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Abstract
Looking at the Jovian atmosphere we find several patterns of cyclones, which are evolving over
time. The goal of this project is to create a new model based on the Quasi Geostrophic Equations
(QGE) to describe the time evolution of the vortex patterns. In order to describe the vortex
patterns, the equations must be solved for the stream function. The QGE give an equation similar
to the Poisson equation with some added terms, and from this equation the stream function is
found using Fourier Transforms. In order to evolve in time, the strong stability Runge Kutta 3rd
order method is used. The second part of the project consists of comparing the results of the new
model with the ones obtained from the ShallowWater Model (SWM). By running the simulations
with equal input as for the SWM the new algorithms can give more insight in the results of SWM.
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1 Introduction
1.1 What are we looking for?

The goal of this project is to create a new model to describe the atmosphere of Jupiter in a more
convenient an faster way. We want to approximate the physical situation in a first order model
which has a short computational time. There are more sophisticated models available, but at the
moment we see that the computation time of these models can take up to days. The general idea
of this model is that we find a method which is able to approach the physics situation with a
certain level of detail while having a significantly shorter computational time.

Figure 1: An illustration of Juno at the south-pole of Jupiter (1)

The method proposed is to use a quasi geostrophic model, to approximate the movement around
the Polar region of Jupiter. The model will be written in Python and will be based on many al-
ready available numerical methods, mostly written in programming languages as Fortran. These
methods will be converted into Python 3 code and there will be new code written to adjust to
the situation we want. We will use an output in the form of 2D plots at certain time intervals and
we will combine these visual outputs to movies describing the storms over a longer period. More
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information about the way the model works and what kind of input we will use can be found in
the chapter describing the code.

The region we want to describe in this model is the polar regions of the planet, more specifi-
cally the regions till about 70 degrees away from the geographical pole of Jupiter. We take an
interest in this region because we find interesting storm patterns consisting of multiple cyclonic
and anti-cyclonic movements which live way longer than we would expect. These storms are
mainly studied using data collected by the Juno Space Mission, on which is elaborated in the
next section.

1.2 Juno Space Mission

The Juno Space Mission is a NASA mission aiming to discover more about the biggest planet in
our Solar System. The space craft was launched on August 5, 2011, as part of the New Frontiers
program, which also contained the New Horizon Mission to Pluto and Beyond, and OSIRIS-REx,
a spacecraft aiming to visit an astroid and collecting samples to bring back to Earth. Juno was
the second mission in the program and was built by Lockheed Martin and operated by NASA’s
Jet Propulsion Laboratory managed by the California Institute of Technology (2).

Figure 2: An overview of the instruments on Juno (3)
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Juno reached the Jovian System on July 5, 2016 and started the scientific exploration of the
planet. The main instruments on Juno are the microwave radiometer (MWR), the Jovian Infrared
Auroral Mapper (JIRAM), the Magnetometer (MAG), gravity science (GRAV), the Jovian Auroral
Distribution Experiment (JADE), the Jovian Energetic Particle Detector Instrument (JEDI), the
Radio and Plasma Wave Sensor (Waves), the Ultraviolet Imaging Spectrograph (UVS) and last
but not least the JunoCam (4).

The goals of the Juno mission are mainly to measure the gravity field, magnetic field and po-
lar magnetosphere. It will also provide research data to find out how the planet is formed, how
the core looks like and many more interesting things (5). Juno is the second spacecraft visiting
Jupiter over a longer period. Before Juno, we had the Galileo Orbiter, which orbited Jupiter in
the period between 1995 and 2003 (6).

Most probes send out to the outer planets of our Solar System are nuclear powered. This be-
cause at these distances the sun is very far away and is in most cases not enough to power the
space craft. Juno is different, it works with three solar panels.

Figure 3: Juno’s trajectory is elliptical in order to protect the instruments against the magnetic
field of Jupiter. (7)

Unlike satellites which orbit the Earth in a circular orbit, Juno has a very elliptic orbit around
Jupiter (8). This because the charged particles around the planet will fry Juno’s instruments, so
Juno is doing a polar orbit to avoid these regions. The orbits of Juno are shown in figure 2.
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2 Background
2.1 The Quasi Geostrophic Model

The whole goal of this project is to find a method to describe the Jovian atmosphere and model
the storms within the atmosphere. We can use a quasi geostrophic approach to create a pro-
grammable model (9) (10). In order to describe the system it is important to make some as-
sumptions which make it possible to describe the situation with a simple model.

The first assumption is that the fluid is in-compressible, which means that the density (ρ) is
constant. This is a reasonable assumption since the density does not significantly change com-
pared to the scale of the planet and so for a first order approximation it is okay to work under
the impression that the fluid which we are describing, in this case the Jovian atmosphere is in-
compressible (11) (12).

Figure 4: The 1 layer model

The next assumption is that the upper surface of the fluid is at z = h(x, y, t) (see figure 3) and
that the velocity is not dependent on this function, but only on (x, y, t)(13) (14). This assumption
is a bit more ambiguous since we do not know how the atmosphere looks below the first layers.
It is for now impossible to know how the fluids move blow these layers, we do not know if there
is an up or down stream of material (15). But this model is supposed to be a first approximation
of a very complex physical situation and so in this first approximation we only look at the most
upper part of the atmosphere and in this region the up and down streams can be neglected and
we can assume a flat layer below the layer we model (see figure 4) since the changes are very
minor compared to the whole layer (16) (17).
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For future research into this topic and the creation of more complicated models it is certainly
a thing to look at and it will definitely improve the model, but the main goal of this model is a
fast approximation of the real situation and adding extra layers will not improve the model much
if you consider the extra computational time need to carry out the extra rounds of calculations.

