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Abstract

A recurrent graph has the (in)finite collision property if two independent random walks started

from the same point collide (in)finitely often almost surely. Krishnapur and Peres [7] show that

the graph Comb(Z), which is obtained from Z2 by removing all horizontal edges not on the

x-axis, is a recurrent graph with the finite collision property. Barlow, Peres and Sousi [3] further

study the collision properties of power-law combs, subgraphs of Comb(Z) where all vertices

(x, y) that do not satisfy 0 ≤ y ≤ f(x) and the corresponding edges are removed. In this thesis,

these results are explained in detail. Finally, the case where the heights f(n) of the comb graph

are i.i.d. random variables with law µ is considered. In particular a condition on µ is given,

which implies that the resulting comb graph has the finite collision property.
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1 Introduction

In this thesis, collisions of independent random walks on infinite graphs are studied. A graph

consists of a vertex set V and an edge set E. Each edge connects two distinct vertices x, y ∈ V .

Two vertices are called neighbours if they are connected by an edge. A graph is locally finite

if every vertex has only finitely many neighbours. An important example of a graph is the

d-dimensional grid, denoted by Zd, whose vertex set is the set of all points in d dimensions with

integer coordinates and where two vertices are neighbours if and only if they have distance 1.

A random walk on a locally finite graph G is a sequence of random variables (Xn)n≥0 taking

values in V such that for all n ∈ N, Xn+1 is a neighbour of Xn chosen uniformly at random.

Given Xn, the distribution of Xn+1 does then not depend on X0, . . . , Xn−1 or the value of n.

For more details, see Woess [13] or Lyons and Peres [10].

A random walk on a graph is called recurrent if it visits its starting position infinitely often.

Instead of considering just one random walk, one can also consider two random walks and ask

whether they meet infinitely often. The question arises whether there exists a graph in which

any simple random walk is recurrent, but where two independent random walks collide only

finitely often. This was first shown to be possible by Krishnapur and Peres [7] using the graph

Comb(Z), which is obtained from Z2 by removing all horizontal edges not on the x-axis.

If two independent random walks collide (in)finitely often almost surely, we say that the graph

has the (in)finite collision property. Barlow, Peres and Sousi [3] study further graphs with the

(in)finite collision property, in particular the graph Comb(Z, f) for some function f , which is de-

fined as the subgraph of Comb(Z) by only including vertices (x, y) ∈ Z2 satisfying 0 ≤ y ≤ f(x)

and the edges between these vertices. Of special interest is the case f(x) = xα for x > 0, whose

graph will be denoted by Comb(Z, α). Barlow, Peres and Sousi [3] show that in this case the

graph has the infinite collision property if α ≤ 1 and the finite collision property if α > 1.

(a) The graph Comb(Z)

(b) The graph Comb(Z, 1). The red line shows the

bounding function f(x) = x. Note that there are no

vertices with x < 0, since f(x) < 0 for x < 0.

Figure 1: Visual representations of the graphs Comb(Z) and Comb(Z, 1).
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This topic is mostly of theoretical interest, but Bertacchi, Lanchier and Zucca [4] give an appli-

cation of the (in)finite collision property (of the infinite percolation cluster) to voter processes.

While this specific class of graphs is not studied in this thesis, it still shows that this topic does

have applications. Furthermore, random walks and stochastic processes in general, have a wide

range of applications in statistical physics, economics, finance and population dynamics.

This thesis has two goals. The first goal is to explain the proofs in Krishnapur and Peres [7] and

Barlow, Peres and Sousi [3] related to subgraphs of Comb(Z), and to prove the lemmas used

in this proof as well. The second goal is to investigate comb graphs with random heights. Let

{f(n)}n∈Z be i.i.d. random variables with cumulative distribution function FX supported on

[1,∞). For which FX does Comb(Z, f) have the finite collision property? It is known that the

height must have infinite expectation. In this thesis, an example of such cumulative distribution

function FX is provided. To the knowledge of the author, this is the first such example. This

thesis therefore provides an answer to Question 6 from Section 6 in Barlow, Peres and Sousi [3],

which was first raised in Chen, Wei and Zhang [5].

In Chapter 2 of this thesis, the problem definition section, the notions introduced in the intro-

duction are defined more formally and some additional graph theoretic notions are defined.

In Chapter 3, the necessary background theory to understand the papers by Krishnapur and

Peres [7] and Barlow, Peres and Sousi [3], as well as the lemmas necessary to completely verify

the proofs, is given. Some proofs of standard facts are omitted, but they can be found easily

in the literature. In case of more specific lemmas, a detailed proof is always provided. In this

chapter, knowledge of probability and analysis at bachelor level is assumed. An introduction to

measure theory is useful, but most of the material does not depend on it.

In Chapter 4, an exposition of the known results on the (in)finite collision property of subgraphs

of Comb(Z) is given. The first section shows some small results on the (in)finite collision prop-

erty. The second section exposits the proof by Krishnapur and Peres [7] that Comb(Z) has the

finite collision property. This exposition follows the original proof closely. The third section

gives the criterion for the infinite collision property from Barlow, Peres and Sousi [3] and uses

this criterion to show that Comb(Z, α) has the infinite collision property if α ≤ 1. The final

section shows the converse, namely that Comb(Z, α) has the finite collision property if α > 1.

Here the proof deviates in some cases from the original to make it more accessible.

In Chapter 5, the graph Comb(Z, f) is considered for the case where the heights f(n) itself are

i.i.d. random variables. In particular, the following theorem is proven:

Theorem. Let FX : N→ [0, 1] be a cumulative distribution function such that

• FX(n) ≤ 1− n−1/α for all n ∈ N, for some constant α > 3, and

• FX(n) ≥ 1− n−E for all n ∈ N, for some constant E > 0.

Let {f(n)}n∈Z be i.i.d. random variables with cdf FX .

Then G = Comb(Z, f) has the finite collision property almost surely.
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2 Problem definition

In this section, some of the topics introduced in the introduction are defined more formally. A

graph G is a pair (V,E), where V is a set and E is a set of sets of the form {x, y}, where x

and y are distinct elements of V . The sets V and E are called the vertex set and edge set of

G, respectively. Two vertices x, y ∈ V are said to be neighbours if {x, y} ∈ E. The number

of neighbours of a vertex v ∈ V is called the degree of v and denoted by deg(v). A graph G

is locally finite if the degree of every vertex is finite. A path is a finite sequence of vertices

P = (p0, p1, . . . , pn) such that {pi, pi+1} ∈ E for all 0 ≤ i ≤ n− 1. A graph is called connected

if for any two vertices x, y ∈ V there exists a path P with p0 = x and pn = y. Finally, a graph

is called a tree if for any two vertices x, y ∈ V there exists exactly one path P with p0 = x and

pn = y such that all vertices in the path are different.

The main goal of the thesis is to determine whether certain classes of subgraphs of Comb(Z)

have the finite collision property or the infinite collision property. We now first define these

graphs formally. Comb(Z) is the graph with vertex set Z2 = {(x, y) : x, y ∈ Z} and edge set

{{(x, 0), (x+ 1, 0)} : x ∈ Z} ∪ {{(x, y), (x, y + 1)} : x, y ∈ Z}.

Comb(Z, f) is defined as the subgraph of Comb(Z) by only including vertices (x, y) ∈ Z2 that

satisfy 0 ≤ y ≤ f(x) and the edges between these vertices. It follows that Comb(Z, f) is the

graph with vertex set {(x, y) : x, y ∈ Z, 0 ≤ y ≤ f(x)} and edge set

{{(x, 0), (x+ 1, 0)} : x ∈ Z, f(x) ≥ 0, f(x+ 1) ≥ 0}
∪ {{(x, y), (x, y + 1)} : x, y ∈ Z, f(x) ≥ y + 1, y ≥ 0}.

Note that f should be nonnegative on a connected subset of Z, otherwise Comb(Z, f) is not

connected. Note that all connected subsets of Z are intervals. Of special interest is the case

where f(x) = xα for x ≥ 0 and f(x) < 0 for x < 0. The latter condition implies that there are

no vertices with x < 0. This graph is denoted by Comb(Z, α).

Conventions and notation

In this thesis, the following conventions are used:

• N = {0, 1, 2, . . .}.

• Geo (p): the geometric distribution with success probability p, counting the number of

failures, i.e. if G ∼ Geo(p), then P(Gi = k) = (1− p)kp for k ≥ 0.

• x ∧ y: the minimum of x and y, i.e. min{x, y}.
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3 Preliminary results

3.1 Results on random walks

This section presents a number of properties of random walks, based on the lecture notes by

Verbitskiy and Valesin [12]. We first give some fundamental definitions from random walk theory

and Markov chain theory. After that, some results that are used in later proofs are given. In

this thesis, only discrete-time random walks are considered.

Let S a countable set, the state space. A transition function on S is a function p : S×S → R≥0

such that
∑

y∈S p(x, y) = 1 for all x ∈ S. In this setting, we interpret p(x, y) as the probability

of transiting to state y, given that the current state is x.

If p is a one-step transition function, we might also be interested in an n-step transition function,

which gives the probability of going from state x to y in n steps. To do this, let us first define

the product of two transition functions. For two transition functions p and q, we can make a

new transition function p ◦ q, which gives the transition probabilities when first making a step

according to p and then a step according to q. By conditioning on the state z reached after

making a step according to p and using the law of total probability, we see that defining

(p ◦ q)(x, y) =
∑
z∈S

p(x, z)q(z, y)

gives what we want. Of course, it needs to be proven that p ◦ q actually is a transition function

according to the definition just given. To do this, we will interpret the transition function p as a

matrix P = [p(i, j)]i,j∈S . Such a matrix is called a stochastic matrix, and in this section we will

always denote the matrix corresponding to the transition function p by P . If P and Q represent

p and q respectively, then PQ represents p ◦ q. Note that the condition
∑

y∈S p(x, y) = 1 for all

x ∈ S is equivalent to P · 1 = 1, where 1 ∈ RS is the vector containing ones only. If P and Q

are stochastic matrices, it hence follows that (P ·Q)1 = P (Q1) = P1 = 1, so then PQ is also a

stochastic matrix and hence p ◦ q is a transition function.

Now that we have rigorously discussed the product of two transition functions, it is easy to

define the n-step transition function p(n) recursively by p(1) = p and p(n+1) = p(n) ◦ p.

Consider a measure µ on the power set of S. Since S is countable, µ is completely determined

by the values on the singleton sets. We write µ(x) = µ({x}). The measure µ can be interpreted

as a distribution, describing how likely it is to be in a given state. For a given measure µ, we

may be interested in the distribution among the states after doing one step according to the

transition function p. This is a function of the initial state y, and it is given by

(µP )(y) =
∑
x∈S

µ(x)p(x, y).

A measure µ is called a stationary measure if µP = µ.
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Given a function f : S → R, we may be interested in the average value of f after doing one step

according to the transition function p. This is a function of the initial state x, and it is given by

(Pf)(x) =
∑
y∈S

p(x, y)f(y).

The function f is called harmonic if f = Pf .

Note that, in terms of matrices, we can interpret f as a column vector and µ as a row vector.

Then the notations Pf and µP indeed correspond to the definition of matrix multiplication.

A stochastic process is a sequence of random variables (Xn)n≥0 defined on the same probability

space. A Markov chain is a stochastic process where a transition function is used to go from

the state Xn to a new state, Xn+1. Given Xn, the distribution of Xn+1 does then not depend

on X0, . . . , Xn−1 or the value of n. The formal definition is as follows:

Definition 3.1. (Markov chain)

A Markov chain with state space S, transition function p and initial distribution µ is a sequence

of random variables (Xn)n≥0 defined in some probability space (Ω,F ,P) satisfying X0 ∼ µ and

P(Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) = p(xn, xn+1)

for all integers n ≥ 0 and all x0, . . . , xn+1 ∈ S.

It is common to indicate initial distribution on the probability measure P and the corresponding

expectation operator E. We write Pµ to indicate that we consider a Markov chain starting from

X0 ∼ µ. We write Px to indicate that we consider a Markov chain starting from X0 = x. When

we have two Markov chains starting from X0 = x and Y0 = y, we write Px,y.

In this thesis, we will study a specific type of Markov chains, namely a simple random walk on

a graph G = (V,E). For two vertices x, y ∈ V , we write x ∼ y if x and y are connected. The

number of neighbours of a vertex x ∈ V is called the degree of x; formally deg(x) = #{y : x ∼ y}.
We assume that G is locally finite, which means that the degree of every vertex is finite. A simple

random walk is a Markov chain where in every step we choose a neighbour of x uniformly at

random. Formally, we have the following definition:

Definition 3.2. (Simple random walk, SRW)

A simple random walk on G=(V,E) is a Markov chain with state space V and transition function

p(x, y) =
1

deg(x)
· 1{x∼y}, x, y ∈ V.

Note that there is no condition on the initial distribution for a simple random walk. We will

usually consider random walks starting from a fixed vertex.
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3.1.1 Irreducibility, recurrence and transience

A Markov chain (Xn) is called irreducible if for any two states x, y ∈ S there exists an n ∈ N
such that p(n)(x, y) > 0. This means that any two states can be reached from each other with

positive probability. A graph is called connected if there is a path of edges connecting any two

vertices. The simple random walk on a connected graph is irreducible.

Let τ+
x = inf{n ≥ 1 : Xn = x} be the first return time. Note that this is a random variable. A

state x ∈ S is called recurrent if Px(τ+
x <∞) = 1, that is: when starting in state x, we return

to state x almost surely. If a state is not recurrent, it is transient.

Information about the recurrence and transience of a state (and, as we will see later, about the

collisions of random walks), is given by the Green function, which is the expected number of

visits to a state y from a Markov chain starting in state x:

Definition 3.3. (Green function)

The Green function G : S × S → [0,∞] of a Markov chain is given by

G(x, y) = Ex[#{n ≥ 0 : Xn = y}], x, y ∈ S.

Note that we can rewrite G(x, y) as follows:

G(x, y) = Ex[#{n ≥ 0 : Xn = y}] = Ex

[ ∞∑
n=0

1{Xn=y}

]
=
∞∑
n=0

Px(Xn = y).

Assume that there exists a recurrent state x in an irreducible Markov chain. Then x is visited

infinitely often almost surely. By irreducibility it follows that for any other state y ∈ S, there

exists an n ∈ N such that p(n)(x, y) > 0, so we also visit y infinitely often n states after visiting

x almost surely. In particular, y is also recurrent. It follows that in an irreducible chain either

all states are recurrent or all states are transient. If all states of an irreducible Markov chain are

recurrent, we call the chain recurrent, otherwise we call the chain transient. The following

proposition links recurrence and transience to the Green function:

Proposition 3.1. In an irreducible Markov chain, either all states are recurrent or all states

are transient. In the recurrent case the Green function satisfies G(x, y) =∞ for all x, y. In the

transient case, G(x, y) <∞ for all x, y.

A fundamental theorem in random walk theory by Pólya deals with the question for what

dimension d the simple random walk on Zd is recurrent. The theorem can be proven using

electric network theory. The cases d ∈ {1, 2} can also be shown more directly by calculating the

transition probabilities p(2n)(0, 0). For the latter approach, see Woess [13], Chapter 1A.

Theorem 3.1. (Pólya’s theorem)

The simple random walk on Zd is recurrent if d = 1 or d = 2 and transient if d ≥ 3.
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3.1.2 The Markov property and the strong Markov property

Given a sequence of random variables (Xn)n≥0, the natural filtration (Fn)n≥0 is the sequence of

σ-algebras such that Fn is generated by the random variables X0, . . . , Xn. We can write

Fn = {{ω ∈ Ω : (X0(ω), . . . , Xn(ω)) ∈ B} : B ⊆ Sn+1}, n ≥ 0.

Note that Ω could be a general set here, but one possibility is letting Ω = SN, so then ω is a

sequence of states and the natural interpretation of the random variables is then Xi(ω) = ωi.

The σ-algebra Fn is the collection of measurable sets, i.e. the collection of events, that we can

assign a probability to. In this case, Fn is exactly the collection of events that can be defined

using the information up to time n, i.e. (X0, . . . , Xn).

In a Markov chain, all information about the path from time n onward known at time n is

already contained in Xn, so also knowing X0, . . . , Xn−1 does not help to predict the future of

the path. If we have a function that only depends on the path from time n onward, we can

therefore discard the information from before time n. This is the essence of the Markov property:

Proposition 3.2. (Markov property)

Let (Xn) be a Markov chain with state space S and X0 ∼ µ. Let (Fn)n≥0 be the corresponding

natural filtration. Let f : SN → R be a measurable and bounded function. Then, for any n:

Eµ[f(Xn, Xn+1, . . .) | Fn] = EXn [f(X0, X1, . . .)] Pµ-almost surely.

Note that on the left hand side the random walk starts from a random state drawn from the

distribution µ. On the right hand side, we start from a random state which is distributed in the

same way as Xn is distributed when starting from X0 ∼ µ.

The Markov property has a generalization, where n does not need to be deterministic, but it

must be a stopping time. A random variable τ : Ω → N ∪ {∞} is called a stopping time

for the chain if {τ ≤ n} ∈ Fn for all n ∈ N. This roughly means that a decision to stop at

time n, i.e. to have τ = n, can only depend on the information that we have at time n. An

important example of the stopping time is the first return time τ+
x = inf{n ≥ 1 : Xn = x}. The

corresponding Markov property for stopping times is called the strong Markov property:

Proposition 3.3. (Strong Markov property)

Let (Xn) be a Markov chain with state space S and X0 ∼ µ. Let (Fn)n≥0 be the corresponding

natural filtration. Let f : SN → R be a measurable and bounded function. Let τ be a stopping

time. Then we have:

Eµ[f(Xτ , Xτ+1, . . .) | Fτ ] · 1{τ<∞} = EXτ [f(X0, X1, . . .)] · 1{τ<∞} Pµ-almost surely.

Note that the property only makes sense if τ <∞. Multiplying by 1{τ<∞} ensures this.

For the proof of the Markov property and the strong Markov property we refer to the lecture

notes by Verbitskiy and Valesin [12].
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3.1.3 Inequalities on transition probabilities of random walks

In this subsection, we present two inequalities on transition properties of random walks. The

content of this subsection is based on inequalities used in Krishnapur and Peres [7] and are

hence directly related to our investigations.

Recall that a measure µ is called a stationary measure if µP = µ. If P represents a simple random

walk on a locally finite graph G = (V,E), then a stationary measure is given by µ(v) = c deg(v)

for some positive constant c. We then have

(µP )(y) =
∑
x∼y

1

deg x
µ(x) =

∑
x∼y

cdeg x

deg x
= c#{x : x ∼ y} = cdeg(y) = µ(y),

so µP = µ, and hence this is indeed a stationary measure. We shall take c = 1 in what follows.

It can be proven that in an irreducible and recurrent Markov chain, a stationary measure exists

and is unique up to a multiplicative constant. Note that for a graph with bounded degrees, the

stationary measure is bounded.

As n increases, we expect that a simple random walk (Xn)n≥0 on an infinite graph gets more

‘spread out’. For example, if Xn is a random walk on Z, then Var[Xn] = n. In particular, we

expect that it becomes less likely (asymptotically) to find the random walk in a given vertex.

Corollary 14.6 of Woess [13] immediately implies the following for simple random walks:

Proposition 3.4. Consider a simple random walk on a locally finite, infinite graph G = (V,E).

Let p(n) be the n-step transition function and let µ be a stationary measure with inf
v∈V

µ(v) > 0.

Then there exists a constant C > 0 such that

sup
x,y∈V

p(n)(x, y)

µ(y)
≤ C√

n
for all n > 0.

If G has bounded degrees, then there exists a constant C ′ > 0 such that p(n)(x, y) ≤ C′√
n

for all

vertices x, y ∈ V and all integers n > 0.

If we consider a sufficiently small subset of the vertices of a given graph, the probability that

we spend more than a fixed proportion of the time in this subset decreases exponentially in n.

The difficulty in proving this fact lies in the dependence of the Xi.

Proposition 3.5. Let G = (V,E) be an infinite, locally finite graph and let (Xn)n≥0 be a

simple random walk on G. Let H ⊂ V and α ∈ (0, 1) be given.

Assume that there exists an n0 ∈ N such that

Pv (#{i ≤ n0 : Xi ∈ H} ≥ (α/8)n0) < α/16 for all v ∈ V.

Let c = α/(8n0). Then the following inequality holds:

Pv (#{i ≤ n : Xi ∈ H} ≥ αn) ≤ 2 exp{−cn} for all v ∈ V, n ∈ N.

12



Proof. We will divide time into blocks of size n0, so that we can use the given inequality. Define

ξk = 1{Xkn0 + · · ·+X(k+1)n0−1 ≥ (α/8)n0}, k ∈ N.

The given inequality implies that Pv(ξk = 1) < α/16 for all v and k. By conditioning on the

starting vertex v, it follows that in fact Pν(ξk = 1) < α/16 for any initial distribution ν. Note

that the ξk’s are not independent. To deal with this, we prove the following claim:

Claim 3.5.1. Let X0 ∼ µ. Then the following inequality holds:

Eµ [exp{ξ0 + · · ·+ ξm}] ≤ exp

{
α(m+ 1)

8

}
for all m ∈ N.

Proof. Let q = Pν(ξ0 = 1) for an arbitrary initial distribution ν. Then we have

Eν [exp{ξ0}] = q · e+ (1− q) = 1 + q · (e− 1) ≤ 1 + 2q < 1 + 2
α

16
= 1 +

α

8
≤ exp{α/8},

by the inequality Pν(ξ0 = 1) < α/16 and the fact that 1 + x ≤ ex.

We prove the claim by induction on m. The base case has just been given, so we proceed with

the induction step. Let (Fn)n≥0 be the natural filtration corresponding to (Xn)n≥0. We bound

Eµ [exp{ξ0 + · · ·+ ξm+1}] = Eµ [Eµ [exp{ξ0 + · · ·+ ξm+1} | Fmn0 ]]

= Eµ [exp{ξ0 + · · ·+ ξm}Eµ [exp{ξm+1} | Fmn0 ]]

= Eµ
[
exp{ξ0 + · · ·+ ξm}EXmn0 [exp{ξ0}]

]
≤ Eµ [exp{ξ0 + · · ·+ ξm} exp {α/8}]
= exp {α/8}Eµ [exp{ξ0 + · · ·+ ξm}] ,

by the law of iterated expectations, the fact that ξ0, . . . , ξm are determined by X0, . . . , Xmn0

and hence by Fmn0 , the Markov property and the fact that Eν [exp{ξ0}] ≤ exp{α/8} for any

distribution ν. This completes the induction step and hence the proof of the claim.

We are now ready to prove the proposition. Let N = 5n0/α and fix n ≥ N . Let K = bn/n0c−1.

Then K > n/n0 − 2 ≥ 5/α− 2 ≥ 3/α and n/n0 ≥ 5/α > 5 and hence K > n/n0 − 2 > n/(2n0).

