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A traveling-wave Stark decelerator makes use of inhomogeneous electric fields
to decelerate neutral polar molecules. So far, mostly numerical results exist
on the fields and behaviour of particles inside the decelerator. However, since
these results are numerically generated using simulations, a full understanding
of the results may be overlooked. In order to expand the understanding of and
improve simulations on the mechanics of the setup, some analytic models are
studied. These models include a function for the electric and effective fields
as well as a one-dimensional analysis on the phasespace stability of molecules.
Under a few approximations, the one-dimensional equation of motion is shown
to be isomorphic to that of a biased pendulum.
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1 Introduction

The Stark effect describes the perturbation of atomic and molecular energy lev-
els due to an external electric field. Much like the Zeeman effect for magnetic
fields, the Stark effect causes energy levels to shift and degenerate levels to
split. By making use of an inhomogeneous electric field, an effective force can
be exerted on a particle. A Stark decelerator exploits this feature in order to
decelerate polar molecules as to decrease their (directional) temperature.

Interest for cold molecules is found in many areas of research such as quan-
tum computation[11], collision dynamics[4], high-resolution spectroscopy[2] or
measurements on the permanent electric dipole moment of an electron[1].

The aim of this project is to look into analytic models that can be used to
describe the fields and the behaviour/stability of molecules in a Stark decelera-
tor. In particular, the traveling-wave Stark decelerator described in section 2.1.
Where necessary, the analyses will be supplemented by numerically generated
graphics and solutions. Building a better model for the fields and the stability
of particles greatly helps in understanding their behaviour as well as to optimize
and improve numerical simulations.

The report will begin to consider the working principles and constraints of a
Stark decelerator in section 2. Following are two examples of a Stark deceler-
ator in sections 2.1 and 2.2, the first of which has been at the center of this
project. Both examples have had a significant contribution to the results pre-
sented in this report. In section 3 a fully analytical description of the electric
field inside the traveling-wave decelerator is derived. Using a simplified notation
for the Stark energy, the effective fields and forces as experienced by particles
is discussed in section 4. Once the effective fields are obtained, the equation
of motion and stability is analyzed for particles confined to the central axis of
the decelerator in section 5. This is the so-called one-dimensional case. The
behaviour is explained through the isomorphism of the equation of motion and
that of a biased pendulum.
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2 Working Principles

A Stark decelerator can be used to control the longitudinal velocity of a particle
beam. Results are obtained by creating a spatially oscillating electric poten-
tial that forms local minima in the electric field strength. These local minima
function as traps for particles in a low field seeking (LFS) state. By decreasing
(or increasing) the oscillation frequency of the field, particles can be made to
decelerate (or accelerate).

Following Earnshaw’s theorem an electrostatic field cannot obtain a local max-
imum. This has the consequence that similar traps for high field seeking (HFS)
states do not exist. As a result, HFS states in a Stark decelerator are highly
unstable. Therefore, mainly LFS states will be considered, unless specified oth-
erwise.

2.1 Traveling-wave Stark Decelerator

The decelerator at the center of this project is the traveling-wave decelerator
in Groningen[9]. In the traveling-wave decelerator a large series of circular
electrodes is used. Every eighth electrode is electrically connected and hence
will carry the same charge. By tuning the charge on the electrodes, three-
dimensional electrostatic traps are formed. By including a temporal dependence
of the charge, these traps are made to move at a desired speed along the de-
celerator. A schematic of the setup is shown in figure 1. In figure 2 a contour

Figure 1: Schematic of a traveling-wave Stark decelerator[10]. (Please
note that the figure is slightly outdated and additional modules have been
added up to a length of 4.5m.)

and density plot of the electric field strength inside the decelerator is shown.
The figure shows a snapshot for one moment in time. A further analysis of the
behaviour of the field is given in section 3 and in particular sections 3.2 and 3.4.
An overview of the technical details relevant to this report is given in table 1.
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Figure 2: Three dimensional traps in a traveling-wave decelerator. The
cylindrical invariance of the system allows for a two-dimensional plot.
Here, s denotes the radial distance, z the position on the central-axis
and R the radius of the circular electrodes.

Description Symbol Value
ring radius R 2 mm

ring interval d 1.5 mm
charge amplitude V0 ∼ 1− 10 kV

modulation function aτ sin( τπ4 − ω(t)t+ δ)

Table 1: Some configuration of the traveling-wave Stark decelerator[18].
The variables given were used in producing the graphics of this report.
The modulation function determines the relative charge on each ring,
with τ ∈ [0, 7] (see section 3.2).

2.2 Standing-wave Stark Decelerator

Another example of a Stark decelerator is the standing-wave decelerator used
in Berlin[3]. This decelerator makes use of a long series of stages where every
other stage is electrically connected. Each stage consists of two metal rods place
suspended on both sides of the beam axis. By charging and grounding the rods
alternately, the electric field is switched between two configurations. This has
the effect of creating a standing wave along the beam trajectory. A schematic
of the setup is shown in figure 3. Through a Fourier series expansion, the field
is described as a series of traveling waves. According to [8], the motion of a
particle is then almost solely determined by the by the wave traveling with the
average velocity of the particle.

5



Figure 3: Schematic of a standing-wave Stark decelerator[16].

3 Beam Environment

Before one can begin to describe the behaviour of particles in the field of a Stark
decelerator, it is first necessary to find an expression for the field itself. The
superposition of the electric potential[6] allows for the total field to be described
by the addition of the contributions of each electrode individually. The aim of
this section is to find an expression for the electric field in a building-up manner.

3.1 Single Ring Field

The smallest sub-components of the decelerator consist of the small circular
electrodes. In general, the electric potential due to some arbitrary distribution
of charge is obtained by

V (~r) =
1

4πε0

∫
ρ(~r′)

|~r − ~r′|
d3r′,

where ρ(~r′) denotes the charge density distribution function. Given the cylin-
drical symmetry of the electrodes, it is more convenient to work with cylindrical
coordinates. That is, d3r′ → Rdϕ′, with R the (fixed) radius of one ring and
~r = ~0 at the center of the ring. Then

V (~r) =
1

4πε0

2π∫
0

ρ(~r′)

|~r − ~r′|
Rdϕ′.
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Assuming a uniform charge distribution on the ring, the charge density can be
pulled through the integral to get

V (~r) =
ρ

4πε0

2π∫
0

1

|~r − ~r′|
dϕ′.

