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Abstract

Using a modeling framework for the purpose of investigating on-line learning
processes in non-stationary environments, we conduct experiments for a num-
ber of different situations. We consider the learning of a regression scheme in
layered neural networks using sigmoidal and ReLU activation. In all situations,
the target, i.e. the regression scheme, changes continuously while the system
is trained from a stream of input data. We run Monte Carlo simulations in
Student-Teacher scenarios equal number of student and teacher units, K = M .
We extend this to the overlearnable case, where K > M . We include weight
decay as a from of explicit forgetting and study its effects with regards to drift.

1 Introduction

Feedforward neural networks are heavily used tools for the purpose of classifi-
cation and regression. Shallow networks of only one hidden layer are already
sufficient to represent non-trivial scalar function of N-dimensional variables [1].
However, the convergence of the training of such networks can be very slow
due to the occurrence of so-called plateau states. In terms of on-line learning in
a student-teacher scenario, the student can get stuck in an unspecialized local
optimum before rapidly specializing to the hidden teacher unit.

In this project, we consider two choices for activation functions in the hidden
units. Conventionally, sigmoidal activation functions have been used, however,
recently ReLU activation has gained popularity, mostly due to improved em-
pirical performance, for example in [2]. Theoretical advantages have also been
shown in [3].

Generally, a machine learning process can be separated into two stages, the
training phase and the test phase [4]. In the training phase, example data is
presented and analyzed, information is extracted and a hypothesis is parame-
terized in terms of a classifier, or a regression scheme. In the following stage,
the working phase, this hypothesis can be tested with novel data. This process
implicitly assumes that the training set does not change, i.e. the statistic prop-
erties of the data and the actual target task remains the same after training.
However, this is not always the case in machine learning tasks and it is not a
plausible assumption with regards to the way learning happens in humans and
other biological processes. In such situations, the learning system must be able
to detect and track concept drift, i.e. forget irrelevant, older information while
continuously adapting to more recent inputs. This process is also known as
continual learning or lifelong learning. The theoretical properties and statisti-
cal mechanics of concept drift have been studied before [5, 6]. In this project,
the focus lies on practical simulations of student-teacher scenarios for the pur-
pose of learning a regression scheme in varying situations.
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2 Models and Methods

In the following sections, we present a student-teacher scenario for the learning
of a regression scheme [7] with shallow feedforward neural networks. We explain
and compare two types of hidden activation units, sigmoidal transfer functions
and the popular rectified linear unit, or ReLU. This project considers gradient-
based training of a Soft Committee Machine in the presence of real concept drift
with the inclusion of weight decay as a mechanism of explicit forgetting.

2.1 Soft Committee Machines

A feedforward neural network with a non-linear activation function, a single
hidden layer and a linear output unit is known as a Soft Committee Machine
(SCM). Its structure resembles that of committee machine with binary threshold
hidden units, where the network’s response is given by their majority vote. The
output of a SCM with K hidden units and fixed hidden-to-output weights can
be defined as

y(ξ) =

K∑
k=1

g(wk · ξ) (1)

where wk denotes the weight vector connecting this input data to the k-th
hidden unit. A non-linear activation function g(x) defines the hidden unit states
and the final output is given as their sum. For the sigmoidal case, this equates
to

g(x) = erf(x/
√

2), g′(x) =

√
2

π
e−x

2/2. (2)

The ReLU activation function is defined as

g(x) = xθ(x), g′(x) = θ(x), (3)

where θ(x) is the step function, defined as

θ(x) =

{
1, if x ≥ 0

0, otherwise.
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(a) (b)

(c) (d)

Figure 1: (a) Sigmoidal activation using the erf function, (b) The first derivative
of erf(x), (c) ReLU activation: xθ(x), (d) The first derivative of the ReLU
activation function: θ(x)

Both activation functions have their advantages and disadvantages [8] and
their characteristics with the inclusion of drift can vary, as shown in section 3.
In Figure 1 we can see the plots of the activation functions and its derivatives.
We observe that the first derivative of the erf function is Gaussian in nature,
while the ReLU derivative is 0 for x < 0 and 1 for x > 0. One property to
account for is the discontinuity of ReLU′(0), in practice, one can choose either
0 or 1 in this situation.

