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Abstract

Lepton universality is a property which is embedded in the Standard Model of
Particle Physics. A violation of this universality would indicate the presence of
physics beyond the Standard Model. In this work, the search for lepton universality
violation is aided by investigating the possibility of using bremsstrahlung-related
information, to increase the efficiency of particle identification of electrons in the
LHCb detector. An ensemble of variables is created that, combined with machine
learning tools, increases false positive rejection rates by 58.4% for upstream elec-
trons.
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1 Introduction
In the 5th century BC, Greek philosopher Leucippus and his pupil Democritus first
coined the word atomos, or ’indivisible’, when talking about the fundamental building
blocks of matter. This pursuit of the smallest pieces of nature has been a constant in
human history. At several points in time, the end of this search has been wrongfully
proclaimed. The discovery of the atom was followed by that of the electron and the
nucleus. The nucleus revealed itself to be composed of protons and neutrons, which we
now know are also not indivisible.

With the introduction of the Standard Model of Particle Physics, true elementary par-
ticles are once again within our grasp. It is now up to the scientific community to find
flaws and shortcomings in the Standard Model, and to devise possible alterations or
extensions of the model that better allow us to understand what is happening in nature.
One avenue of approach is probing the universality of leptons, which is a property that
is present in the Standard Model. A violation of this universality would imply a direct
violation of the Standard Model in its current form. This project has been performed
to aid the search for lepton (non)universality, by attempting to answer the following
question:

Can bremsstrahlung-related information enhance the particle identification
of upstream electrons in the LHCb detector?

By applying machine learning tools on available data, the amount of electrons that are
identified correctly can be increased. This improved identification in turn leads to an
effective increase in usable data that can be used in lepton universality analyses.

Chapter 2 will go into detail about the implications of lepton universality violation, as
well as work that has already been performed in this area. The LHCb detector itself will
be described in chapter 3, along with a description of the detection of electrons within
it. Following this will be the methods used in acquiring the data for this work, and
how results were obtained from this data. This can be found in chapter 4. The results
themselves are located in chapter 5, followed by a discussion in chapter 6.
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2 Probing Lepton
Universality

The main scope of this thesis is the improvement of the identification of a subclass of
electrons within the LHCb detector, which in itself is only one of the experiments aimed
towards investigating lepton universality. To mitigate the effect of tunnel vision which
comes naturally when investigating such a comparatively small cog in a larger ensemble,
the current chapter will paint a picture of the overarching end goal of understanding the
properties of leptons.

Several facets of this subject will be covered, from a brief introduction of the Standard
Model and the place of lepton universality within it, to the possible approaches used
in probing this universality. The decay channel under investigation in this work will
also be described, along with the motivation for its choice. With the possibility in mind
that the Standard Model of Particle Physics in its current form may not be the end-all
theory for physics, two alternative theories are discussed briefly that could explain lepton
non-universality.

2.1 Lepton Universality in the Standard Model of Particle Physics

The apex of predictive models in physics for several decades, the Standard Model (SM)
provides unrivalled insights in the nature and interactions of elementary particles. The
model provides a unified description of all fundamental forces, with the exception of
gravity. It comprises all currently known elementary particles, grouped in half-integer
spin fermionic matter and integer spin bosons, seen in Figure 1. For detailed data on the
properties of these fundamental particles, one can access the biennial Review of Particle
Physics [31]. Excellent works on the Standard Model of Particle Physics include those
by Zee [35] and Peskin & Schroeder [28]

Figure 1: The elementary particles currently part of the Standard Model, with charges listed for
the fermionic sector. Every particle additionally has a corresponding antiparticle with opposite
charge.

In the unbroken form, the electroweak symmetry describing the unified forces of electro-
magnetism and the weak interaction is given by SU(2) × U(1), acting on the massless
weak isospin fields W1, W2, and W3, and on the weak hypercharge field B. This sym-
metry is however broken at the energy where the Higgs field acquires a nonzero vacuum
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expectation value (VEV), due to the coupling of the Higgs field to the electroweak
fields. This symmetry breaking, among other things, gives rise to the existence of the
photon and the Z0 boson. One way of describing this is shown in Figure 2, where the
electroweak mixing angle θW induces linear combinations of the B and W3 fields to
represent themselves as the photon and Z0 fields.

Figure 2: The photon and Z0 boson fields de-
scribed as linear combinations of two of the fields
present in the unbroken electroweak theory. The
mixing angle θW nonzero due to the Higgs field
acquiring a nonzero VEV.

The coupling of the Higgs field to the elec-
troweak fields additionally allows for them
to acquire a nonzero mass, with the excep-
tion of the photon field. This mass term
would be equal for the W and Z bosons,
were it not for the electroweak mixing an-
gle mentioned above. The quarks and
charged leptons in the Standard Model
Lagrangian also have a nonzero mass due
to the Higgs field, albeit through their
Yukawa coupling to the Higgs field and
not directly through electroweak symme-
try breaking. For neutrinos the matter
is more complicated, as they are experi-
mentally observed to have mass, but the
Standard Model provides no explanation
for this.

The mechanism outlined above describes
how the charged leptons and gauge bosons
acquire mass, but does not touch upon the
respective charges of these particles, nor
does it explain why the masses are different for the three generations. In the theory
of electroweak symmetry breaking, there is no process that alters the respective gauge
charges of the leptons, or the coupling strengths in the weak and electromagnetic inter-
actions. The three generations of leptons are thus identical, save for their mass. This is
known as lepton universality.

Since a violation of lepton universality would thus imply a violation of the Standard
Model in its current form, extensive research is performed in this area. This research
takes the form of investigations into the branching ratios of decays which involve the
different leptons. Once compensated for mass, an anomaly in these branching ratios
would indicate lepton universality violation.

2.1.1 Ongoing Lepton Universality Research

The possible approaches for the study of lepton universality are manifold, and include
the leptonic decays of gauge bosons, as well as semileptonic decays involving quarks,
and purely leptonic decays such as τ− → e−νeντ . As example, the decay of the Z boson
into leptons has been measured in multiple experiments and has shown to be consistent
with the SM prediction [14]. Additionally, the leptonic decay of the W boson also is
found to be in accordance with the SM, as shown in Figure 3 [4].

Currently, the strongest deviations from the Standard Model are found in b → cl−νl
transitions in B hadron decays, at a level of 3σ, as seen in Figure 4. The R(D) and
R(D*) values are ratios that express the relative occurrences of decays into the different
generations of leptons, and will be described in more detail in the next section. The
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Figure 3: Branching ratios for the leptonic decay of the W boson into electrons and muons, with
results for all four collaborations showing accordance with SM predictions. Taken from [4]

D and D* modes indicate decays to ground state and excited state charmed D mesons
respectively.

2.2 Channel Selection

In the previous section, the many channels that allow LU probing to be accomplished
were outlined. The current section will describe the channel selected for this research,
and why it is such a promising channel.

When searching for the possibly negligible presence of New Physics (NP) in experiments,
the use of a channel with a high branching fraction may well drown out the signal that
is present. If one is however to investigate a comparatively rare channel, the effects of
physics beyond the standard model will have a larger impact on the discrepancy between
the expected and measured outcome. This is the primary reason for the selection of the
type of channel in this work: b→ sl+l−. It should be noted that these rare decays are
analysed in a much broader context than just lepton universality, being also extensively
investigated in the search for charge parity violation.

In the SM, these types of decay feature a Flavour Changing Neutral Current, and are
forbidden at tree level. The lowest order diagrams for these transitions are a penguin di-
agram featuring a quark loop and a Z boson or photon, or a W boson box diagram. The
Feynman diagrams for both these transitions are shown in Figure 5. For the penguin
diagram, a loop consisting of an up quark will be suppressed, due to the small corre-
sponding CKM matrix [11] element. The transition to a truth quark is energetically
unfavourable, leaving the charm loop to be the most probable.

The quantities that are used to gauge lepton universality in these decay types are the
R(K) and R(K*) ratios. These are the ratios of the branching fractions defined as
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Figure 4: Results for various R(D) and R(D*) measurements, averaged by the Heavy FLAVour
averaging group. The standard model predictions for R(D) and R(D*) are not unity, due to the
influence of form factors that are negligible in other LU measurements. Taken from [1] (online
update 2019)

follows:

R(K) =
B+ → K+µ+µ−

B+ → K+e+e−
, R(K∗) =

B0 → K∗0µ+µ−

B0 → K∗0e+e−
(1)

Prior results for the measurement of these ratios can be found in Figure 6. The mea-
surements performed by the LHCb collaboration show values of R(K) and R(K∗) that
”... are found to be 2.6 σ and 2.1-2.5 σ lower than SM expectations.” [4] These recent
’B-anomalies’ are discussed in e.g. reference [17].

2.2.1 Normalisation Channel

An additional property of the b → sl+l− channel is the presence of the J/ψ decay
mode. In this mode, the penguin diagram features the J/ψ resonance in the form of a
charmonium loop. This resonance mode is heavily favoured over other modes and can
be used as a normalisation channel to facilitate the determination of R(K) and R(K*).
Since the branching ratios of the J/ψ resonance into electrons and muons is measured to
be 0.9983± 0.0065 [31], a double ratio can be used to calculate R(K) and R(K*) (shown
here only for R(K)):

R(K) =
B+ → K+µ+µ−

B+ → K+e+e−
× B

+ → K+J/ψ(e+e−)

B+ → K+J/ψ(µ+µ−)
(2)

By using this double ratio, many of the unknown variables regarding the detection
efficiency of muons and electrons cancel out, and systematic effects can also be better
kept under control.

In the remainder of this work, the channel that will be used is:

B0 → K∗0(K+π−)J/ψ(e+e−) (3)

All data and descriptions will refer to this channel, unless explicitly mentioned.
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Figure 5: Feynman diagrams for the lowest order b→ sl+l− transitions. At the top is a penguin
diagram with a quark loop and a Z boson or photon. At the bottom a W boson box diagram.

2.3 Alternative Theories

The most probable cause for NP to reveal itself in the aforementioned channels would
be a tree level diagram featuring a previously undiscovered particle. Being of lower
order than the decay channels previously discussed, a tree level diagram would be less
suppressed and would thus have a higher chance of discovery. Two competing theories
that attempt to explain flavour changing neutral currents are the leptoquark and heavy
boson models.

Leptoquark Model The leptoquark model solves the issue of FCNC with the addition
of a particle that carries both leptonic and baryonic quantum numbers. The particle
would be created at high energies, with a mass comparable to that of a lead nucleus. In
Figure 7, a beauty antiquark decays into a positively charged lepton and a leptoquark,
which subsequently decays into a negatively charged lepton and strange antiquark. An
effective field theory incorporating this leptoquark is discussed in references [5, 6]. This
particular model is interesting as it is able to explain the natural hierarchical structure
of fermions, as well as being UV complete. The latter being a requirement for any theory
describing physical interactions between particles.

