
Classification of remotely sensed imagery for

assessing machine learning algorithms

Lars Doorenbos

Supervisors:
Dr. Erzsébet Merényi

Dr. Michael Biehl
Dr. Kerstin Bunte

August 2020

Abstract

The information present in remotely sensed hyperspectral imagery al-
lows for the subtle discrimination between land covers, with applications
in domains such as agriculture and surveillance. However, the inherent
complexities and high volume of the data create the need for automation.
For this purpose, we investigate the performance on three distinct datasets
of seven supervised classifiers: Bagging, Random Forest, Extremely Ran-
domized Trees, Stochastic Gradient Boosting, Extreme Gradient Boost-
ing, the Support Vector Machine and 1-dimensional Convolutional Neural
Networks.
To allow for a fair comparison between these methods, they have to be
optimized in order to determine whether the differences in performance
are due to their hyperparameter configuration or the inherent qualities
of the algorithms. For this purpose we use Bayesian optimization, and
compare its effectiveness with grid and random search. We find that even
though Bayesian optimization gives a slight improvement in two cases, it
has no impact on the ordering in quality of the models.
We find that Extremely Randomized Trees provides a good baseline. The
Support Vector Machine is an excellent choice, as it achieves high perfor-
mance while being both fast and easy to optimize. Tuning Convolutional
Neural Networks is a time-consuming and unintuitive process, but once
optimized they can provide good results.

1

1 Introduction

The hyperspectral data generated by modern airborne remote sensors contains
information that allows for the detailed understanding and monitoring of the
surface of the Earth. These sensors divide the area of interest into many small
patches, and capture a spectrum at each of them. Spectra are characterized by
hundreds of spectral channels or bands, each sensitive to a small window of the
electromagnetic spectrum. The measurements are combined into an image of
the surface, where every pixel contains a spectrum. The information in such
datacubes make the precise identification and discrimination of different land
cover classes possible. This has successfully been applied in domains such as
precision agriculture, flood management, and the monitoring of protected nat-
ural areas or remote locations [75, 13, 42].
The sheer volume of the data however creates the need for automation. A so-
lution is often found in the form of supervised machine learning models. The
models need to be able to deal with the difficulties of working with high dimen-
sional data, as well as numerous other challenges. These include working with
an imbalanced training set, limited amounts of labeled data and a high number
of classes. Dimensionality reduction, commonly used to address some of these
difficulties, could lose some of the finer but critical relations for retaining the
discriminability.
Over the last decades many classification algorithms have been explored, varying
from linear regression to deep neural networks [54]. A popular class of models
are decision tree ensembles. These are based on the idea that the accuracy
of a decision tree can be increased by combining the results of multiple trees,
while introducing one or more random elements in their construction. How this
randomness is introduced varies between classifiers, and many examples, espe-
cially Random Forest, have been extensively analyzed in the literature [33, 78,
30, 13, 46]. Various neural network based classifiers have also been investigated,
ranging from multilayer perceptrons to 1-dimensional convolutional or recurrent
neural networks [53, 37, 52]. More recently, higher dimensional convolutional
neural networks, that not only take the individual spectra but also the spatial
context into account, have shown great promise [47]. In order to keep the scope
of this work manageable these will not be considered, nor will we compare mod-
els where a CNN is solely used as a feature extractor. Another widely used
model is the support vector machine (SVM), often reaching high scores while
requiring little finetuning [30, 59, 61, 78, 19, 67].
We will examine 5 different tree ensembles and compare their effectiveness with
the 1-D CNN and the non-linear SVM. In order to properly compare these mod-
els, we need to ensure they are used to the maximum of their capabilities. This
comes down to optimizing the hyperparameters of the models. As the required
expertise to find the optimal configuration manually will not always be available,
there exist several approaches that aim to find the best settings automatically.
We will analyze the performance of 3 such optimization algorithms: grid search,
random search and Bayesian optimization.
The vast majority of the articles on hyperspectral classification we reviewed ei-

