
Connecting Discussions within Issue
Tracking Systems

Bachelor Thesis

Alexander Fyodorov

Faculty of Science and Engineering
University of Groningen

20 July 2020

Supervisors:
dr. M.A.M. (Mohamed) Soliman
prof. dr. ir. P. (Paris) Avgeriou

Abstract

To prevent architectural decays, several tools that predict future issue
reports by analyzing existing ones are developed. The results obtained by
these tools are followed by opened issue cases, relevant issue discussions,
and commits aimed at solving reported issues. All these issue resolution
components, in turn, represent a nice knowledge source that can be reused by
other projects to prevent similar issues. However, knowledge extraction from
solutions can be a challenging task since it requires to traverse all sources
relevant discussions refer to, such as forum discussions, issue-resolving
commits and even other issues directly or indirectly related to each other.

The purpose of this project is to determine how discussions and knowl-
edge sources related to a specific issue can be linked to each other to provide
a coherent overview of approaches and decisions made to solve the issue.
To test the effectiveness of the results, we will develop a tool that will link
discussions and generate a human-readable report.

i

Contents

1 Introduction 1
1.1 Goal and research questions . 2

2 Background 4
2.1 Issue tracking systems . 4
2.2 Version control systems . 5

3 State of the Art 7
3.1 Time series analysis of issues . 8
3.2 Active Hotspots . 8
3.3 Prevention of future issues . 9

4 Analysis of references in issue tracking systems 10
4.1 Jira issue representation . 10
4.2 Analysis process . 13

4.2.1 Goals and challenges of statistical analysis 14
4.2.2 Approach . 15
4.2.3 Python Jira . 17
4.2.4 References parsing . 18

4.3 Analysis results . 20
4.3.1 URLs classification . 20
4.3.2 References frequency . 21

5 Linking discussions from issues 27
5.1 System architecture . 27

5.1.1 Introduction . 27
5.1.2 Process flow . 28
5.1.3 Components description . 30
5.1.4 Technical challenges . 33

5.2 System evaluation . 35
5.2.1 Valid input . 35

ii

CONTENTS iii

5.2.2 Invalid input . 37

6 Conclusion 40
6.1 Future work . 41

7 Appendix A: ReadMe 44

8 Appendix B: Plots 47

1
Introduction

The development of software products is a complex task. There is a regularly occurring
phenomenon of architectural decays and code smells in big and long-lived projects.
As a project keeps growing, its architecture may be changed multiple times to meet
new requirements, and in the worst cases, this leads to increased maintenance costs
and the overall deteriorating quality of the project [1][2]. And the only way to prevent
architecture degradation is to detect architectural flaws as soon as possible before the
damage is done. For this purpose, several tools and techniques were developed, such as
SonarQube, Structure101, DV8, and Active Hotspots [3].

If the scenario of architectural modifications can be predicted, then it is highly de-
sirable to avoid them by considering them during building the initial architectural plan.
Due to a big number of open-source projects available online, there is always a chance
that knowledge about suitable architectural decisions can be extracted from resolved
software issues from other projects. Moreover, solutions may be available on forums
and Q&A (question and answer) websites, such as StackOverflow 1 and Quora 2, and
developers may refer to them during issue discussions.

However, knowledge extraction is not an easy process. An issue may contain refer-
ences to other issues and forums, and they, in turn, may also contain links to other
knowledge sources. Moreover, some references are presented as unique identifiers and

1https://stackoverflow.com/
2https://www.quora.com/

1

CHAPTER 1. INTRODUCTION 2

thus require some manual exploration. Therefore, it may be a complex, labor-intensive,
and exhaustive task to traverse through all these sources until suitable knowledge is
extracted, leading to the short attention span and probable unintentional information
gaps.

This project is aimed at determining a generic approach to link discussions on soft-
ware issues. We will examine which elements of issue reports can be used as connections
to external sources. Those can be direct URLs or some unique identifiers that may refer to
other issues within the same project. We will also examine how exactly these connections
can combine multiple sources of knowledge into one. The results of the research will
give developer communities a basis for project-specific, discussions linking approaches
and a guideline for developing tools that link information about issues within some spe-
cific project and generate all-in-one human-friendly reports containing knowledge about
consistent decisions made towards issues resolutions. To demonstrate the effectiveness
of the approach selected, another goal of the project is to provide a working prototype
of a tool that connects discussions of a project across multiple platforms, mainly bug
tracking systems and code repositories, such as Jira and GitHub.

1.1 Goal and research questions
Existing issue analyzing methodologies provide efficient ways of predicting future bug
reports and eliminating architectural decays. However, decisions made for a software
issue resolution may be left buried inside issue trackers and are not intended to be easily
found by search engines due to a lack of references to the issue from external resources.
The ability to capture such information may provide other projects opportunities to avoid
similar problems in the future or even to develop better solutions for already resolved
ones and share them with the community.

There are two main goals of the project.

The first one is to describe how to build connections between issue trackers, source
code repositories, and forums related to issues and how these connections can help with
extracting useful information from discussions. Each issue is accompanied by discus-
sions, primarily in a form of comments, and each discussion may include references.
Such references may forward to forums and other issues with similar problem reports or
relevant sources of information and even ready-made solutions. Moreover, most, if not
all issues, contain some identifiers or keywords which can act as search terms to be used
in target platforms. For example, all commits targeted at fixing some specific bug may
contain references to an appropriate bug report in their commit messages.

CHAPTER 1. INTRODUCTION 3

This leads to the following research questions:

1. Which elements of issue reports can be defined as connections (connecting at-
tributes) to other sources?

2. How can different types of connecting attributes be used to link multiple discus-
sions into one source of knowledge?

These questions are expected to lead to the following contributions when answered:

1. Determine a generic approach to link discussions on software issues.

2. Design and develop a tool to support linking information about software issues
within a certain project.

To test the effectiveness of the approach, a working prototype of the tool described is
developed.

In case of success, the project can help IT companies and standalone developers make
better decisions in architecture development by simplifying knowledge extraction.

2
Background

2.1 Issue tracking systems
When a software product is released, it is not guaranteed that it is bug-free. Unfortunately,
developers and even software testing teams are unable to track every possible bug or
issue. To simplify the process of tracking known issues and bugs, issue tracking systems
are attached to the development process of a complex project.

Before defining what an issue tracking system, or issue tracker, is, we first have to
explain what an issue tracking is in general. In 2006, Henderson provided a definition
of issue tracking: ”issue tracking, often called bug tracking (and sometimes request
tracking), is the process of keeping track of your open development issues.” [4] If a new
issue is reported, its detailed description and any additional information are added to a
specific computer software system that provides developers the way to access, update and
discuss the information of every recorded issue. Such systems are called Issue tracking
systems, also known as Issue trackers and Bug tracking systems. As defined by Black
in 2002, ”a bug tracking system is some program or application that allows the project
team to report, manage, and analyze bug reports and bug trends.” [4] An issue contains a
description, comments and links to other issues and external sources, so it may represent
an extensive source of knowledge about important design decisions.

Jira is a proprietary issue tracking system developed by Atlassian. According to the
official website, around 170.000 customers from over 190 countries use Jira for issue

4

CHAPTER 2. BACKGROUND 5

tracking and project management 1. Being initially developed as a bug and issue tracker,
Jira was eventually turned into a powerful work management tool, providing a friendly
environment for teams practicing agile methodologies.