Let In be the number of indices m ∈ {0, . . . ,K} such that ξm = 1. We observe that

#{i ≤ n : Xi ∈ H} ≤ In · n0 + (K − In) · α8n0 + n0

≤ In · n0 +K · α8n0 + α
3Kn0 < In · n0 + α

2Kn0

since α
3K > 1. In particular,

if In ≤
α

2
K, then

#{i ≤ n : Xi ∈ H}
n

≤
α
2Kn0 + α

2Kn0

n
= α

Kn0

n
< α.
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This implies that the probability that #{i ≤ n : Xi ∈ H} < αn is larger than the probability

that In ≤ α
2K. By the claim and Markov’s inequality, this yields:

Pv (#{i ≤ n : Xi ∈ H} ≥ αn) ≤ Pv
(
ξ0 + · · ·+ ξK ≥ α

2K
)

≤ Pv (ξ0 + · · ·+ ξK ≥ αn/(4n0))

= Pv (exp{ξ0 + · · ·+ ξK} ≥ exp{αn/(4n0)})
≤ exp{−αn/(4n0)}Ev [exp{ξ0 + · · ·+ ξK}]
≤ exp{−αn/(4n0)} exp

{
1
8α(K + 1)

}
≤ exp{−α/(8n0)n}.

Since c = α/(8n0), this proves the required inequality for n ≥ N . For n < N we have

2 exp{−cn} > 2 exp{−cN} = 2 exp{−5/8} > 1, so then the inequality holds trivially.

To apply the proposition, we need to check the condition that there exists an n0 ∈ N such that

Pv (#{i ≤ n0 : Xi ∈ H} ≥ (α/8)n0) < α/16 for all v ∈ V.

A way to prove this condition is to show that Ev (#{i ≤ n0 : Xi ∈ H}) grows sublinearly in n0.

Using this, we formulate a corollary of this result.

Corollary 3.1. Let G = (V,E) be an infinite, locally finite graph and let (Xn)n≥0 be a simple

random walk on G. Let H ⊂ V be a subset of the vertex set such that

lim
n→∞

Ev [#{i ≤ n : Xi ∈ H}]
n

= 0.

for all v ∈ V uniformly. Then for any α ∈ (0, 1), there exists a constant c such that

Pv (#{i ≤ n : Xi ∈ H} ≥ αn) ≤ 2 exp{−cn} for all v ∈ V, n ∈ N.

If n0 satisfies Ev (#{i ≤ n0 : Xi ∈ H}) ≤ (α/8)n0 · α/16 for all v ∈ V , we can take c = α
8n0

.

Proof. If n0 satisfies
Ev [#{i ≤ n0 : Xi ∈ H}]

n0
≤ α2

8 · 16
, then by Markov’s inequality we have

Pv (#{i ≤ n0 : Xi ∈ H} ≥ (α/8)n0) <
Ev [#{i ≤ n0 : Xi ∈ H}]

(α/8)n0
≤ α

16
,

and hence the result follows from Proposition 3.5.

The existence of such n0 is guaranteed by the given uniform limit.

Note that we have been very explicit about the constant c, which is somewhat unusual. The

reason for this is that we will apply Corollary 3.1 in a setting where n0 is not constant.
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3.1.4 Combinatorics of the simple random walk on Z

Let (Sn)n≥0 be a simple random walk on Z with S0 = 0. Let Hn be the number of meetings of

Sn with zero up to time n after the initial meeting, i.e. Hn =
∑n

i=1 1(Si = 0). In Kirshnapur

and Peres [7] it is claimed, but not proven, that there exists a constant C > 0 such that

P (Hn = k) ≤ C√
n
, for all integers n ≥ 1 and k ≥ 0. Note that Si is odd for odd i, so H2n and

H2n−1 are identically distributed for any integer n ≥ 1. We will therefore focus on H2n.

We first recall the following lemma, which is easily proven by induction:

Lemma 3.1. (Hockeystick Lemma)

Let n, k ≥ 0 be integers. Then
n∑
i=k

(
i

k

)
=

(
n+ 1

k + 1

)
.

We also recall the Catalan numbers [11]. The nth Catalan number is defined by Cn = 1
n+1

(
2n
n

)
.

A standard interpretation of the nth Catalan number is the number of paths of 2n incrementing

or decrementing steps that remain nonnegative and start and end at 0. By adding one additional

incrementing step in the beginning and one additional decrementing step, we see that Cn is also

the number of paths of 2n+ 2 incrementing or decrementing steps that start and end at 0 and

remain positive in between. This yields the following lemma:

Lemma 3.2. (Catalan numbers)

The number of paths of 2n+ 2 incrementing or decrementing steps that start and end at 0 and

remain positive in between, is equal to the nth Catalan number Cn = 1
n+1

(
2n
n

)
.

The following theorem gives the distribution of H2n:

Theorem 3.2. Let (Sn)n≥0 be a SRW on Z with S0 = 0. Let Hn =
n∑
i=1

1(Si = 0). Then

P(H2n = k) =
2k

22n

(
2n− k
n

)
, for 0 ≤ k ≤ n.

Proof. Note that the total number of paths of length 2n is 22n, so we can equivalently show that

the number of paths of length 2n that meets zero exactly k times is equal to 2k
(

2n−k
n

)
. Since the

path has k meetings with zero excluding the meeting at n = 0, we have k paths in total from

zero to zero. Such a path should not cross zero except at the endpoints, so it either only visits

positive numbers or only negative numbers. Note that negating such a path again gives a path

from zero to zero satisfying the requirements. Let us therefore count the number of paths of

length 2n that meets zero exactly k times and that are nonnegative until the last meeting with

zero. The total number of paths is then 2k times as large, since each of the k paths between

zero and zero can be negated independently.
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Let us call paths of length 2n that meets zero exactly k times and that are nonnegative until the

last meeting with zero, (n, k)-special paths. So we need to show that the number of (n, k)-special

paths is equal to
(

2n−k
n

)
for all 0 ≤ k ≤ n. This can be shown by induction on n ≥ 1.

Base case: Let n = 1. Then the relevant values for k are 0 and 1. For k = 0, there are two

paths: namely the path consisting of two incrementing steps and the path consisting of two

decrementing steps. For k = 1, we only have the path consisting of first an incrementing step

and then a decrementing step. This matches the formula, as
(

2
1

)
= 2 and

(
1
1

)
= 1.

Induction step: Let r ≥ 1 be given and assume that the number of (r, k)-special paths is equal

to
(

2r−k
r

)
for all 0 ≤ k ≤ r (Induction Hypothesis).

We will now first prove that the claim also holds for n = r+ 1 and k = 0. Consider any path of

length 2n that does not meet zero again after n = 0. If we add two steps, then there are two

possiblities: either this yields a path of length 2n + 2 that also does not meet zero again, or it

yields a path that meets zero again for the first time at step 2n + 2. Note that we have
(

2n
n

)
paths of length 2n that do not meet zero (by the Induction Hypothesis), and 4 ways to add two

additional steps, so 4
(

2n
n

)
paths in total.

By Lemma 3.2, the number of paths that meets zero again for the first time at step 2n + 2

is equal to 2Cn = 2
n+1

(
2n
n

)
, where the factor 2 comes from the fact that the path can also be

negative in between. Hence, the total number of (r + 1, 0)-special paths is equal to(
4− 2

n+ 1

)(
2n

n

)
=

(2n+ 2)(2n+ 1)

(n+ 1)2

(
2n

n

)
=

(
2n+ 2

n+ 1

)
,

which shows that the claim also holds for n = r + 1 and k = 0.

We will now show that the claim also holds for n = r + 1 and k ≥ 1. We will give a bijection

between the set of (n, `)-special paths with ` ≥ k − 1 and the set of (n + 1, k)-special paths.

For a (n, `)-special path, construct a path of length 2n + 2 by adding an incrementing in front

of it and adding the decrementing step after the (` − k + 1)th meeting in the original path

(with the understanding that if ` = k− 1, then we add the decrementing step immediately after

the incrementing step). Because we consider nonnegative paths, the path after the additional

incrementing step remains positive until the additional decrementing step is added. Hence,

`−k+1 meetings with zero are removed, but one is added back through the added decrementing

step, so the total number of meetings equals k. Hence, this yields a (n+ 1, k)-special path.

We now describe the inverse operation. Consider a (n + 1, k)-special path. Since this path is

nonnegative until the last meeting with 0, the first step must be incrementing. Now find the first

decrementing step which decrements to 0. Then the path must be positive in between (otherwise

it would not be the first step which decrements to 0), so when removing the incrementing and

this decrementing step, we get a nonnegative path. Moreover, at least k− 1 meetings with zero

remain, since the path after the first meeting remains unchanged. We conclude that this results

in a (n, `)-special path with ` ≥ k − 1.
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Hence, there is a bijection between the set of (n, `)-special paths with ` ≥ k − 1 and the set of

(n+ 1, k)-special paths. Using the Induction Hypothesis and the Hockeystick Lemma (Lemma

3.1), we see that the number of (n+ 1, k)-special paths is therefore equal to

n∑
`=k−1

(
2n− `
n

)
=

2n−k+1∑
i=n

(
i

n

)
=

(
(2n− k + 1) + 1

n+ 1

)
=

(
2(n+ 1)− k

n+ 1

)
.

This shows that the claim also holds for n = r + 1 and k ≥ 1. This completes the induction.

Hence, the number of (n, k)-special paths is equal to
(

2n−k
n

)
for all 0 ≤ k ≤ n. By the preceding

discussion, this completes the proof of the theorem.

We have now shown that

P(H2n = k) =
2k

22n

(
2n− k
n

)
, for 0 ≤ k ≤ n.

We now show that P(H2n = k) is decreasing in k and hence find an upper bound for P(H2n = k).

This implies the required result, which we formulate as a corollary.

Corollary 3.2. Let (Sn)n≥0 be a SRW on Z with S0 = 0. Let Hn =
n∑
i=1

1(Si = 0).

Then there exists a constant C > 0 such that

P(Hn = k) ≤ C√
n
,

for all integers n ≥ 1 and k ≥ 0.

Proof. Since(
2n− k
n

)
=

2n− k
n− k

(
2n− (k + 1)

n

)
≥ 2n− 2k

n− k

(
2n− (k + 1)

n

)
= 2

(
2n− (k + 1)

n

)
,

it follows that 2k

22n

(
2n−k
n

)
≥ 2k+1

22n

(
2n−(k+1)

n

)
and hence P(H2n = k) is decreasing in k.

In particular, we have

P(H2n = k) ≤ P(H2n = 0) =
1

22n

(
2n

n

)
≤ C ′√

n
,

for some constant C ′ and all integers n ≥ 1 and k ≥ 0.

Since P(H2n−1 = k) = P(H2n = k), we conclude that

P(Hn = k) ≤ C√
n
,

for some constant C and all integers n ≥ 1 and k ≥ 0.

17



Even though Theorem 3.2, is formulated in terms of probabilities, the proof is mostly of a

combinatorial nature. Apart from this result, there are two more results on the combinatorics

of the simple random walk on Z that will be needed. The exposition here is based on the notes

by Alm [1]. Let Nn(a, b) denote the number of paths from a to b in n steps, where each step

either increments or decrements the position by 1. Let N 6=0
n (a, b) denote the number of paths

from a to b in n steps that do not (re)visit 0. If a = 0 then the visit at the starting point does

not count. Note that Nn(a, b) = 0 if n and a− b do not have the same parity. If a− b and n do

have the same parity, then define h = 1
2 (n− (a− b)). It then follows that Nn(a, b) =

(
n
h

)
. The

number of paths that do not visit zero, N 6=0
n (a, b), can be counted using a mirroring argument:

Lemma 3.3. Let a, b > 0 be integers. Then

N 6=0
n (a, b) = Nn(a, b)−Nn(−a, b).

Proof. If n and a − b do not have the same parity, then all terms in this equation are zero, so

assume from now on that a − b and n do have the same parity and define h = 1
2 (n− (a− b)).

Consider a path from a to b that does visit 0. By mirroring the path up to the first visit to 0,

we obtain a path from −a to b. Note that mirroring a path P = (p0, . . . , pk−1, 0, pk+1, . . . , pn)

up to a point k such that pk = 0, results in the path P ′ = (−p0, . . . ,−pk−1, 0, pk+1, . . . , pn).

Conversely, any path from −a to b must visit 0 since −a < 0 < b. So by mirroring the path up

to the first visit to 0, we obtain a path from a to b that does visit 0. Note that the mirroring

operation is its own inverse. Hence, this is a bijection between the paths that from a to b that

visit 0 and the paths from −a to b. The number of paths that visit 0 can be computed by

subtracting the number of paths that do not visit 0 from the total number of paths. Hence,

Nn(a, b)−N 6=0
n (a, b) = Nn(−a, b), and rewriting this equality proves the lemma.

For a = 0 the situation is different, since in the proof the random walk first makes a step to

avoid counting the initial visit to 0. This problem is known as the ballot problem, because paths

that increment or decrement by 1 each step can be interpreted as the net number of votes for a

candidate A against candidate B, if the votes are made known one by one. A vote in favor of

A increments the net amount by 1, and a vote for B decrements the net amount by 1. Assume

that candidate A wins with b > 0 votes more than B. If the votes were made known in a random

order, what is the probability that candidate A was strictly ahead of candidate B the whole

time? This question is answered by the ballot theorem:

Theorem 3.3. (Ballot theorem)

Let b > 0 be an integer. Then

N 6=0
n (0, b) =

b

n
Nn(0, b).

Proof. If n and b do not have the same parity, then both sides of the equation are zero, so

assume that b and n do have the same parity and define h = 1
2 (n+ b). Then Nn(0, b) =

(
n
h

)
.
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If the first step is decrementing, then the remainder of the path must go from −1 to b > 0, so it

revisits zero at least once. So a path which does not revisit zero must start with an incrementing

step and the remaining path must be a path of n − 1 steps from 1 to b which does not visit 0.

By Lemma 3.3, it follows that

N 6=0
n (0, b) = N 6=0

n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

=

(
n− 1

h− 1

)
−
(
n− 1

h

)
=

(
n

h

)
· h
n
−
(
n

h

)
· n− h

n
=

(
n

h

)
· 2h− n

n
=
b

n

(
n

h

)
,

and since Nn(0, b) =
(
n
h

)
, this proves the required equality.

In terms of random walks, the ballot theorem can be formulated as follows: Let (Sn)n≥0 be a

SRW on Z and let b > 0. Then P (Si > 0 for all 1 ≤ i ≤ n | Sn = b) = b
n .

A mirroring argument can also be used to prove the following theorem:

Theorem 3.4. (Maximum of a random walk)

Let (Sn)n≥0 be a SRW on Z and let Mn = max (S0, S1, . . . , Sn). Then for r > 0 it holds that

P(Mn ≥ r) = P(Sn = r) + 2P(Sn > r).

Proof. Since r > 0, we have Mn ≥ r if and only if S visits r at some time 1 ≤ k ≤ n. Let us

first show that

P(Mn ≥ r, Sn < r) = P(Mn ≥ r, Sn > r).

By multiplying by 2n, this equality can be interpreted combinatorially as showing that the

number of paths that hit r that also satisfy Sn < r, is equal to the number of paths that hit r

that also satisfy Sn > r. Let k be the time of the first visit to r.

We construct a bijection between these sets of paths by mirroring the paths around k from time

k onwards. In this case, mirroring a path P = (p0, . . . , pk−1, 0, pk+1, . . . , pn) around r from a

time k such that pk = r onwards, results in the path P ′ = (p0, . . . , pk−1, r, r− pk+1, . . . , r− pn).

Note that the mirroring operation is its own inverse. Moreover, it maps a path with pn > r to a

path with p′n = r − pn < r. Hence, this is a bijection between the paths that hit r with Sn < r

and the paths that hit r with Sn < r. So P(Mn ≥ r, Sn < r) = P(Mn ≥ r, Sn > r).

It now follows that

P(Mn ≥ r) = P(Mn ≥ r, Sn < r) + P(Mn ≥ r, Sn = r) + P(Mn ≥ r, Sn > r)

= P(Mn ≥ r, Sn = r) + 2P(Mn ≥ r, Sn > r) = P(Sn = r) + 2P(Sn > r),

where the last inequality holds since Sn = r and Sn > r already imply that Mn ≥ r.
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3.2 Electric network theory

In this section, we consider graphs as electric networks, where vertices are nodes and edges are

have a given resistance. Since we are dealing with simple random walks only, we assume that

every edge has unit resistance. The content of this section is based on Section 3.1 of Barlow,

Peres and Sousi [3], augmented with the lecture notes by Valesin and Verbitskiy [12].

Let d(x) denote the degree of a vertex x of a graph G. Let X be a simple random walk on G.

The transition density qt(x, y) is defined by qt(x, y) = Px[Xt=y]
d(y) . The reason for dividing by

the degree of the vertex is to make qt a symmetric function, as the following lemma shows:

Lemma 3.4. Let G = (V,E) be a locally finite graph and let qt(x, y) be the transition density

corresponding to a simple random walk on G. Then qt(x, y) = qt(y, x) for all x, y ∈ V .

Proof. Let P = (p0, . . . , pt) be a path in G starting from p0 = x with endpoint pt = y. Let

P ′ = (pt, . . . , p0) be the reverse of P. Let X be a simple random walk on G. Then:

Px[{Xk}k≤t = P] =
t−1∏
k=0

1

d(pk)
=
d(pt)

d(p0)

t−1∏
k=0

1

d(pt−k)
=
d(y)

d(x)
Py[{Xk}k≤t = P ′].

Note that there exists a bijection between the paths P from x to y of length t and the paths P ′

of length t from y to x, namely reversing the path. This is a bijection since it is equal to its own

inverse. By summing over all possible paths P, we hence find Px[Xt = y] = d(y)
d(x)Py[Xt = x], so

qt(x, y) =
Px[Xt = y]

d(y)
=

Py[Xt = x]

d(x)
= qt(y, x),

which is the required equality.

Let G = (V,E) be a graph. For functions f, g : V → R, we define the quadratic form

E(f, g) =
1

2

∑
x∼y

(f(x)− f(y))(g(x)− g(y)),

where we sum over all vertices x, y ∈ V that are connected by an edge. Since we consider an

undirected graph, we have x ∼ y if and only if y ∼ x, so every pair of vertices that is connected

by an edge is actually counted twice in this sum. In terms of electric networks, the functions f

will typically be the electric potential of the vertices x and y. Then f(x)− f(y) is the potential

difference of x and y. Since x and y are connected by an edge of unit resistance, this is then

also the current flowing from x to y. In this context, E(f, f) is the energy flow corresponding

to the potential f . Note that E(f, f) is a sum of squares, so it is nonnegative.

Let A and B be two subsets of V . The effective resistance between A and B is defined by

Reff(A,B)−1 = inf{E(f, f) : E(f, f) <∞, f |A = 1, f |B = 0}.
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We now interpret the effective resistance physically, in terms of electric networks. Suppose that

all vertices in A are connected to a single additional vertex a and that all vertices in B are

connected to a single additional vertex b. When applying a potential of V to a and connecting

b to ground, a current I flows from a to b. Since resistors are linear elements, the ratio V
I is

constant, which is equal to the effective resistance Reff(A,B).

The effective resistance has several useful properties. For stating these properties, a few graph

theoretic notions are needed. A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if G′ can be

obtained from G by deleting vertices and edges. Formally, the required conditions are V ′ ⊆ V

and E′ ⊆ {{x, y} ∈ E : x, y ∈ V ′}, although the last condition can be simplified to E′ ⊆ E when

the condition that G′ is a graph is already included.

The subgraph of G induced by a vertex set V ′ ⊆ V is the subgraph of G with vertex set V ′ and

edge set E′ = {{x, y} ∈ E : x, y ∈ V ′}, i.e. no more edges are removed than necessary.

In a connected graph, the graph distance d(x, y) between two vertices x, y ∈ V is defined by the

length of the shortest path between x and y. For example, d(x, y) = 1 if and only if x ∼ y.

Lemma 3.5. Let G = (V,E) be a connected locally finite graph. Let EG(f, f) be the quadratic

form representing the energy flow corresponding to a potential f : V → R. Then:

• If G′ = (V ′, E′) is a connected subgraph of G, then EG′(f |V ′ , f |V ′) ≤ EG(f, f).

• For any connected graph, Reff(x, y) ≤ d(x, y). If G is a tree, then Reff(x, y) = d(x, y).

Proof. Note that the quadratic form can be seen as a sum over all edges, where every edge

{x, y} ∈ E is counted twice, but this is compensated for by the factor 1
2 . Since E′ ⊆ E,

the inequality EG′(f |V ′ , f |V ′) ≤ EG(f, f) directly follows from the fact that the sum defining

EG′(f |V ′ , f |V ′) included all terms that the sum defining EG(f, f) does, but EG(f, f) possibly

includes some additional nonnegative terms.

If G is a tree, then for any two vertices x, y there exists exactly one path (x0, . . . , xd) such that

x0 = x, xd = y, xi ∼ xi+1 for all 0 ≤ i ≤ d − 1 and d = d(x, y). Let f be a function satisfying

f(x) = 1 and f(y) = 0. It now follows that

EG(f, f) =
1

2

∑
u∼v

(f(u)− f(v))2 ≥
d−1∑
i=0

(f(xi)− f(xi+1))2

≥ d

(
1

d

d−1∑
i=0

|f(xi)− f(xi+1)|

)2

≥ d

(
1

d

∣∣∣∣∣
d−1∑
i=0

f(xi)− f(xi+1)

∣∣∣∣∣
)2

= d−1,

by leaving out all edges not on the path, the inequality of quadratic and arithmetic means,

the triangle inequality and the fact that the sum defining the arithmetic mean telescopes to

f(x) − f(y) = 1. Moreover, equality can be achieved by choosing f(xi) = d−i
d . This means
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that all differences are the same and also all positive, which yields equality in the final two

inequalities. We can now inductively define f for vertices off the path by stating that for all

vertices v, w ∈ V such that v ∼ w but such that v, w are not both on the path, we have

f(v) = f(w). Suppose that, when following this procedure, there exists a vertex v such that

f(v) is assigned two different values. Then there exist paths from v to xi and from v to xj , which

do not make use of any of the edges on the path (x0, . . . , xd), for two different 0 ≤ i, j ≤ d. By

following the path (x0, . . . , xd) from xj to xi, this yields two different paths from v to xi. But

this contradicts that G is a tree. So function values can be assigned using this procedure, and

this gives equality in the first inequality. Hence, EG(f, f) ≥ d−1 for all f satisfying f(x) = 1 and

f(y) = 0 and equality can be achieved, so Reff(x, y)−1 = d−1, so Reff(x, y) = d(x, y) as required.

Finally, if G is a connected graph, then the above inequality still holds, but it is not always

possible to achieve equality. So then Reff(x, y)−1 ≥ d(x, y)−1, and hence Reff(x, y) ≤ d(x, y).

3.2.1 Harmonic functions

To further analyze the energy flow, some elementary properties of harmonic functions are needed:

in particular, the existence and uniqueness of harmonic functions subject to some conditions.

The next three propositions are from the lecture notes by Verbitskiy and Valesin [12].