Heavy Boson Model Heavy boson models assume the existence of so-called Z’ and
W’ bosons, through an extension of the weak interaction. The exact properties of these
bosons vary per theory, but they all share the requirement of a higher mass than the
known bosons. Any Z’ boson would differ from the known Z boson in that it would be
able to decay into a quark-antiquark pair of different generations, in order to account for
FCNC. Papers detailing the search for a possible Z’ boson can be found in references [13,
10, 18]

With the importance of lepton universality measurements emphasised, the next chapter
will describe the LHCb experiment and how it can be used to collect relevant data.
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Figure 6: Prior results for the branching ratios R(K) and R(K*). The quantity q2 refers to the
invariant mass of the dilepton pair. Integration is performed over the full q2 range to obtain
R(K) and R(K*). Taken from [4]

Figure 7: Feynman diagram showing tree level FCNC through a theorised leptoquark particle.

Figure 8: Feynman diagram showing tree level FCNC through a theorised heavy boson.
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3 Large Hadron Collider
Beauty Experiment

The LHCb experiment is one of the major experiments situated on the Large Hadron Col-
lider (LHC) machine, which can provide an abundance of b-flavoured hadrons through
proton-proton collisions. It is located at the CERN facility near Geneva, beneath the
France-Switzerland border and consists of a 27km diameter circular particle collider ca-
pable of achieving 14TeV collision energies. The primary colliding particles are protons,
but experiments are also conducted using heavy ions. The protons are fed into the
machine through a series of prior accelerators, both linear and circular, at an energy of
several hundred GeV. Particles are injected in so called ’bunches’, consisting of more
than 100 million protons per bunch, with a minimal bunch spacing of 25ns. They are
subsequently accelerated to the required centre-of-mass energy through the use of Radio
Frequency or RF cavities. The cavities serve two purposes: The first is the aforemen-
tioned acceleration, and the second is to maintain a tight clustering of the protons in a
bunch. This is achieved through the shape of the potential in the cavity, which accel-
erates slower protons more than faster ones, causing all off-centre particles to oscillate
in the longitudinal direction. The beams cross each other at four points along the ring,
and experiments are located at and around these stations.

The LHCb detector is a single-arm forward spectrometer at the LHC, designed for the
study of heavy flavour physics [15]. For the current LHCb setup, there is on average
a single collision per bunch crossing. The main production process for the B-mesons
studied at LHCb is gluon fusion, described in reference [2]. The resulting B-mesons
are predominantly boosted in either the forward or backward beam direction and the
detector geometry reflects this. The maximum acceptance of the subdetector modules is
300mrad in the (horizontal) magnet bending plane, and 250 in the (vertical) non-bending
plane. The choice for these acceptances is based on encompassing as much of the particle
momentum range as possible, at acceptable cost. The minimum acceptance is 10mrad,
and is governed by the beam pipe having to pass through the subdetectors.

The LHCb collaboration employs a typical right-handed coordinate system for the detec-
tor, with the z-axis facing along the beam line, the x-axis laying in the magnet bending
plane, and the y-axis fixed near-vertically.

A large magnet with an integrated field of roughly 4 Tm is used as the primary means of
particle momentum reconstruction. Combining the equation for the Lorentz force with
an infinitesimal deflection angle, one can obtain the following:

dθ

ds
=

q

p‖
B(v̂s × B̂) (4)

Here, ds is an infinitesimal displacement along the direction of travel and p‖ is the mo-
mentum component in the direction of travel. From this equation it is apparent that the
deflection angle per unit of traversed distance is dependent only on the charge, momen-
tum, and field strength. Therefore, an evaluation of the direction of travel of a particle
before and after the magnet is used as a means of determining the particle’s momen-
tum. As a whole, the reconstruction of the particle trajectories, or tracks, making up a
hadron decay is primarily based around the determination of the constituent particles’
four-momenta.

The next few sections will cover the different subdetectors in detail. A clear distinction
is made between subdetectors before the bending magnet, dubbed the ’upstream’ detec-
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tors, and those behind the magnet, the ’downstream’ detectors. Much of the information
in this chapter can be found in more detail in the LHCb design document [15].

3.1 Upstream Detection

Figure 9: Schematic view of the LHCb detector in the y-z plane. Particles traverse the detector
from left to right. View is focused on the upstream subdetectors and the magnet, downstream
components are made transparent [15].

In this section the upstream detectors will be discussed. These subdetectors are par-
ticularly important in this work as they are the primary source of information on the
particles that are bent out of the detector acceptance by the magnet. As these detec-
tors are located prior to the magnet, the particles in these detectors will mostly travel
straight from their origin vertices, save from some bending due to the magnetic field
permeating outside of the magnet.

3.1.1 VELO

The VErtex LOcator is the first detection instrument, located closest to the interaction
zone where the protons collide. It consists of a series of silicon strip detectors, arranged in
planar modules and mounted perpendicular to the beam axis. Silicon strip detectors are
the one of the primary means of particle detection in the detector. Charged particles
travelling through the detector strip bulk will free up charges that are collected and
amplified to obtain a ’hit’ signal, as illustrated in Figure 11. Alternating VELO modules
respectively measure the radial distance r and the azimuth angle φ from the beam axis,
demonstrated in Figure 10. The spacing between subsequent modules is kept small and
the distance to the beam is kept to a minimum to allow for an accurate interpolation
between detector hits. This accuracy is required to detect the displacement of secondary
decay vertices from primary decay vertices, which is of the order of a centimetre due
to the comparatively short lifetimes of B-mesons. The choice for an (r, φ) coordinate
system in favour of a Cartesian coordinate system is due to the increased computing
efficiency that it provides.

When the beam is first injected into the LHC, the width of the beam is larger than
during nominal data taking. To prevent radiation damage to the VELO and to avoid
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interactions with the beam, the VELO modules can be retracted from their data-taking
position close to the beam, to a safer distance of 35mm. The VELO modules are placed
in a separate vacuum from the primary beam vacuum, with a thin aluminium shielding
ensuring this separation.

The VELO is the first significant amount of material that particles will encounter and, as
discussed in section 3.3.2, is thus the location of many of the Bremsstrahlung emissions.
These emissions will be used later in this work for improved particle identification.
Additionally, the vacuum in which the VELO operates is kept separate from the vacuum
of the beam pipe, which is higher. As the VELO needs to be retractable, so does this
separation, which is called the ’RF foil’. This foil also contributes considerably to the
amount of material present at the VELO subdetector.

Figure 10: Schematic view showing the mounting scheme of the r-sensors (orange) and the φ-
sensors (pink). This situation represents the data-taking position, where the modules are closest
to the beam.
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Figure 11: Schematic view of a silicon microstrip detector. Passing particles create electron-hole
pairs that are collected in the electrodes. Adapted from [3].

3.1.2 RICH1

Figure 12: Relation between Cherenkov emission an-
gle and particle momentum for various common par-
ticles in the LHCb detector for the three media used
in the RICH1 and RICH2 detectors [15].

The Ring Imaging CHerenkov detec-
tor is one of the primary means of par-
ticle identification. The principle of
operation is the emission of a cone of
Cherenkov radiation when a charged
particle passes through a medium
where it has superluminal phase ve-
locity. The emission angle of the radi-
ation with respect to the direction of
travel increases with increasing veloc-
ity, and pairing this information with
momentum and charge information
from other detectors allows for dis-
crimination between particles of vary-
ing masses and thus identities.

RICH1 is located upstream of the
magnet and covers the full angular ac-
ceptance range of the LHCb detector.
The medium used in the detector is
C4F10, covering a momentum range
of about 10-65GeV/c, suitable for the particles with a higher off-beam angle that gen-
erally carry lower momentum. Lightweight spherical mirrors are used to reflect the
radiation to photon detectors whilst minimising possible interactions with event parti-
cles.

As the Cherenkov emission angle follows sin(θc) = c
nv , particles with increasing momen-

tum become increasingly hard to distinguish. This effect is demonstrated in Figure 12
for various particles for the media in both the RICH1 and RICH2 detectors. The lower
momentum upstream particles thus benefit from a more accurate RICH1 reading, which
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aids in particle identification.

3.1.3 TT

The Tracker Turicensis, or Trigger Tracker, is a subdetector containing four layers of
silicon strip detectors. The four layers are split in two closely spaced pairs, with a larger
distance of 27cm between the pairs. In each pair, one of the layers’ detector strips are
oriented vertically, with the other layer rotated by 5 degrees. Combining the hits in
both layers allows for the reconstruction of the location of a particle traversal in the x-y
plane with a high resolution in the bending plane. The design for this specific type of
detector was chosen in order to achieve a resolution of roughly 50µm, which was deemed
sufficient for the experiment.

It should be noted that due to the proximity of the TT station to the magnet, there is
a residual field permeating the detector, resulting in some bending for charged particles
travelling through this station.

3.2 Downstream Detection

Figure 13: Schematic view of the so-called downstream portion of the LHCb detector [15].

The following subsections cover the downstream detectors, located behind the bending
magnet. Particles traversing both the upstream and downstream detectors can have their
four-momentum measured and benefit from increased particle detection efficiency due
to crossing both RICH stations. Their tracks are hereafter referred to as ’long’ tracks.
Since the primary focus of this work is on upstream particle tracks, the descriptions
will be brief except where applicable to upstream particles. Detailed information can
be acquired from the LHCb design document [15].

3.2.1 T1-T3

Three tracking stations are located downstream of the bending magnet, their inner
sections (∼120cm x 40cm) consisting of the same silicon strip detector technology as
the TT. The outer sections span up to 600cm x 490cm and employ so-called straw tube
detector technology. Vertically mounted tubes of 5mm diameter contain a mixture of
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argon and carbon dioxide that can be ionised by passing particles. The freed charges
drift towards a centrally mounted anode wire where they are collected, creating the
signal. By also timing the drift of the charges, a resolution higher than the 2.5mm tube
radii can be achieved, upward of 0.2mm.

The tracking stations provide information about particle momentum through the mech-
anism covered earlier in this chapter.

3.2.2 RICH2

The RICH2 detector provides particle identification capability for the 15GeV/c-100GeV/c
momentum range. The acceptance for this detector is 120mrad from the beam axis in
the bending plane, and 100mrad in the non-bending plane. The use of CF4 which has
a lower refractive index, allows for the discrimination of the high momentum particles
that are expected to fall within the angular acceptance of this detector.

3.2.3 SPD/PS

The Scintillating Pad Detector and PreShower modules are the first of the calorimeter
modules, which additionally comprise the Electromagnetic calorimeter and the Hadronic
calorimeter, both of which will be discussed in the next section. All calorimeter modules
are based on the same scintillating material detectors that emit photons when hit by
a charged particle. The photons are collected by an optic fibre and guided to a photo
multiplier tube to obtain a signal.