2.2 Version control systems
Any development process may be simultaneously accompanied by bad design decisions,
e.g. a feature is implemented that eventually harms the quality of the project architecture
or introduces a hard-to-fix bug. In this case, a developer may want to revert all the
changes to some point before making a bad decision. For this purpose, he/she has to store
the old state of a program for being able to revert to it at any time. However, manually
saving the entire state can be time- and space-consuming, moreover, the developer has to
keep a record of which files are changed and what is the reason for saving this state (in
other words, the description of changes made).

Version control systems (VCSs) are aimed at solving these issues. According to Chacon
and Straub (2014), Version control is a ”system that records changes to a file or set of
files over time so that you can recall specific versions later” [5]. It provides the user with
a way to create snapshots of a project at any time and provide a detailed description of
the latest changes made. The key feature of a VCS is that it can show the differences
between any two snapshots, i.e. which files are changed and in which way, and the user
can revert the project to the desired state in a fast and simple way.

The two key terms introduced by version control systems are revision and commit.
Although these words are often used as if they are interchangeable, it is useful to under-
stand the difference between them.

1. Revision describes the state of the product. Consider a project for which a VCS is
used. The initial state is described as Revision 1. After some changes being made,
the state of the project is changed and now corresponds to Revision 2.

2. Commit describes the difference between states/revisions. While a revision repre-
sents a state of a project, a commit specifies which files are changed and how. For
example, when a project is created, Commit 1 describes the difference between an
empty project folder and all the files initially created. If the user adds 3 lines to a
file X, then Commit 2 points at the added lines in the file X.

Apache Subversion, abbreviated as SVN, is a software versioning and revision control
system developed by the Apache Software Foundation in 2000 [6]. It is widely used for
Apache’s projects and is often used in conjunction with other version control systems,

1https://www.atlassian.com/company

CHAPTER 2. BACKGROUND 6

such as Git.

Git is a distributed VCS developed by Linus Torvalds in 2005 to accompany the develop-
ment of the Linux kernel. According to Eclipse Community Survey 2014, Git is the most
widely used code management tool; around one-third of all developers around the world
use Git as their primary version control system. [7]

GitHub is the largest web-service for hosting software projects using Git. As of January
2020, more than 100 million repositories are hosted on GitHub [8] and more than 40
million users are registered 2. GitHub is heavily used alongside Apache Subversion as
the main source code hosting service for Apache projects. GitHub may contain pull
requests and commits for issues we are interested in extracting knowledge about. A pull
request is a request to check and review changes made to a project to merge them into
the main code base.

Sometimes, an important information has to be sent to multiple recipients who can
be developers or testers. For this purpose, mailing lists are used. A mailing list represents
a list of email addresses to which the same information is sent. 3

2https://github.com/search?q=type:user&type=Users
3http://www.list.org/mailman-member/node5.html

3
State of the Art

In this section, we will explain basic concepts by referring to the relevant literature and
support the goal of the project. It is important to understand the process of issue analysis
in order to build connections between software issues discussions. All the literature can
be found at IEEE Xplore. 1

The process of designing a software architecture involves making a lot of design de-
cisions, each of which affects properties and the functionality of the software product
in varying degrees. That is why architecture decay is one of the most acute problems
in software development. As a software project grows, new architectural decisions are
added and existing ones are modified or removed [1]. In other words, the architecture
keeps changing constantly during the lifetime of the project. This leads to an increasing
number of architectural smells making the system hard to maintain and increasing costs
and efforts of software maintenance [9] [2].

Correct predictions of bug reports and requests for system enhancements may dra-
matically reduce the amount of upcoming architectural decays and help large teams to
allocate staff to different tasks more efficiently [10]. There are several well-described
methodologies for detecting and predicting architectural smells and debts, and none of
them is universal. However, they all have a common characteristic: the foundation of
knowledge for each of them is taken from the analysis of issue reports, both resolved
and opened, and enhancement requests, as well as connections between them and their

1https://ieeexplore.ieee.org/Xplore/home.jsp

7

CHAPTER 3. STATE OF THE ART 8

atomic components, e.g. source files [1] [9] [3].

3.1 Time series analysis of issues
By analyzing issue reports in 832 open-source and proprietary projects, Krishna et al.
were able to build time series models on issues, which could be used to predict future
bugs and enhancements [10]. Temporal trends in the data mined were modeled using
Autoregressive Integrated Moving Average (ARIMA) by applying a rolling-window anal-
ysis, and moderately strong correlations between bugs, issues, and enhancements were
found. Furthermore, ARIMA showed itself being accurate for predicting new bugs and
issues, with a very low level of errors and the variance in errors.

Forecasts made by ARIMA originate from the analysis of past temporal data or is-
sue reports. Past temporal data illustrates different temporal trends in issues, bugs and
architectural improvements. The results demonstrated by Krishna et al. show that pre-
dictions based on past temporal trends are statistically comparable to the ones based on
issue reports only.

All things considered, ARIMA shows clear connections between issues, bugs and en-
hancements and proves that these connections can be used to predict future trends and
upcoming issue reports.

3.2 Active Hotspots
One of the most recent methodologies to reveal architecture problems and predict them
is Active Hotspot - an issue-oriented model that tracks changes in source files and their
relations within the scope of each issue [3]. To be more precise, it determines files whose
modifications address multiple issues, finds architectural and semantic relations between
them through four propagation patterns, and forms groups of files called active hotspots.

The propagation patterns were deduced after it was found that 96% of bug fixes followed
four recurring patterns [3]:

1. Dissemination: if a method/field is modified in one file, then all files that use this
method/field are adjusted accordingly.

2. Concentration: changes in multiple classes are reflected in a single class which
depends on them.

3. Domino: a change performed in one file leads to a cascade of consequent changes.

CHAPTER 3. STATE OF THE ART 9

4. ScatterShot: an injection of similar patch logic into multiple files.

The priority for the analysis goes to dominant (affecting 5 or more files) and persistent
(long-lasting) hotspots. In comparison with other architecture smell analysis tools, the
number of files with smells captured by hotspots does not correlate with the size of
the project since it is related only to the intensity of architectural relations and issue
interactions between affected files. In other words, hotspots can show high precision
and a low recall of finding bug-prone and change-prone files due to reporting a smaller
number of files in a constantly evolving project, and this can be achieved by focusing on
dominant and long-lasting hotspots the number of which does not intend to be changed.

3.3 Prevention of future issues
Existing methodologies for issues analysis represent a nice source of knowledge about
design decisions and may help to avoid architectural inefficiencies for other projects.
However, discussions that lead to appropriate decisions may be hidden deep inside issue
reports and bug trackers and are not that easy to extract due to a high fragmentation level,
for example, the same issue can be discussed on multiple platforms, such as source code
hosting services like GitHub, bug trackers like Jira or even forums dedicated for software
projects. This implies that in order to build an overall picture of some specific decision, it
may be required to manually traverse all these platforms, which may be time-consuming
and easy to miss important information.

Shahbazian et al. developed a tool RecovAr to recover architectural decisions from the
project’s historical artifacts, such as resolved issues and commits that address them [11].
The tool shows a high level of recall and precision, however, some discussions can still
be lost, moreover, the recovered ones may not be easy to read or understand. The reason
for that is that the tool builds connections only between issues and relevant code changes,
while a lot of information related to decisions may be found on forums and bug trackers.

It is expected to extract more useful information if new types of connections are found.
The best candidates are URLs to forums, bug trackers or even old issues and commits
which led to some design decisions.

4
Analysis of references in issue tracking

systems

4.1 Jira issue representation
The first step of the research is to select a suitable Jira-powered system with some projects
with various development processes. And the one that fulfills our needs is ASF JIRA - a
publicly available issue-tracking system related to open-source Apache projects.

