UNIVERSITY OF (GRONINGEN

BACHELOR THESIS

Ultimate feature extractor for
Android mobile applications -

Technical Features

Author: Supervisors:
' Dr. Fadi Mohsen, PhD
Haoran X1a (s3470534) Dr. Fatih Turkmen, PhD

July 18, 2020

rijksuniversiteit
groningen

Abstract

Android systems have long had the ability to install third party
software through unofficial sources. This has resulted in these systems
being a prime target for malicious intent. Current research has focused
on extracting security features from Android applications and deter-
mining whether they are a safety threat or not using machine learning
algorithms and other methods. However, researchers tend to use their
own tools and data which leads to incomparable research results across
different research. Thus we would like to propose an ultimate feature
extractor that is able to combine different kind of features from differ-
ent categories into one, with the possibility of adding and/or removing
features as the user wishes. In this paper we propose the technical
feature extraction part of the feature extractor. Such features includes
information that can be obtained by analyzing files in an Android ap-
plication.

Contents
1 Introduction

2 Background Information

2.1 APK: Android application package
2.2 Contextual features
2.3 Technical features

3 Utilized tools

3.1 Work environment
3.2 Datasets
3.3 Androguard
3.4 Dex2jaro
3.5 Fernflower

4 Implementation

4.1 Introduction
4.2 Tooloverview e e e
4.3 Initialization and use
4.4 Features
4.5 Manifest file features
4.6 Sourcecode features.
4.7 Miscellaneous features
4.8 Output formatting oL
5 Results
5.1 Statistics
5.2 Artificial Intelligence oL
5.3 Other methods
6 Performance
6.1 Manifest file features
6.2 Sourcecode features.

7 Future work

7.1 Dynamic feature extraction
7.2 Alternative feature extraction methods
7.3 Performance enhancements

8 Conclusion

11
11
11
11
13
13
15
20
22

24
24
27
27

28
28
29

31
31
31
32

33

1 Introduction

Android systems are a popular platform for mobile devices, currently domi-
nating the mobile operating system market by a huge margin [1], it has thus
become an equally large platform for malicious intent. Android systems,
unlike i0OS systems, allow users to install applications in the form of APKs
through various kinds of sources other than the official Google Play Store,
which has security measures in place against malicious apps. These alter-
native sources include Torrents, direct downloads, and third-party markets.
However most unofficial sources do not possess such preventive measures.
This means that Android application developers can easily include malware
in their products and unknowing end-users could end up executing malicious
code on their devices.

One common method to classify an application as benign or malicious is
by extracting certain properties from the application and then classifying
the app based on these properties. These properties are called features and
are often used by researchers to identify maliciousness of an application. We
will go more in-depth into this later on.

However, research groups tend to extract and parse features using their
own tools. These tools are also often specialized for a particular subset of
features so researchers that wish to use many features might have to acquire
multiple tools. The fact that tools tend to be specialized and independently
developed makes it often hard to compare results and combine data from
such tools. Research produced using different tools can thus also be hard to
compare. That is why we have developed an universal feature extractor that
can extract various features most often used by researchers. Our aim is to
provide researchers with an universal tool that helps them extract any de-
sired features from Android applications. This removes the need to develop
their own personalized extractor. This also allows researchers to compare
results as the extracted features would follow the same formatting.

Thus we shall tackle the following research question:

1. How do we develop an ultimate feature extractor?

To answer this question we must look at several sub-questions that as a sum
will answer the main question:

1. What features should we aim to extract?

2. Can we make use of existing features, tools, and/or frameworks to
achieve our goal?

As a final note, the goal of this particular paper is to mainly focus on a
subset of features implemented in the Ultimate Feature Extractor. We will
be looking into what technical features, especially static technical features,
are often used for Android security analysis and why those specific features
were chosen. The contextual feature part and a subset of technifal features
of the tool are implemented by my partner Yona Moreda. We designed
several overlapping components together such as the application structure,
and input and output formatting.

2 Background Information

Every Android application must follow a certain structure in the form of an
APK. This means that a systematic method can be developed to extract
information from an application. These bits of information are often called
features and can be split into several categories: contextual features and
technical features. Technical features can be split into two further categories
namely static and dynamic features.

2.1 APK: Android application package

An APK is a package that contains the files required for an Android appli-
cation. An APK usually contains the following files and directories:

1. META-INF: Directory created when signing the APK after compi-
lation.

(a) MANIFEST.MF: This manifest file contains information that
is used by the Java run-time environment when loading the APK.
Information such as where the Main class is resides here.

(b) CERT.SF: This file contains a list of all the files and their SHA-1
digest.

(c) CERT.RSA: This file contains the signed contents of the CERT.SF
file.

2. lib: directory containing compiled code. This directory may contain
multiple subfolders where compiled code exists for specific hardware
architectures.

3. res: directory containing resources that are not compiled into re-
sources.arsc

4. resources.arsc: file containing precompiled resources.

5. assets: This folder contains any media files. These files can be re-
trieved using the AssetManager class.

6. DEX files: The actual sourcecode of the application is compiled to
DEX format and can be found in these files. The original sourcecode
is usually Java (or another JVM interpreted language such as Kotlin).

7. AndroidManifest.xml: An additional manifest file that contains
information about the application. Information such as package name,
app components, permissions, and more.

In this project we mainly focus on the AndroidManifest.XML file and
the DEX files. This is because the features that are most often extracted
originate from these files.