2

ther do not use such an automated approach for the hyperparameter tuning of
their models, instead opting to tune their hyperparameters manually (e.g. [61],
[59], [30], [44], [19], [53, 7]), or employ grid search (e.g. [75, 30, 78, 53, 45]).
For models that have low hyperparameter dimensionality and are robust to their
settings, either manual tuning or grid search should be an adequate method for
finding configurations that achieve near-optimal performance. For more com-
plex methods, however, this is not necessarily the case, and approaches such as
random search or Bayesian optimization (BO) may provide better results [5].
Remote sensing studies that use either random search or BO are more limited
in number compared to grid search, and are typically applied in a slightly dif-
ferent context. For example, Acquarelli et al. [2] use a combination of grid and
random search for spatial-spectral classification. Random search has been used
in the context of classifying hyperspectral data to assess the quality of honey,
crop classification with temporal multispectral data, and predicting the nutrient
content in citrus leaves based on hyperspectral data [55, 81, 57]. BO has been
applied to multispectral imagery in Sonobe et al. [70] and Su et al. [72], as well
as for monitoring pigments in tea or classifying ink through hyperspectral data
[71, 21]. We are not aware of studies directly applying either BO or random
search to the pixel-wise classification of hyperspectral data that is generated by
airborne remote sensors.
The contributions of this thesis are therefore twofold. First, analyzing the use-
fulness of classifiers such as Extreme Gradient Boosting and Extremely Ran-
domized Trees, which have not yet been thoroughly investigated for classifying
hyperspectral imagery. Second, assessing whether hyperparameter optimization
algorithms such as BO are able to improve upon the performances reported in
the literature of classifiers that were optimized either manually or with grid
search.
The remainder of this work is structured as follows. In section 2 the seven
models under consideration are described, followed by a description of the three
optimization strategies in section 3. The details of the datasets used are given in
section 4, and section 5 expands upon the design of the experiments. The results
presented in section 6 are finally evaluated in section 7, and the conclusions are
drawn in section 8.

2 Classifiers

Below a brief description of the inner workings of all seven classifiers is given.

2.1 Bagging

Bagging is a method that combines the results of many individually and inde-
pendently trained models into a single outcome. Combining the results of these
weak learners in the case of classification is for example done through a majority
vote [9]. The weak learners used in this work are decision trees, and as such the
whole model can be seen as a tree ensemble.

3

Given a training set of size k, every tree is trained on a different bootstrap sam-
ple of size k, drawn uniformly with replacement from the training set [9]. As the
probability of a datapoint not being drawn is 1− 1

k and we draw k samples, the
probability that a training point is not used in the building of a tree is (1− 1

k)k.
Each tree is then built using a greedy algorithm that looks for the best split
available at every node. The best split available is found by first calculating an
impurity measure for every possible split, then selecting the split leading to the
greatest gain in purity. We use the Gini impurity for the first 3 models, which
at node v is defined by

IG(v) = 1−
∑
i∈Y

p2i , (1)

where pi denotes the fraction of datapoints in node v labeled i, and Y is the
set of all labels [23]. The change in Gini impurity is then calculated at a given
node v by

∆IG(v) = IG(v)− ni
nv
IG(i)− nj

nv
IG(j), (2)

with i and j the resulting child nodes of the split at node v, and nx denotes the
size of node x [23].
Other impurity measures, such as entropy, can substitute the Gini impurity in
Equation 2. The differences in results when using entropy or the Gini impurity
are typically small [64]. As opposed to entropy, there is no logarithm in the
Gini impurity formula, hence it should be slightly faster to compute [65].

2.2 Random Forest

Random Forest (RF) introduces an extra random element to the bagging ap-
proach. At every node a sample of the features is drawn from all features without
replacement. Instead of considering all possible splits, the split that will be per-
formed at the node is the split maximizing the decrease in Gini impurity that
is available in the feature sample [10]. How many features, or spectral bands in
the context of remote sensing, are used to determine the split point is decided
before the training of the RF starts.

2.3 Extremely randomized trees

The Extremely Randomized Trees (ERT) algorithm, unlike bagging and RF,
does not use a bootstrap sample. Instead, it trains every tree on the whole
training set. Similar to RF, at every node a sample of all features is drawn.
Then, instead of finding the split that maximizes the gain in purity, a random
split point is selected for each of these features. The splitting is then done by
computing the purity gain for each of these randomly selected thresholds and
selecting the best one. Trees are either grown to their maximum size, where
all nodes contain a single datapoint, or the splitting halts once nodes reach a
predefined size [29].