Before the beginning of the analysis, it is important to understand how issues of projects
hosted on ASF JIRA are structured. For illustrative purposes, the issue PDFBOX-3017
related to the Apache PDFBox project is taken.

1. When the issue is opened (Figure 4.1), the first thing that catches an eye is the
Description section. Alongside the description of the problem, it contains a number
of links to external resources and references to other issues.

10

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 11

Figure 4.1: PDFBOX-3017, highlighted references

Here we can distinguish three different types of references, where:

— is a reference to the StackOverflow forum.

— stands for another issue.

— refers to a PDF document.

2. The next two sections that deserve special attention are Attachments and Issue Links
(4.2).

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 12

Figure 4.2: PDFBOX-3017, issue links

Attachments may contain essential information about the issue that is not included as
references.
Issue links contain two types of references:

(a) Other issue links. These are the links to other issues, like a dependency of one
issue from another or duplicating issues.

(b) Remote link. These links point to external resources. One link leads to a GitHub
pull request, another one - to a StackOverflow discussion, and the last one - to a
GitHub issue of another project, Animal Sniffer.

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 13

3. The last important section which may contain a number of references is the Comments
section (4.3):

Figure 4.3: PDFBOX-3017, comments

It may contain any type of references described above, and moreover, some projects,
including PDFBox, have an activity-reporting bot which provides automatically
generated summaries of what has been done. For example, the bot shown in the
selected issue reports revision ID, name of the author, and affected issues.

4.2 Analysis process
To determine how can issues and discussions be linked to each other, it is important
to manually analyze resolved and unresolved issues for a bunch of projects. The issue
tracking system selected for the analysis is Jira and source code repositories for the
projects are taken from GitHub. Since some discussions may describe solutions by
providing references to external forums, StackOverflow is selected as one of the most
popular question and answer websites used by over 12 million programmers around the
world [12].

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 14

To define the most common characteristics for connecting attributes, a quantitative
analysis of software issues must be applied. The list of connecting attributes includes,
but is expected not to be limited to, entries of the following types:

1. Commit ID. A resolved issue always includes one or more commits to the code
base. By capturing commit IDs, it is possible to link them to relevant issues as
some issues also include lists of commit IDs addressed at them.

2. Issue key. Each issue has a unique identifier that distinguishes it from the others.
A commit message may include some meta-information such as an issue key so
that a reviewer knows exactly which issue is addressed by the commit. An issue
key may be changed in the future, for example, if a user creates an issue with a key
ABC-123, where ABC is the name of a project, and later the project is renamed to
DEF, then the issue key is updated to DEF-123

3. URL. This can be a link to an external website with a ready-made solution, another
issue, a human-readable overview of some commit, etc.

Two main connecting attributes are Commit IDs and Issue keys. Thus, the basis for
building connections inside a project can be formed from two approaches (separate or
combined):

1. Extract commits IDs from the code base and search for these IDs or URLs that
lead to these commits inside a list of issues.

2. Extract issues keys from the issue tracker and search for commits that address
relevant issues.

4.2.1 Goals and challenges of statistical analysis
To understand how a project evolves, we need to collect the statistics of different types
of issue references that appear in issue discussions. Alongside other issues and commit-
s/revisions, an issue may contain several URLs that are expected to be categorized. For
example, there can be a URL to a pull request on GitHub or a discussion forum.

One of the goals of statistics collection is to describe different categories of URLs
mentioned in discussions. Once a new category is determined and a key characteristic
that helps to distinguish a URL from the others is found, then all URLs belonging to that
category are filtered out, reducing the size of the pool of uncategorized URLs.

Another goal is to determine the ”breakpoints” - checkpoints indicating periods when
the project development process is affected by some events, e.g. the development team
switches to new technology or an issue resolution directly or indirectly results in some

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 15

other issues reported. If the frequency of such events occurred is high at some point,
then it may indicate that the corresponding period of the development process contains
important design decisions.

The first obstacle to overcome is the heterogeneity of references in issues, e.g. one
issue may contain no references at all and another one includes a bunch of URLs and
referred commits. Because the target projects are massive (e.g. PDFBox has 4915
issues and Cassandra - 15945 issues by July 15th, 2020), it may be relatively hard to
determine the breakpoints. Thus, it is decided to combine sequential issues into blocks of
the same size, i.e. 100 issues per block, and to collect statistics per block and not per issue.

The second issue that may arise is the lack of additional information about references
that may help us to classify them. For example, a project may use mailing lists to share
information among developers, and it is nice if the project description contains some-
where the list of mailing list services that are used. However, if the necessary information
is unavailable, an additional manual analysis of references has to be performed.

4.2.2 Approach
Before the statistics can be analyzed, we first need to perform several steps to retrieve the
data in the form suitable for the analysis. Statistics collection requires a small number of
details about each issue.

Figure 4.4: Analysis of references flow

1. Before we start the analysis of issues, we firstly have to fetch them using Jira API.
Initially, each Jira issue contains a great amount of data that is not required for the
analysis, such as technical details of the issue for internal use. This data has to be
filtered out, leaving out the one containing references, such as issue description
or comments. An example of the data that may contain references (highlighted in
green) is taken from the issue PDFBOX-4815:

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 16

Figure 4.5: PDFBOX-4815, sections that may contain references

2. For each issue, all issue keys, revision IDs, and URLs are extracted and stored in
separate sets using pattern matching via regular expressions. The same reference
may occur multiple times across the issue, while the connectivity for each issue is
measured by unique references, so sets allow us to ensure that the same reference
will not occur more than once (more about them in Subsection 4.2.4). All the
parsed data is persisted in a corresponding file for each issue to simplify the manual
analysis of references and to prevent repeated data retrieval.

3. As references are extracted, we have to perform a manual analysis of URLs, i.e. to
check how they can be categorized based on the content of their addresses.

4. Due to the heterogeneity of references in issues as explained above, all issues are
combined into blocks of 100 issues each. For each block, the total amounts of
issue keys, revision IDs, and URLs are calculated.

5. For each type of reference, a separate plot is made. Each plot describes how the
usage of each type of reference changes while the project evolves. Besides, a

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 17

separate plot describing the frequency of references combined is made.

4.2.3 Python Jira
With Jira API, it is possible to retrieve any required information about issues and even
projects. This information is stored in JSON format, so a suitable tool has to be chosen
to parse the information.

Python is decided to be an appropriate choice due to several reasons:

1. It allows rapid prototyping, which helps the user to focus on the main task and
start working on the retrieved data as soon as possible.

2. Working with string data is heavily simplified, taking a relatively small amount of
code required to perform some tasks in comparison to languages like Java or C++.

3. A JSON string can be converted to Python dictionaries and lists and vice versa
with a single statement from the standard library.

4. Python’s matplotlib 1 provides us with handy functions to build plots.

To communicate with Jira API, it was decided to use a Python API wrapper to avoid
plain REST API requests. One of the options is to use the official solution Atlassian
Python API wrapper 2, however, its main purpose is to simplify development processes
using Jira, and thus, it requires extra configuration. So the choice fell on Jira Python
library provided by the PyContribs project 3.

When making a GET request via Jira API, we have to make sure that all sections from an
issue description containing any types of references, as illustrated on the screenshots in
Section 4.1:

1. Description: contains the explanation of the reported issue.

2. Attachments: contains attached files that complement the description. They may
contain, for example, PDF documents that are decided for some reason to be
not included as remote links. One such reason can be the inaccessibility of the
document by the original URL.

