
Propagation of initial condition uncertainty for linear

chemical reaction systems via the Liouville Equation

Bachelor’s Project Chemistry
July 2020
Student: M.A. van Straaten
First supervisor: Dr. A. Milias-Argeitis
Second assessor: Prof. dr. M. Heinemann

1

1 Introduction

Dynamical systems are systems whose behaviour changes over time. (Bio)chemical reactions
lead to changes in the concentration of reactants and products over time, hence they can be
treated as dynamical systems. To better understand a given (bio)chemical reaction system,
it is of interest to know more about dynamical systems and their behaviour. As a result
of imperfect knowledge (e.g. initial conditions) and imperfections in the model formulation
itself, mathematical models of dynamical systems are typically subject to uncertainty. To
enable modelling of reactions over time, these uncertainties in dynamical systems need to
be considered.

Systems of (bio)chemical reactions are often modelled via sets of ordinary differential
equations (ODEs). A key component of an ODE-based model is the initial condition, which
results in a specific solution for the system. For most (bio)chemical reactions, precisely
measuring the initial condition is difficult. As a result, the initial condition of the system is
often not precisely known. In order to still model (bio)chemical reactions, it is of interest
to predict how uncertain initial conditions for dynamical systems evolve over time.

Probability density functions can help to represent initial condition uncertainty in dy-
namical systems. To see how these initial probability distributions evolve over time, this
thesis derives a method to follow the evolution of so-called initial log-polynomial distribu-
tions of linear first-order dynamical systems.

First, the preliminaries necessary to derive the expression for the log-polynomial distribu-
tion are covered. Afterwards, the log-polynomial distributions are derived and inserted into
the Liouville Equation to obtain the ordinary differential equations describing the change of
the log-polynomial distribution parameters over time. Next, the Matlab code is explained
and lastly the multivariate model is subjected to an unregulated gene expression system.

1

2 Preliminaries

In order to understand the concepts discussed in this thesis, some preliminary sections
will follow. In section 2.1 ordinary differential equations will be discussed. Probability
distributions and their density will be treated in section 2.2 and 2.3, and exponential families
in section 2.4.

2.1 Ordinary Differential Equations

Dynamical systems are frequently described as a set of ordinary differential equations. The
solution of these differential equations provides the evolution of the state of the system over
time. Differential equations are widely used in chemical and biological models, since in many
cases it is easier to write the rate of change of a system variable, than to obtain a function
describing the variable over time [1]. The general form of a system of ordinary differential
equations is given by

ẋ = f(x) (1)

With initial condition
x(0) = x0

Here, x ∈ Rn is a vector describing the state of the dynamical system. ẋ represents the
fist-order derivative of the vector with respect to t. The vector f(x) : Rn → Rn consists
of functions corresponding to the entries of the vector x. The initial state of the system at
time t = 0 is x(0) and is defined by initial condition x0 ∈ Rn, containing the initial values
of all entries of x. A multivariate system of ordinary differenial equations can be seen in
equation (2).

ẋ = A · x (2)

A ∈ Rn×n is a matrix containing the coefficients multiplying x ∈ Rn.
In this thesis, systems of linear ordinary differential equations are considered. Even

though most chemical reaction systems are not described by a linear system, most nonlinear
systems can be locally approximated by a linear dynamical system.

The initial condition x0 determines the specific solution of a dynamic system. If the
initial condition is uncertain, the time evolution of the state vector will also be uncertain,
resulting in a system that cannot be solved exactly. To see how a not fully determined initial
condition affects a system, we need to find a way to express this initial state uncertainty.
This can be accomplished by using probability distributions.

2.2 Probability Distributions

The probability distribution of a continuous random variable X indicates how likely it is for
X to obtain a value within a given set. For (bio)chemical dynamic models, a guess can often
be made about the probability distribution of the initial condition. Therefore, probability
distributions give a way to describe initial uncertainty in a mathematical way.

The probability distribution of a continuous random variable X is described by its Prob-
ability Density Function (PDF), denoted by p(x). The area under the curve between two
points a and b represents the probability of X taking a value between a and b. Hence, in
order to get the probability of X taking a value between a and b, we calculate

P (a ≤ X ≤ b) =

∫ b

a

p(x)dx (3)

If X is multivariate (X ∈ Rn, n > 1), the PDF is a function of n variables x1, x2, ..., xn.
For a multivariate X we can calculate the probability of X taking a value inside the box

2

[a1, b1]× [a2, b2]× ...× [an, bn] by calculating a multiple integral:

P (X ∈ [a1, b1]× [a2, b2]× ...× [an, bn]) =

∫ b1

a1

∫ b2

a2

...

∫ bn

an

p(x) dx1dx2...dxn (4)

Another important aspect of probability density functions is that the total probability
is defined to be 1 (equation (5) for a scalar X, equation (6) for a multivariate X).∫ ∞

−∞
p(x)dx = 1 (5)

∫ ∞
−∞

...