Before continuing, it is good to first rewrite the integrand into a more feasible
form. Using the cylindrical coordinates s for radial distance, z for the position
along the central axis and ϕ for the angular direction. The ring is then fully
positioned in the xy-plane, such that z′ = 0.

|~r − ~r′| =
√

(x− x′)2 + (y − y′)2 + (z − 0)2,

=
√

(s cosϕ−R cosϕ′)2 + (s sinϕ−R sinϕ′)2 + z2,

=
√
s2 +R2 + z2 − 2sR(cosϕ cosϕ′ + sinϕ sinϕ′),

=
√
s2 +R2 + z2 − 2sR cos(ϕ− ϕ′).

Substituting this back into the integral gives

V (s, ϕ, z) =
ρ

4πε0

2π∫
0

1√
s2 +R2 + z2 − 2sR cos(ϕ− ϕ′)

dϕ′.

By exploiting the identity that the cosine function is an even function, one can
half the integral size to

V (s, ϕ, z) =
ρ

2πε0

ϕ+π∫
ϕ

1√
s2 +R2 + z2 − 2sR cos(ϕ− ϕ′)

dϕ′.

To finish, by making use of the cylindrical invariance of the system under rota-
tions ϕ, the field due to a single ring becomes

VR(s, z) =
ρ

2πε0

π∫
0

1√
R2 + s2 + z2 − 2sR cosϕ

dϕ, (1)

where the original ϕ′ has now been replaced by the symbol ϕ. To make clear
that equation (1) refers to the field following a single ring, the subscript R will
be included from now on.

The electric field is then obtained by taking the negative gradient of the poten-
tial ~E = −~∇VR, with ~∇V = ∂sV ŝ+ 1

s∂φV φ̂+ ∂zV ẑ the gradient in cylindrical
coordinates. Then

~ER = − ρ

2πε0

π∫
0

(s−R cosϕ)ŝ+ zẑ

(R2 + s2 + z2 − 2sR cosϕ)3/2
dϕ. (2)
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An overview of the graphs following equations (1) and (2) is given in figure 4.

(1a) (2a)

(1b) (2b)

Figure 4: (1a) Density plot of the electric potential, equation (1); (1b)
3D visualization of subfigure 1a; (2a) Density plot of the electric field
strength, equation (2); (2b) 3D visualization of subfigure 2a. The elec-
tric field disappears at z = s = 0. Both graphs diverge at the ring
position (z = 0; s = ±R).

3.2 Ring Array Field

In the decelerator, every eighth ring of the array is electrically connected. Each
ring can thus be recognized by two indices:

Period σ: {x ∈ Z} A period is a set of 8 consecutive rings.
Type τ : {x ∈ Z|0 ≤ x ≤ 7} Every ring of the same type is connected.

The potential due to an individual ring on the array is then written as a trans-
lation and a modulation of equation (1)

Vσ,τ (s, z) = aτVR(s, z − (8σ + τ)d), (3)

with d the distance between two consecutive rings and −1 ≤ aτ ≤ 1 a parameter
used to modulate the electric charge. Whenever an index is left out, a summa-
tion of this index is understood over its full domain. The full potential due to
the array is thus expressed as

V,(s, z) =

+∞∑
σ=−∞

7∑
τ=0

Vσ,τ (s, z) =

+∞∑
σ=−∞

7∑
τ=0

aτVR(s, z − (8σ + τ)d). (4)
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The coefficients aτ are tuned such that V,(s, z) matches the desired waveform

as closely as possible. Since ~∇ is a linear operator, the electric field is expressed
in a form similar to equation (4) as

~E,(s, z) =

+∞∑
−∞

7∑
τ=0

~Eσ,τ (s, z) =

+∞∑
σ=−∞

7∑
τ=0

aτ ~ER(s, z − (8σ + τ)d). (5)

For aτ = sin( τπ4 − ωt)|t=0, equations (4) and (5) are plotted in figure 5. This
field resembles the configuration currently used in the Stark decelerator. The
shape of one trap through one modulation (that is, from ωt = 0 to ωt = π/4
such that aτ → aτ−1) is shown in figure 6.

Figure 5: Field configuration following equations (4) and (5) with aτ =
sin( τπ4 − ωt) at t = 0.
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Figure 6: Electric field through one modulation.

3.3 Central Axis Field

On the central axis, the field of a single ring, given by equation (2), reduces to

VR(0, z) =
ρ

2πε0

π∫
0

1√
R2 + z2

dϕ =
ρ

2ε0

1√
R2 + z2

.

The field due to the zeroth ring type, according to equation (4), is given by

V,0(0, z) =

+∞∑
σ=−∞

a0VR(0, z − 8σd).

By exploiting its periodicity every 8 rings, the field can be expanded into a
Fourier series of the form[14]

1

a0
V,0(0, z) =

1

2
p0 +

+∞∑
n=1

pn cos
nπz

4d
, (6)

with the coefficients pn given by

pn =
1

4d

4d∫
−4d

1

a0
V,0(0, z) cos

nπz

4d
dz.
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Solving for the coefficients pn
Substituting the zeroth type potential into the integral gives

pn =
1

4d

4d∫
−4d

[ +∞∑
σ=−∞

VR(0, z − 8σd)

]
cos

nπz

4d
dz,

=
1

4d

+∞∑
σ=−∞

4d∫
−4d

VR(0, z − 8σd) cos
nπz

4d
dz.