3. Issue Links: contains links to other issues (e.g. a duplicate or a derivative of
another issue) and links to external resources, including forums and URLs to
GitHub issues and pull requests.

1https://matplotlib.org/
2https://github.com/atlassian-api/atlassian-python-api
3https://jira.readthedocs.io/en/master/

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 18

4. Comments: contains discussions related to solving the issue.

By making a GET request with no fields specified, it is found that the response does not
include all the necessary data: only description and other issue links are included by
default. Thus, to retrieve the rest of the fields, they have to be specified explicitly. It is
also observed that if any field is included in the request, all other fields are missing from
the response.

To retrieve all necessary data, the request should contain the following set of fields:

”description,attachment,issuelinks,comment”

It is worth mentioning that remote links (i.e. links to external resources) cannot be
obtained with other fields, so an extra request is required. This is important for the
following explanation of the issues retrieval mechanism.

Let’s take the PDFBox project as an example. By July 6th, 2020, there are 4903
opened and closed issues. Jira API allows the user to retrieve multiple issues with a
single request, so it was decided to fetch the issues in blocks of 100 issues each. This
results in d4903/100e = 50 standalone requests. However, as explained above, remote
links are not fetched with other fields, thus, for each issue, there should be an extra
request. The total amount of requests is 50 + 4903 = 4953, which is a relatively big
number. This may cause additional problems, e.g. the server may block all requests from
an IP address if an intense activity is detected.

4.2.4 References parsing
After all the necessary data is fetched, the text has to be analyzed to extract all references
and categorize them. Since they always follow some pattern, it is reasonable to use
regular expressions to filter them out.

1. Other issues

As it can be seen on Figures 4.1, 4.2, and 4.3, all issues are referenced by is-
sue keys.
An issue key is a unique identifier of an issue, and it is written in the following form:

<project name>-<numerical ID>

By using this pattern, we can extract all issue keys from a text. For example,
the issue described in the figures has the key PDFBOX-3017.

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 19

2. URLs

URL detection is a challenging task. Usually, it is enough to check a URL for
being in compliance with the standard RFC 3986, which stands for Uniform Re-
source Identifier (URI). However, this standard is limited to a subset of the ASCII
character set, and there is no guarantee that issues descriptions and comments
section will not contain characters of an extended character set.

For this purpose, it is decided to find a regular expression that matches the stan-
dard RFC 3987, which stands for Internationalized Resource Identifier (IRI). This
standard bypasses the restrictions introduced by RFC 3986 by allowing characters
from the Universal Character Set (Unicode).

Mathias Bynens, a developer advocate on the V8 JavaScript engine team, provided
an overview of some regular expressions for URL validation 4. He introduced two
sets of URLs to test: the ones that are expected to be valid and the ones that should
fail.

The solution developed by Diego Perini 5 showed outstanding results: it detected
36 out of 37 ”valid” URLs and rejected all 39 ”invalid” ones. It was decided to use
his regular expression to detect URLs in plain text.

3. Commits/Revisions

It is common for Apache projects to use a combination of SVN and GitHub
in their development process. Each commit made on GitHub is reflected on the
corresponding revision in SVN. To extract them, it is important to understand how
are they represented in issues discussions. A pre-analysis of a number of projects
including PDFBox, Cassandra, and HDFS allows us to determine the patterns of
commits and revisions references that can be extracted from discussions.

(a) Commits are represented in the form of their 40-digit hexadecimal hash
values or their shortened 7-digit variants.

(b) Revision IDs references can be met in various forms. Consider, for example,
a revision with ID 1234567. It is observed that the revision can be mentioned
by developers as:

1) r1234567 - the most common form and the official representation of a
revision.

4https://mathiasbynens.be/demo/url-regex
5https://gist.github.com/dperini/729294

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 20

2) rev. 1234567
3) Rev. 1234567
4) Revision 1234567
5) revision 1234567

One of the key reasons why revisions and commits should be separated from each
other is because it is observed that while commits describe the difference between
two states, revisions are linked to changes in a single file. If, for example, a commit
modifies 5 files, then there will be 5 separate revisions generated. This fact allows
us to determine which commits introduce massive changes in a project: the more
files are affected by a commit, the more changes are introduced.

4.3 Analysis results
To recap the goals of statistics collection (Subsection 4.2.1), the analysis of results is
aimed at two issues:

1. Divide URLs into categories to define the nature of external sources laying behind
them.

2. Determine the periods of the project development when there is the highest chance
of important design decisions made.

4.3.1 URLs classification
The manual analysis of extracted URLs helped us to discover two categories of URLs
that can be easily distinguished:

1. PDF documentation: Often, developers may refer to the documentation of exter-
nal projects to gather useful ideas for their projects or to retrieve detailed guidance
on using a tool or a piece of hardware. URLs pointing at PDF documents can be
distinguished by their postfix: when a URL is linked to some file, it ends with the
extension of the file. Thus, URLs leading to PDF documents end with the ”.pdf”
extension.

It has been observed that the usage of PDF documentation by developers dur-
ing discussions is relatively high to be defined as a separate category.

2. Mailing lists: mailing lists are often used to coordinate the development of the
software. Initially, it was thought that it was enough to check whether a URL
contains the substring ”mail” to tell whether it is a mailing list URL. However, the

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 21

presence of this substring does not guarantee that a URL is a mailing list. For ex-
ample, the URL https://pdfbox.apache.org/mailinglists.html
has been found in the issue PDFBOX-1822, which is expected to provide a list of
mailing lists used, but not to describe the content of mailing lists.

Thus, it is decided to manually specify mailing list keys, i.e. substrings that
have the highest chance to occur in mailing list URLs. For the project PDF-
Box, it is observed that initially, most mailing list URLs belonged to http://
mail-archives.apache.org, however, at some point, the project switched
to https://markmail.org as the main mailing list service. Thus, the list of
mailing list keys contains the entries ”mail-archive” and ”markmail”. We can also
extend this list with mailing-list archivers, such as ”pipermail” or ”hyperkitty” 6.

3. Archive files: the manual analysis of the earliest issues shows some URLs point-
ing to archive files, in other words, the URLs are ending with ”.tar”, ”.zip” or
another popular archive formats.

In order to separate URLs to archive files from the others, it is decided to check
whether a URL ends with one of the following formats: ”.zip”, ”.tar”, ”.rar”, ”.iso”,
”.gz”, ”.rz”, ”.lz”, ”.7z”. If there is evidence of some other format being actively
used, the appropriate extension can be added to the analysis tool.

4. Other URLs: any URL that does not belong to the categories specified above
goes to ”Other URLs”. These URLs are expected to be analyzed more deeply in
the future to categorize them or are not expected to act as ”connections” at all (for
example, URLs to ”.txt” files).

4.3.2 References frequency
By analyzing the plots of frequencies of references per block of issues, we can select the
most ”interesting” periods of a project evolution to extract connections from. For the
demonstration purposes, the projects ”PDFBox”, ”Derby”, and ”Cassandra” are selected.

At the moment, plots are generated for the frequencies of:

1. Revisions

2. Other Issues

3. Mailing Lists

6https://hyperkitty.readthedocs.io/en/latest/

https://pdfbox.apache.org/mailinglists.html
http://mail-archives.apache.org
http://mail-archives.apache.org
https://markmail.org

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 22

4. PDF documents

5. Archives

6. Other URLs

7. Total references (union of all other types of references)

We will have a look at plots generated for Revisions and Other issues. It is decided to
not analyze all plots since their goal is to provide an overall idea of how the frequency
of references can show which periods of the project development contain the biggest
number of external references. The rest of the plots can be found in Appendix B.