1

—> META-INF

resources.arsc
APK

| — assets

— AndroidManifest

:I_‘

DEX Files

Figure 1: APK Structure overview

2.2 Contextual features

Contextual features are obtained without analyzing the APK itself. In-
formation that can be found on the internet (or any other context) that
describes the application such as developer name, application rating, and
virus-scanner results belong to this category.

2.3 Technical features

Technical features are bits of information that can be extracted by analyzing
the application. Obtaining such information requires unpacking an APK
and analyzing the different files inside. Such an analysis method is called
static analysis. Besides unpacking an APK it is also possible to execute
an application and investigate its behaviour. Obtaining information from a
running application is called dynamic analysis.

Static features

Static features belong in the technical feature category and can be obtained
without executing the application. This makes it an efficient feature to
extract due there being no overhead of running an application. Examples
of static features would be manifest file information, source code patterns,
compiled bytecode patterns, more or less anything inside the APK file. Es-
pecially the manifest file is an efficient source for feature extraction. Since
the file contains application information in XML format, it can easily be
parsed and useful information such as permissions can be extracted quickly.

Dynamic features

Dynamic features are often harder to extract. Such features often require
some environment to run the application in and the generation of user input
before behaviour can be observed [2]. When the application emits behaviour
the information is logged and further analyzed afterwards. This information
may include network data, file read /write information, and more.

3 Utilized tools

There already exist many tools out there that can aid in analyzing an APK
file. Tools that decrypt an APK, extract the different files in there. Tools
that allow us to decompile DEX files into Java sourcecode, and more.

For our specific project we utilize a framework called Androguard for most
technical feature extraction. We have also added a second option for analyz-
ing and decompiling DEX files using dex2jar and the fernflower decompiler.

3.1 Work environment

The development and testing of the tool has been done on both Windows
(10) and Linux (Ubuntu) operating systems. As for the tool itself, Python
version 3.8 has been used during the development.

3.2 Datasets

The datasets used were all provided by professor F.D Mohsen. The datasets
were split into benign and malware APK samples and we extracted features
with those categories in mind.

3.3 Androguard

Androguard [3] is a Python based framework that allows us to inspect and
investigate APK files. It contains functionality for almost everything that
we wish to accomplish. It is a framework that has been used by many
applications that perform some form of Android security related task [3].
In short, Androguard allows us to call functions that parse the APK file.
These functions return objects containing a plethora of methods and fields
that aid us in our feature extraction.

For our specific use we mainly use Androguard for manifest file and source
code analysis.

Manifest file functionality

The Androguard function AnalyzeAPK() returns an Androguard. APK
object containing functionality that allows us to extract meta-data from the
APK file. We mainly use this object to extract data from the AndroidMan-
ifest. XML file. In our implementation, the APK object is used to extract
features such as the package name, permissions, used hardware features,

used software features, and many more useful bits of information. A com-
prehensive list is available in the implementation section.

Source code functionality

Androguard also allows us to peek into the decompiled sourcecode and com-
piled bytecode of the APK. Such information resides in the DEX files. We
construct the nessecary Androguard objects and use the default decompiler
(DAD) that comes with the Androguard framework for any Java sourcecode
related features.

When we do sourcecode analysis we construct two Androguard objects, to
be specific the following two:

1. d - object: This is an array of Androguard.DalvikVMFormat objects.
A DalvikVMFormat object contains information about one DEX file
in the APK. If there are multiple DEX files then we must associate
each DEX file with a DalvikVMFormat object. Regardless of the fact
whether one there is one or more DEX files, the DalvikVMFormat
objects are put into an array. The DalvikVMFormat object contains
a plethora of functionality that allows us to do things such as getting
the classes, classnames, methods, sourcecode, and more.

2. dx - object: An Androguard.Analysis object. This object contains
information about multiple DEX files. If the APK has multiple DEX
files then we can construct a DalvikVMFormat for each DEX file and
from there we can link them to the Analysis object. The main reason
to use the Analysis object for multiple DEX files is that it contains
special functionality for extracting features across multiple DEX files.

3.4 Dex2jar

Dex2jar [4] is a lightweight tool that allows us to convert DEX files into Jar
files containing Java class files. We use this tool as an intermediate step to
go from DEX files to Java source code files.

3.5 Fernflower

Fernflower [5] is a decompiler for Jar files containing Java class files. It
is the build-in decompiler for the Intellij IDE and is thus also developed
by Jetbrains. After feeding the tool with a Jar file containing Java class
files it generates a Jar file with Java sourcecode files inside. Using simple
techniques we can read these files as a string and use regex expressions to
search the sourcecode for anything we wish for.

10

4 Implementation

In this section an overview is given about the layout of the tool. We will
talk about the different features and functionality that the tool provides and
design decisions.

4.1 Introduction

The main idea of the project was to develop an extendable tool that can
extract different features from an APK. We chose Python for this purpose.
Python is a high-level language that is readable and easy to work with.
Besides this, the fact that Androguard is a Python framework was also
a big motivation for choosing this language. Androguard can be seen as
the backbone for our project. The existence of this framework made it a
lot easier to develop our feature extractor, and as can be seen from the
implementation, most of the features that we extract rely on Androguard
provided functionality.

4.2 Tool overview

Our tool is a simple Python 3 program that can be run on the command shell.
The program accepts a folder of APKs or a single APK. Included with the
program is a settings.ini file that gives the user full freedom of what features
to enable and/or disable. Such a file also allows future developers to easily
add their own modules and optionality for enabling them.