The primary task of the SPD and PS detectors is to differentiate between different
particles. The SPD is the first module to be encountered by particles and simply pro-
vides a single bit signal to indicate a hit. Since neutral particles will rarely activate
the scintillator material, this provides a means of distinguishing neutral from charged
particles. The SPD is followed by a 12mm lead plate, the purpose of which is to initi-
ate a shower of secondary particles when hit by incoming particles. The presence and
shape of this shower depends a great deal on the instigating particle, which is used in
particle identification. Photons and electrons will readily interact with the lead and
produce electromagnetic showers that are detected by the PS module, pions and other
hadrons have much longer shower development lengths and can thus be discerned. The
separation of the most common particles is summarised in Figure 14.

Figure 14: Illustration of the method for separating the most common particles in the LHCb
detector through their characteristic particle shower.

19



3.2.4 ECAL/HCAL

Located downstream of the SPD and PS are the Electromagnetic CALorimeter and
the Hadronic CALorimeter. These detectors employ scintillator detector technology
to measure the energy of incident particles through the creation of electromagnetic
and hadronic secondary particle showers respectively. In the ECAL, so-called shashlik
technology is used, where 4mm layers of scintillator are alternated with 2mm layers of
lead. In order to encompass as much of an electromagnetic shower as feasible, a detector
thickness of 25 radiation lengths was chosen, resulting in the ECAL module being 42cm
thick.

Hadronic showers are generally much longer than their electromagnetic counterparts
and will thus have excess energy when leaving the ECAL. For this reason, an additional
calorimeter is installed after the ECAL that is aimed towards the energy reconstruction
of hadrons. The HCAL has a different design than the ECAL, featuring a higher granu-
larity. The scintillating pads are mounted in the y-z plane as opposed to the x-y plane.
The pads are alternated with iron plates to form a submodule, and submodules are in
their turn separated by iron sheets, the large iron nuclei acting as absorbers to initiate
hadronic showers.

The upstream particles at the focus of this work will not reach the calorimeter sys-
tems. There is however important data to be gathered through their emission of
bremsstrahlung photons, which can be detected by the calorimeters. As will be described
in chapter 4, the energy deposits, or ’clusters’, that are left by the bremsstrahlung pho-
tons can in certain cases be associated with their respective particles, which can aid in
their identification.

3.2.5 M1-M5

The five muon stations are tasked with detecting the barely interacting muons produced
in some of the key decays in the LHCb detector. The primary detection components are
compartments filled with a mixture of argon, carbon dioxide, and CF4 that can react
electromagnetically with the passing muons. The compartments provide a singular signal
when hit and the resolution is thus limited to the size of the compartments. One of the
muon stations is located before the SPD detector, the other four are downstream of the
HCAL. The four downstream stations are interspersed with 80cm thick iron absorber
slabs, to increasingly filter out all but the highest momentum muons. This primarily
entails the filtering of hadrons. A momentum of 6GeV/c is required for a muon to
traverse all the stations.

A particle track passing through all muon stations is a telltale sign of a real muon, making
particle identification easy in that particular case. Other particles, such as electrons,
are oftentimes not so easily identified due to their different properties. The next section
will cover the behaviour of electrons in the LHCb detector and the associated difficulties
in their identification and detection.

3.3 Electrons in the LHCb Detector

The range of particles that are directly detected by the LHCb detector is small in com-
parison to the amount of particles that are produced in the studied decays, whose exis-
tence is inferred through the detection and measurement of secondary decay particles.
Electrons are one class of particle that are detected directly, but have some properties
that make them not ideal for this purpose. The lightest of the charged leptons, the elec-
tron is produced in abundance in many weak and electromagnetic interactions. The low

20



mass however means that the electron is prone to losing significant fractions of its mo-
mentum in interactions with the detector material. Whilst this is desirable for example
in the calorimeter system, where the aim is measure the total momentum of the particle,
it can throw off track reconstruction if it occurs in non-monitored material.

Figure 15: Typical fractional loss of
energy in the form of bremsstrahlung
emission for electrons in the LHCb de-
tector. B0 → J/ψ(e+e−)K∗(K+π−)
Channel, simulated data.

Figure 15 shows the loss of energy in the form
of bremsstrahlung of electrons prior to reaching
the calorimeter systems, which averages 38% for
electrons with associated bremsstrahlung clusters.
The bremsstrahlung emissions will cause the elec-
trons to deviate from their mostly straight trajec-
tories, increasing the uncertainty in their direction
of motion and, in turn, their momentum. Even
more troublesome are the electrons that are either
created with relatively low momentum, or that lose
a significant fraction of their momentum before the
bending magnet. These upstream electron will not
be detected in the downstream detectors and will
lack information critical to their correct identifi-
cation, primarily the ratio E

P which, for electrons,
will be often close to unity due to their tendency
to deposit a lot of their energy in material.

3.3.1 Channel Backgrounds

There are many types of backgrounds that hinder accurate measurements in the LHCb
detector. As an example, if the pion is not detected in the decay B0 → K∗0(K+π−)J/ψ(e+e−),
it would then clutter the B+ → K+e+e− channel as a partially reconstructed event. The
relevant types of background for this work are single and double misidentifications, and
ghosts. Single misidentifications occur when one particle in the decay has been in-
correctly identified. Double misidentifications include ’swaps’ where for example the
electron and the pion in B0 → K∗0(K+π−)J/ψ(e+e−) have been swapped, leading to
incorrect decay reconstruction. Ghosts refer to particle trajectories that do not originate
from a real particle, but are instead collections of observations that by chance resemble
a real particle.

To indicate the extent of background pollution of a sample of upstream tracks, Table 1
shows particles that have been identified as being electrons. The electron row shows true
positives, whereas the other rows show false positives. This table applies to simulated
upstream tracks from the data set used for this work, and the total of 1 345 events is
typical for a 10 000 event total sample size. The table demonstrates that misidentifica-
tion of electrons is a considerable issue for upstream tracks, with less than half of the
electrons being ’true’ electrons. Furthermore, it can be seen that the contribution of
ghost tracks is sizeable, revealing the troublesome nature of combinatorial backgrounds.

21



Table 1: Simulated particles identified as being electrons. The electron row shows true positives,
the other rows show false positives. Sample is representative for upstream electrons in a 10 000
event total sample size, i.e. upstream and long tracks.

Particle Quantity Fractional

Electron 567 42.2%
Pion 440 32.7%
Ghost 201 14.9%
Kaon 121 9.0%
Proton 12 0.9%
Muon 4 0.3%

Total 1345 100%

3.3.2 Bremsstrahlung

Figure 16: Bremsstrahlung occurs
when the Coulomb interaction acceler-
ates an electric charge, the acceleration
is paired with the emission of electro-
magnetic radiation.

Bremsstrahlung, literally ”braking radiation”, is
the type of radiation that is emitted during the
acceleration of electric charges. In the context
of the LHCb experiment, bremsstrahlung mostly
refers to charged decay products interacting with
the static nuclei and electrons of the detector ma-
terial. In these interactions, the free particle is
typically slowed down, hence the name of the ra-
diation.

The power emitted in a bremsstrahlung process
can be calculated both classically and relativisti-
cally. The classical equation for bremsstrahlung
power emission is given by the Larmor formula [21],
and a relativistic generalisation can be derived by
treating moving point charges as Liénard–Wiechert
potentials [34]. The latter being a relativistic de-
scription of Maxwellian potentials.

Both equations listed above however assume a vac-
uum, and the average bremsstrahlung-related interaction of a particle within any phys-
ical detector is more complex. An in-depth description of bremsstrahlung, both general
and specific to the LHCb detector, can be found in reference [33].

In a work by W. Heitler [23], an estimate is made for the cross section of bremsstrahlung
photon emission for highly relativistic particles:

σ ∼ Z2

137

(
e2

mc2

)2

(5)

Here, Z stands for the nuclear charge of the particle and m for the mass. From this equa-
tion it becomes immediately apparent why electrons, being roughly four times lighter
than even the up quark, are the most affected by bremsstrahlung. As the cross section
scales with the inverse mass squared, the electron will be most prone to bremsstrahlung
emission, due to it being the lightest charged particle.

Bremsstrahlung in the LHCb detector is generally considered a nuisance, especially for
electrons. This is mainly due to the increased difficulty in accurate reconstruction of the
particles’ tracks. In what follows, the information contained in bremsstrahlung emissions
will be put to use as a tool for better identifying electrons.
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4 Electron Identification
This chapter will cover the methods employed in improving the particle identification of
electrons. The goal is to find signature properties of an electron traversing the detector
that are captured in the outputs of the detectors. These properties can then be used to
train a machine learning classifier to better discern electrons from non-electrons. The
first section will elaborate on the required data and how it is obtained from the detector.
After this, section 4.2 will elaborate on how extra bremsstrahlung-related information is
acquired from the data. Finishing the chapter are two sections that dive into the search
for high-performance classifier variables and the application of machine learning.

4.1 Data Gathering

The LHCb collaboration conducts research on many different decay channels, and in
order to attain a manageable quantity of data, this work focuses on a specific decay
channel. As mentioned earlier, the B0 −→ J/ψ(e+e−)K∗(K+π−) normalisation chan-
nel is chosen for this purpose, due to its relevance for lepton universality tests as well as
it being a relatively well-studied channel. Furthermore, this channel contains a represen-
tative sample of electrons, kaons, and pions, from a kinematic standpoint. A drawback
to this selection is that an extension of the methods used in this work to other channels
may not be warranted, but steps are taken to attempt to improve generalisability.

4.1.1 LHCb Software

It is informative to examine the interface between the physical LHCb detector and the
data that is most commonly used by researchers in their analyses. A variety of software
frameworks and packages are used in this process, which will be outlined in this section.
In Figure 17 the flow of detector output and simulation output is shown.

There are, on average, about 30 million proton-proton collisions occurring per second
in the LHCb interaction point. If all events would be recorded, a constant stream of
1TB of data would have to be stored. As this is currently not feasible, several stages of
filtering are applied. Currently, the first filtering step is the so-called hardware trigger,
which is built into the detector equipment. The hardware trigger is required to accept
or reject a certain event on a 4 µs basis [22]. The only subdetectors that are capable of
achieving such a high rate of data acquisition are the muon stations and the calorimeter
system, and the trigger conditions are thus based on these systems. Particles with high

Figure 17: Simplified scheme illustrating the process of converting the raw detector output and
Monte Carlo simulated events into data that can be used in analyses.
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off-beam momenta are often signatures of interesting events, and trigger conditions are
thus based on specific transverse momenta (pT ).