∫ ∞
−∞

p(x) dx1dx2...dxn = 1 (6)

In this thesis, probability distributions are used to represent the uncertain initial con-
dition of a system. After t = 0, the distributions evolve to represent the state of to the
system. The key question is how we can calculate the change of the probability density of
the system state x over time.

2.3 Normal Distributions

In order to simulate the evolution of a system subject to a certain initial distribution,
a specific initial distribution needs to be considered. Normal distributions are typically
used to describe the initial condition uncertainty, since the normal distribution has many
mathematical properties that make calculations straightforward. The two parameters which
distinguish scalar normal distributions from each other are the mean µ ∈ R, and the variance
σ2 ∈ R. For a random variable X that is normally distributed with mean µ, and variance
σ2, the common notation is X ∼ N (µ, σ2). An example of a normal distribution where X
is distributed as X ∼ N (30, 25) can be found in figure 1.

Figure 1: Probability density function with mean 30 and variance 25

The probability density function describing the normal distribution X ∼ N (µ, σ2) is
provided by equation (7). For −∞ < x <∞

p(x;µ, σ2) =
1

σ
√

2π
exp
−(x− µ)2

2σ2
(7)

As with systems of ordinary linear differential equations (section 2.1) normal distribu-
tions can also be written in the multivariate form. Instead of a scalar random variable, a
random vector is used. The random vector X ∈ Rn is a column vector, whose entries are
scalar random variables.

3

The two variables which describe multivariate normal distributions are the mean vector
µ ∈ Rn and the covariance matrix Σ ∈ Rn×n. The covariance matrix Σ is a square matrix
consisting of the pairwise covariance between all entries of X. The pairwise covariance char-
acterizes the behaviour of pairs of entries of X. The notation for the multivariate normal
distribution is X ∼ N (µ,Σ).

The probability density function for a multivariate normal distribution is given by

f(x) = (2π)−
n
2 |Σ|− 1

2 e−
1
2 (x−µ)T Σ−1(x−µ) (8)

For two dimensional multivariate normal distributions, the graph looks similar to figure 2.

Figure 2: Example of a graph for a two-dimensional multivariate normal distribution

As we will explain below, when the normal distribution is used to represent the initial
uncertainty of a linear dynamical system, then the probability density of the system state
at any time can be calculated in a straightforward way. However, the normal assumption
is quite restrictive for many linear dynamical systems, so we would like to consider a larger
class of initial distributions. These are presented in the next section.

2.4 Exponential Families

In order to obtain mathematically tractable solutions to uncertainty propagation problems
for linear systems, we will consider a special class of exponential families.

For a scalar random variable X, an exponential family is a set of parametrized probability
distributions whose probability density function can be written in the form

fX(x | λ) = g(λ) exp(η(λ) · T (x)) (9)

Here, λ ∈ Rm is the parameter vector of the exponential family. Parameters λ can be set
to different values, producing different distributions belonging to the same family. T (x) :
R→ Rp is a vector of sufficient statistics, meaning that it contains all necessary information
about x with respect to the parameter values. g(λ) is called the partition function. It
is appropriately defined to ensure that the integral of the PDF is equal to 1. Finally,
η(λ) : Rm → Rp contains the so-called natural parameters of the distribution, which can be
functions of the original parameters λ.

To see that the normal distribution is an exponential family, let us define λ =
[
µ σ2

]
.

If we further define

g(λ) =
1√
2πσ

exp(
−µ2

2σ2
); (10)

4

η(λ) =
[
− 1

2σ2
µ
σ2

]
; T (x) =

[
x2

x

]
(11)

Then we find

f(x;µ, σ2) = g(λ) exp(η(λ) · T (x))

=
1√
2πσ

exp

(
−µ2

2σ2
− x2

2σ2
+
xµ

σ2

)
=

1√
2πσ

exp

(
− (x− µ)2

2σ2

)
Which is the same probability density function as equation (7). Therefore, all normal
distributions belong to the same exponential family.

Defining this, we can also relate non-normal distributions to an exponential family.
To see how this is possible, we can rewrite the normal distribution as follows: defining

η(λ) =
[
λ2 λ1

]
, and x such that T (x) =

[
x2

x

]
and deriving g(λ) such that the total

probability is 1, we find
f(x) = g(λ)exp(λ2x

2 + λ1x)

Since g(λ) can be treated as a lambda parameter, we write it as exp(λ0), Then we can
write the distribution in the form of (12), by putting all the lambda parameters in a single
exponential.

f(x) = exp(λ2x
2 + λ1x+ λ0) (12)

Equation (12) is still a normal distribution, although with different notation. This notation
will be used to define non-normal distributions later.

Henceforth, if the logarithm of a probability density function results in a polynomial,
the PDF will be said to follow a log-polynomial distribution. We constrict the sufficient
statistics T (x) to only containing the monomials of x, ensuring a log-polynomial density.

