
Implementing an Argumentation Game for ADFs

under Preferred Semantics

Bachelor’s Project Thesis

Marieke Bouma, m.bouma.10@student.rug.nl

Supervisors: A. Keshavarzi Zafarghandi, MSc. & Prof. Dr. L.C. Verbrugge

Abstract: Formal argumentation can be used to model and evaluate reasoning, making it a pow-
erful support for AI. Further, AI methods can help find answers to logical problems in formal
argumentation. This project explores Abstract Dialectical Frameworks (ADFs), an argumenta-
tion formalism structured as a network of arguments. A propositional formula is attached to each
argument, to indicate the conditions under which an argument can be accepted and to show the
type of relation between arguments.

One logical problem in ADFs is the credulous decision problem, which describes the question
of whether there exists a set of truth values for the arguments under certain semantics in which
a specific argument has a given value. Keshavarzi presents a discussion game algorithm between
two players, which solves this problem under preferred semantics. In this game, the players take
turns trying to find new information given a claim the previous player made about the truth
values of arguments. Depth-First Search is applied to find the final set of truth values needed to
solve the credulous decision problem. If DFS fails, then the initial claim is not satisfiable. This
project consists of the implementation of this discussion game in Python.

Keywords: abstract dialectical frameworks · discussion game · argumentation theory

1 Introduction

Argumentation has recently received increased at-
tention within Artificial Intelligence (AI). Espe-
cially argumentation formalisms such as abstract
representations of arguments are a popular topic.
One such formalism is the concept of Abstract
Frameworks (AFs), described first by Dung (1995).
An AF has the structure of a graph, in which each
node represents an argument. The content of the
arguments is not of importance here; rather, the
focus lies with the relations between arguments. In
AFs, each edge from one argument to another rep-
resents an attack relation. To illustrate, consider
two contradicting arguments A and B. Then the
arguments could be represented as in Figure 1.1.

a b

Figure 1.1: AF consisting of two contradicting
arguments.

To generalise this concept, Brewka and Woltran
(2010) introduced Abstract Dialectical Frameworks
(ADFs). Contrary to AFs, the relations between ar-
guments in ADFs are quite flexible: they can not
only be attacking, but also supporting, both at-
tacking and supporting, or neither. The flexibility
of relations between arguments in ADFs is realised
through the definition of a so-called acceptance con-
dition for each argument. This acceptance condi-
tion is in fact a propositional formula, which allows
us to make inferences about the truth values of ar-
guments. Continuing the example in Figure1.1, the
acceptance conditions of a and b are ¬b and ¬a,
respectively.

In AFs and ADFs, semantics are specific cri-
teria used to settle the acceptance of arguments.
Though there are several types of semantics, this
project focuses on preferred semantics, where we
want as much as possible information about the
truth values of arguments to be known. These se-
mantics are very powerful tools to answer logical
problems encountered in ADFs.

1

One such problem is the credulous decision prob-
lem. For a given ADF, the key question here is:
“does there exist a set of truth values for the argu-
ments in the ADF, such that a given argument has
a given truth value?”.

A number of theoretical solvers for this prob-
lem exist, such as K++ (Linsbichler, Maratea,
Niskanen, Wallner, and Woltran, 2018) and YADF
(Brewka, Diller, Heissenberger, Linsbichler, and
Woltran, 2017a). However, the role of discussion
in the reasoning used to solve such problems in
ADFs, has not been elaborated upon so far. To fur-
ther investigate this role, Keshavarzi Zafarghandi,
Verbrugge, and Verheij (2019) have developed the
first existing discussion game algorithm to solve
the credulous decision problem of ADFs under pre-
ferred semantics.

In this game, two players (a proponent and op-
ponent) take turns trying to find new information
based on information the previous player has pre-
sented about the truth values of certain arguments.
This is called a claim when presented by the propo-
nent, or a challenge when presented by the oppo-
nent. The game starts with an initial claim by the
proponent. Depth-First Search is applied to find
the final set of truth values needed to satisfy the
initial claim. If DFS fails, then the initial claim is
not satisfiable; otherwise, it is.

This project consists of the implementation of
the discussion game in Python. As such, this thesis
consists of a theoretical discussion of ADFs, pre-
ferred semantics, and the theoretical part of the
discussion game, and a practical description of the
implementation of the game, and experiments to
evaluate the implementation.

Testing is done mainly by testing benchmark
inputs for which the correct outputs are already
known, and tracking computation time to evalu-
ate different sub-algorithms. All in all, the research
question we will try to answer in this thesis is this:

• How can the credulous decision problem for
ADFs under preferred semantics be solved au-
tomatically by a discussion game implemented
in an efficient object-oriented program?

The contents of this thesis will follow the structure
of this question: first the concepts of ADFs, pre-
ferred semantics, and the credulous decision prob-
lem will be introduced. Then, we introduce the the-
ory of the discussion game, and lastly discuss the

core of the project, namely the implementation of
this game in a program, and the testing and anal-
ysis of the program and its efficiency.

2 Background

2.1 Abstract Argumentation Frame-
works (AFs)

Abstract argumentation frameworks (AFs), first
concretely described by Dung (1995), are directed
network graphs, where each node represents an ar-
gument and each edge represents an attack relation
between two arguments.

As we will see later, other relations between ar-
guments can be described by more complex types of
frameworks. At the base, though, AFs are defined
as follows:

Definition 1. An abstract argumentation frame-
work F is a pair 〈Ar,R〉 where Ar is a set of argu-
ments, and R is a set of attacks between two argu-
ments in Ar, i.e. R ⊆ Ar × Ar. An element of R,
e.g. an attack from a to b for a, b ∈ Ar, is denoted
as att(a, b) or (a, b) ∈ R.

Within these frameworks, there is much we can do
with the information that we have. Most impor-
tantly, we want to find sets of arguments which can
be pooled together. The principles used to indicate
which sets can be accepted together are called se-
mantics.

In AFs, the semantics are defined based on two
ways of pooling together arguments, the first of
which is called extensions. The second way of pool-
ing together arguments is called labelling. The no-
tion of labelling will be explained in Section 2.1.1.

One of the notions useful for our current purpose
is that of a conflict-free extension, in which none of
the arguments attack each other. Another is an ad-
missible extension, which is not only conflict-free,
but in which each argument is also “defended” from
its attackers, by some argument in the extension.
A defense here means that the attacker of an argu-
ment is in turn attacked by some argument. For-
mally, these definitions are:

Definition 2. Let S ⊆ Ar and let a ∈ S. Then
a is considered defended by, or acceptable w.r.t. S
if for any (b, a) ∈ R there exists c ∈ S such that
(c, b) ∈ R.