4

2.4 Gradient Boosting

Shifting from the previous models, where the results of many independently
trained models are aggregated into one final prediction, we now consider an-
other approach - boosting - where results from previous steps are taken into
account during training. Here, after starting with an initial guess, models are
fit sequentially to the data. At every step, the data is manipulated in some way
to incorporate the information obtained in previous iterations. For example, the
datapoints that were misclassified can become more likely to be sampled for the
training set of the next iteration. These trained models can be any classifier,
and we will again use decision trees.
The way that some datapoints are given more importance over others in the
case of gradient boosting (GB), is by using the gradient of a differentiable loss
function. The algorithm starts with an initial guess for each class. These odds
can for example be set relative to the training class distribution. GB makes use
of the logistic function to transform these odds to a scale where it can add the
results of multiple weak learners, which would not be possible using probabili-
ties [26].
At every subsequent step, a new tree is fit, where, instead of predicting a class
label, the target values are the negative gradient of the loss function. The
resulting predictions are added to the result so far, using a set learning rate.
After all boosting iterations are complete, the final results are converted back
to probabilities [26].
Gradient boosting with decision trees is a binary classifier, and to be able to use
it we have to transform our multi-class classification task into multiple binary
classification problems. This is done by a one-versus-all approach, where at ev-
ery iteration a separate tree is built for each class. These predict the probability
that a given sample will belong to that class. As our differentiable loss function
we use the multinomial deviance.

2.5 Stochastic Gradient Boosting

Stochastic Gradient Boosting (SGB) adds a random component to the training
phase of a GB model. Instead of using the full training sample, a different
subsample randomly drawn without replacement from the training set is used
to fit each decision tree. As fewer datapoints are used for the training process
the computation time decreases, while the performance generally increases as
the model became more robust to overfitting [27].

2.6 Extreme Gradient Boosting

Extreme Gradient Boosting (XGB) consists of a number of improvements over
SGB, all related to further improving generalization capacity and preventing
overfitting to the training data. Besides using a subset of the training data-
points, it allows for the subsampling of the features used in the building of the
model, similar to RF. Furthermore, regularization is built directly into the loss

5

function, consisting of 2 parts. For a model M it is given by

L(M) =
∑
i

l(ŷi, yi) + γT + 0.5λ||w||2,

where the first term denotes the sum of the traditional loss function (e.g. multi-
nomial deviance) over all training data points using the predicted labels ŷi and
the actual labels yi. T represents the total number of leaves, w the leaf weights
and γ and λ are the regularization parameters. The first regularization term
penalizes the total number of leaves, effectively setting a threshold for the mini-
mum improvement in loss that the splitting of a node has to exceed. The second
term limits high values in the leaf nodes, in other words the contribution the
prediction of a single leaf node can have on the final score (L2 regularization)
[14].
In addition to these improvements to the model itself, the implementation of
XGB, xgboost, includes a number of optimizations that make the algorithm
considerably faster than (S)GB. This is especially the case on large datasets,
among other things by using multiple cores to speed up the inherently sequential
gradient boosting procedure [14].

2.7 Convolutional Neural Network

The one-dimensional convolutional neural networks considered here can be split
into two parts. First, a set of alternating convolutional and pooling layers func-
tion as a type of feature extractor, given the input spectra as a feature vector.
This is followed by one or more fully connected layers that use these extracted
features to classify the input into one of the classes.
In the convolutional layers, a number of small windows or feature maps are
shifted over the input which, in contrast to standard feed-forward neural net-
works and other methods considered here, are able to take the local spectral
information of a band into account. As a result, neurons are only connected
to a small number of neurons in the next layer, greatly reducing the number
of trainable parameters and complexity of the model. The pooling layer then
combines the information from these feature maps. A common approach is max
pooling, which replaces a small region in the input by its maximum value, fur-
ther decreasing the size and complexity of the features, as well as providing
some invariance to translation [37].
The last pooling layer of the first part of the network is followed by one or more
fully connected layers that act as the classifier, similar to a traditional multi-
layer perceptron. The last of these layers will have an equal number of neurons
as there are classes in the classification problem, and through the softmax func-
tion their values can be turned into class probabilities.
During the training phase all the trainable weights between the neurons in the
model are adjusted through forward propagation and error backpropagation.
First a subset of the training data is presented as input to the model, resulting
in an output vector with class probabilities for each datapoint in the batch.
Then, the loss function with regards to the desired output (a probability of 1

