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Abstract: Reinforcement learning (RL) is a paradigm within machine learning where agents
try to maximize their reward. They do so by making decisions based on the representation of the
current state of the world. The state representation is an important factor in the performance
and training time when applying reinforcement learning to a problem. A representation can
encapsulate different degrees of information about the world. In this paper the effects of different
state representations and combinations of state representations are compared. This is done for the
classical game Tetris using the standard temporal difference learning method. The experiment
shows that representations with redundancy built in achieve the best results of ~ 23 lines cleared,
while other representations with more information perform worse. In comparison to similar RL
systems in literature this is a decent result, however other, non-RL methods, perform even better.

1 Introduction

Machine learning has almost become synonymous
with artificial intelligence (AI) because of its abun-
dance and success. This upward trend of success
can be seen in the complexity of the games that
have been tackled by machine learning over time.
Examples include Backgammon by Tesauro (1994)
and the famous Deep Blue machine for playing
Chess by Campbell, Hoane, and Hsu (2002). More
recent examples include systems for even more com-
plex games like Go by Silver et al. (2016), Mon-
tezuma’s revenge by Salimans and Chen (2018),
Starcraft II by Vinyals et al. (2019) and Dota 2
by the openAl team (2019). These systems have
achieved great results of expert-level players. Ma-
chine learning has also been applied to a simplified
version of Tetris by Melax in 1998 *. While the goal
of Al is not to solve games, they can serve as proofs
that these techniques work in increasingly complex
scenarios.

Reinforcement learning (RL) is a powerful
paradigm within machine learning where agents
try to learn a policy to maximize their reward.
One of the reasons that makes RL interesting is
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because it does not need to be fed labeled data
but instead learns from exploration or examples.
This makes the paradigm extremely scalable in
comparison to the more popular supervised learn-
ing where sometimes millions of hand-labeled data
points are needed. Therefore the supervised learn-
ing approach is not viable if a general Al is to be
found.

One thing that holds RL back is its need for
extreme training times for complex tasks. From
the openAl team (2019): "After ten months of
training using 770 &+ 50 PFlops/s-days of compute
...". Researchers are therefore on an eternal quest
to decrease training time and increase performance.
This is why it is vital to understand the fundamen-
tals of RL and their impact on performance.

1.1 Tetris

Tetris is played on a board of cells arranged in an
array of 10 by 20. Each cell can either be filled or
empty. A Tetris block is called a tetromino (see
figure 1.1) and can be described by a letter. A
tetromino is selected randomly from a uniform dis-
tribution and is spawned at the centre top of the
board. The player or agent can move the tetro-
mino left or right and rotate the tetromino clock-
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Figure 1.1: The different available tetrominoes
and their corresponding letter.

L

wise 90 degrees. At a set time interval the tetro-
mino moves down a row until it reaches the bot-
tom of the board or another tetromino. When this
happens, the tetromino becomes unmovable and a
new tetromino is spawned at the top of the board.
The cycle is then repeated. The goal of the game
is to stack and rotate tetrominoes in such a way
that rows become completely filled. When a row
is completely filled, the row disappears and all the
rows above, fall down. For each filled row, a point
is scored. The game ends when incomplete rows
stack up until the ceiling is reached.

1.2 State representation

One of the factors that contribute to the perfor-
mance of an RL system is the state representation.
A state representation is a model of a system at
some time, for example: a state representation of
Chess could be where all the pieces are and who’s
turn it is. The representation of the state can fully
encapsulate the state of the game, but it can also
be more abstract or incomplete, or even have re-
dundant information. The state representation is
important because it highly influences the system’s
design and training time. It is always a trade-off
between redundancy and specificity. The naive ap-
proach where the representation is the whole envi-
ronment (i.e. all the pixels on the screen) is slow
to converge as shown by Andre and Russell (2002)
and Dietterich (2000) and abstraction can improve
training time without impacting performance neg-

atively.