2.1.1 On-Line Learning

The training of a neural network with real-valued output y(ξ) based on examples
{ξµ ∈ RN , τµ ∈ R} is generally guided by the quadratic deviation of the network
output from the rule output. This deviation serves as a cost function which
evaluates the network performance with respect to a single example:

eµ({wk}Kk=1) =
1

2
(yµ − τµ)2 with yµ = y(ξµ). (4)
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In on-line gradient descent, updates of the weight vectors are based on the
presentation of a single example at timestep µ

wµ
k = wµ−1

k + η/N∆wµ
k with ∆wµ

k = − ∂e
µ

∂wk
(5)

where η represents the learning rate. For the SCM architecture specified in Eq.
(1), ∂yµ/∂wk = g′(hµk)ξµ and we obtain

∆wµ
k = −

(
K∑
i=1

g(hµi )− τµ
)
g′(hµk)ξµ (6)

with the inner products hµi = wµ−1
i · ξµ of the current weight vectors with the

next example input in the stream. This change of weight vectors is proportional
to ξµ and can be interpreted as a form of Hebbian learning [4].

2.2 Student-Teacher Scenario

In order to define and model meaningful learning situations we resort to the
consideration of student-teacher scenarios. We assume that the target can be
defined in terms of an SCM with a number M of hidden units and a specific set
of weights {Bm ∈ RN}Mm=1:

τ(ξ) =

M∑
m=1

g(Bm · ξ) and τµ = τ(ξµ) =

M∑
m=1

g(bµm) (7)

with bµm = Bm · ξµ. There are three different student-teacher scenarios with
regards to hidden units. M > K hidden units, an unlearnable target, where
the students can not perfectly align with the teacher. On the contrary, K >
M would correspond to an overlearnable target, also known as overfitting. In
practice, one usually does not know the complexity of the task, making this an
interesting case to study. The last and most studied scenario has K = M , where
the two architectures match and the student has to ability to fully represent the
rule, without any redundancies. In this project, the focus lies on scenarios with
K = M and K > M .

2.3 Order parameters

The many degrees of freedom, i.e. the components of the adaptive vectors, can
be characterized in terms of only very few quantities. The definition of these
so-called order parameters follows naturally from the mathematical structure
of the model. The order parameters quantify the similarity of student weight
vectors with other student weight vectors and the similarity between student
and teacher weight vectors. After presentation of a number µ of examples, the
order parameters are

Rim = wi ·Bm, Qik = wi ·wk m = 1, . . . ,M i, k = 1, . . . ,K. (8)
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2.4 Generalization Error

After training, the success of learning is quantified in terms of the generalization
error εg, which is also given as a function of the order parameters. The gener-
alization error can be defined as the average of the quadratic deviation between
student and teacher output over the isotropic density [5]. For the sigmoidal
case, this equates to

εg =
1

π

[ K∑
i,j=1

sin−1

(
Qij√

1 +Qii
√

1 +Qjj

)

− 2

K∑
i=1

M∑
m=1

sin−1
(

Rim√
1 +Qii

√
2

)]
+
M

6

(9)

For the ReLU case,

εg =
1

2

[ K∑
i,j=1

Qij4
+

√
QiiQjj −Q2

ij

2π
+

Qij sin−1
(

Qij√
QiiQjj

)
2π


− 2

K∑
i=1

M∑
m=1

Rim
4

+

√
Qii −R2

im

2π
+
Rimsin

−1
(
Rim√
Qii

)
2π


+
M

2
+

(M − 1)M

2π

]
.

(10)

Both equations are for orthonormal teacher vectors, where Bm · Bm = 1 and
Bm ·Bn = 0 for m 6= n. Extensions to general teacher vectors exist [9].

