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Abstract

Vassiliev invariant are conjectured to form a complete knot invariant
making them one of the most powerful types of knot invariants. First we
will discuss the basic theory of knots and knot invariants, after which we
will develop the theory of Vassiliev invariants. In order to study Vassiliev
invariants effectively we will explain chord diagrams, weight systems and the
Fundamental theorem of finite-type invariants. The fundamental theorem
of finite-type invariants states that each Vassiliev invariant corresponds to a
weight system, which means we can generate Vassiliev invariants from given
weight system. In this thesis we will discuss a prove of this fundamental
theorem. We will also solve the problem of the dimension of the vector
space of Vassiliev invariants of a given order. In the end we define the
Conway weight system, give its corresponding Vassiliev invariant and show
a connection with the adjacency matrix of the intersection graph of the knot.
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1 Introduction

Intuitively, a knot is nothing more than a piece of string which is tied up in some
way and crosses itself at finitely many places. Knots appear in a variety of places,
from maritime transport to mountain climbers and from your shoelaces to very
complex knots that can be found in biochemistry. Knots are objects that have been
studied by humankind for ages, either for applications or as a symbol in mythology
1. However, it was not until the 19th century that mathematicians began to study
these objects. When starting these studies, two questions immediately arose. First,
can we untie any given knot with some algorithm? And second, given we have a
way to untie a given knot, which other knots can we untie? Many other problems
followed, but both questions are still being discussed until this day. In this thesis
we will mainly be studying the second question, and ask ourselves which knots are
the same and which are different.

(a) Shoelace knot [3].

(b) Gordian knot in mythology, painting by
Jean-Simon Berthélemy [4].

1For example: the story goes that there was a knot, called the Gordian knot, which was
impossible to untie. An oracle had predicted that whoever untied the knot would rule over Asia.
After many people tried and failed, Alexander the Great is said to have untied the knot with his
sword after which he ruled over Asia.
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It was Gauss who started a tabulation of knots. In notes from 1794 he drew the
first knots, and started checking whether they were the same ([5]). His study of
knots did not prove to be very fruitful, until much later when he used knots in
order to work on a theory in electrodynamics. He wanted to know how much
energy it took to move a magnetic pole around a closed loop in the presence of a
current. In the process he derived what is now known as the Gauss linking integral
which will be discussed in an example in section 2. After Gauss many physicists
came up with theories using knots. Most well-known is the theory by Lord Kelvin,
who stated that particles must be made out of three-dimensional knotted tubes
of ether (which was proven not to exist by Einstein). These kind of theories in
physics led to more and more people thinking about knots, and the research into
knot theory continues until this day with many applications in DNA research and
theoretical physics. In this thesis we will see some of this modern research into
knot theory, but before we can do that we will start in section 2 by defining what
a knot is and develop a few tools to study them effectively.

The study of equivalence of knots is a topological question. If we can transform
a knot into another knot by stretching, squeezing and moving it through space
we can say these knots are indeed equivalent. However, it turned out topology
is not enough to classify knots properly. We will turn to many different areas of
mathematics like algebra, combinatorics and geometry to develop tools to study
knots. One of the new tools is the knot invariant. Very simplistically, a knot
invariant is a function which assigns the same number (or polynomial, or an other
object like colour or shape) to all topologically equivalent knots. So if we calculate
the number on knot A to be 42 and on knot B to be pi, we must have that these
knots are not equivalent. It however turns out that it is very hard to make an
invariant which actually distinguishes each pair of knots. In section 2 we will see
many of these invariants. Especially the Alexander-Conway polynomial will be of
great importance and in section 2.5, we will spend a great deal of time on showing
this is actually a well-defined invariant.

A special class of knot invariants are the Vassiliev invariants. These invariants are
special because the set of all Vassiliev invariants is conjectured to be ‘powerful’
enough to distinguish any pair of knots. Moreover, any invariant which is not
Vassiliev can be approximated by Vassiliev invariants. These Vassiliev invariants
were first created (or discovered, depending on your philosophy) by Victor Vassiliev
in 1989. However, the definition as given by Vassiliev is a bit different from the
definition which we will present, which was independently created by Joan Birman
and Xiao-Song Lin [6], and Mikhail Goussarov [7]. The Vassiliev invariant will be
the main topic of study for this thesis and will be defined in the beginning of
section 3. In this section we will also give more precise motivation for studying
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the Vassiliev invariant.

Given that all Vassiliev invariants together might distinguish any pair of knots, two
questions need answering. First of all, how many Vassiliev invariants are there?
If we need to apply all of them it would be nice if there is a finite amount and if
we know whether we applied them all. Secondly, how do we make new Vassiliev
invariants? To answer both these questions we will need the concept of a chord
diagram and a weight system. More details will follow in section 3, but to give you
an idea a chord diagram is an object which stores the combinatorial information
of a knot (i.e. the order in which the knot crosses itself when walking around the
knot), and a weight system will be a specific function which attaches a number or
a polynomial to this combinatorial information. These weight systems turn out
be connected to Vassiliev invariants. This result is known as the Fundamental
theorem of finite-type invariants (or Kontsevich theorem, after the person who
proved the theorem). It states that each weight system corresponds to a Vassiliev
invariant and vice versa. Therefore, if we can make a new weight system we make
a new Vassiliev invariants. Similarly, if we know how many weight system there
are, we also know how many Vassiliev invariants there are. The theorem will be
of great importance and we will be proven (at least part of it) in section 3.

In section 4 we will see the fundamental theorem in action on an explicit example of
a weight system called the Conway weight system. We will use this weight system
to find an invariant, which turns out to be the Alexander-Conway polynomial. This
weight system will also give us an interesting connection with the intersection graph
of a knot which will be seen in section 4.5. For the convenience of the reader there
is also an appendix with a few relevant results from linear algebra and module
theory.

In summary, section 2 will be about knots and knot invariants. A few basic
examples will be discussed. Section 3 will introduce the concepts of a Vassiliev
invariant, chord diagrams and weight systems. Here, we also present a proof of the
fundamental theorem of finite-type invariants. In section 4 we discuss an example
of a weight system: the Conway weight system. We will also derive the invariant
related invariant.

For those interested, most of the figures and uncommon LaTeX symbols are made
by myself (unless stated otherwise) using Inkscape and my own knot theory LaTeX
package. In case someone wants to have this package, they can contact me at
o.l.kosterATstudent.rug.nl.
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2 Introduction to knots and invariants

Knots are important objects in our daily lives, they keep our shoes in place, sailing
boats going and DNA working. But there are many different flavours of knots,
for example some knots feel impossible to untie and some knots fall apart just by
looking at them. Some knots are simple (the knot in your shoelaces, at least after
some practice) and some knots are more complex (the knots in proteins or DNA
for example). All these knots have to be fitted under one definition. We will start
by giving a mathematical definition of a knot in this section after which we will
develop some tools to study these knots effectively.

2.1 Definition of a knot

Intuitively a knot is a knotted loop of string in space. There are several ways to
define a knot, the simplest definition is given as follows:

Definition 2.1. A parametrised knot is an embedding of the circle S1 into R3.

Recall that for smooth manifolds M and N an embedding f : M → N is a
smooth injective map, such that the image f(N) with the subspace topology is
homeomorphic to N under f . In other words, it is an injective immersion. More
intuitively, a knot is a piece of string, in which we make loops in and move through
space, and then tie the ends together. This might not be like the knots we see in
daily life2, as there the ends are usually not joint together.

There are many more possible definitions of a knot, for example a topological knot
KTop is a subset of R3 which is homeomorphic to the circle S1. An example which
will come back a lot in this thesis is so called the trefoil knot, which is depicted in
figure 1.

2This more intuitive knot will be called a tangle, we will give a better definition of a tangle
in section 4.2.
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Figure 1: A 3D depiction of the trefoil knot [8].

In this thesis we will denote knots by capital letters (e.g. K,K1, K̃), while the
‘corresponding’ embedding is given by a lower case letter (e.g. f, g : S1 → R3).

A circle S1 has two choices of an orientation. This means when walking over the
knot, we can go in two directions. If we pick one, we give an orientation to all
knots coming from this circle. A way to state this more formally is as follows:

Definition 2.2. An oriented knot is an embedding of an oriented circle in R3. A
link is called oriented if each of its components has an orientation. An unoriented
knot is an embedding of a circle without a choice of orientation.

We will assume a knot is oriented counter-clockwise unless stated otherwise.

It is usually quite hard to draw knots in three dimensions. Therefore, we use knot
diagrams. A knot diagram is a planar curve whose only singularities are transversal
double points. These double points will be called crossings. We can make a choice
for which branch we would would like to have on top of the other one, we will call
one choice a positive crossing and the other one will be called a negative crossing.
The choices are depicted in the following figure.
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(a) Positive crossing (b) Negative crossing

In other words, a knot diagram is a projection of a knot on the plane. An orien-
tation of a knot will be denoted by arrows. When speaking about knots, we will
mostly be referring to the corresponding knot diagram. A few examples of knots
(and their knot diagrams) are:

Figure 2: A few example of knots. [8]

There is also the case when the knot is the embedded circle itself. In this case we
speak of the unknot or the trivial knot. In some sense this is the most basis knot
there is. It will be denoted by .

Another useful definition is the one of a link. A link is a combination of cut open
knots, which are glued together.

Definition 2.3. A link L is a disjoint embedding of a finite number of copies of
S1 into R3. Each copy of S1 is called a component of the link.

One can say that each knot is a link, when it is not connected to any other knot.
We again use diagrams to depict links in an easier way. Some examples of links
are:
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Figure 3: A few examples of links. [8]

Especially, the example of the Hopf link will come back many times in this thesis.
In many cases, a result proven for knots will also hold for links. For most theorems
in this thesis we will hence use knots where it could say links. Usually, the proof
is the same for links.

2.2 Isotopy

Using definition 2.1 there are infinitely many possible knots. To make the study
of knots a bit more feasible we want to consider knots only up to a suitable notion
of equivalence. As was mentioned in the introduction the equivalence of knots
is a topological problem. Intuitively this means, we want to say two knots are
equal when we can deform the first knot into the second knot and vice versa by a
continuous deformation. This is made formal by a so called isotopy.

Definition 2.4. Two parametrised (smooth) knots f0, f1 : S1 → R3 are called
isotopic if there is a smooth map F : S1 × I → R3 such that F (−, t) is an
embedding for all t and F (−, 0) = f0 and F (−, 1) = f1

Using this definition we say that two knots are equivalent if they are isotopic.

Example 2.5. An example of a two isotopic knots are the following two knots.

These knots are isotopic because the knot with a crossing (l) can be twisted and
deformed to become the unknot (r).
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An example of two knots which are not isotopic are the following two knots.

(a) Knot 51 (b) Knot 52

It is a bit harder to see that these two are not isotopic. In order to check this we
will need new tools, which we will develop in section 2.4.

The notion of isotopy gives us a more precise definition of the unknot, as we can
now say a knot isotopic to S1 is called the trivial knot or unknot.

In the definition of isotopy only the embedding of the circle itself gets deformed.
In some cases it might be more useful to consider the case where also the space
around the embedding is deformed. To work in this cases we define an ambient
isotopy.

Definition 2.6. Two parametrised knots, f and g are ambient isotopic if there
is a smooth map Ψ : R3 × [0, 1] → R3 with the property that Ψ(−, t) is a diffeo-
morphism for all t with Ψ(θ, t) = ψt(θ) such that ψ0 = id and ψ1 ◦ f = g.

We will not use ambient isotopy often in this thesis, since in [9, Chapter 1] is is
shown that ambient isotopy and regular isotopy are equivalent definitions. How-
ever, we do need the definition for the following theorem to make sense. This
theorem, called the Reidemeister theorem, will give us a simple way of checking
whether two knots are isotopic.

Theorem 2.7 (Reidemeister’s theorem). Two unoriented knots K1 and K2

are isotopic if and only if a diagram of K1 can be transformed into a diagram of
K2 by a sequence of ambient isotopies of the plane and one of the local moves
R1, R2 and R3 given in the following diagrams:
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Figure 4: Unoriented Reidemeister moves

In other words, the equivalence class of knots under isotopy, is the same as the
equivalence class of knots under planar isotopy and Reidemeister moves. The proof
is too long to present here, but can be found in [10, Chapter 4].

We need to make two remarks about the Reidemeister theorem. First of all,
the theorem is useful when we want to check two knots are indeed isotopic, but
it is more complicated to show two knots are not isotopic using this theorem.
Moreover, it is also not always easy to see that two knots are related by a finite
number of Reidemeister moves. There are some famous examples of knots where
one would need to do counter-intuitive Reidemeister moves to obtain an isotopic
knot. Secondly, in the case for oriented knots, we have to equip the Reidemeister
moves with all possible orientations for the theorem to work. For example, for
oriented knots, the Reidemeister II moves are given in figure 5.

Figure 5: Oriented Reidemeister II moves.

Now that we have defined equivalence of knots we can start checking which knots
are equivalent. To try this we use by the following lemma.

Lemma 2.8. Every pair of knots K1 and K2 are equivalent under Reidemeister
moves and changing crossings from a positive crossing to a negative crossing or
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vice versa.

Proof. The idea of the proof is to show that using crossing changes and Reide-
meister moves all knots can be made into the unknot. If this is the case we can
change each knot K1 into the unknot and then change the unknot into K2.

Consider a knot diagram K1 with n ∈ Z≥0 crossings in a plane with basis vectors
X and Y . Pick a base point on the knot and pick an orientation, let us pick the
counter-clockwise orientation. Take the knot diagram of K1 in the XY-plane and
parametrize the knot and walk around the knot increasing the height (Z-direction)
proportionally to the length travelled over the knot. Walking around the knot we
change each crossing such that we always first pass the crossing as the under strand,
and the second time as the over strand. This means that each time we encounter a
positive crossing we change it to a negative crossing. After we encountered the last
crossing before getting back to the base point we decrease the height continuously
along the Z-axis until we are back at the base point in the XY -plane. An example
is for the trefoil is shown in figure 6.

Figure 6: Change a crossing from the trefoil to get an ascending diagram. Notice
that we could lift up the diagram from the plane forming a spiral like structure.

Notice that the path we created is an increasing loop until the n-th crossing, after
which is decreases without crossings. This is isotopic to the unknot by applying
Reidemeister move R1 multiple times. Therefore, we can make the unknot from
any given knot K1 by changing crossings and Reidemeister moves, which proves
the lemma. �

2.3 Invariants

One of most fundamental problems in knot theory is deciding whether two knots
are indeed equivalent. Take for example the Haken’s Gordian knot 3 (figure 7).

3This knot is named after the knot cut by Alexander the Great mentioned in the introduction.
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This knot looks complicated, but it is actually the unknot under a finite number
of Reidemeister moves.

Figure 7: Haken’s Gordian unknot[8].

The Reidemeister theorem is a good first step for distinguishing knots, but as was
mentioned before it is not always easy to use. To solve this problem, we instead
look for other properties of the knot which could distinguish two knots. This leads
to the notion of a knot invariant.

Definition 2.9. A knot invariant is a map f : {Knots} → S, where S is a set
such that if two knots K1 and K2 are equivalent then f (K1) = f (K2). Where
{Knots} denotes the set of all knots.

A knot invariant is hence a function which ‘recognizes’ whether two knots are
inequivalent. However, notice that it does not have to be the case that if f(K1) =
f(K2) then K1 and K2 are equivalent. A function which has this property is called
a complete knot invariant.

Definition 2.10. A knot invariant g is called complete if g has the property that
for every pair of knots K1 and K2, g(K1) = g(K2) if and only if K1 and K2 are
equivalent knots.

Up until today there is only one known complete knot invariant. This is the
fundamental group of the knot complement R3 \ K plus some extra properties.
The details and definitions are quite technical, so they will not be discussed here.
For more more information about this one could also look at [11, Chapter 11], [12]
or [13, Chapter 5].
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Often an invariant can be easily extended to links. We will now give two examples
of knot invariants.

Example 2.11 (Crossing number). One of the most trivial things to do when
you want to determine if two knots are isotopic is to check whether the two knots
have the same number of crossings. Of course, using Reidemeister moves one could
create more crossings by moving two strands of the knots over each other, to avoid
this we will use the minimum number of crossings in a knot.