To research state representations, Tetris was cho-
sen as a domain. Tetris is one of the best-known
and most sold games of all time according to its
creator?. It has a large state space: almost 22%0 ~
1090, because it has a grid of 10 x 20 and each cell
can be two states: on and off. However, each row
can not be completely filled so this makes the space
a little bit smaller. To make matters worse, there
are a lot of options to go from one state to the
next. This is called a branching factor. For Tetris
this branching factor is 9 - 39 depending on the
state as this determines in which column the tetro-
mino can be dropped, as not all columns are al-
ways available. The branching factor also depends
on the tetromino as some tetrominoes are symmet-
rical in one or two axes like the I and O shape,
while others (the T tetromino) can be rotated in
four unique ways (see figure 1.1). The combination
of the large state space and large branching factor
makes the traditional AT approach of a game tree
unfeasible. Tetris is a hard NP-complete problem
as shown by Demaine, Hohenberger, and Liben-
Nowell (2003). This means an optimal policy is not
effectively found by traditional methods and thus
is machine learning a clear candidate to approach
such a problem. Many games have simple rules
and clear goals. This makes them ideal for RL, as
performance is easily measured by the score. For
Tetris this is also the case. The score can also be
used as a reward for agents.

In this paper the effect of state representation in
reinforcement learning applied to Tetris is exam-
ined. Different combinations of state representa-
tions were selected to find out what type of rep-
resentation is most important. Agents for each
combination were trained and their averaged scores
compared over time. The hypothesis is that a very
specific representation of the state without redun-
dancy will yield the best results.

2 System Description

A simulation of Tetris was made so that it could be
run at fast speeds and communicate easily with the
rest of the system. This implementation was based
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on that of Pavel Benagek ® and can be found here?.
This implementation features the seven tetromi-
noes found in the original game and features the
same game logic. The only thing that is not imple-
mented is the advanced technique called "tucking"
where a block is moved at the last second so it can
be moved underneath another block. This is be-
cause it is only a minor feature in the game that is
hard to implement for a system such as this.

Every epoch (one game) starts with a new ran-
dom tetromino is generated and placed at the top
of the board. Then the state representation is gen-
erated for every legal option according to the game
logic. Possible after states are generated by mov-
ing the tetromino to every horizontal position and
dropping it down as far as possible. This is done
for every possible rotation. This means that an L
tetromino generates more after states than an O
tetromino that only has unique one rotation. This
process results in an array of representations that
represent possible after states. This array is passed
to the algorithm to make the decision of which move
to make. The choice is made and a new tetromino
is generated. This cycle is repeated until the game
ends when the stacked tetrominoes reach the top
of the board. After the game ends, the score is
recorded. The game is reset and played again un-
til the training epochs parameter is reached. This
parameter was initially set to 1000, but after some
exploratory runs no convergence was found. There-
fore the number of training epochs was tripled to
3000. This seems enough for the average score to
converge.

In Tetris and most other games, in order to score
a point and to receive a reward, the agent must take
many actions. This is a problem because how do
you know how much and which action contributed
to the reward? This was named the temporal credit
assignment problem by Minsky (1961). If this spar-
sity becomes large, a lot of exploration is needed
before a reward is found. If the rewards become
too sparse, the reward is seldom found and learn-
ing never takes place. To circumvent this problem,
it is assumed that the agent can always place the
block where it wants and that their execution is
flawless. This reduces the placing of one tetromino
from many actions to one. In human games this
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is of course not the case. Then both the decision
making and the placements are skills needed for a
high score.