The High Level Trigger (HLT) is a software based trigger system consisting of two stages.
Events that are accepted by the hardware trigger will be partially reconstructed in the
first stage, HLT1. The partial reconstruction entails the creation of tracks from hits
in the VELO that are extrapolated to the tracking stations if there are matching hits
in the muon station or if the VELO track is substantially displaced from the primary
vertex. This displacement, or impact parameter (IP), is a sign of a high-energy secondary
particle and thus reason for accepting the event. The HLT1 runs in real-time, meaning
that as long as there are events occurring in the detector, the trigger will be active
and recording events to storage. Accepted events are subsequently evaluated by the
HLT2 trigger, which can run both in real-time, using excess computational resources,
and when the beam is offline. For the HLT2 stage a more thorough reconstruction is
performed, where all tracks above a pT of 300 MeV/c are reconstructed [22]. It should
be noted that at this stage, a track is simply a collection of hits in the detector which
is consistent with originating from a single charged particle. This consistency is based
on properties such as the χ2 value describing the displacement between a hit and the
suspected particle trajectory. Whilst information from e.g. the RICH systems can be
associated to the track at this point, there is not a definitive identity assigned to the
particle yet. Events accepted by HLT2 are saved to storage and are ready for offline
processing. Trigger conditions for both the hardware and software triggers are subject
to frequent changes and allow researchers a degree of control in the types of decays that
can be investigated.

The offline processing stage is where full event reconstruction takes place. The first step
in the full reconstruction of all the tracks in a given event is to determine which of the hits
in the subdetector systems belong to a track. To this end, pattern recognition software
is employed that attempts to match straight sections of tracks in e.g. the VELO to hits
in the tracking stations. The various types of tracks are shown in Figure 18. If enough
hits are compatible with the hypothesised track, it is accepted. Since not all particles
will traverse all of the subdetectors, different pattern recognition methods are used to
exhaust as many of the detector hits as possible. For upstream particles, straight track
segments from the VELO are extrapolated to the TT station, assuming a transverse
momentum of 400 MeV/c, chosen as an appropriate average of simulated events [7].
Using the extrapolated track and accompanying momentum assumption an evaluation
of the compatibility of TT hits is performed. If three of the four TT stations have hits
within a given deviation, the track and constituent hits are accepted as an upstream
track. On average, every event will see the reconstruction of about 72 tracks, mainly
long tracks and VELO-only tracks [15]. Note that this figure is based on simulated bb
events. For an in-depth description of the track-fitting procedure for charged particle
tracks, refer to the work of J. van Tilburg [32].

Once pattern recognition is complete, a track-fitting procedure is performed that finds
the best possible track parameters given the associated hits, and which also calculates
χ2 values to show the consistency of the resulting track. Tracks are stored to memory
as a collection of track states: Vectors consisting of an x and y coordinate, dx

dz and
dy
dz derivatives, and the scalar quantity q

p . The entire vector is a function of the z
coordinate. The track as a whole is embedded in a so-called protoparticle object, which
is also used to store additional information from e.g. the calorimeters and the RICH
detectors. Bremsstrahlung-related information, if available, can also be assigned to this
protoparticle container, detailed in section 4.2. An artificial neural network (ANN) is
supplied with the protoparticle information and calculates pseudo-probabilities for the
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Figure 18: Schematic representation of the different track type definitions used for the LHCb
experiment. Taken from [30].

protoparticle being one of the particles listed in Table 2. A ’ghost’ particle is a result
of detector noise, ambient particles, and other effects creating hits in the subdetectors
that resemble a single, real particle as described in section 3.3.1.

Table 2: The variable names used for the assign-
ment of ANN outputs. The ANN takes protopar-
ticle reconstruction data and gives a pseudo-
probability for the protoparticle to be one of the
listed particles. A ’ghost’ particle refers to a
track that is wrongly attributed to have origi-
nated from a real particle.

Particle
Associated ANN
output variable

Electron ProbNNe

Muon ProbNNmu

Pion ProbNNpi

Kaon ProbNNk

Proton ProbNNp

Ghost ProbNNghost

Up until this point the protoparticle has
had no identity assigned to it yet, and
the event as a whole has not been shown
to contain any specific decay. In the
’selection’ phase, all events are searched
for so-called ’candidates’. In the broad-
est sense, this selection takes a signature
of a decay, consisting of e.g. mass and
momentum constraints, impact parameter
requirements, or whatever else is required
by the researchers, and looks for this sig-
nature in all the stored events. For exam-
ple, the decay investigated in this work
features a J/ψ meson with an invariant
mass of 3.1 GeV/c2, which subsequently
decays into two electrons. This translates
into a constraint on the invariant mass
of the combination of electrons to lie be-
tween 2.1 GeV/c2 and 4.3 GeV/c2, to fully encompass the width of the J/ψ resonance
plus resolution-related tails. It is entirely possible for an event to satisfy the conditions
of signatures for different decays, or to even satisfy the same signature multiple times.
The latter is possible when a different assignment of particle identities also satisfies the
signature conditions. It is obvious that at most one arrangement can be correct, but all
candidates are tagged for analysis nonetheless. The selection process is computationally
intensive and is only performed at most a handful of times each year.

The final step in the data-chain is to collect all information into a convenient format.
The ROOT software kit has been developed by the High Energy Physics community
to deal with large amounts of data in an efficient way [12]. A core object in ROOT is
the NTuple, a data structure specialised for fast data access. An NTuple can be filled
by so-called TupleTools, classes that contain the necessary methods to access relevant
information in the event and to calculate derived quantities if needed. The researcher
will write a configuration file containing references to the required TupleTools, extra cuts
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Figure 19: The BremAdder algorithm attempts to find clusters of photons between the impact
point of a particle and an extrapolated section of VELO track

and selections that may be desired, or customised information that must be extracted
from the event. This configuration file is then run by the LHCb analysis software:
DaVinci, run on the Gaudi framework [16]. DaVinci evaluates the stored data and
outputs the requested NTuple, ready for analysis.

The description of the data-chain above concerns the physical data taking at LHCb, the
simulated data follows mostly the same route, though with obviously different origins.
The simulation process is mainly governed by Gauss, the LHCb simulation framework.
At first, proton-proton collisions are simulated, commonly using the Pythia application.
The generated events subsequently will see the simulated decay of the constituent par-
ticles through the EvtGen [25] application. The Geant4 framework then propagates the
resulting particles through the LHCb detector, attempting to replicate the intricate ma-
terial and magnetic field interactions that the particles may undergo. The final step in
the simulation process is the conversion of the simulated hits to digital detector output,
this is accomplished by the Boole application. The digitised output is made to mimic
the physical detector output as closely as possible, and is fed into the HLT trigger to
follow the same data-chain as the real data.

The procedures described in this section culminate in the acquisition of a data set that
contains primarily the requested decays. In the case of this work these are simulated
events, which come with extra information that would normally not be revealed by
nature.

4.2 BremAdder Algorithm

As detailed in section 3.3, electrons will often lose a significant fraction of their energy
in bremsstrahlung processes. If this energy is not accounted for, electron momentum
reconstruction will be severely hampered. The BremAdder algorithm is designed to
mitigate this issue as well as possible by adding compatible clusters of photons in the
ECAL to the particle track. The BremAdder algorithm is run in HLT2, but is compu-
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tationally intensive. As an alternative, a rudimentary form of bremsstrahlung matching
is performed, which will be discussed first.

The CaloBremMatch algorithm is fast enough to be run during online reconstruction,
but sacrifices accuracy and capabilities. The matching method takes an ECAL photon
cluster and a particle track and produces a χ2 value for the match between the two. To
accomplish this, the function finds the track state closest to the TT and extrapolates
in the direction of travel to the z-value of the cluster. The χ2 value is then calculated
based on the distance between the extrapolated impact point and the cluster location.
After performing these operations for all tracks and photon clusters, the cluster with the
best χ2 matching is assigned to each track. This means that a particle track will always
have an assigned cluster, even though the matching may be very poor. An obvious
drawback to this method is that bremsstrahlung emission can occur at any point in the
detector and not solely in the TT station, which is only chosen due to its proximity to
the bending magnet.

Figure 20: The track scanning procedure em-
ployed by the BremAdder algorithm. Linear ex-
trapolations (dashed) of the track (solid) are per-
formed every 50 mm in order to find the best
matching origin state for a given bremsstrahlung
cluster.

In an effort to improve the momentum
reconstruction of primarily electrons, the
BremAdder algorithm was developed. As
illustrated in Figure 19, the first avail-
able track state of the particle is extrap-
olated in a straight line to the ECAL
and if a photon cluster is found between
the particle impact cluster and the ex-
trapolation, the photon cluster momen-
tum can be added to the particle. To illus-
trate the effectiveness and necessity of the
BremAdder algorithm, Figure 21 shows
the deviation of the reconstructed elec-
tron three-momentum from the true mo-
mentum (simulated). It is apparent from
the Figure that the bremsstrahlung re-
covery procedure increases the reconstruc-
tion precision, with the average percentual
deviation shifting from -33% to +15%,
demonstrating a slight over-correction. In
order to achieve the highest precision in
the momentum correction, the entire track is scanned at intervals of 50 mm in order to
find the point where the direction of motion most closely matches the location of the
bremsstrahlung cluster, as illustrated in Figure 20. A χ2 can also be calculated for the
match between the bremsstrahlung origin point and the CALO cluster. This calculation
is not implemented in the BremAdder code at the time of writing, but a custom version
of BremAdder authored by M. van Veghel was used which includes this χ2 calculation.
A final note is that the BremAdder algorithm will add a ’HasBremAdded’ flag to a
particle, which will be used extensively in this work.

4.3 High-Performance Discriminators

With the data taking terminology and procedures described in the previous sections,
the current section will cover the specific tools that are used and the information that
they provide. Also described will be the methods employed to pursue the goal of better
electron identification.
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Figure 21: The percentage deviation of the reconstructed electron three-momentum from the
true momentum, with and without the BremAdder correction. Clear features in this graph are
the trend of underestimating momentum and the improvement that BremAdder provides in the
accuracy of the reconstruction.

As mentioned earlier, the overarching strategy is to evaluate the detector variables that
are accessible for the B0 −→ J/ψ(e+e−)K∗(K+π−) decay and find a set of variables
that allow for the discrimination of electrons from the backgrounds discussed in section
3.3.1. A machine learning algorithm is trained to perform the classification. While it
may seem tempting to add all available variables to the training set to maximise the
available information, this proves to be counterproductive for the given task. The reason
for this is twofold, on the one hand the increase in computation time is evident and on the
other hand there is the issue of overtraining the classifier. Overtraining will be discussed
in sections 4.3.2 and 5.2.4, and refers to a parametrisation of the classifier that fits the
training sample very well, but fails to generalise to new data. Aside from this, part of
the variables that are available can be shown to have no physical correlation to other
variables, but a machine learning algorithm can find correlations in stochastic variations
nonetheless. These found correlations are thus non-physical and cannot be used for
particle identification. One could consider training to these coincidental correlations to
be a form of overtraining as well. Finally, only variables that are not decay-specific will
be considered, in order to be able to apply the achieved results to other channels as
well.