Definition 2.12. The crossing number of a knot K is the minimum number of
crossings in a diagram of K.

The fact that we do have to make sure the knot diagrams have the minimum
number of crossings makes this invariant hard to compute in some cases. It is also
not a complete knot invariant. This can be seen when we consider the knots of
figure 4a and 4b, we notice that both these diagrams have the minimal number
of crossings, hence the crossing number is five. But as was mentioned these knots
are not isotopic, hence the invariant is not complete for all knots.

Example 2.13 (Linking number). We will first consider the sign of a crossing.
The sign of a crossing is +1 for a positive crossing and −1 for a negative crossing.
In figure 8 we see an example for a link. The linking number is only defined on
links with two components.

Definition 2.14. Let L be an oriented link with components L1, . . . , Ln and let D
be the link diagram corresponding to L with components D1, . . . , Dn. The linking
number lk(i, j) is defined to be the sum of all the signs of crossings between the
components Di and Dj where i, j ∈ {1, . . . , n} and i 6= j.

For example, consider the following link diagram with components a, b and c.
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Figure 8: Link with components a, b and c [14].

In this case lk(a, b) = −4, lk(a, c) = +2 and lk(b, c) = 0.

Notice that the linking number is not complete, simply because it cannot be com-
puted on each knot.

The linking number is a nice invariant because there are several ways to express
it as an integral. Most notably the following theorem by Gauss.

Theorem 2.15 (Gauss’ linking integral, [9]). Let γ1 and γ2 be two non-
intersecting differentiable curves in R3, the Gauss map Γ : S1 × S1 → S1 is given
by:

Γ(s, t) =
γ1(s)− γ2(t)
|γ1(s)− γ2(t)|

.

The degree of the Gauss map deg (Γ(s, t)) is given by the number of times the
normalized vector connecting a point on γ1(s) to a point γ2(t) goes around the
sphere S2.

Then the linking number is given by:

lk(γ1, γ2) = deg (Γ(s, t)) =
1

4π

∫
S1×S1

det(γ̇1(s), γ̇2(t), γ1(s)− γ2(t))
|γ1(s)− γs(t)|3

dsdt.
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This gives an easy way to compute the linking number and has many applications
electromagnetism (as was shown in the introduction) and in quantum field theory.

2.4 The Alexander-Conway polynomial

We have seen two invariants which take only integer values. We shall now show
an example where the invariant takes a polynomial value.

The Alexander-Conway polynomial is defined recursively over the crossings of the
knot using a so called skein relation.

Definition 2.16. The Alexander-Conway polynomial 4 C(K) : {Knots} →
Z[t±1], of a knot K, is defined by the skein relation:

1. C( ) = 1

2. C( )− C( ) = tC( )

Here denotes the unknot. The term means we annul the given crossing. The
way to do this is by making a straight line through a crossing, everything on a given
side of the crossing becomes one connected component. In case the orientations of
both strands are the same we make a vertical line, in case the orientations of the
strands are reversed we make a horizontal line. This is illustrated figure 9.

Figure 9: Smoothing of a crossing.

4A polynomial in x and x−1 is a Laurent polynomial
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From the definition is is not clear whether this gives a well-defined knot invariant,
in theorem 2.21 it wil be shown this is indeed the case.

The Alexander polynomial was originally defined by J.W. Alexander in 1928 with-
out using the skein relation but using algebraic topology (More details can be
found in [11, Chapter 6]). Only later, the skein relation was found by J.H. Con-
way in 1967 which is why the skein relation is called the Conway skein relation
and the associated polynomial is called the Alexander-Conway polynomial. We
will stick to using the Conway skein relation as it is much more convenient to use
for our purposes.

This invariant can be extended to links, but to do so we need to compute C on
k disconnected links. This extension for links is necessary, because the term
might give us terms which are no longer homeomorphic to one connected circle.
Let us denote k disconnected unknots by (k).

Lemma 2.17. C

(
(k)
)

= 0.

Proof. The proof will be given for k = 2 and can be extended to arbitrary k.

Notice that the value of C on and must be the same as they are isotopic.
And that the value of can be computed using the skein relation. We hence
get:

1 = C
( )

= C

( )
= C

( )
+ tC

( )
= 1 + tC

( )
This can only be the case if C ( ) = 0. To do the same proof for (k) we
make k crossings in the unknot and repeat the same steps.

�

Example 2.18. We can now for example compute the Alexander-Conway poly-
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nomial of the Hopf link by rewriting the second term of the skein relation.

C
( )

= C
( )

+ C
( )

= C
( )

+ tC
( )

= 0 + tC
( )

= t

Example 2.19. Using the Conway polynomial, we can also finally see that the
knots in figure 4a and 4b of example 2.5 are indeed not isotopic. Let us denote
the knot in figure 4a by Ka and the knot in figure 4b by Kb. Then we compute
C(Ka) = t4 + 3t2 + 1 and C(Kb) = 2t2 + 1 5. Notice that C(Ka) 6= C(Kb) and
hence Ka and Kb are not isotopic.

The Alexander-Conway polynomial is part of a larger family of knot invariants
called the HOMFLYPT polynomial. This is defined as follows.

Definition 2.20. The HOMFLYPT polynomial P : {Links} → Z[l±,m±]
given by the following skein relation for a link L:

1. P ( ) = 1

2. lP
( )

+ l−1P
( )

+mP
( )

= 0

Here {Links} denotes the set of all links. When we take the variables m = −t and
l = 1 we get back the Alexander-Conway polynomial, showing the HOMFLYPT
polynomial is indeed a generalization of the Alexander-Conway polynomial. It
turns out there are infinitely many pairs of distinct knots with the same HOM-
FLYPT polynomial [14]. This means the HOMFLYPT polynomial is not a com-
plete invariant. As it is a generalization of the Alexander-Conway polynomial, we
also know this is not a complete invariant.

We have seen how the Alexander-Conway polynomial can be useful when we want
to distinguish knots. However, we did not actually show it is a unique and well-
defined invariant. For generality, we will prove the HOMFLYPT polynomial is
indeed a well-defined link invariant. The proof is quite long and technical, but the
result will be useful in section 4.4.

5These values were computed using Mathematica which has packages to compute these poly-
nomials.
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Theorem 2.21. Let D+ be the diagram , D− be the diagram and D0 be
the diagram . There is a unique function P : {Links} → Z[l±1,m±1] such that
P takes the value 1 on the unknot and if L+, L− and L0 are links which are the
same except for a single point where they have diagrams D+, D− and D0, then

lP (L+) + l−1P (L−) +mP (L0) = 0.

The proof of this theorem can be found in [11, Chapter 15], but I have chosen to
present the proof here because there are a few unclarities and gaps to be filled in
by the reader in the proof given in Lickorish. We will however closely follow the
proof presented there.

Before we can prove the theorem we first need to prove two lemma’s and give a
three definitions which will be useful in the proof.

Lemma 2.22. Given that we denote k disconnected unknots by (k) we have
that:

P

(
(k)
)

=

(
− l + l−1

m

)k−1
.

Proof. The proof is similar to the proof of lemma 2.17. The unknot has only one

component, so the value on the unknot is P ( ) = 1 =
(
− l+l−1

m

)1−1
. Rewriting

the skein relation we can write:

P ( ) =
−lP ( )− l−1P ( )

m
=

(
− l + l−1

m

)
.

When we use induction on the number of components k and apply the observation
of the value on the unknot and the disconnected unlinks above, the result follows.

�

The second lemma we need is a result from planar geometry.

Lemma 2.23. Suppose p and q are two arcs in R2 intersecting each other only at
their endpoints A and B. Let R be the compact region bounded by p and q. Let
t1, t2, . . . , tn be arcs traversing R such that each ti with i in {1, 2, . . . , n} intersects
p once in one of its endpoints and intersects q once in the other endpoint. Suppose
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the intersections of all arcs are transverse 6 and there is no point where more than
two arcs intersect. If any pair of traversing arcs ti and tj intersect in at most one
point then the graph where the vertices are given by the intersections and the
edges are given by the arcs ti, p and q separates the region R into a collection of
v-gons 7. Moreover, if the set of traversing arcs is not empty, it is the case that
in this collection of v-gons there is a 3-gon with an edge in p and a 3-gon with an
edge in q [11, Lemma 15.1].

Proof. This lemma is proven by induction. Let n be the number of arcs traversing
R. Suppose n = 1, in this case there is only one arc t1 traversing R. Call the
endpoints of t1 X and Y respectively, then there are two 3-gons in R namely
XY B and XY A. As the edges XA and XB are in q and Y A and Y B are in p,
there exist a 3-gon with an edge in p and there exist a 3-gon with an edge in q.
This is depicted in figure 10.

Figure 10: Base case of the lemma.

For the induction hypothesis, assume that for a region R with less than or equal
to n− 1 arcs crossing it, the statement holds. Now let R be a region between arcs
p and q with t1, . . . , tn traversing the region such that each pair of arcs intersects
at most one time. The following algorithm gives use the desired 3-gons with an
edge in q. The proof is also shown in figure 11.

1. Given the set of arcs {ti : 1 ≤ i ≤ n} pick the arc tj with the endpoint in
p which is closest to A. Call this endpoint in p : X, and the corresponding
endpoint in q: B.

2. If possible select a tk from {ti : i 6= j} which intersects tj in a point which

6An intersection of curves is called transverse if at every point of the intersection the tangent
spaces at the given points generate the tangent space of the ambient space.

7A v-gon is a polygon with v vertices.
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we call X ′ and intersects q in a point we will call A′ such that tk does not
intersect any arc between A′ and X ′. If there are multiple options for the
arc tk, pick the one which gives X ′ a close as possible to B′.

3. In case there exist no tk as described in step (2) select the arc p instead
taking A′ = A and X ′ = X .

4. Now one can form an arc p′ by following the lines A′X ′ and X ′B′. Moreover,
label the segment A′B′ in AB by q′. Notice that p′ and q′ enclose a region
which we call R′ ⊆ R.

5. In case R′ in not traversed by any ti in {ti : 1 ≤ i ≤ n, i 6= j, i 6= k} then R′

is our desired 3-gon with an edge in q.

6. In case R′ is traversed by some arcs ti in {ti : 1 ≤ i ≤ n, i 6= j, i 6= k} then
there are at most n − 2 arcs traversing R′, so by the induction hypothesis
there must exist a 3-gon in R′ with an edge in q′. As q′ is a segment of q, we
have found the desired 3-gon.

Figure 11: Induction step of the lemma.

A 3-gon with an edge in p can be found with a similar procedure. �

The proof of the theorem will use a strategy similar to the proof of lemma 2.8. To
do this let us define some terminology.

Definition 2.24. A diagram D of an oriented link with n-components is called
ordered if an ordering is chosen for the link components L1, L2, . . . , Ln. The
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diagram D is called based if a base point is selected in each link component from
where a walk around that component starts.

This definition intuitively means, when walking over the link we have a certain
order in which we need to go through the link components and we need to start
the walk around each component at a specific point.

Definition 2.25. An ordered based diagram D of an oriented link is called as-
cending if in a walk around the link in the given order, each walk around a
components starts at the base point and each crossing is first encountered as an
under pass.

Given a diagram D we can make the corresponding ascending diagram αD by
changing crossings from positive to negative. αD is the link above the diagram D
in which each link component is entirely above the link components preceding it
in the ordering. Now we can finally start the proof of theorem 2.21.

Before we start proving the theorem let us first give a sketch of the proof. In order
to show P is a well-defined invariant (independent of the chosen ordering of link
components, base points of link components and independent under Reidemeister
moves) we will need to:

1. Define P on link diagrams. We will use induction on the number of crossings.

2. Show that:
lP (D+) + l−1P (D−) +mP (D0) = 0. (♦)

holds for diagrams D0, D− and D+ corresponding to the links L0, L− and L+

respectively.

3. Verify that P is invariant under the Reidemeister moves, otherwise we could
have two equivalent links K1 and K2 with values P (K1) 6= P (K2).

The first two points will follow from a given inductive definition for which we need
to show it is well-defined. The last point will be shown using the skein relation
in (♦). We will show that the value of P does not change under Reidemeister
moves. Notice that in the skein relation (♦) any of the terms P (D+,−,0) is uniquely
determined by the knowledge of the two other terms. Moreover, one can check a
general solution to (♦) is given by:

(P (D+) , P (D−) , P (D0)) = (x, x, µx) ,
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where µ = −m−1(l + l−1).

We can now start the proof of theorem 2.21.

Proof. Let us denote the set of oriented link diagrams with n crossings by Dn.
Using induction on the number of crossings we define the function P : Dn →
Z[l±1,m±1] on Dn as follows:

i (♦) holds for any three diagrams in Dn, related such as D0, D− and D+, .

ii P (D) does not change when we apply a Reidemeister move on D, which while
applying the Reidemeister, move never involves more than n crossings.

iii If D is an ascending diagram of a link diagram in Dn with #D link components,
then P (D) = µ#D−1.

To prove the above we first show the properties hold on D0. Notice that any link
without any crossing is an unlink with k components. Using lemma 2.22 we know
that it must have the value µk−1. Because the k component is trivially ascending
this means property (iii) is satisfied. Using Reidemeister moves does not change
the number of components because we are still not allowed to have more than
zero crossings. This means that again by lemma 2.22 we find P (D) = µk−1, and
the value is unchanged by Reidemeister moves. Therefore, property (ii) is also
satisfied on D0. In order to show property (i) holds we first need to make sense
of what D+, D− and D0 are in this case. We know that D0 is a version of D+,−
(D+,− denotes the diagram with either a positive crossing or a negative crossing)
where the crossing is left out. In this case let D0 be the k-component unlink
( )k. Now adding a crossing between two components means we get that two
of the components reduce to one component of the form or . But these
are both isotopic to the original unknot. This means that D+ and D− are k − 1
component unlinks. Now let x := (µ)k−2. If we plug the above in the skein relation
(♦) and apply lemma 2.22 to find the value of P , we obtain:

lP (D+) + l−1P (D−) +mP (D0) = l (µ)k−2 + l−1 (µ)k−2 +m (µ)k−1

= lx+ l−1x+mµx

= 0.

This is zero, because (x, x, µx) is a solution to (♦). This shows property (i) and
the base case of our induction.
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Now assume that P is well-defined and property (i), (ii) and (iii) hold on diagrams
with n−1 crossingsDn−1. We can extendDn−1 toDn using the following procedure.
Pick a diagram D with n crossings, pick an ordering and a base point on each
component, and let αD be the associated ascending diagram. Notice that in an
ascending knot diagram each component is equivalent to the unknot in the same
way as in lemma 2.8, this means that the value of P (αD) = µ#D−1. Notice that
we can now walk through each component and change the crossings from negative
to positive to obtain D. The value before and after the crossing change will be
P (D−) and P (D+). This means the value P (D−) is known by recursion. The
value of P (D0) will also be known, since by definition D0 has an annulled crossing,
and hence at least one crossing less than D. Using the induction hypothesis the
value of D0 will also be known. From the values P (D−) and P (D0), P (D+) is
uniquely determined. We define the value P (D) to be the value of P (αD) with
the necessary crossing changes.

As an example of changing an ascending diagram into a knot consider the figure
eight knot K and its ascending diagram αK in figure 12. We starting at the base
point b, we have to change crossings 1 and 3 to change αK into K.

Figure 12: Figure eight knot K and its ascending diagram αK.

We need to show this is indeed well-defined. To do so we will prove three claims.

Claim A: The value P (D) does not depend on the order in which we change the
crossings of P (αD).

Claim B: The value P (D) does not depend on the chosen base points.

Claim C: The value P (D) does not depend on the order chosen for the link
components.
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Together, these claims will prove P (D) is well-defined.

Proof of claim A. Take two crossings and label them 1 and 2 . Let us denote the
crossing changes by C1 and C2, where Cr is the change of crossing r. Also let
Di,j denote the diagram of the knot, where i, j are the signs of crossing 1 and 2
respectively. Then:

C1 ◦ C2 (D−,−) = C1 (D−,+) = D+,+ = C2 (D+,−) = C2 ◦ C1 (D−,−) .