4.3 Initialization and use

Python comes with many frameworks and tools out there that helps us in
managing a project. For this reason we use a tool called Pipenv. Our project
uses many libraries, Pipenv allows us to manage all of this properly. Before
using the tool, it is recommended to create a Pipenv environment with the
command:

pipenv shell

After this is done all the required packages can be installed with the com-
mand:

pipenv install

11

The resulting state is that an environment for this specific project is cre-
ated with all the required packages residing in that environment. Note that
outside of the environment the packages are not installed unless they are
installed globally.

To use the application we have to activate the environment first by using
the command:

pipenv shell

Once the environment has been started we can start extracting features from
a single APK or a batch of APKs using the following commands:

1. Single APK execution mode: python main.py -sAPK <path-to-apk>

2. Batch APK execution mode: python main.py -s <path-to-apks-folder>

Ultimate Feature Extractor

Contextual Features Technical Features

- Google play information
- Availability
-Virus scanning service dats

Manifest File Features Sourcecode Features
- Package name - Opcodes
- Permissions - Obfuscations
- Intents - Reflection usage
- Activities - Keywords
- - APl methods
- String constants

Figure 2: Overview of the Ultimate Feature Extraction Tool

12

4.4 Features

There exist much research work in the field of Android feature extraction.
This means that we have to be careful as to pick what features we will be
extracting and what features we will be omitting. First of all, our focus is
on the static technical side of feature extraction. This means that we can
already omit a big list of features. We have researched existing papers and
found one particular source that investigated what features other researchers
tend to use for their work [6]. Using this work as a general guideline, we have
thus investigated research work that performed actual feature extraction and
based our tool on what features were most commonly obtained. Some of the
features we extract are: API calls, intents, App components, Operation
Code (Opcodes), String constants, and more. Note that my partner worked
on contextual features and a subset of technical features such as API calls
and String constants.

4.5 Manifest file features

Manifest file features belong to the category of static technical features. The
manifest file contains information that describes the application and is in
an easy to parse format (XML). This means that we can quickly extract
information from it. One thing to note that this file is initially encoded
however Androguard automatically decodes this file once you construct the
appropriate object.

We extract manifest file features using the Androguard framework. The
Androguard framework allows us to construct an APK object. By call-
ing the constructor for this class in the androguard.core.bytecodes.apk
module. We then pass the APK object to a function that handles the ex-
traction of manifest file features. All the feature extraction is done using
functionality that the APK object provides.

An example of Androguard functions that we use can be found below:

apk.get_package() //Gets the package name
apk.get_permissions() //Gets the permissions
apk.get_features() //Gets the hardware/software features used

13

Extracted features

We extract the following information from the manifest file:

1.

2.

Package name: The package name identifies the application.

Permissons: When an application wishes to access sensitive user
data or system features it needs to ask for permissions first. These
permissions are to be described in the AndroidManifest. XML file and
by extracting them we can get an general impression about the APK
in question.

One thing to note is that an application can define their own per-
missions. This means that if a third-party application wishes to use
another third-party application’s features, it has to ask for permis-
sions from that application first. However, a comprehensive list of
such permissions can not be complete so for our tool we allow the user
to provide their own list of permissions in a txt format. By default we
use the well defined Android system permissions [7]

Used features: Android applications can make use of features that
are present on the device. Features are split into hardware features
such as the camera, microphone, and software features such as webview
(the ability to display content from the internet in the app), and many
other things. The features that we extract are the ones defined in the
Android documentation [8]. We also give the user the option to provide
their own list of features to extract.

Activities: Activities are the entry point for interaction with the
user. When an app is invoked by the user or another app, an activity
is called to determine what to happen next. The features we collect
are the names of the activities present in the application.

Services: Services are a component in Android applications that per-
form long-running operations in the background. For example, a music
application may be playing music in the background while the user is
using some other application.

Receivers: Receivers are places that receive messages from various
kinds of sources. For example when the phone enters airplane mode,
a message is sent to applications to let them know what is happening.

14

7. (Content) Providers: This component supplies data from applica-
tion to application upon request. Content providers allows you to
centralize data in one area and have different applications request or
modify data from it. It can be seen as a database for data.

8. Intent filters: Intents are objects which request actions from an-
other app component. Intent filters are the places that receive the
corresponding intents. If an intent filter matches an intent then that
component is started to handle the received intent.

9. Libraries: If the application uses some specific shared library that
the application must be linked against then it should be specified using
these tags.

Manifest feature extraction motivation

As mentioned before, manifest file are cheap and easy to extract. The An-
droguard framework makes it especially easy to extract as it comes with a
plethora of functions to extract specific data. Manifest file are often used in
combination with classification algorithms where the extracted features are
used to train such an algorithm so that it is able to classify unlabeled data
into benign or malicious [9] [10] [11].

4.6 Sourcecode features

Sourcecode features belong to the static technical features category. We
extract sourcecode features using the Androguard framework. We initialize
the required objects, (d - DalvikVMFormat, dx - Analysis) objects,
and then pass them on to our functions that handle sourcecode feature
extraction.

In our tool we have opted to extract three main features. These features
are:

1. Opcodes: We can obtain Dalvik opcodes by analyzing the bytecode
using Androguard. This can give us an insight into application be-
haviour on a low level. Opcodes have been used as a feature in various
research work [12] [13] [14]. The opcodes that we extract are con-
sistent with the Android defined opcodes that can be found in the
documentation [15].