2

Definition 3. A set S ⊆ Ar of arguments is called
conflict-free if there are no internal conflicts in the
set; i.e., there are no two arguments a, b ∈ S such
that a attacks b. Note that a and b can also be the
same argument.

Definition 4. A set S ⊆ Ar of arguments is called
an admissible extension of an abstract argumenta-
tion framework F if

(1) it is conflict-free, and

(2) each argument a ∈ S is acceptable with respect
to S, i.e. a is defended by S.

For a given argumentation framework F , we can
find the set of conflict-free and the set of admissible
extensions. We denote these sets, respectively, as
cf(F) and adm(F). Note that the empty set ∅ is
a conflict-free and admissible extension of any F .
Let’s take a look at an example:

Example 1.
Let F := 〈{a, b, c, d}, {(a, b), (b, c), (c, b), (d, d)}
be an AF, depicted in Figure 2.1 below. Then
cf(F) = {∅, {a}, {b}, {c}, {a, c}}. Note that {d} is
not conflict-free because d attacks itself. From these
conflict-free sets, we can select the admissible sets:
adm(F) = {∅, {a}, {c}, {a, c}}.

a b c d

Figure 2.1: AF of Example 1

Although quite a number of other semantics have
been defined for AFs, in this work the focus lies
with the notion of preferred semantics.

Definition 5. A preferred extension of an abstract
argumentation framework F is an admissible set S
that is maximal with respect to set inclusion; that
is, all admissible sets that are pure subsets of S,
are not preferred extensions. A preferred extension
of F is denoted prf(F).

In Example 1, we get prf(F) = {{a, c}}. To illus-
trate the criterion of maximal set inclusion, here is
another example:

a b c e

d

Figure 2.2: AF of Example 2

Example 2.
Let F := 〈{a, b, c, d, e}, {(a, b), (b, a), (b, c), (c, d),
(d, e), (e, c)} be an AF, depicted in Figure 2.2.
Then cf(F) = {∅, {a}, {b}, {c}, {d}, {e}, {a, c},
{a, d}, {a, e}, {b, d}, {b, e}}, and adm(F) = {∅,
{a}, {b}, {b, d}}. We get prf(F) = {{a}, {b, d}}.

Note that since the empty set ∅ is a subset of all
non-empty sets, we have that ∅ is a preferred ex-
tension if and only if there are no non-empty ad-
missible sets of F . In this case, ∅ is of course also
the only preferred extension of F .

2.1.1 Labelling

A labelling is a mapping of each argument in an
ADF to either in, out, or undec, each of which rep-
resents a truth value, i.e. a function lab : Ar 7−→
{in, out, undec}. Here, in is true, out is false, and
undec stands for undecided. The first two mappinsg
can also be seen as an argument being ”in” or ”out”
of the set of accepted arguments. In the context of
AFs, a labelling is a specific representation of the
set of all arguments in an AF, such that each argu-
ment has a label. Labelling can be used as a tool
to find arguments in AFs that can be accepted to-
gether.

The transition from extensions to labellings hap-
pens via a function called Ext2Lab. This function
was defined by Baroni, Caminada, and Giacomin
(2011), and works as follows: for an extension ε we
check for each argument in our framework, its re-
lation to ε. Based on this, we label the argument
in, out, or undec. Formally, the definition is as fol-
lows:

Definition 6. Let ε be an extension of an AF F .
Then for an argument a ∈ F ,

Ext2Lab(ε)(a) =

in, iff a ∈ ε
out, iff ∃ b ∈ ε s.t. (b, a) ∈ R
undec, otherwise.

3

Thus, a labelling for an AF F is a set containing
all arguments of F , with their labels. To illustrate,
let us look at the AF in Example 2 again.

Example 2 (continued).
We have {a} ∈ prf(F), so Ext2Lab(prf(F))(a) =
in, i.e. our labelling must contain a → in. Since
a attacks b, we have b → out. We do not know
the label of e yet, so c → undec, and in turn
d → undec and e → undec, since the only attack-
ers of those arguments are labelled undec as well.
Thus, Ext2Lab({a}) = {a 7→ in, b 7→ out, c 7→
undec, d 7→ undec, e 7→ undec}.

For our second preferred extension, {b, d}, we get
{b → in, d → in}. Since d is an attacker of e, we
must get e→ out. Since b attacks a and c, we know
that {a 7→ out, c 7→ out}. Thus, Ext2Lab({b, c}) =
{a 7→ out, b 7→ in, c 7→ out, d 7→ in, e 7→ out}.

2.2 Abstract Dialectical Frame-
works (ADFs)

A powerful generalisation of the concept of AFs
is that of abstract dialectical frameworks (ADFs).
The main difference between AFs and ADFs is that
the relations between arguments in ADFs are much
more flexible. The flexibility of relations between
arguments in ADFs is realised through defining so-
called acceptance conditions for each argument.

ADFs were defined first by Brewka and Woltran
(2010), who revised their definition twice later
on (Brewka, Ellmauthaler, Strass, Wallner, and
Woltran, 2013, 2017b). ADFs are defined formally
below, in Definition 7.

Definition 7. An abstract dialectical framework F
is a tuple 〈A,L,C〉 where A is a set of arguments
(or statements), L is a set of relations (or links)
between two arguments in A (i.e. L ⊆ A×A), and
C is a set of acceptance conditions.

The acceptance condition for an argument a ∈ A,
denoted ϕa, is a propositional formula. This way,
we can have many different links between two argu-
ments. The four types of links between arguments
and some examples are denoted in Table 2.1.

While the attacking and supporting links are
rather straightforward, the links of “both” and
“neither” may require some explanation. The hand-
book of ADFs (Brewka et al., 2017b) is a useful
source to clarify this.

Link Example ϕa

Attacking ϕa : ¬b
Supporting ϕa : c
Both ϕa : d ∨ ¬d
Neither ϕa : e ⇐⇒ f

Table 2.1: Types of links between arguments
b, c, d, e, f and a, and some examples of corre-
sponding acceptance conditions of a.

To paraphrase and applied to the examples in Ta-
ble 2.1: a link such as (d, a) is both supporting and
attacking, and called redundant, because switching
the truth value of d does not change the evaluation
of ϕa. By contrast, the links (e, a) and (f, a) are
neither supporting nor attacking, and also called
dependent, because the influence of the truth value
of e on the evaluation of ϕa depends on the truth
value of f , and vice versa.

