
Ultimate feature extractor for An-

droid mobile applications

Contextual and Technical Features

Bachelor’s Thesis in Computing Science

July 2020

Student: Yona B. Moreda

First supervisor: Fadi Mohsen, PhD

Second assessor: Fatih Turkmen, PhD

1

Abstract

To combat malware on mobile devices, researchers employ a variety of data gath-
ering and analysis tools to investigate and classify Android device applications based
on malicious behavior. As the data is gathered and analyzed, researchers employ a va-
riety of different tools and gather features using many different ways. These different
methods of gathering the features produces some inconsistencies in formatting and as
the different tools produce different outputs and researchers have to implement their
own methods of collecting those features.

Certain tools have been created to alleviate this problem but they tend to be re-
source intensive and have limited portability. Taking this issues into consideration,
we propose a simple and versatile Ultimate Feature Extractor tool that is designed to
gather and present Android app features within the context of mobile security research.

Discipline of research: Mobile information and security

The tool is co authored by my colleague, Haoran Xia. We have written separate disserta-
tions for the tool with a focus on our own individual contributions towards the tool.

1

Contents

1 Introduction 3

2 Overview of pre-existing tools 4
2.1 AndroPyTool overview . 4
2.2 Apktool overview . 5

3 Tools under utilization 6
3.1 Androguard overview . 6
3.2 Dex2Jar with Fernflower overview . 6
3.3 Androguard versus Dex2Jar with Fernflower for source code retrieval 7

4 Features of interest 8
4.1 Task division . 8
4.2 Contextual features . 9

4.2.1 Google Play . 9
4.2.2 Virus scanning web services . 10

4.3 Technical features . 10
4.3.1 String constants and obfuscations . 10
4.3.2 API methods . 10

5 Implementation details 11
5.1 Extraction of contextual features . 11
5.2 Extraction of technical features . 12

5.2.1 String constants and obfuscations . 13
5.2.2 API methods . 13

5.3 Output and formatting . 14
5.3.1 Contextual features output structure 14
5.3.2 Technical feature output structure . 15

6 Evaluation 17
6.1 Evaluation of reports from virus scanning services 17
6.2 Evaluation of the performance of the components in contextual feature ex-

traction pipeline . 19
6.3 Evaluation of the performance of the components in source code feature ex-

traction pipeline . 21

7 Results and analysis 22
7.1 Contextual features results and analysis . 22

7.1.1 Google play contextual features results and analysis 22
7.1.2 Virus scanning contextual features results and analysis 25

7.2 Source-code features results and analysis . 27

8 Conclusion 28

9 Future work 29

2

1 Introduction

Android is an open source mobile operating system that has grown in popularity over the
years since its introduction and launch in 2007-8. At the current moment, Android sits as
the most prominent operating systems of mobile devices around the world. Besides its main
presence in the mobile phones market it is also prominent on smart devices such as watches,
cars, glasses, TVs and even home appliances.

As this operating system grew in its popularity, the greater numbers of software applications
designed for this prominent operating system. To distribute and service these software ap-
plications, digital stores such as Google Play, Samsung Galaxy Store or Huawei App Stores
were introduced. In addition, there was also the introduction of several third party digital
store alternatives that offered several mobile apps for download and use.

However, with these greater numbers of software applications developed for the Android
operating system, the number of mobile apps that took advantage of exploits and attacks to
cause harm to several end-users also rose in number. Up to the present time, anti-malware
applications are constantly on task to combat software apps that are distributed with ma-
licious features and vulnerable components.

Therefore, there was and still is a need for analyzing and detecting Android mobile applica-
tions for potential vulnerabilities and attacks directed towards end users. Particularly, for
detecting zero-day exploits which are exploits that are publicly known or exploits that are
unaddressed by the parties that are responsible for constraining the vulnerability.

To detect and find these exploits mobiles apps have to be examined and analyzed thor-
oughly for vulnerabilities and behaviours that are malicious in nature. Using a variety of
data extraction and analysis tools, there are several studies examining and analyzing a va-
riety of different mobile appellations in order to detect and classify applications based on
their vulnerability and maliciousness. However, even if these several tools analyze different
components using different tools, there is a lack of a unified multipurpose tool that would
extract and present a structured set of featured data.

We first introduce two subdivisions for the features that we are interested in. These sub-
divisions are contextual features and technical features. Contextual features are features
that are gathered from sources outside the given application and technical features are fea-
tures that are gathered from the Android applications themselves.

And therefore as part of the development of the tool, in this research paper, we will raise
the following research question:

Research question: What is the effect of gathering contextual and technical features
on Android applications in the static based security analysis?

Additional sub-questions to answer:

• What consists of the contextual and technical data within the tool?

• What is the performance breakdown of contextual and a subset of the technical com-
ponents?

• What are some example uses for the collected data in the context to mobile security
research?

With these questions in mind, we will first have a quick overview of some of the pre-existing
tools that did some work on a similar area.

3

2 Overview of pre-existing tools

There are several tools to pre-existing frameworks or tools that are designed for the purpose
of extracting and presenting features from Android applications. One of these most notable
tools is an open-source Python based framework called AndroPyTool [9]. In addition, Ap-
ktool is another popular tool that is used to reverse engineer and acquire the source code
of a given Android app package which allows for analysis for source code of the mobile
application. These tools are further explored on the section 2.1 and 2.2.

2.1 AndroPyTool overview

AndroPyTool is a tool used for obtaining static and dynamic features for a given set of
Android applications. The tool itself uses several well-known pre-existing tools such as
DriodBox [6], FlowDroid [1], Strace, AndroGuard [2] or VirusTotal analysis. AndroPy-
Tool employs several steps in order to provide a full report on the features of an Android
application [9]. These steps include:

1. Apk filtering: A step that is used to filter APK files that are invalid or corrupted
before analysis.

2. VirusTotal analysis: Uses a popular antivirus scanning service to receive a report
security malware analysis that is already present in the antivirus databases.

3. Dataset partitioning: This step separates samples into malware and benign sets
based on a report from VirusTotal and a threshold specified by the user. a user.

4. FlowDroid execution: uses the FlowDroid open-source tool used to statically ana-
lyze data flows within Android applications.

5. FlowDroid result processing: this step allows for the processing of the results
acquired from the FlowDroid execution step.

6. DroidBox execution: The application is analyzed for features that can only be
acquired from run-time or execution of the app.

7. Feature extraction: The final step involves aggregating the information into com-
mon file formats such as comma-separated values (csv), JavaScript Object Notation
(JSON) and as a database based on MongoDB.