2.1 Temporal Difference learning

Algorithm 2.1 Temporal difference learning

Input: the policy 7 to be evaluated
The number of epochs

Where: V() is the value function

S is some state

ST is the set of all states

A is an action

R is the reward given by taking action A.
« is the learning rate

v is the discount rate

€ is given by equation 2.3

Initialize V(S) =0, VS € S*
for all epochs do
Initialize S as starting state
while S is not terminal do
if randomchance < € then
A « random action
else
A + action given by 7 for S
end if
Take action A, observe R, and next state S’
V(S) + V(S)+ a[R+~V(S") = V(9)]
S+ 5
end while
end for

The decision algorithm is based on Temporal Dif-
ference (TD) learning algorithm outlined in Sutton
(1988) and further discussed in Sutton and Barto
(1998). The goal of RL is to achieve the maximum
reward by constructing some policy. The policy
dictates which action to take in which state. TD
learning is a class of RL methods that try to ap-
proximate a value function, V'(S), that estimates
the value of after states. This value is a measure of
how much reward some after state will yield. Every
iteration of TD learning, the value function is im-
proved by updating it. Unlike Monte Carlo meth-
ods, TD learning tries to bootstrap itself based on
the value function. The algorithm is an e-greedy
policy meaning that it will take the highest value



action most of the time, but sometimes take a ran-
dom action depending on e.

A reward of 1 is given for each cleared row. A
negative reward of —10 is given to the agent when it
dies to discourage it from doing so. After playing,
the agent is able to predict the future rewards of
some after state. This is done by the value function
V(S). This prediction gets updated every step and
therefore is able to predict the value of some state
better and better over time. The update function
can be found in equation 2.1. The reward when the
agent dies is given by equation 2.2.

V(S) < V(S) +alR+V(S) - V(S)] (2.1)

V(S) «+ V(S) + [-10]

The action taken in some state is dictated by the
highest expected reward of a state given by V(5).
This means that the algorithm may not score a
point now, when it expects a higher reward later.
This might mean making a seemingly bad move
now, if this move results in the ability to make a
very good move later. However, the expected re-
wards are multiplied by the discount rate () (in
this case 0.95) so that the immediate reward is val-
ued more than later rewards. The pseudo code can
be read in Algorithm 2.1.

Exploration is also an important part of TD
learning. The exploration rate is given by formula
2.3 and depends on the current epoch T. This
equation results in a logarithmic descent of the ex-
ploration rate (€) in the range [0.289,0.031]. This
causes the system to take a random action some
percentage of the time, but this percentage becomes
smaller the more games are played. A declining ex-
ploration rate is standard in RL, as in the beginning
the agent has little training and thus needs to seek
out information more. While later in the training it
can rely more on the knowledge already gained and
performance is hurt by the random moves. This
is similar to how humans learn tasks, as they try
out strategies on new tasks, but use experience on
known ones.

(2.2)

1
“ = Tog10(T + 50)

The policy relies on the value function V(s) that
makes a prediction of the expected reward for each

-0.3 (2.3)

state. The policy uses this value function to pre-
dict the value of future states. The value function
is classically a big table where the expected value
for each state-action pair is stored. However, be-
cause the state space of Tetris is so large, this is
not feasible. Instead a function that returns the
value depending on the state-action pair was ap-
proximated. This function was approximated by
a multilayer perceptron (MLP). An MLP can, ac-
cording to the universal approximation theorem,
approximate such a function as described by Csaji
(2001). The hyper parameters of the MLP that was
used can be found in appendix A. The values were
chosen on the recommendation of the supervisor of
this paper.

2.2 State representation

The state representation of the game that was used
always consisted of a 1D vector of proper fractions.
These represent normalized values of the represen-
tation. This means that the maximum value was
first calculated and that the value was divided by
this maximum. The first ten numbers represent
the column heights from left to right. Then more
numbers may or may not follow depending on the
tested condition. The options include:

e Diff: Nine numbers representing the differ-
ence in height between the columns from left
to right.

e Max: A number representing the height of the
highest column.

e Holes: A number representing the cells that
are not filled but are covered by a tetromino
and thus rows above need to be cleared first
before they can be reached.

e Wells: Ten numbers representing the deep-
ness of the well in that column if there is any
in that column. A well exists when both neigh-
boring columns have a bigger column height.
When the column is neighboring the side of the
board only the other neighbor is considered.
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7883222999

Differences column heights
105100700
Maximum column height

9

Number of holes

19

Deepness of wells

1000000000

Figure 2.1: Schematic overview of representa-
tion of the board state. The grey squares in-
dicate holes, the red-dotted line outlines the
column height and the black and white striped
square indicates a well. Note that a 10x11 board
is pictured here, but the experiments are ran on
a 10x20 board.