The parents of an argument a ∈ A in an ADF
F are all the arguments with a link to a, i.e.
{b ∈ A | (b, a) ∈ L}. If an argument does not have
any parents, it is called an initial argument and its
acceptance condition is either > or ⊥.

2.2.1 Semantics of ADFs

ADFs use interpretations to pool together argu-
ments in a useful way. An interpretation, denoted
v, is a function which maps a statement a to a
truth value x, where x ∈ {t,f,u} (standing for true,
false, undecided). Thus, for example, an interpre-
tation can be v = {a 7→ t, b 7→ u, c 7→ f}. To make
for better readability, an interpretation can also be
rewritten to the sequence of the truth values of the
arguments in lexicographic order. The example in-
terpretation above then becomes v = tuf.

We can perform an informational ordering on
two interpretations, i.e. order them based on how
much information they give us about the truth val-
ues of the arguments. Naturally, if an argument is
labelled u, then it does not give us as much in-
formation as it would if that argument would be
labelled true or false. More formally, for the truth
values {t,f,u}, we have that

• u <i t and u <i f.

• t =i t, f =i f, and u =i u.

• ≤i is the transitive and reflexive closure of <i.

4

The semantics of ADFs are based on interpreta-
tions being created via the characteristic operator.
Given an interpretation v, we want to “update” it;
in other words, we want to use the information in v
to form a new interpretation v′. The characteristic
operator ΓF does this by evaluating the acceptance
condition of each argument.

Definition 8. The characteristic operator for an
ADF F , denoted ΓF , is a function on interpreta-
tions v. It takes each argument a ∈ A and performs

ΓF (v)(a) =

t, iff ϕv

a = >(irrefutable)

f, iff ϕv
a = ⊥(unsatisfiable)

u, otherwise

In this equation, for p a parent of argument a,

ϕv
a : [p/> : v(p) = t][p/⊥ : v(p) = f].

Just as before, we can get information about in-
terpretations by looking at admissibility and pre-
ferredness. For an interpretation v to be admissible,
its “updated” interpretation v′ = ΓF (v) needs to
contain more or equally as much information. This
also means that all arguments a that are mapped
to t or f in v must remain mapped to that truth
value in ΓF (v). The formal definition by Brewka
et al. (2013) is as follows:

Definition 9. A three-valued interpretation v for
an ADF F is admissible iff v ≤i ΓF (v).

Naturally, a preferred interpretation must be ad-
missible. Next to that, it is an interpretation that
contains as much information as we can possibly
have gotten from the acceptance condition of each
argument. Formally, this is:

Definition 10. A three-valued interpretation v for
an ADF F is preferred iff it is ≤i-maximal admis-
sible.

To illustrate, let us look at another example ADF
and the logical steps taken to find its admissible
and preferred interpretations. Example 3 shows the
game play for a simple ADF, whose admissible in-
terpretations are displayed by informational order-
ing in the lattice on the right side of Figure 2.3.

b a

¬b ∨ bb

{a,¬b} {a, b}

{b}{a}{¬b}

∅

Figure 2.3: ADF of Example 3 and informational
ordering of its admissible interpretations.

Example 3. Let F an ADF as in Figure 2.3.
To find adm(F) and prf(F), we continuously

evaluate the acceptance conditions of a and b under
a given interpretation v, and check if v ≤i ΓF (v).
For some interpretations, we can reason about ad-
missibility without explicitly testing the acceptance
conditions.

Since we have ϕa = ¬b ∨ b a tautology, ϕa = >
no matter the truth value of b. We start with an
initial vu = uu:

vu = uu
ϕvu
a = >, ϕvu

b = b
ΓF (vu) = tu
so vu is admissible.

Since the acceptance condition of a is irrefutable,
tu is also admissible, but fu is not.

v1 = ut
ϕv1
a = >, ϕv1

b = >
ΓF (v1) = tt
so v1 is admissible.

v2 = uf
ϕv2
a = >, ϕv2

b = ⊥
ΓF (v2) = tf
so v2 is admissible.

Again, since a has no influence on any argu-
ment, tt and tf are admissible as well. However,
since ϕv

a = > for all v, we have that ft and ff are
both not admissible. Thus:

adm(F) = {∅, tu,ut,uf, tt, tf}
prf(F) = {tt, tf}. �

5

2.3 Preferred Discussion Game

A central problem in the study of ADFs is the cred-
ulous decision problem. It describes the evaluation
of the truth value of an argument in a given ADF.
The credulous acceptance (or denial) of an argu-
ment under a given semantics is based on the mere
existence of any interpretation in that semantics
under which the argument is acceptable (deniable).

Definition 11. Given an ADF F = {A,L,C}, an
argument a ∈ A under a given semantics σ is called
credulously acceptable if there exists an interpre-
tation v ∈ σ(F) such that ϕa is irrefutable under
v. Similarly, an argument is credulously deniable if
there exists an interpretation v ∈ σ(F) such that
ϕv
a is unsatisfiable.

A number of algorithms have been developed to
deal with this problem, among which the K++
solver (Linsbichler et al., 2018) and YADF (Brewka
et al., 2017a), but also the current work of my su-
pervisor, Atefeh Keshavarzi Zafarghandi. Her work
focuses on the credulous decision under preferred
semantics, which is realised through a discussion
game between two players, first described in 2019
(Zafarghandi et al., 2019).

2.3.1 Overview

The discussion game entails a dialogue between a
proponent P and an opponent O. P starts the game
and first dialogue by presenting an assignment a 7→
x, where x ∈ {t, f}. This assignment is called the
initial claim. Then the dialogue continues, until one
of two conclusions is drawn:

• An agreement is found, which means that
there exists indeed an admissible interpreta-
tion which assigns a 7→ x.∗ P wins the game.

• A contradiction is reached in the current dia-
logue. One interpretation at a time, P must
search for an opportunity to start an alter-
native dialogue. If all possible dialogues have
been found and none reach an agreement, then
P is convinced that the initial claim was wrong,
and P loses the game.

∗While the algorithm aims to answer the credulous de-
cision problem under preferred semantics, it is enough to
find an admissible interpretation, because if that exists, then
there must also exist some preferred interpretation that con-
tains the assignment described by the initial claim.