Proposition 3.6. (Existence principle)

Let G = (V,E) be a connected locally finite graph and let W be a proper subset of V . Let

f0 : V \W → R be a bounded function. Then there exists a function f : V → R whose restriction

to V \W is equal to f0 and which is harmonic on W .

Proof. Let (Xn)n≥0 be a simple random walk on G and consider the stopping time

τ := inf{n ≥ 0 : Xn ∈ V \W}.

Define the random variable Y by Y = f0(Xτ ) if τ <∞ and Y = 0 otherwise. Define the function

f : V → R by f(x) = E[Y | X0 = x]. If x ∈ V \W , then τ = 0 and hence f(x) = f0(x). It

remains to show that f is harmonic on W . Let x ∈W be given. Then

f(x) = E[Y ((Xn)n≥0) | X0 = x] =
∑
x∈V

E[Y ((Xn)n≥0) | X1 = y,X0 = x]P[X1 = y | X0 = x]

=
∑
x∈V

E[Y ((Xn)n≥1) | X1 = y]p(x, y) =
∑
x∈V

f(y)p(x, y),

by the law of total expectation, the Markov property and the definition of a Markov chain, and

the fact that x ∈W implies that τ ≥ 1 which makes it possible to forget X0 and shift all indices

by 1. Hence, the function f has the requested properties. This completes the proof.
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Proposition 3.7. (Maximum principle)

Let G = (V,E) be a locally finite graph and let W be a finite subset of V . Assume that the

subgraph of G induced by W is connected. Let f : V → R be harmonic on W , such that

max
x∈W

f(x) = sup
x∈V

f(x).

Then f is constant on the set W := {y ∈ V : ∃x ∈W : x ∼ y}.

Proof. Assume that w ∈ W satisfies f(w) = maxx∈W f(x). We prove by induction on d(w, x)

that f(x) = f(w) if x ∈ W . Here d denotes the graph distance where only edges from the

subgraph of G induced by W can be used, except for possibly the last edge which can be from

an element of W to an element outside W , but inside W . Since the subgraph of G induced by

W is connected, the result then follows.

If d(w, x) = 0, then w = x and the result trivially holds. Now let k ∈ N and assume that

f(x) = f(w) for all x ∈ W with d(w, x) = k. Let y ∈ W with d(w, y) = k + 1 be given. Then

there exists a w′ ∈W with d(w,w′) = k and w′ ∼ y. Since w′ ∈W , it follows that

f(w′) =
1

deg(w′)

∑
x∼w′

f(x) ≤ 1

deg(w′)

∑
w′∼x

sup
x∈V

f(x) =
1

deg(w′)
· deg(w′)f(w) = f(w′),

so the inequality is in fact an equality, and hence f(x) = supx∈V f(x) = f(w) for all x with

w′ ∼ x. In particular, f(y) = f(w). Since y was arbitrary, we conclude that f(y) = f(w) for all

y ∈W with d(w, y) = k + 1. This completes the induction and hence the proof.

If the set W is finite, then the harmonic function, whose existence is asserted by the existence

principle, can be shown to be unique.

Proposition 3.8. (Uniqueness principle)

Let G = (V,E) be a connected locally finite graph and let W be a finite proper subset of V . If

f, g : V → R are harmonic on W and equal outside W , then they are equal everywhere.

Proof. Let h = f − g. Then h is identically 0 outside W and harmonic on W . Since W is finite,

it follows that h attains only finitely many positive values. Suppose that h attains a positive

value somewhere on W . So h attains its supremum on a connected component W ′ of W so by

the maximum principle, h is constant on the set W ′. Since W is a proper subset of V , and since

G is connected, W ′ \W is nonempty. If v ∈ W ′ \W , then h(v) = 0. Hence, h(w) = h(v) = 0

for all w ∈ W ′. But h attains its supremum on W ′, so then the supremum of h is 0, which

contradicts the assumption that h attains a positive value. So f − g does not attain positive

values. By switching f and g, it follows that g − f does not attain positive values either. So

f − g must be identically zero, and hence f and g are equal everywhere.
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We now have the tools to continue with the investigation of the energy flow. If Ac ∩Bc is finite,

the infimum inf{E(f, f) : E(f, f) < ∞, f |A = 1, f |B = 0} is attained by a function f , which is

harmonic on the set Ac ∩Bc.

Lemma 3.6. Let G = (V,E) be a locally finite graph and let A,B ⊂ V be two nonempty

disjoint subsets of the vertex set such that Ac ∩Bc is finite. There exists a function h : V → R
such that h|A = 1, h|B = 0 and such that Reff(A,B)−1 = E(h, h). This function h is harmonic

on the set Ac ∩Bc.

Proof. Since Ac ∩ Bc is finite and the function f is already determined on A ∪ B, this is a

finite-dimensional optimization problem. Assume that v ∈ Ac∩Bc. The first order condition is:

d E(f, f)

d[f(v)]
=

1

2

∑
v∼y

2(f(v)− f(y))− 1

2

∑
x∼v

2(f(x)− f(v)) = 2
∑
v∼y

(f(v)− f(y)) = 0,

which implies f(v) = 1
deg(v)

∑
v∼y

f(y). Since this holds for all v ∈ Ac ∩ Bc, it follows that any

function f which minimizes E(f, f) must be harmonic on Ac∩Bc. Note that A∪B is nonempty

and that a function h : V → R such that h|A = 1, h|B = 0 is bounded on A∪B, so the existence

principle applies. Hence, there actually exists a function h : V → R such that h|A = 1, h|B = 0

which is harmonic on the set Ac ∩Bc. Moreover, it is unique by the uniqueness principle, which

applies since A ∪B is finite, it follows that h is uniquely determined.

It remains to prove that h actually minimizes E(f, f). To do this, let us show that E(f, f) is

convex as function of the variables f(v) for v ∈ Ac ∩Bc by calculating the Hessian. We have

d2 E(f, f)

d[f(v)]2
= 2 deg(v) and

d2 E(f, f)

d[f(v)]d[f(w)]
=

−2 if v ∼ w

0 otherwise.

Hence, the Hessian is two times the Laplacian matrix of the graph, which is positive semidefinite.

To prove this, write Ac ∩ Bc = {v1, . . . , vn} and order the rows and columns in the Hessian

accordingly. Denote the Hessian by L = [`ij : 1 ≤ i, j ≤ n]. Then

|`ii| = 2 deg(v) =
∑
i 6=j
|`ij |,

so L is diagonal dominant. So the Hessian is symmetric and diagonal dominant, which is a

sufficient condition for positive semidefiniteness.

Since the Hessian is a constant positive semidefinite matrix, the function is convex, so it has a

global interior minimum. Hence, it follows that h minimizes E(f, f). Hence,

Reff(A,B)−1 = inf{E(f, f) : E(f, f) <∞, f |A = 1, f |B = 0} = E(h, h),

so it follows that Reff(A,B)−1 = E(h, h), as required.
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3.2.2 Properties of Green’s function

Let G = (V,E) be a graph and let (Xt)t≥0 be a simple random walk on G. Recall that Green’s

function is defined by G(x, y) =
∑∞

j=0 Px(Xj = y). It is however more convenient to work with

the Green kernel, which is Green’s function divided by deg y. Put differently, this means working

with the transition density qj(x, y) instead of the probability Px(Xj = y).

Let B be a finite subset of the vertex set V Let qBj (x, y) be the j-step transition density for a

random walk which is killed when it exits B. Formally, this means that we consider the Markov

chain where for every state in Bc becomes an absorbing state. In addition, set qBj (x, y) = 0 if

x ∈ Bc or y ∈ Bc. There is also a Green kernel corresponding to the transition density qBj .

Finally, we also need Green kernel up to time t:

Definition 3.4. (Green kernels)

• The Green kernel is defined by g(x, y) =
∑∞

j=0 qj(x, y).

• The Green kernel of the Markov chain killed after exiting B is gB(x, y) =
∑∞

j=0 q
B
j (x, y).

• The Green kernel up to time t is defined by gt(y, x) =
∑t

j=0 qj(x, y).

By applying Lemma 3.6 to {x} and Bc, it follows that there exists a function h : V → R such

that h(x) = 1, h|Bc = 0, which is harmonic on B \ {x} and such that Reff(x,Bc)−1 = E(h, h).

In the next lemma, it is shown that h can be expressed in terms of Green kernels.

Lemma 3.7. Let x ∈ B be given and define the function g̃ : V → R by g̃(y) = gB(x, y). Define

the function h : V → R by h(y) = gB(x,y)
gB(x,x) . Then:

• g̃ is harmonic on B \ {x}.

• g̃ satisfies the reproducing property E(g̃, f) = f(x) for any function f with f |Bc = 0.

• h is harmonic on B \ {x}, and satisfies h(x) = 1, h|Bc = 0.

• Reff(x,Bc) = gB(x, x).

Proof. Using the law of total probability, it can be proven that the transition density qBj (x, y)

satisfies the following property for any x ∈ B and any j ≥ 1:

qBj (x, y) =
Px[Xj = y]

deg y
=

1

deg y

∑
w∈B
w∼y

Px[Xj = y | Xj−1 = w]P[Xj−1 = w]

=
1

deg y

∑
w∈B
w∼y

P[Xj−1 = w]

degw
=

1

deg y

∑
w∈V
w∼y

qBj−1(x,w).

In the final step, the summation can be changed from w ∈ B to w ∈ V since qBj−1(x,w) = 0 for

all w ∈ V \ V . Note that j ≥ 1 is used when applying the law of total probability.
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This result can be applied to show that g̃ is harmonic on B \ {x}. Let y ∈ B \ {x}. Then:

g̃(y) = gB(x, y) =
∞∑
j=0

qBj (x, y) =
∞∑
j=1

qBj (x, y) =
∞∑
j=1

 1

deg y

∑
w∈V
w∼y

qBj−1(x,w)


=

1

deg y

∑
w∈V
w∼y

 ∞∑
j=1

qBj−1(x,w)

 =
1

deg y

∑
w∈V
w∼y

 ∞∑
j=0

qBj (x,w)

 =
1

deg y

∑
w∈V
w∼y

g̃(w),

where the lower limit of the summation can be changed from j = 0 to j = 1 since qB0 (x, y) = 0

since x 6= y, and where we may interchange the summations since all quantities are positive.

This shows that g̃ is harmonic on B \ {x}, proving the first part of the lemma. For g̃(x), we

have by the same computation that

g̃(x) = gB(x, x) =

∞∑
j=0

qBj (x, x) =
1

deg x
+

∞∑
j=1

qBj (x, x) =
1

deg x
+

1

deg x

∑
w∈V
w∼x

g̃(w),

since qB0 (x, x) =
1

deg x
. From this it follows that

g̃(y)− 1

deg y

∑
y∼z

g̃(z) =
1

deg x
1{x=y}

for all y ∈ B. This can be used to show the reproducing property:

E(g̃, f) =
1

2

∑
y∼z

(f(y)− f(z))(g̃(y)− g̃(z))

=
∑
y∈V

deg(y)f(y)g̃(y)−
∑
y∈V

[
f(y)

∑
y∼z

g̃(z)

]
=
∑
y∈V

deg(y)f(y)

[
g̃(y)− 1

deg y

∑
y∼z

g̃(z)

]

=
∑
y∈B

[
deg(y)f(y)

1{x=y}

deg(x)

]
= deg(x)f(x)

1

deg(x)
= f(x).

In the first step, the sum is expanded and rewritten. There are deg(y) vertices z such that

y ∼ z, which contribute a term f(y)g̃(y) and similarly deg(y) vertices z such that z ∼ y, which

also contribute a term f(y)g̃(y), so in total we have a contribution of deg(y)f(y)g̃(y), since the

factor 2 cancels against the 1
2 in front. For every pair (y, z) with y ∼ z, there are two terms

of the form f(y)g̃(z). This yields the second term. This sum can now be written so that the

previously shown equality can be used and since f |Bc = 0, we can sum over y ∈ V instead of

y ∈ B. This proves the reproduction property.

The next part of the lemma considers the function h(y) = gB(x,y)
gB(x,x) , which is just g̃(y) divided

by a constant. So it follows that h is harmonic on B \ {x} from the first part of the lemma.

Moreover, h(x) = gB(x,x)
gB(x,x) = 1 and h(y) = gB(x,y)

gB(x,x) = 0 for y ∈ Bc since gB(x, y) = 0 for y ∈ Bc.
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To show the final part of the lemma, first note that h satisfies h(x) = 1, h|Bc = 0 and that

harmonic on B \ {x}. Since B \ {x} is finite, it follows by the uniqueness principle that this

is the only such function h. By applying Lemma 3.6 to {x} and Bc, it follows that h must

therefore satisfy Reff(x,Bc)−1 = E(h, h). To compute E(h, h), the reproducing property can

be used. From this, it follows that E(g̃, h) = h(x) = 1. Hence, E(h, h) = (gB(x, x))−1, since

h = (gB(x, x))−1g̃ and constants can just be pulled out of the energy quadratic form. It follows

that Reff(x,Bc)−1 = E(h, h) = (gB(x, x))−1 and hence that Reff(x,Bc) = gB(x, x).

The inequality Reff(x,Bc) = gB(x, x) is very useful and is used in many places in Barlow, Peres

and Sousi [3]. There is one more lemma on Green functions that is needed in [3].

Lemma 3.8. Let gt(y, x) be the Green kernel until time t. Then gt(y, x) ≤ gt(x, x).

Proof. To show this inequality, we condition on the first hitting time τx of x:

gt(y, x) =
t∑

j=0

qj(y, x) =
t∑

j=0

j∑
k=0

Py(τx = k)qj−k(x, x) =
t∑

`=0

t−∑̀
m=0

Py(τx = m)q`(x, x)

=

t∑
`=0

Py(τx ≤ t− `)q`(x, x) ≤
t∑

`=0

q`(x, x) = gt(x, x).

In the second equality, the strong Markov property is used. The summations can be interchanged

since both are finite. The inequality follows from Py(τx ≤ t−`) ≤ 1 and q`(x, x) ≥ 0.

3.2.3 Spectral theory

As in the previous subsection, let B be a finite subset of V . We may consider the restriction of

the transition function p to B × B, which we simply denote by pB. Note that pB(x, y) ≥ 0 for

all x, y ∈ V and that
∑

y∈B pB(x, y) ≤ 1 for all x ∈ B.

Proposition 3.9. (Spectral decomposition)

If B is a finite subset of V , then qBt can be decomposed as

qBt (x, y) =

|B|∑
i=1

λtiϕi(x)ϕi(y).

Moreover, the eigenvalues λi are real and satisfy |λi| ≤ 1 for all 1 ≤ i ≤ |B|, and the eigenfunc-

tions ϕi(x) and ϕi(y) are real-valued for all 1 ≤ i ≤ |B| and all x, y ∈ B.

This proposition is proven in Levin and Peres [8], Chapter 12, Lemma 12.1 and 12.2.
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The spectral decomposition can be used to prove a number of useful inequalities.

Lemma 3.9. Assume that G is locally finite and let B be a (not necessarily finite) subset of V .

Then the transition density qBt satisfies the following inequalities:

• qB2t+1(x, x) ≤ qB2t(x, x) and qB2t+2(x, x) ≤ qB2t(x, x).

• gB(x, x) ≥
∑∞

t=0 q
B
2t(x, x) ≥ 1

2gB(x, x).

Proof. First consider the case where B is finite. By the spectral decomposition, we can write

qBt (x, x) =

|B|∑
i=1

λti(ϕi(x))2.

Since the eigenvalues λi are real, it follows that |λi|2 = λ2
i , so λ2t

i = |λi|2t ≥ |λi|2t+1 ≥ λ2t+1
i

and λ2t
i ≥ λ

2t+2
i . Since (ϕi(x))2 is also nonnegative, this can be used to prove the following two

inequalities:

qB2t(x, x) =

|B|∑
i=1

λ2t
i (ϕi(x))2 ≥

|B|∑
i=1

λ2t+1
i (ϕi(x))2 = qB2t+1(x, x),

qB2t(x, x) =

|B|∑
i=1

λ2t
i (ϕi(x))2 ≥

|B|∑
i=1

λ2t+2
i (ϕi(x))2 = qB2t+2(x, x).

This proves the inequalities in the case where B is finite. Now let B be arbitrary. Define

B(x, r) = {y ∈ V : d(x, y) ≤ r}. Since G is locally finite, it follows that B(x, r) is finite

for all x ∈ V and all finite r ≥ 0. For a given t, define B′(t) = B(x, t) ∩ B. Then we have

q
B′(t)
j (x, x) = qBj (x, x) for all j ≤ t, since a random walk starting from X0 = x can never reach a

vertex at graph distance larger than t. So by applying the inequalities to the finite set B′(2t+2),

the general case follows. This proves the first part of the lemma.

Applying the inequality qB2t+1(x, x) ≤ qB2t(x, x) now yields

gB(x, x) =
∞∑
t=0

qBt (x, x) ≥
∞∑
t=0

qB2t(x, x) ≥ 1

2

∞∑
t=0

(
qB2t(x, x) + qB2t+1(x, x)

)
≥ 1

2
gB(x, x),

so gB(x, x) ≥
∑∞

t=0 q
B
2t(x, x) ≥ 1

2gB(x, x) as required.
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3.3 Results from probability theory

In this section, a variety of results from probability theory is covered. The first proposition is

very simple, but shows an ingenious way to show that the probability of some event is small.

This proposition is used in Krishnapur and Peres [7].

Proposition 3.10. Let X be a nonnegative random variable and let A be an event such that

P[A] and E[X|A] are positive. Then the following inequality holds:

P[A] ≤ E[X]

E[X|A]
.

Proof. By the law of total expectation we have

E[X] = P[A]E[X|A] + P[Ac]E[X|Ac] ≥ P[A]E[X|A],

where the inequality holds since X is nonnegative. Dividing by E[X|A] yields the result.

We now recall the geometric and the negative binomial distribution. Geo (p) denotes the geo-

metric distribution with success probability p, counting the number of failures. The probability

mass function of the geometric distribution is given by P(G = k) = (1 − p)kp for k ≥ 0. Its

mean and variance are given by E[G] = 1−p
p and Var[G] = 1−p

p2
.

The sum of k independent geometrically distributed random variables with the same success

probability p has the negative binomial distribution with success probability p and k successes

required. It follows immediately from the independence that if G̃ has the negative binomial

distribution, then its mean and variance are given by E[G̃] = 1−p
p · k and Var[G̃] = 1−p

p2
· k.

If (Sn)n∈N is a random walk on Z starting from S0 = 0, then we can write Sn =
∑n

j=1Bj

where the Bj are i.i.d. random variables with P(Bj = 1) = P(Bj = −1) = 1
2 . The Central

Limit Theorem yields that Sn√
n

converges in distribution to a normal distribution as n→∞. In

particular, Sn√
n

can attain arbitrarily large numbers with positive probability as n→∞. On the

other hand, the Law of Large Numbers states that Sn
n converges to 0 almost surely. A question

is whether there is a scaling between
√
n and n, such that the resulting random variable does

not converge to 0, but such that it also does not attain arbitrarily large numbers with positive

probability. The law of the iterated logarithm provides this scaling:

Proposition 3.11. (Law of the iterated logarithm)

Let (Bn)n∈N be a sequence of i.i.d. random variables with mean zero and variance 1.

Let Sn =
∑n

j=1Bj . Then the following holds:

lim sup
n→∞

±Sn√
2n log log n

= 1 almost surely

Here, the ± denotes that the law holds for both signs.
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3.3.1 Inequalities for the random walk on Z

The Chernoff bound is an inequality based on the moment-generating function which usually

gives sharper bounds than Markov’s inequality and Chebyshev’s inequality. It can be proven

using Markov’s inequality.

Proposition 3.12. (Chernoff bounds)

Let X be a random variable and let t be a real number such that E
[
etX
]

exists. If t > 0, then

P(X ≥ a) ≤ e−taE
[
etX
]

for all a ∈ R. If t < 0, then P(X ≤ a) ≤ e−taE
[
etX
]

for all a ∈ R.

In this subsection, some additional inequalities for the random walk on Z are proven. Using the

Chernoff bound, we can now prove the following lemma:

Lemma 3.10. If (Sn)n∈N is a random walk on Z starting from S0 = 0, then P(Sn ≥ δn) ≤
e−

1
6
nδ2 , P(Sn ≤ −δn) ≤ e−

1
6
nδ2 and P(|Sn| ≥ δn) ≤ 2e−

1
6
nδ2 , for all δ > 0.

Proof. Since S0 = 0, we can write Sn =
∑n

j=1Bj where the Bj are independent random variables

with P(Bj = 1) = P(Bj = −1) = 1
2 . The moment-generating function of Bj is

E[etBj ] = etP(Bj = 1) + e−tP(Bj = −1) = 1
2

(
et + e−t

)
= e−t

(
1 + 1

2

(
e2t − 1

))
≤ e−te

1
2(e2t−1),

by the inequality 1 + x ≤ ex. Hence, E[etBj ] ≤ e
1
2(e2t−1)−t for 1 ≤ j ≤ n. Since B1, . . . , Bn are

independent, the same holds for etB1 , . . . , etBn . Hence,

E
[
etSn

]
= E

 n∏
j=1

etBj

 =
n∏
j=1

E
[
etBj

]
≤ e

1
2
n(e2t−1)−tn.

By Chernoff’s bound, it follows that P(Sn ≥ δn) ≤ e−tnδE
[
etSn

]
≤ e

1
2
n(e2t−1)−tn(1+δ) for t > 0.

We choose t = 1
2 log(1 + δ), since this minimizes the right hand expression. Hence,

P(Sn ≥ δn) ≤ e
1
2
n(δ−(1+δ) log(1+δ)).

Let g(x) = x lnx, then g′(x) = 1 + lnx, so g′′(x) = 1
x and hence g′′′(x) = − 1

x2
.

By the Taylor Remainder Theorem it hence follows that

g(1 + δ) = g(1) + δg′(1) + 1
2δ

2g′′(1) + 1
6δ

3g′′′(ξ), where ξ ∈ (1, 1 + δ).

Note that 1
6δ

3g′′′(ξ) ≥ 1
6δ

2g′′′(ξ) = 1
6δ

2 ·
(
− 1
ξ2

)
≥ −1

6δ
2, where the first inequality holds since

δ3 ≤ δ2 for δ ≤ 1 and the sign changes since g′′′(ξ) is negative. Hence,

g(1 + δ) ≥ δ + 1
2δ

2 − 1
6δ

2 = δ + 1
3δ

2,

so δ − (1 + δ) log(1 + δ) ≤ −1
3δ

2. We conclude that P(Sn ≥ δn) ≤ e−
1
6
nδ2 .

By symmetry considerations, we also have P(Sn ≤ −δn) ≤ e−
1
6
nδ2 for all δ > 0.

It hence follows that P(|Sn| ≥ δn) ≤ 2e−
1
6
nδ2 for all δ > 0.
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If we substitute δ = n−1/2+ε, we obtain P(|Sn| ≥ n1/2+ε) ≤ 2e−
1
6
n2ε

. So the probability that

|Sn| ≥ n1/2+ε decreases faster than any polynomial in n for any ε > 0. In particular, it only

happens finitely often, which is in accordance with the law of the iterated logarithm.