2. Identifier obfuscation: A common way of obfuscation is by replac-
ing identifier names (variables, classnames, etc..) with meaningless

15

9 Y

gibberish such as ’a’, 'aa’, 'aaa’. [16]. Popular obfuscation tools such
as Proguard, Allatori, and many more use this technique.

3. Java reflection usage: Reflection is a Java specific feature that al-
lows the developer to hide program behaviour. With reflection the
developer can call functionality from other classes in a roundabout
way which can be hard to detect by many analysis tools [16]. Thus
reflection might be an indication of malicious intent.

We extract identifier obfuscation and Java reflection usage features due to
the fact that we were requested to extract features related to code obfus-
cation. These two features may give an indication of whether obfuscation
exists within the apk or not.

Opcodes implementation

Opcodes are one of the features that can be extracted using Androguard.
We can use the d (DalvikVMFormat) object to iterate over the classes
of the DEX file. Then we iterate over the methods for each class, followed
by an iteration over DalvikCode objects, and finally we can obtain a list
of instructions or as we call it: Opcodes. Opcodes are in general a popular
feature for extraction and have been used before by other researchers.

Identifier obfuscation implementation

To get identifiers we again use Androguard functionality. Androguard pro-
vides functions for us to loop over the classes, fields, and methods, from
which we can obtain the associated identifiers. After obtaining these we
perform several checks to determine whether it might be a possible obfus-
cation or not. These checks include checking the identifier for length and
checking whether they are in valid ASCII notation. Note that our goal is
not to determine whether an application is one hundred percent obfuscated,
but rather to give an estimation whether there are indications of obfuscation
or not.

Java reflection usage implementation

Unfortunately there are no Androguard build-in functions for finding reflec-
tion usage. This means our approach was to obtain the decompiled source-
code and then match the sourcecode with specific regex patterns. DAD
decompiled sourcecode has reflection calls in the format of the following
regex expression:

16

1

reflect. ([a-zA-Z]+)

So once we obtain the sourcecode as a string we use build-in python func-
tionality to search the string for matches using our regex expression.

The following code snippet shows an example of how reflection calls look
like when the sourcecode is decompiled. Note with the specified regex ex-
pression in the section above we extract statements such as:

reflect.Array

This is due to the fact that we only match for the corresponding reflection
library. We do not care what functionality is used from that library.

protected void zzc(Objcet p4, com.google.android.gms.internal.zzbum

p5)
{
int vl = reflect.Array.getLength(p4);
int vO = 0;
while (vO < v1) {
Object v2 = reflect.Array.get(p4, vO);
if (v2 != null) {
this.zzb(v2, pb);
}
vO++;
}
3

17

Alternative method

The only discussed methods so far for sourcecode feature extraction have
been related to the Androguard framework. Although Androguard provides
very good functionality for this cause, using the decompiled sourcecode di-
rectly is not that pleasant compared to some alternative options. Decom-
piled sourcecode using DAD, the Androguard decompiler, is often not that
close to the true sourcecode and often lacks various bits of information such
as import statements. For this reason we have also implemented an alter-
native method for decompiling sourcecode and inspecting it. This method
makes use of the Fernflower decompiler [5] developed by JetBrains.

Using Fernflower

Fernflower is a tool that does not work directly with DEX files. We first
have to convert the DEX files to a Jar file containing Java class files. This
is done by utilizing another tool called dex2jar [4]. In our program we first
input the APK into the dex2jar program which produces a jar file as output.
This file is then given as input to Fernflower which as a result also produces
a jar file. However this jar file contains java sourcecode files that we are
looking for.

The implementation of using dex2jar and Fernflower in our tool is done
by using system calls defined in the python sys library.

Extracting features

Fernflower outputs a jar file containing java source code. We read these files
and treat them as a string so that we can again use regex pattern match-
ing techniques on them. Fernflower only produces decompiled sourcecode.
This means that some of the features we are extracting using Androguard
are not applicable. We opted to go for just regex pattern matching to ex-
tract reflection usage and import statements. This is because Androguard
constructs objects using the decompiled sourcecode as data. These objects
contain functions that parse the sourcecode and give us an easy method for
getting information such as variable names and more.

The regex pattern we use to extract import statement is:
import (.*7);

The regex pattern for extracting reflection statement is:

18

I U C R

java.lang.reflect.x*;

We also count the number of failed decompilations that occur when using
fernflower. Whenever fernflower fails to decompile a certain class or method
it replaces the actual sourcecode with a piece of text that can be matched
using the following regex expression:

// FF: Couldn’t be decompiled

The following code snippet shows an example of how import statements look
when decompiling code using Fernflower.

import java.lang.annotation.Retention;
import java.lang.annotaton.RetentionPolciy;
import java.lang.reflect.Constructor;

import java.lang.ArrayList;

The following code snippet shows an example of methods that failed to
decompile using Fernflower.

public static Bundle a(Notification param0){
// $FF: Couldn’t be decompiled
}

19

4.7 Miscellaneous features

Apart from the feature extraction features our tool also comes with several
quality of life features that makes using the application more convenient.
We have added support for logging, progress tracking, and optionality.

Logging

Logging is enabled by default and displays useful messages to notify the user
about the progress and status of the tool. Information such as decompila-
tion duration, analysis duration, errors during analysis and more are logged.