Which proves the order in which the crossings are changed does not matter for the
diagram D, so also not for the value P (D).

Proof of claim B. Keep the order of the components fixed and pick one component.
Let b be the base point of the chosen component. Let us consider what happens
when we move the base point b from before a crossing to a base point b′after a
crossing (Here we stay on the same strand of the knot). Let αD be the ascending
diagram created using base point b, and βD the ascending diagram created using
b′.

We want to show that P (αD) = P (βD), since then P (D) would be the same in
both cases. Notice there are two cases. In the first case b and b′ are in segments
which belong to different link components. If we start at b, we change the crossing
and go to the next component. If there is more than one crossing in the component
of b, we will return at some point in the link order to change the rest of the crossings
of the component. In case we start at b′ we start at a new component and get
to the component of b in some other point in the order, and change all crossings
then. Because it does not matter in which order we change crossings, we notice
αD = βD. Hence, P (αD) = P (βD).

In the second case b and b′ are in the same component. This means βD is created
from αD by changing one crossing. Given that αD is an ascending diagram with
#D components, we get P (αD) = µ#D−1. If the crossing we change is annulled,
we get an ascending diagram D0 which has #D+1 components and n−1 crossings.
This means P (D0) = µ#D. Using the skein relation (♦) we get the following:

lP (βD) + l−1P (αD) +mP (D0) = 0.

Rewriting this yields:
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P (βD) = l−1
(
−l−1P (αD)−mP (D0)

)
= l−1

(
−l−1µ#D−1 −mµ#D

)
= l−1

(
−l−1 −mµ

)
µ#D−1

= l−1
(
−l−1 + l + l−1

)
µ#D−1

= µ#D−1.

This shows, P (αD) = P (βD), so P (D) is the same whether we start at b or b′.

The proof of claim C uses the invariance of P (D) under Reidemeister moves. We
will hence show property (ii) of the definition of P (D) first. First, we remark that
if a link diagram has an ordering before a Reidemeister move then there is an
ordering on the link diagram after the move as well. We will show invariance one
move at the time.

Type I. Suppose we want to change a crossing by means of a Type I move. Consider
without loss of generality we use the move from left to right in the figure below.
We have shown in claim B that P (D) is invariant of the place of the base point.
If we put the base point at the position of b1 before the move and we put it at b2
after the move, we get an ascending diagram before and after the move. Because
the computation of P (D) does not depend on where the base point is, both the
ascending diagram using b1 and the ascending diagram using b2 will give the same
value P (D). Therefore, computation of P (D) is invariant under Reidemeister I
moves.

Figure 13: Reidemeister I move.

Type II. Suppose change a knot using a Reidemeister II move. First consider the
case where both strands of the crossing have the same direction.

27



Figure 14: Reidemeister II moves with different orientations.

In figure 15 both sides of the Reidemeister moves are denoted D+,1 and D+,2

respectively. We want to show that P (D+,1) = P (D+,2). To use the skein relation
we need D0,1, D0,2, D−,1 and D−,2. These diagrams are created by changing either
the upper crossing (diagrams with subscript 1) or the lower crossing (diagrams
with subscript 2). As can be seen in figure 15 we find that D−,1 is the same as
D−,2. Similarly, D0,1 and D0,2 are the same up to isotopy (in this case just a
rotation). Therefore, by the skein relation (♦) we find that P (D+,1) = P (D+,2).

Figure 15: Same orientation.

In the case the directions of the strands are reversed we can use the same trick
but instead we use the diagrams such as in 16.

Figure 16: Different orientation.

Together this shows P (D) is invariant under Reidemeister II moves.

Type III. The same strategy for showing P (D) is invariant under type III moves
is the same as for type II moves.
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Figure 17: Reidemeister III moves.

In figure 18 the possible crossings are given. The Reidemeister III move transforms
D1 into D′1 or D2 into D′2. The difference between D1 and D2 is the sign of the
bottom crossing. Now notice that using the skein relation (♦) we can relate D1

and D2 with either D3 or D4, depending on the orientation of the strand 8. We can
now use that D3 and D4 are related to D′3 and D′4 respectively using a type II move.
Moreover, because the difference between D1 and D2 is only one crossing, either
one of them will be part of the ascending diagram and hence either P (D1) and
P (D′1) or P (D2) and P (D′2) are known. This means that either the remaining value
is determined uniquely as before, proving that P (D1) = P (D′1) or P (D2) = P (D′2).

For example, the skein relation gives an argument of the form:

lP (D1) = −l−1P (D2)−mP (D3) = −l−1P (D′2)−mP (D′3) = lP (D1).

Figure 18: Reidemeister III with crossing changes.

We have now shown that P (D) is invariant under each Reidemeister move. Which

8One would need to work this out for all possible orientations on all three strands, this would
be 23 different cases, so the pictures do not show the orientations explicitly.
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proves property (ii) for from the inductive definition of P (D). We can now prove
claim C.

Proof of claim C. Suppose D is any link diagram in Dn with an ordering for its
components. Let αD be the associated ascending diagram. Suppose βD is the
ascending diagram with respect to a different ordering. We now want to give the
components of βD the ordering of αD. In this way we compute βD from αD.
We can show this by showing that P (βD) = µ#D−1. This means we can start
computing P (D) from αD, as well as from βD.

Consider an innermost loop of the diagram βD. A loop is a sub-arc of a diagram
which begins and ends at the same crossing. The loop is said to be innermost if no
link component is completely within the area bounded by the loop. If necessary,
any component of the diagram with no crossings that bounds a disc whose interior
is disjoint can be moved away from the diagram.

If the loop does not contain crossings (except for the begin- and endpoints), the
loop can be removed using a Reidemeister I move. In this case the crossing vanishes
and we get that βD is ascending with n − 1 crossings. Therefore, P (βD) =
µ#D−1 = P (αD) by the induction hypothesis.

If the loop does contain crossings this means other arc traverse the loop. Using the
fact that the loop is innermost and isotopy one can make sure the traversing arc
meets the loop at only two points. One transversal arc and (part of) the loop bound
a 2-gon and also pairs of transversal arc bound 2-gons. Choose an innermost 2-gon
inside the loop. Here innermost means there is no connected component within
the area covered by the 2-gon. Call the two arcs involved p and q, ending at points
A and B, and bounding a region R. Notice that any remaining arc traversing R
must intersect both the arcs p and q. Moreover, two arcs traversing R can only
intersect once, since if they would intersect more times this would form a connected
component, which would then be the innermost 2-gon.

Now we can use lemma 2.23 to see there must also be a 3-gon T with an edge
in p (and one with an edge in q). Assume all base points are outside the region
R (in case they are not they can be moved there using claim B). If βD is indeed
ascending, it must be the case that each vertex of our 3-gon T is both a positive
and a negative crossing. This means that we can move a part of the arc p between
two vertices of T by means of a Reidemeister III move. Move the arc p across
the 3-gon in such a way that we have less lines intersecting R. In this way, we
create a new region R′. We can repeat the process until there are not more
lines intersecting the region R′ or no more 3-gons. In the first case, one can
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remove the region R′ by means of a Reidemeister II move. Removing the region
R′ means that we remove the crossings at the points endpoints of p: A and B.
This means that using Reidemeister moves we have changed βD in an ascending
diagram with n − 2 crossings. Then by the induction hypothesis we have that
P (βD) = µ#D−1 = P (αD). Where we notice that we can not have deleted a
whole link component using this process , because such a components would have
been moved out. This proves claim B, because using both orders αD and βD we
can compute the same value for P (D).

This means we have shown property (i), (ii) and (iii) for P (D) with D in Dn.
The corresponding link invariant P (L) for an oriented link L with diagram D
can be defined by defining P (L) := P (D). All that is left to show is that P is
unique. This follows from the fact that P (L) can always be computed from an
ascending diagram which as said before is equivalent to a k-component unlink.
This means the resulting function P will be fully determined by the value on the
k-components unlink. Lemma 2.22 uniquely fixes the value on this k-component
unlink, and therefore P is unique. This proves theorem 2.21. �
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3 Vassiliev invariants

In the previous section we have seen several examples of knot invariants. In this
section we will build a large class of invariants in order to study all these invariants
at once. This class of invariants will be called the Vassiliev invariants. Before we
can define a Vassiliev invariant, we will need to look at knots in a different way.

3.1 The Vassiliev extension

The idea of a knot can be generalised to a so called singular knot. Intuitively, a
singular knot is a knot that is allowed to intersect itself a finite number of times,
which was not allowed in a regular knot. In order to define these knots formally
we need the definition of an embedding.

Definition 3.1. Let N and M be two topological manifolds. A smooth function
f : N →M is called an embedding if f is an injective immersion 9

Definition 3.2. A singular knot is a smooth map S1 → R3 that fails to be an
embedding.

We will denote singular crossings by . A singular knot is a knot that is for
instance not injective i.e. multiple points of the circle are mapped to the same
point in the knot, which is singular crossing. For simplicity we will only consider
the case where two points of the circle map to the same point, so called ordinary
double points ([15].

Definition 3.3. Given a map f : S1 → R3 a point p ∈ im(f) ⊂ R3 is a ordinary
double point of f if f−1(p) consists of two points t1 and t2 and the two tangent
vectors f ′(t1) and f ′(t2) are linearly independent. Geometrically a double points
means that the tangent vectors in a neighbourhood of the point are non-collinear.

It would of course be possible to define more complicated singular knots such
as points where three or more lines intersect. The ideas presented here can be
extended to these more complicated cases.

In order to discuss knots more effectively we can define a vector space of singular
knots. This vector space is defined as follows:

Definition 3.4. The vector space of knots K is the vector space of finite formal
linear combinations of isotopy classes of oriented knots over the field F.

9A continuous function f : N → M is an immersion if for every point x ∈ N there exists an
open neighbourhood Bx such that f : Bx →M is a homeomorphism.
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This means that K is the vector space over a field F with a basis consisting of
the isotopy classes of knots. In appendix A the formal linear combination will be
discussed in more detail. The subspace spanned by the set of singular knots with
at least m singular crossings will be denoted by Km. Observe that if we have a
knot with at m+ 1 crossings, this would also be in Km. This observation gives us
a filtration of spaces of knots:

K0 ⊃ K1 ⊃ K2 ⊃ . . . .

This filtration enables us to make the quotient space Km/Km+1, which is the space
of knots with exactly m singular crossings.

The knot invariants as defined in section 2 are not well-defined for singular knots.
In order to extend the notion of an invariant to singular knots we need the following
definition.

Definition 3.5. Let F be any field of characteristic zero. Any F-valued invariant
V can be extended to a singular knot using the following rule:

V ( ) = V ( )− V ( ).

This relation is called the Vassiliev skein relation.

Likewise, given n in Z≥0 singular crossings we can define the knot invariant V (n) on
a knot with n-singularities by applying this definition 3.5 recursively. This gives
the formula:

V (n)( . . . ) = V (n−1)( . . . )− V (n−1)( . . . ).

To base the recursion we take V 0 = V (K). The process of recursively applying
the Vassiliev skein relation is called resolving a double point. As an example one
could a knot invariant V on the singular trefoil knot, this would yield:

VC

( )
= VC

( )
+ VC

( )
Remark 3.6. In this thesis we will assume the invariants take values in any field
with characteristic 0 (e.g. C, Q, R, Q[X] etc.), while in general this could be done
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over any Abelian group. This, however, would complicate the dimension of the
spaces we work with as we will see later.

The process of resolving double points is well defined as the order in which we
apply the Vassiliev skein relation does not matter. This can be shown using the
following proposition.

Proposition 3.7. Let K be a knot with m-singular points. Let us denote the
set of singular points by SK . Given a subset A ⊆ SK , we denote by KA the knot
where all singular points in A are given by a negative crossing and all singular
points which are not in A are resolved by a positive crossing. Then:

V m(K) =
∑
A⊆SK

(−1)|A|KA.

Where |A| denotes the number of singular points in the set A.

Proof. The proof of this proposition can be done by induction. Notice that by
definition we have V (0)(K) = V (K), which can be used to base the induction. Let
us assume that we have:

V m(K) =
∑
A⊆SK

(−1)|A|KA.

We want to show that given we have a set of m+ 1 singular points S̃K :

V m+1(K) =
∑
A⊆S̃K

(−1)|A|KA

.

Let us pick one singular crossing r in S̃K . Then by the Vassiliev skein relation we
get:
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V m+1(K) = V m

 . . .︸ ︷︷ ︸
m

− V m

 . . .︸ ︷︷ ︸
m

 (♣)

=
∑

A⊆SK ,r /∈Ã

(−1)|A|KA −
∑

A⊆SK ,r∈Ã

(−1)|A|KA.

Notice there are two options for the crossing r. It can either be in Ã or it is not

in Ã. If it is in Ã, we have one more crossing, which means
∣∣∣Ã∣∣∣ = |A| + 1, this

means we get that the terms in which r is in Ã are of the form −(−1)|A|V (KA).
This means that if we work out the resolution in (♣) we get exactly:

V m+1(K) =
∑
Ã⊆S̃K

(−1)|Ã|KÃ.

Which proves the claim. �

The resolution map above will be called the Vassiliev resolution. Notice that by
the formula in proposition 3.7 it does not matter in which order we resolve the
singular points, this makes the Vassiliev resolution a singular knot well-defined.

When working with Vassiliev invariants we will identify elements of the vector
space K with their Vassiliev resolution. This means that a singular knot K is the
same as sum of the resolved crossings. For example, a singular trefoil knot is the
same as the formal linear combination of the trefoil knots constructed by replacing
the singular crossing by a positive and a negative crossing.

Figure 19: Trefoil knot and its Vassiliev resolution.

One of the most important definition of this thesis is the definition of a Vassiliev
invariant.
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Definition 3.8. A knot invariant V is said to be a Vassiliev invariants of
degree/type n if V (n+1) = 0. A Vassiliev invariant is said to be of order n if it
is of type n but not of type less than or equal to n− 1.10

This means V is a Vassiliev knot invariant of type n if V ( , . . .︸ ︷︷ ︸
n+1

) = 0. We will

denote the set of Vassiliev invariants of type n by Vn.

Analogously, one could think of a Vassiliev invariant as a higher-order derivative
applied to a polynomial. For example applying the n + 1th order derivative to a
polynomial of degree n gives us zero, but the nth order derivative will give us a
constant.

Example 3.9. An example of a Vassiliev invariant is the n-th coefficient of
the Alexander-Conway polynomial which was defined in definition 2.16. The
Alexander-Conway polynomial C can be defined by the Conway skein relation:

C(O) = 1

C( )− C( ) = tC( )

where O is the unknot. Including the Vassiliev skein relation for a n-singular knot,
we obtain:

C
(

. . .
)

= tnC
(

. . .
)
.

This means that if a knot K has more than n double points then C(K) must be
divisible by at least tn+1. But the n-th coefficient is of the form atn, where a is
some coefficient. A term like is only divisible by tn+1 if it is zero. Therefore, it
must be the case that the n-th coefficient of the Conway polynomial is zero. This
means that the n-th coefficient of the Conway polynomial is a Vassiliev invariant
of type n, because it is zero for any knot with more than n singular points.

In a very similar way one could proof that the n-th coefficient of the HOMFLYPT
polynomial is a Vassiliev invariant of order n. Many more knot invariants are
Vassiliev invariants. For example the HOMFLYPT polynomial as was shown in
2.4 and the linking number in definition 2.14 are examples of Vassiliev invariants.
Many more examples can be found in [16].

10In literature this is sometimes called a finite-type invariant, because the type n is an integer.
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3.2 Motivation for studying Vassiliev invariants

In the last section we defined what a Vassiliev invariant is, in the remaining sections
of the thesis we will be studying Vassiliev invariants in several ways. But before
we can do that, we first need to answer the question why we should study this
specific type of invariants. But before we can do that, let us consider how people
started thinking about Vassiliev invariants in the first place.

