-

der, thus we categorize the tail of the snake and the
border of the playing field as the same thing, an ob-
stacle. This leaves us with three different features:
obstacle, apple, head. If we were to use a lookup ta-
ble to represent the whole 12×12 field, there would
be 144 positions for the head, 144 positions for the
apple, and a maximum of 2144 possible states for all
obstacles (of course not all of these obstacle config-
urations are possible). Therefore, we use an MLP
to represent the value functions. If we were to sup-
ply the agent with the entire 12 × 12 playing field
this would lead to 12 ∗ 12 ∗ 3 = 432 input nodes,
which would take a long time to train. To decrease
the number of input nodes we will use vision grids,
which have shown to increase learning speed and
enhance performance by Knegt et al. (2018). A vi-
sion grid shows part of the environment from the
perspective of the agent. It takes the shape of a
grid with uneven dimensions around the location
of the agent and shows only those things that fall
within the grid. This will also allow us to get rid of
the feature snake head as this will always be in the
middle of our vision grid. This leaves us with only
two different features, obstacle and apple. We will
provide the agent with a separate vision grid for
each feature, where 1 will indicate that the feature
is present and 0 will indicate that it is not. Every-
thing outside of the playing field will be considered
as an obstacle. We will experiment with a vision
grid of size 3×3, 5×5 and 7×7. To illustrate what
such a vision grid could look like see figure 4.1 for
the 5×5 vision grid of the snapshot displayed in fig-
ure 2.1. In addition to these vision grids we will also
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0 1 1 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
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Vision grid obstacles


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0


Vision grid apple

Figure 4.1: 5 × 5 vision grid of situation shown
in figure 2.1

provide the agent with the location of the apple rel-
ative to the agent and scaled between −2 and 2. For
example, when the apple is in the same column and
two spaces below the snake, as it is in figure 2.1, the
agent will be given locationX = 0/12 ∗ 2 = 0 and
locationY = −2/12 ∗ 2 ≈ −0.33. The vision grids
and the location will be combined in an array and
given to the MLP. This will lead to 3∗3∗2+2 = 20,
5 ∗ 5 ∗ 2 + 2 = 52 or 7 ∗ 7 ∗ 2 + 2 = 100 input nodes
depending on the size of the vision grid used.

5 Experiments and results

In this section we will explain the experiments we
performed and show their results.

To train the different algorithms the following
parameter settings (Table 5.1) were kept the same
throughout all experiments and were chosen based
on preliminary tests. The agent was trained for
20000 epochs. We used a discount factor of 0.99. For
exploration we used the ε-greedy exploration policy
with ε starting at 0.05 and decreasing to 0 in 18000
epochs (the last 2000 epochs were trained without
any exploration). Furthermore we used MLPs with
one hidden layer containing 100 hidden nodes and
the sigmoid activation function.

We will now describe the reward function we used
for the game of snake (Table 5.2). The agent gets
a reward of 5 for eating the apple, -10 for hitting
a wall or its tail (ending the epoch) and a default
reward of -0.01 for every other step. This default
reward was chosen to ensure the agent does not get
stuck in an endless loop.

This leaves us with one parameter that has not
yet been set, the learning rate. The learning rate is
especially challenging to tune for QVA-learning, be-
cause QVA-learning uses three different MLPs and

Table 5.1: Parameters used in all experiments

Parameter Value
Epochs 20000
Exploration policy ε-greedy
Starting epsilon ε 0.05
Final epsilon ε 0
Final ε reached at epoch 18000
Discount factor γ 0.99
Hidden nodes 100
Hidden layer activation sigmoid

Table 5.2: Reward function

Reward
Eating apple 5
Dying -10
Default -0.01

consequently has three (different) learning rates.
For the remainder of this section we will focus
on tuning the learning rates. For each vision grid
size we will do four experiments. First we made
a distinction between training the agent with a
constant learning rate versus learning rate anneal-
ing. Additionally we compared the performance
when the learning rates are the same for all MLPs
(lrQ = lrV = lrA) versus when the learning rates
for the Q-MLP (rlQ), V-MLP (rlV) and A-MLP
(rlA) have a ratio of lrQ : lrV = 1 : 1

3 and
lrQ : lrA = 1 : 3. In case of a constant learning
rate lrQ = 0.005. In case of learning rate annealing
lrQ linearly decreases from 0.005 to 0.0005 over the
course of 20000 epochs.