AndroPytool performs quite well in terms of the extent of the data it gathers which involves
pre-static, static and dynamic related features. However, the tool certainly has some short-
comings which is difficult to overcome without a complete overhaul. One of its noticeable
drawbacks is that the tool requires several libraries and packages which makes heavy (mem-
ory space intensive) and it has limited modularity of these packages.

Additionally, as this tool heavily relies on several other tools the management or installation
process tends to be difficult especially in cases where the mode of installation cannot occur
using a container system such as Docker. And the container system, Docker, has certain
special requirements/privileges that in some cases cannot be easily met. These requirements
include not being supported in virtual machines and requiring operating systems such as
Windows to be in the Enterprise or Pro versions etc.

Another significant drawback to the tool is that it is based on a Python version (Python 2.7)
that is under the End of Life (EOF) status as 2020 and it will no longer receive any official
support from the Python software foundation [13]. Furthermore, the source code of the
tool lacks modularity which can translate to reduced performance and increased difficulty
in testing and maintaining the tool.

4

2.2 Apktool overview

Apktool is an open-source tool that is used to acquire the source code of Android application
via generalized reverse engineering techniques [15]. It is capable of decoding the assets found
in an Android application package to nearly their original form. Once this near original
form is acquired, several analysis tools particularly focused on analyzing the source code
can be employed and used to extract meaningful data on the behaviors of a given Android
application.

Figure 1: The typical contents of an Android application package (APK)

Figure 1 illustrates the common contents of an Android application package. The common
contents include the resources.arsc file, the dex file or files, the Android manifest file
and other resource related files [10]. Apktool features the disassembly of these Android
application package components such as:

• Resources.arsc: contains the meta-information on the resources involved within an
Android application [3]. These meta-information include static contents such UI re-
lated information such as the layouts and also the attributes for these layout compo-
nents, images or bitmaps and localization information of the app.

• Classes.dex: contains all the Java class files where the primary Java source code
lies. These Java class files consist of compiled bytecodes that are converted to Dalvik-
executable dex files.

• AndroidManifest.xml: is an essential file present within all Android applications
that describes meta-information about the application it is presented in. The man-

5

ifest file is required to include a unique application identifier (package name), the
components of the application (activities, services, broadcast receivers and content
providers), the permissions and finally the hardware and software features that the
application requires.

3 Tools under utilization

Taking the above mentioned tools into consideration, the project uses three main tools in
particular Androguard [2], Dex2jar [11] and Fernflower [4] to get features from Android
application source code.

3.1 Androguard overview

Androguard is a Python based Android application package reverse engineering tool that
provides run-time analysis objects that can be used for feature extraction and processing.
This tool presents a variety of interfaces or Python API calls for getting information about
an Android application package (APK).

To acquire the sets of information/features from an Android application, Androguard has
three main designations or components which are:

• The a-object (APK object): contains all the information about an APK file. These
include the package name, permissions, Android manifest file, the app resources and
more.

• The d-object (Array of DalvikVMFormat): contains the array representation of
the Dalvik executable files that are found within the APK.

• The dx-object (Analysis object): contains special classes and is designed to contain
information about the multiple Dalvik executable files within the APK package. This
object is prefered to be in use over the d-object for APKs that contain multiple DEX
files. This object is used to get the Java source code for the given Android application.
However, this retrieval of the Java source code is not perfect and has some limitations
to which another tool described in section 3.2 offers to overcome.

3.2 Dex2Jar with Fernflower overview

As Androguard exhibits some limitations in terms of retrieving the Java source code from
Android applications. These limitations include inability to convert certain Java source files
and to retrieve import statements. The Dalvik executable files that Androguard fails to
analyze usually feature Java source codes that are heavily obfuscated. These limitations of
Androguard lead to the implementation or addition of an alternative pipeline for retrieving
the source code related features. This pipeline involves two reverse engineering tools namely
Dex2Jar and Fernflower.

Dex2Jar is an open-source tool that is designed to convert Dalvik executable files into files
into Java archives (JAR package format files) [11]. This format is in turn used by another
open-source tool, Fernflower [4] developed by Jetbrains to decompile Java archive (JAR) files
into their original Java Source Code form.

However, it is noted that the pipeline of getting the source code using Dex2Jar with Fern-
flower is not perfect and has definite limitations. A combination of Dex2Jar and Fernflower
with Androguard enables us to realize a combination of the advantages of the two ap-
proaches. And these advantages and disadvantages are explored in the following Section
3.3.

6

3.3 Androguard versus Dex2Jar with Fernflower for source code
retrieval

Both these methods/tools have their advantages and disadvantages as outlined by Table 1.

Androguard Dex2Jar with Fernflower

Speed Fast Slower

Import statements Unavailable Available

Accuracy Limited Very good

Specialized functions Present Absent
or run-time objects

Table 1: The advantages and disadvantages of Androguard against Fernflower with Dex2Jar
for source code retrieval

Androguard has an advantage over Fernflower in terms of speed however Fernflower has the
advantage over how accurately the APK is reverse engineered to the original Java source
code. This reduced accuracy is best exemplified by how Androguard presents inline imports
rather than presenting the import statements themselves. The use of inline statements
makes it very difficult or otherwise impossible to retrieve import statements via common
retrieval methods such as searching or parsing.

Furthermore, since Androguard is a tool that offers Python run-time analysis objects for
Android applications, getting the components via Androguard’s specialized functions is very
straightforward.

As an example, Androguard provides specialized strings object within its analysis dx ob-
ject that contains all the string constants present with in the given Android application. In
addition, these string constants are retrieved using specialized objects called string analysis
objects which provide additional information for each string constant present within the
given Android application.

One of the additional information provided is the cross reference graphs (XREFs) that would
provide information on which Java methods or functions inside the given Android application
source code are utilizing the string constants.

7

4 Features of interest

Based on the interests of papers studying Android application package files [17], the feature
of interest for this paper are outlined and explored as follows:

• Contextual features: includes general information that gives contextual informa-
tion about a given application. More specifically, contextual related information in-
volve the title, reviews, description, monetization, etc. of an application from Google
Play [8] [14] and additionally, information on vulnerability or maliciousness from an-
tivirus scanning web services such as VirusTotal and others are included.

• Technical features: includes technical and in depth information on a given An-
droid application. It includes string constants and obfuscation, API calls or methods,
operational code (opcodes), name obfuscation, etc.