Lemma 3.10 can be used to prove several other bounds, especially in combination with Theorem

3.4, which states that P(max{Yi : 0 ≤ i ≤ t} ≥ k) = P(Yt = k) + 2P(Yt > k) ≤ 2P(Yt ≥ k).

Lemma 3.11. Let (Yt)t≥0 be a random walk on Z starting from Y0 = 0 and let τ be the first

hitting time of {−k, k}. Then P(τ ≤ t) ≤ 4e−
1
6
k2/t.

Proof. If τ ≤ t, then there must exist an 1 ≤ i ≤ t such that Yi ≤ −k or Yi ≥ k. By Theorem

3.4 and the analogous variant for the minimum of a random walk, it follows that

P(τ ≤ t) ≤ P(min{Yi : 0 ≤ i ≤ t} ≤ −k) + P(max{Yi : 0 ≤ i ≤ t} ≥ k)

≤ 2P(Yt ≤ −k) + 2P(Yt ≥ k) = 2P(|Yt| ≥ k) ≤ 4e−
1
6
k2/t,

where for the last inequality, Lemma 3.10 is used.

This bound can in turn be applied to get yet another bound, on the hitting times of a random

walk which is restricted to an interval. This bound will be used in a slightly different setting.

Lemma 3.12. Let (Xt)t≥0 be a random walk on Z∩ [0, n] starting from X0 = k for some k ≤ n,

and let τ be the first hitting time of 0. Then there exist constants c1, c2 > 0 not depending on

n or k such that P(τ ≥ c1k
2) ≥ c2.

Proof. The simple random walk X on Z ∩ [0, n] can be generated from a simple random walk

on Z ∩ [0, 2n] by identifying x and 2n − x with each other. We then consider the first hitting

time of {0, 2n} instead of the first hitting time of 0. Note that this hitting time stochastically

dominates the first hitting time τ ′ of {0, 2k}, since k ≤ n, so P(τ ≤ t) ≤ P(τ ′ ≤ t) for all t ≥ 0.

Before the first hitting time of {0, 2k}, the simple random walk on Z ∩ [0, 2n] coincides with a

simple random walk (Yt)t≥0 on Z, starting from Y0 = k. After shifting the random walk k units

to the left so that it starts from 0, Lemma 3.11 can be used. Hence,

P(τ ≥ t) ≥ P (τ ′ ≥ t) ≥ 1− 4e−
1
6
k2/t.

Choosing t = c1k
2 for some constant c1 > 0 yields the inequality P(τ ≥ c1k

2) ≥ 1 − 4e−1/(6c1).

In particular, for every c1 <
1

6 ln 4 such a constant c2 = 1− 4e−1/(6c1) > 0 exists.

Finally, a stronger bound on the probability that Xt = k is needed, especially in the cases where

k is larger than
√
t. This is a combination of the bound on P(τk ≤ t) from Lemma 3.11 and a

bound on the probability that Xt = k given by Proposition 3.4.
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Lemma 3.13. Let (Xt)t≥0 be a random walk on Z starting from X0 = 0. Then there exists a

constant C > 0 such that P(Xt = k) ≤ C√
t
e−

1
12
k2/t.

Proof. If k ≤
√
t, then e−

1
12
k2/t ≥ e−

1
12 , so then the bound immediately follows from Proposition

3.4 after adjusting the constant C. Moreover, if t/k ≤ 12 then the bound follows immediately

from Lemma 3.10 by using the inequalities e
1
12
k2/t ≥ 1

12k
2/t ≥ 1

123
t and hence

P(Xt = k) ≤ P(Xt ≥ k) ≤ 2e−
1
6
k2/t ≤ C/t · e−

1
12
k2/t ≤ C√

t
e−

1
12
k2/t,

by choosing C ≥ 2 · 123. We now write

P(Xt = k) =
P(Xt = k)

P(Xt ≥ k)
P(Xt ≥ k).

Note that P(Xt ≥ k) ≤ 2e−
1
6
k2/t by Lemma 3.10.

By the inequalities e
1
12
k2/t ≥ 1+ 1

12
k2

t ≥ 2
√

1
12
k2

t ≥
1
2
k√
t
, it follows that P(Xt ≥ k) ≤

√
t
k e
− 1

12
k2/t.

We now bound
P(Xt = k)

P(Xt ≥ k)
. First note that for a ≥ 0 we have

P(Xt = k + 2a) =
1

2t

(
t

t+k+2a
2

)
=

1

2t

(
t
t+k

2

) a∏
j=1

t−k
2 − j
t+k

2 + j
≥

(
t−k

2 − a
t+k

2 + a

)a
P(Xt = k).

Since we can assume t/k ≥ 12 it follows that
(

1− 6k
t+3k

)t/k
≥
(

1− 6
t/k

)t/k
≥ 1

46
.

Summing this for 1 ≤ a ≤ t/k and using that

(
t−k
2
−a

t+k
2

+a

)a
=
(
t−k−2a
t+k+2a

)a
is decreasing in a and

that
(
t−k−2t/k
t+k+2t/k

)t/k
≥
(
t−3k
t+3k

)t/k
=
(

1− 6
t/k

)t/k
since t/k ≤ k since

√
t ≤ k, it follows that

P(Xt ≥ k) ≥
t/k∑
a=1

(
t−k

2 − a
t+k

2 + a

)a
P(Xt = k) ≥ t

k

(
1− 6k

t+ 3k

)t/k
P(Xt = k) ≥ 1

46

t

k
P(Xt = k).

Combining this yields P(Xt = k) ≤ 46√
t
e−

1
12
k2/t, for k ≥

√
t and t/k ≥ 12, so by choosing C ≥ 46,

the bound follows. Hence, the bound holds in all cases, which completes the proof.

3.3.2 Zero-one laws

When considering infinitely many events, one can be interested whether only finitely many or

infinitely many occur. Often, it can be proven that the event occurs infinitely often (i.o.) with

probability 1, and finitely often with probability 0, or vice versa. The simplest such result is the

Borel-Cantelli lemma, which can be used to show that almost surely finitely many events occur:
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Proposition 3.13. (Borel-Cantelli lemma)

Let (An)n∈N be a sequence of events. If
∑∞

k=0 P(Ak) is finite, then P(Ak occurs i.o.) = 0.

For more advanced 0-1 laws, some definitions from measure theory are needed. The following

theorems are from Durrett [6]. A σ-algebra T is called trivial if it only contains events that

happen with probability 0 or 1, i.e. P(A) ∈ {0, 1} for all A ∈ T . Now consider a probability

space where Ω = SN. Then elements of Ω are sequences of random variables taking values

in the state space. A finite permutation of N is a bijection π : N → N such that π(i) 6= i

for only finitely many i. For a finite permutation π, define πω by (πωi) = ωπ(i). Under the

interpretation that Xi(ω) = ωi, this is the same as rearranging the random variables. An event

A is called permutable if π−1A = A for all finite permutations π, where π−1A = {ω : πω ∈ A}.
The collection of permutable events is called the exchangeable σ-field TE . The notion of a

permutable event allows us to formulate the following 0-1 law:

Proposition 3.14. (Hewitt-Savage 0-1 law)

Let (Xn)n∈N be a sequence of i.i.d. random variables. If the event A is in the exchangeable

σ-field of the sequence (Xn)n∈N, then P(A) ∈ {0, 1}.

The Hewitt-Savage 0-1 law can be used to prove a 0-1 law for Markov chains. For a Markov

chain, define F ′n = σ(Xn+1, Xn+2, . . .) and T =
⋂∞
n=0F ′n. An event in T is called a tail event:

it only depends on the tail of the sequence (Xn)n∈N, not on any number of initial terms. The

difficulty in proving this lays in the fact that the random variables (Xn)n∈N are not independent.

So we break up the Markov chain in vectors that are i.i.d., so that the Hewitt-Savage 0-1 law

can be applied.

Theorem 3.5. (Orey)

Let (Xn)n≥0 be a recurrent Markov chain with P(X0 = x) = 1. Then T is trivial.

Proof. Define the mth hitting time of x by T0 = 0 and Tm = inf{n > Tm−1 : Xn = x} for m ≥ 1.

Since the Markov chain is recurrent, Tm is almost surely finite for all m. Consider the vector

Vn = (X(Tn−1), . . . , X(Tn − 1)). Note that these are vectors of variable length. By the strong

Markov property, these vectors are independent.

Since finite permutations of the Vi only affect a finite number of initial terms of the sequence

(Xn)n∈N, it follows that any event contained in the tail field T is contained in the exchangeable

σ-field of the sequence (Vn)n∈N. By the Hewitt-Savage 0-1 law, the exchangeable σ-field of the

sequence (Vn)n∈N is trivial, so the same holds for the tail field T .

33



3.4 Results from martingale theory

Recall from Section 3.1.2 that for a sequence of random variables (Xn)n≥0, the natural filtration

(Fn)n≥0 is defined as the σ-algebra generated by the random variables X0, . . . , Xn. Note that Fn
is the collection of events that can be distinguished up to time n. In the context of martingale

theory, Fn is also called the information set. The following exposition is based on lecture notes

by Balázs [2]. We only consider martingales with respect to the natural filtration.

Definition 3.5. (Martingale)

A stochastic process (Xn)n≥0 in a probability space (Ω,F ,P) is a martingale with respect to the

natural filtration (Fn)n≥0 if the following two properties hold:

• E[|Xn|] <∞ for all n ≥ 0.

• E[Xn+1|Fn] = Xn almost surely, for all n ≥ 0.

From the law of iterated expectations it follows that E[Xn+1] = E[E[Xn+1|Fn]] = E[Xn] for all

n ≥ 0. By induction, it hence follows that E[Xn] = E[X0] for all n ≥ 0.

As stated, this only holds for fixed n, but under some conditions this can be extended to the

case where n is a stopping time τ , which means that {τ ≤ n} ∈ Fn for all n ≥ 0. If (Fn)n≥0 is

the natural filtration, then this means that whether the event {τ ≤ n} occurs can be decided

by just knowing the values X0, . . . , Xn. This yields Doob’s optional stopping theorem:

Theorem 3.6. (Doob’s optional stopping theorem)

Let (Xn)n≥0 be a martingale and let τ be a stopping time. If X is of bounded increments

(i.e. there exists a constant C such that |Xn+1 − Xn| ≤ C for all n ≥ 1) and E[τ ] < ∞, then

E[Xτ ] = E[X0].

It may be interesting to note the analogy to Section 3.1.2: Doob’s optional stopping theorem is

to the property that E[Xn] = E[X0] as the strong Markov property is to the Markov property.

We now consider a segment of Z from 0 to B for some B > 0 and a simple random walk

(Xn)n≥0 starting from X0 = 1. Let τ be the first time that either 0 or B is reached. Note that

{τ ≤ n} ∈ Fn since we can decide whether {τ ≤ n} occurs by simply checking whether one of

the realizations of X0, . . . , Xn is equal to 0 or B.

We now calculate the expectation of τ using two martingales.

Lemma 3.14. Consider a segment of Z from 0 to B for some B > 0 and a simple random walk

(Xn)n≥0 starting from X0 = 1. Let τ be the first time that 0 or B is reached. Then E[τ ] = B−1.
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Proof. Let us first prove that (Xn)n≥0 is a martingale. Note that |Xn| ≤ n+ 1 for all n ∈ N and

hence E[|Xn|] <∞ for all n ≥ 0. Also, we have

E[Xn+1|Fn] = E[Xn+1|Xn] = 1
2 (Xn + 1) + 1

2 (Xn − 1) = Xn,

since (Xn)n≥0 is a Markov chain. So (Xn)n≥0 is a martingale. Note that (Xn) is of bounded

increments, in fact |Xn+1 −Xn| = 1 for all n ≥ 1.

Note that from any given point between 0 and B, doing B steps in the same direction means

that we cross 0 or B. We can see such a successive block of B steps as a trial and doing B

steps in the same direction as success. From this, we see that τ is upper bounded by B times a

geometric random variable with success probability 1/2B−1, so we have E[τ ] ≤ B2B−1 <∞.

Since (Xn)n≥0 is a martingale of bounded increments and E[τ ] < ∞, Doob’s optional stopping

theorem applies. Hence, E[Xτ ] = E[X0] = 1. By definition, Xτ can only be 0 or B, so this

implies B · P(Xτ = B) = E[Xτ ] = 1, so P(Xτ = B) = 1
B and P(Xτ = 0) = B−1

B .

Let Yn = X2
n−n. We prove that (Yn)n≥0 is a martingale. Note that |Yn| ≤ |Xn|2+n ≤ (n+1)2+n

for all n ∈ N and hence E[|Yn|] <∞ for all n ≥ 0. Also, we have

E[Yn+1|Fn] = E[Yn+1|Xn] = 1
2 (Xn + 1)2 + 1

2 (Xn − 1)2 − (n+ 1) = X2
n + 1− (n+ 1) = Yn,

since (Xn)n≥0 is a Markov chain. So (Yn)n≥0 is a martingale. Note that before stopping we

have 0 ≤ Xn ≤ B, so |Yn+1 − Yn| ≤ 2B for all n ≥ 1.

Since (Yn)n≥0 is a martingale of bounded increments and E[τ ] < ∞, Doob’s optional stopping

theorem applies. Hence, E[Yτ ] = E[Y0] = 1. Note that E[X2
τ ] = B2 · P(Xτ = B) = B, so

E[τ ] = E[X2
τ − Yτ ] = E[X2

τ ]− E[Yτ ] = B − 1,

which is the required result.

By symmetry considerations, this lemma also holds when X0 = B − 1. From this we also see

that the first return time to 0 or B, when starting from 0, has expectation B.

We now consider the situation where the random walk is confined to a two-sided segment [−A,B].

Lemma 3.15. Consider a segment of Z from −A to B for some A,B > 0 and a simple random

walk (Xn)n≥0 starting from X0 = 0. Then:

1. Let τ be the first return time to −A, 0 or B.

Then P(Xτ = −A) = 1
2A , P(Xτ = B) = 1

2B and P(Xτ = 0) = 1
2

(
A−1
A + B−1

B

)
.

2. Let τ ′ be the hitting time of {−A,B}. Then P(Xτ ′ = −A) = B
A+B and P(Xτ ′ = B) = A

A+B .

Moreover, the number of visits to 0 excluding the first before τ ′ is geometrically distributed

with success probability 1
2

(
1
A + 1

B

)
.
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Proof. If X1 = 1, then the random walk can either return to 0 or B, but not to −A. As shown

in the proof of Lemma 3.14, the random walk then returns to 0 with probability B−1
B and to B

with probability 1
B . If X1 = −1, then the random walk can either return to −A or 0, but not to

B. By symmetry considerations, the proof of Lemma 3.14 in this case implies that the random

walk then returns to 0 with probability A−1
A and to −A with probability 1

A . By the law of total

probability it hence follows that

P(Xτ = −A) = P(Xτ = −A | X1 = −1)P(X1 = −1) + P(Xτ = −A | X1 = 1)P(X1 = 1) = 1
2A

P(Xτ =0) = P(Xτ =0 | X1 =−1)P(X1 =−1) + P(Xτ =0 | X1 =1)P(X1 =1) = 1
2

(
A−1
A + B−1

B

)
P(Xτ = B) = P(Xτ = B | X1 = −1)P(X1 = −1) + P(Xτ = B | X1 = 1)P(X1 = 1) = 1

2B ,

which proves the first part of the lemma.

We now turn to the second part. Let us do experiments where a success is defined when −A
or B is reached before 0 and a failure is defined as reaching 0 before −A or B. If 0 is reached,

then a new experiment is started. Since τ ′ is a stopping time, it follows by the strong Markov

property that the experiments are independent. Moreover, by the first part of the lemma it

follows that the success probability is 1
2

(
1
A + 1

B

)
. Hence the number of visits to 0 excluding the

first before τ ′ is geometrically distributed with success probability 1
2

(
1
A + 1

B

)
.

To calculate the probabilities of reaching −A and B, we again use the fact that (Xn)n≥0 is a

martingale of bounded increments, as shown in the proof of Lemma 3.14. Moreover, it follows

from a similar argument as in this lemma that E[τ ′] < ∞. Hence, Doob’s optional stopping

theorem applies, so E[Xτ ′ ] = E[X0] = 0. By definition, Xτ ′ can only be −A or B, so this implies

B · P(Xτ ′ = B)− A · P(Xτ ′ = −A) = E[Xτ ′ ] = 0 and P(Xτ ′ = −A) + P(Xτ ′ = B) = 1. Solving

the system of equations implies P(Xτ ′ = −A) = B
A+B and P(Xτ ′ = B) = A

A+B .
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4 Exposition of known results

4.1 Results on collisions of random walks

In this section, some preliminary results on the collisions of random walks are given. The

following proposition is proven in Krishnapur and Peres [7].

Proposition 4.1. Let G = (V,E) be an infinite graph of bounded degree.

Then the expected number of collisions is finite if and only if G is transient.

Proof. Let X and Y be two independent simple random walks on G starting from a vertex v.

The expected number of meetings of X and Y is given by
∑∞

n=0

∑
v∈V (p(n)(v, w))2. By Lemma

3.4, it holds that qn(v, w) = qn(w, v) and hence p(n)(w, v) = p(n)(v, w) deg v
degw . Hence, we have

∞∑
n=0

p(2n)(v, v) =
∞∑
n=0

∑
w∈V

p(n)(v, w)p(n)(w, v) =
∞∑
n=0

∑
w∈V

(p(n)(v, w))2 deg v

degw
.

Since G is of bounded degree, deg v
degw is bounded, so it follows that

∑∞
n=0 p

(2n)(v, v) is finite if

and only if
∑∞

n=0

∑
v∈V (p(n)(v, w))2 is finite. By the second part of Lemma 3.9, it follows that∑∞

n=0 p
(2n)(v, v) is finite if and only if

∑∞
n=0 p

(n)(v, v) is finite.

So
∑∞

n=0

∑
v∈V (p(n)(v, w))2 is finite if and only if

∑∞
n=0 p

(n)(v, v) is finite. The latter holds if

and only if v is transient and by Proposition 3.1 this holds if and only if G is transient. Hence,

the expected number of collisions is finite if and only if G is transient.

This proposition can also be formulated as: the expected number of collisions is infinite if and

only if G is recurrent. However, the fact the expectation of a random variable is infinite, does

not mean that it can be infinite with positive probability. Of course, the converse does hold: if a

nonnegative random variable is infinite with positive probability, then its expectation is infinite.

The aim in Krishnapur and Peres [7] is to give a recurrent graph which has the finite collision

property. Therefore, we first prove that Comb(Z) is recurrent.

Proposition 4.2. Comb(Z) is recurrent.

Proof. Consider a random walk X on Comb(Z) starting from X0 = (0, 0). Let U be the random

walk corresponding to the horizontal steps of X, and let V be the random walk corresponding

to the vertical steps of X. Then U and V are both simple random walks on Z. Since Z is

recurrent, it follows that U visits 0 infinitely often almost surely if X makes infinitely many

horizontal steps. Since X can only make a horizontal step if the vertical position is 0, it then

follows that X visits (0, 0) infinitely often. Now assume for the sake of contradiction that X
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makes only finitely many horizontal steps with positive probability. Then X does make infinitely

many vertical steps. Since V is a simple random walks on Z, it follows that V visits 0 infinitely

often almost surely. At each such visit, X makes a horizontal transition with probability 1
2 , so

then X does make infinitely many horizontal steps almost surely. Contradiction. Hence, (0, 0)

is recurrent. By Proposition 3.1, it follows that Comb(Z) is recurrent.

The following proposition is a generalization of the result used in Krishnapur and Peres [7] to

bound the probability that two simple random walks collide, at two (possibly different) given

points in time. The argument is very similar to the proof of Lemma 3.4.

Proposition 4.3. Let G = (V,E) be an infinite graph of bounded degree. Consider two

independent simple random walks U and U ′ on G, starting from the same vertex: U0 = U ′0 = v.

Then there exists a constant C > 0 such that

Pv,v[Ui = U ′j ] ≤
C√
i+ j

for all i and j such that i+ j > 0.

Proof. Consider two paths P = (p0, . . . , pi) and P ′ = (p′0, . . . , p
′
j) of lengths i and j in G starting

from p0 = p′0 = v and having the same endpoint pi = p′j = w. Let P ′′ = (p0, . . . , pi, p
′
j−1, . . . , p

′
0)

be the path obtained by traversing P first and then returning to v via P ′ in reverse. Then:

Pv[{Uk}k≤i+j = P ′′] =

i∏
k=0

1

deg(pk)

j−1∏
k=1

1

deg(p′k)
=

deg(p′0)

deg(pi)

i−1∏
k=0

1

deg(pi)

j−1∏
k=0

1

deg(p′j−1)

=
deg(v)

deg(w)
Pv[{Uk}k≤i = P]Pv[{U ′k}k≤j = P ′].

Since G is by assumption of bounded degree, we have deg(v)
deg(w) ≥

1
b for some b > 0. Note that

given a path P ′′ of length i + j starting and ending at v, we can also make paths P and P ′ of

length i and j by taking P to be the first i + 1 vertices of P ′′ and P ′ to be the reverse of the

last j + 1 vertices. Hence, there exists a bijection between the paths P ′′ from v to v of length

i+ j and the paths P,P ′ of length i and j from v to w.

By summing over all w and all possible paths P,P ′, we hence find that

Pv[Ui+j = v] ≥ 1

b
Pv,v[Ui = U ′j ].

By Proposition 3.4, there exists a C ′ > 0 such that Pv[Ui+j = v] = p(i+j)(v, v) ≤ C′√
i+j

.

Multiplying by b and letting C = C ′b yields

Pv,v[Ui = U ′j ] ≤
C√
i+ j

for all i and j such that i+ j > 0.
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For two simple random walks on Z, the reverse inequality also holds (with a different constant):

Proposition 4.4. Consider two independent simple random walks U and U ′ on Z, starting

from U0 = U ′0 = 0. Then there exists a constant C ′ > 0 such that

P0,0[Ui = U ′j ] ≥
C ′√
i+ j

for all i and j such that i+ j is even and larger than 0.

Proof. Note that all vertices of Z have degree 2, so deg(v)
deg(w) = 1 for all vertices v and w of Z. Using

the same argument as in Proposition 4.3, it now follows that P0[Ui+j = 0] = P0,0[Ui = U ′j ].

Since U is a random walk on Z, we can write Un =
∑n

k=1Bk where the Bk are i.i.d. random

variables with P(Bk = 1) = P(Bk = −1) = 1
2 . Hence, we have Un = 0 if and only if P(Bk = 1)

for exactly n
2 values of k and hence also P(Bk = −1) for exactly n

2 values of k.

Let h = 1
2 (i+ j), which is an integer by assumption. Then there exist constants C,C ′ such that

P0,0[Ui = U ′j ] = P0[Ui+j = 0] =

(
2h

h

)
1

22h
≥ C√

h
=

C ′√
i+ j

,

which is the required inequality.

Finally, we use Orey’s theorem (Theorem 3.5), to prove a 0-1 law for the finite collision property.

This proposition can be found in Barlow, Peres and Sousi [3].