In the experiments we measured the progress of
the agent by the number of points it is able to score
in an epoch. The agent scores points by eating the
apple, each time the agent eats the apple it gains
one point.

Each experiment consists of 50 simulations. A
single simulation entails the training of the agent
followed by an evaluation. In the training phase
we take the mean points earned during each 1000
games and plot this every 100 games. After training
the agent is evaluated by letting it play 100 games
and looking at the mean points it is able to get.
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5.1 Vision grid 3× 3

In this section we will discuss the results of the
experiments with a vision grid of 3× 3.

The results of the experiment constant & equal
learning rates can be found in table 5.3 Exp1. Q-
learning performed significantly better than both
QV-learning (p = 0.0073) and QVA-learning (p =
0.0047). There was no significant difference between
the performance of QV-learning and QVA-learning
(p = 0.8477).

The results of the experiment annealing & equal
learning rates can be found in table 5.3 exp2. Q-
learning performed significantly better than both
QV-learning (p = 0.0400) and QVA-learning (p =
0.0010). There was no significant difference between
the performance of QV-learning and QVA-learning
(p = 0.2223).

The results of the experiment constant & differ-
ent learning rates can be found in table 5.3 exp3.
Q-learning performed significantly better than both
QV-learning (p = 0.0020) and QVA-learning (p =
0.0010). There was no significant difference between
the performance of QV-learning and QVA-learning
(p = 0.1972).

The results of the experiment annealing & differ-
ent learning rates can be found in table 5.3 exp4.
Q-learning performed significantly better than both
QV-learning (p = 0.0054) and QVA-learning (p =
0.0010). There was no significant difference between
the performance of QV-learning and QVA-learning
(p = 0.3370).

There was no significant difference in the perfor-
mance of QVA-learing depending on the different
learning rate settings (p = 0.0648) (figure 5.1).

5.2 Vision grid 5× 5

In this section we will discuss the results of the
experiments with a vision grid of 5× 5.

The results of the experiment constant & equal
learning rates can be found in table 5.4 Exp1. Q-
learning performed significantly better than both
QV-learning (p = 0.0010) and QVA-learning (p =
0.0010). There was no significant difference between
the performance of QV-learning and QVA-learning
(p = 0.2768).

The results of the experiment annealing & equal
learning rates can be found in table 5.4 exp2. Q-
learning performed significantly better than both

Table 5.3: Evaluation of the models with vision
grid 3× 3. Mean over 40 runs with standard de-
viation(SD) shown.

Exp1: constant & equal learning rates:
lrQ = 0.005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 18.33 1.74
QV-learning 17.15 1.76
QVA-learning 16.92 2.23

Exp2: annealing & equal learning rates:
lrQ = 0.005→ 0.0005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 18.55 0.95
QV-learning 17.89 1.44
QVA-learning 17.40 1.19

Exp3: constant & different learning rates:
lrQ = 0.005, lrV = lrQ/3, lrA = lrQ ∗ 3

Algorithm mean SD
Q-learning 18.30 1.97
QV-learning 14.21 7.30
QVA-learning 16.32 2.47

Exp4: annealing & different learning rates:
lrQ = 0.005→ 0.0005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 18.58 0.99
QV-learning 15.43 6.28
QVA-learning 16.87 1.55

QV-learning (p = 0.0010) and QVA-learning (p =
0.0010). QV-learning performed significantly better
than QVA-learning (p = 0.0010).

The results of the experiment constant & differ-
ent learning rates can be found in table 5.4 exp3.
Q-learning performed significantly better than both
QV-learning (p = 0.0010) and QVA-learning (p =
0.0010). There was no significant difference between
the performance of QV-learning and QVA-learning
(p = 0.5420).

The results of the experiment annealing & differ-
ent learning rates can be found in table 5.4 exp4.
Q-learning performed significantly better than both
QV-learning (p = 0.0010) and QVA-learning (p =
0.0010). QV-learning performed significantly better
than QVA-learning (p = 0.0010).

QVA-learning (figure 5.2) performed significantly
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Figure 5.1: Learning curves of QVA-learning
with a vision grid of 3× 3 and different learning
rate settings. Mean over 50 runs with standard
error (SE) shown.

better with annealing & equal learning rates than
with constant & different (p = 0.0243) or with con-
stant & equal (p = 0.0010) learning rates. There
was no significant difference in the performance of
QVA-learning between annealing & equal and an-
nealing & different learning rates (p = 0.1278).
There was no significant difference in the perfor-
mance of QVA-learning between annealing & dif-
ferent and constant & different (p = 0.3321). QVA-
learning performed significantly better with anneal-
ing & different learning rates than with constant &
equal learning rates (p = 0.0010). There was no
significant difference in the performance of QVA-
learning between constant & different and constant
& equal learning rates (p = 0.0747).