This paper focuses on the contextual features and a certain subset of technical or source
code features. The technical features that this paper focuses on are string constants and
their obfuscation along with API methods which are outlined on the Section 4.3. The tool
that this paper is based on is not limited to technical or source code features presented in
this paper, the other features are explored by a different author (Haoran Xia) who worked
on those features.

Figure 2: The architecture of the Ultimate Feature Extractor tool

4.1 Task division

• Yona Moreda: worked on Contextual features and a small subset of Technical fea-
tures (API methods and Strings)

• Haoran Xia: worked on Android Manifest file features and Technical features (Op-
codes, Identifier obfuscation and Reflection detection)

8

4.2 Contextual features

When analyzing an Android application, it is often useful to retrieve and analyze the contex-
tual information of the application to have an insight to the behaviour or supposed purpose
of the application. Contextual features involve several services to retrieve and present mean-
ingful contextual data for a given application.

4.2.1 Google Play

Google Play is the official digital library web store that serves several Android applications
for many mobile devices. While Google play distributes and sells Android applications, it
does so by providing valuable contextual information [8] that includes meaningful attributes
as outlined below.

• Title and package name: are used to identify and find the given application on
Google play. The package name in particular is uniquely assigned to each application
that is served by Google Play.

• Category: provides contextual information to which associations can be made to the
expected behavior of an application in the given category.

• Release date and date of update: provides the time the application is originally
released on the Google Play store and also information on the date the application
was changed or updated. This information is helpful for tracking changes for giving
additional data in cases of application repackaging.

• Description: presents descriptive information of the application. This element pro-
vides the application description as outlined by the developers of the application. This
is usually the first piece of text that the users read before installing the application
and it provides valuable context to the expected behavior of the applications.

• Developer information: consists of the developer name, address, email, unique
developer identification number and their website.

• Monetization: includes information about how the pricing of the application or the
other means of using the application to generate revenue. This information includes
the price of the application, the currency, whether or not the application is supported
using in-app purchases, the range of prices for the in-app purchases and the presence
of in-app advertisements.

• User/Community feedback: composed of information describing the experience of
users when using the application. This information includes the top comments left by
the users, the average rating, the total number of reviews and installs, the distribution
of the ratings from 1 to 5 stars (as a histogram), if the application is part of the
editor’s choice and finally the content rating for enforcing parental control.

• Privacy policy: provides information on how user data is gathered, used and man-
aged by the developer of the application. Contextual information regarding issues of
privacy should be addressed in the privacy policy.

• Size: provides information on the size of the application.

• Screenshots and Video: presents demonstrative screenshots or video recordings of
the application in action in other cases it presents images of the expected features
of the application. The developers are allowed to make a variety of design choices
regarding the contents of the screenshots and videos as long as the contents are within
the technical standards of Google play. This component can often heavily be part of
the promotional component of the application.

9

4.2.2 Virus scanning web services

Virus scanning web services are services that serve reports of malicious behavior or vul-
nerability by aggregating and using a variety of virus scanning engines or services. These
services provide contextual information on whether a given application has already been
flagged or recognized as a malicious application. The services that are in use in this paper
include VirusTotal, OPSWAT MetaDefender cloud and Hybrid-Analysis.

• VirusTotal: aggregates over 60 virus scanning products or engines to detect malicious
behavior. It was acquired by Google in 2007 and it is an valuable web service for users
that are interested in getting reports on the malicious reputation of applications.

• OPSWAT MetaDefender cloud: offers over 30 antivirus scanning engines via the
cloud. It serves as a complementary tool to the reports provided by VirusTotal.

• Hybrid-Analysis: provides an analysis of threats for a given Android application.

Overall, with the combination of these virus scanning services that aggregate other virus
scanners, it is possible to acquire a near exhaustive contextual information regarding its
maliciousness of a given Android application.

4.3 Technical features

Besides taking account of the contextual information surrounding an application, it is im-
portant that the more in depth technical features are extracted and placed under scrutiny.
Several papers related to security use technical features that involve the Android manifest
file and APK source code components to evaluate the security related features of an Android
application [17]. In the following sections, Section 4.3.1 and Section 5.2.2, the overview of
the technical components are established and detailed.

4.3.1 String constants and obfuscations

String constants or string literals are constants that store a fixed sequence of characters.
In Android applications that are based on Java, these items are surrounded with double
quotation marks and they are one of the well-known methods that are used to obfuscate
snippets of code. Malicious applications can store literal encrypted string literals with meth-
ods which are activated at run time by using Java’s Reflection API. String literals used this
way would evade detection of common static inspections of the source code [5].

String constants as a feature are also useful in other aspects. They often contain the file
paths, URLs, IP addresses and other similar sets of data that is used by the application for
possible malignant reasons [18]. Although the string literals containing nefarious items like
URLs or IP addresses are likely to have been obfuscated or decomposed into fragments to
avoid detection, its possible to employ various detection and analysis methods to account
for such cases and study the behavior of a given application.

Several papers have used and analyzed string constants to assess malicious behaviour of
applications and those studies were the motivations behind examining and string constants
in the project [17].

4.3.2 API methods

API methods or calls outlines how an Android application interacts with the Android frame-
work. API calls provide an interface for interacting with the Android device components.
As an example, these methods include calls made to the camera device to capture an image,

10

calls made to the Android SMS manager to access contacts or calls made to interact with
the Bluetooth interface and several other more. These features can be used to flag certain
apps as suspicious using state of the art analysis tools [12]. The analysis of the API meth-
ods component has the potential to be resourceful in the process of detecting and deterring
zero-day exploits or vulnerabilities.

Certain applications that seldom request certain API calls that contain sensitive data are
resourceful in revealing hidden malicious behavior. This component works with regards to
the contextual information that details the intended or advertised purpose of the application
that would be compared against the underlying implementation of the application.

It is noted that API calls are not accessible to the Android application unless the user
explicitly grants permissions via the Android permissions API. However, the API methods
provide a more in depth insight to what exact methods are used for the requested permissions
and help assess the threat level of different levels of API calls.

5 Implementation details

In this section, the implementation details are outlined for the features for the contextual
and a subset of technical features. These features have already been described and discussed
in the Section 4.2 and 4.3 and in the following Section 5.2 the implementation details are
discussed.

5.1 Extraction of contextual features

To retrieve and extract the contextual features data from Google play and Virus scanning
web services, the services are queried and the results are processed, organized and format-
ted. To interact with these services, we use the different publicly available API endpoints
for each required task.