Translating the integration variable z → z + 8σd gives

=
1

4d

+∞∑
σ=−∞

4d+8σd∫
−4d+8σd

VR(0, z) cos
nπz

4d
dz,

where the cosine has remained unaffected since a shift of 8σd means adding an
integer multiple of 2π. Effectively, this integral evaluates patches of width 8d
of the single ring potential. Putting together all patches into a single integral
gives

=
1

4d

+∞∫
−∞

VR(0, z) cos
nπz

4d
dz,

=
ρ

8dε0

+∞∫
−∞

cos nπz4d√
R2 + z2

dz.

The integral can be rewritten by substitution of uR ≡ z and k ≡ nπR
4d as

=
ρ

8dε0R

+∞∫
−∞

cos ku√
u2 + 1

du.

This equation has the form of the Modified Bessel Function of the Second Kind
and order zero[22]. The coefficients pn can thus be expressed using the Bessel
function K0 as

pn =
ρ

4dε0R
K0

(nπR
4d

)
. (7)

Equation (7) has a decaying behaviour for k → ∞, so for large n. This is
nice, because it means that the central-axis field is mostly described by the first
harmonics in the Fourier expansion. The function K0

(
nπR
4d

)
is plotted in figure

7 and the first 4 coefficients are marked using the configuration described in
table 1.
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Figure 7: K0

(
nπR
4d

)
with markers on the coefficients n = 1, ..., 8 using

the ratio R/d = 4/3 as described in table 1.

Central field expansion
The field of every other type can be obtained by translating equation (6):

1

aτ
V,τ (s, z) =

1

a0
V,0(s, z − τd),

=
1

2
p0 +

+∞∑
n=1

pn cos
nπ(z − τd)

4d
,

=
1

2
p0 +

+∞∑
n=1

pn

{
cos

nπz

4d
cos

nπτ

4
+ sin

nπz

4d
sin

nπτ

4

}
,

=
1

2
p0 +

+∞∑
n=1

pn cos
nπτ

4
cos

nπz

4d
+

+∞∑
n=1

pn sin
nπτ

4
sin

nπz

4d
.

By appropriate summation of the types, this means that the total (central) field
can be written into a Fourier series expansion as

V,(s, z) =
1

2
x0 +

+∞∑
n=1

xn cos
nπz

4d
+

+∞∑
n=1

yn sin
nπz

4d
, (8)

with the coefficients

x0 = p0
∑
τ

aτ = 0, (9)

xn = pn
∑
τ

aτ cos
nπτ

4
, (10)

yn = pn
∑
τ

aτ sin
nπτ

4
. (11)

A big note of caution is to be left at this point, which is that p0 ∝ K0(0)→∞.
This means that the electric potential will blow up unless

∑
τ aτ = 0. However,

since for any practical purposes the electric potential is invariant up to a spatial
constant, one might as well choose the reference p0 = 0 manually.
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3.4 Analytic Field

In the previous subsection, the central axis field was described using a Fourier
series expansion. This section will focus on generalizing that result to the full
region between and through the rings1.

By starting with the Laplace equation for potentials, it is found that in the
absence of a charge

∇2V,(s, z) = 0,

with ∇2V = 1
s∂sV + ∂2sV + ∂2zV in cylindrical coordinates2. By rewriting

V,(s, z) = V (s)
, (s)V (z)

, (z) using separation of variables, this gives

∇2V, = V (z)
,

1

s
∂sV

(s)
, + V (z)

, ∂2sV
(s)
, + V (s)

, ∂2zV
(z)
, = 0,

1

V (s)
,

1

s
∂sV

(s)
, +

1

V (s)
,

∂2sV
(s)
, = − 1

V (z)
,

∂2zV
(z)
, = k2; for some constant k.

Which leads to two ordinary differential equations

s∂sV
(s)
, + s2∂2sV

(s)
, − s2k2V (s)

, = 0, (12)

∂2zV
(z)
, + k2V (z)

, = 0. (13)

For a nonzero k, V (z)
, takes the general solution

V (z)
, (z) = A cos(kz) +B sin(kz); for some constants A and B.

The periodicity of the potential every eight electrodes, V (z)
, (z) = V (z)

, (z + 8d)
put a constraint on k

kz + 2πn = kz + 8kd,

k =
nπ

4d
; n ∈ Z.

Meanwhile, the differential equation for s has the form of the Modified Bessel
Differential Equation[20]. Its solution is then proportional to the Modified
Bessel Function of the First Kind and order zero3[21]:

V (s)
, (s) = CI0(sk); for some constant C,

= C

+∞∑
p=0

( 1
2sk)2p

(p!)2
.

1The following derivations were inspired by [17].
2V (s, z) gives ∇2V = 1

s
∂s(s∂sV ) + 1

s2
∂2
ϕV + ∂2

zV = 1
s
∂sV + ∂2

sV + ∂2
zV .

3Actually, the general solution is a linear combination of the Modified Bessel Function
of the First and Second kind. However, the second kind diverges as (s → 0)[22], which is
assumed not to be the case. (This assumption is also supported by the numerically obtained
solutions shown in figure 5.)
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The full solution of the field is then given by a linear combination of the solutions
with unique k4:

V,(s, z) = A0 +

+∞∑
n=1

AnI0
(nπs

4d

)
cos

nπz

4d
+

+∞∑
n=1

BnI0
(nπs

4d

)
sin

nπz

4d
. (14)

On the central axis (s = 0 =⇒ I0(0) = 1), equation (14) reduces to

V,(0, z) = A0 +

+∞∑
n=1

An cos
nπz

4d
+

+∞∑
n=1

Bn sin
nπz

4d
.

This happens to be the exact same form found in section (3.3), equation (4).
Its coefficients are given by equations (9), (10) and (11). Substituting the coef-
ficients A0 = x0 = 0, An = xn and Bn = yn back into equation (14) gives the
full field inside the decelerator

V,(s, z) =
ρ

4dε0R

+∞∑
n=1

K0

(nπR
4d

)
I0
(nπs

4d

) 7∑
τ=0

aτ

{
cos

nπτ

4
cos

nπz

4d
+ sin

nπτ

4
sin

nπz

4d

}
.