The search for this agreement is essentially Depth-
First Search: if a dead end is reached in the search
tree, another branch is investigated, until either an
agreement is found or all options yield a dead end.
Thus, following the description of the discussion
game as a search tree, one dialogue is one branch.
A dialogue is a series of interpretations, which are
represented as nodes in the search tree.

2.3.2 Game play algorithms

The first dialogue in the game starts by P mak-
ing an initial claim, which can be written as an
interpretation v0 in which the relevant argument is
assigned to the claimed truth value, and all other
arguments are assigned to u.

After that, the players take turns in which they
apply either the forward or backward move, until
the game stops. To determine which move is ap-
plied, each player first evaluates the informational
ordering between the most recently presented in-
terpretation v and the previous interpretation w.
This is called the checking step. The goal is that
each newly presented interpretation v in the dia-
logue contains at least as much information as the
previous interpretation w, that is, w ≤i v.

If w <i v, the dialogue is continued through the
forward move. If w =i v, then v is indeed an admis-
sible interpretation that satisfies the initial claim,
and thus an agreement has been found and P wins
the game. However, if w 6≤i v, there is a contra-
diction. If P found the contradiction, P applies the
backward move, but if O found the contradiction, O
simply does not apply any move, and P applies the
backward move. The backward move is represented
as backtracking in Depth-First Search.

2.3.3 The forward move

The first of the two moves in the game is the for-
ward move. From the checking step, the player
knows that there is some set of arguments which
were not defined yet in w, but are in v, since w <i v.
This set of arguments is called the set of recently
presented arguments in v with respect to w, and is
defined formally in Definition 12.

Definition 12. The set A′ of recently presented ar-
gument(s) in a new interpretation v w.r.t the pre-
vious interpretation w (i.e. w ≤i v), are the argu-
ments for which w(a) = u, and v(a) 6= u.

6

After checking the informational ordering, each
player has two tasks, in the given order:

(1) Checking the consequences of the given inter-
pretation v on the truth value of the recently
presented argument(s). This is done through
evaluating the acceptance conditions of those
arguments under v. For a recently presented
argument a ∈ A′, the acceptance condition un-
der v is denoted ϕv

a.

(2) Finding a new interpretation. From the ac-
ceptance conditions ϕv

a of each a ∈ A′, the
player finds the minimal satisfiable interpre-
tations of each a, formally presented in Defini-
tion 13. The player then combines that infor-
mation with v through the forward move (see
also Definition 14), and presents the new in-
terpretation to the other player. In the case of
P, this is called a new claim; in the case of O,
a new challenge.

Definition 13. Let a ∈ A′ be recently presented
in v. A minimal satisfiable interpretation of a is
a <i-minimal interpretation over a or parents of
a that are in ϕv

a, such that v(a) is satisfied. It is
found through the relation mSATF (ϕv

a) (abbrevi-
ated to mSATa), which is defined using the cases
in Equation 1 on page 8.

To make some more sense of all this, consider the
following example.

Example 4. Example dialogue for a simple ADF
D = {{a, b}, {(a, b), (b, a)}, {ϕa = ¬b, ϕb = ¬a}}.

P: initial claim: ∃v ∈ prf(D) such that v(a) = t,
i.e. v0 = tu.

O: – Indeed uu <i v0, so the dialogue can con-
tinue and A′ = {a}.

(1) Evaluates ϕv0
a = ¬b. In this case, there

are no changes.

(2) Finds that a 7→ t only holds if b 7→ f,
i.e. mSATa = uf. Challenges: “if I agree
on a 7→ t, then prove that b 7→ f”, i.e.
v1 = tf.

P: – Indeed v0 <i v1, so the dialogue can con-
tinue and A′ = {b}.

(1) Evaluates ϕv1
b = ¬> = ⊥.

(2) Finds that v1 is enough to answer O’s
challenge (mSATb = {a 7→ t}), so v2 =
v1.

O: – We have that v1 =i v2, so an agreement
is found and the dialogue stops. The game
is won by P.

�

The second step in each turn is the forward move.
This move, defined formally in Definition 14, essen-
tially consists of combining the information found
in the minimal satisfiable interpretation(s) with the
information given in the previous interpretation,
yielding a new interpretation to be added to the
dialogue.

Definition 14. For A′ the set of arguments
{a1, ..., an} recently presented in v w.r.t w, and
mSATA′ = {mSATa1

, ...,mSATan
} the set of min-

imal satisfiable interpretations mSATai
for ai w.r.t

v, for 1 ≤ i ≤ n, the forward move is a binary func-
tion δ(v,mSATA′), which is defined using the cases
in Equation 2 on page 8.

Thus, in the forward move, the player looks at the
truth value of each recently presented argument
a, and checks for any conflicts with the minimal
satisfiable interpretations of the other recently pre-
sented arguments.

For example, if argument a is defined in v, but
there is a conflict in the parents of a in the minimal
satisfiable interpretation of any other argument,
the truth value of a in the new interpretation is u.
On the other hand, if we already had v(a) = u, and
a is a parent of any other recently presented argu-
ments ai, the value of a is mSATai

(a) if and only if
there are no conflicts between that mSATai

(a) and
any mSATaj

(a), for other arguments aj of which a
is a parent and for which mSATaj (a) = t/f.

2.3.4 Dialogues and the backward move

As we have seen, each forward move yields an inter-
pretation. These interpretations are stored together
in a dialogue, defined formally as follows:

Definition 15. A dialogue is a sequence of inter-
pretations [v0, ..., vj] for j ≥ 1, in which all the
following conditions hold:

7

mSATa =

{
w if ϕv

a 6≡ >/⊥ ∧ ∃w | ΓF (w)(a) = v(a) ∧ ¬∃w′ | (w′ <i w ∧ ΓF (w′)(a) = v(a)),

{a 7→ ΓF (v)(a)} if ϕv
a ≡ >/⊥ ∨ ¬∃w | ΓF (w)(a) = v(a)

Equation 1: The function mSATa to find a minimal satisfiable interpretation for an argument a ∈ A′.

δ(v,mSATA′)(a) =

v(a) v(a) = t/f ∧ a 6∈ A′,
v(a) v(a) = t/f ∧ ϕv

a = >/⊥,
v(a) v(a) = t/f ∧mSATa 6= {a 7→ ΓF (v)(a)} ∧

¬∃ai, c s.t. (c ∈ par(a) ∧mSATa(c) 6= mSATai
(c)),

mSATai
(a) v(a) = u ∧ ∃ai ∈ A′ s.t. (mSATai

(a) = t/f ∧
¬∃aj ∈ A′ s.t. mSATai(a) 6= mSATaj (a)),

u otherwise.