An example of a log entry may look as follows:

INFO:root:Processing apk: <apk_name> || file: <file_path>
INFO:root:Running manifest

INFO:root:Running sourcecode

INFO:androguard.analysis:End of creating cross references (XREF)
INFO:androguard.analysis:run time: <time>

INFO:root:Time spent on opcodes: <time>

INFO:root:Time spent on obfuscation: <time>
INFO:root:Time spent on keyword usage: <time>
INFO:root:Apk: <time> || Time spent on analysis: <time>
INFO:root:Updating progresstracker file

INFO:root:Total time spent on this apk: <time>

Progress tracking

Our tool allows the tracking of the current progress when a list of apks is
given as input. We log the file name (not package name) and save it in a
txt format. Whenever we analyze a new apk we check the file against this
list to determine whether it has already been processed or not. Note that
the implementation of the progress tracking feature is quite rudimentary.
The algorithm may be optimized by taking advantage of the ordering of apk
files for example. As of now we loop over the whole txt file to determine
whether the apk file has already been processed or not. This means the
algorithm that does progress tracking has time complexity of O(n) where n
is the number of entries in the txt file.

The following snippet shows an example of how files are saved in the txt
file:

20

009dad2e09e5d50e3b5bc3e8bbff5dee.
07d8b00632e70367£40cd402b1£71dd7 .
08e2cc8d74b38136a2d99b585009¢278.
5dc0d5178be9b4ca9f0a8e979223f02b.
5dcf£0234b554fdfbf39d82d735924ae.
5def5791587edd79923693d590bf6471 .
5e415996c602db10b78ece34491b0b38.
5eaf4066£4386a20e6db77c4e80513c3.
5eb792298f156c4a%eedeeb32f1a2170.
5f187d859de2012958c1c013e2ebcd37.
5£216304dd220b70189€914219f92c1f.
5f5c9e81ceb3b43fb6612fc00db9abda.
5f666c7cab4bbb6eb35aaceffbbaac27a.
5f6028e8£331652f761dd6565e06£900.
5f975bfed836b1341b1fe778dfa25f06.
5f9ef3c03cf301ee49b9£f594b73eebe7 .
5fa2047e2ddc3b1faabb48c3d0638c24.
5fbd3e307150e4b3eaa0ad8f8d4612b5.
5fe71132d1a8ea013474a929a4347309.
5ffa85f91a4dcdb00242c4fc6bb25fef .

Optionality

apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk
apk

The tool is designed with modularity in mind. Each feature in the tool,
ranging from extraction features to quality of life features, can be enabled
or disabled at will to allow for flexible usage of the application. We imple-

mented this by making use of the INT file format.

The following snippet shows an example of part of our Settings.INI file

[Settings]

Contextual = no
Manifest = no
Sourcecode = no
Fernflower = yes
Performancelogging = no

[Contextual_Settings]
opswat = yes
app_store = yes
virus_total = yes
hybrid_analysis = yes

21

15

16

18

19

=] Tt

NN NN N NN N

00

virus_total_enable_file_upload = yes
opswat_api_key = <api_key>
virus_total_api_key = <api_key>
hybrid_analysis_api_key = <api_key>

[Sourcecode_Settings]
Opcodes = yes
Obfuscation = yes
Keywordusage = yes
Kotlin = yes
Reflection = yes
Commonkeywords = yes
StringConstants = yes
APIMethods = yes

4.8 Output formatting

To display the extracted properly we must format the obtained data first.
The data that our csv functions expect require the package name (not file
name) as the key (unique identifier). As long as we format the output
properly to accommodate this expectation the functionality that handles
csv writing can be properly used without errors.

CSV Format

By default we store the extracted features in csv files. CSV files provide an
easy and quick way to represent all the data we collect. The extracted fea-
tures are stored in rows with the package-name as the key and the extracted
features in the columns. CSV allows us to quickly and easily extract data
per column which gives us the desired features without much of a hassle.

22

packagename permissions features main-activties activities senices recsivers providers fivity-intent intent iverintents libraries