1. Revisions

By analyzing the frequency of revisions made for each project, we can distin-
guish the periods of the project development where the biggest changes to the
source code are made.

Figure 4.6: Frequency of revision references throughout the PDFBox project evolution

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 23

Figure 4.7: Frequency of revision references throughout the Derby project evolution

Figure 4.8: Frequency of revision references throughout the Cassandra project evolution

As can be seen on the plot, PDFBox received a massive contribution between
issues 2500 and 3500, and the biggest changes made to the project were done
approximately between issues 4000 and 4200. For Derby, there are on average 1-2
revisions per issue most of the time, with a surge of contribution after issue 6000.
Cassandra project shows a relatively low activity throughout its entire history, with
the only contribution burst between issues 14000 and 14500.

By selecting the specified ranges of issues, the user can extract the information
about the biggest changes in these projects. We can show how this information

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 24

can be useful by taking the peak between issues 4000 and 4200 on the Plot 4.6
as an example. The analysis of the number of revisions per issue shows that the
issue PDFBOX-4071 contains 2002 revisions, and it is aimed at improving the
code quality of the project:

Figure 4.9: PDFBOX-4071, issue description

This issue illustrates important design decisions and the discussions connected to
it may provide a nice overview of architectural flaws of the project.

2. Other issues

The relationship between different issues demonstrates that a solution development
for an issue may be greatly influenced by other issues, and thus, the knowledge
extracted from an issue can be expanded with the knowledge from the connected
issues.

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 25

Figure 4.10: Frequency of other issues references throughout the PDFBox project
evolution

Figure 4.11: Frequency of other issues references throughout the Derby project evolution

CHAPTER 4. ANALYSIS OF REFERENCES IN ISSUE TRACKING SYSTEMS 26

Figure 4.12: Frequency of other issues references throughout the Cassandra project
evolution

It can be seen that for PDFBox, the region between issues 1500 and 3500 contains
the biggest amount of cross-references between issues, so this region arouses
heightened interest. For Derby, there is a peak of other issues references approxi-
mately between issues 1500 and 2000. Finally, Cassandra shows a slight increase
in the middle of the project development process between issues 8000 and 10000.

It is observed that some Cassandra issues within the specified period are referenc-
ing a relatively big number of other issues, for example, Cassandra-9302 connects
to 18 other issues and Cassandra-9318 references 20 other issues. Cassandra-9318
is found to be a unification of other issues, i.e. it combines the problems other
issues addressing, so it may be used as a good source of knowledge since it allows
the user to bypass the analysis of other issues referenced by it. Cassandra-9302
seems to be in conflict with a number of other issues (there are several duplicates
and blocked issues) which has been successfully resolved, so this issue can teach
developers how to deal with overlapping issues.

These plots provide a nice overview of which stages of the project development process
may contain the most knowledge of the project evolution. By extending the list of
known types of references, it is possible to operate on the data more flexibly and omit
unnecessary data, leaving only the most interesting sources of knowledge.

5
Linking discussions from issues

5.1 System architecture

5.1.1 Introduction
The goal of the project is to provide a prototype of an easy-to-use tool for generating
human-friendly reports on Jira issues analysis. For each specified issue, the user can
retrieve an overview of issue discussions, additional details that the one may consider
being useful, an overview of other issues that may be referenced in discussions, and the
content of GitHub pull requests and commits that refer to the issue. This project makes
use of the following connecting attributes:

1. Other issues, references to which may occur during discussions

2. Commits and Pull requests that address the target issue

By default, for each issue, the following sections are included:

1. Summary: a brief explanation of the issue.

2. Description: a detailed overview of the issue, e.g. steps to reproduce, etc.

3. Attachments: a list of URLs pointing to attachments of the issue.

27

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 28

4. Commits: if the source code repository is specified, all commits that address the
issue are described. Commits are extracted from the source code repository and
are filtered by the presence of the issue key in the commit message.

5. Pull requests: if the source code repository is specified, all pull requests that
address the issue directly or refer to it are described. Pull requests are extracted
from the source code repository and are filtered by the presence of the issue key in
their title or description.

6. Comments: an overview of comments left during the issue discussion.

7. Other issues: if the issue refers to other issues, an overview of the same structure
is produced for them as well and is included in the report.

The user is free to exclude any of these sections.

The tool is written in Python language. It combines all the data into the LaTeX for-
mat and automatically produces a PDF document using PyLaTeX library 1.

5.1.2 Process flow
The report generation process can be split into the following stages:

Figure 5.1: Report generation flow

1. Command-line arguments parsing. Initially, the user has to feed the tool with
the following parameters:

(a) Project name: the name of the project as it appears in ASF JIRA (i.e. written
in capital letters).

(b) List of issues: a number of issues to generate reports for. The issues are
separated by command and can be defined as ranges. For example, ”124,136-
152,174” means ”issues 124, 174, and from 136 to 152 inclusive”. Once the
list of issues is parsed, they are filtered in ascending order.

(c) List of bots: a comma-separated list of bot names. If the user wants to filter
out messages generated by bots, e.g. a commit report, he/she can specify the
names of bots, and thus, their messages will not appear in reports.

1https://jeltef.github.io/PyLaTeX/current/

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 29

(d) GitHub repository: if the GitHub repository is specified, then the user can
retrieve commits and pull requests referenced by the issue.

(e) List of sections to exclude: if the user does not want specific sections to be
included in the report, he/she needs to specify them, separating them with a
comma.

2. Document generator initialization. For each issue, a report-generating object
is created. During creation, it fetches and parses the issue details, as well as
the details of the connected issue. When an issue is fetched and parsed, all the
intermediate results are cached, i.e. persisted in JSON format. This allows us to
avoid repeating data retrieval.

If a GitHub repository is specified, then the tool additionally fetches and parses
commits and pull requests. It is commonly accepted in Apache projects that
commit messages targeting specific issues start with an issue key, for example,
”PDFBOX-3017: replace method with library call”. Pull requests are filtered by
the presence of the issue key inside their title or the body.

3. Sections specification. Each section that is not in the list of the excluded ones is
described in the following ways:

(a) Summary and Description. These two sections are parsed in the same
manner: they may contain code listings or no-format sections, so proper
string manipulations are done to convert them to a LaTeX-friendly format.

(b) Attachments are represented as clickable names of files that are attached to
an issue. Clicking a name redirects the user to a file location.

(c) Commits. Each commit is described as its short hash-value, the author, the
date, and the commit message.

(d) Comments. First of all, the comments left by bots are filtered out. Then,
for each comment, the same listing escaping is applied as for Summary and
Description.

(e) Pull request. For each pull request, the title, the author, the date, and the
status are defined. Then, each comment on the pull request is described by
its author, the date, and the comment body.

4. Connected issues definition. Every connected issue is described in the same way
as the ”root” issue. The only difference is that we do not recursively describe
issues connected to each of them.

5. PDF generation. All the data is converted to LaTeX format and compiled to a
PDF document with the name being equal to the issue key.

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 30

5.1.3 Components description
Due to the nature of the Python language, the components of the project are divided into
two categories:

1. Top-level .py file representing the entry point of the program.

2. Python modules that are folders containing .py files but acting as a unified structure.

The tool is defined by the following components:

1. report-generator.py script file: a Python top-level program file that is responsible
for command-line arguments parsing and initializing the procedure of reports
generation.