5.3 Vision grid 7× 7

In this section we will discuss the results of the
experiments with a vision grid of 7× 7.

The results of the experiment constant & equal
learning rates can be found in table 5.5 exp1. There
was no significant difference in performance be-
tween any of the algorithms (p = 0.1774).

The results of the experiment annealing & equal
learning rates can be found in table 5.5 exp2. Q-
learning performed significantly better than both
QV-learning (p = 0.0010) and QVA-learning (p =
0.0010). QV-learning performed significantly better
than QVA-learning (p = 0.0100).

Table 5.4: Evaluation of the models with vision
grid 5× 5. Mean over 40 runs with standard de-
viation (SD) shown.

Exp1: constant & equal learning rates:
lrQ = 0.005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 23.02 1.99
QV-learning 19.16 1.82
QVA-learning 18.43 2.42

Exp2: annealing & equal learning rates:
lrQ = 0.005→ 0.0005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 23.45 0.85
QV-learning 22.29 1.33
QVA-learning 21.15 1.13

Exp3: constant & different learning rates:
lrQ = 0.005, lrV = lrQ/3, lrA = lrQ ∗ 3

Algorithm mean SD
Q-learning 22.93 1.60
QV-learning 20.35 1.65
QVA-learning 19.82 2.71

Exp4: annealing & different learning rates:
lrQ = 0.005→ 0.0005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 23.51 1.01
QV-learning 21.88 0.76
QVA-learning 20.60 1.10

The results of the experiment constant & differ-
ent learning rates can be found in table 5.5 exp3.
There was no significant difference in performance
between any of the algorithms (p = 0.5797).

The results of the experiment annealing & differ-
ent learning rates can be found in table 5.5 exp4.
Q-learning performed significantly better than both
QV-learning (p = 0.0010) and QVA-learning (p =
0.0010). QV-learning performed significantly better
than QVA-learning (p = 0.0010).

QVA-learning (figure 5.3) performed significantly
better with annealing & equal learning rates than
with annealing & different (p = 0.0010) or con-
stant & different (p = 0.0010) or constant & equal
(p = 0.0010) learning rates. QVA-learning per-
formed significantly better with annealing & dif-
ferent learning rates than with constant & differ-
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Figure 5.2: Learning curves of QVA-learning
with a vision grid of 5x5 and different learning
rate settings. Mean over 50 runs with standard
error (SE) shown.
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Figure 5.3: Learning curves of QVA-learning
with a vision grid of 7× 7 and different learning
rate settings. Mean over 50 runs with standard
error (SE) shown.

ent (p = 0.0010) or constant & equal (p = 0.0010)
learning rates. QVA-learning performed better with
constant & different learning rates than with con-
stant & equal learning rates (p = 0.0010).

5.4 Learning curves

We will compare the learning curves of the experi-
ment annealing & equal learning rates. We do this
because QVA-learning seems to benefit from these

Table 5.5: Evaluation of the models with vision
grid 7× 7. Mean over 40 runs with standard de-
viation (SD) shown.

Exp1: constant & equal learning rates:
lrQ = 0.005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 16.60 10.85
QV-learning 14.32 5.30
QVA-learning 16.31 4.66

Exp2: annealing & equal learning rates:
lrQ = 0.005→ 0.0005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 25.48 1.55
QV-learning 23.59 1.14
QVA-learning 22.88 1.01

Exp3: constant & different learning rates:
lrQ = 0.005, lrV = lrQ/3, lrA = lrQ ∗ 3

Algorithm mean SD
Q-learning 18.58 9.65
QV-learning 18.81 6.78
QVA-learning 19.69 1.72

Exp4: annealing & different learning rates:
lrQ = 0.005→ 0.0005, lrV = lrQ, lrA = lrQ

Algorithm mean SD
Q-learning 25.71 1.04
QV-learning 22.68 0.95
QVA-learning 21.46 0.83

settings and it would get too chaotic to look at
all learning curves. On top of that the things we
will discuss in this section are visible in the learn-
ing curves of all the experiments. Graphs of all the
learning curves can be found in appendix A.