The definition of an exponential family can be generalized by using the random vector
X ∈ Rn instead of the scalar random variable X. This also changes the definition of the
vector of sufficient statistics into a vector function where T (x) : Rn → Rp. Then, the
multivariate normal distribution is also a member of an exponential family. For the two

dimensional multivariate distribution, using Σ =

[
s11 s12

s21 s22

]
, µ =

[
µ1

µ2

]
and X =

[
x1

x2

]
we

find that equation (8) becomes

p(X) =
1√

2π|Σ|
· exp(−1

2

1

s11s22 − s12s21
· s22x

2
1 + s11x

2
2 + (−2µ1s22 + µ2s12 + µ2s21)x1

+(µ1s12 − 2µ2s11 + µ1s21)x2 + (−s12 − s21)x1x2 + µ2
1s22 − µ1µ2s12 + µ2

2s11 − µ1µ2s21)

Thus, the multivariate normal exponential family is defined by

g(λ) =
1√

2π|Σ|
exp(µ2

1s22 − s12µ1µ2 + s11µ
2
2 − s21µ1µ2);

η(λ) =

s22

s11

−2µ1s22 + µ2s12 + µ2s21

µ1s12 − 2µ2s11 + µ1s21

−s12 − s21

 ; T (x) =

x2

1

x2
2

x1

x2

x1x2

Just like the univariate case, the parameter λ is defined by the parameters of the multi-

variate distribution, λ =
[
µ Σ

]
. Also the two dimensional multivariate normal distribution

can be written as a log-polynomial density function:

p(x) = exp(λ1x
2
1 + λ2x

2
2 + λ11x1 + λ22x2 + λ12x1x2 + λ0) (13)

5

Naturally, this can also be done for higher order multivariate distributions. See for in-
stance equation (14) for the general exponential family for the fourth order multivariate
distribution.

p(x) = exp(λ4,0x
4
1 + λ3,0x

3
1 + λ2,0x

2
1 + λ1,0x1 + λ0,4x

4
2 + λ0,3x

3
2 + λ0,2x

2
2 (14)

+λ0,1x2 + λ3,1x
3
1x2 + λ2,1x

2
1x2 + λ1,3x1x

3
2 + λ1,2x1x

2
2 + λ2,2x

2
1x

2
2 + λ1,1x1x2 + λ0)

One thing to keep in mind when constructing higher order exponential families is that the
order of the polynomial in the exponential term must always be an even number. In order
for a PDF to be valid, the probability density cannot go to infinity, considering that the
PDF has to integrate to 1 (equations (5) and (6)). The asymptotic behavior of polynomials
is determined by the highest order terms. In equations (15) and (16), the limit of different
univariate higher order terms are considered. When a limit goes to infinity, that polynomial
order cannot define a PDF for the aforementioned reasons. When n is even:

lim
x→±∞

exp(xn) =∞ lim
x→±∞

exp(−xn) = 0 (15)

When n is odd:
lim
x→∞

exp(xn) =∞ lim
x→−∞

exp(−xn) =∞ (16)

Hence, from equations (15) and (16) it can be concluded that the order of the polynomial
in the exponent can only be even, in addition to the fact that the coefficient of the highest
order term has to be negative. Moreover, it must be kept in mind that from e.g. equation
(13) the x1x2 term is also a second order term, and must therefore have a negative coefficient
as well. The same goes for the xn1x

m
2 terms in equation (14) for which n+m = 4.

Using these exponential families, we have a way of describing various variations of initial
probabilities. Next, we can start looking at how we can model the change of the initial
distribution over time.

6

3 Describing the evolution of initial distributions over
time

To recap, we have found a general expression of the initial distribution for a dynamical
system (equations (12), (13) and (14)). The question remains how we can model the change
in the initial distributions over time, such that we can find the probability density function
of the system at any given time.

3.1 Normal probability distribution over time

To illustrate how probability distributions in a dynamical system change over time, we go
back to the univariate normal distribution (section 2.3). Considering a scalar linear system
ẋ = ax, with initial uncertainty x(0) = x0 ∼ N (µ0, σ

2
0), the distribution of the system at

t > 0 will always be a normal distribution. This is shown as follows:

ẋ =
dx

dt
= ax∫

1

ax
dx =

∫
dt

1

a
log(ax) = t+ C

log(ax) = a(t+ C)

ax = exp(a(t+ C)

x(t) =
1

a
exp(a(t+ C)

For C ′ = 1
aexp(aC), we find

x(t) = C ′exp(at)

Since x(0) = x0,
x(0) = C ′exp(0) = x0

C ′ = x0

x(t) = x0exp(at)

At any time t, the term exp(at) is a constant. Hence, the probability density at time t > 0
is just a linear transformation of a normally distributed random variable. This means that
x(t) is also normally distributed, more specifically x(t) ∼ N (eatµ0, e

2atσ2
0) [2]. So, if the

initial probability distribution is univariate normal, then the probability at t > 0 can be
written as a normal distribution too.