However, with one exception for the way the data is gathered from Google Play. The data
gathered from Google Play is collected through the methods of web scraping as there are
no alternative methods for querying and gathering information from Google Play. Google
Play does not officially provide a publicly available API for the information it serves on
its applications. This method of gathering the data through web scraping is quite reliable
and our tool uses two distinct Python based open-source libraries for collecting data from
Google Play.

The involved steps for gathering contextual component is shown as follows:

1. Acquire data from Google Play web based scrapers

1.1. Acquire data from play-scraper: play-scraper is a Python based library
that provides an interface for gathering information from Google Play about an
App. The package id of the application is given as a parameter.

1.2. Acquire data from google-play-scraper: google-play-scraper is a sec-
ondary Python based library that provides additional information provided be-
sides play-scraper.

2. Acquire data from VirusTotal API

2.1. Request via file hash: GET-request to VirusTotal public API using SHA256

digest of the file to gather contextual reports from virus scanning services.

11

2.2. Request via file upload: if enabled, it would allow request for a report by
uploading the APK file itself granted the report cannot be received via a request
through the file hash. Even when enabled the tool will not upload the file if
the report can be gathered through a request with a file hash (for increased
efficiency). Furthermore, this file upload is non-blocking for an execution with a
batch collection of tasks.

3. Acquire data from Meta-scan cloud API

3.1. Request via file hash: GET-request to Meta-scan cloud API using SHA256 digest
of the file.

4. Hybrid-analysis API

4.1. Request via file hash: GET-request to Hybrid-analysis API using SHA256 digest
of the file.

5. Acquire data on App store availability

5.1. Request via package name: GET-requests to selected few web-based App stores
to check if the application is available for download.

The collected data is finally written to the output file, details on the output of the application
is discussed in Section 5.3.

Figure 3: The steps involved in contextual feature extraction

5.2 Extraction of technical features

The extraction of the technical features involve analyzing the Android Application Package
(APK) through the use of existing tools. The tool that is in use in order to extract technical
features is Androguard and its overview is outlined in Section 3.1. Androguard provides

12

specialized functions that return Python based run time objects that present technical in-
formation regarding an Android application.

5.2.1 String constants and obfuscations

Given an Android application package using Android, the following steps are executed to
retrieve the string constants data set:

1st - Dalvik Analysis (dx) object is created.

2nd - The string analysis objects are acquired from the analysis (dx) object.

3rd - For each string analysis object, check whether it is obfuscated by checking if it is
obfuscated via common methods. If it is obfuscated, it is counted as an obfuscated
string and aggregated into a list. Strings that indicate snippets of executable Java
code or strings that have a different encoding are counted as possible string obfuscated
items.

4th - Present the list of string literals in the application along with a list of strings that
have been identified as obfuscated. The tally of possibly obfuscated strings is also
presented.

The method of checking whether a string is obfuscated or encrypted has definitive limi-
tations as it checks for common encoding methods or whether uncommon characters are
present. More sophisticated encryption methods are designed to be quite difficult to detect
and designed to be indistinguishable from random text of data.

The fact that encryption methods are made so that they are indistinguishable from random
text of data offers the possibility of detecting deliberate obfuscation. As encrypted pieces
of text are designed to have a very uniform distribution of alphabetical letters while the
English text has patterns of favoring the frequency of some letters using this difference as a
factor it is possible to develop a heuristic that detects encrypted strings.

However, this pattern only emerges for pieces of texts or strings that have long lengths and
as the detection method is based on general heuristics the reliability of the detection is lim-
ited. As the implemented obfuscation method has limitations, the tool offers the complete
list of string literals along with the list of obfuscated strings. With the component based
design, the user can enable the retrieval of only the obfuscated strings without collecting all
the string literals.

Furthermore, the string obfuscation heuristic uses a simple set of patterns shown in Listing
1 to identify possible executable snippets of code within the string constants. These sets
of patterns are parameterized as part of a configuration file and the user is free to provide
their own set of patterns for detecting executable codes within string literals.

Listing 1: Configuration file for customizing string obfuscation patterns

[String_Obfuscation_Sentinel_List]

sentinels = ["{", ";", "void", "[", "if (", "while(", "for("]

5.2.2 API methods

API methods consist of methods that are defined within the Android development frame-
work. These methods are accessed using an analysis (dx) object created by Androguard.
These methods are under objects that are called ExternaClass. An ExternalClass are
classes that are not defined APK, and are called external for this reason.

The steps involved in acquiring API method is as follows:

13

1st - Dalvik Analysis (dx) object is created.

2nd - The external class analysis objects are acquired from the analysis (dx) object.

3rd - From the external class analysis objects, the method analysis objects are acquired.

4th - From the method analysis objects, both the method and class name are combined
together as a unit with a form <class-name>::<method-name> and are stored in
terms as a histogram of API methods for the given application. This formatting and
organization is explored in detail in Section 5.3.

Overall, these provided methods (and classes) along with their frequency give an insight to
the inner workings of a given Android Application.

5.3 Output and formatting

A careful and deliberate consideration has been given into making sure a standard format-
ting is provided as an output for each component. There are two possible offerings that
the tool provides and they are comma-separated values (CSV) and the Java-Script Object
Notation (JSON).

The data is kept inside a Python dictionary and it is written into the CSV and JSON
formats in the final step of a feature component. The field package-name or the package-id
is used as the primary key for when the CSV or JSON files are written into.

5.3.1 Contextual features output structure

For the features extracted from Google Play, the structure is set so that for each field
described in the Google Play store, there is a corresponding header field for CSV and key
for JSON. A subset of formatted contextual data from Google Play is seen in Listing 2.

Listing 2: Snippet of contextual features sample data (Google Play)

{

"adSupported": true,

"androidVersion": "4.0",

"category": ["TOOLS"],

"comments": [

"Pretty perfect for me. I searched for a easy app to show me a straig ...",

"Excellent Compass... Can we please have a Setting to set the Lat / ... ",

"Really really good. Works very smoothly and has a good balance of fe...",

"A very nice app, it does all the jobs it promised to do. But the GPS...",

...

],

"containsAds": true,

"contentRatingDescription": null,

"content_rating": ["Everyone"],

"currency": "USD",

"current_version": "1.55",

"description": "Use this app to:- Save your current GPS ..."

"developer": "Evgeni Ganchev",

"developer_address": "Bulgaria, Plovdiv, ...",

"installs": "1,000,000+",

"package-name": "com.gpsnav.evo.gps2",

"privacyPolicy": "https://sites.google.com/view/gpscompass/gps-compass-e...",

"released": "Dec 29, 2014",

"reviews": 4546,

"score": 4.154867,

...