Using trigonometry, the field can be rewritten into the final form

V,(s, z) =
ρ

4dε0R

+∞∑
n=1

K0

(nπR
4d

)
I0
(nπs

4d

) 7∑
τ=0

aτ cos

(
nπ(z − τd)

4d

)
. (15)

Electric Field
The electric field is obtained by taking the negative gradient of equation (15)
in cylindrical coordinates:

E(s)
, (s, z) = +

ρ

4dε0R

+∞∑
n=1

K0

(nπR
4d

)
I1
(nπs

4d

)nπ
4d

7∑
τ=0

aτ cos

(
nπ(z − τd)

4d

)
,

E(z)
, (s, z) = − ρ

4dε0R

+∞∑
n=1

K0

(nπR
4d

)
I0
(nπs

4d

)nπ
4d

7∑
τ=0

aτ sin

(
nπ(z − τd)

4d

)
,

~E, = E(s)
, ŝ+ E(z)

, ẑ. (16)

Where I1(x) is the Modified Bessel Function of the First Kind and first order.
It is related to the zeroth order I0 through

In(x) = Tn(∂x)I0(x),

with Tn(x) the Chebyshev polynomial of the first kind[19]. For n = 1, T1(x) = x
such that I1(x) = ∂xI0(x) simply becomes the first derivative.

4Note that I0
(
nπz
4d

)∣∣
n=0

= 1 and I0(x) = I0(−x), such that a summation over n ∈ N
suffices.
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A note about the boundary fields
Equations (15) and (16) hold under the assumption that there are sufficiently
many rings ahead of and behind the current position on the decelerator. At
the boundaries, the field will get distorted and it will drop off exponentially.
However, for most practical use of equations (15) and (16) this is not so much an
issue. The reason for this is that the decelerator is turned on when the particles
are already sufficiently far into the tube such that they do not experience any
boundary fields.
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4 Effective Field

The full effective field as experienced by the particles is rather complex. For a
proper description, the internal quantum mechanical properties of the atom or
molecule in question need to be specified. However, up to a certain level they
can still be discussed in a more generalized framework. The aim of this section
is to investigate the effective potentials and forces that act on the particles.

4.1 Stark Effect - Classical View

For most analysis in this report, a classical view on the Stark effect suffices.
As will be shown in section 4.2, the quantum mechanical description through
degenerate perturbation theory will fall back to the classical result under a few
feasible approximations.

For the classical model, some charge distribution ρ is considered to be in the
presence of an electric potential V . The energy of the system (due to the exter-
nal field) is then given by the integral

E =

∫
ρ(~r)V (~r)d3r.

As is derived in section 7.1, the electric potential can be recast into a series
expansion around the center of the distribution as

V (~r) = V (~r0 + ~a) = e~a·
~∇V (~r0),

≈ V (~r0) + ~a · ~∇V (~r0) + ...,

= V (~r0)− ~a · ~E(~r0) + ...,

where ~E = −~∇V gives the corresponding electric field. Substituting this back
into the energy intergral gives

E ≈
∫
ρ(~r)V (~r0)d3r −

∫
ρ(~r)~a · ~E(~r0)d3r,

= V (~r0)

∫
ρ(~r)d3r −

(∫
ρ(~r)~a d3r

)
· ~E(~r0),

= QV − ~P · ~E.

The first term gives the zero energy of the particle. Unless the particle is
charged, this term will be zero. The second term gives a relation between the
electric dipole moment ~P of the particle and the external field ~E. This term
gives a simplified expression for the first order Stark energy:

VS = −~P · ~E = (~P · ~∇)V. (17)
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4.2 Stark Effect - Quantum Mechanical View

Although it helps with building a general picture, the classical derivation of
the Stark energy in section 4.1 has its flaws. For instance, equation (17) does
not directly support the existence of LFS states. LFS states would suggest a
negative ~P . However, in the classical view, this will result in a torque causing
the particle to reorient itself with the external field until it does reach a HFS
configuration. To properly explain the existence of LFS states, the use of quan-
tum mechanics becomes necessary.

When present in an electric field, the electronic orbitals of an atom or molecule
are deformed, causing its energy levels to shift and degenerate states to split.
In general, a particle of charge q due to an electric field ~E experiences a force
~F = q ~E. The corresponding energy is found by integrating the force over the
displacement of the particle. Assuming an external field pointing in the ẑ di-
rection, this gives

E = −
∫

~F · d~l = −
∫
qEzdz = −qEzz,

where the particle is assumed to be sufficiently small such that E becomes a con-
stant over the integral. This means that the Hamiltonian obtains a perturbation
of the form

H ′S = −qEzz.

According to equation (43), derived in appendix 7.2, the energy levels of a k-fold
degenerate state will split into

E(1)i =

k∑
j=1

aj
ai
〈ψ(0)
i |H

′
S |ψ

(0)
j 〉 . (18)

When the degeneracy k = 1, as is often the case for molecules, equation (18)
reduces to

E(1) = 〈ψ(0)| − qEzz |ψ(0)〉 = −q 〈ψ(0)| z |ψ(0)〉Ez = −q〈z〉Ez,

where 〈z〉 denotes the expectation value of z, the position of the particle. The
total energy shift is then found by summing the individual charged components
of the particle. This gives∑

i

−qi〈z〉iEz = −
(∑

i

qi〈z〉i
)
Ez = −PzEz = −~P · ~E,

which matches the result found through the classical approach, equation (17).
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4.3 Particle Waterslide

In the simplified model, equation (17) says that the effective field experienced
by a particle becomes linear to the electric field itself. In that case, figures 5
and 6 give a good visualization of the effective fields. With the addition that
the bases may be stretched, squeezed or inverted depending on the direction of
~P .