For a multivariate system Ẋ = AX, with initial uncertainty X(0) = X0 ∼ N (µ,Σ), the
specific solution is

X(t) = exp(At) ·X0

exp(At) ∈ Rn×n is a matrix depending on t. Therefore, for any time t > 0 the matrix will
consists of constants. The components of X(t) for any specific time will therefore be a linear
transformation of a multivariate normally distributed random variable, which results again

in a multivariate normal distribution for X(t), with X(t) ∼ N (eAtµ, eAtΣeAt
T

) [2]. Hence,
if the initial uncertainty for a multivariate linear dynamical system is multivariate normal,
the distribution of the system at time t > 0 is also multivariate normal.

With this knowledge, we modify the exponential families for the univariate and multivari-
ate normal distributions, making the lambda-parameters dependent on time. The change
of the time-dependent lambda-parameters represents the change of the normal distribution

7

over time. This results in equation (17) for a scalar system and equation (18) for a two
dimensional vector system.

p(t, x) = exp(λ2(t)x2 + λ1(t)x+ λ0(t)) (17)

p(t, x) = exp(λ1(t)x2
1 + λ2(t)x2

2 + λ11(t)x1 + λ22(t)x2 + λ12(t)x1x2 + λ0(t)) (18)

Not a lot of initial probability distributions for dynamical systems follow a normal distri-
bution. Therefore, the question arises whether other types of initial distributions for linear
dynamical systems will also keep describing the system after t = 0.

3.2 Log-polynomial distributions over time

In order to describe other distributions whose form is maintained over time, we generalize
the log-polynomial distribution of the normal distributions from section 3.1. Doing this, we
look at a bigger exponential family of which the normal distribution is also a part of:

p(x) = exp(λn(t)xn + λn−1(t)xn−1 + ...+ λ1(t)x+ λ0(t)) (19)

Note that if we put λn(t), λn−1(t), ..., λ3(t) equal to zero for all t, we end up with the
univariate normal distribution (equation (17)). The same we do for the multivariate case,
e.g. for the fourth order:

p(x) = exp(λ4,0(t)x4
1 + λ3,0(t)x3

1 + λ2,0(t)x2
1 + λ1,0(t)x1 + λ0,4(t)x4

2

+λ0,3(t)x3
2 + λ0,2(t)x2

2 + λ0,1(t)x2 + λ3,1(t)x3
1x2 + λ2,1(t)x2

1x2 (20)

+λ1,3(t)x1x
3
2 + λ1,2(t)x1x

2
2 + λ2,2(t)x2

1x
2
2 + λ1,1(t)x1x2 + λ0(t))

This can also be done for higher order multivariate distributions, however the log-polynomial
becomes increasingly longer for higher orders, hence only the fourth order is shown. As
with the normal case, equations (19) and (20) describe the evolution of the probability
distribution of the system thanks to the time-dependency of the lambda parameters.

3.3 Liouville Equation

Having found general descriptions for the initial uncertainty of a linear system (eq. (19)
and (20)), the lambda parameters are still unknown after t = 0. It would be ideal if it was
possible to find expressions for the rate of change of the lambdas over time. Having a system
of ordinary differential equations describe the lambdas would solve this problem. Then it
would be possible to find the probability density of the system at any point in time.

Fortunately, the Liouville Equation [3] can be used to describe the time evolution of prob-
ability density functions. In equation (21) the general definition of the Liouville equation is
given.

∂p(t, x)

∂t
+

n∑
k=1

fk(x)
∂p(t, x)

∂Xk
+

n∑
k=1

∂fk(x)

∂Xk
p(t, x) = 0 (21)

n is the dimension of the state vector x. p(t, x) is the probability density function of the
system, depending on x and t, where the time dependence is expressed in the lambdas.
f(x) ∈ Rn is the vector containing the functions which represent the derivative (equation
(1)).

The Liouville Equation allows us to derive ordinary differential equations describing the
evolution of the lambdas over time. When inserting the time-varying distribution (17) to
the Liouville Equation, for an arbitrary scalar system ẋ = ax, a ∈ R , we find:

p(t, x) · (λ̇2x
2 + λ̇1x+ λ̇0) + ax · p(t, x) · (2λ2x+ λ1) + a · p(t, x) = 0

8

Since the probability density function p(t, x) cannot be zero, we find

λ̇2x
2 + λ̇1x+ λ̇0 + ax · (2λ2x+ λ1) + a = 0

(λ̇2 + 2aλ2)x2 + (λ̇1 + aλ1)x+ λ̇0 + a = 0

Additionally, this equation needs to hold for any value x within the state space of the system.
This implies that the coefficient of each power of x needs to be equal to zero, giving rise to
a set of ordinary differential equations describing the time evolution of the lambdas:

λ̇2(t) = −2aλ2(t) (22)

λ̇1(t) = −aλ1(t) (23)

λ̇0(t) = −a (24)

For multivariate distributions a similar approach can be made. For the two dimensional

system ẋ = A · x, where x =

[
x1

x2

]
and A =

[
a11 a12

a21 a22

]
, we find as a result from the

Liouville Equation:

p(t, x) · (λ̇1x
2
1 + λ̇2x

2
2 + ˙λ11x1 + ˙λ22x2 + ˙λ12x1x2 + λ̇0)

+(a11x1 + a12x2)p(t, x)(2λ1x1 + λ11 + λ12x2)