For an in-compressible fluid the conservation of mass can be written as:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= ~∇ · ~v = 0 (1)

Integrating this equation from the bottom of the system (w = 0), to the surface of the system
(w = Dz

Dt = Dh
Dt where

D
Dt = ∂

∂t + ~v · ~∇ describes the material derivative) results in the following
equation:

0 =
Dh

Dt
+ h(~∇ · ~v) (2)

Assuming that the pressure is hydrostatic, the pressure gradient term in the horizontal momen-
tum equation can be written as −g~∇h resulting in the following equation:

D~v

Dt
= −fk̂ × ~v − g~∇h (3)

where f is the Coriolis term given by f = 2Ω sinφ. Taking the curl of the momentum equation
and defining the vertical component of the curl as ζ = k̂ · (~∇× ~v) results in:

D(ζ + f)

Dt
+ (ζ + f)~∇ · ~v = 0 (4)

Combining this with the mass conservation equation results in:

DQ

Dt
= 0, Q =

(ζ + f)

h
(5)

Using the definition of ζ, assuming there are no derivatives in the vertical direction and v and u
being given by the derivatives of the stream function (Ψ) there can also be written:

ζ =
∂2Ψ

∂2x
− ∂2Ψ

∂2y
= ∇2Ψ (6)

The Coriolis parameter around the poles can be defined as:
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f = f0

[
1− r2

2R2

]
(7)

where f0 = 2Ω, with Ω being the rotation of Jupiter, r2 = x2 + y2 and R is the radius of Jupiter.
β is defined as f0

2R2 in order to simplify notation. Using the given definition, the following can be
deduced:

ζ + f

H
=
f0 +∇2Ψ + βr2

H
(8)

H can be expanded as H = H0 +H ′, where H ′ = f0Ψ
g , resulting in, using the binomial approxi-

mation:

ζ + f

H
=

f0

H0

[
1 +

ζ

f0
− βr2

f0

][
1− f0Ψ

H0g

]
(9)

Ignoring the smallest terms, this can be written as:

ζ + f

H
=

[
f0 +∇2Ψ− Ψ

L2
D

− βr2

]
1

H0
(10)

Taking the material derivative and setting it to zero as a result of conservation results in:

∂

∂t

[
∇2Ψ− Ψ

L2
D

− βr2

]
= J(Ψ, q − βr2) (11)

which is defined as the Quasi Geostrophic Equation.

Now we can use this equation to make a model of the Jovian atmosphere. We can come up
with a code which is able to calculate the Jacobian and Laplacian of the original wave function
grid and use a method to step forward in time. The methods are discussed in the next chapter
and a more qualitative description of the code is given in the chapter about the code.

2.2 Courant Friedrichs Lewy Condition

In order to determine the time step of a simulation we need to look at a specific condition
called the Courant Friedrichs Lewy Condition (CFL-condition) named after Richard Courant, Kurt
Friedrichs, and Hans Lewy, who first mentioned it in their paper in 1928 (18). This condition has
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a mathematical basis and is the necessary convergence condition while solving partial differential
equations. It comes forward in the numerical analysis of direct time integration schemes, which
are in this project used to move the system forward in time.

As a consequence of this condition, the time step you take to move the system forward must
be less than the time calculated using the CFL-condition. The CFL-condition is defined in one
and two dimensions. Since this simulation is two dimensional, so we will define the condition in
two dimensions. The condition is defined as:

C =
ux,∆t

∆x
+
uy,∆t

∆y
≤ Cmax (12)

In this equation C is defined as the Courant number, u is the magnitude of the velocity, ∆t is the
time step and ∆x, ∆y are the grid spacing of the simulation.

The maximal value for the Courant number depends on the method to solve for time. In the
case of an explicit method, as used in this project the maximal value is 1. Equation 12 can be
solved for the time step, which results in:

∆t ≤ 1
ux
∆x +

uy
∆y

(13)

The following conditions can be imposed:

1. uxmax = uymax = u

2. ∆x = ∆y = d

With these conditions equation 13 can be written as:

∆t ≤ d

2u
(14)
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3 Numerical Methods
In this chapter we will discuss the numerical methods used in the code. First we will look at
the Fourier Transform, how we can do this numerically, and how does it help us to solve the
problem. Then we are going to look how to calculate the Jacobian and finally we will look at
the time integration method. The choice was made to use strong preserving Runge-Kutta third
order, and we will discuss how to implement it in the code.

3.1 Fourier Transform

3.1.1 Introduction

The Fourier Transform is the result of the study of the Fourier Series. These series make it possible
to write any periodic function as a sum of a combination of sin and cos terms. The Fourier Trans-
form is a result of this method where the period is extended and allowed to approach infinity
resulting in an integral term (19).

If we have a Fourier Series, it is possible to recover the amplitude of the original wave due to
the properties of the sin and the cos. In many cases, it is useful to write the Fourier Series using
exponentials instead of a combination of cos and sin and we can rewrite this using Euler’s For-
mula as stated in formula 15.

e2πiφ = cos 2πφ+ i sin 2πφ (15)

If we write the Fourier Series in terms of complex exponentials it is needed that the coefficients
of the Fourier Transform are also complex. These complex values are often seen as the amplitude
of the wave as well as the phase of the wave. This will become more clear in section 3.1.3 (20).

The best way to go from the Fourier Series to the Fourier Transform is looking at functions which
are zero, except for a small domain. In this case we can calculate the Fourier Series for each
domain of such a function, and when we increase the length of the domain we are going more
and more towards a more general case.