}

14

In the case of the results from the virus scanning services, there are three fields that provide
the number of antivirus engines that have identified a threat and in addition there are three
fields that present the list of the antivirus engines that identified the application as a threat.

Listing 3: Snippet of contextual features sample data (virus scanning services)

{

...

"HA_threat_score": null,

"HA_positives": null,

"HA_positives_list": null,

"opswat_result": "Infected",

"opswat_positives_list": ["BitDefender", "Commtouch", "Emsisoft", ...],

"vt_positives": 18,

"vt_positives_list": ["CAT-QuickHeal", "McAfee", "Trustlook", ...],

...

}

Output entry format for gathered virus scan reports:
"<scanner>_positives": <count-of-positives>

"<scanner>_positives_list": <list-of-positive-antivirus-scanners>

The <scanner>_positives fields describe the number of antivirus engines that have iden-
tified the application as a threat. The token <scanner> is HA for Hybrid-Analysis, opswat
for OPSWAT’s meta-scan and vt for VirusTotal. The same notation is utilized for CSV for-
matting where HA_positives, HA_positives_list and the rest of the fields are described
as CSV headers.

5.3.2 Technical feature output structure

The organization and presentation of the technical features follows simple approach and is
essentially similar to approach of the contextual features. The data is stored in Python
dictionary object and later written in a CSV and/or JSON file.

For API methods, a frequency distribution (histogram) is created and this distribution is
saved as a field under api-methods for each package identification name or package-name.

Output entry format for API Methods:
"<classpath><classname>[$innerclass]::<methodname>": <frequency>

Listing 4: Example of source code features sample data for API methods

{

...

"Landroid/hardware/Camera::open": 1,

"Landroid/hardware/Camera::release": 1,

"Landroid/widget/TextView::getAnimation": 1,

"Landroid/hardware/Camera::setOneShotPreviewCallback": 1,

"Landroid/hardware/Camera::takePicture": 1,

"Landroid/hardware/Camera::getCameraInfo": 1,

"Landroid/hardware/Camera$Parameters::setFlashMode": 1,

"Landroid/hardware/Camera$Parameters::setFocusAreas": 1,

"Landroid/hardware/Camera$Parameters::setFocusMode": 1,

"Landroid/hardware/Camera$Parameters::setMeteringAreas": 1,

...

}

15

In the example data (Listing 4), the application in question uses the Android API framework
to access hardware features and make API calls such as takePicture or getCameraInfo

to access the camera hardware device and capture images. The frequency of the API
calls is also provided alongside each API method. It is shown that the API methods
getAnimation(), setOneShotPreviewCallback(), takePicture() and getCameraInfo()

are called only once for the given random application sample.

In the case of string literal related features, when string constants component is enabled,
the list of string constants and string obfuscations are collected and a tally of possible
string obfuscations is recorded and presented. In the output, for each unique package-name

of an application, the list of all its string literals (all-string-constants), obfuscated
strings (possible_obfus_strings) and the obfuscation tally (possible_str_obfs_cnt) is
presented. An example of the string literals component is shown in Listing 5.

Listing 5: Example of source code features sample data for String literals and obfuscation

"app_details": [

{

"all-string-constants": [

"BookMark.db",

"BOOKMARK_TITLE",

"BOOKMARK_CONTENT",

"BOOKMARK_INDEX",

...

],

"package-name": "org.shofwatuna.magazine.AOVIDBXMHBCQYFOP",

"possible_obfus_strings": [

"onDoubleShow();",

"onSingleShow();",

"mShowing",

"onDoubleShow();this.showDialog();",

"onSingleShow();this.showDialog();",

"\u91ca\u653e\u5185\u5b58",

...

],

"possible_str_obfs_cnt": 52

}

]

}

This possible string obfuscation counter is a coarse probability based counter for string ob-
fuscations as detecting string obfuscation at statically significant accuracy is impossible as
string obfuscation can have unlimited ways of being generated. This limitation is the rea-
soning behind providing the string constants along with a count of possible string constants.
Any generalized string obfuscation detector will have limitations in detecting strings that
are obfuscated.

As the API methods of several applications are gathered and recorded in terms of frequency
to understand to observe the behaviors of the applications, attackers use alternative meth-
ods such as string obfuscations techniques to conceal their moves or behaviors.

Collecting string constants allows the user (researcher) to have the ability to directly work
with the data itself and not be limited to the list of string obfuscations that out methods
detect and present.

16

6 Evaluation

The tool is designed in such a way that each of the above discussed components and subcom-
ponents to be turned on or off for an execution. An execution involves two modes namely
batch mode or single APK analysis. There is not a major underlying difference between
the two modes, the only difference being the parameter for batch execution is a path to a
folder, while single execution uses a path to an application (APK). For this section, in order
to evaluate and stress test the tool, the batch execution mode is put into use.

VirusTotal offers a range of virus scanning engines to provide a report on malicious behav-
iors of given files or applications. However, this scanning service has a restrictive quota on
the quantities of reports that can be retrieved from the service, which also holds true for
most alternative virus scanning services. To overcome the problem and offer some additional
information on the contextual information regarding an Android application, virus scanning
services such as Meta-Defender’s OPSWAT and Hybrid Analysis are featured besides Virus-
Total.

These virus scanners offer more relaxed quotas and more importantly offer redundancy
to strengthen the information regarding the malicious behavior. In the following section
6.1, we explore the extent to which this extra information offers value and we explore the
performance of these components with respect to the overall performance of the contextual
component. We used a data set that consists of 3144 malware and 1543 benign sample
APKs and this data set was generously provided to us by our supervisor, Fadi Mohsen,
PhD.

6.1 Evaluation of reports from virus scanning services

To evaluate the featured virus report providing services, a malware sample that consists of
3144 APKs was run with the VirusTotal and OPSWAT web scanner components enabled.

The strict quota from VirusTotal sets the maximum allowed requests to be 4 requests per
minute. This set quota can be lifted if the tool is provided with an API key that is from
VirusTotal premium accounts. However, for cases when a premium key is not or cannot be
acquired, the redundancy offered by the report provided alternative services such as OP-
SWAT MetaDefender alleviates the problem and allows most of the malware components to
receive antivirus reports.

When the virus scan report for an APK is required, the virus scanning web services are
queried via the hash digest of the APK. However, this report might be absent for various
reasons such the hash being not present in the database of the scanning services, or the
strict quotas set by the virus scanners to query their service.