+(a21x1 + a22x2)p(t, x)(2λ2x2 + λ22 + λ12x1) + (a11 + a22)p(t, x) = 0

Again using the properties that p(t, x) and x cannot be zero, we find

λ̇1 = −2a11λ1 − a21λ12

λ̇2 = −2a22λ2 − a12λ12

˙λ11 = −a11λ11 − a21λ22

˙λ22 = −a22λ22 − a12λ11

˙λ12 = −a11λ12 − 2a12λ1 − 2a21λ2 − a22λ12

λ̇0 = −a11 − a22

These ordinary differential equations can be derived for any log-polynomial initial probabil-
ity density. With the systems of ordinary differential equations and the initial condition of
the lambdas, we can find the specific solution of the dynamical system at any point in time.
Therefore, the next goal is to simulate the change in distribution over time.

9

4 Numerical implementation

4.1 Overview

Matlab was used to solve the systems of ordinary differential equations describing the lambda
parameters. Both for the scalar and two dimensional systems a script was written to solve for
the lambdas numerically, using the Matlab function ode45. Moreover, a script was written
which would automatically write the equations for the lambdas for higher dimensions.

4.2 Solving for the lambdas

For both the scalar and vector script, the initial values and the scalar a or matrix A have to
be specified. The ending time of interest, alongside the number of time steps taken can be
adjusted to the interest of the user. The x values for which the lambdas would be calculated
each time can also be changed, to give a more accurate result. Using ode45, the values of
the lambdas at each specified time was calculated. Afterwards, each lambda value was
connected to the corresponding x monomial, resulting in the probability density function
for that particular time. Finally, the probability density functions were plotted in sequence,
such that the evolution of the probability density could be seen.

For these systems the ordinary differential equations describing the lambdas still had
to be derived by hand, hence it was investigated whether a script could execute this time
consuming step.

4.3 Writing the differential equations

In order to have Matlab compose the differential equations for the lambdas, a script was
made for a two dimensional system, with a maximum degree of 4 in the polynomial. For
higher dimensions and degrees the script can easily be adjusted to obtain the differential
equations for the lambdas for those log-polynomials.

In order to write the differential equations describing the lambdas, first the monomials
of the specified dimension were generated. Next, the log-polynomial is put together. The
Liouville Equation is used to obtain the system of ordinary differential equations. These
are solved using the ode45 function, resulting in the values for the lambdas at the specified
points in time. Using this code, the step of manually deriving the equations for the lambdas
can be skipped.

10

5 A numerical example: unregulated gene expression

To see whether the written scripts can be used in further research, their application to dy-
namical systems should be analyzed. Therefore, the multivariate script was applied to an
unregulated gene expression dynamical system [4]. The mRNA-protein system is schemati-
cally shown in figure 3.

Figure 3: Gene expression system, where transcription of the gene gives mRNA, which after
translation results in protein

The system is described by the following differential equations:

ṁ = k0 − δmm (25)

ṗ = k1m− δpp (26)

Where m and p represent the concentration of mRNA and protein, respectively. The tran-
scription rate is given by k0, and k1 accounts for the rate of translation. Also the decay of
mRNA and protein is taken into account, with the respective terms δm and δp.

The model can be used to describe prokaryotic gene expression, since for eukaryotic gene
expression additional steps need to be considered, such as the transport of the mRNA out
of the nucleus. The model assumes all the other processes regarding gene expression to be
constant, hence the model is highly simplified.

For simplicity, the terms not describing the mRNA or protein concentration were as-
sumed to be constant. k0 and k1 were assumed to be 0.1, δm was set to be 0.1 and δp was
0.01.

The initial distribution for the start of the system was taken to be

log(p(x)) = −0.25x2
1 − 0.125x2

2 + 0.5x1 + 2.5x2 + log

(
1√
2π

)
− 5

11

6 Results & Discussion

6.1 Unregulated Gene Expression

The initial state of the unregulated gene expression model is seen in figure 4a. The distri-
bution over time (figures 4b and 4c) shows the distribution slowly becoming narrower over
time. Simulteneously, the graph becomes higher, indicating that the distribution will still
integrate to 1 and thus adhering to a fundamental property of probability distributions.

Considering that we have constant parameters describing the change in mRNA and
protein concentration, it would be expected that at some point the mRNA and protein
concentration reach equilibrium. Due to the narrowing of the distribution, it seems that
the system attains an equilibrium state where the concentrations of mRNA and protein do
not change. Hence, the generated results of the unregulated gene expression model make
intuitively sense.

(a) t = 0 (b) t = 10

(c) t = 20

Figure 4: Evolution over time of the initial distribution for an unregulated gene expression
model

6.2 Scalar Dynamical system

As for the multivariate model, the scalar model is also expected to reach an equilibrium, as no
input uncertainty for other variables is considered. To see how an initial distribution evolves
in our model, we looked at the scalar system ẋ = −2x, with bimodal initial distribution
−0.5x4 − 0.1x3 + 2x2 − 2.742717515, visible in figure 5.