Originally the definition given by V.A. Vassiliev was not meant to deal with knot
theory at all. The definition was given to study the complements of discriminants
in spaces of maps, in branch of mathematics called catastrophe theory. This is
a branch of dynamical system theory which studies maps with singularities of
some kind and calls the subspace of maps which fail to be an embedding the
discriminant. This is why we started working on singular knots. It turned out
that the complement of this discriminant can be considered as the space of knots.
This turned out to be very useful in studying knots, and hence more and more
definitions for the Vassiliev invariant specifically for knots where given. But why
are these Vassiliev invariants so useful?

First of all, many well known invariants are indeed Vassiliev invariants. For ex-
ample, each coefficient of the Alexander-Conway polynomial is Vassiliev, as well
as the more general HOMFLYPT polynomial. The linking number, which was
discussed in example 2.13 is also a Vassiliev invariant. Other well known Vassiliev
invariants such as the Jones polynomial (another specialization of the HOMFLYPT
polynomial) and the Kauffman polynomial are discussed in [9].

There are also many invariants which are not Vassiliev. However, there is a conjec-
ture that each invariant which is not Vassiliev can be approximated by Vassiliev in-
variants in some way. This is analogous to a theorem such as the Stone-Weierstrass
theorem for continuous functions and polynomials. An example of this conjecture
is the Alexander-Conway polynomial. The whole polynomial is not a Vassiliev
invariant, but each term is. In this way, there is a countable number of Vassiliev
invariants which approximates the Alexander-Conway polynomial.

Another good reason to study Vassiliev invariants is the following conjecture.

Conjecture: The set of all rational valued Vassiliev invariants is a complete
knot invariant.

It was already mentioned in section 2.3 that a complete invariant is an invariant
which can distinguish any pair of knots up to isotopy. To this day only one
such invariant is known: the fundamental group of the knot complement where
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we keep track of the meridian and the longitude when walking around the knot
11. This result is known as Waldhausen’s theorem [17]. However, computing the
fundamental group is very complicated. It can be done by hand for knots with
a low number of crossing but it gets increasingly difficult for knots with more
crossings. There are computer programs like SnapPy [18] which you can use to do
these computations but this is computationally intensive if you want to work with
knots of very high order (such as the knots occuring when you want to distinguish
two strands of DNA). This means it would a great result if we state that the set of
rational Vassiliev invariants is a complete invariant. Sadly, it is not even known yet
if this set of invariants can distinguish between the unknot and another knot ([9]),
which means a lot of work has to be done before the conjecture will be proven.

In the remaining chapters we will try to answer a few questions which are relevant
in case we would like to prove this conjecture. For example, if we want to see
whether the set of Vassiliev invariants is complete, it would be nice if there is at
least a finite amount of them per order. If this is not the case, it would be hard
to apply each Vassiliev invariant to a knot. A second question is whether we can
find a way of generating new Vassiliev invariants. We will see in section 3.5 there
is a structure called the weight system, which can be used to make new Vassiliev
invariants. In the following we will try to define this and see how it works.

3.3 Counting finite type invariants

Now that we know Vassiliev invariants exists, we wonder how many there are of
a certain degree. In order to do this we first need to relate the invariants with a
mathematical object that we can count. To find such an object we are going to
reduce the problem to a linear algebra problem. In this section we will follow [14,
Chapter 11] quite closely. The next definition will produce a vector space, in order
to have a definition of dimension.

Definition 3.10. The set Vm equipped with addition and scalar multiplication
defined by:

(v + w)(K) = v(K) + w(K), (λv) (K) = λv(K)

where v, w ∈ Vm, λ ∈ F and K is any knot, is a vector space.

More generally, it can be shown that the set Vm form a module. As was mentioned

11For more information about fundamental group and the fundamental group as a knot invari-
ant, one could look at [13], [12] or [11, Chapter 11]
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in remark 3.6 we picked our invariants to be field valued. This means that Vm is
actually a module over a field and hence a vector space. If we would have picked
for example a ring or an abelian group for the values of our invariant the set
Vm would have a module structure over a ring. The ‘dimension’ of a module is
more complicated, therefore we have chosen to use field valued invariants. In most
following cases we will use the field of complex number C.

We note that each invariant of degree m is also an invariant of degree m + 1, to
make this formal we have the following proposition.

Proposition 3.11. Each Vassiliev invariant of order m is also a Vassiliev invariant
of degree m+ 1 i.e. we have the following filtration on the space V :

V0 ⊆ V1 ⊆ V2 ⊆ . . . .

Proof. Let K be a knot with at least m + 2 singular crossings. Then K also has
at least m + 1 singular crossings. Which means we have Km+2 ⊂ Km+1. Given a
Vassiliev invariant of degree m, v ∈ Vm we have that v(K) = 0 because K is in
Km+1. Because Km+2 ⊂ Km+1, it must also be the case that v(K) = 0 for any knot
K ∈ Km+2. Therefore, v is a Vassiliev invariant of degree m + 1, i.e. v ∈ Vm+1.
Using induction, the proposition follows. �

In some sense an invariant is nothing more than a map that takes a given knot,
or the properties of that knot, and maps it to an an element in a field F. Meaning
an invariant is an element of the dual space of the knot. Given a vector space W ,
we will denote the dual of this vector space by W ?. Notice that for dual spaces
we have a theorem which states that the dimension of a given space is equal to
the dimension of the dual space. This will also be the case here, meaning we can
make an invariant for each singular knot. We would like to find a specific Vassiliev
invariant for knots of each order. To start this, we have the following lemma.

Lemma 3.12.
V ∼= (Km/Km+1)

?

Proof. Notice that we can rewrite Vm as the set of functionals from the space of
knots that give zero for the knots with m + 1 singular crossings. Symbolically,
Vm = {V ∈ K? : V (Km+1) = 0}. Using the definition of the set of morphisms
(definition A.1), we notice this is equivalent to writing:

Vm = {V ∈ Hom(K,C) : Km+1 ⊂ KerV }.
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Therefore, using lemma A.3 from the appendix we get:

Vm = {V ∈ Hom(K,C) : Km+1 ⊂ KerV } ∼= Hom (K/Km+1,C) = (K/Km+1) .

Which proves the claim. �

The previous lemma does show that for each singular knot with m crossings we
have a Vassiliev invariant of some order. We would now like to show the found
Vassiliev invariant would be of order m. This means we want to find a map which
uniquely identifies a Vassiliev invariant of each order, with the space of knots of
each order. A map which makes such a unique identification is an isomorphism.

Proposition 3.13. There exists an isomorphism between the dual space of knots
of order n and the space of Vassiliev invariants of order n i.e.

Vm
Vm−1

∼=
(
Km
Km+1

)?
Proof. First, we need to describe the elements of Vm

Vm−1
. Let [f ], [g] be elements in

Vm/Vm−1 where f, g ∈ Vm. Using the fact that Vm is a module for all m ∈ Z≥0,
we have Vm/Vm−1 is a quotient module using definition A.2. We want to define [f ]
and [g] as equivalence classes of elements in Vm under the following equivalence
relation: f ∼ g if and only if f − g ∈ Vm−1. Using the definition of Vassiliev
invariants, we also have that:

Vm−1 = {v ∈ K? : v(Km) = {0}}.

Therefore, f ∼ g if and only if (f − g)(Km) = {0}. Which means, f ∼ g if and
only if f |Km = g|Km 12. We define the equivalence class:

[f ] = {v ∈ Vm : v|Km = f |Km}.

We now want to show that there is a well-defined map between the given spaces.
Using the construction above, we can identify elements in Vm

Vm−1
with elements in

12With f |Km
is mean the map f with restricted domain Km.
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(
Km
Km+1

)?
. This correspondence between the two spaces is given by defining the

action of [f ] on the knot as: [f ] (K) := f(K). This correspondence is well-defined
(not dependent on the element chosen in the equivalence class) because of the
definition of the equivalence class [f ]. Using the definition of Vassiliev invariants
of order m, we rewrite the right hand side and define the map:

φ : Vm/Vm−1 → {v ∈ K?m : v(Km+1) = {0}}.

Given any m-singular knot K we map φ ([f ]) (K) := f(K).

It can be checked this map is indeed linear. We need to show that the map φ is
a linear isomorphism. In order to do this, we first show that φ is surjective. We
need to show that given any g ∈ {v ∈ K?m : v(Km+1) = {0}} there exists a map g̃
such that φ([g̃]) = g. Take any knot K ∈ K, then define g̃ : K → C that takes:

K 7→

{
g(K) if K ∈ Km
0 otherwise

.

Notice, that this map can be formed for any g in this way. It is follows from the
construction that g̃ ∈ Vm. Take the equivalence class of g̃ given by [g̃] ∈ Vm/Vm−1.
Given any K ∈ Km we have:

φ ([g̃]) (K) = g̃(K) = g(K).

Because the construction is done for an arbitrary knot K ∈ Km we can drop the
dependence on K. Therefore, we have proven the claim and we have shown that
φ is surjective.

It remains to be shown that φ is also injective. We need to show that for f, g ∈ K?
we have φ ([f ]) (K) = φ ([g]) implies [f ] = [g]. Given an arbitrary K ∈ Km we
assume that φ ([f ]) (K) = φ ([g]) (K). Applying the maps we get f(K) = g(K), so
(f − g)(K) = 0. Using the definition of Vm we have f − g ∈ Vm−1, which by the
definition of the equivalence relation defined above implies that [f ] = [g], proving
injectivity. Thus, together with what was shown before, we have proven that φ
is an isomorphism between the dual space of knots of order n and the space of
Vassiliev invariants of order n.

�
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This result establishes that if a knot with n singular crossings exists, a Vassiliev
invariant of order n exists. Because knots with any finite integer number of singular
crossings can be formed, we know Vassiliev invariants of every finite positive integer
degree exist. Let us start counting the Vassiliev invariants of some low degrees
and see how far we get or if we can design a method.

Proposition 3.14. V0 = {const.} and hence dimV0 = 1.

Proof. Let V be an invariant in V0. If we take any knotK with a singular points, we
get that V

( )
= 0 because the invariant is of type zero. Expanding the left-hand

side using the Vassiliev skein relation, we obtain V ( ) = V ( ) − V ( ) = 0

and hence, V ( ) = V ( ).

This means that V is invariant under changing crossings. As was shown in lemma
2.8 we have that any knot can be turned into the unknot using Reidemeister moves
and changing crossings. Therefore, we have that V (K) = V (O) = const.. �

Proposition 3.15. dimV1 = 1.

Proof. Let V ∈ V1. Take any knot with more than one double point, then:

V
(

. . .
)

= V
(

. . .
)
− V

(
. . .

)
.

Therefore we have, similarly to the previous proof, that V is invariant under chang-
ing crossings except for one. This means that by means of changing crossings we
can rewrite any knot K to . Using the fact that V is Vassiliev we obtain:

V
( )

= V

( )
− V

( )

Since the positive crossing and the negative crossing are both isotopic
to the unknot by Reidemeister moves, we note that V ( ) = V ( )−V ( ) = 0.
Therefore, the dimension of the space of finite type invariants of order 1 is one. �

Proposition 3.16. dimV2 = 2

Proof. By similar reasoning as in the proofs of propositions 3.14 and 3.15 we get
that the Vassiliev invariant of a knot are invariant under crossing changes, except
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for two arbitrary singular points. Using crossing changes and Reidemeister moves
we always get either one of the following knots:

K K ′

These knots differ because when walking around the knot in the specified direc-
tion the double points are encountered in a different order. Depending on the
starting point for a walk around the knot different permutations of crossings will
be obtained, but they will never be the same for K and K ′. Any permutation
of transversing 4 singular crossings will be either of the form σ(1122) (which is
equivalent to K ′) or of the form σ(1212) (which is equivalent to K).

Therefore, given any knot K̃ with two singular crossings, we can use crossing
changes and Reidemeister moves in order to change K̃ such that either V (K̃) =
V (K) or V (K̃) = V (K ′), depending on the original order in which the crossings
are encountered.

Computing V (K ′) we obtain:

V

( )
= V

( )
− V

( )
= V

( )
− V

( )
= V

( )
− V

( )
= 0.

The first equality follows from resolving the knot using the Vassiliev skein relation.
The second equality follows from using the Reidemeister III moves on both terms
and again using the Vassiliev skein relation. This means the dimension of the
space V2 is at most 2 as only V (K) can have a different value. As was shown in
example 3.9, it must be the case that every coefficient of the Conway polynomial is
a Vassiliev invariant. Notice that the second term of the Conway polynomial does
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make a distinction between the unknot and the singular trefoil ( C ( ) = 1 + 0

and C
( )

= 1 + t2). Therefore, it must be the case that there are exactly two

Vassiliev invariants of order 2, the trivial one and the second term of the Conway
polynomial 13. �

The method as described in the last three proposition works, and would also
work for higher degrees. But the process of counting knots and finding all its
invariants gets more complicated for higher degrees and is already very hard to do
for V3. Hence, a more efficient method is necessary. In the previous proposition
we have seen that in order to see which knots have the same Vassiliev invariant
the only relevant information is the cyclic order in which the crossings occur. This
information about the knot can be stored in a chord diagram. A chord diagram
of a singular knot is an oriented parametrized circle on which the double points of
the knot are marked in order and chords are drawn between corresponding double
points. A chord diagram is created by the following ‘recipe’:

� Step 1: Pick an orientation for the knot and walk around the knot in the
direction of the orientation, parametrise this walk on a circle.

� Step 2: Record the crossings encountered, put labels of the corresponding
crossings on the circle.

� Step 3: You always pass both a negative and a positive crossing. Connect
the corresponding labels by a chord.

As an example of a knot and its corresponding chord diagram are given in figure
20. The degree of a chord diagram is the number of chords it contains.

Figure 20: A knot K with its chord diagram C. [14]

13The second term of the Conway polynomial is called the Casson invariant.
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The idea is that if we can establish a one-to-one correspondence between Vassiliev
invariants of a given order and chord diagrams of a certain degree, and give the
number of possible chord diagrams of a degree we would be able to count the
number of Vassiliev invariant of some order. Let us start by showing there are at
least finitely many chord diagrams of a given degree.

Lemma 3.17. Let Cm be the set of chord diagrams of degree m, then Cm contains
at most 2m! chord diagrams.

Proof. Notice that if we have m chords, there are m singular crossings in the
corresponding singular knot, so there are 2m points we can connect with a chord.
Now we can reduce the problem to the question: In how many ways can we connect
2m points with each other? This is an easy problem in combinatorics. Take one of
the 2m points there are 2m options, we can connect this to 2m− 1 points. Then
take a next point, we have 2m−2 options and we can connect it to 2m−3 options.
This product continues like this, which means the total number of options is 2m!.
We now that as long as m is finite this 2m is a finite number. Which means that
|Cm| ≤ 2m!.

The real number of chord diagrams is much harder to compute, because in the
2m! above we found there are many chord diagrams which are topologically the
same. Take for instance the following case with just two chords:

∼= .

Here ∼= denotes topological equivalence. This means 2m! is really an upper bound.
A more specific bound, taking into account topological equivalence, is given in
[19]. �

In order to establish a more formal correspondence between Vassiliev invariants
and chord diagrams, we need to show that the Vassiliev invariants do not depend on
the structure of the non-singular crossings, and similarly that Vassiliev invariants
do depend on the order in which the singular points occur in a walk around the
knot.

Proposition 3.18. A Vassiliev invariant V of degree m does not depend on non-
singular crossings. That is: given two knots K and K ′ in Km such that K and K ′

differ by a finite number of crossing changes and isotopy, we then have V (K) =
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V (K ′) .

Proof. Let K and K ′ be knots in Km that differ by only one crossing change. Let
K̃ be a singular knot with m + 1 crossing, which has Vassiliev resolutions K and
K ′. Assume, without loss of generality, K has the positive crossing and K ′ has
the negative crossing. Given that V is a degree m vassiliev invariant we compute:

0 = V
(
K̃
)

= V (K)− V (K ′)

Therefore, V (K) = V (K ′). In case K and K ′ differ by a finite number of crossing
changes, we can apply the reasoning above recursively to prove the claim. �

The independence of the order in which the singular crossings occur, and a more
formal way to see the difference between K and K ′ in 3.16, is given in the following
proposition.