2. genreport module: a Python module responsible for composing parsed Jira issues
and GitHub commits and pull requests into a PDF format with LaTeX acting as a
format specifier. It contains the class ReportGenerator which sets up the LaTeX
layout and makes use of the jira parser module for retrieving issues details and
the github fetcher module for extracting commits and pull requests from a source
code repository.’

3. jira parser module: a module responsible for fetching and parsing issues for
the specified Apache Jira project. It contains the class JiraParser which fetches
Jira issues and parses them. When ReportGenerator requests an issue details,
jira parser firstly checks whether the requested data is cached. If so, then it just
returns the data. Otherwise, it performs several actions before the issue is prepared
to be sent to ReportGenerator:

(a) The raw JSON-formatted description of the issue is requested from ASF
JIRA. The following fields are included in the request:

comment, attachment, issuelinks, status, issuetype, summary,

description, created, updated, project, creator

Once the issue is fetched, remote links (links to external sources of informa-
tion) are requested separately. All the raw data is written to a corresponding
file (cached).

(b) The raw issue data is parsed to filter out unnecessary data. The parsed data is
also cached in JSON format to be reused for a repeated request.

4. github fetcher module: a module responsible for fetching and parsing commits
and pull requests from the specified GitHub repository. It contains the class
GitHubFetcher which fetches GitHub commits and pull requests and persists
them. Follows the same procedure as jira parser to provide ReportGenerator
with the necessary data.

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 31

5. utils module: a module providing reusable code, mainly for string operations.
This includes reference extraction, conditional filtering of data, and substring
substitution functionality, e.g. Jira code listing to LaTeX listing conversion.

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 32

Figure 5.2: Architectural model

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 33

5.1.4 Technical challenges
1. Caching. The first obstacle to overcome is the number of requests required to

retrieve data from Jira and GitHub. Referring back to Subsection 4.2.3, the user
can retrieve blocks of Jira issues with a single request. However, several additional
details can be received with a separate request only, such as remote links. Thus, the
user should be aware of the number of requests he/she makes and avoid repetitive
requests as it may lead to the IP address blocking. A similar problem is faced when
making GitHub requests. The only difference is that if a project contains a huge
amount of commits or pull requests, it may take a while to retrieve the data for a
single issue.

It may be relatively hard to figure out exactly what data may be useful in the
future. Moreover, there can be outstanding cases where the data is in an unusual
format, for example, there is no author of an issue assigned (issue PDFBOX-32,
the corresponding JSON value is ”null”) which may result into a hard-to-reproduce
bug.

Such cases are easier to prevent if the user has access to intermediate results
of each stage. Python has a built-in JSON encoder and decoder in its standard
library 2, with the ability to save/load the data to/from a file and convert a JSON
string to a Python dictionary and vice versa. All results for each stage are written
to the ”Projects/<project name>” directory to one of the following subdirectories:

(a) Issues raw: contains unparsed Jira issues in the same form as they are
retrieved from ASF JIRA, with an additional top-level field ”remotelinks”.
All issues are stored in JSON files with the name ”<issue key>.json”.

(b) Issues: contains parsed Jira issues ready to be used by the tool. All issues
are also stored in JSON files with the name ”<issue key>.json”.

(c) Commits: contains fetched and parsed commits from the specified GitHub
repository. the github fetcher modules have the functionality to fetch com-
mits, filter them by an issue key, and store in a file ”<issue key>.json”.
However, for our purposes, it is decided that there is a global pool of commits
stored in a file ”all.json”, and when the tool tries to access commits address-
ing the specified issue, the module loads the file ”all.json” and filters entries
by itself.

(d) PullRequests: contains fetched and parsed pull requests from the specified
GitHub repository. Pull requests are saved and operated on in the same way
as commits, i.e. using a shared ”all.json” file.

2https://docs.python.org/3/library/json.html

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 34

2. Text formatting. The second problem arising is the necessity to convert sections
of text into a LaTeX-friendly format. The key point here is that the text may
contain code listings or no-format sections. Thus, we face an issue when we try to
add the unmodified text to LaTeX as it most likely fails to compile due to special
characters like ’ ’ or ’{’. PyLaTeX provides a nice way to escape all characters in
a string, however, we do not want to lose the listing specifications, and instead, we
want code blocks to be captured by LaTeX listings.

Consider the following example:

{code:java}
public static void main(String[] args) {

System.out.println("Hello, World!");
}
{code}

We need to convert it to the following format without escaping:

\begin{lstlisting}[language=java]
public static void main(String[] args) {

System.out.println("Hello, World!");
}
\end{lstlisting}

This is achieved by applying the following procedures:

(a) Cut out a block of text of the form ”{code:<language>}<any text>{code}”
using pattern matching and replace it with some unique identifier using
pattern matching. In our case, the ”flag” that is placed instead of the text
snippet has the form ”<<!PDFGENCODEid!>>”, where id represents the
serial number of the snippet.

(b) The language parameter is extracted from the block of text.
”{code:<language>}”

is replaced with
”\begin{lstlisting}[language=<language>]”

and
”{code}”

with
”\end{lstlisting}”.

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 35

If the language is not specified, e.g. ”{code}<any text>{code}”, then the
block is replaced with ”\begin{lstlisting}<any text>\end{lstlisting}”.

(c) All special characters are escaped in the text. The flags do not contain any
character that has to be escaped, so they remain unchanged.

(d) Each flag is replaced with the formatted block of code.

(e) The procedure is repeated until no code blocks are left.

Blocks of the text of the form ”{noformat}<any text>{noformat} are parsed
similarly. Instead of listings, the no-format snippets are replaced with LaTeX
verbatims.

5.2 System evaluation
The only way to check that the tool works properly is to stress it with several inputs, both
valid and invalid.

We will take the PDFbox project as an example. Some tests are combined as they
do not intersect with each other.

5.2.1 Valid input
We will start with tests that should successfully produce reports.

1. Use cases:

The user wants to

(a) generate a complete report on the specified issue, so that he/she can extract
knowledge from it

(b) specify which issues he/she wants to generate reports for, so that he/she does
not have to run the program for each issue separately

Description: suppose we want to retrieve issues 130-132 and 137. We want all
sections to be included. Thus, we call the program with the following parameters:

(a) project: PDFBOX

(b) issues: 130-132,137

(c) github: https://github.com/apache/pdfbox

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 36

Result: 4 PDF documents are generated: PDFBOX-130, PDFBOX-131, PDFBOX-
132, PDFBOX-137. Each document contains sections: Summary, Description,
Attachments, Commits, Comments, Pull requests. Since the issues are relatively old,
they have the author missing. Issues 130-132 have empty sections Attachments,
Commits, and Pull requests.

Issue 137 has a single commit addressing it. Moreover, it has two connected
issues: 222 and 1138. According to discussions, issue 222 is a duplicate of issue
137, and issue 137 was implicitly resolved after resolving issue 1138.

2. Use cases:

The user wants to

(a) generate a reports without specified sections

(b) have well-formatted code listings

Now we test the sections exclusion and the listing conversion. Issue 4861 is a
suitable candidate. We want to include only the Description and the Comments
sections. The parameters are:

(a) project: PDFBOX

(b) issues: 4861

(c) exclude: summary,attachments,other issues

Description: we do not exclude Commits and Pull requests since the GitHub
repository is not specified, so the tool has to exclude these sections by itself.

Result: the document contains only sections Description and Comments. De-
scription contains a Java code snippet generated from the LaTeX Java listing.