Proposition 4.5. (0-1 law)

Let G be a connected recurrent graph and let X and Y be independent random walks on G.

Let Z be the number of collisions of X and Y . Then for all (a, b) ∈ G×G we have

Pa,b(Z =∞) ∈ {0, 1}.

If there exist a0, b0 such that Pa0,b0(Z = ∞) > 0 then Pa,b(Z = ∞) = 1 for all a, b such that

there exists an m with Pa,b(Xm = a0, Ym = b0) > 0. In particular, either Pa,a(Z = ∞) = 0 for

all a or else Pa,a(Z =∞) = 1 for all a.

Proof. Let T Xn = σ(Xn+1, Xn+2, . . .) and T X =
⋂∞
n=0 T Xn and similarly T Yn = σ(Yn+1, Yn+2, . . .)

and T Y =
⋂∞
n=0 T Yn . By Orey’s theorem (Theorem 3.5), it follows that T X and T Y are trivial.

Define T =
⋂∞
n=0 σ

(
T Xn , T Yn

)
. By Lemma 2 of Lindvall and Rogers [9], it now follows that

T = σ
(
T X , T Y

)
since X and Y are independent and hence that T is trivial since T X and T Y

are trivial. Since the event {Xt = Yt i.o.} is σ
(
T Xn , T Yn

)
-measurable for all n ∈ N, it follows

that it is T -measurable. Hence, the event {Xt = Yt i.o.} has probability 0 or 1.
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Now assume that Pa0,b0(Z = ∞) > 0. By the 0-1 law, it then follows that Pa0,b0(Z = ∞) = 1.

Let a, b and m such that Pa,b(Xm = a0, Ym = b0) ≥ 0 be given. Then

Pa0,b0(Z =∞) ≥ P(Z =∞ | Xm = a0, Ym = b0)Pa,b(Xm = a0, Ym = b0) > 0,

and by the 0-1 law it hence follows that Pa,b(Z = ∞) = 1. Since the graph is connected, there

exists an m such that Pa′,a′(Xm = a, Ym = a) = Pa′(Xm = a)2 > 0. Hence, applying this with

a0 = b0 and a = b yields that Pa,a(Z =∞) = 0 for all a or else Pa,a(Z =∞) = 1 for all a.

From the 0-1 law, it follows that for a connected recurrent graph there are only two possibilities:

either Pa,a(Z =∞) = 0 for all a or else Pa,a(Z =∞) = 1 for all a. So when both random walks

start from the same vertex, they collide either infinitely often almost surely or finitely often

almost surely. We define these two properties as the infinite collision property and the finite

collision property, respectively.

Definition 4.1. (The finite and infinite collision property)

If Pa,a(Z =∞) = 1 for all a ∈ G, then G has the infinite collision property.

If Pa,a(Z =∞) = 0 for all a ∈ G, then G has the finite collision property.

We now give a corollary of the 0-1 law.

Corollary 4.1. Let (Bn)n∈N be a collection of finite subsets of G and let

Z(Bn) =
∞∑
t=0

1(Xt = Yt ∈ Bn)

be the number of collisions in Bn.

Let An be the event that Z(Bn) is positive, i.e. An = {Z(An) > 0}. Then

1. If G =
⋃
n∈NBn and P(An occurs i.o.) = 0, then G has the finite collision property.

2. If the An are disjoint and P(An) > c > 0 for all n, then G has the infinite collision property.

Proof. 1. Note that we can view the two random walks X and Y as one random walk on the

product graph G×G. If G×G is recurrent, then the random walk on the product graph visits

every vertex infinitely often and hence X and Y collide infinitely often at every vertex of G,

which implies P(An occurs i.o.) = 1. So G × G is transient, which implies that the number of

collisions in the set Bn is finite almost surely for all n ∈ N. Since there are only finitely many

sets Bn with a positive amount of collisions, it follows that there are only finitely many collisions

in total and hence that G has the finite collision property.

2. Note that P(An) > c implies that P(An occurs i.o.) > c. Since the An are disjoint, we have

Z ≥ 1 (An), so P(Z =∞) > c and hence by the 0-1 law it follows that P(Z =∞) = 1.
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4.2 The finite collision property of Comb(Z)

This section is devoted to the exposition of the proof of the following theorem from Krishnapur

and Peres [7]:

Theorem 4.1. Comb(Z) has the finite collision property.

In Krishnapur and Peres [7] a more general statement is proven: Comb(G) has the finite collision

property for any recurrent infinite graph with constant vertex degree. Since in the entire thesis

we focus on Comb(Z) and its subgraphs, we only give the proof for Comb(Z). However, only

minor modifications are needed to make the proof work for graphs with constant degree.

Let (Xn)n≥0 and (Yn)n≥0 be simple random walks on Comb(Z) both starting from (0, 0). In the

proof we will use the following random variables and events:

Zn,` = |{(N,L) : n ≤ N < 2n, ` ≤ L < 2` and XN = YN = (v, L) for some v ∈ Z}|
An,` = {Zn,` > 0}.

Wn,` =
∑

k∈{ `
2
,`,2`}

Zn,k +
∑

k∈{ `
2
,`,2`}

Z2n,k

The goal is to show that only finitely many of the events An,` occur. To do this, we find an

upper bound for E[Wn,`] and a lower bound for E[Wn,`|An,`] and then use Proposition 3.10.

We use several constants C,C ′, C1, C2, etc., which can have different values at each appearance.

Lemma 4.1. There exists a constant C such that E[Zn,`] ≤ C`n−1/4 for all n, ` ≥ 1.

Proof. We decompose X and Y into a horizontal random walk and a vertical random walk.

Let U and U ′ be independent simple random walks on Z starting from 0. Let V and V ′ be

independent simple random walks on Z starting from 0 with a self-loop probability of 1
2 at 0.

Let Kn and K ′n be the number of transitions of V and V ′ from 0 to 0 respectively up to time n.

Note that Kn and K ′n are also the number of transitions of X and Y on the horizontal copy of

Z, so they are the number of transitions of U and U ′ up to time n respectively. Then we have

X = (UKn , Vn) and Y = (U ′K′n , V
′
n).

Let us now fix L ∈ Z. By the law of total probability, we have

P[Xn = Yn = (x, L) for some x ∈ Z] =

∞∑
k=0

∞∑
k′=0

P[Vn = V ′n = L,Kn = k,K ′n = k′, Uk = U ′k′ ]

=
∑
k,k′

P[Vn = V ′n = L,Kn = k,K ′n = k′]P[Uk = U ′k′ ],

since U and U ′ are independent of V and V ′ and hence also of Kn and K ′n.
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By Proposition 4.3, there exists a constant C such that P[Uk = U ′k′ ] ≤
C√
k+k′

. By taking the

term with k = k′ = 0 seperately and then applying this result, it follows that the probability

P[Xn = Yn = (x, L) for some x ∈ Z] is upper bounded by

P
[
Vn = V ′n = L;Kn = K ′n = 0

]
+ C · E

[
1(Vn = V ′n = L;Kn +K ′n > 0)√

Kn +K ′n

]
. (1)

To bound the second term we further decompose Vn to get rid of the self-loop. Let (Sk)k≥0

be a simple random walk on Z starting from 0 and let (Gk)k≥0 be a sequence of independent

geometrically distributed random variables with success probability 1
2 , i.e. Gk ∼ Geo

(
1
2

)
. Then

V is generated by following the path of S, except that it makes Gi transitions from 0 to 0 on

the ith visit to the origin by S. Note that S starts at S0 = 0. This counts as the 0th visit to

the origin. Similarly, V ′ is generated using S′ and (G′k)k≥0.

We now give a lower bound for Kn based on the geometric random variables (Gk)k≥0. Assume

that Kn <
n
2 . Let Hn =

∑bn/2c
i=1 1(Si = 0). Note that in the first n steps, we make n − Kn

steps according to S and Kn transitions from 0 to 0. These Kn transitions at least include all

transitions from 0 to 0 following the first n−Kn − 1 steps of S. Let H̃n =
∑n−Kn−1

i=1 1(Si = 0)

be the number of times S visits 0 in the first n−Kn−1 steps, then Kn is at least the number of

transitions from 0 to 0 following the first H̃n visits of S to 0. Also, note1 that Kn <
n
2 implies

n−Kn − 1 ≥
⌊
n
2

⌋
and hence H̃n ≥ Hn. Therefore, the following inequalities hold:

Kn ≥
H̃n∑
i=0

Gi ≥
Hn∑
i=0

Gi ≥
Hn∑
i=1

Gi.

Let Rn =
∑Hn

i=1Gi. Then Kn ≥ Rn or else Kn ≥ n
2 , so Kn ≥ Rn∧ n

2 . Note that the summations

for Hn and H̃n start from i = 1 to avoid counting the 0th visit to origin.

Since Kn ≥ Rn ∧ n
2 and similarly K ′n ≥ R′n ∧ n

2 , it follows that E
[
1(Vn=V ′n=L;Kn+K′n>0)√

Kn+K′n

]
is

bounded by

E

[
1(Vn = V ′n = L;Rn +R′n > 0)√

(Rn ∧ n
2 ) + (R′n ∧ n

2 )

]
+ P

[
Vn = V ′n = L;Rn = R′n = 0

]
. (2)

To compute this expectation, condition on {Si : i ≤ n/2} and {Gi : i ≤ Hn} and their primed

versions: this completely determines the path of V and V ′ up to time n
2 + Rn and n

2 + R′n
respectively. Moreover, it determines Rn and R′n. First assume that max{Rn, R′n} < n

4 , then

V and V ′ have at least n
4 more steps to go. Since the self-loop probability of V at 0 is 1

2 ,

V is actually a simple random walk on Z with a self-loop added at 0. It hence follows from

Proposition 3.4 that p(n/4)(x, L) ≤ C√
n

for all x ∈ Z and hence that P[Vn = L] ≤ C√
n

.

1Proof: Since Kn is an integer, Kn < n
2

implies Kn ≤ n−1
2

if n is odd and Kn ≤ n−2
2

if n is even. Hence,

n−Kn − 1 ≥ n−
(
n−1
2

)
− 1 = n−1

2
=

⌊
n
2

⌋
if n is odd and n−Kn − 1 ≥ n−

(
n−2
2

)
− 1 = n

2
=

⌊
n
2

⌋
if n is even.
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Similarly, P[V ′n = L] ≤ C√
n

and by independence it follows that P[Vn = V ′n = L] ≤ C2

n if

max{Rn, R′n} < n
4 . Hence, the expectation in (2) can be upper bounded by

C ′E

[
1(Rn +R′n > 0)√

Rn +R′n

1

n
+
1(max{Rn, R′n} ≥ n

4 )
√
n

]
. (3)

We now focus on the first term in this expectation. First note that we can bound

E

[
1(Rn +R′n > 0)√

Rn +R′n

1

n

]
≤ E

[
1(Rn > 0) + 1(R′n > 0)√

Rn +R′n

1

n

]

≤ E
[
1(Rn > 0)√

Rn

1

n

]
+ E

[
1(R′n > 0)√

R′n

1

n

]
= 2E

[
1(Rn > 0)√

Rn

]
· 1

n
.

Recall from Corollary 3.2 that P[Hn = k] ≤ C√
n

. Although Hn is defined slightly different here,

this only changes the value of the constant. Using this inequality, we bound

E
[
1(Hn > 0)√

Hn

]
≤ P[Hn ≥ n1/2]√

n1/2
+

n1/2∑
k=1

P[Hn = k]√
k

≤ 1

n1/4
+

C√
n

n1/2∑
k=1

1√
k
≤ C1n

−1/4.

Since (Gk)k≥0 are independent and geometric, it follows that G̃r =
∑r

i=1Gi has the negative

binomial distribution with success probability 1
2 and r successes required. Hence, E[G̃r] = r and

Var[G̃r] = 2r. It follows by Chebyshev’s inequality2 that

P
(
G̃r ≤

r

2

)
≤ P

(∣∣∣G̃r − r∣∣∣ ≥ r

2

)
≤ 8

r
,

and hence

E

[
1 (
∑r

i=1Gi 6= 0)√∑r
i=1Gi

]
= E

1(G̃r 6= 0)√
G̃r

 ≤ P
(
G̃r ≤

r

2

)
+

√
2

r
≤ 8

r
+

√
2

r
≤ C2√

r
.

This inequality holds for fixed r, but we can use it for Hn after conditioning on it using the law

of iterated expectations. Combining these inequalities therefore yields

E

[
1(Rn +R′n > 0)√

Rn +R′n

1

n

]
≤ 2E

[
1(Rn > 0)√

Rn

]
· 1

n
= 2E

1
(∑Hn

i=1Gi 6= 0
)

√∑Hn
i=1Gi

 · 1

n

= 2E

E
1
(∑Hn

i=1Gi 6= 0
)

√∑Hn
i=1Gi

∣∣∣∣∣∣Hn

 · 1

n
≤ 2E

[
E
[
C2 · 1(Hn > 0)√

Hn

∣∣∣∣Hn

]]
· 1

n

= 2C2 · E
[
1(Hn > 0)√

Hn

]
· 1

n
≤ 2C2

n
C1n

−1/4 =
C3

n5/4
,

which provides a bound for the first term in equation (3).

2Krishnapur and Peres [7] use Cramér’s theorem to bound this probability.
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We now bound the second term in equation (3). Note that Rn ≤ |{i ≤ n : Vi = 0}|, so

P
[
max{Rn, R′n} ≥ n

4

]
≤ P

[
Rn ≥ n

4

]
+P

[
R′n ≥ n

4

]
= 2P

[
Rn ≥ n

4

]
≤ 2P

[
|{i ≤ n : Vi = 0}| ≥ n

4

]
.

Note that P[Vk = 0] ≤ C√
k

for 1 ≤ k ≤ n, so summing this yields E[|{i ≤ n : Vi = 0}|] ≤ C ′
√
n.

By Corollary 3.1, it hence follows that P
[
|{i ≤ n : Vi = 0}| ≥ n

4

]
and hence P

[
Rn ≥ n

4

]
are upper

bounded by 2 exp{−cn} for some constant c.

Finally, we bound P [Vn = V ′n = L;Kn = K ′n = 0] and P [Vn = V ′n = L;Rn = R′n = 0]. First note

that Kn = K ′n = 0 implies Rn = R′n = 0, so the latter probability is larger. It hence suffices to

find an upper bound for P [Vn = V ′n = L;Rn = R′n = 0]. Note that Rn = 0 if and only if Gi = 0

for all 1 ≤ i ≤ Hn. Since the Gi are independent and P[Gi > 0] = 1
2 for all i, we therefore have

P[Rn = 0] =

n∑
k=0

P[Hn = k]

2k
≤ C√

n

n∑
k=0

1

2k
≤ 2C√

n
,

since P[Hn = k] ≤ C√
n

by Corollary 3.2. Since R and R′ are independent, it follows that

P [Rn = R′n = 0] ≤ 4C2

n . Hence, it follows that

P
[
Vn = V ′n = L;Rn = R′n = 0

]
= P

[
Vn = V ′n = L | Rn = R′n = 0

]
P
[
Rn = R′n = 0

]
≤ 4C2

n P
[
Vn = V ′n = L | Rn = R′n = 0

]
.

To bound the latter probability, again condition on {Si : i ≤ n/2} and {Gi : i ≤ Hn} and their

primed versions. Note that this determines Rn and R′n. By a similar argument as before it now

follows that, P[Vn = V ′n = L | Rn = R′n = 0] ≤ C′2

n .

This together yields that there exists a constant C such that

P
[
Vn = V ′n = L;Rn = R′n = 0

]
≤ C

n2
.

We now have all results needed to prove the lemma. From combining equations (1), (2) and (3),

we see that there exist constants C4 and C6 such that

P [Xn = Yn = (x, L) for some x ∈ Z]

≤ C4E

[
1(Rn +R′n > 0)√

Rn +R′n

1

n
+
1(max{Rn, R′n} > n

4 )
√
n

]
+ C6P

[
Vn = V ′n = L;Rn = R′n = 0

]
.

Of these three terms, the first one dominates. Hence, there exists a constant C such that

P [Xn = Yn = (x, L) for some x ∈ Z] ≤ C

n5/4
for all L ∈ Z, n ≥ 1 (4)

To bound E[Zn,`], it remains to sum this bound over n and `:

E[Zn,`] ≤
2n−1∑
N=n

2`−1∑
L=`

P [XN = YN = (x, L) for some x ∈ Z] ≤ C`n−1/4,

so we conclude that there exists a constant C such that E[Zn,`] ≤ C`n−1/4 for all n, ` ≥ 1.
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Recall that Zn,` is the number of collisions bounded in space and time by ` ≤ L < 2` and

n ≤ N < 2n, and An,` is the event that a positive number of these collisions occur. If such a

collision occurs, then we expect many more collisions to occur soon after this and also nearby

in space. Recall that Wn,` is the number of collisions bounded in space and time by `
2 ≤ L < 4`

and n ≤ N < 4n. This can be expressed as the sum of 6 random variables of the form

Zn,`. From Lemma 4.1 we immediately conclude that there exists a constant C1 such that

E[Wn,`] ≤ C1`n
−1/4 for all n, ` ≥ 1. We now find a lower bound for E[Wn,`|An,`]:

Lemma 4.2. Let 0 < α < 1 be given. There exists a constant C > 0, depending on α but not

on ` or n, such that for all n, ` with 1 ≤ ` < 2(2n)1/(2α), we have E[Wn,`|An,`] ≥ C`α.

Proof. Assume that An,` occurs. Then the two random walks collide at a time Nc with n ≤ Nc <

2n at some vertex (v, Lc) with ` ≤ Lc < 2`. Note that Wn,` is at least the number of collisions

bounded in space and time by `
2 ≤ L < 4` and n ≤ N < 4n, and in particular it is at least

number of collisions bounded in space and time by Lc− `
2 ≤ L ≤ Lc+ `

2 and Nc ≤ N ≤ Nc+ 2n.

This is in turn at least the number of collisions that occur before one of the random walks hits

one of the vertices (v, Lc ± `
2) or 2n steps are done, whichever occurs earlier. Note that during

this time interval, both random walks are confined to a segment of Z, so we may assume that

they in fact occur on a segment of Z. We center the segment around 0 instead of around Lc.

This can be formalized as follows. Let U and V be two independent random walks on Z starting

from 0. Let TU be the first time U hits ± `
2 and similarly define TV . Let

Yn,` =

2n∧TU∧TV∑
k=0

1[Uk = Vk]

be the number of collisions that occur before one of the random walks hits one of the vertices

(v, Lc ± `
2) or 2n steps are done. Given that An,` occurs, Wn,` stochastically dominates Yn,`, as

explained before. Note that ` < 2(2n)1/(2α) implies 2n ≥ (`/2)2α. Hence,

E[Wn,`|An,`] ≥ E[Yn,`] ≥
(`/2)2α∧TU∧TV∑

k=0

P[Uk = Vk]

=

(`/2)2α∑
k=0

P[Uk = Vk;TU ∧ TV > k] ≥
(`/2)2α∑
k=0

(P[Uk = Vk]− P[TU ∧ TV ≤ k])

≥

(`/2)2α∑
k=0

P[Uk = Vk]

− (`/2)2αP[TU ∧ TV ≤ (`/2)2α]

≥

(`/2)2α∑
k=1

C ′√
k

− 2(`/2)2αP[TU ≤ (`/2)2α]

where the last inequality holds by Proposition 4.4. We have
∑(`/2)2α

k=0
C′√
k
≥ C ′′`α.
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Lemma 3.11 provides an upper bound for P[TU ≤ (`/2)2α]. We have

P[TU ≤ (`/2)2α] ≤ 4 exp{−1
6(`/2)2−2α}.

Hence, 2(`/2)2αP[TU ≤ (`/2)2α] ≤ 8(`/2)2α exp{−1
6(`/2)2(1−α)}. Since 1 − α > 0, goes faster

to 0 than any polynomial in `. In particular, there exists an L such that for ` ≥ L we have

2(`/2)2αP[TU ≤ (`/2)2α] ≤ 1
2C
′′`α. Hence, E[Wn,`|An,`] ≥ 1

2C
′′`α for ` ≥ L.

Note that E[Wn,`|An,`] ≥ 1 since Wn,` ≥ Zn,` > 0 by assumption. Take 0 < C ≤ min
{

1
2C
′′, 1

Lα

}
.

Then it follows that E[Wn,`|An,`] ≥ C`α for all n, ` with 1 ≤ ` < 2(2n)1/(2α).

We have now shown that for a given 0 < α < 1 there exist constants C1, C2 such that

E[Wn,`] ≤ C1`n
−1/4 for all n, ` ≥ 1,

E[Wn,`|An,`] ≥ C2`
α for all ` ≤ 2(2n)1/(2α).

Hence, it follows by Proposition 3.10 that there exists a constant C such that

P[An,`] ≤
E[Wn,`]

E[Wn,`|An,`]
≤ C `

1−α

n1/4
for all ` ≤ 2(2n)1/(2α).

We are now ready for the main proof. For any (N,L) with N,L ≥ 1 there exist integers r, k ≥ 0

such that for n = 2r and ` = 2k we have n ≤ N < 2n and ` ≤ L < 2`. If ` ≤ 2(2n)1/(2α), then

k = log2 ` ≤ 1 + log2(2n)
2α = 1 + r+1

2α .

Conversely, if we count up to k = 1 + r+1
2α , then we include at least all L ≤ 2(2n)1/(2α). Let us

now choose α > 2/3. Then 1/(2α)− 3/4 < 0, so 2(1/(2α)−3/4) < 1. Hence, we have

∞∑
r=0

1+ r+1
2α∑

k=0

P[A2r,2k ] ≤
∞∑
r=0

1+ r+1
2α∑

k=0

C
2k(1−α)

2r/4
≤
∞∑
r=0

C ′
2r(1−α)/(2α)

2r/4
=
∞∑
r=0

C ′2r(1/(2α)−3/4) <∞.

By the Borel-Cantelli lemma (Proposition 3.13), it follows that only finitely many of the events

P[A2r,2k ] with k ≤ 1 + r+1
2α occur. As explained above, this counts all collisions with time N

and vertical displacement L satisfying 1 ≤ L ≤ 2(2n)1/(2α). By symmetry, the same holds for

negative displacements satisfying 1 ≤ |L| ≤ 2(2n)1/(2α). Hence, for 2/3 < α < 1 the set

{n : Xn = Yn = (x, L) for some x ∈ Z and L ∈ Z with 1 ≤ |L| ≤ 2(2n)1/(2α)}

is finite almost surely. The number of collisions with L = 0 is finite almost surely by equation

(4). Finally, {n : |Vn| > 2(2n)1/(2α) or |V ′n| > 2(2n)1/(2α)} is finite almost surely by the law

of the iterated logarithm (Proposition 3.11) and in particular the number of collisions with

|L| > 2(2n)1/(2α) is finite almost surely. Hence, two random walks X and Y on Comb(Z) collide

only finitely often almost surely. This concludes the proof of Theorem 4.1.
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4.3 The Green function criterion and applications

In this section, the Green function criterion for infinitely many collisions from Barlow, Peres and

Sousi [3] is studied. Recall from Section 3.2 that qBt (x, y) is the t-step transition density divided

by d(y) for a random walk which is killed when it exits B and let gB(x, y) =
∑∞

t=0 q
B
t (x, y)

be the corresponding Green kernel. Throughout this section, let X and Y be two independent

random walks on a graph G and let XB and Y B be the corresponding walks which are killed

after exiting B. Let Z̃B be the number of edges crossed at the same time by XB and Y B, i.e.