Proposition 3.19. Given a Vassiliev invariant V of degree m and a singular knot
K in Km, then v(K) only depends on the cyclic order in which singular points
appear in a walk around the knot in the direction of the orientation of the knot.

Proof. We note that if we have a given knot, changing the order in which two
crossings are traversed corresponds to changing a negative crossing into a positive
crossing. As was shown before, a Vassiliev invariant is invariant under changing
crossings. Therefore, we have shown the proposition. �

We need to define some notions around chord diagrams before we can work with
them. First of all, similarly to what we did with knots and Vassiliev invariants we
can make a vector space of the chord diagrams.

Definition 3.20. The set C is the vector space of all finite formal linear combina-
tions of chord diagrams over C. The subspace Cm is the subspace of C generated
by all chord diagrams of degree m.

In appendix A we will give more details on formal linear combinations, and explain
why the space of chord diagrams is indeed a vector space Another important point
is to define what it means for two chord diagrams to be ‘the same’.
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Definition 3.21. Two chord diagrams C and C ′ are equivalent if, after relabelling
the chords, the same circular sequence of crossings is obtained.

Now that we have given some definitions, we will try to make a one-to-one corre-
spondence between the space of knots and the space of chord diagrams. The map
between the space of chord diagrams and the space of knots can be constructed as
follows. Take any oriented singular knot K in Km. Select any non-singular point
on K as a base point and walk around the knot in the direction of its orientation.
During this tour label the singular points with arbitrary labels 1, . . . ,m. The
same crossings get the same label when traversed for a second time. Notice that
because crossings consist of a positive crossing and a negative crossing each integer
in {1, . . . ,m} is in the resulting sequence exactly twice. When this sequence is put
around a circle and chords are drawn between the corresponding labels, we get a
chord diagram. The following figure illustrates this process.

Figure 21: φ4 on a knot [14]

The map φm : Km → Cm is defined by this construction. As an arbitrary base
point was chosen it is clear the map does not depend on the choice of base point.

Similarly, a knot can be created from a chord diagram. This process is called
contracting the chords. Any chord diagram can be made into a knot by replacing
the chords as in figure 22 and lifting the resulting knot diagram from the paper.

Figure 22: Contracting the chords [14]
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This can be done for each chord. Now, we continue to show that that φm is
surjective and not injective.

Proposition 3.22. φm : Km → Cm is surjective.

Proof. Let C be any chord diagram in Cm. By contracting the chords, we form a
knot KC in Km. Applying the map φm, we get φm(KC) = C. As this can be done
for each chord diagram and corresponding knot, we prove that φm is surjective. �

Proposition 3.23. φm : Km → Cm is not injective.

Proof. This is exercise 11.15 in [14] and can be proven by an example. Consider
the singular knots K and K ′ in figure 23 with the same chord diagram D.

Figure 23: Two knots with the same chord diagram [14]

Notice that if we compute the Alexander-Conway polynomial of K and K ′ we get
C(K) = −2 − z2 and C(K ′) = −2 + z2. This means that K and K ′ cannot be
equivalent. Therefore, there are two different knots K and K ′ such that φ2(K) = D
and φ2(K

′) = D, but K 6= K ′, so φm is not injective. �

3.4 Vassiliev invariants and Chord diagrams

In the previous sections we have shown there is a relation between chord diagrams
and knots We have also shown there is a relation between knots and Vassiliev
invariants. To make the circle round again, we will now show there is a relation
between chord diagrams and Vassiliev invariants. It will turn out that in order
to understand Vassiliev invariants, we only need to understand the dual space of
the vector space of chord diagrams. We will again follow [14, Chapter 11] quite
closely. We start by proving that the value a Vassiliev invariant on a given knot,
only depends on the chord diagram of that knot.
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Theorem 3.24. The value of a finite-type invariant of degree m on a knot K with
m singularities depends only on the chord diagram of K.

Proof. Let σ(K) denote the chord diagram of a knot K in Km. We want to show
that if σ(K1) = σ(K2) then V (K1) = V (K2) for any finite-type invariant in Vm for
K1 and K2 knots with m double points. Suppose σ(K1) = σ(K2). This assumption
tells us there is a one-to-one correspondence between the double points of the knot.
If we place these double points above each other we can deform the rest of the
chords around these points such that they coincide as well. In this process we
might create new singularities, but these singularities can be resolved. An extra
singularity would mean there are m + 1 singularities, denote the knot created by
K̃. We notice that:

V (K̃) = V ( . . .︸ ︷︷ ︸
m+1

) = V ( . . .︸ ︷︷ ︸
m

)− V ( . . .︸ ︷︷ ︸
m

) = 0.

Hence, we get V ( . . .︸ ︷︷ ︸
m

) = V ( . . .︸ ︷︷ ︸
m

), which means that finite-type

invariant is invariant under changing all but the m original crossings. Therefore,
in deforming the knot by R, the value V (K) does not change, therefore V (K1) =
V (K2). Proving the theorem. �

Now that we have established that Vassiliev invariants only depend on chord di-
agrams, we want to show that every Vassiliev invariant is a linear map from the
space of chord diagrams into a given field i.e. an element of the dual of the space
of chord diagrams. This is done in the following theorem.

Theorem 3.25. Let v be an element of Vm. The following properties hold.

1. There exists a unique map ωv : Cm → C such that v = ωv ◦ φm i.e. the
following commutative diagram commutes:

Km Cm

C

v

φm

∃!ωθ
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2. There exists a linear map αm : Vm → C?m.

3. The map ωv : Cm → C can be written as ωv(C) = v(K) for any knot related
to C, KC , such that φm(K) = C.

Proof. Let v ∈ Vm.

1. We need to show that the map ωv : Cm → C exists, is well-defined and
unique. First, we show existence. Using proposition 3.22, we know that
given a chord diagram C ∈ Cm there must exist a related singular knot KC

such that C = φm(KC). Let us define the map ωv, from the chord diagram
to the value of v(K) i.e. ωv(C) = v(KC). Then it is clear that φm first
takes the singular knot KC to its related chord diagram C, which using ωv
is evaluated in C. This shows that ωv ◦ φm = v, proving the existence of the
map ωv.

It is necessary to show this ωv is indeed well-defined. Assume there exists an
other knot K ′ in Km such that K is not the same as K ′, but φm(K ′) = C.
It was shown in theorem 3.24 that if φm(K) = φm(K ′), then v(K) = v(K ′).
This means that ωv(C) does not depend on the choice of the given knot and
hence the given chord diagram.

The uniqueness is shown by supposing another map ω̄v : Cm → C exists
such that ω̄v ◦ φm = v, and show that ωv = ω̄v. Notice that ω̄v ◦ φm(K) =
v(K)ωv ◦ φm(K). Notice that, φm(K) = C, hence ω̄v(C) = ωv(C). Using
that the map is well-defined, we know ω̄v = ωv, proving that ωv : Cm → C is
the unique map such that v = ωv ◦ φm.

2. We want to show there exists a linear map αm from Vm to C?m. Define,
αm(v) = ωv. We need to show this is indeed a linear map. Take two arbitrary
Vassiliev invariants v1, v2 in Vm and a scalar λ ∈ C. Moreover, take an
arbitrary chord diagram C in Cm, with a related singular knot KC such that
φm(KC) = C. Now we can expand,
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αm(λ(v1 + v2))(C) = ωλ(v1+v2)(C)

= ωλ(v1+v2) ◦ φm(K)

= (λ(v1 + v2))(K)

= λ (v1(KC) + v2(KC))

= λωv1(C) + λωv2(C)

= λαm(v1)(C) + λαm(v2)(C).

As C was chosen arbitrarily, we drop the dependence on C, leaving us with
αm(λ(v1 + v2)) = λαm(v1) + λαm(v2), which shows αm is linear.

3. Using the fact that ωv is defined to be a unique map taking C to v(K), we
have shown the third part of the theorem.

�

This theorem states that given any Vassiliev invariant, we can view it as an element
of the dual space of the chord diagram. In order to study Vassiliev invariants of a
specific order we need to get a similar map from the quotient space Vm/Vm−1 to
the dual space of the space of chord diagrams of degree m given by Cm.

Lemma 3.26. Given αm : V → C?m we have:

1. ker(αm) = Vm−1.

2. The map αm : Vm/Vm−1 → C?m is injective.

3. αm([v]) = ωv.

Proof. Let v be an element in Vm.

1. Let us first show that Vm−1 ⊆ ker(αm). Let v be an element in Vm−1. Notice
that for a given C in the space C we have αm(v)(C) = ωv(C). The chord
diagram can also be written as φm(KC) for KC in Km by proposition 3.22.
Using theorem 3.25 and the fact that KC is in the the space of singular knots
order order n, while v is a Vassiliev invariant of lower degree we obtain:

αm(v)(C) = ωv(C) = ωv ◦ φm(KC) = v(KC) = 0.
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This shows that v must be a Vassiliev invariant in ker(αm), and hence Vm−1 ⊆
ker(αm).

Conversely, we need to show that ker(αm) ⊆ Vm−1. Let v ∈ ker(αm), then
we know αm(v) = ωv(C) = 0 for all C in Cm. This implies that ωv(φm(K)) =
v(K) = 0 for all K ∈ cKm, which is equivalent to v(Km) = {0}. Therefore,
it must be the case that v ∈ Vm−1 and hence ker(αm) ⊆ Vm−1. Together
with what was shown before we can conclude ker(αm) = Vm−1.

2. Notice that Vm and C?m are both modules over a field C. Therefore, using the
first isomorphism theorem for modules (theorem A.5) we can conclude that
ker(αm) is a submodule of Vm and the image of αm (Im(αm)) is isomorphic
to the quotient module Vm/ ker(αm). Notice that Im(αm) is a subset of C?m.
Because of the established isomorphism we know that αm will only map to
elements in it’s image, which means that map αm as a map to C?m is still
injective (but when C?m 6= Vm no longer surjective).

3. Notice that the map αm maps the equivalence class [v] to αm(v) = ωv,
proving the third part of this theorem.

�

For now we leave it at the fact that αm is injective. But we will see in lemma 3.33
in section 3.5 that αm is not surjective. However, when we restrict ourselves to
Vassiliev invariants of order zero, we do find an isomorphism.

Corollary 3.27. The map α0 : V0 → C?0 is an isomorphism given by α0(v) = ωv.

The corollary follows straightforward from the fact that α0 is linear and the di-
mensions of V0 and C?0 are the same and the kernel of α0 must be trivial.

Lemma 3.26 finally gives us the possibility to achieve what we set out to do in the
introduction and bound the number of Vassiliev invariants of a certain degree. Let
us first show that there are at least finitely many invariants in Vm/Vm−1.

Proposition 3.28. The vector space Vm/Vm−1 is finite dimensional for each m ≥
1.

Proof. First, we notice that there are only a finite number of chord diagrams of
degree m by lemma 3.17. Moreover, the dimension of a finite dimensional vector
space and its dual are always the same. Hence, dim Cm = dim C?m, so the dual
space of Cm is also finite dimensional. Because for the map αm to be injective it
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must hold that each element v in Vm/Vm−1 only maps to one element it must be
the case that there is a finite amount of elements v in Vm/Vm−1, which proves the
claim. �

Now that we have shown that the space of Vassiliev invariants of each specific order
is finite, we want to modify the proof and show the space of Vassiliev invariants
of a certain degree m (i.e. order less than or equal to m) is finite dimensional. We
define the vector space of chord diagrams of at most degree m as the subspace of
C generated by all chord diagrams of degree at most m. Or more formally,

C≤m := Cm ⊕ Cm−1 ⊕ · · · ⊕ C0.

We need to have a similar lemma as lemma 3.26 for this space.

Lemma 3.29. For m ≥ 0 there exists a map βm : Vm → C?m.

Proof. Notice that each Vm is a vector space and Vm/Vm−1 is a vector subspace of
Vm. We can use theorem A.4 to show that

Vm ∼=
Vm
Vm−1

⊕ Vm−1.

Notice that the last term of this expression can again be expanded like this. There-
fore, we can recursively write:

Vm ∼=
Vm
Vm−1

⊕ Vm−1
Vm−2

⊕ · · · ⊕ V0.

Using lemma 3.26, we know that each of these space Vk
Vk−1

is isomorphic to C?k for all

1 ≤ k ≤ m using the map αk. By corollary 3.27 we know that V0 is isomorphic to
C?0 . Because the direct sum of C?0⊕. . . C?m is isomorpic to C?≤m, we must have there is
also an injection between C?≤m and Vm since the direct sum of injective morphisms
is again an injective morphism. This can be summarised in the following diagram.

Vm ∼= Vm
Vm−1

⊕ Vm−1

Vm−2
⊕ · · ·⊕ V0

C?≤m ∼= C?m ⊕ C?m−1 ⊕ · · ·⊕ C?0

βm αm αm−1 α0
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Using this injection βm we can find a bound on the number of Vassiliev invariants
of a specific order.

Corollary 3.30. The vector space Vm of degree m Vassiliev invariants is finite
dimensional for each m. And moreover,

dim(Vm) ≤
m∑
k=0

dim Ck.

Proof. Notice that by lemma 3.29 there exists an injective map from Vm to C?≤m.
Therefore, we have that the dimension of Vm is less than or equal to the dimension
of C?≤m. Using properties of the direct sum the dimension of C?≤m equals the sum
of the dimensions of the dual space of chord diagrams of each specific dimension.
When also noticing that a space and its dual have the same dimension we are
done.

dim(Vm) ≤ dim(C?≤m)

=
m∑
k=0

dim(C)?k

=
m∑
k=0

dim(C)k

�

Using the bound on the number of chord diagrams of degree k that was given in
lemma 3.17, we can say that:

dim (Vm) =
m∑
k=0

2k! <∞.

So there are at least finitely many Vassiliev invariants of each degree/type. Using
more sophisticated methods the following table of number of Vassiliev invariants
for a given degree was made. The precise dimensions of Vn are known up to n = 12
( [9]).
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n 0 1 2 3 4 5 6 7 8 9 10 11 12
Vn 1 1 2 3 6 10 19 33 60 104 184 316 548

3.5 Weight systems

As was seen in the proof of lemma 3.26 we have an isomorphism between Vm/Vm−1
and the image of αm. If we can describe the image of this map in a nicer way we
will be able to give a better description of the space Vm/Vm−1. It turns out each
element in this image satisfies two properties called framing independence and the
4T-relation. In order to define these relations we first need to define the notion of
an isolated chord.

Definition 3.31. Given a chord diagram in the space of chord diagrams C, an
isolated chord is a chord that does not intersect any other chord of the diagram.

We need this because each element in the image of αm evaluates a chord diagram
to zero if the chord diagram has an isolated chord. This relation is called the
framing independence or the 1T relation.

Lemma 3.32. Every element W in the image of αm satisfies the 1T relation, i.e.

W

( )
= 0.

Proof. Let KC be a singular knot in the space Kn, whose related chord diagram
C contains an isolated chord. For a given W in the image of αm we know we can
write W = αm([v]) for some equivalence class [v] of v ∈ Vm. Following lemma
3.26, we also have that W (C) = αm([v])(C) = ωv(C) = ωv ◦ φm(K) = v(KC).
Therefore, in order to proof this lemma, we need to show that for a given knot KC

related to a chord diagram C with an isolated chord, we have v(KC) = 0.

Let us denote the singular crossing responsible for the isolated chord by p. Notice
that p divides the chord diagram into two segments, which will be called S1 and
S2. Then the following claim is true.

Claim: Given the knot KC we can change crossings and use Reidemeister moves
to show that v(KC) = v(K ′C) where K ′C has the same chord diagram C, but the
segments S1 and S2 both lie on the opposite side of some plane in R3 passing
through the double point p.

The situation is as depicted in figure 24
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Figure 24: Crossing changes [9].

Because the chord is isolated, S1 and S2 do not have common double points. What
might happen is that one branch of a non-singular crossing is in S1, while the other
is in S2. Because the value v(K) only depends on the singular crossings, we can
safely change any negative crossing in a positive crossing. Using Reidemeister
moves, we can create the situation in figure 24, proving the claim.

Now we notice that v(KC) = v(K ′C). Let us resolve the knot KC at the point p in
v(K+

C,p) and v(K−C,p). The same can be done for K ′C . Let us depict the resulting
value of the knot as:

.