3.1.2 Definition

The definition of the Fourier Transform is actually not that hard, and there are several ways to
write it down. In this section I will go with the traditional mathematical way of writing, but in
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other fields like electrical engineering it is more conventional to change the sign (21). The Fourier
Transform is nothing more than the integral of the entire real domain, so from minus infinity till
infinity of the original function times an exponential and is almost always indicated by a hat. The
definition is given in formula 16 (22).

f̂(ε) =

∫ ∞
−∞

f(x)e−2πixεdx (16)

It is now easy to see what the inverse Fourier Transform must be, since this transform needs to
obtain the original function back, so the inverse Fourier Transform is given in formula 17 (23).

f(x) =

∫ ∞
−∞

f̂(ε)e−2πixεdε (17)

3.1.3 Example

In order to make it a little bit more understandable let us look at the visuals of the Fourier
Transform. Suppose we have a function, like the one given in formula 18. If we plot this function
on an interval from -3 till 3 we obtain the graph as shown in figure 5.

Figure 5: A function f(t)

f(t) = cos 12πte−πt
2 (18)
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If we take the Fourier Transform of formula 18, we get the formula given in equation 19. We can
plot the real and the imaginary part separately, resulting in the graphs given in figure 6 and 7.
As seen in these figures, the magnitude of the real part is much larger than the magnitude of the
imaginary part.

f̂(w) =
1

2
e−π(w+6)2(e24πw + 1) (19)

Figure 6: The real part of the Fourier Transform

Figure 7: The imaginary part of the Fourier Transform
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3.2 Fast Fourier Transform

The Fast Fourier Transform is an algorithm that computes the Discrete Fourier Transform of an
array of numbers. The Discrete Fourier Transform is a discretized form of the Fourier Transform
in order to be able to calculate the Fourier Transform numerically (24) (25). The algorithmmakes
it possible to do the Fourier Transform of large data sets much faster, which is help full since the
data size of this project is enormous.

There are lots of different methods to do a Fast Fourier Transform, but the one which is most
widly used is the Cooley-Tukey algorithm (26). The general idea of the method when applied to
an array of length N = N1N2 consists of three steps:

1. Preform N1 Discrete Fourier Transform of size N2

2. Multiply the result by twiddle factors (complex roots of unity)

3. Preform N2 Discrete Fourier Transform of size N1

A visual overview of the method is given in figure 8.

Figure 8: A visual overview of the Cooley-Tukey algorithm (27)

3.2.1 Multi-Dimensional

Everything discussed till now about the Fourier Transform was only one dimensional. Of course
we can extend this till more dimensions, and we find that is results in a very simple expansion of
the one dimensional case. The Fourier Transform in multiple dimensions is given by:

F (w1, w2, ..., wn) = Σ∞t1=−∞Σ∞t2=−∞...Σ
∞
tn=−∞f(t1, t2, ..., tn)e−iw1t1−iw2t2...−iwntn (20)
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3.2.2 Numpy-Method

As discussed before, there are many ways to define the Fourier Transform. The numpy method
used in this project uses the following definition:

Ak =

n−1∑
m=0

am exp

{
−2πi

mk

n

}
k = 0, . . . , n− 1 (21)

The direct Fourier Transform is defined for complex and real inputs and outputs. A single fre-
quency output will be represented by:

am = exp{2πi fm∆t} (22)

In this case ∆t gives the sampling interval.

The results follow the "standard" order, this means that if we define A = fft(a, n) we get A[0]

is the total sum of the signal, also called the zero-frequency. This number is always purely real
for real inputs. The next terms contain the rest of the frequency terms, alternating between the
positive and negative frequencies with the absolute value of the term always growing.

There are a couple of different algorithmswithin the numpy package. The routine np.fft.fftfreq(n)
returns an array giving the frequencies of corresponding elements in the output. The routine
np.fft.fftshift(A) shifts transforms and their frequencies to put the zero-frequency components in
the middle, and np.fft.ifftshift(A) undoes that shift.

In the case where the input of the Fourier Transform is a time-signal domain the Fourier Trans-
form will result in its amplitude-, power- and phases spectrum, using np.abs(A), np.abs(A)**2
and np.angle(A), respectively.

Within the numpy package we can divine the inverse DFT as:

am =
1

n

n−1∑
k=0

Ak exp

{
2πi

mk

n

}
m = 0, . . . , n− 1. (23)

It differs from the forward transform by the sign of the exponential argument and the default
normalization by 1/n.
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3.3 Application to the Project

When solving the equation found in section 2 in time, for every time step there is found a new
value for q. From this value it is necessary to find the stream function and the Laplacian of the
stream function in order to calculate the Jacobians at the new time. This equation is essentially
a second order differential equation in 2 dimensions and can be solved using an adapted Poisson
solver.

The first step of the algorithm is to use the 2 dimensional Fourier Transform to transform the
matrix of values to Fourier Space. The next step is to divide all entries of the matrix by M, where
M is defined as a value based on the point in Fourier space as derived below. From here the only
thing left is the inverse 2 dimensional Fourier Transform in order to go back to real space.

In order to find M, it is important to look how the Laplacian is described in Fourier Space. Using
the definition of Fourier Series the following can be written:

Q(x, y) = ΣN
k=0ΣN

m=0Q̂(k,m)eikx+imy (24)

Taking a Laplacian of this function results in:

∇2Q(x, y) = ΣN
k=0ΣN

m=0(k2 +m2)Q̂(k,m)eikx+imy (25)

Which can be written for each component in Fourier Space as:

∇2Q̂km = (k2 +m2)Q̂km (26)

from which can be deduced that:

Q̂km =
1

k2 +m2
∇2Q̂km (27)

Since q consists of an addition term, it is necessary to add an extra term to the multiplication
factor in the following way:

Ψ̂km =
1

k2 +m2 − 1
L2
D

(∇2Ψ̂km −
1

L2
D

Ψ̂km) (28)
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3.4 Jacobian Calculations

One of the major problems within this project is the calculation of the Jacobian side of equation
11. It has been found that there is an instability when using the normal Jacobian Format for the
long term numerical integration of the equations of fluid motion (28). The instability is the result
of the formation of eddies at a few grid intervals (29).