Changing the tool to accommodate for these quotas would result in a large performance
overhead and completely disregarding tools with strict quotas would limit the quality of the
virus detection contextual component and thus by utilizing a mix of virus scanning services
(VirusTotal and OPSWAT with the addition of Hybrid-analysis) a much more complete and
more refined reports for a given APK sample.

For a malware sample set that consists of 3144 APKs, the total number of absent or present
reports are counted and reported in Table 2.

17

(a) Presence or absence of virus scan reports (b) Presence or absence of virus scan reports (%)

Table 2: Amount of present/absent reports from antivirus services (3144 malware APKs)

As shown in Table 2, by offering both VirusTotal and OPSWAT as virus scanning services
simultaneously, it is possible to achieve greater quantities of reports for a large sample set
that contains several APKs. For a given APK within a large sample set, a report from
OPSWAT is present about 50% of the time on average and in the case of VirusTotal around
30% of the time.

Overall, for a malware sample set of 3144 APKs, it is measured that virus scan reports from
VirusTotal and OPSWAT is absent simultaneously from both services at about 35.46% of
the time making it possible to acquire at least a single virus scan report in a large sample
set to happen 64.54% of the time.

Using both VirusTotal and OPSWAT simultaneously provides an improvement in the ab-
sence/presence of reports of 116% over simply using VirusTotal alone and a 30% improve-
ment over simply using OPSWAT alone as an average for a malware sample set (3144
APKs). It should be noted that as these rates are applied for publicly available free ver-
sions of both services with no requirements monetary related requirements to utilize the tool.

Furthermore, as the database that VirusTotal and OPSWAT utilize is ever growing and im-
proving the presence of reports and reports from these services will be available at greater
rates than the aforementioned rate of 65%.

An additional virus scanning service, Hybrid-analysis, provides additional information and
complements the reports from the virus scanning services discussed prior. All these additions
or mixes are implemented in such a way that the gathered features are as comprehensive as
possible with a suitable performance that can accommodate large sets of APKs.

For samples that have a report from both VirusTotal and OPSWAT consisting of 14.34%
of the cases, it is possible to examine the results of these reports to observe the rate at
which the reports from VirusTotal and OPSWAT provide information that is conflicting or
agreeable information. This involves examining cases where a report from VirusTotal might
conclude a given APK is infected while the other reports it is threat free.

18

(a) Number of positives/negative results (b) Percentage of positives/negative results

(c) Conclusion of reports

Table 3: Rates of positive and negative results for a set of malware samples

Table 3 shows the rates of positive or negative results for a presence of malicious behavior
in a given application. It can be seen that for the contextual data that is collected for 451
APKs (14.34% of the total malware set, a set for which a report is available from both
VirusTotal and OPSWAT), both reports indicated negative results for 12 times (2.66%) and
both reported positive results 420 times (93.35%).

Overall, the reports from VirusTotal and OPSWAT is agreeable 95.79% of the time. This
is summarised in Table 3c which shows the rate of consistent or conflicting conclusion of
reports from VirusTotal against OPSWAT for the used malware sample set.

Now that the use of combining of these virus scanning services is explored, next the per-
formance of the components that make up the contextual component are evaluated in the
subsection 6.2.

6.2 Evaluation of the performance of the components in contextual
feature extraction pipeline

To gather and extract contextual information for a given set of applications, there are some
steps involved which are described in Figure 3. In this subsection, the performance of the
contextual component is evaluated by presenting the average time each step takes in the
contextual feature extraction.

The performance metrics for the contextual component is measured for a sample set that
consists of 316 APKs. Table 4 shows the average and other statistical measurements on the
time taken to gather contextual data for the sample set of 316 APKs. The samples exhibit a
relatively high variability (SD), the Median and the Range are also gathered and presented
in the table.

19

Table 4: The performance metrics contextual component (316 APKs)

As seen in Table 4, it takes 4.98 seconds to gather contextual information for a single APK
for a batch task consisting of several APKs. On average, this number is slightly lower for
tasks in which only a single APK is analyzed instead of a batch of APKs. This reduced
time occurs because a batch task makes consecutive query requests to gather contextual
information for APKs that has incurs some performance overhead.

The data shown in Table 4 is plotted in relative terms to illustrate the proportion of time
that the contextual sub-components take for a run. Speaking proportionally, checking if
an app is available in different app stores takes the most amount of time: 2.77 seconds or
55.68% of the total time per APK whereas writing to the output files takes the least amount
of time: 0.05 seconds or 0.96% of the total time.

Figure 4: Breakdown of contextual data extraction pipeline (set size: 316 APKs)

It is an important observation that even if the writing to the output files takes the least
amount of time, however the time it takes grows linearly as the size of the output file grows
and more entries are inserted over time. This effect can be mitigated by partitioning the
sample set and the output file to a certain size and handling or compiling the sets as the
user wishes in the end.

20

6.3 Evaluation of the performance of the components in source
code feature extraction pipeline

The steps involved in gathering the source code components for string constants and API
methods are outlined in Subsection 5.2.1 and 5.2.2. These components are individually
bench-marked and the data on some of the performance metrics is gathered and presented
in Table 5.

Table 5: The performance metrics of source-code components (Strings constants and API
methods only) (316 APKs)

Gathering the string constants and the API methods from the Androguard dx analysis object
takes 0.065 and 0.005 seconds or 0.381% and 0.028% on average respectively. Creating the
dx analysis object takes the most amount of time 13.141 seconds or 77.664% of the total time
for this particular source-code feature extraction pipeline. Gathering the string constants
and the API methods from the dx object takes the least amount of time since the creation
of the dx object involves gathering the string constants and the API methods together and
retrieving these items from this analysis object is a trivial task.

Figure 5: Breakdown of source code data extraction pipeline (set size: 316 APKs)

As the source code related data is gathered over several APKs, in particular for the case
of String constants and API methods, the output that is generated becomes fairly sizable
over time. This translates to more time being taken by the steps that write to CSV or

21

JSON. This increase of time consumption by writing to the output files is illustrated in
Figure 6.

Figure 6: Writing to CSV and JSON over time in batch task for 158 APKs (API methods
and string constants enabled)

This increase in time consumption is also present for the contextual component but at a
lesser effect since the data generated by the contextual component is much smaller than this
source code component. An approach where the sample set and the output generated is
partitioned by the user and only using these components for smaller data sets will prevent
extra time from growing or having an effect. In this manner, the user has control to request
to gather a more verbose data extraction suited for smaller sample sets or a basic or light
data extraction suited for large data sets.