Here we have that both sides S1 and S2 can be seen as knots, linked by the point
p. Then resolving the knot using the Vassiliev Skein relation gives us:

= −

= −

= 0

Where R denotes the reversed diagram of the knot S2. This means we have shown
that each element W in the image of αm satisfies the 1T relation. �
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The reason this relation is also called the framing independence relation is because
of so called framed knots. A framed knot is not made from a circle, but from a
annulus instead. This means our knot can be thought of as thickened or made of
a band instead of a piece of string. Most of the theory described in this thesis
could also have been presented in the framed case and there exist formula’s for
framing and de-framing certain invariants, chord diagrams and weight systems (see
[9, Section 3.5])14. One important difference between framed knots and unframed
knots is that the diagrams from [14]:

are not equivalent. This means the proof of lemma 3.32 does not hold for framed
knots and hence not every function on a chord diagram chord diagram satisfies
the 1T-relation. This means that unframed knots are the cases where the value of
the weight system does not depend on the framing, hence framing independence.

We continue with a nice application of framing independence. In section 3.4 we
already stated that αm : Vm/Vm−1 → C?m is not surjective. Using framing indepen-
dence we can give a formal proof.

Lemma 3.33. The map αm : Vm/Vm−1 → C?m is not surjective.

Proof. Let us define the map f : Cm → C by the following definition:

f(C) =

{
1 if C has an isolated chord;

0 Otherwise.

This map is well-defined, but does not satisfy the framing independence relation.
Therefore, f cannot be in Im(αm), and hence cannot come from an invariant in
Vm/Vm−1. Therefore, αm : Vm/Vm−1 → C?m is not surjective. �

14In the literature about weight systems framing independence is often left out as a condition
because we could consider framed knots instead.

57



In a similar way, we find that every element in the image of αm satisfies the 4T-
relation. This relation states the following:

W

( )
−W

( )
= W

( )
−W

( )
.

Notice that this relation works on any two chords related in this way. This means
that if any other chords are in the chord diagram these do not matter for the
4T-relation.

Lemma 3.34. Every element W ∈ Im(αm) satisfies the 4T-relation.

In order to proof this lemma, we first need to consider knots related to the chord
diagrams in the 4T-relation. We can find many different knots with these chord
diagrams, but under isotopy and non-singular crossing changes these are all equiv-
alent. These knots can be given by represented by:

Figure 25: Knots related to the chord diagrams of the 4T relation [9].

Using this, we can prove the 4T-relation for Vassiliev invariants.

Lemma 3.35. Any Vassiliev invariant f satisfies the 4T-relation, i.e.
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Proof. This lemma can be proven by resolving a singular points in each term. The
resulting sum is an alternating sum, which will be zero. A detailed proof can be
found in [9]. �

The proof of lemma 3.34 can now be done as follows.

Proof. (Lemma 3.34). We want to show that each W in the image of αm satisfies
the 4T -relation. Write W = αm[v] for some Vassiliev invariant v. Using the same
trick as in the proof of lemma 3.32 we notice that for some chord diagram C in C:

W (C) = αm([v])(C) = ωv(C) = ωv ◦ φm(K) = v(KC)

For a knot KC related to the chord diagram. Using lemma 3.35 we already know
that for the Vassiliev invariant v, v(K1) − v(K2) + v(K3) − v(K4) = 0. Notice
Ki, for i ∈ {1, 2, 3, 4}, are as in figure 25. Therefore, it must also hold that
W (D1) −W (D2) + W (D3) −W (D4) = 0, where Di, for i ∈ {1, 2, 3, 4}, are as in
figure 25. Which proves the lemma. �

We will now give the elements in Im(αm) a name.

Definition 3.36. An Weight system of degree m is an element W ∈ C?m which
satisfies both the framing independence and the 4T -relation. The subspace W of
C? is the vector space of all weight systems. Similarly, the subspace Wm of C?m is
the vector space of all weight systems of degree m.

Similarly to before with Vassiliev invariants, we have no filtration but a grading
on the vector space of weight systems. This means that:

W :=W0 ⊕W1 ⊕W2 ⊕ . . . .

In a similar way as for chord diagrams, we want to establish a link between the
space of Vassiliev invariants of a specific order and the the space of weight-systems.
The following lemma states how to do this.

Theorem 3.37. The map αm : Vm/Vm−1 → C?m restricted to the image Wm is an
isomorphism.
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Proof. The surjectivity is very complicated and uses the so called Universal Kont-
sevich invariants. This proof is very interesting but too long and difficult to show
here. For a detailed proof look at [9, 14, 20].

To show injectivity, first notice that αm : Vm/Vm−1 → C?m is injective by lemma
3.26. Any function W in the image of αm ⊂ C?m is a weight system of degree m
by lemma 3.32 and lemma 3.34, therefore Im(αm) ⊆ Wm. So αm is also injective
when we restrict it to the imageWm. Proving that αm restricted to the imageWm

is an isomorphism. �

It follows from theorem 3.37 that the equivalence class of Vassiliev invariants of
a given order m is isomorphic to the vector space of weight systems of degree m.
Using Vm ∼= Vm

Vm−1
⊕ Vm−1 recursively and the fact that W≤m is isomorphic to the

direct sum of subspaces of weight systems of a given order, we can give a map
ξm which is an isomorphism between Vm and W≤m. This can also be seen as the
following commutative diagram.

Vm ∼= Vm
Vm−1

⊕ Vm−1

Vm−2
⊕ · · ·⊕ V0

W≤m ∼= Wm ⊕ Wm−1 ⊕ · · ·⊕ W0

ξm αm αm−1 α0

This shows that Vm ∼= W≤m, which means that we have proven that studying
Vassiliev invariants is equivalent to studying weight systems.

Theorem 3.37 together with lemma 3.32 and lemma 3.34 can be summarised as
the following theorem.

Theorem 3.38 (Fundamental theorem of finite-type invariants). For each
weight system W there exists a unique corresponding Vassiliev invariant V and
for each Vassiliev invariant V we can find a unique weight system W .

Theorem 3.38 is known as the Fundamental theorem of finite-type invariants or
the Kontsevich theorem, which was proven by M.L.Kontsevich in 1993. He won
the Fields medal for, amongst other things, this proof. As was mentioned before,
the proof gets very complicated because of the surjectivity of αm. This problem is
resolved by finding a universal Vassiliev invariant which can be related to weight
systems. In order to define such an universal Vassiliev invariant, we would need a
lot more representation theory, algebra and geometry.

The goal for the next section we will be to make an example of a weight system
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and find its related Vassiliev invariant using the fundamental theorem.

In this section we have shown that studying the space of Vassiliev invariants is
equivalent to studying weight systems. But we have also shown that a weight
system is just a linear functional from the space of chord diagrams to a field (in
our case C) which satisfies the 1T-relation and the 4T-relation. This means we
could write:

Wm
∼=
(
Cm

1T, 4T

)?
.

Because of this duality it would be enough to just worry about the space Cm
(1T,4T )

.
In all honesty, we should make a difference between the 4T-relation and the 1T-
relation and the corresponding relations on the dual space. Formally, we can use
lemma A.6 to states that for every equivalence relation on the dual, there must
exist equivalence relations on the original space. In what follows we will try to not
make the notation unnecessarily complicated. We will call both the relations the
4T-relation and the 1T-relation on the space of chord diagrams and on its dual
space. The distinction will be clear from the context. This means we have the
1T-relation:

= 0

And the 4T-relation which is:

− = − .

The space of chord diagrams which are equivalent under 4T and 1T, will be called
A. The subspace generated by degree m chord diagrams will be denoted by Am.
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4 Example of a weight system

Now that we know what a weight system is we want to construct an example
and use the fundamental theorem 3.38 to construct a related Vassiliev invariant.
However, this turns out to be harder than one might expect. In order to make
an example I will first define a stronger version of the 4T-relation, the so called
2T-relation. This relation will make it easier to create an example. I will give a
different representation of chord diagrams, which is easier to work with in some
cases.

4.1 The 2T-relation

Let us first of all simplify the 4T-relation. If we recall the 4T-relation and move
the terms around such that we get both terms where the chords intersect on the
left-hand side and both terms where the chords do not intersect on the right-hand
side, we get the following equation:

W

( )
−W

( )
= W

( )
−W

( )
.

Here W is an element in the space of weight systems W . If we now set both sides
to zero, we obtain the following relations:

W

( )
= W

( )

and,

W

( )
= W

( )
.

We say W in W satisfies the 2T-relation if both these relations are satisfied.
Intuitively, these relations say that if we have a chord we can slide it along any
other chord. In terms of knots, you can visualize this relation by saying we can
vary the place of any singular crossing as long as we do not cross any other singular
crossing. This is again defined on two chords, any other chords in de diagram do
not matter for the 2T-relation.
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Notice that if a functional on the space of chord diagrams satisfies the 2T-relation
is also satisfies the 4T-relation. Notice that if we have a chord diagram which
satisfies the 2T-relation, then both sides of the 4T-relation are zero, and hence the
4T-relation is satisfied. The other way around is not true. Therefore, we can say
that the 2T-relation is a stronger version of the 4T-relation.

In general it is possible to make many more stronger versions of the 4T-relation
by setting any combination of elements in the 4T-relation to zero. In the paper
[21] is is shown that using these it is possible to make several weight systems. In
this example we will use the 2T-relation as defined above.

4.2 Linear chord diagrams and long knots

Instead of working with round chord diagrams, we can build a ‘linear’ representa-
tion. Intuitively, this new representation is obtained by cutting open the skeleton
of a chord diagram at an arbitrary point and put the chords on a line instead of a
circle. This means we cut open the knot somewhere, walk along it, and mark the
singular crossings on a straight line, and connect the two markings corresponding
to the same singular crossing by a chord. In lemma 4.3 we will show that this
operation is well-defined. We will refer to the original case of chord diagrams as
round chord diagrams, and the case on the line will be a linear chord diagram.

This linear representation can be obtained by looking at so called tangles instead of
knots. Tangles are a generalization of knots, but instead of being homeomorphic to
a circle, a tangle is homeomorphic to a straight line with both its endpoints fixed.
A knot is hence a tangle where both endpoints of the line are at the same position.
An advantage in studying tangles is that they form a better representation for
knots encountered in daily life, as most knotted chords are not circular, and hence
might be more applicable. However, tangles are in some cases harder to work
with, while often the theory for tangles can be derived from the theory of knots.
For example, most of the theory discussed in this thesis could have been discussed
on tangles instead, using the linear chord diagrams instead of using its round
counterparts. It would, however, have been more complicated to decide which
base point to pick when walking along the knot. Formally, we define 15 a tangle
as follows.

Definition 4.1. A tangle is a smooth embedding of a one-dimensional compact
oriented manifold T , possibly with boundary, into a box:

15There are several ways to define a tangle, instead of a box we can also use an embedding
into a sphere.
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B = {(x, y, z) : a ≤ x ≤ b,−1 ≤ y ≤ 1, c ≤ z ≤ d} ⊂ R3

where a, b, c, d are in R such that the boundary of T is mapped into the intersection
of the plane given by y = 0 with either the upper or the lower face of the box. [9]

Notice that the only compact one-dimensional manifolds are closed intervals and
circles. Together they form the components of the tangle. The boundary points
are divided into two set, the set of boundary points in the upper face of B and the
boundary points in the lower face of B. The manifold T together with the two sets
of boundary points will be called the skeleton of the tangle. Similar to knots we
use a projection of a tangle onto a plane to depict a tangle. In figure 26 a tangle
with and a tangle without boundary are shown.

Figure 26: A tangle with and without boundary [14].

Notice that an n-component link is a tangle whose skeleton consists of a disjoint
union of n-circles. Another special type of tangle is a string link.

Definition 4.2. Let us fix n distinct upper boundary points pi on the plane given
by y = 0. Given the projections qi on to the bottom of the box we obtain n
intervals [pi, qi]. A string link on n strings is a tangle whose skeleton consists of
the intervals [pi, qi]. A string link with one string is called a long knot.
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Figure 27: A tangle (l) and a string link with 2 components (r) [9].

In a similar way to knots we can define singular long knots. By applying the
procedure of making a chord diagram as described in section 3.3 to a singular long
knot, we obtain a linear chord diagram. Let us call the vector space of linear chord
diagram Cl, this vector space is formed similar to the vector space C. We can form
a round chord diagram from a linear chord diagram by glueing together the left
and right end of the linear chord diagram. To show that a linear chord diagram
is just a different (sometimes simpler) representation of the round chord diagram
we need to show that the vector spaces C and Cl are isomorphic. This is not true
in general, but it is true under the 4T-relation and framing independence.

Lemma 4.3. Glueing together the ends of a linear chord diagram gives rise to a
vector space isomorphism G : (C)l → C modulo the 4T-relation.

Proof. It is clear G is a linear map between the vector spaces of formal linear
combinations of round chord diagrams and linear chord diagrams. Let us first
show that G is surjective. We need to show that for each round chord diagram
rD there exists a linear chord diagram lD such that G(lD) = rD. This is trivial,
because we can cut open any round chord diagram rD to obtain a linear chord
diagram lD for which G(lD) = rD.

To show injectivity we need to show that if we have two round chord diagrams rD1

and rD2 for which the chord diagrams are equivalent, we get the equivalent linear
chord diagram independent of where we cut open the round diagram. Suppose we
cut open We use the 2T-relation instead of the 4T-relation. It is clear that if two
diagrams are equivalent under 2T, then they must be equivalent under 4T. Notice
that the 2T-relation on linear chord diagram states that the following diagrams
are equivalent.
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Figure 28: Linear 2T-relation for non-intersecting chords.

Figure 29: Linear 2T-relation for intersecting chords.

Let us assume, without loss of generality, that the orientation of the chord diagram
is counter-clockwise. The idea of the proof is to show that if we change the place
where we cut the round chord diagram, we obtain the same linear chord diagram.
Suppose we cut open rD1 at a point x, if we cut rD2 at a position y between x
and the next crossing, belonging to a chord c, we obtain the same linear chord
diagram. Suppose we cut rD2 at a point y after the next crossing looking from the
perspective of x. In case it is the only chord in the diagram, we get trivially the
same linear chord diagram. If there are other chords in the diagram t1, . . . , tn−1,
then pick one of these chord ti (depicted in black in figure 30), with 1 ≤ i ≤ n− 1
and notice that c can either intersect ti or not intersect ti. In case the two chord
do not intersect, we get a nested case or a disjoint case. All cases are depicted in
figure 30, together with the case where we cut at x or at y.
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Figure 30: Different cases for cutting a round chord diagram. The red arrow
depicts cutting at x, the green arrow depicts cutting at y.

Notice that under the 2T-relation, the diagram where we cut at x and where we cut
at y are equivalent for each separate case. Moreover, the cases where the chords do
not intersect are equivalent all together. This means that under the 2T-relation,
it does not matter whether we cut at x or at y. Using induction, we can also
move the cut of the round chord diagram to a place after the next crossing from
the perspective of y: let us call this position z. Now, notice that the linear chord
diagrams created from cutting at x and at z are also equivalent, because they can
both be shown to be equivalent to y using the above reasoning. Using that the fact
that if two diagram are equivalent under the 2T-relation they are also equivalent
under the 4T-relation, we have shown that the map G is independent of the place
where we cut open the round chord diagram under 4T. Therefore, G is injective
and hence an isomorphism. �

In the rest of the thesis we will, whenever convenient, freely change between linear
chord diagrams and round chord diagrams, given that the 4T-relation and framing
independence are satisfied.

It turns out that under the 2T-relation we can make a nice simplification. Namely
if three chords are connected as in the figure 31, we can use the 2T-relation to
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simplify this to one single chord and only two connected chords.

In order to be able to prove this and use the result, the following terminology was
invented.

Definition 4.4. A chord diagram with two connected chords is called a 2-humped
camel, a single (isolated) chord will be called a 1-humped camels 16. A sequence
of g 2-humped camels and n 1-humped camels is called a (g,n)-caravan.

Now we can prove the following theorem.