Z̃B =

∞∑
t=0

1{XB
t = Y B

t , Xt+1 = Yt+1}.

To prove the criterion, first a bound for Eo,o[Z̃B] is given. This bound will be needed in the

proof of the criterion, but will also be used on a few other occasions.

Lemma 4.3. Let G = (V,E) be a graph with distinguished vertex o. Let B be a subset of the

vertex set V . Let Z̃B be the number of edges crossed at the same time by XB and Y B. Then

1
2gB(o, o) ≤ Eo,o[Z̃B] ≤ gB(o, o).

Proof. We start by proving that Eo,o[Z̃B] =
∑∞

t=0 q
B
2t(o, o):

Eo,o[Z̃B] =
∞∑
t=0

∑
x∈B

∑
y∼x

Po,o(XB
t = Y B

t = x,Xt+1 = Yt+1 = y)

=

∞∑
t=0

∑
x∈B

∑
y∼x

Po(XB
t = x)P(Xt+1 = y|XB

t = x)Po(Y B
t = x)P(Yt+1 = y|Y B

t = y)

=

∞∑
t=0

∑
x∈B

[
Po(XB

t = x)Po(Y B
t = x)

∑
y∼x

1

d(x)2

]
=
∞∑
t=0

∑
x∈B

[
Po(XB

t = x)2 1

d(x)

]

=
∞∑
t=0

∑
x∈B

[
Po(XB

t = x)Px(XB
t = o)

d(o)

]
=
∞∑
t=0

Po(XB
2t = o)

d(o)
=
∞∑
t=0

qB2t(o, o).

In the first equality, we sum the collision probabilities over all possible times and all pairs of

vertices connected by an edge. In the second equality, we use the fact that the random walks

X and Y are independent and also the fact that by the Markov property the probability that

Xt+1 = y given that Xt = x does not depend on the path the walk has taken before time t. In

the third equality, we take out terms that do not depend on y and use the fact that X and Y

are simple random walks. In the fourth equality, we use the fact that X and Y are identically

distributed. In the fifth equality we use the property that Px(XB
t = o) = d(o)

d(x)Po(X
B
t = x). The

sixth equality holds by conditioning on XB
t and using the Markov property. The final equality

follows from the definition of the transition density q.

By Lemma 3.9 we have gB(o, o) ≥
∑∞

t=0 q
B
2t(o, o) ≥ 1

2gB(o, o). Hence, the lemma follows.
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Theorem 4.2. (Green function criterion)

Let G = (V,E) be a recurrent graph with distinguished vertex o. Let (Br)r be an increasing

sequence of vertex sets such that Br 6= V for all r and
⋃
r Br = V . Suppose that there exists a

constant C <∞ such that for all r we have

gBr(x, x) ≤ CgBr(o, o) for all x ∈ Br.

Then G has the infinite collision property.

Proof. Let r be given and write B = Br. By Markov’s inequality, it follows that

P
(
Z̃B ≥ 1

2Eo,o[Z̃B]
)

= P
(
Z̃2
B ≥ 1

4Eo,o[Z̃B]2
)
≥ (Eo,o[Z̃B])2

4Eo,o[Z̃2
B]

.

To be able to use this bound, the second moment of Z̃B needs to be computed. To do this, write

Eo,o[Z̃2
B] = Eo,o[Z̃B] + 2Eo,o

[(
Z̃B
2

)]
,

and note that
(
Z̃B
2

)
can be interpreted as the number of pairs of edges crossed at the same time.

The probability that this occurs for a given pair of edges and at given times s, t with s ≥ t+ 1,

can be written as follows:

Po,o(XB
t = Y B

t = x,Xt+1 = Yt+1 = y,XB
s = Y B

s = z,Xs+1 = Ys+1 = w)

= Po(XB
t = x)P(Xt+1 = y|XB

t = x)Po(Y B
t = x)P(Yt+1 = y|Y B

t = y)

× Py(XB
s−t−1 = z)P(Xs+1 = w|XB

s = w)Po(Y B
s−t−1 = z)P(Ys+1 = w|Y B

s = w)

=
Po(XB

t = x)2

d(x)2

Py(XB
s−t−1 = z)2

d(z)2
= qBt (o, x)2qBs−t−1(y, z)2.

Denote this probability by p(s, t, x, y, z, w). By summing the collision probabilities over all

possible pairs of times s, t with s ≥ t+ 1 and all pairs of pairs of vertices connected by an edge,

we find the following result:

Eo,o

[(
Z̃B
2

)]
=
∞∑
t=0

∞∑
s=t+1

∑
x∈B

∑
y∼x

∑
z∈B

∑
w∼z

p(s, t, x, y, z, w)

=
∞∑
t=0

∞∑
s=t+1

∑
x∈B

∑
y∼x

∑
z∈B

∑
w∼z

qBt (o, x)2qBs−t−1(y, z)2

=

∞∑
t=0

∞∑
s=0

∑
x∈B

∑
y∼x

∑
z∈B

qBt (o, x)2qBs (y, z)2d(z)

Note that
∑

z∈B q
B
s (y, z)2d(z) =

∑
z∈B q

B
s (y, z)qBs (z, y)d(y) = qB2s(y, y). After summing over s,

this yields a factor
∑∞

s=0 q
B
2s(y, y), which is upper bounded by gB(y, y).

48



Using this result, we can write

Eo,o

[(
Z̃B
2

)]
≤
∞∑
t=0

∑
x∈B

∑
y∼x

qBt (o, x)2gB(y, y) ≤ max
y∈B

gB(y, y)
∞∑
t=0

∑
x∈B

∑
y∼x

qBt (o, x)2

= max
y∈B

gB(y, y)

∞∑
t=0

∑
x∈B

qBt (o, x)2d(x) = max
y∈B

gB(y, y)

∞∑
t=0

qB2t(o, o)

≤ gB(o, o) max
y∈B

gB(y, y),

where in the second inequality, we can write gB(y, y) ≤ maxy∈B gB(y, y) because gB(y, y) = 0

for all y 6∈ B, and the other steps follow in the same way as in Lemma 4.3.

Recall that gB(o, o) ≥ Eo,o[Z̃B] ≥ 1
2gB(o, o) by Lemma 4.3. Since G is recurrent and Br 6= V ,

it follows that gB(o, o) < ∞. By the given inequality, we have maxy∈B gB(y, y) ≤ CgB(o, o).

Hence, Eo,o
[(
Z̃B
2

)]
≤ CgB(o, o)2 and hence Eo,o[Z̃2

B] = Eo,o[Z̃B] + 2Eo,o
[(
Z̃B
2

)]
≤ gB(o, o) +

CgB(o, o)2. It follows that

P
(
Z̃B ≥ 1

4gB(o, o)
)
≥ P

(
Z̃B ≥ 1

2Eo,o[Z̃B]
)
≥ (Eo,o[Z̃B])2

4Eo,o[Z̃2
B]
≥ gB(o, o)

16(1 + 2CgB(o, o))
.

Since gB(o, o) ≥ d(o)−1 and since the right hand side of the inequality is decreasing in r, it

follows that P
(
Z̃Br ≥ 1

4gB(o, o)
)
≥ c for all r > 0. As r → ∞, we have Z̃Br ↑ Z̃, where Z̃ is

the number of edges crossed by X and Y at the same time. Letting r → ∞, it follows that

Po,o(Z̃ =∞) ≥ c and since Z ≥ Z̃, it then also follows that Po,o (Z =∞) ≥ c. So by the 0-1 law

it follows that Po,o (Z =∞) = 1. Hence, G has the infinite collision property.

Before applying this criterion, it is useful to give the following corollary of Lemma 4.3:

Corollary 4.2. Let G = (V,E) be a graph with distinguished vertex o. Let B be a subset of

the vertex set V and assume that d(x) ≤ D for all x ∈ B. Let ZB be the number of collisions

of the random walks XB and Y B that are killed when exiting B. Then

1
2gB(o, o) ≤ Eo,o[ZB] ≤ DgB(o, o).

Proof. Let Z̃B be the number of edges crossed at the same time by XB and Y B. Then ZB ≥ Z̃B,

from which it immediately follows that Eo,o[ZB] ≥ Eo,o[Z̃B] ≥ 1
2gB(o, o).

For the other inequality, observe that every collision of XB and Y B yields a probability of at

least 1
D that XB and Y B cross the same edge. Hence, Eo,o[ZB] ≤ DEo,o[Z̃B] ≤ DgB(o, o).

The Green function criterion has a wide range of applications. In particular, the Green function

criterion can be used to prove that Comb(Z, α) has the infinite collision property for α ≤ 1.
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Theorem 4.3. Comb(Z, α) has the infinite collision property for α ≤ 1.

Proof. Let α ≤ 1 be given. Let V denote the vertex set of Comb(Z, α). Let Br denote the set

of vertices to the right of the origin and on horizontal distance at most r, i.e.

Br := {(x, y) ∈ V : 0 ≤ x ≤ r}.

Set o = (0, 0). Note that o ∈ Br and (Br)r be an increasing sequence of vertex sets such that

Br 6= V for all r and
⋃
r Br = V . So to apply the Green function criterion, it just needs to be

proven that gBr(x, x) ≤ CgBr(o, o) for all r and all x ∈ Br. In fact, this holds with C = 1.

By Lemma 3.7, it follows that gBr(x, x) = Reff(x,Bc
r). Note that

Reff(x,Bc
r)
−1 = inf{E(f, f) : E(f, f) <∞, f(x) = 1, f |Bcr = 0}
≥ inf{E(f, f) : E(f, f) <∞, f(x) = 1, f((r + 1, 0)) = 0} = Reff(x, (r + 1, 0))−1,

since for the second set there are less constraints and hence the first set is a subset of the

second set, so the infimum of the second set cannot be larger. However, note that the only edge

between a vertex of Br and a vertex of Bc
r is the edge between (r, 0) and (r + 1, 0). So given

that f((r + 1, 0)) = 0, it is optimal for f to be constant 0 on Bc
r when minimizing E(f, f), and

hence the two infima coincide. So Reff(x,Bc
r) = Reff(x, (r+ 1, 0)). Since a comb graph is a tree,

we have Reff(x, (r + 1, 0)) = d(x, (r + 1, 0)) by Lemma 3.5, so

gBr(x, x) = Reff(x,Bc
r) = Reff(x, (r + 1, 0)) = d(x, (r + 1, 0))

for all x ∈ B. In particular, gBr(o, o) = d((0, 0), (r + 1, 0)) = r + 1.

Since α ≤ 1, we can write x = (x1, x2) with x2 ≤ xα1 ≤ x1 for all x ∈ B. Hence,

gBr(x, x) = d((x1, x2), (r + 1, 0)) = r + 1− x1 + x2 ≤ r + 1

for all x ∈ B. So gBr(x, x) ≤ r + 1 = gBr(o, o) for all r and all x ∈ Br. By the Green function

criterion, we conclude that Comb(Z, α) has the infinite collision property for α ≤ 1.

0 1 2 3 r

Figure 2: The graph Comb(Z, 1). The grey area shows the set Br used in the proof.
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4.4 The finite collision property of Comb(Z, α) for α > 1

The goal of this section is to show that Comb(Z, α) has the finite collision property for α > 1.

This means that if the teeth on the comb graph at horizontal coordinate x have height f(x) = xα,

then two random walks on this comb graph collide only finitely often almost surely. There is

no general criterion known for the finite collision property of graphs. To prove this result,

sufficiently accurate estimates of the transition density qt(x, y) are needed.

As in Barlow, Peres and Sousi [3], write α′ = α ∧ 2 and β′ = 1+α′

2+α′ . Note that 1 < α′ ≤ 2 and
2
3 < β′ ≤ 3

4 . Write Qk,h = {(k, y) : 0 ≤ y ≤ h}. Let Zk,h be the number of collisions of the two

random walks in Qk,h and let Z̃k,h = Zk,2h/3 − Zk,h/3. After proving a bound for the transition

density qt(x, y), the proof can be finished in the same way as the proof of the finite collision

property of Comb(Z). This means that we find an upper bound for E[Zk,h] and a lower bound

for E[Zk,h | Z̃k,h] and then apply Proposition 3.10.

Although we will present the same lemmas as in Barlow, Peres and Sousi [3], in some cases a

slightly different proof is given. In some cases this is done to avoid the use of lemmas which are

difficult to prove, or to make the lemmas easier to generalize.

The first lemma is very general and provides an upper bound for the transition density.

Lemma 4.4. Let G = (V,E) be a graph and let B be a subset of the vertex set V .

Then the following inequality holds:

qt(x, x) ≤ 2gB(x, x)

tPx(τB ≥ t)
.

Proof. Using the inequalities presented in Lemma 3.9, it follows that

2

t
gt(x, x) =

2

t

t∑
j=0

qj(x, x) ≥ 2

t

t/2∑
j=0

q2j(x, x) ≥ 2

t

t

2
qt(x, x) = qt(x, x),

2

t
gt(x, x) =

2

t

t∑
j=0

qj(x, x) ≥ 2

t

bt/2c∑
j=0

q2j(x, x) ≥ 2

t

t

2
q2bt/2c(x, x) ≥ qt(x, x),

for even and odd t respectively, since both sums contain bt/2c+ 1 ≥ t/2 terms. This proves the

inequality 2
t gt(x, x) ≥ qt(x, x).

Let B = {y ∈ V : ∃x ∈ B : x ∼ y}. Since B is finite and since the graph G is locally finite, B is

also finite. Write ∂B = B \B. By conditioning on τB and using the strong Markov property, it

follows that the transition density qj satisfies:

qj(x, x) = qBj (x, x) +

j∑
k=0

∑
y∈∂B

[P(τB = k,Xk = y)qj−k(y, x)] .
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This equality can now be used to bound gt(x, x). We have:

gt(x, x) =

t∑
j=0

qj(x, x) =

t∑
j=0

qBj (x, x) +

j∑
k=0

∑
y∈∂B

[P(τB = k,XτB = y)qj−k(y, x)]


=

t∑
j=0

qBj (x, x) +
t∑

j=0

j∑
k=0

∑
y∈∂B

[P(τB = k,XτB = y)qj−k(y, x)]

≤
∞∑
j=0

qBj (x, x) +
∑
y∈∂B

t∑
j=0

j∑
k=0

[P(τB = k,XτB = y)qj−k(y, x)]

= gB(x, x) +
∑
y∈∂B

t∑
`=0

t−∑̀
m=0

[P(τB = m,XτB = y)q`(y, x)]

≤ gB(x, x) +
∑
y∈∂B

t∑
`=0

t−1∑
m=0

[P(τB = m,XτB = y)q`(y, x)]

= gB(x, x) +
∑
y∈∂B

t∑
`=0

[P(τB < t,XτB = y)q`(y, x)]

= gB(x, x) +
∑
y∈∂B

P(τB < t,XτB = y)gt(y, x)

≤ gB(x, x) +
∑
y∈∂B

P(τB < t,XτB = y)gt(x, x)

= gB(x, x) + gt(x, x)
∑
y∈∂B

P(τB < t,XτB = y)

= gB(x, x) + gt(x, x)P(τB < t).

In the first line, we apply the definition and the equality for qj(x, x) just shown. In the second

step, the summations are split. In the third line, we upper bound the first term by changing

the summation limit to ∞ and we interchange the summations in the second term, which is

allowed since all terms are positive. In the fourth line, the definition of gB(x, x) is applied and

the summation variables are changed. In the fifth line, we change the summation limit from

t− ` to t− 1, which yields an upper bound unless ` = 0. Since x ∈ B and y 6∈ B, we have x 6= y

and hence q`(y, x) = 0, and hence this step is also valid for ` = 0. In the sixth line, we sum over

m. In the seventh line, we use that P(τB < t,XτB = y) can be taken out of the summation since

it does not depend on `, and then use the definition of gt(y, x). In the eighth line, we apply the

inequality gt(y, x) ≤ gt(x, x), which is Lemma 3.8. In the ninth line, gt(x, x) is taken out of the

summation since it does not depend on y, and finally we sum over y in the tenth line.

This proves the inequality gt(x, x) ≤ gB(x, x) + gt(x, x)P(τB < t), which can be rearranged to

P(τB ≥ t)gt(x, x) ≤ gB(x, x). Combining this with qt(x, x) ≤ 2
t gt(x, x) yields,

t
2qt(x, x)P(τB ≥ t) ≤ P(τB ≥ t)gt(x, x) ≤ gB(x, x),

which can be rearranged to the required inequality.
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Let H(a, b) := {(x, y) ∈ V : a ≤ x ≤ b}. This is the set of vertices with a horizontal coordinate

between a and b. For notational convenience, write Pk for P(k,0).

Lemma 4.5. Let k ≥ 0, k1 ≥ 1 and let T = τB(k−k1,k+k1) be the first exit of X from the set

B(k − k1, k + k1). Then there exist constants c, c′ such that

Pk(T ≤ t) ≤ c exp

(
−c′

(
k2+α′

1 /t
)1/3

)
.

Proof. We first prove this inequality in the case k1 ≤ k.

For t < k1 the inequality is trivial since then the left hand side is 0. We now prove that the

inequality holds for t < c̃1k
2−α′/2
1 by only considering the horizontal steps made by X, for some

constant c̃1 to be chosen later. Let U be the random walk on Z∩ [k− k1, k+ k1], corresponding

to the horizontal steps made by X. By Lemma 3.11, it follows that

Pk (T ≤ t) ≤ 4e−
1
6
k21/t ≤ c exp

(
−c′

(
k2+α′

1 /t
)1/3

)
,

since
(
k2+α′

1 /t
)1/3

= k
2/3+α′/3
1 /t1/3 ≤ k2/3+α′/3

1

(
c̃1k

2−α′/2
1

)2/3
/t = c̃

2/3
1 k2

1/t, so by choosing the

constant c′ to be at most 1
6 c̃
−2/3
1 the second inequality holds.

If t ≥ c̃2k
2+α′

1 for some constant c̃2 to be chosen later, then the inequality holds by choosing c ≥ 2

and c′ ≤ 1
2 c̃
−1/3
2 . From now on, we can assume that the time t satisfies c̃1k

2−α′/2
1 ≤ t ≤ c̃2k

2+α′

1 .

Let L be the number of horizontal steps that the random walk makes until it leaves the set

H(k − k1/2, k + k1/2). Let λ > 0 and θ ≤ 1
4 be constants, which will be chosen later. Then

Pk (T ≤ t) ≤ Pk
(
L ≤ k2

1/λ
)

+ Pk
(
T ≤ t, L ≥ k2

1/λ
)

By Lemma 3.10, we have Pk
(
L ≤ k2

1/λ
)
≤ 4e−

1
6 (k1/2)2/(k21/λ) = 4e−λ/24.

Let n = θkα
′

1 , and assume that θ is chosen such that n ≥ 1. At each meeting of X with a vertex

(k, 0) we perform an independent experiment, where we succeed if we hit n on the tooth and then

spend at least n2 steps on this tooth. Since k−k1/2 ≥ k1/2, it follows that each tooth has length

at least
(
k1
2

)α′
≥ 1

4k
α′
1 ≥ n, so there is enough room in every tooth in H(k − k1/2, k + k1/2).

The independence of the experiments follows from the strong Markov property. Note that the

probability of starting a walk on the tooth is 1
3 . If the random walk makes the transition from

(k, 0) to (k, 1), then by Lemma 3.14, there is a probability of dne−1 ≤ 1
2n
−1 of reaching height

n before returning to 0. By Lemma 3.12 is a probability lower bounded by a constant c1 that

X takes at least c2n
2 = c2θ

2k2α′
1 steps on the tooth. Let c1 = 1

6c
′
1. Combining this gives a

success probability of at least c1n
−1, since by the strong Markov property these three events are

independent so the probabilities can be multiplied.

Hence, the number of successes is binomially distributed with at least k2
1/λ trials and success

probability at least c1n
−1. Denote such random variable by Bin

(
k2

1/λ, c1n
−1
)
.
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Let γ = t/k2+α′

1 and take λ = γ−1/3 and θ = 2
c1c2

γ2/3. Note that this choice of λ implies that

Pk
(
L ≤ k2

1/λ
)
≤ 4e−λ/24 ≤ 4e−c

′γ−1/3
.

Note that

n =
2

c1c2
γ2/3kα

′
1 =

2

c1c2
t2/3k

α′/3−4/3
1 ≥ 2

c1c2
c̃

2/3
1

since t ≥ c̃1k
2−α′/2
1 , so by taking c̃1 ≥ (c1c2)3/2 this ensures that n ≥ 1. Moreover, γ ≤ c̃2 since

t ≤ c̃2k
2+α′

1 , so by taking c̃2 ≤ (c1c2/8)3/2 this ensures that θ ≤ 1
4 .

Write N = k2
1/λ, p = c1n

−1 and s = t
c2n2 . We compute:

s

Np
=

tc−1
2 n−2

k2
1/λc1n−1

=
tλ

k2
1c1c2θkα

′
1

=
tλ

2γ2/3k2+α′
1

=
1

2
,

Np = k2
1/λc1n

−1 = k2
1γ

1/3c1θ
−1k−α

′

1 = 1
2c

2
1c2γ

−1/3k2−α′
1 .

Hence, s = 1
2Np and Np =

c21c2
2 γ−1/3k2−α′

1 .

For −1 ≤ µ ≤ 0 we have eµ − 1 ≤
(
1− 1

e

)
µ. The moment generating function of a binomially

distributed random variable with N trials and success probability p is

M(µ) = (1 + p(eµ − 1))N ≤
(
1 + (1− 1

e )µp
)N ≤ exp

((
1− 1

e

)
µNp

)
.

Note that T is at least c2n
2 times the number of successes, since with each success at least c2n

2

steps are done on a tooth and all successes occur before time T . If L ≥ N , it therefore follows

that T stochastically dominates c2n
2 Bin (N, p). In particular, the event T ≤ t is less likely than

the event Bin (N, p) ≤ t
c2n2 = s. By Chernoff’s bound with µ = −1, we now find that

P (T ≤ t, L ≥ N) ≤ P (Bin (N, p) ≤ s) ≤ es exp
((

1
e − 1

)
Np
)

= exp
((

1
e −

1
2

)
Np
)

= exp
(
−µ′ 12c

2
1c2γ

−1/3k2−α′
1

)
= exp

(
−c′γ−1/3k2−α′

1

)
≤ exp

(
−c′γ−1/3

)
,

where µ′ = 1
2 −

1
e > 0 and where it is used that k2−α′

1 ≥ 1. Hence, it follows that both terms in

Pk (T ≤ t) ≤ Pk
(
L ≤ k2

1/λ
)

+ Pk
(
T ≤ t, L ≥ k2

1/λ
)

are bounded by a term of the form

c exp
(
−c′γ−1/3

)
= c exp

(
−c′

(
k2+α′

1 /t
)1/3

)
,

and hence the result follows in the case k1 ≤ k.