7 Results and analysis

Now the tool itself has been evaluated, in this section, some basic demonstrative analysis is
conducted on the results that are gathered from the contextual and source code components.
Data is collected for a sample set that consists of 1580 malware APKs and the observations
are presented in Section 7.1 and 7.2. All the figures and data are gathered and used the
information directly from the output files generated by the Ultimate Feature Extractor tool.

7.1 Contextual features results and analysis

A subset of data gathered from Google Play and the virus scanning services are presented
and analyzed moderately in the following subsections of 7.1.1 and 7.1.2.

7.1.1 Google play contextual features results and analysis

The contextual features from Google play as listed in subsection 4.2.1 include the number
of installs that an application received. This number of installs provides an insight to the
popularity of an Android application with greater installs corresponding to greater popu-
larity. For a sample set consisting of 853 benign and 119 malware APKs, the distribution
of installs is illustrated in Figure 7a and 7b.

22

(a) Distribution of installs for benign samples (b) Distribution of installs for malware samples

Figure 7: Distribution of installs benign and malware samples

The number of installs for some of the malware applications is large in size, in fact for the
dataset illustrated above (Figure 7), the malware APKs are generally prevalent for installs
that are greater in size. This observation is more clearly displayed in Figure 8 where the
number of installs is presented as in relative terms or as as a ratio to compare the frequency
of installs for the sample set of benign versus malware samples.

Figure 8 shows the benign APKs are more prevalent for installs less than 500,000+ and the
malware samples are more frequent for installs greater than 500,000+ for the given sample
set. Based on the collected data, the malware samples are absent for installs less than 1000+.

Attackers often target popular and prevalent APKs to embed malicious code within the
APKs, distribute them after repackaging them as the original harmless application [7]. This
sample set illustrates how applications that are popular are targeted. According to the
collected data, it is more common to find malware samples that are tied to applications on
Google play with installs greater than 1,000,000.

Google play employs some measures to prevent malicious apps from being served on its store
but it has limited prevention capabilities for apps that are repackaged with malware [16].
Overall, this contextual information is useful for detecting repackages and illegitimate apps
distributed through unpopular means.

23

Figure 8: Normalized distribution of installs on Google Play for benign and malware samples

The evidence for repacking also does not end with the number of installs. The user ratings
of an application also give an insight to some evidence for repackaging. This is illustrated in
Figure 9 where the contextual data gathered from Google Play on the malware and benign
samples is normalized and the ratio of the frequency of reviews is compared between the
benign and malware samples.

Figure 9: The average distribution of reviews on Google Play for the Benign and Malware
samples used (853 and 119 APKs respectively)

As shown in Figure 9, the normalized distribution is nearly identical between the malware
and benign samples showing the data gathered from Google play for the malware samples
is the contextual data for the genuine applications that are not repackaged with malicious
code. The distribution of the reviews is presented in Table 6. It can be seen the difference
between reviews in benign and malware samples is less than 0.5% on average for the samples.

24

Table 6: Distribution of 5 star reviews for benign and malware samples

The user of the tool could employ more robust comparison or variability measurements to
compare and contrast these data sets. For the purposes of this paper, which focuses on the
tool itself rather than the processed results only this basic comparison will suffice.

7.1.2 Virus scanning contextual features results and analysis

Contextual features are enabled and data is gathered for a sample set that contains 3144
malware APKs. Out of these requests 888 and 1453 positive reports were aggregated from
VirusTotal and OPSWAT meta-scan respectively. These reports are presented as entries in
the contextual output files. Each entries contains a list of antivirus engines from the virus
scanning services that have identified the given application as a threat.

For the malware samples, the list of positives for each entry is tallied and plotted as a
histogram where antivirus engines that frequently identify the malware samples as threats
appear in the diagram on the left. Figure 10 and 11 show the sorted list of antivirus scanners
from left to right with the antivirus scanners with high frequency of positive detection
appearing on the left.

Figure 10: The shares of positive results of VirusTotal scanners from 888 positive reports

25

Virus scanners ESET-NOD32, McAfee, Ikarus, NANO and Avira have successfully and fre-
quently identified most of the malware apps present in the sample whereas the virus scan-
ners WhiteArmor, Panda, Yandex, ALYac and KingSoft identified the malware samples at
poorer rates. For the reports received from OPSWAT, BitDefender, NANOAV and Ikarus

achieved relatively high rates of positive detection from the collected reports while F-prot,
McAfee and Windows Defender reported positive results at a relatively poorer rate.

These figures provide a coarse estimate on the performance of the virus scanning engines
in identifying threats. Furthermore, these figures illustrate that the reports from well per-
forming virus scanning engines are close in number and they reinforce the accuracy or the
conclusion of the report for a given sample APK.

From the 888 reports collected from VirusTotal, the best performing 28 antivirus scanners
have given positive results 450 times or higher (around 50% of the 888 positive reports).
And for the 1453 positive reports from OPSWAT, the 6 most successful antivirus scanners
contributed to the positive reporting at around 750 times or higher (around 50% of the 1453
positive reports).

Figure 11: The shares of positive results of OPSWAT scanners from 1453 positive reports

From this figures, its clear to see on average, the reports generated from VirusTotal consist
of longer lists antivirus scanners that conclude a positive result on a malware sample in
contrast to the results from OPSWAT with shorter lists positive scanners on average.

Moreover, it can be noted that even if VirusTotal and OPSWAT share a certain common
subset of antivirus scanning engines, the outcome of the conclusion might be varied. For
instance, the antivirus scanner BitDefender has achieved the highest rates of positive de-
tection (74.74%) from the OPSWAT positive reports while it performed at a much lower
detection rate (10.02%) from VirusTotal. Similar case with McAfee antivirus scanner con-
tributing for 88.96% of the positive reports in VirusTotal and 0.14% of the positive reports
from OPSWAT.

26

Despite these varied performances of antivirus scanners, VirusTotal and OPSWAT reach the
same or a consistent conclusion 95.79% of the time for a given malware sample as outlined in
Section 6.1 and the redundancy of the reports from these services offer increased reliability
and form a fail-safe feature for when reports cannot be retrieved with limited impact on the
overall performance of the tool.

7.2 Source-code features results and analysis

The source code features that include API methods and string constants. API methods
are presented as a frequency of how many times they are used in the source code of the
application. This enables the user to trace which methods are used and how frequently.
Figure 12 illustrates the frequency of API methods along with their corresponding API
classes for a randomly picked APK sample.