3. Use cases:

The user wants to

(a) filter out comments generated by bots, so that he/she can analyze discussions
between developers without unnecessary information

Description: a number of comments can be generated by bots, and we may want
to filter them out. Most comments in issue 4690 are left by the bot jira-bot. Since
we are interested in filtering bots only, the program is called with the following
parameters:

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 37

(a) project: PDFBOX

(b) issues: 4690

(c) exclude: summary,description,attachments,other issues

(d) bots: jira-bot

Result: we can observe that no comments left by jira-bot are present in the report.

4. Use cases:

The user wants to

(a) retrieve the list of issue attachments so that he/she can analyze them separately

(b) extend the knowledge of how an issue is resolved by analyzing disgussions
within GitHub pull requests

Description: the last case to test is the presence of attachments and pull requests
in an issue. Our candidate is issue 3812. Parameters:

(a) project: PDFBOX

(b) issues: 3812

(c) github: https://github.com/apache/pdfbox

(d) exclude: summary,description,other issues,commits,comments

Result: each entry in the Attachments section is clickable and represents a URL to
a file. An overview of each pull request and comments under it is present in the
Pull requests section.

5.2.2 Invalid input
Now we will test the tool by providing it with invalid parameters.

1. Scenarios:

The user accidentally forgets to specify:

(a) the project

(b) the issues

(c) the project and the issues

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 38

Description: project and/or issues parameters are missing.

Result: the program tells that either one of them (and which) or both are missing;
no report generated.

2. Scenarios:

The user accidentally specifies:

(a) no issues (empty string)

Description: issues parameter is an empty string: the program prints that at least
one issue has to be specified.

Result: no report generated.

3. Scenarios:

The user accidentally specifies:

(a) an invalid issue(s)

Description: issues parameter contains non-numeric data.

Result: the program prints that the format of the issues list is invalid; no report
generated.

4. Scenarios:

The user accidentally specifies:

(a) an issue(s) that do not exist

Description: issues contain a non-existing issue. As of July 20th, 2020, PDF-
Box has 4914 opened and closed issues. Consider calling the program with the
following parameters:

(a) project: PDFBOX

(b) issues: 4000-4003,5000-5500,4500

Since the issues are sorted in ascending order, then the program should terminate
once it reaches a non-existing issue. It is derived from the assumption that if issue
5000 does not exist, then issues 5001, 5002, etc. do not exist as well.

CHAPTER 5. LINKING DISCUSSIONS FROM ISSUES 39

Result: successfully generated reports for issues 4000, 4001, 4002, 4003, and
4500; a message that issue 5000 does not exist.

5. Scenarios:

The user accidentally specifies:

(a) an invalid GitHub repository

Description: github parameter represents a non-existing URL to a GitHub reposi-
tory or invalid URL.

Result: the program prints that the GitHub repository is invalid; no report gener-
ated.

6. Scenarios:

The user accidentally specifies:

(a) an invalid section to exclude from reports

Description: the exclude parameter contains an invalid section. The program is
run with the following parameters:

(a) project: PDFBOX

(b) issues: 4000

(c) exclude: abc,summary,description,def

Result: the program prints that ”abc” and ”def” are invalid sections. No report
generated.

7. Scenarios:

The user accidentally specifies:

(a) all sections to be excluded from reports

Description: the exclude parameter contains all sections:

(a) project: PDFBOX

(b) issues: 4000

(c) exclude: summary,description,attachments,commits,pull requests,comments,other issues

Result: the program prints that all sections are excluded. No report generated.

6
Conclusion

Issue discussions are a great source of knowledge of project evolution processes. Apart
from problem-solving dialogues, they may contain references to external sources, such
as other issues, pull requests, forums, and Q&A websites. However, the person who
decides to extract knowledge from issues faces a major obstacle: discussions may contain
an enormous amount of data to parse, and all the referred sources have to be manually
analyzed. This fact dramatically increases the complexity of issue analysis, and if an
automated data-gathering solution is developed for one project, it is not guaranteed that
it will suit other projects of choice. Thus, a generic solution for linking discussions has
to be developed.

Pattern matching is found being an effective approach to capture references of different
types. Issue IDs follow the format <project name>-<numerical ID>, so a connection
with another issue of the project or even an issue of another project can be established.
Apache Subversion system uses 7-digit decimal numbers with an ”r” letter in front of
them to display revision IDs. GitHub commit IDs are represented as 40-digit hexadecimal
numbers or their shortened 7-digit versions.

However, one type of references requires a more complex analysis to be classified:
URLs. Sometimes, the content of a URL can be guessed by analysing its postfix. For
example, URLs ending with ”.pdf” most likely point to PDF documentations, while pre-
fixes ”.zip” and ”.tar” describe archives that may contain snapshots. However, URLs that
lead to mailing list discussions are hard to be distinguished: if it contains the substring
”mail” or even ”mailinglist” do not guarantee that the URL leads to a discussion. One

40

CHAPTER 6. CONCLUSION 41

possible solution for that is to search for the occurrence of a numerical ID inside the
URL.

6.1 Future work
Statistics collection helps us to determine the periods of a project development that con-
tain a high density of references. For URLs, there is a chance to discover new categories
of links, which may dramatically help in the development of the URL classification
approach. Thus, a deeper analysis of non-classified URLs may help to discover new
types of references.

The prototype of the issue discussions collection tool uses issue keys and commit IDs as
connecting attributes at the moment. Further development implies making use of URLs
to extract the data from the sources they are pointing to. In this way, the missing parts of
discussions can be gathered from forums that may contain crucial information about the
development process of a project.

There is a big number of issue tracking systems that provide a comprehensive source of
knowledge, however, this research aims at Jira issues only, what is more, only Apache
projects are analysed. Without considering other issue trackers, it may be hard to develop
a generic approach in extracting references of different types. Therefore, it will be useful
in the future to extend the research area to other issue tracking systems such as Planio 1

or Backlog 2.

The same goes for version control systems. Although Git and Apache Subversion
are in high demand, there are other products that are heavily used, for example, Mer-
curial 3 - a distributed revision-control system. It may happen that during discussions,
developers may refer to other projects, and there is a chance that one of such projects
uses Mercurial. As it should be always assumed that each reference may contain the
required knowledge, such cases have to be captured as well.

1https://try.plan.io/issue-tracking-gdm-lp/
2https://backlog.com/
3https://www.mercurial-scm.org/

Bibliography

[1] D. L. D. M. Le, A. Shahbazian, and N. Medvidovic, “An empirical study of archi-
tectural decay in open-source software,” in 2018 IEEE International Conference on
Software Architecture (ICSA), Seattle, WA, 2018, pp. 176–185.

[2] D. Sas, P. Avgeriou, and F. A. Fontana, “Investigating instability architectural smells
evolution: An exploratory case study,” in 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Cleveland, OH, USA, 2019, pp.
557–567.

[3] Q. Feng, Y. Cai, R. Kazman, D. Cui, T. Liu, and H. Fang, “Active hotspot: An
issue-oriented model to monitor software evolution and degradation,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
San Diego, CA, USA, 2019, pp. 986–997.

[4] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication, collaboration,
and bugs: The social nature of issue tracking in small, collocated teams,” 01 2010,
pp. 291–300.

[5] C. Scott and S. Ben, Pro git. Apress, 2014.