The practice of using machine learning and multivariate analyses is not new in LHCb,
and neither is the use of Bremsstrahlung-related information. The novel approach in
this work is the expansion of the amount of variables in the most efficient way possible,
and more importantly the application to upstream electrons. Some basic statistics
concerning the data used for this work are summarised in Table 3.

4.3.1 Variable Selection

What follows will be a description of the variables and why they were selected. The
’em ’ prefix signifies that the quantity is affiliated with the electron of the candidate,
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Table 3: Basic statistics concerning the data set of simulated events.

Electrons (long) 518 131

Electrons (upstream) 81 869

True electrons (long) 304 297

True electrons (upstream) 34 664

HasBremAdded flag (long) 184 241

HasBremAdded flag (upstream) 24 379

Total 600 000

but everything described holds for opposite charges as well. The ’em ’ prefix will be
omitted when no confusion is deemed possible.

Figure 22: Distributions for the variable ’em BremChi2’, calculated in the BremAdder Pro-
gramme. Distributions for both signal electrons and background are plotted.

BremChi2 Mentioned earlier in section 4.2, this χ2 value is calculated in the Bre-
mAdder programme by scanning the track of an electron for a point where the emission
of a bremsstrahlung photon would fit with a given calorimeter cluster. Subsequently the
χ2 is calculated based on the match between the linear extrapolation of the track at this
point, and the actual cluster location. A match between a random photon cluster and
particle will generally give a higher χ2 value, as can be seen in Figure 22. This notable
difference can be used for electron identification.

CaloBremMatch This variable is a 3D χ2 value which originates from the calorimeter
software during the (online) reconstruction. Also described in section 4.2, the calculation
entails linearly extrapolating a particle track at the state closest to the TT and matching
this extrapolation to the nearest photon cluster. This variable is inferior to BremChi2
in that the matched photon cluster may not be compatible with the particle at all, it is
simply the cluster with the lowest χ2 value. Also, taking the bremsstrahlung emission
location to be fixed at the TT is generally inaccurate. However, CaloBremMatch is
available for all electrons, not just the ones to which the BremAdder algorithm has been
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Figure 23: Distributions for the variable ’em CaloBremMatch’, plotted for both signal electrons
and background. The left graph shows the distributions solely for upstream tracks, the right graph
shows all tracks.

applied. Figure 23 reveals that there is a definite distinction between the variable for
real electrons and misidentified background, albeit less so for upstream particles. The
discriminating power of this variable will be in the availability for all events.

Figure 24: Distributions for the variable ’em BremOriginZ’, calculated in the BremAdder Pro-
gramme. Distributions for both signal electrons and background are plotted.

BremOriginZ The origin point of bremsstrahlung emission is one of the key pieces of
information by which electrons may be distinguished from other particles. The tendency
of electrons to emit bremsstrahlung in material interactions will lead to a large portion
of bremsstrahlung photons coming from the first sizeable amount of material, which is
the VELO. This effect can clearly be seen in Figure 24 where the relative size of the left
signal electron peak is much larger than the right peak than for the MisID particles.
Additionally, non-electrons have a higher chance to be matched to a random photon in
areas where their tracks have more curvature, which is at higher z-values due to the
increasing influence of the leaking magnetic field. These peaks incidentally correspond
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to the material at the VELO and the TT respectively. In between the VELO and
TT stations there is a noticeable bump for signal electrons, the exact cause for this is
unknown but it is possible that the electrons interact with the beam pipe.

CaloNeutralECAL Although CALO information from direct observations of parti-
cles are unavailable for upstream tracks, bremsstrahlung photons can still be measured.
CaloNeutralECAL is a measure of the energy of a photon cluster associated with a par-
ticle track, expressed in MeV. Similarly to the CaloBremMatch variable, this quantity is
available for all events in the data set. Although there is a noticeable difference between
signal electrons and MisID background, it should be noted that this variable is not a
ratio with respect to e.g. the total energy, a different data set or channel could thus not
show this difference.

Figure 25: Distributions for the variables ’em CaloNeutralPrs’ and ’em CaloNeutralECAL’, plot-
ted for both signal electrons and background.

CaloNeutralPrs The PreShower detector can be shown to output a distinctly dif-
ferent distribution for signal and background, as is displayed in Figure 25. It follows a
similar trend as CaloNeutralECAL in that the average photon cluster energy is higher
than that of the background particles. Just like CaloNeutralECAL, this variable is not
normalised to the total energy and could thus be solely applicable to this particular
decay.

Angular Variables The angular quantities η and φ represent the pseudorapidity and
azimuth angle of a particle. The pseudorapidity distribution will generally vary per de-
cay, and should therefore not be used directly to train a classifier. However, the direction
of motion of a particle will greatly influence the material that said particle will encounter
and is thus strongly correlated to the probability and location of bremsstrahlung emis-
sion. For this reason it was decided to include these angular variables as, in conjunction
with the other variables, they can provide an extra means of true bremsstrahlung recog-
nition. The data set is however resampled as described in section 4.4, to not include any
decay-specific pseudorapidity features. To illustrate the correlation between material
and angle, Figure 26 shows the angular distribution of all electrons with the HasBre-
mAdded flag. The ’horn’ shapes at 0◦ and 180◦ azimuth angle represent the RF foil, and
it is thus apparent that many electrons that emit bremsstrahlung will pass through this
region of extra material. Finally, the x and y component of the bremsstrahlung origin
point may be approximated reasonably well by combining BremOriginZ with η and φ,
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Figure 26: An η vs. φ graph for upstream electrons. Clearly visible are the rectangular accep-
tances of the detector at the top and bottom (deformed due to polar coordinate system) and the
horn-shaped influence of the RF foil.

assuming that the electron will travel mostly in a straight line before bremsstrahlung
emission.

4.3.2 Machine Learning Classifier

The process of electron identification is performed by a machine learning algorithm.
Artificial neural networks (ANN) are already used in the LHCb software for the purpose
of particle recognition, and due to the efficiency, performance, and speed of machine
learning, this work will make use of machine learning too.

For the purposes of this project, the goal is to obtain a test statistic that has the greatest
separation power between electrons and other charged particles. Machine learning is very
useful for this task, as it can determine the signature properties of an electron much
faster than a human possibly could. In general, the machine learning algorithm will
be fed a user-defined set of variables, or ’features’, and a set of training samples. The
training samples will have flags indicating to which class a specific sample belongs. In the
case of this work, those classes are simply ’correctly classified’ and ’incorrectly classified’.
After the training process, the classifier algorithm can be used to attempt to classify a
set of testing samples. If class flags are also available for this testing sample, as is the
case in the simulated data used for this work, the performance can be evaluated.

Many of the figures in this and following sections will contain so-called Receiver Op-
erating Characteristic (ROC) curve plots. The true positive rate (TPR), also called
sensitivity, is on the vertical axis, with the false positive rate (FPR) on the horizontal.
The TPR and FPR for the classifier are plotted for a number of decision thresholds,
resulting in a curve. A perfect classifier will have a TPR of 1 and an FPR of 0. A
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commonly used metric for performance is the area under the ROC curve (AUC), and
will be used extensively in this work. A perfect classifier will have an AUC of 1, whereas
a random guess will result in an AUC of 0.5.

As the exact software, configuration, and training data sets of the LHCb ANN’s are
either hard to access, scarcely documented or difficult to use in isolation from the rest of
the LHCb software, it was decided to emulate the ANN behaviour as well as possible and
to instead look at relative performance increase rather than absolute. To achieve this,
it is necessary to train on the same sets of variables, which are listed in the appendices
in section 8.1.

The selection of what type of machine learning algorithm to use is based on classification
performance, stability of the training result, and computation speed. Three types of
algorithm from the scikit-learn Python package are considered for the classification task:
A Multilayer Perceptron (MLP), an ADABoost algorithm, and a Gradient Boosting
Classifier (GBC). The MLP [19] represents perhaps the most well-known form of ANN,
with a number of nodes or ’neurons’ organised in layers and interconnected in various
ways. The output of one neuron is used as an input for all connected neurons in the
next layer, weighted differently for different connections. The weighted sum of all these
inputs is then used as the argument of a model-dependent function, the output of which
becomes the output of this neuron. This continues until the last layer of neurons is
reached. The machine learning aspect of this is in the self-adaptation of the network:
The initial user input is fed into the network, and in an iterative process the node
connections are weakened or strengthened based on the error in the output nodes. In
other words, the weights that are used to modify neuron inputs are modified until a
given input gives a satisfactory output.

ADABoost is an early example of a boosted decision tree algorithm [20]. The basic
working principle is to add weak learners to a predictive model in a step by step fash-
ion, with the weak learners consisting of a simple, two-option decision tree, called a
’stump’ [24]. The process is outlined in Figure 27. In the first training step, all samples
will receive an equal weighting and a weak learner is initialised that performs the best
on this equally weighted set. The learner is now weighted based on its performance,
receiving a larger weight if it performed well. The samples then receive a new weighting
based on the performance of the learner, with misclassified samples having increased
weight and vice versa for correctly classified samples. This way, when the majority of
samples are classified correctly by a weak learner, the focus shifts strongly to the samples
that it could not classify well enough. A resampling is subsequently performed so that
large-weight samples have a higher chance of appearing in the new set and the process
repeats with the addition of a new weak learner.

Lastly, the GBC algorithm expands on the ADABoost algorithm by not only attempting
to maximise the number of correctly classified samples, but by also minimising the
prediction error, which can be thought of as increasing the certainty that the sample
belongs to the predicted class [27]. The added benefit of GBC over ADABoost is that
the latter can only perform binary classification, and is less accurate. GBC is however
more computationally intensive.

To determine which machine learning algorithm is best suited for the classification,
several tests are performed with the three algorithms, varying the parameters and eval-
uating their computation time, performance, and stability. The first of these tests is
displayed in Figure 28. This test is performed on 31 260 samples and plots the ROC
curves for the three classifiers for mostly default parameters. The variables that are
trained on are the same as the variables that the LHCb ANN uses for its upstream
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Figure 27: The ADABoost algorithm adds weak learners to a predictive model in an iterative
fashion, emphasising samples that previous iterations classified incorrectly. In step 1, a hypoth-
esis is formed and used to classify the training samples. In step 2, wrongly classified samples
(red) obtain a high weight. Step 3 features a resampled training set, based on the sample weights,
as well as a new hyptothesis, with the whole process being repeated in step 4.
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Figure 28: ROC plot for the three classifiers under consideration. Parameters for the ADABoost
and Gradient Boosting classifiers are in table 4. The MLP has one layer consisting of 17 neurons,
which is equal to the amount of input variables. Area Under Curve (AUC) values are listed for
convenience.