2.5 Drift

The models, as explained in the previous sections, concern learning in a sta-
tionary network, where the characteristic vectors Bm do not change during the
course of the training. We would like to extend this to non-stationary envi-
ronments, which can be divided into two categories, virtual drift and real drift.
Virtual drift affects the statistical properties of the observed example data, while
the actual target function remains unchanged. In this project we focus on the
other category, real drift. Here, the actual target changes, i.e. the characteristic
vectors Bm displaces over time. A variety of time-dependencies could be con-
sidered in the model. Important to note is that, in practice, real drift processes
are often accompanied by virtual drift, see [10] for an overview. We restrict our-
selves to the analysis of diffusion-like random displacements of vectors Bm(µ)
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at each time step. Upon presentation of example µ,we assume that random
vectors Bm are generated which satisfy the conditions

Bm(µ) ·Bm(µ− 1) = (1− δ/N)

Bm(µ) ·Bn(µ− 1) = 0, for m 6= n = 0 and |Bm(µ)|2 = 1
(11)

with m,n = 1..M . Here δ quantifies the strength of the drift process. The
orthonormality of the teacher vectors is preserved in the drift.

2.6 Weight Decay

We include weight decay as to enforce explicit forgetting and to potentially
improve the performance of the systems in the presence of real concept drift.
We consider the multiplication of all adaptive vectors by a factor (1 − γ/N)
before the generic learning step given by Eq. (5),

wµ
i = (1− γ/N)wµ−1

i + η/N∆wµ
i . (12)

The multiplications with (1−γ/N) accumulate in the course of training, thereby
enforcing an increased influence of the most recent training data as compared
to earlier examples.

2.7 Methodology

For the purpose of this project, a framework has been developed in which we
can run Monte Carlo simulations. Random input vectors ξ ∈ R are generated
and both student and teacher weights with preset overlap. Here we use

Rim = 0, Qii = 0.5, Qik = 0.49, for i 6= k, (13)

where i, k = 1..K and m = 1..M . This means that the students have no
prior knowledge of the rule and a large amount of overlap between themselves,
resulting in longer plateau states. We use a generalized version of the Gram-
Schmidt method to initialize the overlap. Different parameters can be tweaked
to compare different initializations, the drift strength δ, the learning rate, γ and
the amount of student vectors and hidden teacher units. Furthermore, the total
amount of timesteps µ can be adapted. The resulting graphs generally have
α = µ/N along the x-axis, this scaling corresponds to the assumption that the
number of examples require for successful training is proportional to the number
of degrees of freedom in the system.

3 Results

Here we present the results obtained from the Monte Carlo simulations of on-
line learning with drift. We distinguish between two important cases, firstly,
K = M , the exact case with equal student and teacher vector. We also include
the overrealizable case, K > M , and its relation with concept drift. In all of
the following experiments, we use system size N = 500.
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3.1 K = M

Firstly, we look at the matching case, where K = M = 2 and the two archi-
tectures match. In Figure 2 we can see the generalization error εg over time
for both sigmoidal and ReLU activation. The results are for simulations run
with η = 0.5, α = 800 for sigmoidal activation and α = 150 for ReLU activa-
tion. These results are then averaged over 5 runs. We observe that, as the drift
strength increases, the final generalization error also increases.

(a) (b)

Figure 2: (a) Generalization error for sigmoidal activation, for different δ’s, (b)
ReLU activation

3.2 K > M

In the overrealizable scenario, we can differentiate between two situations. The
case in which K is not a multiple of M , for example, K = 3 and M = 2. The
second situation has K as a multiple of M , K = k ∗M , k ∈ Z+. These two
cases can have interesting variations between them, especially in terms of the
order parameters Rin and Qik.

3.2.1 K Not a Multiple of M

In the sigmoidal case, with K = 3 and M = 2, regardless of drift strength,
two students will specialize to 2 teachers, while one student will get phased out,
specializing to no teachers. This is shown in Figure 3, which displays the plots
of the order parameters Rim. The plot shows the results for simulations with
η = 0.5 and δ = 0.005 and averaged over 5 runs.
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(a)

(b)

Figure 3: (a) Order parameters Rin for sigmoidal activation and K > M ,
without drift, (b) A drift is introduced with δ = 0.005.