[6] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, “What is subversion?”
[Online]. Available: http://svnbook.red-bean.com/en/1.7/svn.intro.whatis.html#
svn.intro.history

[7] I. Skerrett, “Eclipse community survey 2014 results,”
2014. [Online]. Available: https://ianskerrett.wordpress.com/2014/06/23/
eclipse-community-survey-2014-results/

[8] K. Johnson, “Github passes 100 million repositories,” 2018. [Online]. Available:
https://venturebeat.com/2018/11/08/github-passes-100-million-repositories/

[9] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and N. Medvi-
dovic, “An empirical study of architectural change in open-source software systems,”
in 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
Florence, 2015, pp. 235–245.

42

http://svnbook.red-bean.com/en/1.7/svn.intro.whatis.html#svn.intro.history
http://svnbook.red-bean.com/en/1.7/svn.intro.whatis.html#svn.intro.history
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
https://venturebeat.com/2018/11/08/github-passes-100-million-repositories/

BIBLIOGRAPHY 43

[10] R. Krishna, A. Agrawal, A. Rahman, A. Sobran, and T. Menzies, “What is the
connection between issues, bugs, and enhancements?” in 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), Gothenburg, 2018, pp. 306–315.

[11] A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, and N. Medvidovic, “Recovering
architectural design decisions,” in 2018 IEEE International Conference on Software
Architecture (ICSA), Seattle, WA, 2018, pp. 95–104.

[12] “All sites - stack exchange,” https://stackexchange.com/sites?view=list#users, [Ac-
cessed: 25-02-2020].

https://stackexchange.com/sites?view=list#users

7
Appendix A: ReadMe

This section describes the usage of the report generating tool.

Requirements
The following software has to be installed on the target machine:

1. Python 3.7

2. LaTeX compiler (pdfLaTeX or Latexmk)

3. pip package manager

Python libraries
The following Python libraries are required:

1. jira: a Python wrapper around Jira API

2. PyGithub: a Python wrapper around GitHub API

3. pylatex: a library for creating and compiling LaTeX files

They can be installed via pip with the help of the requirements.txt file:
pip install -r requirements.txt

44

CHAPTER 7. APPENDIX A: README 45

Usage (analyzer)

analyzer.py [-h] -p PROJECT [-g GITHUB] [-c CREDENTIALS]

Command-line arguments
1. -h, --help: show help message and exit

2. -p PROJECT, --project PROJECT: Target Jira project in capital letters
(compulsory)

3. -g GITHUB, --github GITHUB: Target Jira project’s GitHub repository

4. -c CREDENTIALS --credentials CREDENTIALS: GitHub username and
password separated by comma. Compulsory if GitHub repository is specified

The arguments that are separated by comma also allow whitespaces around commas, for
example, ”124, 136-152 , 174”. All the whitespaces are trimmed once the string is split
by comma.

Example

analyzer.py -p "PDFBOX"
-g "https://github.com/apache/pdfbox"
-c "github_username,github_password"

Usage (report generator)

report_generator.py [-h] -p PROJECT -i ISSUES
[-g GITHUB] [-c CREDENTIALS]
[-b BOTS] [-e EXCLUDE]

Command-line arguments
1. -h, --help: show help message and exit

2. -p PROJECT, --project PROJECT: Jira project in capital letters as it ap-
pears in ASF JIRA (compulsory)

CHAPTER 7. APPENDIX A: README 46

3. -i ISSUES, --issues ISSUES: Issues to generate reports for, separated by
comma and/or defined as ranges. For example, ”124,136-152,174” (compulsory)

4. -g GITHUB, --github GITHUB: Target Jira project’s GitHub repository

5. -c CREDENTIALS --credentials CREDENTIALS: GitHub username and
password separated by comma. Compulsory if GitHub repository is specified

6. -b BOTS, --bots BOTS: List of bots to exclude from report, separated by
comma

7. -e EXCLUDE, --exclude EXCLUDE: Sections to skip when generating
report, separated by comma. Sections are: [summary, description, attachments,
commits, pull requests, comments, other issues]

The arguments that are separated by comma also allow whitespaces around commas, for
example, ”124, 136-152 , 174”. All the whitespaces are trimmed once the string is split
by comma.

Example

python report_generator.py -p "PDFBOX"
-i "3017,4000-4005,4015"
-g "https://github.com/apache/pdfbox"
-c "github_username,github_password"
-b "jira-bot,githubbot"
-e "attachments"

8
Appendix B: Plots

In this section, you can find the plots for the rest of categories of references.

Archives

Figure 8.1: Frequency of archive references throughout the PDFBox project evolution

47

CHAPTER 8. APPENDIX B: PLOTS 48

Figure 8.2: Frequency of archive references throughout the Derby project evolution

Figure 8.3: Frequency of archive references throughout the Cassandra project evolution

CHAPTER 8. APPENDIX B: PLOTS 49

Mailing Lists

Figure 8.4: Frequency of mailing list references throughout the PDFBox project evolution

Figure 8.5: Frequency of mailing list references throughout the Derby project evolution

CHAPTER 8. APPENDIX B: PLOTS 50

Figure 8.6: Frequency of mailing list references throughout the Cassandra project
evolution

Other URLs

Figure 8.7: Frequency of other URLs references throughout the PDFBox project evolu-
tion

CHAPTER 8. APPENDIX B: PLOTS 51

Figure 8.8: Frequency of other URLs references throughout the Derby project evolution

Figure 8.9: Frequency of other URLs references throughout the Cassandra project
evolution

CHAPTER 8. APPENDIX B: PLOTS 52

PDF documents

Figure 8.10: Frequency of PDF document references throughout the PDFBox project
evolution

Figure 8.11: Frequency of PDF document references throughout the Derby project
evolution

CHAPTER 8. APPENDIX B: PLOTS 53

Figure 8.12: Frequency of PDF document references throughout the Cassandra project
evolution

Commits

Figure 8.13: Frequency of commit references throughout the PDFBox project evolution

CHAPTER 8. APPENDIX B: PLOTS 54

Figure 8.14: Frequency of commit references throughout the Derby project evolution

Figure 8.15: Frequency of commit references throughout the Cassandra project evolution

CHAPTER 8. APPENDIX B: PLOTS 55

Pull requests

Figure 8.16: Frequency of pull request references throughout the PDFBox project
evolution

Figure 8.17: Frequency of pull request references throughout the Derby project evolution

CHAPTER 8. APPENDIX B: PLOTS 56

Figure 8.18: Frequency of pull request references throughout the Cassandra project
evolution

Total references

Figure 8.19: Total frequency of references throughout the PDFBox project evolution

CHAPTER 8. APPENDIX B: PLOTS 57

Figure 8.20: Total frequency of references throughout the Derby project evolution

Figure 8.21: Total frequency of references throughout the Cassandra project evolution

	1 Introduction
	1.1 Goal and research questions

	2 Background
	2.1 Issue tracking systems
	2.2 Version control systems

	3 State of the Art
	3.1 Time series analysis of issues
	3.2 Active Hotspots
	3.3 Prevention of future issues

	4 Analysis of references in issue tracking systems
	4.1 Jira issue representation
	4.2 Analysis process
	4.2.1 Goals and challenges of statistical analysis
	4.2.2 Approach
	4.2.3 Python Jira
	4.2.4 References parsing

	4.3 Analysis results
	4.3.1 URLs classification
	4.3.2 References frequency

	5 Linking discussions from issues
	5.1 System architecture
	5.1.1 Introduction
	5.1.2 Process flow
	5.1.3 Components description
	5.1.4 Technical challenges

	5.2 System evaluation
	5.2.1 Valid input
	5.2.2 Invalid input

	6 Conclusion
	6.1 Future work

	7 Appendix A: ReadMe
	8 Appendix B: Plots