Based on the constraints described in (29) a new method is developed. We have four basic
second order finite difference analogues for a square grid:

J++
i,j =

1

4d2
[(ζi+1,j − ζi−1,j)

(ψi,j+1 − ψi,j−1)−

(ζi,j+1 − ζi,j−1)

(ψi+1,j − ψi+1,j)]

(29)

J+×
i,j =

1

4d2
[ζi+1,j(ψi+1,j+1 − ψi+1,j−1)−

ζi−1,j(ψi−1,j+1 − ψi−1,j−1)−

ζi,j+1(ψi+1,j+1 − ψi−1,j+1)+

ζi,j−1(ψi+1,j+1 − ψi−1,j−1)]

(30)

J×+
i,j =

1

4d2
[ζi+1,j+1(ψi,j+1 − ψi+1,j)−

ζi−1,j−1(ψi−1,j − ψi,j−1)−

ζi−1,j+1(ψi,j+1 − ψi−1,j)+

ζi+1,j−1(ψi+1,j − ψi,j−1)]

(31)

J××i,j =
1

8d2
[(ζi+1,j+1 − ζi−1,j−1)

(ψi−1,j+1 − ψi+1,j−1)−

(ζi−1,j+1 − ζi+1,j−1)

(ψi+1,j+1 − ψi−1,j−1)]

(32)

In these equations i is the finite difference grid index in x, j is the index in y and d is the grid
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interval.
All four of these methods to calculate the Jacobian maintain the constraints discussed in the pa-
per by Arakawa (29) and all have the same order of accuracy. More general Jacobian methods
can be developed by taking linear combinations of the four different methods. We take now:

Ji,j(ζ, ψ) = αJ++
i,j (ζ, ψ) + βJ+×

i,j (ζ, ψ) + γJ×+
i,j (ζ, ψ) + δJ××i,j (ζ, ψ) (33)

where α+ β + γ + δ = 1.

The method which satisfies both the conservation of energy and the conservation of square vor-
ticity is has the following coefficients:

α = β = γ =
1

3
, δ = 0 (34)

Only the linear combination [J++
i,j (ζ, ψ)+J+×

i,j (ζ, ψ)+J×+
i,j (ζ, ψ)]/3 will satisfy J(ζ, ψ) = −J(ζ, ψ)

and also conserve both the quadratic quantities. We obtain the following equation to do the
Jacobian calculations:

This equation corresponds to the advective form and the flux form of the Jacobian (29).

3.5 Time Integration Method

In order to evolve the model forward it is needed to do a time integration. In this project there
is made use of third order Strong Stability Preserving Runge Kutta (30). The method makes use
of:

F [f, t] = f + ∆tL[f, t] (35)
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which is also known as the first Euler update.

We use the following steps to go forward in time:

f (1) = F [fn] (36)

f (2) =
3

4
fn +

1

4
F [f (1)] (37)

fn+1 =
1

3
fn +

2

3
F [f (2)] (38)

where L is the right hand side of the time differential equation, so in the case of this project, it
is the Jacobian.
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4 Methods and Formalism
This chapter describes the code which is used to run the simulations. First we will discuss the
initial values, then the simulation itself, and lastly the output of the program.

4.1 Transformations and Initialization

In the transformations and initialization part of the code we set up the environment to run our
simulations. We start by defining a grid and the calculation of the coordinates. We do that using
some short functions to convert to pixels to Cartesian coordinates and to convert to latitude and
longitude and back. The code is listed in chapter 8.1.

Next there are some functions to define the initial vortex patterns on the planet, which will
be the starting point of the stimulation. First we have a function which sets up the background
of the pole using the Coriolis force as described in chapter 2.1. Then the vortex pattern has to
be set up in this background. There are two different models to set up the vortices. There is a
Gaussian profile which is defined by:

− V0
r

R0
exp

(
1

2
− r2

2R2
0

)
(39)

In this equation we have V0 defines as the initial velocity of the vortex, which is set to 80 m/s
during the simulation. We have chosen this value to be able to compare the simulations to other
projects. The other constant in this equation, R0 represents the radius of Jupiter, which is used
to adapt to different coordinates on the pole. The other profile is an exponential profile which is
defined by:

− V0(r +R0) exp

(
1− r

R0

)
− V 2

0

4R0f0
(2r +R0) exp

(
2− 2r

R0

)
(40)

The only new introduced constant in this profile is the Coriolis parameter which is denoted by f0

and is defined to be the 3.48 · 104 s−1.

The output from this code is saved into a npy file to save memory and be able to run differ-
ent simulations at the same time. The initial vortex profile can be plotted, which can be found in
figure 9.

The background of the profile which is defined by the Coriolis force is shown in figure 10.
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Figure 9: The vortex profile set up using the code listed in chapter 8.1.

Figure 10: The background defined by the Coriolis force. The axis labels are the pixels, and they
do not have a physical significance.

22



4.2 Simulation

The simulation code is based on a couple of simple functions and can be found in chapter 8.2.
First there is need for a function which can convert the latitude and longitude to Cartesian co-
ordinates. This function is equivalent to the one mentioned in the previous chapter and is only
used to make sure that the input can be read.

The next functions are needed for the simulation to preform Fourier Transforms. This code is
based on the method described in chapters 3.1, 3.2 and 3.3. The code takes the Laplacian of the
stream function as input and transforms it into the stream-function itself which can be used for
further calculations. The second function is a helper function for the Fourier function.