With a vision grid of 3 × 3 Q-learning started
learning first, followed by QVA-learning. QV-
learning was the slowest (figure 5.4). When the vi-
sion grid was increased to 5× 5 the order in which
the algorithms started learning remained the same
(figure 5.5). However, the difference between the
time when they started learning was a lot smaller.
When the vision grid was further increased to 7×7
QVA-learning was the first algorithm to start learn-
ing, closely followed by QV-learning and Q-learning
(figure 5.6).

8



0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Po
in

ts

lrQ=0.005->0.0005 ; lrV=lrQ ; lrA=lrQ
Q-learning
QV-learning
QVA-learning
epsilon=0

Figure 5.4: Learning curves of the algorithms
with annealing & equal learning rates and a 3×3
vision grid. Mean over 50 runs with standard
error (SE) shown.
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Figure 5.5: Learning curves of the algorithms
with annealing & equal learning rates and a 5×5
vision grid. Mean over 50 runs with standard
error (SE) shown.

6 Conclusion

In this paper we tested a new reinforcement learn-
ing algorithm, QVA-learning, on the game of Snake.
We did this for three different state representations.
Namely with a vision grid of 3×3, 5×5 and 7×7. For
each vision grid size we performed four experiments
which each handled their learning rates differently,
constant & equal learning rates, annealing & equal
learning rates, constant & different learning rates
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Figure 5.6: Learning curves of the algorithms
with annealing & equal learning rates and a 7×7
vision grid. Mean over 50 runs with standard
error (SE) shown.

and annealing & different learning rates.

Q-learning performed the best in all but two of
the experiments. It did not perform the best in the
experiments with constant learning rates and a vi-
sion grid of 7 × 7. In these experiments none of
the algorithms performed significantly better than
any of the others. This is likely due to the high
standard deviations of the data for these experi-
ments. In most of the experiments there was no
significant difference between the performance of
QVA-learning and QV-learning. When there was a
significant difference between those two algorithms
QV-learning performed better.

QVA-learning seemed to benefit from annealing
& equal learning rates. However it is unclear for
now whether this is because QVA-learning actually
benefits from equal learning rates between all mod-
els or that it benefits from starting with a learning
rate of 0.005 as opposed to 0.015.

With a small vision grid (and consequently fewer
input nodes) Q-learning starts learning earlier than
QV-learning and QVA-learning. However as the
vision grid increases QVA-learning becomes the
first algorithm to start learning. This suggests that
QVA-learning might be beneficial for problems with
a larger input size.
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7 Discussion

Although QVA-learning did not perform well in the
experiments performed is this thesis it is important
to test it further on different problems because of
the ’no free lunch theorem’. The ’no free lunch the-
orem’ states that a model that might work best
on one problem, is not guaranteed to work best on
another. Therefore it is important to try a model
on multiple different problems before concluding
whether or not it is a good model (Wolpert, 1996),
(Wolpert and Macready, 1996).

In the experiments performed in this thesis QV-
learning performed worse than Q-learning even
though it has been shown to work better than Q-
learning in several cases (Wiering, 2005), (Wiering
and Van Hasselt, 2009). Seeing that QVA-learning
is derived from QV-learning it would be interesting
to see how QVA-learning performs in these situa-
tions.

One thing to note is that for a lot of the ex-
periments the standard deviations were very high.
These high standard deviations were caused by
runs in which little to no learning occurred. QVA-
learning did not have as many runs in which no
learning occurred and consequently had lower stan-
dard deviations. This might indicate that QVA-
learning is a more reliable algorithm.

As mentioned before, QVA-learning started
learning earlier than Q-learning and QV-learning
with a vision grid of 7 × 7. Therefore it would be
interesting to see how QVA-learning performs on
problems with more input nodes.

Lastly, due to the fact that QVA-learning keeps
track of multiple value functions through multiple
MLPs it has more hyperparameters to tune. In this
thesis we only tested a limited number of param-
eter settings, spending more time on tuning these
parameters could increase the performance of QVA-
learning.
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A Figures
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Figure A.1: Learning curves of the algorithms
with a vision grid of 3 × 3. Mean over 50 runs
with standard error (SE) shown.

Exp1: constant & equal learning rates
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Figure A.2: Learning curves of the algorithms
with a vision grid of 5 × 5. Mean over 50 runs
with standard error (SE) shown.

Exp1: constant & equal learning rates
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Exp4: annealing & different learning rates
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Figure A.3: Learning curves of the algorithms
with a vision grid of 7 × 7. Mean over 50 runs
with standard error (SE) shown.

Exp1: constant & equal learning rates
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