cjh.smile.copybo [android.permiss [] [MainActivty} [cjh.smile.copyb [cjh.cihtuiss] [ch.cih.tuise’, c[] [faction” [androi [| [faction” [androi []
com.anzhi dongt [android permiss [] {com.anzhi. mob: [com anzhi.mob: [com anzhi utiLk [com.anzhi.utiL E[] [faction" 'androi [{action’: [com.a [{action’: [androi-[]
com.colorme gar [android permiss [] {.GameMain} [com.colorme. gz [] i i [faction" androi [| i i
\n_me.iwin [android permiss [android hardwar (vn.mecorp.iwin.| [vn.mecorp.iwin.I [\n. mecorp.iwin.| [com. google.and [vn. mecorp.win | [action’ [andro [] [faction” [com.g []
afdejlql facbbvhir [android permiss [] [fquwkgo} [afdejiqlacbbvhi [] [afidejlql facbbuhi [] [{action" [androi [| [faction” [androi []
xhaslirgs. pufmsj ['android.permiss [] [kuamchf} [xhaslirgfs.pufimo [oagsaleyge.vpz [xhasljrgfs. pufim [faction: [androi [{action’: [xxgs: [[action’: [androi. []
org.ejeesfekekel [andraid.permiss [] a0} [org.sjeeefe.keki [org.cjeeefe.keke [org.ejeesfe keks [] [faction” [androi [| [faction” [androi []
com hexin.plat.a [android psrmiss [] {com.hexin_plat.: [com hexin.plat.: [com hexin.plat.: [com. hexin.plat.: [com. hexin.plat.: [{action’. [androi [{action'- [com.h [faction’: [HEXIN []
com future.way.L [android psrmiss [] { Language\Vay' [com future way: [com future way. [| i [faction" androi [| i i
com. example tet [] i {com.example te [com example te [] i i [faction" [androi [| i i
com bluePay.der [android permiss [] {com.bluePay.de [com bluspay.ui. [com bluepay.se [i [faction” [androi [| i i
com.espabit.esv [android.permiss [] [com.espabit.es) [com.espabit.es: [com.espabit.es [com.google.and] [faction” [androi [| [faction’: [com.g []
com.ChangStery [android.permiss [] (com.iadairings. [com.iada.irings. [com.ChangStor [com.byvcpa.Ve|] [faction” [androi [| [faction” [androi []
ngjmpsinp.iplhml [android prmiss [] {.yanigkogpoo] [ngjvnpslnp.ipihn [uuuijccjx hebsbx [uuuijccix hebsix] [faction" 'androi [{action’ [uuuijc [{action’: [androi:[]
com.mafeF hean [android.permiss [android. hardwar {com.unity3d.pla [com.unity3d.pla [org.apache pig."[org-apache.pig. [] [faction" androi [| [faction" [andrai []
com tadu_androic [android permiss [] {com.tadu.andro [com tadu.andro [com tadu.andro [com tadu.andro [] [faction" [androi [| [faction” [andrai []
com.nckeke.CYz [android permiss [] {com.apprush.gz [com apprush.gz [com dgp.logic.C [com.dgp.logic.C [] [faction” [androi [| [faction” [androi []
com.andraid.mm [android.permiss [] [.mmreader} [com.andraid.mr [] i i [faction” [androi [| i i
com.HSBapp.wa [android.permiss [] {com.sdf.wanzht [com.sdf.wanzht [com.ult0o.yjus’ [com.ul.too.upoc:] [faction” [androi [| [faction” [androi []
com.dsfreegame [android psrmiss [] {com.mygame.n [com.mygame.n [] [com feiwoone b [] [faction" androi [| [faction" [androi []
com.android. mm [android permiss [] {.mmreader} [com.android.mr [] i i [faction" androi [| i i
com android. mm [android permiss [| ({mmreader) [com.android.mr [] i i [faction" [androi [| i i
app.two [android permiss [] {_MainActivty} [app-two.MainAc [app.two.MainSe [app.two MainRe] [{action” [androi [] [faction" [androi []

Figure 3: Manifest file features csv output. Each column is an array of
features found. If the feature is not found then an empty array is produced.

JSON Format

We also have the option to produce output in JSON format. This output is
identified per object where each object contains all the obtained features for
one specific APK. In contrast to CSV format where we can address data per
column, in JSON format we must identify data per object and then retrieve
the desired data for a specific feature if it exists. Note however that JSON
formatting tends to produce big files.

23

5 Results

We have already seen an example of what manifest file features can be used
for. In general, the same purposes extend to the other features such as con-
textual features, sourcecode features, (and possibly dyanmic features). In
this section we would like to expand on these purposes and give examples
of what can be possible.

To test the tool we have ran the application using the datasets mentioned in
the Utilized tools section. We have extracted features from both benign
and malicious apks. Due to the fact that my contribution to this project
only extends to technical features, the features that will be presented in
this section will thus also belong in the technical category. This means that
the features that have been extracted are the manifest file features, source-
code features using Androguard (opcodes, identifier obfuscations, reflection
usage), and Fernflower decompiled sourcecode (Import statements, failed
decompilation counts, reflection usage). All this data can be analyzed in
different ways. We shall take a look at two of them namely in the form of
Statistics, and in the form of Artificial Intelligence.

5.1 Statistics

One simple method of analysis is producing statistics from the obtained data
and then analysing the obtained statistics [17]. The datasets containing
apks were originally split into benign and malicious sets. Using this fact we
can obtain statistics from the extracted features such as common opcodes,
popular permissions, popular used features, and more for both benign and
malicious apks. We can then make comparisons and draw conclusions from
these statistics and thus have a relatively quick and easy way for gaining
insight into tendencies of benign and malicious applications.

Below you can find some statistics about benign and malicious apks. These
statistics were generated from features extracted from a subset of 1000 be-
nign apks and 1000 malicious apks.

24

Most popular permissions - Benign samples

800

600

400

200

Nr. of occurrences

<& % o+ <& % & o o

@ew i ngs @D ¥ s ng, & &8 &

& & > S & & <
& 7 & & & & & 5 ¥
3 & o aF Y » e Q_%" &
& & e & of & &
&7 G W o & &7 %
& 7 5 < <&
& Q& W S &
¥ o & S &
Permissions

Figure 4: Statistics example 1 - Benign apks
Most popular hardware features - Benign samples
1000
750
500

250

Nr. of occurrences

=

Hardware features

Figure 5: Statistics example 2 - Benign apks

25

Most popular permissions - Malicious samples

Nr. of occurrences

1500

1000

A & © & & & cl L & &
8'\& 5 & é‘é N & b DD‘;\ & ‘2‘(;
& & o & & & L ¥ & g
& SF & 5 @ & & & <&
& A oy o &
S & & & v B &
& o o ol &% - 5
* & & v & £ &
& & Ky & o
- w* + &
Permissions
Figure 6: Statistics example 3 - Malicious apks
Most popular hardware features - Malicious samples
600
400
w
[
o
c
@
£
3 200
Q
o
5
=
0
& o ol
<+ & &5 \\0\;5‘
o 5 &
& &
ra
&“'\\

Hardware features

Figure 7: Statistics example 4 - Malicious apks

26

5.2 Artificial Intelligence

The data obtained from the tool can also be used as features in Artificial
Intelligence algorithms. Artificial Intelligence have been employed before in
the hopes of being able to accurately classify APKs into being benign or
malicious.