Theorem 4.5. Any chord diagram with m chords is equivalent to a caravan under
the 2T-relation.

Proof. First consider the case where we have three connected chords. Using the
path drawn by the gray arrows, we can slide the blue chord out of the red chords.
This sliding is allowed by the 2T-relation.

Figure 31: Three connected chords to a caravan.

When we have more than three chords, say k, this same method can be used
to slide out chords one by one until we obtain one 2-humped camel and k − 2
1-humped camels.

Another possibility is that chords are nested. Again applying the 2T-relation we
can slide out the blue chord following the gray arrows as drawn below and create
two 1-humped camels.

16I would suggest to call this a dromedary, but this is sadly not the chosen name in the field.
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Again when we have k nested chords we can apply this method several times
to be left with k 1-humped camels. As all possible cases have been covered and
resulted in only 2-humped camels and 1-humped camels, we have proven that each
combination of chords is equivalent to a caravan under the 2T-relation. �

This is of course a nice proof of the theorem, but in my opinion a more elegant
proof can be given. This proof has the added advantage of showing more of the
connection between geometry, topology and chord diagrams, where up to now we
have mainly been studying chord diagrams algebraically and using combinatorics.
To give this proof we need the classification theorem for closed surfaces.

Theorem 4.6 (Classification theorem for closed surfaces). Any closed sur-
face is homeomorphic either to:

1. the sphere;

2. the sphere with a finite number of handles added;

3. or the sphere with a finite number of discs removed and replaced by Möbius
strips.

No two of the surfaces mentioned are homeomorphic. [13]

A surface is called closed if it is compact, connected and has no boundary. Adding
a handle to the sphere means we remove the interior of a disc at two places in
the sphere, and connecting the two discs by attaching a cylinder by glueing its
boundary circles to the edges of the two holes in the sphere. ‘Sewing’ in a Möbius
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strip is done in a similar way. First, remove a single disc and add a Möbius strip
in its place. This can be done because the Möbius strip has a single circle as its
boundary. This is also known as a cross-cap. Both operations on the sphere are
depicted in figure 32. Both operations on the sphere can be done multiple times at
different places on the sphere. A proof of theorem 4.6 is given in [13, Chapter 7].

Figure 32: Sphere with an added Möbius strip (Left) and a sphere with a handle
(Right). [13]

The genus is the number of cuttings in a surface along a closed curve. This means
it is in some sense the number of holes in the surface. The sphere does not have
any holes and hence has genus zero. But adding a handle or a cross-cap to the
sphere changes the number of holes. Adding either a cross-cap or a handle adds
one to the genus of the original surface. There is a difference in the definition of the
genus for an orientable and a non-orientable surface. It turns out that the genus
of an orientable surface equals the number of handles on sphere homeomorphic
to the surface, while the genus of a non-orientable surface equals the number of
cross-caps on the sphere homeomorphic to the surface. Using this, we can give an
equivalent formulation of the classification theorem as follows.

Lemma 4.7. A closed surface is completely determined is determined by its genus
and whether it is orientable or not.

But how does the classification theorem for surfaces relate to chord diagrams? We
can thicken a chord diagram by replacing each chord by bridge as in the following
figure:
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Figure 33: Bridged chord diagram

A thickened chord diagrams can be considered as a closed surface once we close
and thicken the skeleton as in figure 34

Figure 34: A chord diagram can be considered to be a box with handles.

P.M. Melvin commented that we hence consider chord diagrams and caravans as
a ‘box with handles’ [22].

Every thickened chord, now will create a handle on the sphere homeomorphic to
the surface of the thickened chord diagram. This means a chord diagram with m
chords, will have genus m. Similarly, a (g,n)-caravan will have genus 2g + n = m.
Therefore, it must be the case that the space of (g,n)-caravans such that 2g+n = m
is homeomorphic to the space of chord diagrams Cm by the classification theorem
of surfaces. Here we have to notice that both a chord diagrams and a caravan
can endowed with an orientation, and hence both the surface corresponding to the
chord diagrams and the surface corresponding to the caravan will be orientable.

Now that we have shown that each chord diagram is equivalent to a caravan under
the 2T-relation, we want to reduce the problem of counting the number of chord
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diagrams with m chords under the 2T relation to counting the number of (g,n)-
caravans for which 2g + n = m. The last condition on the number of chords m
holds because each 2-humped camel consists of two chords and hence accounts for
2g chords in total, while the other n chords come from the 1-humped camels in
the caravan.

Theorem 4.8. The dimension of the space of chord diagrams of m chords (Cm)
equals the number of (g, n)-caravans for which 2g + n = m.

Proof. From theorem 4.5 we already know that each chord diagram can be rep-
resented by a (g, n)-caravan, what is left to be shown is that each chord diagram
can be represented by a unique caravan. The idea of the proof is to construct a
functional F : Cm/2T → Q[N ], where Q[N ] are the polynomials in variable N with
coefficients in Q. Using this functional we will be able to say there are as many
chord diagrams of m chords as there are (g, n)-caravans with 2g + n = m.

First we construct a functional F : Cm/2T → Q[N ]. To do this, first we replace
each chord in a linear chord diagram by a bridge as in figure 33.

In this process we open the skeleton of the diagram at the ‘feet’ of the chords, and
connect the chords by lines at their feet. The obtained diagram will be called a
bridged chord diagram D′. Let us denote the number of connected components by
C. For example the chord diagram above has two connected components which in
the following picture have been depicted in blue and red. The functional F on a
chord diagram D′ is defined by F (D′) :− NC .

Notice that F is invariant under the 2T-relation. This is the case because the
2T relation does not change the number of chords or the number of connected
components, hence:

F

( )
= F

( )

and

F

( )
= F

( )
.

The invariance under the 2T-relation shows that the functional F is well-defined.
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We can now look at the effect of the functional F on a given caravan. We notice
that all the 2-humped camels together form one connected component (this is the
red line in figure 35), while each 1-humped camel adds one connected component
(this is the blue line in figure 35) to the number of connected components.

Figure 35: The red line connects all 2-humped camels, the blue lines is created by
a 1-humped camel.

This means that for an (g, n)-caravan, there are n connected components from the
n 1-humped camels, and one connected component from the 2-humped camels. So
if we now compute F of a caravan we get:

F (Caravan(n, g)) = Nn+1.

For each n the polynomials Nn+1 are linearly independent in Q[N ], and hence all
caravans are linearly independent. As we have already proven that each chord
diagrams can be expressed as a caravan, which means we have that the (n, g)-
caravans span the space of chord diagrams under the 2T relation. Together, these
two facts show that all (n, g)-caravans for which n + 2g = m form a basis for the
space Cm/2T . This also proves that the dimensions of both sides agree, and hence:

dim (Cm/2T ) = # ((g, n)-caravans s.t. 2g + n = m) .

Proving the theorem. �

In summary, this theorem shows us that when we want to find the dimension of
the space of chord diagrams under the 2T-relation, all we need to do is look at the
number of 1-humped camels and add one to the dimension for all the 2-humped
camels.
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4.3 The Conway weight system

One might wonder what happens when we also apply framing independence to
framing independence to a chord diagrams in the space Cm/2T . We notice that
when we apply framing independence all isolated chords become irrelevant to the
value of the weight system. It follows from the definition that the isolated chords
on a chord diagram are equivalent to 1-humped camels. Thus the functional F
applied to a chord diagram is invariant under the number of 1-humped camels n.
Hence, we can set n to be equal to 0. This shows:

dim (Cm/2T ) = N1+n = N1.

Therefore, we find only one basis vector, namely this monomial N . This means
there is only one weight system which satisfies both the 2T-relation and the framing
independence relation. This unique weight system is called the Conway weight
system.

Definition 4.9. Given a chord diagram D in Cm and a bridged chord diagram D′

the Conway weight system WC,m is an element in (Cm)? such that:

WC,m(D′) =

{
1 if D′ has one connected component;

0 if D′ has more than one connected componenent.

Actually, the Conway weight system is defined to be the the coefficient of N in
F (D) for a diagrams D in Cm. This weight system in some way mimics the way
our functional F : (Cm/2T ) → Q[N ] was built. Before we dive deeper into the
details of this weight system, we first need to show that what we defined actually
is a weight system.

Theorem 4.10. The Conway weight system WC,m is a weight system.

Proof. To show that WC,m is a weight system we need to check it is invariant under
the 4T-relation and under framing independence. Let us first show it is framing
independent. Let us take a diagram D with m chords and at least one isolated
chord. When now creating the bridged diagram D′ we obtain the following picture:
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This means that for any isolated chord in D, we get two disjoint connected com-
ponents in D′, meaning that WC,m = 0. Therefore, we have shown that WC,m is
framing independent.

To check WC,m satisfies the 4T-relation, we can also check it satisfies the 2T-
relation. This is because the 2T-relation implies the 4T-relation. Notice that
the 2T-relation can only slide one chord along another chord. This means only
situations as in the following figure can occur:

In both these cases the number of connected components does not change and
hence:

WC,m

( )
= WC,m

( )

and
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WC,m

( )
= WC,m

( )
.

This proves that WC,m satisfies the 2T-relation, and hence also the 4T-relation.
Therefore, together with the framing independence WC,m is a weight system. �

Until this point the Conway weight system is defined on the spaces Cm. We know
WC,m is the unique weight system for a chord diagram of type m. However, there
are still infinitely many types. In order to make a knot invariant on a knot with
an arbitrary amount of crossings we can ‘pack all weight systems together’. We
do this by taking a direct sum of all the spaces of chord diagram modulo 4T and
framing independence and mapping that to the polynomial ring over Z. So we
obtain: WC : A = ⊕Am → Q[Z] such that WC :=

∑∞
m=0WC,mZ

m. Here A was
the space of chord diagrams under 4T and framing independence.

We notice that WC,m(D) = 0 on a diagram D which is not in Cm. Moreover,
using WC(D) on a diagram D with m chords is just WC,m. It might not look like
we changed a lot, but one thing we can do now is talk about chord diagrams of
links and define WC recursively. The necessity for this becomes clear in the next
example.

Example 4.11. Take chord diagram D = in C2,

WC

( )
= ZWC

( )
= Z2WC

( )
= Z2

Here we notice that we cannot bridge any more chords in , and we have one

connected component. The main advantage of defining WC is that we can now

speak about chord diagrams such as and which consist of multiple parts

and no longer just one circle. An example of a chord diagram of a links is given
in figure 36.
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Figure 36: Chord diagram for a link.

Using the above we can define WC inductively as follows. let us denote k arbitrary
not connected chord diagrams by:

A chord between two objects (either between two link component chord diagrams
or a ‘normal chord’ inside a diagram) will be denoted by:

.

The bridge coming from this chord is denoted by:

.

Definition 4.12. The Conway weight system WC : C → Q[Z] is inductively
defined as follows:

1. The weight system on k not connected chord diagrams is:

77



WC

( )
= δk1,

where δk1 is the Kronecker delta function.

2. The weight system on each chord is:

WC

( )
= Z ·WC

( )
.

4.4 Invariant from the Conway weight system

From the Kontsevich theorem (theorem 3.38) we know that each weight system
has a unique associated Vassiliev invariant. In this section we will try to find the
invariant related to the Conway weight system. In other words, we are looking for
VC : {Links} → Q[Z±1] such that the weight system associated to VC isWC . Again,
we consider links for the case where we have multiple connected chord diagrams for
connected knots. The invariant we get should in some way be equivalent to what
is happening in the weight system. Therefore, we guess the following invariant VC
and then show it is the invariant related to the Conway weight system.

Definition 4.13. The Conway invariant is given by VC : {Links} → Q[Z±1] the
following skein relation on singular crossings:

1. The value of VC on k disconnected unknots is:

VC
(
O(k)

)
= δk1.

Here O(k) denotes k unknots which are not linked. Again δk1 is the Kronecker
delta function.

2. For a singular crossing we have:

VC
( )

= VC
( )

− V
( )

= Z · VC
( )

.

Here the main guess is that is actually the knot analogue of making a bridge on
a chord. Now notice that this skein relation is same as the skein relation given for
the Alexander-Conway polynomial (definition 2.16), if we replace the base unlink
case with lemma 2.22.

How to work with the Conway invariant will be illustrated in the following example.
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Example 4.14. The value of VC on the trefoil knot can be computed as follows.

VC

( )
= VC

( )
+ VC

( )
= VC

( )
+ Z · VC

( )
= 1 + Z · VC

( )

Where we use that is isotopic to the unknot. Moreover, notice that is
actually equivalent to a Hopf link, so we get:

VC

( )
= VC

( )
= VC

( )
+ VC

( )
= VC

( )
+ Z · VC

( )
= 0 + Z · VC

( )
= Z

Here we notice that is equivalent to the unknot. Taking the above together,
we get:

VC

( )
= 1 + Z2.

Now there are several important things to prove about this invariant. First of all
is the function we defined actually a unique and well-defined invariant?

Theorem 4.15. VC is a unique and well-defined link invariant.

Proof. Because VC has the same skein relation as the Alexander-Conway polyno-
mial, which is a HOMFLYPT polynomial for m = −t and l = 1, the result follows
directly from theorem 2.21. �
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Now that we know VC is an invariant, it remains to be shown that it is actually
the invariant which is related to the Conway weight system. We know that the
full Alexander-Conway polynomial is not a Vassiliev invariant. But we do know
something about each of its terms.

Lemma 4.16. The m-th term of the link invariant VC : {Links} → Q[Z±1] is a
Vassiliev invariant of order m.

Proof. From example 3.9 we know that each term of this polynomial is a Vas-
siliev invariant. Moreover, we have shown there that the m-th coefficient of the
Alexander-Conway polynomial is a Vassiliev invariant of order m. �

Rewriting the value VC on a link L we get VC(L) =
∑

m≥0 VC,m(L)Zm where VC,m
denotes the m-th coefficient of polynomial VC . Here we notice that VC,m is a
Vassiliev invariant of type m by the previous lemma. By theorem 3.38, there must
be a weight system Wm of degree m such that Wm(D) = VC,m(L) of a diagram D
such that φm(L) = D. Here φm is the map which maps knots to their diagrams.
In the case at hand it turns out that the Conway weight system WC,m is the same
as the coefficient of the m-th term of the polynomial VC .

Theorem 4.17. The weight system which corresponds to VC,m is WC,m.

Proof. We will prove this theorem using the defined skein relations for VC and WC .
Given a link with m crossings, we can annul all of them using the second relation
of both skein relations. In the case of VC we get:

VC( . . .︸ ︷︷ ︸
m

) = ZmVC

 . . .︸ ︷︷ ︸
m



This means VC

 . . .︸ ︷︷ ︸
m

 equals the m-th coefficient of the Alexander-Conway

polynomial VC,m(L). But notice that annulling each singular crossing results in a
diagram which can be changed into a k-component unlink by a finite amount of
non-singular crossing changes. Here k is a number less than or equal to m. But as
a Vassiliev invariant does not depend on a finite number of non-singular crossing
changes, we can use the value on the k-component unlink. This means we that,
by lemma 2.22, we have:
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VC,m(L) =

{
1 if k = 0;

0 otherwise.

Similarly, we take a diagram D with m chords such that φm(K) = D. Let us make
a bridge of each chord to obtain:

WC

 . . .︸ ︷︷ ︸
m

 = ZmWC

 . . .︸ ︷︷ ︸
m

 .

Because on a diagram with m chords we have that WC(D) = WC,m(D)Zm, it must

be the case that the value of WC

 . . .︸ ︷︷ ︸
m

 = WC,m(D). But notice that if

we bridge every chord in a diagram, all that remains are ` components without
any chords. Here ` is a number less than or equal to m. Applying the first relation
of the skein relation for WC gives us the following value for WC,m.

WC,m(D) =

{
1 if ` = 1;

0 otherwise.