In section 5 the behaviour of a particle is considered from a frame of reference
that is fixed to the traveling waves. Since these waves decelerate, the frame is of
non-inertial kind. Because of this, the effective field gains an additional inertial
force FI = −ma, with m the mass of the particle and a the acceleration of the
frame. To this force, an effective potential can be assigned of the form

VI(z) = −
∫
FIdl = maz. (19)

The total effective potential experienced by the particles is then given by com-
bining equations (16), (17) and (19). Doing so gives

V(s, z) = VI(z) + (~P · ~∇)V,(s, z) = maz − ~P · ~E,(s, z). (20)

An important note is to be left at this point, and that is that the dependence
of the polarization ~P on the external field heavily affects the resulting shape of
equation (20).

The term maz causes the effective field to tilt, making it look like a bumpy
waterslide where particles slide down to the lowest energy. Either they will
then diverge to the global minimum or get stuck at a local one. Particles of
the latter case are called stable, as they remain confined within their respec-
tive trap. Some simplified shapes of this waterslide are discussed for different
scaling behaviours of ~P on the external field. The examples assume that the
particles do not rotate, and that they are anti-aligned with the external field as
to describe a LFS state. (HFS states are described in the same way, with an
additional minus sign. This amounts to flipping the waterslide upside-down.)

4.3.1 Static Polarization

The most simple situation is described by a static ~P . This represents the per-
manent dipole moment of a sturdy particle, which does not get affected by the
external field. When ~P is a constant, one cannot really speak of Stark shift since
the energy levels do not shift. The Stark energy from equation (17) becomes
directly proportional to the external field. The effective field for this case is
shown in figure 8a. It is to be noted that since a static polarization was chosen
that is always anti-aligned with the external field (LFS), a discontinuity in the
derivative is observed at the central-axis.
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(a) |~P | = constant

(b) |~P | ∝ | ~E,|

Figure 8: Particle waterslides following a static and a linear polariza-
tion. Depending on the initial velocity and position of a particle, it will
either get stuck in a local minimum (trap) or slide down indefinitely.

4.3.2 Linear Polarization

In the situation where the polarization ~P is mostly linearly proportional to the
external field, as is the case for linear dielectrics, the Stark energy becomes
quadratic to the external field:

VS(s, z) = maz − ~P · ~E,(s, z) = maz − ε0χeE2
, (s, z), for some constant χe.

The effective potential fitting a linear polarization is shown in figure 8b. As can
be seen, compared to the static case, the waves become much more pronounced.
This has the result that linear particles can be decelerated much faster than
statically polarized particles. (Increasing the deceleration/acceleration amounts
to tilting the graph further.)

4.3.3 BaF Field

A more realistic example can be illustrated using the energy levels of barium-
fluoride. Figure 9 shows the energy of several levels as a function of the exter-
nal field strength. Note that only the |1, 0〉, |2, 1〉 and |2, 2〉 states have a LFS
component. These components can be used to decelerate the molecule in the
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decelerator.

In figure 9c, the maximum electric field strength at s/R = 0.8 was set to match
that at the maximum of the |1, 0〉 curve in figure 9a. The smooth start of the
curve causes regions of low field strength to take the same energy. As a result,
the trap size becomes stretched. Meanwhile, around the maximum of the curve
the energy becomes (almost) constant for a while. This explains the seemingly
constant energy between two consecutive traps in figure 9c.

If the overall electric field strength is set to be too high, HFS components of the
Stark curve will start to drop within the range of the field. This has the effect
of decreasing the stability. Similarly, due to the flat start of the LFS states a
field that is too weak will cause the barrier between traps to decrease in height.
This also has the effect of reducing the stability.

(a) Energy levels in BaF[12].

(b) Electric field strength.

(c) Effective field corresponding to
the |1, 0〉 state.

Figure 9: Stark energy in bariumfluoride.
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5 One-Dimensional Motion

In this section statically polarized particles are considered that are fixed to the
central axis and due to a perfect harmonic field. Despite these seemingly radical
approximations, many of key characteristics regarding behaviour and stability
of the particles can be explained.

5.1 Equation of Motion

In constructing the equation of motion, a frame of reference will be used that is
fixed to the traveling waves of the decelerator. The total effective potential is
given by equation (20). Combined with the kinetic energy of a particle of mass
m, this gives the Lagrangian

L =
1

2
mż2 − Pz∂zV,(z)−maz. (21)

The equation of motion is then found by solving the Euler-Lagrange equation
[dt∂ż − ∂z]L = 0:

mz̈ + Pz∂
2
zV,(z) +ma = 0. (22)

5.1.1 Phase Position

In analyzing the equation of motion, it is more convenient not to talk of the
position z, but rather about the relative phase φ with respect to the surrounding
wave. The phase φ of a particle is obtained by re-scaling the z axis following

φ ≡ 2π

λ
z; z =

λ

2π
φ.

This means the differentials are adjusted accordingly

dφ ≡
d

dφ
=

d
2π
λ dz

=
λ

2π
dz; dz =

2π

λ
dφ.

And also the dipole moment will need a makeover as to give

Pφ ≡
2π

λ
Pz.

Rewriting the equation of motion, equation (22), using the phase position rather
than z gives

mλ2

4π2
φ̈+ Pφ∂

2
φV,(φ) +

maλ

2π
= 0. (23)
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Figure 10: A biased pendulum with a rigid bob of length R and a mass
M at its and. The pendulum has a string wrapped around its axis of
rotation, at radius r, and a second mass m suspended at one end of the
string. The rod and the string are considered to be massless.

5.1.2 First Harmonic

As a first approximation, the electric potential will be described by a single
harmonic of wavelength λ = 8d. The effective field from equation (20) then
becomes

V(φ) =
maλ

2π
φ− V0Pφ sinφ, (24)

and the equation of motion takes the form

mλ2

4π2
φ̈− V0Pφ cosφ+

maλ

2π
= 0. (25)

5.2 Biased Pendulum

In turns out that the equation of motion (25) is isomorphic to the equation of
motion of a biased pendulum[5]. That is, a regular pendulum with a string
wrapped around its axis of rotation and a mass hanging down one end of the
string. The pendulum itself consists of a rigid bob with another mass placed at
its end. A schematic is shown in figure 10.