Equation 2: The forward move δ(v,mSATA′)(a) is used to form a new interpretation.

• v0 is an initial claim;

• for each i > 0, vi = δ(vi−1,mSATA′) such that
A′ is the set of arguments recently presented
in vi−1 and mSATA′ is a minimal satisfiable
interpretation of A′;

• for each 0 ≤ i < j − 1, vi <i vi+1.

As discussed, the forward move is applied until a
contradiction is found because w 6≤i v. In this case,
the backward move is applied. This move consists
of P either searching for another claim, or asking
O for another challenge, thus for another dialogue
D′. The backward move is formally defined in Def-
inition 16.

Definition 16. For an initial claim v0, a dialogue
D = [v0, ..., vn] blocked by a contradiction and SD

the corresponding set of minimal satisfiable inter-
pretations of D, the binary function β takes D and
SD and returns D′ = [v0, ..., vj′] and SD′ , which
satisfy the following conditions:

• [v0, ..., v
′
j] is a dialogue with 1 ≤ j ≤ i and

v′j 6= vj;

• the part [v0, ..., vj−1] of D′ is equal to the first
part [v0, ..., vj−1] of D;

• D′ = [v0, ..., v
′
j] is the maximal alternative di-

alogue, in the sense that there is no dialogue

[v0, ..., v
′
k] that is equal to a part [v0, ..., vk−1]

of D such that j < k and v′k 6= vk;

• SD′ is the set of minimal satisfiable interpre-
tations for D′.

If no dialogue [v0, ..., v
′
j] with j ≥ 1 that satisfies

these conditions exists, then β returns D′ = [v0]
and SD.

This is where Depth-First Search comes in: in a
search tree, the backward move makes the search
go to a different branch. O wins if the entire search
tree has been traversed and no agreement is found.

In theory, P is responsible for finding another
claim or challenge, since P is the player with the
goal of finding an agreement. If n is even, then P
“asks” O to present another challenge, and if n is
odd, then P tries to present another claim. In prac-
tice, this search, nor any of the other moves and
processes discussed, differ between players.

Another difference to note between the theoret-
ical and practical steps of the backward move is
that a player applying the backward move must
know the evaluated acceptance condition ϕv

a of an
argument a for which an unused mSATa is to be
found. In theory, ϕa is evaluated under v again, but
in practice, this step does not yield any new results
since v and ϕa have not changed. As such, in the
examples, the evaluating step of the backward move
is not shown.

8

a

b

c

⊥

b

a ∨ b

Figure 2.4: ADF F = {{a, b, c}, {(a, c), (b, b), (b, c)},
{ϕa = ⊥, ϕb = b, ϕc = a ∨ b}}.

Example 5 showcases the checking step and back-
ward move. The example ADF is shown in Fig-
ure 2.4 above.

Example 5. Example dialogue for an ADF
F = {{a, b, c}, {(a, c), (b, b), (b, c)}, {ϕa = ⊥, ϕb =
b, ϕc = a ∨ b}}.

P: initial claim: ∃v ∈ prf(D) such that v(c) = t,
i.e. v0 = uut.

O: – v0 = uut contains strictly more informa-
tion than uuu, so the dialogue continues.
A′ = {c}.

(1) Evaluates ϕv0
c = a ∨ b.

(2) Finds the set of minimal satisfiable inter-
pretations for ϕv0

c and presents mSATc =
tuu. This yields δ(v0,mSATA′) = tut =
v1.

P: – v0 <i v1, so the game continues. A′ =
{a}.

(1) Evaluates ϕv1
a = ⊥.

(2) Finds mSAT v1
a = fuu. Since there

is a contradiction between mSAT v1
a (a)

and v1(a), δ(v1,mSAT
v1
A′)(a) = u, so

δ(v1,mSAT
v1
A′) = uut = v2.

P: – v1 6≤i v2, so the dialogue [v0, v1, v2] is
blocked.

(2) Searches for another result for
mSAT v1

a , but none exists. Asks O
to present another challenge, i.e. another
δ(v0,mSATc).

O: – Just as before, uuu <i v0, so there is no
contradiction. A′ = {c}.

(2) Finds another result for mSATc with ϕv0
c ,

namely mSAT ′c = utu. Applies the for-
ward move, δ(v0,mSAT

′
c) = utt = v′1.

P: – v0 <i v
′
1, so the dialogue D′ = [v0, v

′
1]

continues. A′ = {b}.
(1) Evaluates ϕ

v′
1

b = >.

(2) Finds mSATb = utu, so δ(v′1,mSATb) =
utt = v′2.

O: – v1 =i v2, so A′ = {}, and an agreement
is found. P is the winner. �

3 Implementation

The main goal of this project is the implementation
of the preferred discussion game. As such, this sec-
tion describes the practical matter of implementing
relevant algorithms. The original code can be found
at https://github.com/piekb/adfs.

3.1 General

The program takes as input an ADF. In the input
file, the ADF is represented as follows: each line ei-
ther describes the existence of an argument a in the
ADF or the acceptance condition of an argument
a. For example, when ϕa = ¬b∨(a∧b) and ϕb = >,
the input file looks as follows:

s(a).

s(b).

ac(a,or(neg(b),(and(a,b)))).

ac(b,c(v)).

Upon execution, the program gets the name of the
input file from the command line, and then prints
an overview of the ADF. Then, the program gets
the argument and truth value of the initial claim
from the command line. Throughout the execu-
tion of the program, interpretations at nodes of
the search tree are printed, and the steps taken
(forward, backward, or conclusion of the game) are
printed. This way, the user can reconstruct the di-
alogue that led to the outcome of the game.

To deal with logical expressions in the implemen-
tation, being able to import external libraries and
packages is almost unavoidable. Moreover, to rep-
resent certain data types, object oriented program-
ming proves useful. To this end, the chosen pro-
gramming language was Python.

9

3.2 Data structures

At the base level of an ADF, there are argu-
ments and interpretations that assign truth values
to those arguments. In the program, an interpreta-
tion is represented as a string of truth values, one
for each argument alphabetically.

We need some way of representing an argument.
Making a class Argument provides a solution here.
The Argument type contains a string Name and a
propositional formula ac to represent its acceptance
condition. Since the propositional formula is made
using the Python library Logic, an Argument also
has a Logic symbol made from its name to deal
with certain restrictions by the library. Lastly, an
argument has an int dex for index, which is used
to find the assignment of the argument to a truth
value in an interpretation.