The next thing needed is the function to calculate the Jacobian. This function is using the method
described in chapter 3.4 and is based on an older Fortran code available within the research group.
The main improvement of the python function is the computational time and the compatibility
with the rest of the program.

The last calculating function is the time-step. This function is based on the algorithm described
in chapter 3.5. The function is also a combining function and has to recalculate every value after
every small time step.

Because of the many calculations which have to be preformed the choice was made to use a
third order time approximation instead of a fourth order because this will add significantly to
the computational time, where the accuracy of the results are not much improved. This choice
can be justified because the goal of this project is to improve the computational time by using an
approximation of the more advanced methods.

The remaining function within the simulation code is the function which preforms the simu-
lation itself. This function is a recursion algorithm which preforms the calculations using the
previous described function. The algorithm is found in chapter 8.3.

4.3 Output

The output of the recursion algorithm is in principle very simple. It will return portable network
graphics, and save them in the folder where the algorithm is running. But in order to able to say
something about the physical process the output needs to be processed. The processing of the
images is done using After Effects, part of Adobe creative studio (31).
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Essentially all images are stacked together to create a small movie. Next to the movie application
of the images, they are also used to given an overview of what is happening in the simulation.
The average output of the simulation consists of about 1800 image at different times.
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5 Results
In this chapter we will discuss the results of the previous described simulation algorithm. All sim-
ulations are done at a 256× 256 grid, the plots are made around the pole towards 70 ◦ outwards.
The timestep is determined by the Courand Friedrichs Lewy condition as described in chapter
2.2. The simulation is done with a couple of different parameters. In table 1 the simulations are
shown with their different parameters.

Simulation number number of vortices polar vortex present longitude time (years)

1 6 no 85◦ 3

2 5 no 80◦ 3

3 6 yes 80◦ 3

4 3 no 80◦ 3

Table 1: Some information about the simulations

5.1 Simulation 1

As described in the table above this simulation consist of 5 vortices, there is no polar vortex
present and they are set at 85 ◦ and the simulation was done for 3 years. The plots at an interval
of 4 months can be found in figure 11. A movie, containing all plots can be found at (32).

Figure 11: Plots of simulation 1 at 4 months time interval.
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Looking at the plots in figure 11 we can see that the vortices are unstable. They merge together
within the first year and form a really unstable region on the pole.

5.2 Simulation 2

As described in the table above this simulation consist of 5 vortices, there is no polar vortex
present and they are set at 80 ◦ and the simulation was done for 3 years. The plots at an interval
of 4 months can be found in figure 12. A movie, containing all plots can be found at (32).

Figure 12: Plots of simulation 2 at 4 months time interval.

Looking at the plots in figure 12 we can see that the vortices are stable. They have still the same
distance to the pole after 3 year and they still have the same intensity.

5.3 Simulation 3

As described in the table above this simulation consist of 6 vortices, there is a polar vortex present
and they are set at 80 ◦ and the simulation was done for 3 years. The plots at an interval of 4
months can be found in figure 13. A movie, containing all plots can be found at (32).

Looking at the plots in figure 13 we can see that they are stable over a short period, but they
move a bit towards the pole over time and the vortices around the polar vortex loose some of

26



Figure 13: Plots of simulation 3 at 4 months time interval.

there vorticity to the polar vortex. Over time they are moving completely inwards.

5.4 Simulation 4

As described in the table above this simulation consist of 3 vortices, there is no polar vortex
present and they are set at 80 ◦ and the simulation was done for 3 years. The plots at an interval
of 4 months can be found in figure 14. A movie, containing all plots can be found at (32).

As seen in the plots in figure 14 and even more in the video (32) we can see that the 3 vortices
are mostly stable, they only form very small anti-vortices on the edge of the original ones.

5.5 Computational Time

In order to compare the proposed model to the previous model in terms of computational time
we need to look at the the time it took to do the simulations. The data per simulation can be
found in table 2 and in figure 15. All simulations were running on the supercomputers owned by
the research group of Andrew Ingersoll at the Geological and Planetary Sciences Institute of the
California Institute of Technology. The simulations were running under similar circumstances.
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Figure 14: Plots of simulation 4 at 4 months time interval.

Simulation number Computational Time
Previous Model

Computational Time
Proposed Model Improvement Factor

1 37h 18m 12s 22h 7m 47s 1.69
2 38h 7m 5s 21h 58m 2s 1.74
3 37h 23m 18s 22h 4m 38s 1.70
4 37h 55m 45s 22h 11m 19s 1.71

Table 2: The computational times of the previous model and the proposed model

Table 2 has also a column called Improvement Factor. This factor can be defined in the following
way:

IF =
Computational Time Previous Model
Computational Time Proposed Model

(41)

So there can be concluded that the improvement factor defines how much faster the proposed
model is compared to the previous model.

Using the data from table 2, the average improvement factor is found to be 1.71 with a stan-
dard deviation of 0.019. So there can be conclude on the basis of this very limited data set that
the proposed model is 1.71± 0.019 times faster.
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Figure 15: A comparison between the previous model and the proposed model in terms of com-
putational time
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6 Conclusions and Summary
6.1 A short summary

Looking at the Jovian atmosphere we find several patterns of cyclones, which are evolving over
time. The goal of this project was to create a new model based on the Quasi Geostrophic Equa-
tions to describe the time evolution of the vortex patterns.