In the ReLU case, two different situations occur in the presence of drift. The
first situation being similar to the sigmoidal case, where 2 students will specialize
to 2 teachers, and the remaining students get phased out. In the other situation,
1 student will fully specialize to 1 teacher, while the other 2 students will share
the specialization to the remaining teacher, as shown in Figure 4b and 4a for
η = 0.5 and δ = 0.03. Below these figures we can see the order parameters
Qik, showing overlap between students, here the blue line indicates the overlap
with the first student, red the second and green the third. Because of these 2
differing cases that can occur, these simulations have not been averaged over
multiple runs.



(a)

(b)

(c)

(d)

Figure 4: (a) Order parameters Rin where 1 student is unspecialized, (b) Order
parameters Rin where 2 students share specialization, (c) Order parameters Qik
where 1 student is unspecialized, (d) Order parameters Qik where 2 students
share specialization



3.2.2 K is a Multiple of M

When K = kM , k ∈ Z+, the order parameters mostly simplify. With sigmoidal
activation, the students that are phased out can still have overlap with the
teacher, where 1 student has positive overlap and the other has a negative
overlap, as displayed in Figure 5a with the red line for η = 0.5, δ = 0.005 and
α = 800. For ReLU activation, the situation is essentially identical for all drift
strengths that allow specialization, where 2 students will share 1 teacher unit,
as displayed in 5b, where η = 0.5, δ = 0.05 and α = 150.

3.2.3 Effects of Higher K

As the complexity of the rule is often unknown in practice, situations where
K > M can occur. Furthermore, with the inclusion of drift, it might even
serve more useful to have an overlearnable target. In Figure 6 we can see
the final generalization error as a function of K. In this simulation, we use a
smaller learning rate, η = 0.1. We use α = 1200 for sigmoidal activation and
alpha = 500 for ReLU.

(a) (b)

Figure 6: (a) Final generalization error versus K for sigmoidal, (b) ReLU

3.3 Optimal Learning Rate

Figure 7 shows the optimal learning rate as a function of the generalization error,
for 2 situations. In the first one, K = M = 2, and in the second one, K > M ,
with K = 4 and M = 2. In both cases, α = 800 for sigmoidal and α = 300 for
ReLU. The final generalization error is averaged of the last 75000 timesteps in
which the students have achieved optimal overlap with the teachers.
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(a)

(b)

Figure 5: (a) Order parameters Rin for K = 4, M = 2, the red line shows the
non-specialized students can cancel each other out with positive and negative
overlaps, sigmoidal. (b) Order parameters Rin, K = 4, M = 2 for ReLU
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(a) (b)

(c) (d)

Figure 7: (a) Generalization error versus learning rate, for different δs. Sig-
moidal activation K = M = 2, (b) Sigmoidal activation, K = 4,M = 2, (c)
ReLU activation, K = M = 2, (d) ReLU activation, K = 4,M = 2.

3.4 Effect of Weight Decay

Figure 8 shows the effect if weight decay on the final generalization error for
both ReLU and sigmoidal activation. Here, K = 2,M = 2, η = 0.5, α = 800 for
sigmoidal and α = 300 for ReLU. The final generalization error is again averaged
of the last 75000 timesteps in which the students have achieved optimal overlap
with the teachers.
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(a)
(b)

(c) (d)

Figure 8: (a) Generalization error versus weight decay, ReLU, δ = 0.05, (b)
ReLU, δ = 0.3 (c) Sigmoidal, δ = 0.005, (d) Sigmoidal, δ = 0.03

4 Discussion

Starting with the K = M situation, from Figure 2 we can observe that ReLU
activation is better able to handle real drift. As with sigmoidal activation, for
δ > 0.03, the SCM remains unspecialized and the achievable generalization abil-
ity is quite poor. In the ReLU case, for higher δ’s, it might look like the same is
happening. However, after a rapid decrease, a short plateau is reached and this
symmetry is quickly broken before the system reaches its final generalized state.
This is more clear in the paper by Michiel Straat et al. [5], where a smaller
learning rate is used.