Table 4: The variables used for the plots in Figure 28. Since ADABoost by construction relies
on decision tree stumps, max depth is always 1. Tolerance is only applicable to GBC, as it is
capable of more advanced regression analysis than ADABoost

Classifier ADABoost GBC

max depth 1 (fixed) 3

n estimators 100 100

learning rate 0.1 0.1

tol N/A 1E-3

electron classification, and are listed in the appendix in section 8.1.3. The MLP consists
of a single layer with 17 neurons, the same amount as input variables. The parameters
for ADABoost and GBC that are different from default are listed in Table 4, they were
changed to provide a better direct comparison between the two. From the Figure it is
apparent that both boosting classifiers outperform the MLP classifier to a large extent,
with the GBC performing slightly better than ADABoost. In terms of computation
time, ADABoost performed best, with a 2.0 s average for the sample size of 31 260,
followed by GBC with a 4.5 s average. The MLP cost more than 6 times that time
with an average of 28.2 s, and would often not converge to a good training fit. These
computations are performed on a single, 1.6GHz laptop CPU core.

As a second test, the performance of the MLP is analysed under varying configurations
of layer sizes, in an attempt to increase its stability and its classifying efficiency. The
results are shown in Figure 29. The stability of the training is poor compared to the
boosting algorithms, with many of the training runs not converging to a solution. In
the Figure this is visible as the (3,2,1) layer network, which in this specific case has
not converged at all, with the ROC curve on the diagonal and being no better than a
random guess. At this point, the MLP is no longer considered, due to its comparatively
long computation time, poor stability, and mediocre performance. The choice is made
to continue with the GBC algorithm over the ADABoost algorithm, for the following
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Figure 29: ROC plot for the MLP classifier for various configurations of the layer structure.
Results varied between training runs, this plot is a representation of a typical outcome.

reasons:

1. Better performance than ADABoost

2. Acceptable increase in computation time

3. Possibility of non-binary classification problems

The ’acceptable’ increase in the second point is based on a single training run taking no
longer than 15 minutes for the entire data set of 600 000 events, for the variables listed
in section 8.1.1. The third point is included as the possibility of classifying multiple
types of backgrounds or specific particles was considered at the start of the project. To
keep consistency, the classifier was not changed during the project.

With GBC selected as the machine learning algorithm to be used, the parameter space
for the algorithm is explored. This is done by evaluating the performance under varia-
tions of the most important parameters, namely the amount of estimators or ’stumps’,
the depth of each estimator, and the learning rate that diminishes the influence of an
estimator in a new iteration. The results are displayed in the form of ROC curves in
Figures 30, 31, and 32. From these graphs one can draw the conclusion that the product
of the amount of estimators and the learning rate is of primary importance; a low learn-
ing rate increases precision but requires more estimators to arrive at a good training
solution, and vice versa. Since only binary signal/non-signal classification is considered
in this work, a maximum depth of 1 would suffice, however, due to the reason listed
above, multiple depths are considered. The results are as expected, with no specific
depth seemingly having a particular benefit over another, and performances vary per
training run. In the end a choice is made to use the default depth of 3, to limit compu-
tation impact but also allow for non-binary classification. With regards to the number
of estimators and learning rate, a value of 200 and 1.0 are chosen respectively for the
following reasons:

1. The given learning rate is not so large as to ’overshoot’ the optimum solution, for
the given data

2. The particular combination of estimators and learning rate always converges for
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Figure 30: ROC plot showing varying amounts of estimators used in the GBC algorithm (default
50).

Figure 31: ROC plot showing varying estimator tree depths. Results vary between runs, with no
visible optimum depth (default 3).

Figure 32: ROC plot showing results for varying learning rates. The lowest rate of 0.01 ter-
minates too early most of the time, with the number of estimators fixed in this graph (default
1.0).
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the given data

3. The amount of estimators can be taken larger than required, due to the algorithms
resistance to overtraining

The third point is made based on the commonly accepted [8, 9] theory that gradient
boosting is not sensitive to overtraining, meaning that a longer algorithm run time
will not increase the out-of-sample error by a large factor. It should further be noted
that, with over and undertraining in mind, the choice for the split between training
and testing sample size is 50%/50% unless stated otherwise. This choice is arguably
arbitrary (within reason), and it can be seen in section 5.2 that a similar classification
efficiency can be achieved for a small training sample size, for the given data.

4.4 ProbNNBrem Algorithm

ProbNNBrem is the main software component that has been created for this project.
It is written in Python 3 and consists of two parts: A main file where data handling
and computation is performed, and a library containing auxiliary functions and param-
eters.

1. data import

2. calculation of derived quantities

3. truth flagging

4. resampling

5. a main training body consisting of:

• a default mode

• a split tracktype mode

• an analyse significance mode

6. result analysis and visualisation

In the import step, ROOT files are loaded and converted to Pandas DataFrames1.
The derived quantities refer to variables that are not present in the original data set,
such as the ratio of electron bremsstrahlung energy over its total energy. In the truth
flagging step, the distinction between signal and background is made, based on user-
defined conditions. It is for example possible to filter ghost tracks out of the data set,
to emphasise the ability of the classifiers to differentiate between real particles. The
resampling step is necessary to avoid a training bias in the sample. For this work,
resampling has only been performed on the pseudorapidity of electrons, to ensure a
similar distribution for signal and background. The reason for this is that a noticeable
difference is present between the distributions, which a classifier will pick up on. This is
undesirable, as different decays will generally have different pseudorapidty distributions
and this would thus influence the classifiers performance. The three modes of operation
in the main body each serve their own purpose. The default mode trains classifiers in
the most general way, using the most extensive lists of variables and not differentiating
between upstream and long tracks. It can also be used to train smaller subsets of
variables, as in section 5.2.1. The second mode, split tracktype, trains classifiers on
either long or upstream tracks, as the name implies. The training variables for long
and upstream tracks are different, and can be found in the appendix in sections 8.1.2

1pandas.pydata.org
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and 8.1.3 respectively. The last mode is used to produce the results found in section 5.1.2.
It creates a list of all possible pairs in a given set of variables, and trains classifiers on
the pairs in order to analyse the impact of specific variables.

Implementation In future work, the ProbNNBrem algorithm can be modified to
serve as a TupleTool, described in section 4.1.1. In this format, an analyst could use it
to acquire more accurate information on the particle identification of electrons.

Now that all the tools are collected, constructed, and ready for use, the next step is to
evaluate how to best apply them. The next chapter will detail the experimental results
that were obtained with the tools described in this chapter.

In the remainder of this work, ProbNNBrem will refer primarily to the set of seven
variables that are used in the algorithm, detailed in section 4.3.1. In other cases, the
context is believed to be sufficiently clear.

39



5 Validation and Results
With the concepts and methods of operation developed in the previous chapter, the
current chapter will turn towards the obtained results. Since grading the performance
of a classifying task is non-trivial, section 5.1 will introduce the types of metric used to
quantify the performance of the classifiers. The section that follows contains the actual
results obtained during the project, approached from various perspectives.

5.1 Quantifying Performance

The task of classifying a sample as being either an electron or background can be graded
in a variety of ways, depending on the application. If one is for example looking for an
exceedingly rare signal electron, the requirements for a positive identification could be
restricted somewhat, as to not include a background particle. In this case the perfor-
mance metric would emphasise the reduction of false positives. In other cases it might
be desirable to maximise the signal to noise ratio. As there is no generally preferred
method of grading performance [29], the next sections will cover the choices made for
this work.

5.1.1 Performance Metric

For most of the classification tasks, a choice is made to present the results in the form
of a ROC-curve (see page 32) with an accompanying Area Under Curve (AUC) value.
This is based on three major considerations:

1. Applicable for all classification tasks under investigation and thus allows direct
comparison

2. Performance is easily gauged at a glance

3. Some training peculiarities are evident when inspecting the curves

To illustrate the third point, it is for example at times possible to gauge whether infor-
mation from one variable is contained in another variable, by looking for an overlap in
their respective ROC curves. This effect can be seen later in Figure 39.

It is worth restating that a good classifier will have an AUC close to 1 and a high True
Positive Rate (TPR) for a low False Positive Rate (FPR)

5.1.2 Cross-Variable Performance Validation

Although a ROC curve grants insight in the performance of a classifier trained on a single
set of variables, it is considered desirable to be able to gauge the effectiveness of any
given set of variables. There seems to be no straightforward way to accomplish this, aside
from using brute computational force to train the classifier on all possible combinations.
This task was performed to first order, on a subset of all available variables, by training
classifiers on all possible pairs of variables. The subset of variables consists of those used
for training the LHCb ANN (Found in the appendix in section 8.1.3), and those selected
for this work (section 4.3.1). The resulting AUC values are plotted in a matrix-like
fashion in Figure 33.

From the figure, some variables immediately stand out as having a high AUC. Notable
examples are the ’RichDLL’ variables [26], which represent the differences in the Log-
Likelihood for the given particle with respect to that of a pion. In other words, a high
RichDLLe value would mean that this particle has a much higher likelihood of being an
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Figure 33: AUC values for classifiers trained on all possible pairs within a given set of variables.
Variable list can be found in the appendix in section 8.1.3.

electron than a pion, based on particle identification info from the reconstruction. Of
the variables added in this work, em BremOriginZ and em BremChi2 variables perform
comparatively well.

Figure 33 shows how well a given pair of variables performs in absolute terms. In order
to determine the added combinatorial effect, a formula was derived. This combinatorial
effect may arise through correlations between variables, as well as separate, uncorrelated
effects. For a given variable ’A’ and ’B’, the combinatorial multiplier ’C’ is defined
as:

C =
AUCA,B

max(AUCA, AUCB)
(6)

The idea behind this is that if the AUC of a pair of variables is not better than the best
performing variable in the pair, there is no added benefit of that particular combination.
Note that this combinatorial multiplier is limited to the range [0.5,2], as AUC is always
taken to be in the range [0.5,1]. The resulting multipliers are shown in Figure 34.

With the goal of ’scoring’ the usefulness of any given variable, the AUC of a pair is
multiplied with the combinatorial multiplier for that pair, to arrive at an adjusted
performance, displayed in Figure 35. Possible values range from 0.25 to 2. This final
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Figure 34: Combinatorial multiplier values derived from Equation 6. Note that the colour scale
does not encompass the full range of possible values, in order to emphasise differences between
variables.

performance Figure will be used in section 5.2.3 to establish the order importance of the
selected set of variables.
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Figure 35: Adjusted, pair-wise performance, obtained by combining the AUC of a pair with the
combinatorial multiplier from Figure 34. Note that the colour scale again does not encompass
the full range of possible values.