The pendulum is confined to move on the xy-plane, which gives the system
2 degrees of freedom. However, since x2 + y2 = R2, one degree drops out leav-
ing the system one-dimensional. Just the angle φ is enough to describe the full
state of the pendulum. So before going into the equation of motion, it is worth
to first express the coordinates (xM ,yM ,xm,ym) and their derivatives in terms
of φ following the orientation of figure 10:
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xM = R cosφ ; ẋM = −Rφ̇ sinφ,

yM = R sinφ ; ẏM = Rφ̇ cosφ,
; ẋm = 0,

ym = −rφ+ ym,0 ; ẏm = −rφ̇.

The kinetic and potential energy of the pendulum are then given by

KM =
1

2
M(ẋ2M + ẏ2M ) =

1

2
MR2φ̇2,

VM = MgyM = MgR sinφ.

For the bias, these energies are given by5

Km =
1

2
m(ẋ2m + ẏ2m) =

1

2
mr2φ̇2,

Vm = mgym = −mgrφ.

Combining the energies gives the Lagrangian

L =
1

2
(MR2 +mr2)φ̇2 −MgR sinφ+mgrφ. (26)

Solving the Euler-Lagrange equation [dt∂φ̇ − ∂φ]L gives the equation of motion

(MR2 +mr2)φ̈+MgR cosφ−mgr = 0. (27)

5.2.1 Isomorphism of the Equation of Motion

Both the equation of motion of a particle in the decelerator (equation (25)) as
well as that of the biased pendulum (equation (27)) are of the form

Aφ̈+B cosφ− C = 0, (28)

with positive constants A, B and C for LFS states (Pφ < 0) in a decelerator
(a < 0). By comparing the equations of motion6

(MR2 +mr2) ∼ m′λ2

4π2
= A, (29)

MgR ∼ −V0Pφ = B, (30)

mgr ∼ −m
′aλ

2π
= C, (31)

it can be seen that both systems are effectively described by a perturbed pen-
dulum. Indeed, setting m = 0 and a = 0 both have the same effect by turning

5Actually there should be a factor mgym,0 added to the potential energy to take care of
the zero-length energy of the bias. However, since the Lagrangian and as such the equation
of motion both depend only on the derivative of the energy, I will sneak this constant to zero.

6The mass of the particle in the decelerator here will be written as m′ instead of m as to
not confuse it with the mass of the bias in the biased pendulum.
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the equations of motion into a simple harmonic oscillator problem. So the effect
of including the bias to the biased pendulum is what describes the inertial force
in the non-inertial frame of the wave.

The potential energy from equation (24) is then give by

V(φ) = B sinφ− Cφ. (32)

Or for a more generalized potential:

V(φ) = B∂φṼ,(φ)− Cφ, (33)

where Ṽ,(φ) = 1
V0
V,(φ) is the normalized potential. The kinetic energy is ex-

pressed as

K(φ̇) =
1

2
Aφ̇2. (34)

5.2.2 Alternative Orientations

Although equation (27) can be used to describe the behaviour of particles in
LFS as well as HFS in both a decelerator or an accelerator, additional orien-
tations exist to make the isomorphism more intuitive. From equation (31) it
can already be guessed that going from a decelerator (a < 0) to an accelerator
(a > 0) amounts to turning the bias mass m or the radius r negative. A similar
reasoning can be used with equation (30) where a HFS state amounts to flipping
the sign of Pφ. In order for the pendulum to make for a sensible analogy, m, M ,
r and R all need to be positive. (Imagining a negative mass or negative radius
puts away with the intuition.)

What it means to change from a decelerator to an accelerating configuration
is to flip the direction of the inertial/bias force, equation (31). Placing the bias
at the other end of the pendulum ensures that the pendulum has again all pos-
itive parameters.

Changing the particles from LFS states to HFS states amounts to flipping the
sign of the restoring force, equation (30). This can be achieved by a change of
basis φ → −φ since this will flip the sign of the second term in equation (27).
This basis transformation keeps the rest of the equations invariant, except for
the bias potential energy7. So when changing from a LFS configuration to a
HFS state, the bias must also be placed at the other end of the pendulum.

An overview of the different pendulum orientations and their corresponding
configurations for the decelerator/accelerator are given in figure 11. Their equa-
tions of motion are given by equation (28) where A, B and C are found in table
2.

7Note that the kinetic energies depend only on the square.
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Figure 11: Four orientations of the biased pendulum to fit the differ-
ent configurations of the accelerator/decelerator. The orientations are
chosen as to make their isomorphism intuitively fitting.

5.3 Phase Stability

In the following analysis, a two-dimensional phasespace will be considered using
the phase and its derivative (φ, φ̇). According to Liouville’s theorem[15], in a
system where the forces are determined solemnly by a potential as a function
of position, the phasespace particle density remains constant. This has the
consequence that two particle trajectories in phasespace never cross. If two
different particles share the same phasespace coordinates at some different time,
then these particles are equivalent up to a translation in time.

5.3.1 Equilibrium States

Just like an ordinary, non-biased pendulum, the biased pendulum has two equi-
librium points. A stable and an unstable one. This corresponds to two particles
of constant phase per wavelength in the decelerator. These points can be found
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A B C
LFS Decelerated (MR2 +mr2) MgR mgr
LFS Accelerated (MR2 +mr2) MgR −mgr
HFS Decelerated (MR2 +mr2) −MgR −mgr
HFS Accelerated (MR2 +mr2) −MgR mgr

Table 2: terms corresponding to A, B and C for different orientations
of the biased pendulum.

by setting φ̇ = 0 and φ̈ = 0 in the equation of motion (28):

B cosφ− C = 0 =⇒ cosφ =
C

B
,

which has solutions for

φ1 = cos−1
C

B
= cos−1

maλ

2πV0Pφ
,

φ2 = 2π − φ1.