The Quasi Geostrophic Equation is derived in chapter 2.1 and is given below:

∂

∂t

[
∇2Ψ− Ψ

L2
D

− βr2

]
= J(Ψ, q − βr2) (42)

This equation looks like a Poisson equation and is solved in a similar way using Fourier Trans-
forms ending up with the following formula which is derived in chapter 3.3:

Ψ̂km =
1

k2 +m2 − 1
L2
D

(∇2Ψ̂km −
1

L2
D

Ψ̂km) (43)

Using this equation combined with the method to calculate the Jacobian as described in chapter
3.4 we have all the tools to step forward in time. This is done using the strong preserving third
order Runge Kutta method as described in chapter 3.5. All code based on these numerical meth-
ods is listed in chapter 8.

6.2 Time evolution of Vortex patterns

Using the simulations discussed in chapter 5 we can come to some conclusions. There are a cou-
ple of parameters of which we have measured the influence on the time evolution of the vortex
patterns. We find that:

1. The closer the vortices are located to the pole, the more likely they are destroyed and merge
at the pole.

2. In the absence of a polar vortex the remaining vortices are less likely to merge.

3. The number of vortices influences the rotational velocity of the vortex pattern.

Point 1 is found by comparing simulation 1 and 2. We see that in simulation 1 the vortices move
quickly (within a year) inside towards the pole and merge together to form a chaotic vortex at
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the pole. In simulation 2 we see that the pattern is mostly stable within the time frame of 3 years.
So the vortices at a longitude of 85◦ will move inside and merge, where the vortices at 80◦ are
stable and do not merge.

Point 2 is found by comparing simulation 2 and simulation 3. We see in simulation 3 that the
vortices move inwards in the direction of the polar vortex and become more elliptical. Towards
the end of the simulation they start to merge with the polar vortex. So we can conclude that the
presence of a polar vortex destabilizes the system, and will cause the system to merge at the pole.

The last point is found by comparing simulation 2 and simulation 4. The difference between
these simulations are the number of vortices. We find that the 5 vortices rotate much faster than
the 3 vortices. From this we can conclude that the number of vortices influences the rotational
velocity of the vortex pattern.

6.3 Computational Time

From the data provided in chapter 5.5 we can conclude that the proposed model in this project
is on average 1.71 ± 0.019 times faster. This improvement is mainly caused by a new way to
describe the atmosphere. The Quasi Geostrophic approach is a much simpler way to describe the
flows within the atmosphere compared to the shallow water equations. The main advantage of
the Quasi Geostrophic method is the much larger Courant number which means that the time
step can be much larger than when running the Shallow Water Model.
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7 Improvements and the Future
This project resulted in two main conclusions, one about the time evolution of the vortex patterns
and one about the computational time of this model.

The main improvement in the time evolution section is simulating more situations to confirm the
described effects and improve the understanding of the evolution. It would be very interesting
to run the simulations at different longitudes, or change the number of vortices. A combination
of the changed parameters would also be interesting and crucial to a good understanding of the
evolution.

It would also be interesting to expand the grid from 256 × 256 to 512 × 512 to be able to see
more detailed effects during the simulation. This would increase the computational time signifi-
cantly.

The second conclusion of this project is a bit hand waving. In the absence of more data to com-
pare the two methods the improvement of the computational time is based on only four data
points. In order to get a better view of the total improvement it would be good to obtain more
data about the computational time.

Further more, the simulations were running on the super computer under similar circumstances,
but the other tasks of the computer and the network could have an influence on the total com-
putational time. Lastly, the Shallow Water model is running a parallel computing process where
the Quasi Geostrophic model is only doing one calculation at the time.

One addition which could bemade to this project is the expansion of the code andmake it possible
to do parallel computing processes, which would make the simulations much faster and make it
possible to expand to a 512×512 grid without increasing the computational time by a large factor.

Another addition could be the introduction of a two or more layer model to describe the Jovian
atmosphere more accurately and learn more about what is beneath the clouds of Jupiter.
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8 Appendix
8.1 Transformation and Initialization

import numpy as np

def pix_car(n,m, LenX):

x = np.array(m) - np.ones(LenX)*(LenX/2-1)

y = np.array(m) - np.ones(LenX)*(LenX/2-1)

return x,y

def Lat_Lon(x,y,radius):

dist = (x*x+y*y)**0.5

lat = np.pi/2 - dist/radius

lon = np.arcsin(x/dist)

if x>0 and y>0:

lon = np.pi - lon

if x<0 and y>0:

lon = -np.pi - lon

return lat, lon

def XY(lat,lon,radius):

dist = radius*(np.pi/2 - lat)

x = dist*np.sin(lon)

y = dist*np.cos(lon)

return x,y

def Vortex(r):

v0 = 80 #m/s

R0 = 1e6 #m

f0 = 2*(1.74e-4) #1/s

return -v0*(r+R0)*np.exp(1-r/R0) - v0*v0/4/R0/f0*(2*r+R0)*np.exp(2-2*r/R0)

#-v0/R0*r*np.exp(1/2-r*r/(2*R0*R0))

#
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def Vgen(where, N, LenX):

k = 360/N

Xmid = [0]*(N+1)

Ymid = [0]*(N+1)

radius = 7.1e7 #m (Radius Jupiter)

rad1,rad = XY(70*np.pi/180,0,radius)

print(rad,rad1)

for i in range(N): #Create midpoints of all vortices

Xmid[i],Ymid[i] = XY(where*np.pi/180,i*k*np.pi/180, radius)

print(XY(where*np.pi/180,i*k*np.pi/180, radius))

N = N+1

VORTEX = [[0]]

for i in range(LenX-1):

VORTEX.append([0])

for j in range(LenX):

for i in range(LenX-1):

VORTEX[j].append(0)

XX = np.linspace(-int(LenX/2), int(LenX/2), LenX)*rad/(LenX/2)