Figure 12: Frequency of API methods for a sample APK

It can be seen that this particular sample uses the putExtra(...) API method the most
(16 times) and this API method belongs to the android/content/intent class. It uses
the append(...) method from the class StringBuilder second most frequently at 12 times
and so on. The API methods, particularly related to android, provide some vital insights
when studying suspected malicious behavior of an Android application.

In the case of string literals, from the gathered data of most applications both from benign
and malware samples exhibited some possible string obfuscation. Some of the string literals
contained codes written in JavaScript while others included strings that are non Unicode
based or an encoding such as base 64.

27

8 Conclusion

The Ultimate Feature Extractor tool provides a simple component based interface for ag-
gregating sets of contextual and technical features on sets of Android applications. These
sets of data provide insightful and applicable sets of information in the context of mobile
security research. To answer the research question, gathering the contextual and technical
features that have been examined in this paper has the effect of providing worthwhile sets
of information that can be utilized in a variety of ways in different contexts. The sets of
compiled data contribute to the process of identification, analysis and classification of An-
droid applications on basis of security, privacy and other similar fields.

The tool is designed to incorporate commonly sought after features and it is made to fa-
cilitate the data gathering process in the mobile security research pipeline. To limit the
burdens that can occur from data that consists of several features at once, the tool provides
a configuration in which the user can prioritize which clusters of features they want to collect
by enabling or disabling components.

The tool is also made with the priority of delivering data straight from the Android package
file to the user as the tool’s main goal is primary extracting and presenting data.

The tool has certain limitations and some features that have yet to be incorporated as part
of the future work of the tool (Section 9). The amount of reports that can be gathered
from virus scanning services have set quotas. As the tool integrates several scanning ser-
vices simultaneously for reduced chances of missing reports, there can be some occurrences
of missing reports. In the case, an access token is present that has no quota restrictions,
then this limitation will be fully alleviated as this required token is parameterized under the
configuration of the tool.

Overall, the tool is a worthwhile data gathering utility for works related to Android secu-
rity. Users can utilize the gathered information for statistically based classification or clus-
tering algorithms or otherwise for extensively investigating their own Android application
of interest. It also incorporates other details to aid the research process by offering sim-
ple installation, configuration and execution of the tool with additional productive features
such as progress tracking and error handling to improve the overall interaction with the tool.

The work related to gathering features evolves over time and has areas for exploration and
growth. The tool certainly has areas for that can be improved and extended. Our work
provides some basic model or a basis for an ever improving, iterative but yet extensive
Ultimate Feature Extractor tool with the main goal of advancing/streamlining the research
done on the security of mobile device applications.

28

9 Future work

There are a variety of recommendations to be made to enhance or improvement the perfor-
mance or the robustness of the tool.

These improvements or works are outlined as follows.

• Support for parallelization or concurrent processing of tasks. As batch requests are
presented for the tool, the given APKs can be handled in parallel manner with an
approach that pays careful attention to safety when parallel processes manipulate the
output files. The components can be made to be executed in parallel for a given set
of tasks.

• Support for gathering permissions from Google Play as part of contextual data. This
permissions list gathered from Google Play can be compared with the permissions
from the manifest file to detect possible repacking of applications.

• Support for Dynamic run-time analysis component. There are sets of data that can
only be acquired by running a given Android application. Researchers analyze certain
run-time behaviors to identify activities that are obfuscated and hard to detect using
static analysis.

• Support for an improved and a more robust way of detecting String obfuscation.
Detecting the encryption of strings at a statistical significant rate is one of the most
challenging tasks of information security research. The limited (probability based)
string encryption detection that we present in our tool has areas to be iteratively
improved or reworked for tasks in the future.

29

References

[1] Steven Arzt. Flowdroid static data flow tracker, Jan 2019.

[2] Anthon Desnos. Androguard, reverse engineering, malware and goodware analysis of
android applications, Feb 2019.

[3] Android Developers. Documentation for app developers.

[4] Intellij developers. Fernflower, analytical decompiler for java, 2017.

[5] Shuaike Dong and et al. Understanding android obfuscation techniques: A large-scale
investigation in the wild. In Raheem Beyah, Bing Chang, Yingjiu Li, and Sencun Zhu,
editors, Security and Privacy in Communication Networks, pages 172–192, Cham, 2018.
Springer International Publishing.

[6] Patrik Lantz. Droidbox, dynamic analysis of android apps, Aug 2014.

[7] Yuping Li, Jiyong Jang, Xin Hu, and Xinming Ou. Android malware clustering through
malicious payload mining, September 2017.

[8] Rahman M, Carbunar B, and Chau DH. Search rank fraud and malware detection in
google play. IEEE Transactions on Knowledge and Data Engineering, 29:1329–1342,
June 2017.

[9] Alejandro Mart́ın Garćıa, Raul Lara-Cabrera, and David Camacho. Android malware
detection through hybrid features fusion and ensemble classifiers: The andropytool
framework and the omnidroid dataset. Information Fusion, 52, 12 2018.

[10] Eugene Minibaev. Static dalvik vm bytecode instrumentation. 06 2017.

[11] Bob Pan. dex2jar, tools to work with android .dex and java .class files, Jun 2015.

[12] N. Peiravian and X. Zhu. Machine learning for android malware detection using permis-
sion and api calls. In 2013 IEEE 25th International Conference on Tools with Artificial
Intelligence, pages 300–305, 2013.

[13] Benjamin Peterson. Pep 373 – python 2.7 release schedule, April 2014.

[14] Peter Teufl, Michaela Ferk, Andreas Fitzek, Daniel Hein, Stefan Kraxberger, and
Clemens Orthacker. Malware detection by applying knowledge discovery processes
to application metadata on the android market (google play). Future Generation Com-
puter Systems, 9:389–419, March 2016.

[15] Connor Tumbleson and Ryszard Wísniewski. Apktool, a tool for reverse engineering
3rd party, closed, binary android apps, Nov 2019.

[16] Haoyu Wang, Hao Li, Li Li, Yao Guo, and Guoai Xu. Why are android apps removed
from google play?: a large-scale empirical study. Proceedings of the 15th International
Conference on Mining Software, 29:231––242, May 2018.

[17] Wei Wang and et al. Constructing features for detecting android malicious applications:
Issues, taxonomy and directions. IEEE access 7, 7(10):67602––67631, 2019.

[18] Xing Wang and et al. Characterizing android apps’ behavior for effective detection of
malapps at large scale. Future Generation Computer Systems, 75:30–45, 2017.

30