5.2 Results

Presented in this section will be overviews of classifier performances for various con-
figurations of variables. Plots will be shown that visualise performances for separate
groupings of variables, performance based on electron track type (upstream or long),
and general performance per variable. Finally, the effects of overtraining and sample
size will be displayed and discussed.

Figure 36 shows arguably the most complete picture attainable to summarise the work.
ROC curves are shown for the full data set, consisting of 600 000 samples, for a number
of different classifier configurations. The Current Training classifier has the master
list of section 8.1.1 as its training variable set. The bremsstrahlung category of this
set is itself used to train another classifier, resulting in the Old Brem Category in red.
Replacing this bremsstrahlung category with the variables added in this work results
in the Proposed Training classifier, with the replacing variables being used to train the
ProbNNBrem classifier in turn. Finally, the single variable em ProbNNe is used to train
a last classifier by the same name, in order to check for consistency and to have a
benchmark for measuring improvements.
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Figure 36: Classifier ROC curves for the full data set of 600 000 events (bottom graph shows
zoomed section). Current Training refers to the master list of variables, found in the appendix in
section 8.1.1. Proposed Training features the same list, but with the category for bremsstrahlung
replaced by the variables added in this work. Old Brem Category and ProbNNBrem refer to these
subsets of variables respectively.
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From the graphs in Figure 36, one can conclude the following:

1. The classifier trained on the ProbNNBrem set of variables outperforms the classi-
fier trained on the Old Brem Category set.

2. This improvement translates to the overall performance, as can be seen in the
difference between the proposed and current training classifiers.

The second point is quantified in Table 5, displaying both the increase in AUC and the
decrease in FPR at a fixed TPR.

Table 5: Table summarising the results of Figure 36 for the two main classifiers.

Current
Training

Proposed
Training

Improvement

AUC 0.9963 0.9968 0.48‰increase

FPR at TPR = 0.9 5.46×10-3 3.81×10-3 30.2% reduction

As mentioned briefly at the beginning of section 5.1, the ratios of true and false positives
vary depending on where the cut is placed on the classifier output. A high threshold
value will result in few false positives, but many false negatives too, limiting the signal.
The inverse is true for a low threshold. Figure 37 shows signal to noise (True positive
classifications as signal and false positive classifications as noise) versus classifier cut
threshold for the two main classifiers. The colours are equal to those used in the previous
figures, and the optimum cut for the Proposed Training classifier is marked on the axes.

Figure 37: Signal (True positive classifications) to noise (false positive classifications) ratio for
various classification cut values. Proposed Training classifier is marked in solid blue, Current
Training classifier in solid orange. Optimum cut is marked on the axes.

5.2.1 Per Variable Grouping

The following few figures will show the performances of the newly added, bremsstrahlung-
related variables added in this work, appropriately grouped. Detailed descriptions of the
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variables can be found earlier in this work, in section 4.3.1. All of the following classifier
experiments were performed on the full set of 600 000 events, with the same parameters,
outlined in section 4.4.

Starting with the variables relating to the matching of a bremsstrahlung photon to
an electron track in Figure 38, a complementary effect can be seen between the two
variables. As mentioned before, the BremChi2 variable is generally far more accurate
than its CaloBremMatch counterpart, which can be attributed to its more involved
way of computation. It is however only available for the subset of events where the
BremAdder algorithm has been run. In the graphs this can be seen in the low false
positive rate area being dominated by the BremChi2 variable, and higher false positive
rates by CaloBremMatch. The initial steep climb in the BremChi2 ROC curve represents
its accuracy in classifying true electrons, the transition to a straight line represents the
lack of information for most of the particles. It is apparent that combining the two
variables leads to a classifier that can reinforce the weaknesses of one variable with the
strengths of the other. It should be noted that the HasBremAdded flag in and of itself
provides some information as to the identity of a particle, and it is inherently ingrained
in the BremChi2 variable. To combat this inequality, all classifiers were trained with
the inclusion of the HasBremAdded variable, to allow for a more accurate comparison.

Figure 39 shows ROC curves for the BremOriginZ variable and the HasBremAdded
variable, the latter one added for illustrative purposes. Training a classifier on HasBre-
mAdded reveals two things:

1. The HasBremAdded flag contains a sizeable amount of information considering
the nature of the particle

2. The HasBremAdded provides no information that is not already present in the
BremOriginZ variable

The first point is due to the electrons’ higher chance of bremsstrahlung emission: A
matched bremsstrahlung photon, and with it the HasBremAdded flag, has a larger
chance of belonging to an electron than to another particle. The second point is evident
from the construction of the BremOriginZ variable, which obtains a value if the Bre-
mAdder algorithm has been run and defaults to a placeholder value if it has not been
run, essentially mimicking the HasBremAdded flag.
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Figure 38: ROC curves for the two variables used to match a photon cluster in the ECAL to
an electron track, and their combined curve. The HasBremAdded variable has been added in all
cases to allow for a direct comparison.
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Figure 39: ROC curves for the BremOriginZ variable and the HasBremAdded variable. The
two ROC curves overlap at a FPR of >0̃.085, indicating that there is duplicate information in
HasBremAdded and BremOriginZ.
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The last group of variables are those relating to the calorimeter systems: CaloNeutralPrs
and CaloNeutralEcal, relating to the PreShower and ECAL energy deposits of associated
bremsstrahlung photons respectively. Their ROC curves are plotted in Figure 40. The
similar shapes of the curves hint towards a sizeable portion of the information being
shared between the variables, but it is also evident that the combined classifier performs
better than the separate ones. In general, the average reduction in FPR is about 0.23
for these variables, indicating their usefulness as discriminating variables.

Figure 40: ROC curves for the variables indicating energy deposits of photons in the PreShower
and ECAL systems, and their combined ROC curve.

The previous groupings are those that are deemed the most fitting for the selected
variables. It is however a daunting task to try to determine the exact intricacies of the
correlations and interconnections that are present in the variables. This will be discussed
further in section 6.1.

5.2.2 Per Track Type Analysis

The previous analyses make no distinction for the classifier performance for the different
track types, long and upstream. It is however expected that most performance increases
are to be attained for the upstream tracks. This distinction is shown in Table 6 and
Figure 41, which show the results for classifiers trained to identify either long or up-
stream electrons. The variables used for the Current Training classifier can be found
in the appendix in sections 8.1.2 and 8.1.3 for long and upstream electrons respectively.
The Proposed Training classifier features the same lists, supplemented with the vari-
ables added in this work. The ProbNNBrem classifier has only this supplement as a
training set. It is immediately clear that the classification improvements are far larger
for upstream electrons, with a decrease of FPR of almost 60% at a TPR of 0.7. The per-
centual AUC increase is also larger for upstream particles by a factor of 40. Although
the effects of the newly added bremsstrahlung related variables is most pronounced for
upstream electrons, the increase in performance for long tracks is not negligible.
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Table 6: Table summarising the achieved performance increases for the two track types under
investigation, upstream and long. The Current Training list of variables differs for long and
upstream tracks, and can be found in the appendix in sections 8.1.2 and 8.1.3 respectively. The
variables added in this work are appended to this list to obtain the Proposed Training variable
list. Note that the TPR comparisons for long and upstream electrons are not equal.

Current
Training

Proposed
Training

Improvement

Long

AUC 0.9977 0.9981 0.38‰increase

FPR at TPR = 0.9 3.10×10-3 2.32×10-3 25.1% reduction

Upstream

AUC 0.954 0.967 1.45% increase

FPR at TPR = 0.7 37.4×10-3 15.6×10-3 58.4% reduction
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Figure 41: ROC curves for classifiers tasked with identifying either upstream (top) or long
(bottom) electrons. Note that these plots do not feature the full length of the FPR axis and
instead show the portion of the graph most relevant to analyses.
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5.2.3 Prioritisation

With the performance of the ProbNNBrem suite of variables established, the current
section will turn to the effectiveness of the variables present in the set currently used for
training, and those newly added in this work. To grade this effectiveness, the approach
from section 5.1.2 is followed to obtain the ’pseudo-AUC’, i.e. the AUC for a pair of
variables multiplied by the combinatorial multiplier. The average of this product is cal-
culated for all pairs containing a specific variable, to arrive at a generalised performance,
or effectiveness, of that variable. The results are displayed in Figure 42 for the set of
upstream classifier variables, and in Figure 43 for the set for long track electrons.

Figure 42: Variables used for upstream electron classification, sorted by effectiveness as calculated
in sections 5.1.2 and 5.2.3. Newly added variables part of the ProbNNBrem set are marked in
red. An enlarged version of this image can be found in the appendix on page 63.

Figure 42 shows that em BremOriginZ and em BremChi2 both grant a sizeable contri-
bution to upstream electron identification efficiency. This effect is still present when only
looking at AUC and not accounting for the combinatorial multiplier. The calorimeter-
derived variables em CaloNeutralPrs and em CaloNeutralECAL also score relatively
high on this scale, showing that although they are not normalised to the electron energy,
they contain relevant information with regards to electron identification. As expected,
the angular variables do not offer much information themselves, and the combinatorial
effect they provide is not enough to offset this to a large extent. Their contribution is
more apparent by solely looking at their combinatorial multipliers in Figure 34.
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Figure 43: Variables used for long track electron classification, sorted by effectiveness as calcu-
lated in sections 5.1.2 and 5.2.3. Newly added variables part of the ProbNNBrem set are marked
in red. An enlarged version of this image can be found in the appendix on page 64.

The same hierarchy in performance among the newly added variables is found for the long
track analysis in Figure 43. In this case however, there are several variables that perform
far better than for example em BremChi2. These variables are all focused on particle
identification in various forms, and due to the greater amount of calorimeter information
available for long track particles, their effectiveness is enhanced. The majority of the
added ProbNNBrem variables still performs better than the average of the already
existing classifier variables, with the exception of the angular variables.

5.2.4 Overtraining

This final result section will cover the relation between sample size and classification
accuracy, as well as a note on overtraining. As mentioned before, the Gradient Boosting
Classifier is deemed resistant to overtraining, and this is partially reflected in the results
obtained in this work. For all of the covered experiments, the split between training
sample and testing sample was made at 50%/50%, and at no point has there been a case
where an increase in training samples led to a substantial decrease in correctly classified
testing samples. Figure 44 does feature a decrease in AUC of about 1 per mille when
increasing the training sample count from 10 000 to 300 000, but this is within the
statistical variation encountered when performing the same training and classification
process multiple times. This variation is primarily encountered for the smaller training
sample sizes, the full 300 000 event size has variations below the per mille scale.