One of these determines the stable and the other the unstable equilibrium.
Which becomes which depends on the sign of a and Pφ. (That is, LFS/HFS
and deceleration/acceleration.) From this moment, the stable equilibrium will
be referred to as φs and the unstable or tipping point using φu = 2π − φs.

5.3.2 One-Dimensional Traps

For particles whose initial velocity is zero, the stability can be directly derived
by looking at the potential. The total potential energy in the decelerator is
given by equation (32):

V = B sinφ− Cφ,
1

B
V = sinφ− C

B
φ,

= sinφ− φ cosφ1. (35)

Equation (35) looks like a sine that is slightly tilted. Actually, this is precisely
what was shown in section 4.3 where the full three-dimensional potential was
shown to be a tilted wave. Equation (35) is plotted in figure 12. A particle
with initial phase φ0 is stable if it lies between two local maxima whose en-
ergy is higher than that at φ0. When tracking the motion of the particle, it will
either oscillate in a local minimum (stable) or slide down indefinitely (unstable).

The equilibrium points split each wavelength into two regions, a stable and an
unstable region. The size of these regions depends on the inclination cosφ1 = C

B ,
which depends on the acceleration a/the mass of the bias m (equation (31)). If
there is no acceleration, the slope disappears and the system acts like a normal
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pendulum (see figure 12, φs = 1
2π). But when the acceleration is too large (∼

the bias is too heavy), any local minima will disappear and particles will be
bound to slide forever (see figure 12, φs = 0).

Figure 12: Total potential energy in the biased pendulum as a function
of φ. Stable equilibria for φ ∈ [0, 2π] are marked by red dots.

5.3.3 Phasespace Trajectories

As a final extension to complete the one-dimensional stability, particles with
non-zero initial velocity are considered. As mentioned in the opening of this
subsection, through Liouville’s theorem, two particle trajectories never cross.
This means that any particle with non-zero initial velocity can be related to a
particle with zero initial velocity by means of a time translation. The moment
when a particle has zero velocity is called the turning point. In figure 13, a
flowmap is shown of the phasespace trajectories. Shown in red is the separatrix,
the boundary between the stable and unstable regions in phasespace. Figure 14
shows the same graph for different values of the acceleration. Both graphs were
drawn by numerical integration of the equation of motion (28) with C ∝ a.

Figure 13: Some particle trajectories in (φ, φ̇) phasespace. Shown in
red is the separatrix, which is the boundary between stable and unstable
regions. Particles in the bottom half (φ̇ < 0) will propagate left and
particles on the top half (φ̇ > 0) follow the contour lines right.
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Figure 14: Some particle trajectories in (φ, φ̇) phasespace. The acceler-
ation is varied in each plot following a1 > 0 > a3 > a4. As the absolute
value of the acceleration increases, the separatrix (and as such the region
of stability) grows smaller.

From figures 13 and 14 it can be seen that every path crosses the (φ̇ = 0)
axis at least once. The crossing is called the turning point. Every particle can
be related to a turning point either by a positive time translation or a (hypo-
thetical) negative one, even if the particle in reality has never reached these
coordinates.

To mathematically determine whether a particle is stable or not, consider a
particle at the phasespace coordinates (φ, φ̇). Its energy is given by

E(φ, φ̇) = K(φ̇) + V(φ) =
1

2
Aφ̇2 + Cφ−B sinφ.

Since the total energy is conserved8, this gives

φ̇2 =
2

A

[
E − Cφ+B sinφ

]
. (36)

Equation (36) essentially describes the flow of a particle with energy E in (φ,
φ̇) phasespace. Its graph is symmetric through φ̇ = 0. The paths with equal
energy may be defined on several intervals. If the interval is closed, the path
has to return to itself and is therefore stable. However, if the path is open on
one end, the path is able to diverge and the particle is unstable.

To take as example the path of a particle with total energy E = 0, which is

8In the non-inertial frame of the wave, at least.
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defined when

−Cφ+B sinφ > 0,

sinφ > φ cosφ1. (37)

In the case that cosφ1 = C
B = −0.12, the graph is defined on three intervals;

two closed (stable) intervals and one open (unstable) one. These paths are
illustrated in figure 15.

Figure 15: Phasespace trajectories drawn for three paths with the same
energy following equations (36) and (37).
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6 Conclusion

In conclusion, for this project the aim was to find and describe analytic models
for the fields and behaviour of molecules in a traveling-wave Stark decelerator.
Finding such models began by studying the working principles of a Stark decel-
erator as well as some fundamental statements regarding stability of states and
Earnshaw’s theorem.

An analytic description was found for the electric potential and the electric
field. By making use of a Fourier series expansion in combination with Laplace’s
equation in cylindrical coordinates, a vectorfield expression for the electric field
was found. The only approximation taken in this model is for the ring thickness
to be negligible.

Using the electric field and a simplified expression for the Stark energy, the
effective fields were discussed as experienced by the particles. For particles
fixed to the central-axis, the behaviour of a particle seems to become similar to
that of an oscillator. By approximating the field to be harmonic, the problem
becomes isomorphic to a biased pendulum. Using this analogy some of the phas-
espace stability features were discussed. These features are expected to help in
understanding the three-dimensional stability.

6.1 Outlook

The analytic analysis is however far from finished. With the limited amount
of time granted to this project, many questions and applications remain unex-
plored. As a continuation of this project, several improvements/extensions can
be made to the current analysis.

One such improvement would be to look for approximations of the field equation
as to make it computationally more friendly. (For instance, the Bessel function
in figure 7 seems mostly linear along the coefficients.) It would also be worth
to look into the difference between the field equation (16) and numerical results
that do take into account the finite thickness of the electrodes. The project can
be extended by continuing the stability analysis up to three dimensions.