If k1 > k, then B(k − k1, k + k1) = B(0, k + k1) and in that case the random walk can only

escape at k+ k1. Since k+k1
2 > k, the random walk must then first visit k+k1

2 before it can visit

k + k1. Let k′ = dk+k1
2 e. Then k′ ≥ k1, so

Pk(T ≤ t) ≤ Pk′(T ≤ t) ≤ c exp

(
−c′

((
k′
)2+α′

/t
)1/3

)
≤ c exp

(
−c′′

(
k2+α′

1 /t
)1/3

)
,

so by modifying the constants the bound still holds.
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The previous two lemmas enable us to provide the first bound on the transition density.

Lemma 4.6. Let u = (k, 0) be a vertex on the horizontal axis and let t ≥ 1. Then qt(u, u) ≤ c
tβ′

.

Proof. Let k1 = bt1/(α
′+2), where b ≥ 1 is a constant that will be chosen later.

We use Lemma 4.4 with B = H(k − k1, k + k1). To upper bound P (τB ≤ t) we use Lemma 4.5

with this choice for k and k1. From this Lemma 4.5 it follows that

Pu (τB ≤ t) ≤ c exp

(
−c′

(
k2+α′

1 /t
)1/3

)
= c exp

(
−c′b(2+α′)/3

)
.

By taking b sufficiently large, it can be ensured that Pk (τB ≤ t) ≤ 1
2 .

By Lemma 3.7 and Lemma 3.5, it follows that

gB(u, u) ≤ Reff (u,Bc) ≤ Reff (u, (k + k1, 0)) = d((k, 0), (k + k1, 0)) = k1.

By Lemma 4.4 it now follows that qt(u, u) ≤ 2gB(u, u)

tPu(τB ≥ t)
≤ 4k1t

−1 = 4bt
−α
′+1
α′+2 ≤ ct−β′ .

For the following two lemmas, the condition is each time implied by the previous lemma. How-

ever, formulating them more generally allows directly reusing these lemmas in the next chapter.

Write 0 for the vertex (0, 0).

Lemma 4.7. Assume that qt(u, u) ≤ c
tβ′

for all u on the horizontal axis and all t ≥ 1.

Then qt(0, u) ≤ c′

tβ′
for all t ≥ 1 and all points u = (k, 0) on the horizontal axis.

Proof. Let t be given and let B be the union of the balls of radius t around 0 and u. Then

a random walk starting from 0 or starting from u remains in B for the first t steps. Hence,

qt(0, u) = qBt (0, u) and qt(0, 0) = qBt (0, 0) and qt(u, u) = qBt (u, u).

If t = 2s is even, then it follows by the Cauchy-Schwarz inequality for sequences and the spectral

decomposition (Lemma 3.9) that

qt(0, u) = qB2s(0, u) =

|B|∑
i=1

λ2s
i ϕi(0)ϕi(u) =

|B|∑
i=1

(λsiϕi(0)) (λsiϕi(u))

≤

√√√√ |B|∑
i=1

λ2s
i ϕi(0)2

√√√√ |B|∑
i=1

λ2s
i ϕi(u)2 ≤

√√√√ |B|∑
i=1

λtiϕi(0)2

√√√√ |B|∑
i=1

λtiϕi(u)2

=
√
qBt (0, 0)

√
qBt (u, u) =

√
qt(0, 0)

√
qt(u, u) ≤ c

tβ′
.

Hence, the result holds for even t.
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If t = 1, then this inequality holds by choosing c′ ≥ 1.

If t = 2s+ 1 is odd and t > 1, then it similarly follows that

qt(0, u) = qB2s+1(0, u) =

|B|∑
i=1

λ2s+1
i ϕi(0)ϕi(u) =

|B|∑
i=1

(λsiϕi(0))
(
λs+1
i ϕi(u)

)

≤

√√√√ |B|∑
i=1

λ2s
i ϕi(0)2

√√√√ |B|∑
i=1

λ2s+2
i ϕi(u)2 ≤

√√√√ |B|∑
i=1

λt−1
i ϕi(0)2

√√√√ |B|∑
i=1

λt+1
i ϕi(u)2

=
√
qBt−1(0, 0)

√
qBt+1(u, u) =

√
qt−1(0, 0)

√
qt+1(u, u) ≤ c

(t2 − 1)β′/2
≤ c′

tβ′
.

Hence, the lemma holds for all t ≥ 1.

This lemma is now extended to vertices that are not on the horizontal axis.

Lemma 4.8. Assume that qt(0, (k, 0)) ≤ ct−β for all times t ≥ 1 and all points (k, 0) on the

horizontal axis. Then qt(0, (k, h)) ≤ c′′t−βe−h2/(c′t) for all times t ≥ 1 and all points (k, h).

Proof. Let TA be the first hitting time of the set A for a simple random walk (Sn)n∈N on Z
starting from S0 = 0. By the ballot theorem (Theorem 3.3) and Lemma 3.13, it follows that

Ph(T0 = s) =
h

s
Ph(Ss = 0) ≤ ch

s

1√
s
e−h

2/(c′s),

where the first inequality follows from the ballot theorem by considering the reverse problem:

the probability that a random walk starting from 0 revisits 0 when taking s steps to reach h is

equal to h
s . Reversing the paths only gives a factor deg((k,0))

deg((k,h)) to the probabilities of each of the

paths, so probability that the reverse path, which starts from s, visits 0 only once as the last

vertex in the path, is also h
s , so this proves the first equality.

Note that ex
2/(2c′t) ≥ 1 + x2

2c′t ≥ 2
√

x2

2c′t = c′′ x√
t
. Hence, there exists a constant c′′ such that

√
te−x

2/(2c′t) ≥ c′′xe−x2/(c′t). This gives Ph(T0 = s) ≤ c/s · e−h2/(c′s), for different constants c, c′.

Let T ba be the first hitting time of a of a simple random walk restricted to the interval [a, b]. A

simple random walk restricted to the interval [a, b] can be generated from a simple random walk

restricted to the interval [a, 2b− a] by identifying b− x and b+ x for all 1 ≤ x ≤ b− a. In that

case, the hitting time of a becomes the hitting time of the set {a, 2b− a}. Hence, we have:

Ph(Tm0 = s) = Ph−m(T 0
−m = s) = Ph−m(T{−m,m} = s)

≤ Ph−m(T−m = s) + Ph−m(Tm = s) = Ph(T0 = s) + P2m−h(T0 = s)

by translating or reflecting the intervals a number of times. Note that h belongs to the interval

[0,m], so h ≤ m ≤ 2m − h. Hence, c/s · e−(2m−h)2/(c′s) ≤ c/s · e−h2/(c′s). So we can bound

Ph(Tm0 = s) ≤ c/s · e−h2/(c′s) for yet another constant c.

56



Let m denote the height of the tooth at position k. By Lemma 3.4, it holds that qt(0, (k, h)) =

qt((k, h), 0). Since qt(0, (k, 0)) ≤ ct−β, it now follows that

qt((k, h), 0) =

t−1∑
s=1

Ph(Tm0 = s)qt−s((k, 0), 0) ≤ c
t−1∑
s=1

1/s · e−h2/(c′s)(t− s)−β

for again another constant c. Hence,

qt((k, h), 0) ≤ ce−h2/(c′t)
t−1∑
s=1

1/s · (t− s)−β ≤ ce−h2/(c′t)
∫ t

0
s−1(t− s)−βds

= ct−βe−h
2/(c′t)

∫ 1

0
u−1(1− u)−βdu = c′′t−βe−h

2/(c′t).

The sum can be bounded by the integral since 1/s · (t− s)−β is decreasing for 1 < s ≤ t/(β+ 1)

and increasing for s ≥ t/(β+ 1) and hence the sum from 1 to bt/(β+ 1)c can be upper bounded

by the integral from 0 to bt/(β + 1)c whereas the sum from dt/(β + 1)e to t − 1 can be upper

bounded by the integral from dt/(β + 1)e to t. In the integral, we make the change of variables

u = s/t. Finally, observing that the resulting integral is a constant implies the lemma.

Finally, a lemma is needed to get a better bound for small t.

Lemma 4.9. Let x = (k, 0). Then if t < k2+α′ , we have

qt(0, x) ≤ ck−(α′+1) = c
(
k2+α′

)−β
.

Proof. Let m be an integer within distance 1 of k/2. Let T be the first hitting time of (m, 0)

for a simple random walk X on the comb graph starting from X0 = 0. Then

P0(Xt = x) = P0(Xt = x, Tm ≤ t/2) + P0(Xt = x, Tm ≥ t/2).

Consider a path (p0, . . . , pt) such that p0 = 0, pt = x and pi 6= (m, 0) for all i ≤ t/2. Since

0 ≤ m ≤ k, the path must visit (m, 0), so pi = (m, 0) for some i > t/2. Then the reverse of this

path (p′0, . . . , p
′
t) = (pt, . . . , p0) satisfies p0 = x, pt = 0 and pi = (m, 0) for some i < t/2, so in

particular for this path the hitting time of m is smaller than t/2.

Reversing the paths only gives a factor deg((0,0))
deg((k,0)) to the probabilities of each of the paths, which

is bounded by a constant c. Hence, by summing this over all possible paths satisfying p0 = 0,

pt = x and pi 6= (m, 0) for all i ≤ t/2, we obtain

P0(Xt = x, Tm > t/2) ≤ cPx(Xt = 0, Tm ≤ t/2).

Since Tm is a stopping time, it follows from the strong Markov property that

P0(Xt = x, Tm ≤ t/2) ≤ P0(Tm ≤ t/2) max
0≤s≤t/2

Pm(Xt−s = x).
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Since t−s ≥ t/2, it follows that the second factor is bounded by ct−β
′
. The first term is bounded

by Lemma 4.5. Write η = k2+α′/t. This yields

P0(Xt = x, Tm ≤ t/2) ≤ ct−β′ exp

(
−c′

(
k2+α′

1 /t
)1/3

)
≤ ck−(α′+1)η−β

′
exp

(
−c′η1/3

)
≤ ck−(α′+1) sup

η>0

(
η−β

′
exp

(
−c′η1/3

))
≤ c′′k−(α′+1).

Since m is an integer within distance 1 of k/2, the term Px(Xt = 0, Tm ≤ t/2) can be bounded

in exactly the same way as the term as P0(Xt = x, Tm ≤ t/2). So both terms are bounded by

terms of the form ck−(α′+1), and hence qt(0, x) = c′P0(Xt = x) is bounded by ck−(α′+1) for some

constant c. This completes the proof of the lemma.

These lemmas can now be combined to prove the following lemma on the transition density:

Lemma 4.10.

Let x = (k, h) ∈ V . The transition density q satisfies

qt(0, x) ≤

ct
−β if t ≥ k2+α′ ,

c
(
k2+α′

)−β
if t ≤ k2+α′ .

Proof. The case t ≥ k2+α′ follows directly from combining Lemma 4.6, Lemma 4.7 and Lemma

4.8. If t ≤ k2+α′ , then by conditioning on the first hit of (k, 0) we find

qt(0, x) ≤ P0(Xt = x) ≤ max
0≤s≤t

P0(Xs = (k, 0)) ≤ c
(
k2+α′

)−β
by Lemma 4.9. This completes the proof.

Recall that Qk,h = {(k, y) : 0 ≤ y ≤ h} and that Zk,h is the number of collisions of the two

random walks in Qk,h and that Z̃k,h = Zk,2h/3−Zk,h/3. These notions allow us to formulate and

prove the final lemma needed for proving the finite collision property of Comb(Z, α) for α > 1.

Lemma 4.11.

(a) E[Zk,h] ≤ chk−α′ .

(b) E[Zk,h | Z̃k,h > 0] ≥ ch.

58



Proof. (a) By Lemma 4.10, we have

E[Zk,h] =

∞∑
t=0

∑
x∈Qk,h

qt(0, x)2 ≤
k2+α

′∑
t=0

c′h

k2(1+α′)
+

∞∑
t=k2+α′

c′′h

t2β′
≤ c′hk2+α′

k2+2α′
+

c′′h

(k2+α′)2β′−1
≤ ch

kα′
,

since (2 + α′)(2β′ − 1) = (2 + α′) α′

α′+2 = α′. So E[Zk,h] ≤ chk−α′ .

(b) Since we consider the expectation conditioned on the event that {Z̃k,h > 0}, there is a

collision at a point x = (k, y) for some h/3 ≤ y ≤ 2h/3. Consider the two random walks from

this point onwards. The total number of collisions that happen in the set Qk,h is at least the

number of collisions that happen before one of the walks first exits Qk,h after the collision at

point x = (k, y). This can be modeled by considering the walks that are killed when exiting

Qk,h. By Corollary 4.2 and Lemma 3.7 it now follows that

E[Zk,h | Z̃k,h > 0] ≥ 1
2gQk,h(x, x) = 1

2Reff

(
x,Qck,h

)
≥ 1

2 ·
2
9h ≥ ch.

This proves the lemma.

These lemmas together allow to prove the main result of this section:

Theorem 4.4. Comb(Z, α) has the finite collision property for α > 1.

Proof. Let α > 1 be given. By Proposition 3.10 and Lemma 4.11, it follows that

P(Z̃k,h > 0) ≤
E[Zk,h]

E[Zk,h | Z̃k,h > 0]
≤ c′hk−α

′

c′′h
= ck−α

′
,

so P(Z̃k,h > 0) ≤ ck−α′ . Summing over all k and all j satisfying 2j ≤ kα yields

∞∑
k=0

α log2 k∑
j=0

P(Z̃k,2j > 0) ≤
∞∑
k=0

α log2(k)ck−α
′
<∞

since α′ > 1. By the Borel-Cantelli lemma, it follows that P(Z̃k,2j > 0 occurs i.o.) = 0.

By Corollary 4.1, it follows that Comb(Z, α) has the finite collision property.
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5 Comb graphs with random heights

In this chapter we consider comb graphs with finite random heights. Let α > 3 be given and

let FX : N → [0, 1] be a cumulative distribution function satisfying FX(n) ≤ 1 − n−1/α for all

n ∈ N. Moreover, assume that there exists a constant E > 0 such that FX(n) ≥ 1− n−E for all

n ∈ N. Let {f(n)}n∈Z be i.i.d. random variables with cdf FX .

We now prove that G = Comb(Z, f) has the finite collision property almost surely.

If we have a random walk S on Z ∩ [−k, k], then we expect that S takes about k2 steps before

hitting ±k. Lemma 3.10 implies that the probability that S takes less than k2−ε steps before

hitting ±k decays superpolynomially in k for all ε > 0. If we have a typical subset of [−k, k] of

size `, then we similarly expect that S visits this subset about k` times before hitting ±k and that

the probability that S takes less than `k1−ε steps before hitting ±k decays superpolynomially

in k. Here ‘typical’ means that the elements of the set are spread out over the entire interval

[−k, k]. In particular, the elements are not all (or mostly) close to each other or close to ±k.

It is beyond the scope of this thesis to prove this in full generality. We first prove it for centric

sets, which are sets containing 0 such that the gap between successive elements increases with

the distance to 0. The result can then be generalized to unions of centric sets that only have 0

in common. We first give the definition of a centric set.

Definition 5.1. (Centric set)

A set D = {d−`, . . . , d−1, d0, d1, . . . , d`} ⊂ [−k, k] is called centric if d0 = 0, di < dj for i < j

and di − di−1 ≥ di+1 − di for −` < i < −1 and di − di−1 ≤ di+1 − di for 0 < i < `. For a centric

set, we call m = min{d1 − d0, d0 − d−1} the minimal gap and ` the length.

When considering the Markov chain T on a centric set resulting from a random walk S on

Z∩ [−k, k], then it follows from the property that the gaps are increasing with the distance to 0

that T is biased towards 0, which makes it easier to bound the probability of reaching ±k early.

This is done in the following lemma.

Lemma 5.1. (Centric sets are visited often with high probability)

Consider a random walk (St)t≥0 on Z∩ [−k, k] starting from S0 = 0 and let τk be the first hitting

time of ±k. Let D be a centric set with minimal gap at least m ≥ 3 and length at least `. Let

0 < ε < 1. Then

P(#{t ≤ τk : St ∈ D \ {0}} ≤ m`2−ε) ≤ c exp
(
−c′`ε

)
.

Proof. Write D = {d−`, . . . , d−1, d0, d1, . . . , d`} as in the definition of a centric set.

Let D+ = {d0, d1, . . . , d`} be the set of nonnegative elements of D, and identify the elements of

D+ with elements of Z ∩ [0, `] by mapping di to i for 0 ≤ i ≤ `.
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Let (Tr)r≥0 be the random walk on Z ∩ [0, `] corresponding to the random walk on S. More

precisely, define t(0) = 0 and t(r+1) = inf{s ≥ t(r) : Ss ∈ D+\{St(r)}}. Note that this infimum

is finite almost surely since S is recurrent. Then St(r) = di for some 0 ≤ i ≤ `. If St(r) = di, then

we define Tr = i. If Tr = i for some 0 < i < `, then Tr+1 = i± 1, since by definition revisits to

di are not counted, and the random walk S visits either di−1 or di+1 before visiting any of the

other di. So T is a random walk on Z ∩ [0, `], but not a simple random walk.

Let ei = di − di−1. Then ei+1 ≥ ei for 0 < i < `. Assume that Tr = i, then the random walk is

at di. Translate the segment such that di falls on 0. Then di−1 falls on −ei, while di+1 falls on

ei+1. By Lemma 3.15.2, the random walk hits di−1 first with probability ei+1

ei+1+ei
≥ 1

2 and it hits

di+1 first with probability ei
ei+1+ei

≤ 1
2 .

We now generate a simple random walk (T̃r)r≥0 on Z ∩ [0, `] such that T̃r ≥ Tr for all r ≥ 0

before the first time T̃r hits `. Let T̃0 = 0. If Tr 6= 0 and Tr increments by 1, which happens with

probability at most 1
2 , then T̃r also increments by 1. If Tr 6= 0 and Tr decrements by 1, then

T̃r increments with a certain probability such that the overall probability that T̃r increments is
1
2 , and decrement otherwise. If Tr = 0 and T̃r 6= 0, then T̃r simply chooses at random between

incrementing and decrementing. If Tr = T̃r = 0, then T̃r moves to 1 with probability 1.

We now prove by induction on r that T̃r ≥ Tr for all r ≥ 0 before the first time T̃r hits `, from

which it also follows that this definition gives all possibilities for T̃r before the first time T̃r hits

`. The base case is T0 = T̃0 = 0. Let now s ∈ N be given and assume that T̃s ≥ Ts and T̃s 6= `,

from which it follows that Ts 6= `. If Ts = 0, then Ts+1 = 1. Since Ts+1 ≡ T̃s+1 mod 2, it follows

that T̃s+1 cannot be 0 and hence T̃s+1 ≥ 1 = Ts+1. Otherwise, we have Ts 6= 0 and hence also

T̃s 6= 0. If Ts increments, then T̃s also increments, so T̃s+1 = T̃s + 1 ≥ Ts + 1 = Ts+1. Otherwise

Ts decrements, and then T̃s+1 ≥ T̃s − 1 ≥ Ts − 1 = Ts+1. This completes the induction.

Since T̃r ≥ Tr for all r ≥ 0 before the first time T̃r hits `, it follows that the first hitting time

τT,+ of ` of Tr stochastically dominates the hitting time of ` of T̃r. To provide a bound for the

hitting time of ` of T̃r, we do one more transformation. The simple random walk on Z∩ [0, `] can

be generated from a simple random walk on Z∩ [−`, `] by identifying x and −x with each other.

Moreover, before the first hitting time of ±`, the simple random walk on Z ∩ [−`, `] coincides

with a simple random walk on Z. So the first hitting time of ` of T̃r is identically distributed as

the first hitting time τU of ±` of a simple random walk (Ur)r≥0 on Z. By Lemma 3.11, we have

P(τU ≤ 4`2−ε) ≤ 4e−
1
24
`ε ≤ ce−c′`ε

for some constants c, c′ > 0. By the above discussion, it hence follows that the first hitting time

τT,+ of ` of Tr satisfies P(τT,+ ≤ 4`2−ε) ≤ ce−c′`ε .
So with a probability larger than 1 − ce−c

′`ε , S visits the set D+ at least 4`2−ε times, not

counting consecutive revisits to the same element of D+, before hitting d`.
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Using the same steps for the nonpositive elements of D, it follows that the first hitting time τT,−

of ` of Tr satisfies P(τT,− ≤ 4`2−ε) ≤ ce−c′`ε for possibly different constants c, c′ > 0. So with a

probability larger than 1− ce−c′`ε , S visits the set D− = {d−`, . . . , d−1, d0} at least 2`2−ε times,

not counting consecutive revisits to the same element of D−, before hitting d−`.

In particular, with a probability larger than 1−ce−c′`ε (with again different constants and using

the union bound), S visits the set D at least 4`2−ε times, not counting consecutive revisits to the

same element of D, before hitting either d−` or d`. Since [d−`, d`] ⊆ [−k, k], it follows that with

probability larger than 1− ce−c′`ε (with again different constants and using the union bound),

S visits the set D at least 4`2−ε times, not counting consecutive revisits to the same element of

D, before τk, the hitting time of ±k. Since at most half of the visits are to 0, S visits the set

D \ {0} at least 2`2−ε times, not counting consecutive revisits to the same element of D, before

τk, the hitting time of ±k.

We now have to take into account that an element of D, say di, will be revisited a number of

times before S visits di−1 or di+1. By Lemma 3.15.2, the number of revisits is geometrically

distributed with success probability 1
2

(
1
ei

+ 1
ei+1

)
. Note that ei ≥ e1 for i ≥ 1 and ei ≥ e0 for

i ≤ 0, so ei ≥ min{e0, e1} = m for all −` < i < `. Hence, the number of revisits stochastically

dominates a geometrically distributed random variable with success probability 1
m . Moreover,

by the strong Markov property these random variables are independent.

Hence, it follows that with probability larger than 1 − ce−c
′`ε the number of visits of S to

D \ {0}, counting revisits, stochastically dominates a sum G̃ of 2`2−ε independent geometrically

distributed random variable with success probability 1
m . The moment generating function of

a geometric random variable with success probability 1
m is (m − (m − 1)et)−1, so the moment

generating function of G̃ is M
G̃

(t) =
(
m− (m− 1)et

)−2`2−ε
.

By Chernoff’s bound it follows that for t < 0 we have

P(G̃ ≤ m`2−ε) ≤ e−tm`2−ε
(
m− (m− 1)et

)−2`2−ε
=
(
etm

(
m− (m− 1)et

)2)−`2−ε
.

For m = 3 and m = 4 choosing t = log(0.9) < 0 yields etm
(
m− (m− 1)et

)2
> 1.

For m ≥ 5, let t = log
(

m
m+1

)
. Then etm =

(
1− 1

m+1

)m
≥ 1

e and m − (m − 1)et = 2m
m+1 ≥

5
3 .