When looking at figure 5, it is visible that over time the distribution narrows. The two
peaks grow higher, while the distance between them narrows. Hence, the model indicates
an equilibrium being approached. Therefore, the model seems to work as expected for a
scalar dynamical system.

12

Figure 5: Time evolution of initial probability distribution for a scalar system

6.3 Writing Ordinary Differential Equations

For scalar and multivariate systems, the ordinary differential equations describing the time
evolution of the lambda parameters still had to be derived by hand. For scalar and two
dimensional systems this is not too time-consuming. For higher dimensions and degrees of
initial distributions, deriving the ordinary differential equations for the lambdas by hand
will become a time expensive challenge. Therefore, we looked into a system which would
write the equations for the lambdas by itself. The aim was that only the dimension of the
state vector x, the degree of the log-polynomial and the constant matrix A ∈ Rn×n needed
to be specified in order for the Matlab script to work.

For this, Mathlab’s symbolic toolbox had to be used. However, this complicates the
script quite a bit. Especially the order of the symbolic lambdas would be mixed when
applying different functions of the toolbox. It proved complicated to obtain the ordinary
differential equations for the lambda-parameters for arbitrary systems. However, a script
was written for the two dimensional fourth degree log-polynomial case. This script is easy
to adjust for higher degrees and dimensions, which does still make it useful for writing the
lambda equations.

13

7 Conclusion

In this thesis, a way to model the time evolution of initial distributions in first-order linear
dynamical systems is derived using the Liouville Equation. The multivariate model was
tested for a system with defined inputs, resulting into the intuitively expected evolution of
the initial distribution. Also the scalar model evolved as expected. Hence, these models can
be used to construct the probability distribution of a dynamic system at any time.

The script to derive the ordinary differential equations describing the lambda-parameters
works for two dimensions and a fourth degree polynomial. However, the script is very
intuitive and can easily be changed to satisfy any other combination of dimension and
polynomial degree.

Most dynamical systems are not first-order linear systems. Although nonlinear systems
can be locally approximated by linear systems, it would be preferable to have a way to see
how initial distributions evolve for these systems too. However, nonlinear systems would
not allow us to derive the log-polynomial distributions, so it remains to be investigated if a
similar approach can be implemented for nonlinear systems.

14

Appendix A

Scalar Dynamical System

1 a = −2; % this is the parameter a in the equation dxdt = a*x
2 % Here we define the initial values for the lambdas.
3 %We assume that the log−density is of the form
4 % log[p(x)]=lambda n*xˆn+lambda (n−1)*xˆ(n−1)+...+lambda 1*x+lambda 0.
5 % The vector initial values contains the initial values of the lambdas,
6 % starting from lambda 0 and going up. So, if initial values has three
7 % elements, we know that these are [lambda 0 lambda 1 lambda 2]
8 initial values = [−0.25+log(1/(2*sqrt(pi))) 0.5 −0.25];
9

10 n = length(initial values)−1; % this is the degree of the log−density ...
polynomial

11 t end = 1; % final simulation time
12 steps = 20; %number of time steps taken
13 T = linspace(0,t end,steps); % this line creates the vector of simulation times
14

15 [Tout,L]=ode45(@(t,l) L ODE(t,l,a),T,initial values)
16 xsteps=100000;
17 X=linspace(−10,10,xsteps);%the X's we take at which the pdf is evaluated
18 Y=zeros([xsteps,steps]);
19 % constructing the log−polynomial probability density function
20 for i=1:length(Tout)
21 P=L(i,1);
22 for k=2:n+1;
23 P=P+(L(i,k)*(X.ˆ(k−1)));
24 end
25 Y(:,i)=exp(P)';
26 %Y(:,i) contains the values of the distribution at the evaluated X's
27 %for time Tout(i)
28 end
29

30 Time=zeros([xsteps,steps]);
31 for i=1:steps
32

33 Time(:,i)=Tout(i); %making a matrix where each column consists of one ...
particular time, s.t. we can plot the distributions

34 end
35 for i=1:steps
36 plot3([Time(:,i)],X,Y(:,i));%plotting the distributions at different ...

times in the same 3d plot
37 hold on
38 end
39 hold off
40 xlabel('time')
41 ylabel('X')
42 zlabel('probability')

1 function dlambdadt = L ODE(t,l,a)
2 %This function is used to calculate each individual lambda from the
3 %Lambda script scalar script.
4 n = length(l)−1; % we need to figure out what degree our log−density ...

polynomial is
5 coeffs = [1:n]'; % here we define the coefficients of lambda n, ...

lambda (n−1) etc. in the differential equations
6

7 dlambdadt = [−a;−coeffs.*l(2:end)*a];
8 end

15

Vector Dynamical System

1 A= [−1,2;0,−2]; % this is the matrix in dXdt=AX
2 a11=A(1,1);
3 a12=A(1,2);
4 a21=A(2,1);
5 a22=A(2,2);
6

7 % Here we use the initial state to determine the initial lambda values.
8 % For X 0 ¬ N([mu 1; mu 2],[s11, s12; s21, s22]), we have:
9 mu 0=[1,1]; %initial mean vector