3.2.1 Search tree

As described before, the search for an agreement in
the game happens via Depth-First Search (DFS).
A straightforward tree structure is used, by simply
constructing one Root from the initial claim, and
for each node a new Node.

A Root contains data (the interpretation string)
and children (a list of Nodes). A Node contains
these elements as well as one parent node, to make
navigating through the tree a bit simpler. Both of
these structures contain a function add child that
initializes a child Node and adds it to the children

of the current node.

When a number of minimal satisfiable interpre-
tations is found for a node, the set of these interpre-
tations becomes n.msats. This is explained further
in Section 3.4.1.

Whenever a new interpretation is found through
the forward move, that interpretation is given as
the data of a new child node, and the new node is
accessed. For the backward move, the tree applies
standard DFS backtracking. This is elaborated on
in Section 3.5.

3.3 Informational ordering

The first key task in the algorithm is performing
the checking step, in which the informational or-
dering of two interpretations is found. Using an old
interpretation w and new interpretation v, we must

have w ≤i v, or we get a contradiction. In prac-
tice, an advantage of this step is that one function
can combine detecting a contradiction, detecting an
agreement (w =i v), and finding the set of recently
presented arguments A′.

To do this, the program must loop through v
using the counter variable i, and check for each
assignment whether it coincides with the assign-
ment of that argument in w. This happens in the
function check info, which takes two interpreta-
tions and performs Algorithm 3.1. The algorithm
performs three checks:

• if w[i] == u and v[i]! = u, add the argu-
ment at place i to a prime;

• if w[i]! = u and v[i]! = w[i], indicate that
there is a contradiction;

• if after looping through v, a prime is empty,
indicate that there is an agreement.

Algorithm 3.1 Pseudo-algorithm for check info.

a prime← []
contra← False

found← False

5: for i in enumerate(v) do
if w[i]=’u’ then

if v[i]!=’u’ then
append v[i] to a prime

end if
10: else if v[i]!=oldv[i] then

contra← True

end if
end for

15: if a prime is empty then
found← True

end if

3.4 Forward move

To apply the forward move, the program first finds
a set of minimal satisfiable interpretations, i.e.
mSATA′ . This set is used by the function forward,
which loops through the set of arguments A′ and
finds δ(v,mSATA′) for each argument.

10

The implementation follows the five cases from
the function for δ as outlined in the theory. The
first, second, and fifth case from δ are distinguished
in regular if-statements, while there are separate
functions third and fourth to take the steps de-
scribed on the right-hand side of the third and
fourth cases in Equation 2 on page 8.

Both of the latter functions make use of an-
other function no conflict. For a given argu-
ment a and the mSAT for some other argu-
ment ai, named mSATai

, the function checks
whether there is any other aj ∈ A′ for which
mSATaj (a) 6= mSATai(a). This function is called
as no conflict(msat ai,a prime,a); in the third
case of δ, it is called once for every parent c
of a, i.e. no conflict(msat a,a prime,c). In the
fourth case of δ, it is called just once, for a itself.

3.4.1 Minimal satisfiable interpretations

To search for a minimal satisfiable interpretation
that has not been used before, one straightforward
strategy would be to simply generate all satisfiable
interpretations for ϕa for a ∈ A′, and then find the
set of those interpretations with minimal length†.

However, there is one important problem with
this strategy: the computational complexity. To
find the full satisfiable interpretations for ϕa, we
need to first generate all interpretations of length
n − 1, where n is the number of arguments in the
ADF. Then we must loop through all of them, pad
a u on the place of a, and check whether the result-
ing interpretation satisfies ϕa.

Using the options t,f,u, we get a truth table of
n − 1 propositional atoms for three truth values,
which results in an exponential complexity: this ta-
ble has 3n−1 rows. Moreover, padding the u at the
place of a requires another loop of n iterations.

Random generation of interpretations

Another approach to finding interpretations could
be to try out random truth value assignments over
the parents of the argument for which an interpre-
tation must be found. This is more computationally
efficient than computing the full set of satisfiable
interpretations.

†Note that this section only describes the implementation
of the first case of the formal definition of mSATa; if ϕv

a ≡
>/⊥, the program returns {a 7→ ΓF (v)(a)} as mSATa.

To improve this further, we can:

• check whether this random interpretation ac-
tually satisfies the acceptance condition of the
argument, before using the interpretation in δ;

• keep track of a “blacklist” of already used sets
of interpretations (one per argument in A′) by
a node, so that these sets are not used twice.

One thing to note about this method is that the sat-
isfiable interpretations found are not always mini-
mal. Another, more pressing issue is the following.
If we use a completely random distribution of truth
value assignments, but the only satisfiable interpre-
tation is already in the blacklist, the search will go
on forever. Without the blacklist, this problem oc-
curs as well, only in this form the one satisfiable
interpretation would just be used in a new branch
of the tree and cause a contradiction again and
again. For this reason, an optimization of the first
approach seems the better option here.

Algorithm 3.2 Pseudo-algorithm for smart com-
putation of the set of mSATs for an argument
a ∈ A′ with k parents.

inters← combinations of t,f,u of length k

cnt← k-1

msats← []
for inter in inters do

5: if inter.count(‘u’) < cnt then
if msats not empty then

break
else

cnt-=1

10: end if
end if
m← ’’, j← 0
for i in range(n) do . Pad with u’s

if argument at i is in parents(a) then
15: m← inter[j], j+=1

else
m← m +′ u′

end if
end for

20: if m satisfies phi(a) then
msats.append(m)

end if
end for
return msats

11

Improving computational search

One first optimization of the non-random search for
mSATs is to check satisfiability only for interpre-
tations over the parents of an argument a ∈ A′.
This more closely follows the theory than checking
satisfiability for interpretations over all arguments.

Though in many cases this strategy requires
less satisfiability checking, the program still loops
through 3k interpretations, where k is the number
of parents of a. This means that in the worst case,
i.e. when all arguments of the ADF (except a) are
parents of a, we must still check the satisfiability
of 3n−1 interpretations.

A way to further improve the complexity of the
search is to sort the set of interpretations and keep
track of the number of arguments not assigned to
u (i.e. the “level” of informational ordering). This
way, we only need to check satisfiability for one level
at a time. If any satisfiable interpretations have
been found at one level, then the next level need
not be checked; the loop simply breaks. This is the
algorithm used in the final version of the program,
and is given in Algorithm 3.2 on page 11.