Then etm
(
m− (m− 1)et

)2
> 25

9e > 1. So there exists a constant c such that

P(G̃ ≤ m`2−ε) ≤ e−c`2−ε .

Since ε < 1, this term is dominated by a term of the form ce−c
′`ε . So with probability larger than

1− ce−c′`ε the number of visits of S to D \ {0} stochastically dominates G̃ and P(G̃ ≥ m`2−ε).
Hence, we conclude that P(#{t ≤ τk : St ∈ D \ {0}} ≤ m`2−ε) ≤ ce−c

′`ε .
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Corollary 5.1. (Collections of centric sets are visited often with high probability)

Consider a random walk (St)t≥0 on Z ∩ [−k, k] starting from S0 = 0 and let τk be the first

hitting time of ±k. Let D = {D1, . . . , Dn} be a collection of n centric sets with minimal gap at

least m ≥ 3 and length at least ` such that Di ∩Dj = {0} for all 1 ≤ i, j ≤ n with i 6= j. Let

0 < ε < 1. Then

P(#{t ≤ τk : St ∈
⋃
D∈DD \ {0}} ≤ nm`2−ε) ≤ cn exp (−c′`ε) .

Proof. By Lemma 5.1, we have

P(#{t ≤ τk : St ∈ Di \ {0}} ≤ m`2−ε) ≤ c exp
(
−c′`ε

)
.

Since D1 \ {0}, . . . , Dn \ {0} are mutually disjoint, it follows that

#{t ≤ τk : St ∈
⋃
D∈DD \ {0}} =

∑n
i=1 #{t ≤ τk : St ∈ Di \ {0}}.

Hence, #{t ≤ τk : St ∈
⋃
D∈DD\{0}} ≤ nm`2−ε implies that #{t ≤ τk : St ∈ Di\{0}} ≤ m`2−ε

for at least one 1 ≤ i ≤ n. By the union bound, it follows that

P(#{t ≤ τk : St ∈
⋃
D∈DD \ {0}} ≤

∑n
i=1 P(#{t ≤ τk : St ∈ Di \ {0}} ≤ cn exp (−c′`ε) ,

which is the required result.

We now attach independent random variables to the elements of the set Z ∩ [−k, k]. These will

be interpreted as the heights of the teeth of a comb graph. The following lemma shows that

with high probability we can construct a collection of centric sets such that at all elements in

these centric sets, the realization of the random variable is large.

Lemma 5.2.

Let p, q ∈ [0, 1] and let k, ` and m be positive integers. Assume that m ≥
√
k/(pq) and 4m` ≤ k.

Let (Hi)i∈Z∩[−k,k] be independent random variables with cdf Fi. Then with probability exceeding

1− 2`2 exp (−c′/q) there exists a collection D = {D1, . . . , D`} of ` centric sets with minimal gap

at least m and length at least ` such that Di ∩Dj = {0} for all 1 ≤ i, j ≤ ` with i 6= j and such

that Hd ≥ (Fd)
−1(1− p) for all d ∈

⋃
D∈DD \ {0}.

Proof. For a centric set Di, let D+
i denote the set of nonnegative elements of Di. We first

construct the nonnegative parts D+
i of the centric sets. Let di,j denote the jth element of the

ith centric set that has to be constructed, for 1 ≤ i, j ≤ `. By definition, di,0 = 0 for all

1 ≤ i ≤ `. Let n =
⌈

1
pq

⌉
. We choose the di,j such that

jm+ (j − 1)n`+ (j − 1)2n+ (i− 1)n ≤ di,j < jm+ (j − 1)n`+ (j − 1)2n+ in.
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For constant j, we have di,j < di+1,j . In particular, for a fixed j, all di,j are different. Moreover,

d1,j+1 ≥ (j + 1)m+ jn`+ j2n > jm+ (j − 1)n`+ n`+ (j − 1)2n > d`,j ,

which implies that all di,j are different for j > 0. We now show that di,j − di,j−1 ≤ di,j+1 − di,j
by using these upper and lower bounds for the di,j . We have

di,j − di,j−1 ≤ jm+ (j−1)n`+ (j−1)2n+ in− ((j−1)m+ (j−2)n`+ (j−2)2n+ (i−1)n)

= m+ n`+ (2j − 3)n+ n = m+ n`+ (2j − 1)n− n
= (j + 1)m+ jn`+ j2n+ (i− 1)n− (jm+ (j − 1)n`+ (j − 1)2n+ in)

≤ di,j+1 − di,j ,

as required. Hence, the D+
i can be the nonnegative parts of a centric set. We now show that

the minimal gap of the nonnegative part is indeed at least m. This follows from

m ≤ m+ (i− 1)n ≤ di,1 − di,0.

Finally, we have to show that the largest element constructed in this way is not larger than k.

Note that n =
⌈

1
pq

⌉
≤ 2

pq since pq ≤ 1. Hence,

n` ≤ 2

pq

k

4m
≤ k

2pq
√
k/(pq)

=
1

2

√
k

pq
≤ 1

2
m.

The largest value among the di,j is d`,`, which is upper bounded by

`m+ (`− 1)n`+ (`− 1)2n+ `n ≤ `m+ 2`2n ≤ 2m` < k.

Hence, the nonnegative parts of the centric set have minimal gap at least m and length `. Hence,

the collection of centric sets chosen in this way has the required properties.

Now choose the di,j such that the inequality is satisfied and such that Fdi(Hdi) is maximal

among all n possible values of di,j . Note that Fk(Hk) has the uniform distribution on [0, 1].

Since Hd ≥ (Fd)
−1(1 − p) is equivalent to Fd(Hd) ≥ 1 − p, it follows that the probability that

Hd ≥ (Fd)
−1(1− p) is p. In particular, the probability that there is no k among the n ≥ 1/(pq)

possible choices satisfying Hd ≥ (Fd)
−1(1− p), is equal to (1− p)n ≤ (1− p)1/(pq) ≤ exp (−c/q).

By the union bound, the probability that there exists a pair (i, j) with 1 ≤ i, j ≤ ` where it is

not possible to choose di such that Hd ≥ (Fd)
−1(1− p) is at most `2 exp (−c/q).

In particular, with probability exceeding 1− `2 exp (−c/q) we can construct such a collection of

sets D+ with the required property and similarly with probability exceeding 1 − `2 exp (−c/q)
(with possibly a different constant) we can construct such a set D− satisfying the constraints. By

the union bound it follows that with probability exceeding 1− 2`2 exp (−c/q) we can construct

a collection of centric sets with all required properties.
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We now have proven all lemmas on centric sets that we need. For proving that Comb(Z, f) has

the finite collision property almost surely, we use an approach similar to Barlow, Peres and Sousi

[3]. Note that Lemma 4.4 can directly be reused. As in [3], write Qk,h = {(k, y) : 0 ≤ y ≤ h}. Let

Zk,h be the number of collisions of the two random walks in Qk,h and let Z̃k,h = Zk,2h/3−Zk,h/3.

Write B(a, b) := {(x, y) ∈ G : a ≤ x ≤ b}. We now prove a lemma analogous to Lemma 4.5.

Write Pk for P(k,0). Let X be a random walk on the comb graph.

Lemma 5.3.

Let k ∈ Z, k1 ≥ 1 and let T = τB(k−k1,k+k1) be the first exit of X from B(k − k1, k + k1). Then

there exist constants α′ > 1 and α′′ > 0 (which can depend on α) such that

Pk(T ≤ t) ≤ c exp

(
−c′

(
k2+α′

1 /t
)α′′)

.

Proof. Let δ = α−3
2α+2 > 0. Note that δ < α+1

2α+2 ≤
1
2 . Let α′ = 1 + δ/2 and α′′ = δ/32. By

choosing the constants c, c′ suitably, the inequality holds for all sufficiently small k1. This will

be indicated in a few places in the proof. Similarly, the constants can be chosen such that the

inequality holds for all t ≥ k2+α′

1 , in both cases by making the right hand side at least 1. We

now prove that the inequality holds for t < k
7/4
1 by only considering the horizontal steps made

by X. Let U be the random walk on Z ∩ [k − k1, k + k1], corresponding to the horizontal steps

made by X. Note that until the time where k ± k1 is hit, U behaves as a random walk on Z.

By Lemma 3.11, it follows that

P
(
T ≤ k7/4

1

)
≤ 4e−

1
6
k
1/4
1 ≤ ce−c′k

1/4
1 ≤ c exp

(
−c′

(
k2+α′

1 /t
)α′′)

,

where the final inequality holds since α′ ≤ 2 and α′′ ≤ 1/16 so
(
k2+α′

1 /t
)α′′
≤ k4α′′

1 ≤ k1/4
1 .

From now on, we can assume that the time t satisfies k
7/4
1 ≤ t ≤ k2+α′

1 .

We translate the interval from [k− k1, k+ k1] to [−k1, k1] and forget k. To each integer i in the

interval [−k1, k1] a random variable Hi with cdf FX is attached, which is the height of the tooth

at that point. Note that we assume that FX(n) ≤ 1− n−1/α for all n ∈ N for some α > 3. We

apply Lemma 5.2 with

p = k
−1/2+δ
1 , q = k

−δ/2
1 , k = k1, m =

⌈
k

3/4−δ/4
1

⌉
and ` = c`k

1/4+δ/4
1

for some 1
16 ≤ c` ≤ 1

8 such that ` is an integer. Note that the inequalities m ≥
√
k1/(pq) and

4m` ≤ k1 hold. This yields that with probability exceeding

1− 2k
1/2+δ/2
1 exp

(
−c′′kδ/21

)
≥ 1− c exp

(
−c′kδ/21

)
there exists a collection D = {D1, . . . , D`} of ` centric sets with minimal gap at least m and

length at least ` such that Di ∩ Dj = {0} for all 1 ≤ i, j ≤ ` with i 6= j and such that

Hd ≥ (FX)−1(1− p) for all d ∈
⋃
D∈DD \ {0}. Let D̃ =

⋃
D∈DD \ {0}.
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Let ε = 1
2δ. Note that δ ≤ 1

2 , so certainly 0 < ε < 1. Moreover,

m`3−ε ≥ k3/4−δ/4
1

(
c`k

1/4+δ/4
1

)3−ε
≥ λk3/2+δ/2−1/2ε

1 ≥ λk3/2+δ/4
1 ,

for some constant λ, e.g. λ =
(

1
16

)3
. We now apply Corollary 5.1, to the collection of centric

sets constructed above. Let S be a random walk on Z ∩ [−k1, k1] starting from S0 = 0. Then

P(#{t ≤ τk : St ∈ D̃} ≤ m`3−ε) ≤ c̃` exp
(
−c̃′`ε

)
≤ c′ exp

(
−c′′`ε

)
so in this case, P

(
#{t ≤ τk : St ∈ D̃} ≤ λk3/2+δ/4

1

)
≤ c′ exp

(
−c′′kδ/81

)
for again other constants

c′, c′′. Note that this term dominates a term of the form c exp
(
−c′kδ/21

)
.

Note that the condition FX(n) ≤ 1 − n−1/α for all n ∈ N also extends to x ∈ R>0 since X is

integer-valued and hence FX(x) = FX(bxc) ≤ 1 − bxc−1/α ≤ 1 − x−1/α for all x ∈ R>0. By

taking x = y−α and applying the inverse of the cdf, this yields (FX)−1(1− y) ≥ y−α. Hence,

Hd ≥ (FX)−1(1− p) = (FX)−1
(

1− k−1/2+δ
1

)
≥ kα(1/2−δ)

1 = k
3/2+δ
1

since for all d ∈ D̃ since δ = α−3
2α+2 rewrites to α = δ+3/2

1/2−δ .

Let n = θk
3/2+δ
1 , where θ ≤ 1 will be chosen later such that n ≥ 1. Let L be the number of

meetings of X with a vertex (k, 0) with a tooth of length at least n before time T . From the

discussion above it follows that with probability exceeding 1 − c exp
(
−c′kδ/81

)
, there exists a

set D̃ such that all teeth have length at least n and such that #{t ≤ τk : St ∈ D̃} ≥ λk3/2+δ/4
1 .

This implies that L ≥ λk3/2+δ/4
1 , so P

(
L < λk

3/2+δ/4
1

)
≤ c exp

(
−c′kδ/81

)
. Hence,

Pk(T ≤ t) ≤ P
(
L < θk

3/2+δ/4
1

)
+ P

(
T ≤ t, L ≥ λk3/2+δ/4

1

)
≤ c exp

(
−c′kδ/81

)
+ P

(
T ≤ t, L ≥ λk3/2+δ/4

1

)
. (5)

At each meeting of X with a vertex (k, 0) with a tooth of length at least n, we perform an

independent experiment, where we succeed if we hit n on the tooth and then spend at least

n2 steps on this tooth. The independence of the experiments follows from the strong Markov

property. Note that the probability of starting a walk on the tooth is 1
3 . If the random walk makes

the transition from (k, 0) to (k, 1), then by Lemma 3.14, there is a probability of dne−1 ≤ 1
2n
−1

of reaching height n before returning to 0. There now is a probability lower bounded by a

constant c′1 that X takes at least n2 = θ2k
3+δ/4
1 steps on the tooth. Let c1 = 1

6c
′
1. Combining

this gives a success probability of at least c1n
−1, since by the strong Markov property these

three events are independent so the probabilities can be multiplied.

Hence, the number of successes is binomially distributed with at least λk
3/2+δ/4
1 trials and success

probability at least c1n
−1. Denote such random variable by Bin

(
λk

3/2+δ/4
1 , c1n

−1
)

.
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Since c1 is a constant not depending on k1 and λ =
(

1
16

)3
is a constant, we have for sufficiently

large k1 that 1
2k

3/4·δ
1 c1λ ≥ 1. Let

θ =
2t

c1λk
3+5/4·δ
1

≤ t

k
3+δ/2
1

≤ 1,

where the first inequality holds for k1 sufficiently large and the last inequality holds for t ≤ k2+α′

1 .

Recall that we can choose the constants c, c′ such that the desired inequality holds if one of these

conditions does not hold, so we may assume that these conditions hold. We also need to check

that n ≥ 1. Recall that we may assume that t ≥ k7/4
1 . Since c1λ ≤ 1, it then follows that

θ ≥ 2k
7/4
1

k
3+5/4·δ
1

>
1

k
5/4+5/4·δ
1

>
1

k
3/2+δ
1

,

so n = θk
3/2+δ
1 ≥ 1 as required.

Write N = λk
3/2+δ/4
1 , p = c1n

−1 and s = tn−2. We compute:

s

Np
=

tn−2

λk
3/2+δ/4
1 c1n−1

=
t

λk
3/2+δ/4
1 c1θk

3/2+δ
1

=
tc1λk

3+5/4·δ
1

2tc1λk
3/2+δ/4
1 k

3/2+δ
1

=
1

2

Np = λk
3/2+δ/4
1 c1θ

−1k
−3/2−δ
1 = λc1k

−3/4·δ
1

c1λk
3+5/4·δ
1

2t
= 1

2(c1λ)2 · k3+1/2·δ
1 /t = c̃1k

2+α′

1 /t.

Hence, s = 1
2Np and Np = c̃1k

2+α′

1 /t.

For −1 ≤ µ ≤ 0 we have eµ − 1 ≤
(
1− 1

e

)
µ. The moment generating function of a binomially

distributed random variable with N trials and success probability p is

M(µ) = (1 + p(eµ − 1))N ≤
(
1 + (1− 1

e )µp
)N ≤ exp

((
1− 1

e

)
µNp

)
.

Note that T is at least n2 times the number of successes, since with each success at least n2

steps are done on a tooth and all successes occur before time T . If L ≥ N , it therefore follows

that T stochastically dominates n2 Bin (N, p). In particular, the event T ≤ t is less likely than

the event Bin (N, p) ≤ tn−2 = s. By Chernoff’s bound with µ = −1, we now find that

P (T ≤ t, L ≥ N) ≤ P (Bin (N, p) ≤ s) ≤ es exp
((

1
e − 1

)
Np
)

= exp
((

1
e −

1
2

)
Np
)

= exp
(
−µ′c̃1k

2+α′

1 /t
)

= exp
(
−c′k2+α′

1 /t
)
≤ exp

(
−c′

(
k2+α′

1 /t
)α′′)

where µ′ = 1
2 −

1
e > 0, and where the last inequality holds for t ≤ k2+α′

1 since α′′ = δ/32 < 1.

Finally, note that α′ < 2, so 2 + α′ < 4 and hence

c exp
(
−c′kδ/81

)
= c exp

(
−c′

(
k4

1

)α′′) ≤ c exp

(
−c′

(
k2+α′

1 /t
)α′′)

.

By equation (5), this proves the lemma.
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From now on, let α′ be a constant such that Lemma 5.3 holds.

Let β′ = α′+1
α′+2 . We now state a lemma analogous to Lemma 4.6.

Lemma 5.4. qt(u, u) ≤ c
tβ′

for any u = (k, 0) on the horizontal axis and any t ≥ 1.

Proof. The proof is identical to the proof of Lemma 4.6, except that Lemma 5.3 is used instead

of Lemma 4.5 and hence the 1/3 is replaced by α′′. The upper bound for Pu (τB ≤ t) now

becomes

Pu (τB ≤ t) ≤ c exp

(
−c′

(
k2+α′

1 /t
)α′′)

= c exp
(
−c′b(2+α′)α′′

)
.

By taking b sufficiently large, it can still be ensured that Pk (τB ≤ t) ≤ 1
2 .

We also need a lemma analogous to Lemma 4.9.

Lemma 5.5. Let x = (k, 0). Then if t < |k|2+α′ , we have

qt(0, x) ≤ c|k|−(α′+1) = c
(
|k|2+α′

)−β
.

Proof. For positive k, the proof is identical to the proof of Lemma 4.9, except that Lemma 5.3

is used instead of Lemma 4.5 and hence the 1/3 is replaced by α′′.

That means that we observe that sup
η>0

(
ηβ
′
e−cη

α′′
)

is finite and hence constant.

For negative k, the proof is similar to the proof for positive k.

These lemmas can now be combined to prove the following lemma on the transition density:

Lemma 5.6.

Let x = (k, h) ∈ V . The transition density q satisfies

qt(0, x) ≤

ct
−β if t ≥ |k|2+α′ ,

c
(
|k|2+α′

)−β
if t ≤ |k|2+α′ .

Proof. The proof is identical to the proof of Lemma 4.10, except that we refer to Lemma 5.4 and

5.5 instead of Lemma 4.6 and 4.9. (Note that Lemma 4.7 and 4.8 can be reused directly).

Recall that Qk,h = {(k, y) : 0 ≤ y ≤ h} and that Zk,h is the number of collisions of the two

random walks in Qk,h and that Z̃k,h = Zk,2h/3−Zk,h/3. These notions allow us to formulate and

prove the final lemma needed for proving the finite collision property of Comb(Z, α) for α > 1.
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Lemma 5.7.

(a) E[Zk,h] ≤ ch|k|−α′ .

(b) E[Zk,h | Z̃k,h > 0] ≥ ch.

Proof. The proof is identical to the proof of Lemma 4.11.

These lemmas together allow to prove the main result of this chapter:

Theorem 5.1. Let α > 3 be given and let FX : N→ [0, 1] be a cumulative distribution function

satisfying FX(n) ≤ 1−n−1/α for all n ∈ N. Moreover, assume that there exists a constant E > 0

such that FX(n) ≥ 1 − n−E for all n ∈ N. Let {f(n)}n∈Z be i.i.d. random variables with cdf

FX . Then G = Comb(Z, f) has the finite collision property almost surely.

Proof. Let α > 1 be given. By Proposition 3.10 and Lemma 5.7, it follows that

P(Z̃k,h > 0) ≤
E[Zk,h]

E[Zk,h | Z̃k,h > 0]
≤ c′hk−α

′

c′′h
= ck−α

′
,

so P(Z̃k,h > 0) ≤ ck−α′ . Since there exists a constant E > 0 such that FX(n) ≥ 1− n−E for all

n ∈ N, it follows that P(f(n) ≥ |n|2/E) ≤ n−2 for all n ∈ Z. In particular, this almost surely

happens only finitely often by the Borel-Cantelli Lemma.

Summing over all k and all j satisfying 2j ≤ f(k) yields

∞∑
k=−∞

log2 f(k)∑
j=0

P(Z̃k,2j > 0) ≤ C +
∞∑

k=−∞

log2 |k|2/E∑
j=0

P(Z̃k,2j > 0) ≤ C +
∞∑

k=∞
log2 |k|2/Eck−α

′
<∞

since α′ > 1. The first inequality holds since there are only finitely many k for which the

inequality f(k) ≥ |k|2/E holds and each of these ks gives only a finite number of additional

terms. By the Borel-Cantelli lemma, it follows that P(Z̃k,2j > 0 occurs i.o.) = 0.

By Corollary 4.1, it follows that only finitely many collisions occur in the graph Comb(Z, f)

almost surely. Hence, Comb(Z, f) has the finite collision property almost surely.
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6 Conclusion and discussion

To conclude this thesis, let us briefly summarize the main results. In the Chapter 3, the ground-

work is laid for Chapter 4 and 5. Chapter 4 reviews the main results known on comb graphs from

the literature: the finite collision property of Comb(Z) (from Kirshnapur and Peres [7]), the fi-

nite collision property of Comb(Z, α) for α ≤ 1 and the infinite collision property of Comb(Z, α)

for α > 1 (from Barlow, Peres and Sousi [3]).

In the final chapter, it is proven that if FX : N → [0, 1] is a cumulative distribution function

satisfying FX(n) ≤ 1 − n−1/α for some α > 3, and a technical condition (namely, that there

exists a constant E > 0 such that FX(n) ≥ 1 − n−E for all n ∈ N), then the comb graph with

i.i.d. heights with cdf FX has the finite collision property almost surely.

The author is very satisfied with this result. Two important questions however still remain. The

first is whether the 3 is optimal in this theorem, or that it could be lowered. The second question

is whether the technical condition can be removed. It seems that the latter would require

different sets, possibly also involving the time, i.e. an approach more similar to Kirshnapur and

Peres [7], at least when it comes to the sets in space and time the collisions are divided in.

Many related problems are still open, but can possibly be solved using the centric set approach.

One problem of particular interest to the author is the case of comb graphs with gaps between

vertical copies of Z. This means that some vertical copies of Z are removed from Comb(Z). A

bit more formally, let CombD(Z) be the comb graph with vertical copies of Z at locations given

by a set D ⊂ Z. The distance between two successive elements of D is called a gap, and we

say that CombD(Z) has bounded gaps, if all gaps are bounded by a constant and D moreover

contains infinitely many positive and infinitely many negative elements. This situation leads to

the following conjecture:

Conjecture 6.1.

If CombD(Z) has bounded gaps, then CombD(Z) has the finite collision property.

While this case is very similar to the collision property of Comb(Z), the proof does not carry

over easily. An important step in the proof of Krishnapur and Peres [7] is the independence of

the horizontal walk (U) and the vertical walk (V ). This step no longer works in the case with

gaps, and it seems hard to prove that the covariance is sufficiently small as well. However, this

conjecture may be solvable using the centric set approach.
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