Looking at overlearnable scenario, where we have more students than teacher
vectors, non-trivial situations do occur. There seems to be a notable difference
between sigmoidal and ReLU when K > M and K 6= kM , k ∈ Z+. Sigmoidal
activation will have 2 students specializing to 2 teachers, for all drift strengths
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that still allow specialization. Whereas with ReLU activation, when we include
drift, we can distinguish between 2 cases. The first one being identical to the
sigmoidal case, and the second case, where 2 students can share specialization
of 1 hidden teacher unit. From the order parameters Qik in Figure 4d we can
see that student 1 has no overlap with student 2, while both student 1 and 2
have a small overlap with student 3 which can likely be attributed to the drift.
In the other situation, showcased in Figure 4c we can see that student 1 has no
overlap both student 2 and 3, whereas student 2 and 3 have overlap between
themselves, this is logical, since student 1 specializes to 1 hidden teacher unit
and student 2 share specialization to the other teacher unit. When K is a mul-
tiple of M, the situation simplifies for ReLU. Figure 5b shows that for K = 4
and M = 2, 2 students will share specialization with one teacher and the other
2 students will share specialization with the remaining teacher unit. This is the
case for all drift strengths that still allow specialization.

As shown in Figure 6, it might serve useful to have an overlearnable target.
In practice, one rarely knows the complexity of the rule. So when one suspects
there is drift in the learning process, increasing K to improve generalization can
be considered. A consequence of this is the increased risk of overfitting

In Figure 7, we can see that, for K = 3 and M = 2, the optimal learning
rate with significant drift is around 0,5, for both ReLU and sigmoidal. As
the number of hidden units K increases, lower learning rates are more ideal.
Furthermore, the threshold for divergence will decrease with increasing K, a
learning rate that is too high will not facilitate any progress and the student
weight vectors will actually diverge from the rule.

Looking at Figure 8, we can observe that larger amounts of drift benefit from a
higher value of γ. As ReLU is generally more able to deal with larger drift, it
also benefits more from a higher value of γ in those situations. This is logical,
if a system is highly non-stationary, it has to be more able to forget old data.
Since sigmoidal activation does not handle drifts of δ > 0.01 in a desirable man-
ner, weight decay has little to no effect. For low amounts of drift, any weight
decay actually increases the final generalization error.

5 Outlook

This project focused mostly on the effect of real drift with regards to on-line
learning of a regression scheme using two different activation functions. Espe-
cially, the differences between the matching and overlearnable situations, and
the possible advantages and disadvantages between them. There is a variety of
other relevant possible projects in this field. Here, we present an short summary
of interesting future projects.
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• The comparison of simulations with the theoretical description of the
learning dynamics [5], where N →∞.

• The effect of weight decay and drift on the actual plateau lengths and the
generalization error εp in these plateau states.

• Deterministic concept drifts, similar to the processes in the context of
perceptron training[11–13]. This way, learning from an adversary can be
modelled, where the modification of the target depends explicitly on the
actual student configuration.

• As deep learning [14] has been an interesting topic of research in recent
years, the extension to a deeper SCM architecture, with more than one
hidden layer is an important forthcoming study.

• A more practical approach can be researched, with realistic data streams,
to infer whether the results in this project can be observed in real-world
situations.
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of on-line learning in two-layered neural networks”. In: Journal of Physics
A: Mathematical and General 29.16 (1996), pp. 4769–4780. doi: 10.1088/
0305- 4470/29/16/005. url: https://doi.org/10.1088%2F0305-

4470%2F29%2F16%2F005.

[2] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rec-
tifier Neural Networks”. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. Ed. by Geoffrey Gor-
don, David Dunson, and Miroslav Dud́ık. Vol. 15. Proceedings of Machine
Learning Research. Fort Lauderdale, FL, USA: PMLR, 2011, pp. 315–323.
url: http://proceedings.mlr.press/v15/glorot11a.html.