In the worst case, i.e. when the minimal
satisfiable interpretation is also maximal w.r.t
informational ordering, we still need to check the
satisfiability of 3k interpretations. Moreover, the
padding with u slows down the program quite a
bit for increasing size of the ADF. In better cases,
though, the overall complexity of this version of
the algorithm is much lower than the previously
presented algorithms.

The implementation used for finding mSATs is a
modification of the function given in the theory,
since the full set of mSATs is returned and attached
to the node in the search tree. To make the program
a bit more dynamic by maintaining some kind of
randomization, a random set of mSATs (one for
each a ∈ A′) is chosen to continue the game with,
and that set of mSATs is removed from the list of
options for the node, called n.msats. This way, no
options are used twice, but the options are not used
in a fixed order.

Example 6 shows how mSATs for multiple re-
cently presented arguments are combined, such
that each combination can be safely removed from
n.msats when accessed.

Example 6. Consider an ADF of arguments
{a, b, c, d} where, at some point in solving an initial
claim, we have A′ = {a, d}. Say we have ϕa = b∨c,
and ϕd = ⊥. Then

• for ϕa, we have two options for mSAT (a): ei-
ther utuu, or uutu.

• for ϕd, we have only mSAT (d) = uuuf.

A list of two sets is returned to n.msats, each of
which has the form {a : mSAT (a), d : mSAT (d)}.
In this example, we get:

n.msats = [{a:utuu,d:uuuf},{a:uutu,d:uuuf}]

One of these two options is chosen randomly, used
for the forward move, and removed from n.msats.
In case of a contradiction, the backtracking step
checks if there are any sets of the form
{a : mSAT (a), d : mSAT (d)} left.

3.5 Backward move

When a contradiction is found in one node of the
search tree, the program must backtrack. For clar-
ity, let vn be a node that caused a contradiction.

First, it is checked whether vn is the root node,
i.e. represents the initial claim, in which case P au-
tomatically loses and the program finishes. Other-
wise, from vn, the program enters a loop in which
it is checked whether another set of mSATs exists
under the parent node, vn−1. If no other set exists,
the program backtracks further.

The loop is exited either when the program has
backtracked all the way to the root node without
finding another branch, or when an unused set of
mSATs is found under some node. Again, if the
current node is the root, P loses, but otherwise, the
forward move is applied on vn−i using the newly
found set of mSATs, and the resulting interpreta-
tion is stored as the data of a new child node which
is then accessed.

The algorithm for backtracking is Algorithm 3.3
on page 13. For brevity, when the data of a node
n is passed to a function, the algorithm states n

instead of n.data.
As mentioned earlier in this report, a dialogue in

the game is represented as a branch of the search
tree. Since the backtracking algorithm for the tree
structure solves the implementation of the back-
ward move, we opted out of implementing dialogues
and the function β from the theory explicitly.

12

Algorithm 3.3 Pseudo-algorithm for backtracking

if n is Root then break . P loses game.
end if

n← n.parent

5:

while n is not Root & found msat=False do
n← n.parent

a prime← check info(n, n.parent)[0]

if n.msats is not empty then
10: m← random.choice(n.msats)

remove m from n.msats

found msat← True

end if
end while

15:

if n is Root then break . P loses game.
else

update← forward(n, a prime, msat)

n.add child(update)

20: n← n.children[i+1]

end if

3.6 Full algorithm

The algorithm that controls the moves of the game
from the main program is one that initializes the
tree structure, followed by continuous applications
of the forward move until either

• a contradiction is found, at which point we
backtrack, or

• an agreement is found, at which point the game
ends with P as the winner.

As explained in Subsection 3.3, contradictions and
agreements are found by the checking step, which
is performed at the beginning of the loop. As ex-
plained in Subsection 3.5, if at any stage of back-
tracking we have reached the root node, the game
ends with P losing.

The full algorithm of the game is given more
schematically in Algorithm 3.4. Again, for brevity,
when the data of a node n is passed to a func-
tion, the algorithm states n instead of n.data. At
the conclusion of the game, the full search tree is
printed. If P has won the game, the “winning” in-
terpretation is printed, along with “YES”. If P has
lost the game, the program outputs “NO”.

Algorithm 3.4 Pseudo-algorithm for the game.

n.msats← find msat(n, a prime)

m← random.choice(n.msats)

remove m from n.msats

update← forward(v 0, a prime, m)

5: n.add child(update)

n← n.children[0]

while True do
check← check info(n, n.parent)

10: a prime, contra, found← check

if contra then backtrack
else if found then break . P wins game.
else

n.msats← find msat(n, a prime)

15: m← random.choice(n.msats)

remove m from n.msats

update← forward(n, a prime, m)

n.add child(update)

n← n.children[0]

20: end if
end while

4 Testing

Due to the practical nature of the project, ex-
perimenting consists first and foremost of testing
whether the implementation works. To do so, a
number of different inputs have been tested. These
inputs range from rather basic, such as the ADF
of Example 4 on page 7, to complex ADFs with
notable acceptance conditions, so that specific ele-
ments of the program can be tested.

These special elements include:

• correctly evaluating different acceptance con-
ditions: ¬,∨,∧,>,⊥, ⇐⇒ , =⇒ , but also
tautologies such as ϕa = d ∨ ¬d, and contra-
dictions such as ϕd = ¬d;

• searching for alternative children for nodes at
any depth of the search tree, and continuing
the game with a new branch if needed;

• finding alternative mSATs in a smart way.
A key requirement here is that the computa-
tional complexity is not too high; see also Sec-
tion 3.4.1.

13

a

b

c

e g

f d

b

f

(b ∨ f) ∧ a ∧ g c ∨ g ∨ d ⊥

g e

Figure 4.1: Complex ADF used as input to test
computation times.

4.1 Efficiency of finding mSATs

As described earlier in Section 3.4.1, multiple al-
gorithms for finding appropriate mSATs were ex-
plored in the project. As the various versions of
the algorithm which finds random interpretations
cause other bugs in the code that make the pro-
gram incorrect, it does not make sense to include
this algorithm when analyzing the complexity and
computation time of the final algorithm.