10 sigma 0=[1,0;0,1]; %initial covariance matrix
11 mu 1=mu 0(1);
12 mu 2=mu 0(2);
13 s11=sigma 0(1,1);
14 s12=sigma 0(1,2);
15 s21=sigma 0(2,1);
16 s22=sigma 0(2,2);
17

18 % Here we define the initial values for the lambdas. We assume that the ...
log−density is of the form

19 % log[p(x)]=lambda 1*x(1)ˆ2+lambda 2*x(2)ˆ2+lambda 22*x(2)
20 % +lambda 11*x(1)+lambda 12*x(1)*x(2)+lambda 0
21

22 % The vector 'initial values' contains the initial values of the lambdas,
23 % in the order of [lambda 0 lambda 1 lambda 2 lambda 11 lambda 22 lambda 12].
24

25 % the following automatically determines the initial distribution if X ...
follows a normal distribution

26 s=s11*s22−s21*s12;
27 l 0=−1/(2*s)*(mu 1ˆ2*s22−mu 1*mu 2*s12+s11*mu 2ˆ2 ...

−s21*mu 1*mu 2+log(1/(2*pi*sqrt(s))));
28 l 1=−1/(2*s)*(s22);
29 l 2=−1/(2*s)*(s11);
30 l 11=−1/(2*s)*(−2*mu 1*s22+s12*mu 2+s21*mu 2);
31 l 22=−1/(2*s)*(−2*mu 2*s11+mu 1*s12+s21*mu 1);
32 l 12=−1/(2*s)*(−s12−s21);
33

34 initial values = [l 0 l 1 l 2 l 11 l 22 l 12];
35 % For a non−normal distribution the initial values can just be plugged in.
36

37 t end = 5; % final simulation time
38 steps = 20; %number of steps taken
39 T = linspace(0,t end,steps); % this line creates the vector of simulation times
40 [Tout,L]=ode45(@(t,l) multivariate ode(t,l,a11,a12,a21,a22),T,initial values);
41

42 xsteps=2500;
43 x1=linspace(−0.5,0.5,xsteps);%the X's we take at which the pdf is evaluated
44 x2=linspace(−1,1,xsteps);
45 Y=zeros([xsteps,xsteps]);
46

47 %constructing the log−polynomial pdf and plotting the distributions over time
48 for i=1:length(Tout)
49 for k=1:xsteps %going through all values of x1
50 for j=1:xsteps %going through all values of x2
51 P=L(i,1)+L(i,2)*(x1(k).ˆ2)+L(i,3)*(x2(j).ˆ2)+L(i,4)*x1(k) ...

+L(i,5)*x2(j)+L(i,6)*x1(k)*x2(j);
52 Y(k,j)=exp(P); % the matrix conatining the value of the pdf at ...

each x1 and x2
53 end
54 end
55 s=surf(x1,x2,Y)
56 s.EdgeColor='none';
57 pause(0.5)
58 end

16

1 function dlambdadt = multivariate ode(t,l,a11,a12,a21,a22)
2 %This function is used to calculate each individual lambda from the ...

lambda script multivariate script.
3 dlambdadt = ...

[−a11−a22;−2*a11*l(2)−a21*l(6);−a12*l(6)−2*a22*l(3);−a11*l(4)−a21*l(5);
4 −a22*l(5)−a12*l(4);−a11*l(6)−2*a12*l(2)−2*a21*l(3)−a22*l(6)];
5 % the ode's that need to be solved in order of lambda 0, lambda 1, ...

lambda 2, lambda 11, lambda 22, lambda 12.
6

7 % the resulting L matrix will have the order [lambda 0 lambda 1 lambda 2 ...
lambda 11 lambda 22 lambda 12]

8 end

Lambda Ordinary Differential Equations

1 d = 2; % we are considering 2−D systems
2 X = {};
3 maxdeg = 4; % this is the maximum degree of a polynomial in two variables
4

5 % We need to generate all monomials of d variables of degree less than or
6 % equal to k. The loop below does this operation
7

8 for k = 0:maxdeg
9 x=sym('x',[d,1]);

10 m = nchoosek(k+d−1,d−1); %the number of combinations of k+d−1 items ...
taken d−1 at a time

11 dividers = [zeros(m,1),nchoosek((1:(k+d−1))',d−1),ones(m,1)*(k+d)];
12 a = diff(dividers,1,2)−1; %calculating the first−order difference ...

between the columns, where 1 is substracted from the second columns ...
evaluated each time

13 PBase = cell(1, size(a,1));
14 for i = 1:size(a,1)
15 PBase{i} = prod(x.' .ˆ a(i,:));
16 end
17 X = [X PBase]; %monomials
18 end
19

20 % Building the log−density function logP, a polynomial of degree maxdeg in ...
d variables

21

22 L = sym('L',[length(X),1]); % we generate as many lambda coefficients as ...
monomials

23 syms P real
24 logP = 0;
25 for n = 1:length(X)
26 logP = logP + L(n)*X{n};
27 end
28