This means that WC,m(D) = VC,m(L) for diagrams D such that φm(L) = D
provided that k and ` are the same on links and diagrams related like this. In
order to prove k equals l we bridge every chord in a diagram of degree m and see
it leaves us with m link components. The link components are connected as long
as the diagram components are connected. This means the chord diagram with
k empty components has the k-unlink as its corresponding link. Similarly, if we
create a k-unlink by smoothing crossings, the corresponding chord diagram will
have k disconnected components. As an arbitrary number of singular crossings
was chosen this shows that for any given link L and chord diagram D with the
property that D = φ(L) we have WC,m(D) = VC,m(L). Proving that the Conway
weight system indeed corresponds to the m-th term coefficient of the Conway
invariant. �

As an example of the proof above, consider the case m = 2. We know by proposi-
tion 3.16 there are two chord diagrams D1 and D2 with two chords. These are:
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Notice that the valueWC(D1) is trivially zero, because of the framing independence
relation. But the value of WC(D2) equals Z2 by example 4.11. We should now
show that for a knot corresponding to the diagram Di, with i ∈ {1, 2}, the m-th
term of the Conway polynomial agree with WC(Di). A knot corresponding to D2

is given by the Hopf link with two singular crossings L2. Keeping track of the
orientation 17 carefully we compute the following.

VC

( )
= Z · VC

( )
= Z2 · VC

( )
= Z2.

Which VC,2(L2) = WC(D2)

A knot corresponding to D1 is given by:

L1 =

The value here was already computed to be zero in proposition 3.16. This shows
that in the case m equals 2, the m-th term of the Conway polynomial agrees with
the value of WC on diagram with two crossings.

4.5 Intersection graphs

The definition of the Conway weight system as described in the previous section
is quite hard to compute. In this section we will give a different characterization

17Notice that when annulling the crossing the orientations make sure that one of the crossings
is cut open ‘horizontally’ and the other ‘vertically’ as depicted in figure 9
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of the Conway weight system, which should be easier to compute. This idea was
first presented in [22], which we will follow closely in this section.

Definition 4.18. Let C be a linear chord diagram in Cm. The labeled inter-
section graph Γ(D) is the graph whose vertices correspond to the chords of D,
numbered from 1 to m in the order in which they appear from left to right on the
base line. Two vertices are connected by an edge if and only if the corresponding
chords intersect.

A simple example is given in figure 37.

Figure 37: Example of an intersection graph Γ(D).

Intersection graphs are useful because they give a simplified representation of a
chord diagram, but still contain a great amount of information about the chord
diagram. In some cases, it is even true that when the intersection graphs of two
diagrams are equal then the diagrams must be equal (see [9, Section 4.8.4.]). On
these intersection graphs graphs it sometimes turns out to be easier to define a
weight system. In the case of the Conway weight system it will be the determinant
of the so called intersection matrix.

Definition 4.19. The intersection matrix IM(D) of a labeled intersection graph
Γ(D) with D in Cm is given by an m×m matrix with the following entries:

IM(Γ(D))ij =

{
sign(i− j) if vertices i, j are connected in Γ(D).

0 otherwise

Notice that we have chose the labels i and j to be applied from left to right. The
intersection matrix is an anti-symmetric variation of the adjacency matrix. The
diagonal will only contain the zero element, as a chord never intersects with itself.
As an example, the intersection matrix of our example in figure 37 is the following
5× 5 matrix:
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IM(Γ(D)) =


0 −1 0 0 0
1 0 −1 −1 0
0 1 0 0 −1
0 1 0 0 −1
0 0 1 1 0

 .

We can now show that the Conway weight system is given by the determinant of
the intersection matrix.

Theorem 4.20. For any chord diagramD we have thatWC(D) = det (IM(Γ(D))) .

Proof. Let W (D) := det (IM(Γ(D)) and let D be a chord diagram in CD. Because
WC is the unique weight system satisfying the 2T-relation, all we need to do is
show that W (D) is indeed a weight system satisfying the 2T-relation. Let us start
by showing W (D) satisfies the 2T-relation.

Figure 38: Independence of the base point.

First, we will need to show that W (D) is independent of the base point of the
chord diagram D. Suppose we have a linear chord diagram D1 and a linear chord
diagram D2 obtained from D1 by moving the left-most vertex to the right end (see
figure 38). We now want to show that W (D1) = W (D2). Notice that we do not
add extra intersections in the graph because we picked the left-most vertex, hence
we only change the labels of the vertices. In the intersection graph we only change
the first row and column. Here the signs flip, because we now meet the original
‘endpoint’ of the first chord, before we meet it ‘beginning’. Instead of the first
chord, this chord is now the j-th chord, where 1 ≤ j ≤ m, we change row 1 to row
j and flip the sign. We do the same thing for the first column. Then the sign flips
cancel each other, which means we obtain the following:

det(IM(D2)) = (±1)(±1) det(IM(D1)) = det(IM(D1)).

We now want to show W (D) satisfies the 2T-relation. Consider the 2T-relation,
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which moves b over a stationary chord s to the chord a as in figure 39. Let D1 be the
diagram before the 2T-move (i.e. with chords b and s) and let D2 be the diagram
after the 2T-move (i.e. with a and s). We now want to show W (D1) = W (D2).

Figure 39: 2T relation for W (D).

Using the independence of the base point we can make chords b and a to be the
first chords of this linear chord diagram. We also state no other chord can start
or end between the endpoint of b and the start of s, and between the endpoint
of s and the endpoint of a. If any other chord o does end in one of these regions
we would have that a and b would first have to move over o, before it could move
over s. From this assumption is follows any other chord can either intersect none
of the chords a, b and r or exactly two of them. In case no other chords intersect
a, b and r, nothing changes in the intersection matrix if we go from D1 to D2, so
W (D1) = W (D2).

Suppose a chord does intersect exactly two of the chords a, b and s. Let us con-
sider the case where other chords o1, . . . , or cross a and s, but not b. Then when
moving b to a, we would get extra intersections with a. These are exactly the the
intersections with r, so in the intersection matrix we would need to add the rows
corresponding to chords o1, . . . , or to the first row. Similarly for the first column.
Notice that the determinant of a matrix does not change when we add a row to an-
other row multiple times, so W (D1) = W (D2). Notice that if the chords o1, . . . , or
would intersect b and r, we would subtract the rows corresponding to the crossings,
and the same reasoning holds. Similarly, when a chord would only intersect a and
b, nothing changes to the intersection matrix, as the crossings stay the same. This
shows W (D) satisfies the 2T-relation, and hence also the 4T-relation.

We need to show that W (D) is also framing independent. Notice that, using
the 2T-relation, any chord diagram can be changed to a (g, n)-caravan with g 2-
humped camels and n 1-humped camels. The intersection matrix G for a 2-humped
camel is given by:
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G =

(
0 −1
1 0

)
.

And the intersection matrix N for a 1-humped camel is the 1× 1 matrix [0], as it
does not intersect any chords by definition. This means the intersection matrix of
a chord diagram can always be written as a block diagonal matrix of the form:

IM(D) =



G 0 . . . 0

0
. . .

G
...

... N
. . . 0

0 . . . 0 N


Notice that the determinant of a block diagonal matrix, is the product of the
determinant of the blocks. Notice that det(G) = 1 and det(N) = 0, so:

W (D) = det(G)g det(N)n = 1g0n.

This means that if we have one 1-humped camel, we get that W (D) = 0, so
W (D) is framing independent. Together with what we have shown before W (D)
is a weight system which satisfies the 2T-relation. By uniqueness of the Conway
weight system we have found that WC(D) = W (D) for an arbitrary chord diagram
D, proving the theorem. �

Under the 2T-relation the connection between the determinant of the intersection
matrix and the Conway weight system can even be made more explicit. Given a
diagram D, we have seen that under the 2T-relation, we get write:

det(IM(D)) = 0n1n =

{
1 if n = 0

0 otherwise.

We have seen before that the only way there could only one connected components
would be if n = 0. This means the determinant of the intersection matrix indeed
gives the same formula for the Conway weight system.
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5 Conclusion and outlook on further research

In this thesis we have seen what a Vassiliev invariant is and how it relates to chord
diagrams and weight systems. We have proven part of the Fundamental theorem
of finite-type invariants and we have seen that there are at most finitely many
Vassiliev invariants of a given degree. In the end we have defined the Conway
weight system and found its corresponding Vassiliev invariant. This however only
covers a small portion of the theory of Vassiliev invariants. In [9] and [14] there
are already several chapters which give more information about the surrounding
theory of Vassiliev invariants. Here also the generalizations to invariant which
are not field-valued can be found. These sources however assume more knowledge
about representation theory and lie algebras. In this section I would like to give
a few references for associated literature and some interesting applications of the
presented theory which I did not have time for during this thesis.

5.1 Geometric view of Vassiliev invariants

In this thesis we have looked at knot invariants and Vassiliev invariants, which very
generally said are topological invariants on a manifold. However, when working
with these invariants we have taken a quite algebraic and combinatorial approach,
using basic combinatorics, linear algebra and module theory to say something
about these invariants. Of course topology and geometry are always in the back-
ground here, as was for example seen when working with chord diagrams as a
closed surface, but from the example of the Linking integral (example 2.13) we
know that some invariants can also be seen as an integral. An integral formula like
the linking integral for a Vassiliev invariant would give a more geometric interpre-
tation of what is going on when applying these invariants to a knot. It turns out
that for the Casson knot invariant (the quadratic term of the Alexander-Conway
polynomial) there is such an integral formula. This formula is presented in [23]. If
it would be possible to extend the method in this paper to more general Vassiliev
invariants, this would give a very nice geometric characterization of the Vassiliev
invariant. In the future I would like to examine this paper more closely.

5.2 Tangles

In section 4.2 we defined a tangle. This object is very closely related to a knot.
This means we might wonder if we can also define a Vassiliev ‘tangle invariant’
and a corresponding ‘tangle weight system’. The idea for a tangle invariant would
be to cut up the tangle in smaller parts, compute the corresponding polynomials,
and ‘glue’ these polynomials back together. Cutting open the tangle (or any knot
for that matter) would give us ‘open’ strands (with open I mean not circular),
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but all our polynomials are defined on ‘closed’ strands. This means the classi-
cal Alexander-Conway polynomial cannot be computed. But luckily there exists
a generalization of the Alexander-Conway polynomial which is defined on open
strands and hence on tangles. The generalization of the polynomial is called the
multivariable Alexander polynomial (MVA), and this is treated in detail in the
thesis of Jana Archibald [24]. Under the right substitutions, and by setting all but
one of the variables to a constant, one can obtain the Alexander-Conway poly-
nomial as described in definition 2.16. In [24] it is, amongst other things, shown
that the n-th term of the multivariable Alexander polynomial is always a Vassiliev
invariant of order n. Moreover, a weight system is computed for this polynomial,
given by cMV A : {Links} → Z[t1, . . . , tn]

cMVA(D) :=
det (M i(D))

ti

where M i(D) denotes the so called ‘Alexander Matrix’ with row and column i
removed. This Alexander matrix is very closely related to the intersection matrix
that was seen in section 4.5. For more details I will refer to [24], but from the
above it can be seen that it should be possible to generalize the Conway weight
system on knots to a Conway weight system on tangles, which is something to look
into in further studies.

5.3 Making new Vassiliev invariants

One of the goals set in the introduction was to be able to make new Vassiliev
invariants. As was shown in theorem 3.38 for every weight system there exists a
related Vassiliev invariant. This means that by making new weight systems we
directly make new Vassiliev invariants. It may be noted however that the way we
have found the invariant from the Conway weight system involved a guess that
annulling a crossing was equivalent to bridging a chord. This guess turned out to
be true because of the uniqueness of the weight system invariant under 2T, which
is not true in general. This means the method is hard to apply in general. It may
however be noted that in [21] different types of 2T-relation are derived. This is done
by setting different parts of the 4T-relation equal to zero. Using these different 2T-
relations, more weight systems can be derived using similar techniques as described
in 4.4. In this paper, also a weight system for the HOMFLYPT polynomial is
given. This is a generalization of the Alexander-Conway polynomial, but also of
many other polynomial invariants. These other polynomial invariants related to
the HOMFLYPT polynomial will hence also be Vassiliev invariants in some way.
It may also be noted that using the intersection graphs as described in section 4.5,
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it is also possible to derive many more weight systems and hence more Vassiliev
invariants.
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Appendices

A Vector spaces and modules

A.1 Relevant theorem and definitions

In this section some relevant theorems and definitions from module theory are given
which are used in some proofs in Section 3. For more background information or
the proofs one could look at [14] or [25].

Definition A.1. If V,W are modules over the same ring K then f : V → W is a
morphism if for all x, y ∈ V and λ ∈ K we have that:

1. f(x+ y) = f(x) + f(y)

2. f(λx) = λf(x).

The set of morphisms from V to W is denoted Hom(V,W ).

It is clear that if the ring K is a field, the modules V and W become vector spaces
over K and the definition of a morphism becomes the definition of a linear map.

Definition A.2. Given a module V over a field K and a subspace W of V we can
define the quotient module V/W by using the equivalence relation x ∼ y if and
only if x− y ∈ W . We get V/W := {[x] : x ∈ V } is a module. Here [x] denote the
equivalence class x/ ∼.

Lemma A.3. Let V,W, I be vector spaces and suppose that I is a subspace of V
then:

Hom(V/I,W ) ∼= {f ∈ Hom(V,W ) : I ⊆ Ker f}.

Theorem A.4. Let V be a vector space and U ⊂ V be a subspace then

V ∼= (V/U)⊕ U.

In particular, if the dimension of V is finite then:

dimV = dim(V/U) + dimU.
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Theorem A.5 (First isomorphism theorem for modules). Let f ∈ Hom (V,W )
then Im (f) is a submodule of W and Ker(f) is a submodule of V and we have:

V/Ker(f) ∼= Im(f).

If f is surjective, we find that:

V/Ker(f) ∼= W.

Theorem A.6. Let U and V be finite dimensional vector spaces, and r1, . . . , rn
elements in U . Let F be the vector space of all linear maps from U to V that
satisfy the relation that f(ri) = 0 for i ∈ {1, . . . , n}, then:

F ∼= Hom

(
U

(r1, . . . , rn)
, V

)
=

(
U

(r1, . . . , rn)

)?
.

A.2 Formal linear combinations

In section 3 the concept of a formal linear combination is used to create vector
spaces of knots and chord diagrams. In this section we will give a short overview
of what a formal linear combinations is and how it forms a vector space. We follow
[26].

First, let us construct an abelian group from a set.

Definition A.7. Let A be an additive abelian group and let M be a set. Then:

A[M ] = {f : A→M | f−1(A \ {0}) is finite}

is called the A-linearization of M.

Elements f of A[M ] are of the form f = a1x1 + · · ·+anxn, where x1, . . . , xn are all
elements of the set M , and ai = f(x)i for 1 ≤ i ≤ n such that f(xi) 6= 0. Elements
of A[M ] are called formal linear combinations. This can be seen as taking the
elements of some set as basis vectors, and going through all combinations of these
basis vectors using the function f . The addition on A[M ] is defined to be same
as on the additive abelian group A. This means that (f + g)(x) = f(x) + g(x).
But how do we make a vector space out of this? The way to do that is by taking
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the abelian group to be a field F. In this case F[M ] is a vector space over F, with
scalar multiplication (λf)(x) = λf(x) for λ ∈ F.

This is very abstract, so let us try to apply this to the set of chord diagrams.

Example A.8. Take A to be the field C and take the set of chord diagram C.
Then the A-linearization is given by:

C[C] = {f : C → C | f−1(C \ {0}) is finite}.

This means we get elements of the form:

f = z1C1 + · · ·+ znCn

Where zi is an element of C and Ci is an element of C for 1 ≤ i ≤ n. A single
chord diagram as an element of the space C[C]: Ck, can be obtained by taking
f = δik for 1 ≤ i ≤ n.

Addition on chord diagrams is defined using the trick above. Let us say we have
two chord diagrams C1 and C2. Then C1 + C2 = 1 · C1 + 1 · C2 + 0 · C3 + · · · +
0 · Cn. Notice that f−1(C \ 0) = {C1 + C2} has one element, so it is finite.
Multiplication, is defined similarly. We can for example say (a + bi)C1 = aC1 +
biC1 = C1 + . . . C1︸ ︷︷ ︸

a times

+ iC1 + · · ·+ iC1︸ ︷︷ ︸
b times

.

The construction is still a bit abstract, but it is clear this forms a vector space.
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