Classification algorithms such as (Learning) Vector Quantization or K-nearest
neighbour algorithm can classify applications into benign or malicious based
on how thorough the algorithms have been trained using the obtained fea-
ture data. Another Artificial Intelligence technique that can be applied are
Neural Networks. In the same way as the other classification algorithms,
data obtained from the tool can be used to train the algorithms and then
the algorithms will be able to classify APKs from a new dataset into mali-
cious or benign by themselves.

AT examples

Some examples of the use of Artificial Intelligence algorithms with extracted
features as feature data:

1. A paper by Xiangyu-Ju [9] who uses information from permissions
and packages as features in classification algorithms/methods such as
Bayes, KNN, and more.

2. Drebin [18] is a tool that attempts to classify an application as mali-
cious by applying machine learning algorithms on extracted features.

3. Another paper by Ravi Kiran Varma P et al. [19] use extracted per-
missions as features for several machine learning algorithms. They
then determine which algorithm performed the best on their dataset.

5.3 Other methods

Other methods which can not be easily classified into a category for analyz-
ing extracted features also exist. For example, Ryo Sato et al. [20] proposes
an alternative method for malware detection using the manifest file. In their
work they compare the extracted manifest features with a predefined key-
word list and calculate a malignancy score based on the comparisons. This
score then aims to classify an application as benign or malicious.

27

6 Performance

Performance is also an important factor when analyzing large sets of data.
In this section we are going to take a look at the performance of the man-
ifest features and the sourcecode features with the DAD decompiler and
Fernflower decompiler.

6.1 Manifest file features

Manifest file feature extraction is in general very quick. The main reasons
for this is that it is just a XML file where we extract the required data. We
collected performance data of this feature for 1584 apks. These apks were
all labeled as benign and obfuscated.

We can observe that in general the feature extraction is less than one or two
seconds. The extraction time also seems to increase with file size however it
is not very drastic since almost all apks finish within two seconds regardless
of size.

We can also spot some outliers. Such outliers may exist due to obfuscated
manifest files for example.

Manifest extraction performance

100000
L

L]
L]
L]
00C [} ®
L]
[]
- ¢ o
=2 ose
= o
@ 50000
R .
w []
4
=
= .
4
2500 ‘ ®

2 4 6 8

process-time (seconds)

Figure 8: Scatterplot of manifest feature extraction performance

28

6.2 Sourcecode features

We can extract sourcecode features using either DAD or Fernflower. In this
section we compare the two in terms of decompilation time. We collected
this data using 182 malicious apks.

The performance of the DAD decompiler seems to follow a linear trend
where process-time (decompile time) increases with apk-size.

Fernflower performance on the other hand seems to not follow a linear trend
of decompile time versus apk-size. We can also observe that in general Fern-
flower takes much longer than decompiling code using DAD. Fernflower also
contains some extreme outliers that take up to many hours to decompile.
We have noticed from experience that heavily obfuscation APK files may be
very troublesome for the Fernflower decompiler. This could be a reason for
the (extreme) outliers.

DAD performance

30000

20000 .

apk size (KB)
L]

10000 ®

0 25 50 75 100

process-time (sec)

Figure 9: DAD decompiler performance.

29

Fernflower performance 2

30000

apk size (KB)

oooo

2000 4000 6000

process-time (sec)

Figure 10: Fernflower decompiler performance.

Fernflower performance 2

30000

N
.
°

20000
_
m L]
< ‘
w e o
N
@ °
=

° °
@ 10000
. ®
' 4
° . *
. ° ° b d
- - 4 * o [] S I .. .
L]) - e ™ L]
AM"O Lot b, O e O
0
0 25 50 75 100

process-time (sec)

Figure 11: Fernflower decompiler performance zoomed in.

30

7 Future work

As of the writing of this paper the only features that have been employed are
contextual feature extraction and static technical feature extraction. This
means that we have not touched upon dynamic feature extraction yet which
is the other big category of technical features that can be extracted from
APKs. Aside from missing dynamic feature extraction, the currently imple-
mented methods for contextual and static features can also be expanded on
and alternative methods can possibly be found that achieve the same result.

7.1 Dynamic feature extraction

As mentioned before, dynamic feature extraction is a missing part of the
tool. We have only developed part of the ultimate feature extraction tool
by implementing contextual and static feature extraction. Dynamic feature
extraction in itself is a different beast to tackle and requires its own research
before being able to add it to the main tool. However once such a module
has been developed it can easily be connected to the main program due to
the fact that we structured the application with modularity in mind. Simply
using system calls, or adding a call to the program that does dynamic feature
extraction to the main program should accomplish the extension.

7.2 Alternative feature extraction methods

There exist other ways to analyze APKs and extract information outside
of the used methods (Androguard, Fernflower). For example a tool such
as Apktool [21] can be used instead of Androguard to decode APKs into
some usable format. Furthermore the AndroidManifest.XML file can also
be parsed manually using XML parsing libraries instead of making use of
Androguard. In conclusion, many alternative tools exist for the same pur-
pose and these tools may be added to the ultimate feature extractor at a
later stage.

Outside of looking at alternatives we can also extend the ultimate feature
extractor by implementing more features to extract. As mentioned before,
the current tool mainly extracts the most popular features according to cur-
rent research. However, an ultimate feature extractor is difficult to finalize
because of the fact that many different kinds of features exist. Depending
on the definition of ”"ultimate” we can keep adding features iteratively as
the new research discovers more useful features to extract.