YY = np.linspace(-int(LenX/2), int(LenX/2), LenX)*rad/(LenX/2)

phi0 = -8.75e4

f = 2*1.74e-4

Ld = (phi0/f/f)

xv,yv = np.meshgrid(XX,YY)

for i in range(N):

xmid = Xmid[i]

ymid = Ymid[i]

for i in range(LenX):

for j in range(LenX):

x = XX[i]
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y = YY[j]

dx = x - xmid

dy = y - ymid

r =(dx*dx+dy*dy)**0.5

VORTEX[j][i] = VORTEX[j][i] + Vortex(r)

print("")

for i in range(LenX):

for j in range(LenX):

VORTEX[j][i] = VORTEX[j][i]

return VORTEX, Xmid, Ymid

LenX = 256

V, Xmid, Ymid = Vgen(80,3,LenX)

radius = 7.1e7

XX = np.linspace(-int(LenX/2), int(LenX/2), LenX)

YY = np.linspace(-int(LenX/2), int(LenX/2), LenX)

xv,yv = np.meshgrid(XX,YY)

np.save("vortex",V)

%matplotlib notebook

import matplotlib.pyplot as plt

n_bins = LenX

weights = np.array(V)

# We’ll also create a grey background into which the pixels will fade

greys = np.full((*weights.shape, 3), 70, dtype=np.uint8)

# First we’ll plot these blobs using only ``imshow``.

vmax = np.abs(weights).max()

vmin = -vmax

cmap = plt.cm.inferno

fig, ax = plt.subplots()

ax.imshow(greys)

ax.imshow(weights, cmap=cmap)

ax.set_axis_off()

plt.show()
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from matplotlib.pyplot import figure, show

import matplotlib.pyplot as plt

rad,rad1 = XY(20*np.pi/180,np.pi,radius)

XX = np.linspace(-int(LenX/2), int(LenX/2), LenX)*rad/(LenX/2)

YY = np.linspace(-int(LenX/2), int(LenX/2), LenX)*rad/(LenX/2)

xv,yv = np.meshgrid(XX,YY)

fig = figure(figsize=(4,4))

frame = fig.add_subplot(1,1,1)

cset1 = frame.contour(xv,yv,weights)

plt.show()

#fig.colorbar(cset1)

figg = figure(figsize=(4,4))

framee = figg.add_subplot(1,1,1)

framee.plot(Xmid,Ymid, ’o’, )

plt.show()

rad1,rad = XY(70*np.pi/180,0,radius)

rad = rad

XX = np.linspace(-int(LenX/2), int(LenX/2), LenX)*rad/(LenX/2)

YY = np.linspace(-int(LenX/2), int(LenX/2), LenX)*rad/(LenX/2)

f0 = 2*1.74e-4

beta = 1/(2*radius*radius)*f0

other_terms = [[0]]

for i in range(LenX-1):

other_terms.append([0])

for j in range(LenX):

for i in range(LenX-1):
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other_terms[j].append(0)

for i in range(LenX):

for j in range(LenX):

r2 = XX[i]**2 + YY[j]**2

other_terms[j][i] = (f0 - beta*r2)

np.save("other_terms", other_terms)

%matplotlib inline

fig = figure(figsize=(4,4))

frame = fig.add_subplot(1,1,1)

cset1 = frame.contour(other_terms)

plt.show()

8.2 Simulation

import numpy as np

def XY(lat,lon,radius):

dist = radius*(np.pi/2 - lat)

x = dist*np.sin(lon)

y = dist*np.cos(lon)

return x,y

def fou_der2(f,Ld):

#Length of vector f

LenX = int(np.size(f)**0.5)

#Create matrix of Ld^2

LD = np.ones((LenX,LenX))*1/Ld/Ld

#Create list of k values

t = np.array(list(np.linspace(0,LenX-2,LenX/2))+

list(np.linspace(-LenX,0-2,LenX/2)))*np.pi/LenX

X = []

for i in range(LenX):

X.append(t)

X = np.array(X) #create 2D array for k values
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Y = np.transpose(X) #transpose array for k values to obtain l values

XY = -(X*X+Y*Y+LD) #Calculate sum of squares of k and l values and Ld^2

for i in range(LenX):

for j in range(LenX):

if i==0 and j==0:

continue

XY[j][i] = 1/XY[j][i] #find inverse at each location

# Fourier derivative

ff = np.fft.fft2(f) #calculate Fourier Transform of input array

ff = XY*ff

# multiply by k,l value matrix to obtain the derivative in Fourier Space

df_num = np.real(np.fft.ifft2(ff))

#Calculate the inverse Fourier Transform to go back to real space

return df_num

def psi(F,LenX,Ld):

psi = fou_der2(F,Ld) #Calulate psi from Jacobian

Lap_psi = F + 1/Ld/Ld*np.array(psi)

#Calculate Lap_psi using the geostrophic equation

return psi, Lap_psi

def subJac(a,b,c,d,e,f,Jacobi,q,p,h):

"Calculate the value for the Jacobian index"

B1 = (1/2/h*(p[e][c]-p[e][a])*1/2/h*(q[f][b]-q[d][b])) -

(1/2/h*(p[f][b]-p[d][b])*1/2/h*(q[e][c]-q[e][a]))

B2 = (1/2/h*(p[e][c]*1/2/h*(q[f][c]-q[d][c]) -

p[d][a]*1/2/h*(q[f][a]-q[d][a]))-1/2/h*(p[f][b]*1/2/h*(q[f][c]-q[f][a])-

p[d][b]*1/2/h*(q[d][c]-q[d][a])))