As such, this section describes experiments on
two algorithms on two input ADFs, testing the in-
fluence of the “smart” computation as described in
Algorithm 3.2 on page 11. Since the different parts
of the program work as they should, the main thing
to test here is computation time as a function of
the size of the set of arguments in the input ADF.
The computation time is measured over the entire
program, using one of the following algorithms for
finding mSATs:

(1) Smart computation over parents

(2) Computation over parents

The two example ADFs and initial claims used
to test these algorithms, are

• the simple ADF with three arguments from
Example 5, as in Figure 2.4 on page 9, with
initial claim {c 7→ t};

• an ADF with seven arguments as in Figure 4.1,
with initial claim {a 7→ t}. Especially ϕc

makes this ADF more complex than the first.

To account for the randomization in the program,
the average computation time is taken over 50 runs.
The results are presented in Table 4.1.

Algorithm Simple ADF Complex ADF
1 0.311283659 1.902142177
2 0.318055177 2.654839830

Table 4.1: Average computation times (in sec-
onds) of the program, using different algorithms
for finding mSATs, for a smaller and more com-
plex input ADF.

These computation times clearly reflect that the
“smart” algorithm makes the program more effi-
cient, since with increasing number of arguments,
the computation time for the second algorithm in-
creases much faster.

An interesting phenomenon showing that the
program works as it should, is that the computa-
tion times for both algorithms show spikes on cer-
tain (rough) lines. This distribution reflects the fact
that choosing the correct minimal satisfiable inter-
pretation right away leads to a solution faster than
having to backtrack because the program chose an
option leading to a contradiction. Figure 4.2 dis-
plays this phenomenon for the simple input.

0 10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

Algorithm 1
Algorithm 2

Figure 4.2: Computation times of the two algo-
rithms on the simple input over 50 runs.

In the case of the simple input ADF, when
mSATc = utu is chosen in the first turn by the
opponent, the game reaches an agreement faster
than when mSATc = tuu is chosen in that turn,
because the backward move need not be applied.

14

5 Conclusion

This project explored the preferred discussion game
for abstract dialectical frameworks and how to im-
plement said game in an efficient Python program.

Overall, the implementation of the game is as it
should be. The tree structure provides an elegant
game play, with underlying functions in neat, di-
rect implementations of the theoretical formulae.
The program is user-friendly, and has the option
of printing the different intermediate steps of the
game and the search tree, showcasing the processes
unique to the algorithm provided by the theory.
This way, the program provides a useful aid for
future research on the game, and a base for the
implementation of similar games.

As expected, the use of Python libraries simpli-
fies the evaluation of logical expressions greatly,
though it should be noted that the Python SymPy
library used to read input in the current imple-
mentation does not read input files correctly if the
names of arguments in the file are integers.

A number of different algorithms were compared
for the search for a useful minimal satisfiable in-
terpretation. The two most efficient algorithms
were compared by tracking the computation time.
Though for complex inputs, the algorithms are not
as efficient as expected, the computation time is
not very high for simpler problems.

In particular, the random generation of these in-
terpretations is something worth exploring further.
In the scope of this project, problems concerning
infinite search loops restricted the use of random
generation in the game. In the future, one solution
might be provided by exhausting the search set.
This is actually used in the current implementa-
tion, where randomly visited options are removed
from a set so that they are not visited twice.

6 Discussion

As the discussion game introduced by Keshavarzi
and implemented in this thesis is the first of its
kind, many options for more general further re-
search exist.

For starters, one direct continuation of this
project would be to use the implementation of
the current game to evaluate the game algorithm
against other existing solvers such as K++ and
YADF. As the implementations of these solvers
give answers mere microseconds, even for extremely
large inputs, it did not make sense to evaluate their
computation times against those of the current im-
plementation of the discussion game algorithm.

Moreover, while the game discussed in this work
solves the credulous decision problem under pre-
ferred semantics, similar games could be developed
for the skeptical decision problem, which revolves
around the question whether not just some, but all
interpretations of a given type of semantics assign
a certain argument to a certain truth value.

Lastly, while the game algorithm was developed
with preferred semantics in mind initially, the un-
derlying concepts are robust enough to be applied
to other semantics as well, such as grounded and
complete semantics. In fact, a similar version for
grounded semantics has been recently developed
by Keshavarzi Zafarghandi, Verbrugge, and Verheij
(2020, in press), and has been accepted to the 8th
International Conference on Computational Mod-
els of Argument.

15

References

Pietro Baroni, Martin Caminada, and Massimiliano
Giacomin. An introduction to argumentation se-
mantics. The Knowledge Engineering Review, 26
(4):365–410, 2011.

Gerhard Brewka and Stefan Woltran. Abstract di-
alectical frameworks. In Twelfth International
Conference on the Principles of Knowledge Rep-
resentation and Reasoning, pages 102–111, 2010.

Gerhard Brewka, Stefan Ellmauthaler, Hannes
Strass, Johannes Peter Wallner, and Stefan
Woltran. Abstract dialectical frameworks revis-
ited. In Twenty-Third International Joint Con-
ference on Artificial Intelligence, pages 803–809,
2013.

Gerhard Brewka, Martin Diller, Georg Heis-
senberger, Thomas Linsbichler, and Stefan
Woltran. Solving advanced argumentation prob-
lems with answer-set programming. In Thirty-
First AAAI Conference on Artificial Intelligence,
pages 1077–1083. AAAI press, 2017a.

Gerhard Brewka, Stefan Ellmauthaler, Hannes
Strass, Johannes P Wallner, and Stefan Woltran.
Abstract dialectical frameworks: An overview.
The IfCoLog Journal of Logics and their Appli-
cations, 4(8):2263–2317, 2017b.

P. M. Dung. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artifi-
cial Intelligence, 77(2):321–357, 1995.

Thomas Linsbichler, Marco Maratea, Andreas
Niskanen, Johannes Peter Wallner, and Stefan
Woltran. Novel algorithms for abstract dialecti-
cal frameworks based on complexity analysis of
subclasses and sat solving. In IJCAI, pages 1905–
1911, 2018.

Atefeh Keshavarzi Zafarghandi, Rineke Verbrugge,
and Bart Verheij. Discussion games for preferred
semantics of abstract dialectical frameworks. In
European Conference on Symbolic and Quantita-
tive Approaches with Uncertainty, pages 62–73.
Springer, 2019.

Atefeh Keshavarzi Zafarghandi, Rineke Verbrugge,
and Bart Verheij. A discussion game for
the grounded semantics of abstract dialectical
frameworks. In Proceedings of COMMA 2020:
Computational Models of Argument, 2020, in
press. URL https://comma2020.dmi.unipg.

it/index.html.

16