31

7.3 Performance enhancements

One final thing to note is that as of the writing of this paper the different
modules and features of the ultimate feature extractor is executed sequen-
tially. This leaves room for improvement as several modules/components
do not necessarily rely on each other and can thus be executed in paral-
lel. Some examples for this are the contextual, DAD sourcecode feature
extraction, and Fernflower sourcecode feature extraction modules. These
components do not depend on eachother when they are retrieving data so
they could be ran in parallel.

One final thing to note is that the only conflicting part of these modules
could be the writing to output section of the code. However, each module
tends to write to their own dedicated output files. This means that as long
as future extensions keep this in mind then conflicts or race conditions due
to parallelism can be avoided.

32

8 Conclusion

When looking at feature extractor tools out there we can notice that most of
them only extract data from a certain subset of features, are catered to a spe-
cific use, or are very outdated and ill-maintained. We have thus developed
a feature extractor tool written in Python that is able to extract different
features across different categories with the aim of unifying all kinds of pos-
sible features to be extracted into one application. Such features include
contextual, static technical features, and in the future, dynamic technical
features.

The main focus of my part were the static technical features and I have
chosen to extract features from the manifest file and sourcecode for this
goal. To extract such features we mainly rely on a framework called An-
droguard but alternative methods exist and Fernflower is an alternative tool
that we employ for sourcecode feature extraction.

Features extracted using the tool are written to CSV or JSON files. This
data can be used to classify unlabeled data into benign or malicious with the
use of statistics, Al, or other methods. However the purpose of this project
is about feature extraction, not feature analysis so we have not focused on
this part.

Finally, the tool still has several areas which can be improved on/extended
on in the future. Modules of the application can be parallelized, more fea-
tures extraction modules can be added, and dynamic feature extraction is
another component that is not present yet.

33

References

[1] S. Karthick and S. Binu. Android security issues and solutions. In
2017 International Conference on Innovative Mechanisms for Industry
Applications (ICIMIA), pages 686—689, Feb 2017.

[2] T. Blasing, L. Batyuk, A. Schmidt, S. A. Camtepe, and S. Albayrak.
An android application sandbox system for suspicious software detec-
tion. In 2010 5th International Conference on Malicious and Unwanted
Software, pages 55—62, 2010.

[3] Androguard Anthony Desnos. https://github.com/androguard/androguard.
[4] dex2jar. https://github.com/pxb1988/dex2jar.

[5] JetBrains. https://github.com/jetbrains/intellij-
community/tree/master/plugins/java-decompiler/engine.

[6] W. Wang, M. Zhao, Z. Gao, G. Xu, H. Xian, Y. Li, and X. Zhang. Con-
structing features for detecting android malicious applications: Issues,
taxonomy and directions. IEEFE Access, 7:67602—67631, 2019.

[7] Android permissions. https://developer.android.com/reference/android /manifest.permission.

[8] Android features. https://developer.android.com/guide/topics/manifest /uses-
feature-element.

[9] Xiangyu-Ju. Android malware detection through permission and pack-
age. In 2014 International Conference on Wavelet Analysis and Pattern
Recognition, pages 61-65, July 2014.

[10] D. Wu, C. Mao, T. Wei, H. Lee, and K. Wu. Droidmat: Android
malware detection through manifest and api calls tracing. In 2012
Seventh Asia Joint Conference on Information Security, pages 62—69,
2012.

[11] M. Kumaran and W. Li. Lightweight malware detection based on ma-
chine learning algorithms and the android manifest file. In 2016 IEEE
MIT Undergraduate Research Technology Conference (URTC), pages
1-3, 2016.

[12] Alejandro Martin Garcia, Raul Lara-Cabrera, and David Camacho. A
new tool for static and dynamic android malware analysis. pages 509—
516, 09 2018.

34

[13] Alejandro Martin Garcia, Raul Lara-Cabrera, and David Camacho. An-
droid malware detection through hybrid features fusion and ensemble
classifiers: The andropytool framework and the omnidroid dataset. In-
formation Fusion, 52, 12 2018.

[14] Vinod P. Dhanya K. A. Varsha, M. V. identification of malicious an-
droid app using manifest and opcode features. Journal of Computer
Virology and Hacking Techniques, 05 2017.

[15] Android opcodes. https://developer.android.com/reference/dalvik/bytecode/opcodes.

[16] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou
Li, Fenghao Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. Un-
derstanding android obfuscation techniques: A large-scale investigation
in the wild, 2018.

[17] Abdullah Talha Kabakus, Ibrahim Dogru, and Aydin Cetin. Apk au-
ditor: Permission-based android malware detection system. Digital In-
vestigation, 13, 06 2015.

[18] Daniel Arp, Michael Spreitzenbarth, Malte Hiibner, Hugo Gascon, and
Konrad Rieck. Drebin: Effective and explainable detection of android
malware in your pocket. 02 2014.

[19] Ravi Kiran Varma Penmatsa, Kotari Raj, and K. Raju. Android mobile
security by detecting and classification of malware based on permissions
using machine learning algorithms. pages 294-299, 02 2017.

[20] Ryo Sato, Daiki Chiba, and Shigeki Goto. Detecting android malware
by analyzing manifest files. volume 36, page 23, 08 2013.

[21] apktool. https://ibotpeaches.github.io/apktool/.

35