29 % We define a linear dynamical system in two dimensions, needs to change ...
for higher dimensions

30 syms a11 a12 a21 a22 real
31 A = [[a11 a12];[a21 a22]];
32 F = A*x; % this line writes the right−hand side of the system equations
33

34 % With the log−density and the system equations ready, we calculate the
35 % term F(x)*dlogP/dx which comes from the Liouville equation
36

37 Dp = expand(F(1)*diff(logP,x(1))+F(2)*diff(logP,x(2)));
38

39 [Coefs dp,Mono dp] = coeffs(Dp,x); % extract the monomial coefficients of Dp
40

41 % build the right−hand side of the lambda ODEs
42 % −F(x)*dlogP/dx − trace(A)
43 Coefs dp = [−trace(A) −Coefs dp]';

17

44 %%
45 % up to here, all calculations were done with symbols. Now we need to
46 % substitute the actual system parameters in the equations...
47 Coefs dp = subs(Coefs dp,{a11,a12,a21,a22},[−1 0.1 0.2 −2]); %the righthand ...

side in the system of ODEs to solve for the lambdas
48 % and finally we convert the vector Coefs dp into a Matlab function
49 % which takes the vector of Lambdas as input and returns the value of the
50 % right−hand side of the lambda ODEs.
51 syms t real
52

53 % CAREFUL: order of L elements needs to correspond to the order of the ...
monomials (according to line 26)!

54 Lambda fun = ...
matlabFunction(Coefs dp,'Vars',{t,[L(1);L(15);L(14);L(10);L(13);L(9); ...
L(6);L(12);L(8);L(5);L(3);L(11);L(7);L(4);L(2)]}); %L(:) order is the ...
corresponding to the order of Mono dp mononomials.

55

56 % The function Lambda fun takes an argument L (a set of coefficients of the
57 % initial log−density logP) and returns the right−hand side of the lambda
58 % ODEs. It can be called by writing Lambda fun(lambda0), where lambda0 is a
59 % column vector of lambda values.
60

61 % Note: The order of the lambda coefficients is provided by the vector
62 % Mono dp. This is useful for building the initial density of the system
63 % (i.e. the initial values of the lambdas).
64 % This order of lambdas should also be kept in mind when defining the
65 % initial condition below
66

67 lambda0=[0;0;0;0;0;0;−1;0;0;−0.2;0;0;0;−1;−2];
68

69 t end = 3; % final simulation time (let's assume that t0 = 0 for simplicity)
70 steps = 20; %number of steps to take
71 T = linspace(0,t end,steps); % this line creates the vector of simulation times
72

73 [Tout,La]=ode45(Lambda fun,T,lambda0);
74 %% Simulating the density graph
75 if d==2
76 xsteps=1000;
77 xleft=−3;
78 xright=3;
79 x1=linspace(xleft,xright,xsteps); %the X's we take at which the pdf is ...

evaluated
80 x2=linspace(xleft,xright,xsteps);
81 [X1,X2] = meshgrid(x1,x2);
82

83 for i=1:length(Tout) % fill in here until which time we want to see the ...
distribution evolve

84 % Another point to pay attention: when reconstructing P, the La's are ...
used in the order in which they

85 % appear in the La vector. In this way La(i,2) corresponds to L15, ...
which is the correct

86 % coefficient for x1ˆ4
87 P = La(i,1)+La(i,2)*(X1.ˆ4)+La(i,3)*((X1.ˆ3).*X2)+La(i,4)*(X1.ˆ3) ...

+La(i,5)*((X1.ˆ2).*(X2.ˆ2))+La(i,6)*((X1.ˆ2).*X2)+La(i,7)*(X1.ˆ2) ...
+La(i,8)*(X1.*(X2.ˆ3))+La(i,9)*(X1.*(X2.ˆ2))+La(i,10)*(X1.*X2) ...
+La(i,11)*X1+La(i,12)*(X2.ˆ4)+La(i,13)*(X2.ˆ3)+La(i,14)*(X2.ˆ2) ...
+La(i,15)*X2;

88 Y = exp(P); % the matrix containing the value of the pdf at each x1 ...
and x2

89 s = surf(X1,X2,Y);
90 shading interp
91 view(2)
92 pause(0.1)
93 end
94 end

18

References

[1] Virginia W. Noonburg. Differential equations : from calculus to dynamical systems,
volume 43. Providence, Rhode Island : MAA Press, an imprint of the American Math-
ematical Society, 2019.

[2] Matthew A. Carlton and Jay L. Devore. Probability with Applications in Engineering,
Science, and Technology. Springer New York, 2014.

[3] Martin Ehrendorfer. The liouville equation in atmospheric predictability. In Seminar
on Predictability of weather and climate, 9-13 September 2002, pages 47–81, Shinfield
Park, Reading, 2003. ECMWF, ECMWF.

[4] Brian P Ingalls. Mathematical modeling in systems biology : an introduction. Cambridge,
MA : The MIT Press, 2013.

19