[3] Michiel Straat and Michael Biehl. “On-line learning dynamics of ReLU
neural networks using statistical physics techniques”. In: CoRR abs/1903.07378
(2019). arXiv: 1903.07378. url: http://arxiv.org/abs/1903.07378.

[4] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of
statistical learning: data mining, inference and prediction. 2nd ed. Springer,
2009. url: http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

[5] Michiel Straat et al. “Statistical Mechanics of On-Line Learning Under
Concept Drift”. In: Entropy 20 (Oct. 2018), p. 775. doi: 10.3390/e20100775.

[6] Michiel Straat et al. Supervised Learning in the Presence of Concept Drift:
A modelling framework. 2020. arXiv: 2005.10531 [cs.LG].

[7] Michael Biehl and H Schwarze. “Learning by on-line gradient descent”. In:
Journal of Physics A: Mathematical and General 28 (Feb. 1995), pp. 643–
656. doi: 10.1088/0305-4470/28/3/018.

15

https://doi.org/10.1088/0305-4470/29/16/005
https://doi.org/10.1088/0305-4470/29/16/005
https://doi.org/10.1088%2F0305-4470%2F29%2F16%2F005
https://doi.org/10.1088%2F0305-4470%2F29%2F16%2F005
http://proceedings.mlr.press/v15/glorot11a.html
https://arxiv.org/abs/1903.07378
http://arxiv.org/abs/1903.07378
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://doi.org/10.3390/e20100775
https://arxiv.org/abs/2005.10531
https://doi.org/10.1088/0305-4470/28/3/018


[8] Michiel Straat. “On-line learning in neural networks with ReLU activa-
tions”. In: 2018.

[9] David Saad and Sara Solla. “On-line learning in soft committee machines”.
In: Physical review. E, Statistical physics, plasmas, fluids, and related
interdisciplinary topics 52 (Nov. 1995), pp. 4225–4243. doi: 10.1103/

PhysRevE.52.4225.

[10] Gregory Ditzler et al. “Learning in Nonstationary Environments: A Sur-
vey”. In: Computational Intelligence Magazine, IEEE 10 (Nov. 2015),
pp. 12–25. doi: 10.1109/MCI.2015.2471196.

[11] M Biehl and H Schwarze. “Learning drifting concepts with neural net-
works”. In: Journal of Physics A: Mathematical and General 26.11 (1993),
pp. 2651–2665. doi: 10.1088/0305- 4470/26/11/014. url: https:

//doi.org/10.1088%2F0305-4470%2F26%2F11%2F014.

[12] M Biehl and H Schwarze. “On-Line Learning of a Time-Dependent Rule”.
In: Europhysics Letters (EPL) 20.8 (1992), pp. 733–738. doi: 10.1209/
0295- 5075/20/8/012. url: https://doi.org/10.1209%2F0295-

5075%2F20%2F8%2F012.

[13] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information
Storage and Organization in The Brain”. In: Psychological Review (1958),
pp. 65–386.

[14] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Na-
ture 521 (May 2015), pp. 436–44. doi: 10.1038/nature14539.

16

https://doi.org/10.1103/PhysRevE.52.4225
https://doi.org/10.1103/PhysRevE.52.4225
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1088/0305-4470/26/11/014
https://doi.org/10.1088%2F0305-4470%2F26%2F11%2F014
https://doi.org/10.1088%2F0305-4470%2F26%2F11%2F014
https://doi.org/10.1209/0295-5075/20/8/012
https://doi.org/10.1209/0295-5075/20/8/012
https://doi.org/10.1209%2F0295-5075%2F20%2F8%2F012
https://doi.org/10.1209%2F0295-5075%2F20%2F8%2F012
https://doi.org/10.1038/nature14539

	Introduction
	Models and Methods
	Soft Committee Machines
	On-Line Learning

	Student-Teacher Scenario
	Order parameters
	Generalization Error
	Drift
	Weight Decay
	Methodology

	Results
	K = M
	K > M
	K Not a Multiple of M
	K is a Multiple of M
	Effects of Higher K

	Optimal Learning Rate
	Effect of Weight Decay

	Discussion
	Outlook