B3 = -(1/2/h*(q[e][c]*1/2/h*(p[f][c]-p[d][c]) -

q[d][a]*1/2/h*(p[f][a]-p[d][a]))-1/2/h*(q[f][b]*1/2/h*(p[f][c]-p[f][a])-

q[d][b]*1/2/h*(p[d][c]-p[d][a])))

Jacobi[b][e] = (B1+B2+B3)/3

return Jacobi

def Jacobian(LenX, LenY, psi, Lap_psi, other_terms):

41



"Calculate the Jacobian following Arakawa’s paper"

#Create arrays with correct dimensions to store values

radius = 7.1e7

rad1,rad = XY(70*np.pi/180,0,radius)

rad = rad

h = rad/128

Jacobi = []

g = []

for i in range(LenY):

Jacobi.append([0])

g.append([0])

for i in range(LenY):

for j in range(LenX-1):

Jacobi[i].append(0)

g[i].append(0)

#Create a matrix for g

for i in range(LenX):

for j in range(LenY):

g[j][i]= Lap_psi[j][i] + other_terms[j][i]

#Calculate the Jacobian at each point

for j in range(1,LenY-1):

for i in range(1,LenX-1):

Jacobi = subJac(j-1,j,j+1,i-1,i,i+1,Jacobi,psi,g,h)

for i in range(1, LenX-1):

Jacobi = subJac(LenY-1,0,1,i-1,i,i+1,Jacobi,psi,g,h)

Jacobi = subJac(LenY-2,LenY-1,0,i-1,i,i+1,Jacobi,psi,g,h)

for j in range(1, LenY-1):

Jacobi = subJac(j-1,j,j+1,LenX-1,0,1,Jacobi,psi,g,h)

Jacobi = subJac(j-1,j,j+1,LenX-2,LenX-1,0,Jacobi,psi,g,h)

Jacobi = subJac(LenY-1,0,1,LenX-1,0,1,Jacobi,psi,g,h)

Jacobi = subJac(LenY-2,LenY-1,0,LenX-1,0,1,Jacobi,psi,g,h)
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Jacobi = subJac(LenY-1,0,1,LenX-2,LenX-1,0,Jacobi,psi,g,h)

Jacobi = subJac(LenY-2,LenY-1,0,LenX-2,LenX-1,0,Jacobi,psi,g,h)

return Jacobi

def timestep(F, LenX, Ld, dt, other_terms):

F = np.array(F) #transform list into array

Psi, Lap_psi = psi(F,LenX,Ld)

#Calculate psi and lap_psi at starting time

jacob = Jacobian(LenX, LenX, Psi, Lap_psi, other_terms)

#Calculate the jacobian form psi and lap_psi

F1 = F - dt*np.array(jacob) #Do first timestep

Psi, Lap_psi = psi(F1,LenX,Ld) #Recalculate everything

jacob = Jacobian(LenX, LenX, Psi, Lap_psi, other_terms)

F2 = 3/4*F+1/4*(F1 + dt*np.array(jacob))#Second timestep

Psi, Lap_psi = psi(F2,LenX,Ld)#Recalculate everything

jacob = Jacobian(LenX, LenX, Psi, Lap_psi, other_terms)

Fn = 1/3*F + 2/3*(F2 + dt*np.array(jacob)) #Final result for new time

return Fn

def TimeStepRK4(F, LenX, Ld, dt, other_terms):

F = np.array(F) #transform list into array

Psi, Lap_psi = psi(F,LenX,Ld)

#Calculate psi and lap_psi at starting time

jacob = Jacobian(LenX, LenX, Psi, Lap_psi, other_terms)

#Calculate the jacobian form psi and lap_psi

K1 = dt*np.array(jacob) #Do first timestep
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Psi, Lap_psi = psi(F+K1/2,LenX,Ld) #Recalculate everything

jacob = Jacobian(LenX, LenX, Psi, Lap_psi, other_terms)

K2 = dt*np.array(jacob)

Psi, Lap_psi = psi(F+K2/2,LenX,Ld) #Recalculate everything

jacob = Jacobian(LenX, LenX, Psi, Lap_psi, other_terms)

K3 = dt*np.array(jacob)

Psi, Lap_psi = psi(F+K3,LenX,Ld) #Recalculate everything

jacob = Jacobian(LenX, LenX, Psi, Lap_psi, other_terms)

K4 = dt*np.array(jacob)

Fn = F + K1/6 + K2/3 + K3/3 + K4/6

return Fn

8.3 Recursion Algorithm

import matplotlib.pyplot as plt

def recu(F,i, other_terms,ld,dt):

K = TimeStepRK4(F,256,ld,dt,other_terms)

i = i+1

# Generate the space in which the blobs will live

xmin, xmax, ymin, ymax = (0,LenX, 0,LenX)

n_bins = LenX

xx = np.linspace(xmin, xmax, n_bins)

yy = np.linspace(ymin, ymax, n_bins)

xv, yv = np.meshgrid(xx, yy)

# We’ll also create a grey background into which the pixels will fade

greys = np.full((*K.shape, 3), 70, dtype=np.uint8)

# First we’ll plot these blobs using only ``imshow``.
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vmax = np.abs(K).max()

vmin = -vmax

cmap = plt.cm.jet

fig, ax = plt.subplots()

ax.imshow(greys)

ax.imshow(K, cmap=cmap)

ax.set_axis_off()

name = ’plot’+str(i)

plt.savefig(name)

if i>30:

return 0

else:

print(i)

recu(K,i,other_terms,Ld,dt)

import numpy as np

dt = 20

other_terms = np.load(’other_terms.npy’)

F = np.load(’vortex.npy’)

phi0 = 8.75e4

f = 2*1.74e-4

Ld = ((phi0/f/f)**0.5)

LenX = 256

recu(F,0,other_terms,Ld,dt)
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