With regards to the amount of samples required to train a classifier, the middle graph in
Figure 44 reveals that 10 000 events can already train a classifier well enough to perform
similarly to one trained on 300 000 events. A training sample size as small as 500 events
results in the ROC curves shown in the bottom graph of Figure 44. Here, statistical
effects are becoming considerable and AUC can no longer be relied on as much, but
classification performance is seen to be still present.

One can conclude that, at least within the data set for this simulated decay, the amount
of samples used for training is not as important as it may be for other machine learning
applications. The addition of more training samples is shown to be not detrimental to
classification performance, and performance is shown to be considerable for even a small
amount of training events.
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Figure 44: ROC curves for the three classifiers used throughout in this work. Training samples
used for each classifier are 300 000, 10 000, and 500, from top to bottom. AUC values are far
less reliable for the bottom graph but are left in for completeness.
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6 Limitations and Further Re-
search

What follows will be a critical look back on the performed research, as well as a look
ahead to see how future endeavours can profit from and improve upon this work. The
constituent sections of this chapter are ordered in the same manner.

6.1 Limiting Factors

Perhaps the greatest limitation encountered is the inability to accurately gauge the
effect a certain variable has on classifying performance and training bias. Even though
sections 5.1.2 and 5.2.1 specifically deal with the isolation of variables in training, higher
order effects and correlations can not be ruled out entirely. As has been mentioned
in section 4.4, the data set has been resampled so that there is no difference in the
distributions of pseudorapidity between the signal electrons and the background. There
are however other (kinematic) variables that may have inadvertently introduced a bias
in the training sample.

A different issue lies in the quantification of achieved performance increases with respect
to the currently used classification variables, which is difficult to solidify. The Gradient
Boosting Classifier (GBC) used throughout this work is not the same as the Artificial
Neural Network (ANN) that is used in the LHCb reconstruction software. Because of
this, any direct comparison between the two is risky, which is made worse by the complex
nature of neural networks in general. Relative performance increases for the same GBC
are used wherever possible in order to mitigate this issue as well as possible.

Finally, there is the matter of translating the results from this work to real data. In
all of the experiments performed, the data has consisted of simulated events. Although
the simulation software for the LHCb detector is considered accurate for the most part,
there is no guarantee that a GBC or ANN trained on simulated data will perform as
well on real data. At the same time, training on real data can prove to be hazardous as
there is no way of determining a particles identity with full confidence. The next section
will briefly touch on this subject.

6.2 Improving Validation

This section will consist of thoughts on encountered issues and possible avenues of im-
provement for obtained results.

Although section 5.2.4 reveals that the size of the training sample is not of highest im-
portance, this conclusion is drawn based on the properties of the electrons in this specific
decay. By including other decay channels in the training set, one might assume that a
more general ’signature’ of an electron can be created. This is however generally not
the case, as even with a different selection of events within the same channel, differences
in classification performance can arise. A calibration will generally be required, either
data-driven or extracted from simulations.

In the data set that has been used throughout this work, training has only been done
with the variables concerning one of the two leptons. There is however no reason why
the other lepton in the event could not be used for training purposes, effectively dou-
bling the sample size. This has not been done in this work due to the sample size
already reaching the limit of the available computational resources and added complex-
ity of the algorithm. This issue can be solved by performing the training process on a
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centralised supercomputer or by taking steps to limit the memory usage, for example
by splitting the training sample and loading each set into memory as it is required.
Section 5.2.4 showed that increasing the sample size provided no substantial benefit in
the classification performance, and it was thus deemed not necessary to use this extra
data.

With regards to the probable discrepancy between simulated results and results obtained
from real data, there is the possibility of assigning ’pseudo-truth-flags’. These flags would
function the same as those that mark simulated electrons as being true electrons. This
information is not available for real data for obvious reasons, but could be approximated
by making very tight cuts on the data set. For example, the variable expressing the ratio
between energy lost in the calorimeter and total energy, CaloEoverP, is one of the key
variables that sets electrons apart from other particles. By making stringent cuts on this
variable and other variables that are known to have a signature distribution for electrons,
a training sample could be constructed for which one can be relatively confident that
it consists solely of true electrons. These cuts will however introduce a strong bias, as
only ’well behaved’ electrons will find their ways into this sample, which will impact
classification performance on real data.
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7 Conclusion
The Standard Model of Particle Physics provides us with the most accurate description
of nature ever achieved, and is a testament to human ingenuity. Predictions of the
fundamental constituents of matter and their interactions are possible to an unrivalled
degree of precision. However, it is not a complete theory. For example, it does not
include the force of gravity, nor does it give an explanation for the presence of dark energy
and dark matter, which seem to account for 95% of our universe’s energy content. These,
among other shortcomings, are the reason for the constant probing of the Standard
Model. Attempts to find the limits of the predictive power of the model as well as
apparent inconsistencies. One of the predictions of the Standard Model which is under
continuous assault from physicists worldwide is that of the universality of leptons. One
of the collaborations searching for violations of this universality is that of the LHCb
experiment.

The aim of this project has been to aid this search by extracting a larger amount of
usable data from previously collected LHCb data. The following question was postulated
to serve as a guideline:

Can bremsstrahlung-related information enhance the particle identification
of upstream electrons in the LHCb detector?

The results obtained in this work indicate that this question can be answered positively.
The various experiments performed with the variables in the ProbNNBrem package show
improvements in false positive rejections in the order of 60% for upstream electrons, as
well as overall performance increases exceeding 1.4%. The improvements are not limited
to upstream tracks, with identification of long track electrons also benefiting from the
added bremsstrahlung information.

What remains to be done is the generalisation of the training data and the translation
to real data. Using other decay channels may result in classifiers that are more capable
of generalisation, and less susceptible to bias, although this may result in a lower per-
channel performance. The final step would then be the application of the classifiers to
real data, with some form of performance monitoring.

Once completed, the tool can be applied in the many analyses that are performed at
LHCb. Together with an ever increasing total amount of data, the extraction of more
usable data will result in ever increasing precision, which may one day lead us to a new
realm of physics.
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8 Appendices
8.1 Full List of NN variables

8.1.1 Master

Table 7: Masterlist used for the classification of particles.

Event Tracking CombDLL RICH
’NumProtoParticles’, ’TrackP’, ’CombDLLe’, ’RichUsedAero’,
’NumCaloHypos’, ’TrackPt’, ’CombDLLmu’, ’RichUsedR1Gas’,
’NumLongTracks’, ’TrackChi2PerDof’, ’CombDLLpi’, ’RichUsedR2Gas’,
’NumDownstreamTracks’, ’TrackType’, ’CombDLLk’, ’RichAboveElThres’,
’NumUpstreamTracks’, ’TrackLikelihood’, ’CombDLLp’ ’RichAboveMuThres’,
’NumVeloTracks’, ’TrackHistory’, ’RichAbovePiThres’,
’NumTTracks’, ’TrackGhostProbability’, HCAL ’RichAboveKaThres’,
’NumGhosts’, ’TrackCloneDist’, ’InAccHcal’, ’RichAbovePrThres’,
’NumMuonTracks’, ’TrackFitMatchChi2’, ’CaloHcalE’, ’RichAboveDeThres’,
’NumPVs’, ’TrackFitVeloChi2’, ’HcalPIDe’, ’RichDLLe’,
’NumRich1Hits’, ’TrackFitVeloNDoF’, ’HcalPIDmu’ ’RichDLLmu’,
’NumRich2Hits’, ’TrackFitTChi2’, ’RichDLLpi’,
’NumVeloClusters’, ’TrackFitTNDoF’, PRS ’RichDLLk’,
’NumITClusters’, ’TrackMatchChi2’, ’InAccPrs’, ’RichDLLp’,
’NumTTClusters’, ’TrackDOCA’, ’CaloPrsE’, ’RichDLLd’,
’NumOTClusters’, ’TrackNumDof’ ’PrsPIDe’ ’RichDLLbt’
’NumSPDHits’,
’NumMuonCoordsS0’, ECAL Brem VELO
’NumMuonCoordsS1’, ’InAccEcal’, ’InAccBrem’, ’VeloCharge’
’NumMuonCoordsS2’, ’CaloChargedSpd’, ’CaloNeutralSpd’,
’NumMuonCoordsS3’, ’CaloChargedPrs’, ’CaloNeutralPrs’, SPD
’NumMuonCoordsS4’ ’CaloChargedEcal’, ’CaloNeutralEcal’, ’InAccSpd’,

’CaloElectronMatch’, ’CaloBremMatch’, ’CaloSpdE’
Muon ’CaloTrMatch’, ’CaloBremChi2’,
’InAccMuon’, ’CaloEcalE’, ’BremPIDe’
’MuonIsLooseMuon’, ’CaloEcalChi2’,
’MuonIsMuon’, ’CaloClusChi2’,
’MuonNShared’, ’EcalPIDe’,
’MuonMuLL’, ’EcalPIDmu’,
’MuonBkgLL’ ’CaloTrajectoryL’
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8.1.2 Long Electrons

Table 8: Variables used for the classification of long track electrons.

’TrackP’, ’RichUsedR1Gas’, ’MuonMuLL’, ’InAccBrem’,
’TrackPt’, ’RichUsedR2Gas’, ’MuonIsMuon’, ’BremPIDe’
’TrackChi2PerDof’, ’RichAboveMuThres’, ’MuonNShared’,
’TrackNumDof’, ’RichAboveKaThres’, ’InAccMuon’,
’TrackGhostProbability’, ’RichDLLe’, ’MuonIsLooseMuon’,
’TrackFitMatchChi2’, ’RichDLLmu’, ’EcalPIDe’,
’TrackFitVeloChi2’, ’RichDLLk’, ’EcalPIDmu’,
’TrackFitVeloNDoF’, ’RichDLLp’, ’HcalPIDe’,
’TrackFitTChi2’, ’RichDLLbt’, ’HcalPIDmu’,
’TrackFitTNDoF’, ’MuonBkgLL’, ’PrsPIDe’,

8.1.3 Upstream Electrons

Table 9: Variables used for the classification of upstream track electrons.

’TrackP’, ’RichDLLe’,
’TrackPt’, ’RichDLLmu’,
’TrackChi2PerDof’, ’RichDLLk’,
’TrackNumDof’, ’RichDLLp’,
’TrackGhostProbability’, ’RichDLLbt’,
’TrackFitVeloChi2’, ’InAccBrem’,
’TrackFitVeloNDoF’, ’BremPIDe’
’RichUsedR1Gas’,
’RichAboveMuThres’,
’RichAboveKaThres’,
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8.2 Additional Images

Figure 45: Enlarged version of Figure 42
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Figure 46: Enlarged version of Figure 43
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