The models described in this project can be used to improve the efficiency and
accuracy of simulations. Many of the pictures used in this project as well as nu-
merical validation of the models was done by means of parallel computation on
a graphics card. Currently, simulations on the Stark decelerator are performed
using a combination of C and Python[13]. It is expected that computational
time can be greatly decreased not only by replacing some numerical parts with
analytic descriptions, but also by introducing parallel computational methods.
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7 Appendix

7.1 Multivariable Taylor Expansion

When describing a complicated function in the neighbourhood of some point,
it can be useful to expand said function into a Taylor series expansion. The
Taylor series of a function expanded around the origin is named a Maclaurin
series. The aim of this section is to build a compact and elegant operator to
expand any scalar field into a series expansion.

A note about derivatives
The derivative operator is defined by its defining relation[14]:

dx ≡
d

dx
,

dxf(x) = lim
h→0

f(x+ h/2)− f(x− h/2)

h
.

Including a translation of the function f(x)→ f(x+ y) gives

dxf(x+ y) = lim
h→0

f(x+ y + h/2)− f(x+ y − h/2)

h
= dyf(x+ y).

Which is to say that it does not matter whether x or y is varied when f is a
function that depends only on the sum of both.

One-Dimensional Expansion
Suppose a function g(t) : R 7→ R. The Maclaurin series of g can be written
as[14]:

g(t) =

+∞∑
n=0

g(n)(0)

n!
tn = g(0) + g′(0)t+

g′′(0)

2!
t2 + ...,

where

g(n)(t) ≡ dn

dtn
g(t) = (dt)

ng(t).

Now, suppose g is a translation of some other function f such that g(t) =
f(x+ t). In that case

g(t) =

+∞∑
n=0

g(n)(0)

n!
tn =

+∞∑
n=0

(dt)
ng(0)

n!
tn =

+∞∑
n=0

(dx)nf(x)

n!
tn =

[ +∞∑
n=0

(tdx)n

n!

]
f(x).

Noting the definition of the exponent ex ≡
+∞∑
n=0

xn

n! , the expansion above can be

cast into a compact form as

f(x+ t) = etdxf(x). (38)

Equation (38) describes the behaviour of f in the neighbourhood of x.
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Multi-Dimensional Expansion
Take some scalar field φ(~r) : Rn 7→ R. This could for instance be the electric
potential. Any point ~r in the neighbourhood of ~r0 can be written as a translation
~r = ~r0 + ât, where â is the unitvector pointing from ~r0 to ~r and t a parameter
to denote the distance. Then

φ(~r) = φ(~r0 + ât) = Φ(t),

which is a scalar function. Evaluation of the derivative of Φ will then be equiv-
alent to computing the directional derivative[14] of φ in the â direction. That
is,

dtΦ(t) = â · ~∇φ(~r).

Expanding Φ(t) into a Maclaurin series gives

Φ(t) =

+∞∑
n=0

Φ(n)(0)

n!
tn =

+∞∑
n=0

(dt)
nΦ(0)

n!
tn =

+∞∑
n=0

(â · ~∇)nφ(~r0)

n!
tn =

[ +∞∑
n=0

(tâ · ~∇)n

n!

]
φ(~r0).

By absorbing t into â and once again noting the definition of the exponent, it
is found that

φ(~r0 + ~a) = e~a·
~∇φ(~r0). (39)

Equation (39) describes how to obtain the Taylor series of a scalar field around
some point ~r0 in the â direction.
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7.2 Degenerate Perturbation Theory

In describing the Stark shift of energy levels in an atom, perturbation theory
starts to play a key role. What follows will be a derivation fitting the energy
shift of a k-fold degenerate state. The derivations are inspired by the two-fold
degeneracy described in[7].

Suppose a k-fold degenerate electronic state. That is,

H(0)ψ
(0)
i = E(0)ψ(0)

i ; i = (1, ..., k), (40)

〈ψ(0)
i |ψ

(0)
j 〉 = δij , (41)

where the superscript (0) denotes the unperturbed case. So H(0) is the unper-

turbed Hamiltonian, ψ
(0)
i the ith eigenstate and E(0) the corresponding energy

(independent of i). Any linear combination of eigenstates

ψ(0) =

k∑
i=1

aiψ
(0)
i , (42)

is still an eigenstate with the same energy E(0). Adding a perturbation λH ′ to
the Hamiltonian gives

H = H(0) + λH ′,

E = E(0) + λE(1) + λ2E(2) + ... ,

ψ = ψ(0) + λψ(1) + λ2ψ(2) + ... ,

where λ is just a temporary coefficient added to keep track of the perturbation
order. Later, its value will be lifted to 1. Then becomes clear that the energy
and the state are a sum of correction orders denoted by the superscript (i) in a
power series. Putting these into the Schrödinger equation gives

Hψ = Eψ,

(H(0) + λH ′)

+∞∑
n=1

λnψ(n) =

+∞∑
n=1

+∞∑
m=1

λn+mE(m)ψ(n).

Collecting like powers of λ gives

H(0)ψ(0) + λ(H ′ψ(0) +H(0)ψ(1)) + ... = E(0)ψ(0) + λ(E(1)ψ(0) + E(0)ψ(1)) + ... .

First-Order Correction
The first term left and right drops out from the unperturbed Schrödinger equa-
tion. Then, λ1 says that

H ′ψ(0) +H(0)ψ(1) = E(1)ψ(0) + E(0)ψ(1).
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Taking an inner product with the ith unperturbed eigenstate:

〈ψ(0)
i |H

′ψ(0)〉+ 〈ψ(0)
i |H

(0)ψ(1)〉 = E(1) 〈ψ(0)
i |ψ

(0)〉+ E(0) 〈ψ(0)
i |ψ

(1)〉 .

Since H(0) is hermitian, it can be moved left in the second term left to cancel
the second term right such that

〈ψ(0)
i |H

′ψ(0)〉+ E(1) 〈ψ(0)
i |ψ

(0)〉 .

Substituting ψ(0) with its linear combination, equation (42), combined with the
orthonormality condition (41) gives

k∑
j=1

aj 〈ψ(0)
i |H

′|ψ(0)
j 〉 = aiE(1),

or

E(1)i =

k∑
j=1

aj
ai
〈ψ(0)
i |H

′|ψ(0)
j 〉 . (43)
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