A schematic overview of the different representa-
tions can be found in figure 2.1. Not all 16 com-
binations of representations were tested, but the
following were chosen:

e Column Height only
e Column Height, Diff
e Column Height, Max

Column Height, Holes

Column Height, Wells
e Column Height, Holes, Wells
e Column Height, Diff, Max, Holes, Wells

Thiery and Scherrer (2009) give an overview of
Tetris controllers and their performance. They also
outline the features that you can use. From this
overview the most common features were chosen.
For comparison a random agent was also used. This
random agent always makes a random move.

2.3 Analysis

After each epoch the final score was recorded.
Each configuration played 3000 games consecu-
tively. This was repeated five times. The resulting
data was then averaged over each configuration. A
running average of 100 is then used to smoothen
the plot as there is a lot of variance.

Hyperparameters were coarsely tuned to maxi-
mize the obtained scores for the Diff, Max, Holes,
Wells representation. A flat exploration rate was
investigated as well as a larger learning rate and
a smaller discount rate. Much worse results were
achieved and thus discarded.

3 Results

The results of the experiment that was described in
the analysis section (2.3) is plotted in figure 3.1. We
can see that the state representation with Column
height and Max achieves the highest average score
of around 23. The most specific representation with
Column Height, Diff, Max, Holes, Wells also
performs well, although it takes a bit longer to rise
to a high performance. The other representations
all have similar performances to each other. We can
also see is that performance drops after a certain
amount of epochs.

The random agent scored an average of 0.0156
points. Because the number is so small and does
not change over time, this was not shown in the
graph.

4 Discussion

4.1 Performance

Figure 3.1 shows that the max configuration is
the best performing configuration. The diff max
holes wells configuration also performs well. The
other configurations clump together at the bottom.
It seems that the max representation is crucial in
the representation to achieve a good performance,
as it is present in the two best performing configu-
rations. Adding information to that does not seem
to improve performance. The information that the
max representation gives can be inferred from the
Column Heigth. This makes it surprising that
the max representation performs so well. A reason
for this could be that the value function can more
easily predict the value of some state when max is
included because this encapsulates the value of the
state (to some extent). Meaning that when max
is low, the (true) value of the state is very likely to
be high. Another, more general, reason could be
that redundancy is very important in a system like
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Figure 3.1: Running average of score over time for each state representation.

this. This is likely due to the instability of the sys-
tem and in particular the MLP. The instability also
might be the reason why the score declines after
having reached its peak. This could be because of
the declining exploration rate, however, the epochs
after which the decline starts is different for the
configurations.

In comparison to similar systems this system out-
performs them or achieves similar results. Melax °
showed significant learning but on a very simple
version of Tetris. Carr (2005) realized a TD agent
that achieved a performance of < 12 lines cleared
for his implementation of the full Tetris game. Pir-
nay and Arabagi (2009) achieved an average of less
than one line cleared using TD learning and a full
state representation, meaning a vector of 200 num-
bers representing each cell. Thiam, Kessler, and
Schwenker (2014) researched the influence of the
exploration rate (¢) and found that for a flat value
of 0.001 they where able to play 400 pieces per game

Shttp://melax.github.io/tetris/tetris.html

after training. Unfortunately pieces per game are
not directly translatable to lines cleared per game,
but a rough estimate would be that, since all tetro-
minoes consist of four cells and a line consists of 10
cells, 2.5 tetrominoes per line are needed. However,
for a game where you fill the board without clear-
ing any lines, 45 tetrominoes can be still played.
Because the board has 10x20 cells, of which one
row (20 cells) remain unfilled, 180 cells can still
be filled without clearing a line. Every tetromino
is four cells, thus 180/4 = 45 tetrominoes. This
means that 400 pieces translates to at least (400-
45)/2.5 = 142 lines cleared and at most 400/2.5 =
160 lines cleared.

These results are still not up to par with an av-
erage human player, who can easily score a couple
of dozen points. And certainly not the level of play
Tetris champions like Joseph Saelee display, who
can clear thousands of lines. This expert level per-
formance can be achieved by RL systems as shown
by Vinyals et al. (2019) for Starcraft IT and the ope-
nAl team (2019) for Dota 2. These two examples



have millions of dollars of funding and months of
training time however.

Other approaches to Tetris are able to perform
even better. For example Grof, Friedland, and
Schwenker (2008) applied RL to Tetris by using a
weighted reward function. Their system was able
to play for 20,000 tetrominoes on average. RL as
a whole is not the best approach for solving Tetris
as shown by Thierry and Scherrer (2010), who by
using a cross-entropy method, were able to reach
an average score of almost one million.

4.2 Random agent

The random agent got an average of 0.0156 points.
This shows that the system, even when using the
worst performing state representation, is able to
make significantly more informed choices than ran-
dom ones.

4.3 Training time

The training of the system over 3000 epochs took
about 40 hours to complete on a laptop. For one
epoch (one game) an estimated 40 - 400 tetromi-
noes must be placed. This depends on the score as
a higher score results in more decisions and thus a
longer training time. For every decision the MLP
must be trained. Depending on the configuration,
the MLP contains 60 - 90 nodes. This means that
in the order of billion calculations must be done for
only one configuration. This shows that one laptop
and the time frame for this project are not sufficient
for a project like this. To achieve expert level play,
months of training on super computers is needed
for complex games.

4.4 Further research

The most obvious next step in this research is
to see what the performance is for every config-
uration of representations. Especially interesting
would be the other configurations with max in-
cluded. Maybe one could perform even better than
the column height and max configuration that
was tested. It would also be interesting to consider
removing the column height to see if only the infor-
mation provided by max could be enough to per-
form well. This could give more insight into what
each representation contributes.

New representations could also be thought of.
For example: the total amount of wells, average
distance to top and the holes per column instead of
a total holes of the field.

Of course it is also interesting to know what
would happen when the system is ran for even
longer. Do the configurations all converge or do
they increase in performance again? What we
do know from the openAl team (2019) is that
to achieve great results, extreme training time is
needed. They achieved great results, but had
to train their system on supercomputers for 10
months.

TD learning is super dependent on hyperparame-
ters, in particular exploration rate (¢) and learning
rate («). In this paper they where chosen from ex-
perience of the supervisor and tuned by hand after
that. The chosen values seemed to work. However,
as always when using this kind of system, especially
when using an MLP, the tuning of these parame-
ters is a hard problem to solve. A parameter search
could be done where a value is chosen by the system
automatically and the performance tested. Then
the next value is chosen and so on. This requires
a lot of time as for each parameter value the sys-
tem must first be trained before performance can
be recorded. The problem worsens for each addi-
tional parameter that is tuned this way.

5 Conclusion

This thesis set out to research the effect of state
representation in reinforcement learning applied to
Tetris. It was found that the difference in perfor-
mance is significantly dependent on the state repre-
sentation. It is also found that redundancy in state
representation is important in RL systems. The
best configuration of state representation achieved
an average score of 23.
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A Appendix: Hyper parame-
ters

The MLP has three fully connected layers. The
input layer shape depends on the state representa-
tion but is at least a size of ten as the Column
Height is always included in the representation.
The optimizer that was used is the Adam optimizer
as described by Kingma and Ba (2014). The loss
function used is the mean squared error function.

Parameter ‘ Value
Learning rate () | 0.0001
Discount rate () | 0.95
Training epochs 3000

Layer ‘ Nodes Activation function
Input depends none
Hidden | 50 sigmoid

Output | 1 linear