6

for the class the datapoint belongs to and 0 for all others) is computed, and by
using the partial derivatives of this loss function all trainable weights are up-
dated, with the goal of decreasing the loss function. Once this process is done
for all batches the training has completed one epoch, and will repeat itself until
the specified number of epochs are complete [37].

2.8 Support Vector Machine

The support vector machine (SVM), initially designed as a binary classifier,
aims to find the hyperplane best separating the input data. As the training
data might not be linearly separable in its original space, it is transformed to a
higher dimensional realm using the kernel trick [18]. In order to use the SVM as
a multi-class classifier, the classification problem has to be converted to multiple
binary sub-problems, similar to GB. There exist two common strategies; one-
versus-one and one-versus-all. One-versus-one fits an SVM for every pair of

classes, leading to a total of n(n−1)
2 models for n classes. One-versus-all creates

a model for each class against all other classes, for a total of n classifiers for n
classes. To aggregate the results for the one-versus-one approach, every model
casts a single vote for the class it predicts, and the the final prediction is the
class that has the most votes. In the case of one-versus-all, the class with the
highest probability when paired against all other classes is predicted as the final
label [8].

3 Hyperparameter Optimization

During training, machine learning algorithms typically operate by optimizing
some criterion with respect to a number of internal parameters, such as the
weights in a neural network or the support vectors of an SVM. In addition,
these models often come with hyperparameters. These have to be set by the
user before the training phase starts, as they cannot be estimated from the
data. They control some aspect of the classifier that will affect the quality of
the training. Examples are the number of layers of a CNN or the number of
trees built in a RF [5]. We will refer to the model optimizing its inner criterion
as the training, and to finding the optimal hyperparameter settings as the tun-
ing of the model.
The number of hyperparameters that require tuning can vary greatly between
models. For some models like bagging we will only consider 1 hyperparameter,
for others such as XGB we optimize for 8. The CNN architecture space has
the most considered in this work, with 16 values to tune. The hyperparameter
dimensionality can be much higher; Bergstra, Yamins, and Cox [6] use a 238-
dimensional search space to find an optimal image classification architecture.
Projects like Auto-WEKA, that view the pipeline of feature extraction, model
selection and hyperparameter optimization as one large optimization problem,
can reach up to 768 dimensions.
The hyperparameters themselves come in different types and with different value

7

ranges. They can be continuous, such as the learning rate, discrete, like the
batch size in a neural network or categorical, e.g. the choice of SVM kernel.
Furthermore, some hyperparameters are conditional and are only active if an-
other hyperparameter is set to a certain value. An example is the number of
neurons in the nth layer of a CNN, which will only be active if the hyperparam-
eter governing the number of layers is at least n.
The hyperparameter search spaces of different algorithms thus vary greatly in
dimensionality, size and complexity. As their settings can greatly affect model
performance, tuning them becomes an integral part to the proper comparison
of classifiers. After first describing grid search we look into two alternatives for
the automatic optimization of hyperparameters; random search and Bayesian
optimization (BO).

3.1 Grid search versus Random search

In order to use grid search the user has to specify a set of values for each hyper-
parameter. Then, all possible combinations of these hyperparameters will be
evaluated. The total number of configurations evaluated is therefore the prod-
uct of the cardinality of each set [5].
While grid search is a reliable option for models with low dimensional search
spaces, exhaustively searching all combinations in higher dimensions quickly
grows infeasible, due to the exponential growth of the number of configurations.
Furthermore, for models such as neural networks only a subset of the hyper-
parameters have a big impact on the performance, and which hyperparameters
have a big impact is not consistent between datasets. Hence, while the search
space may be high dimensional, it has a low effective dimensionality [5].
To illustrate why grid search will be ineffective in cases with low effective di-
mensionality, consider the example in Figure 1. If both parameters were equally
important having a uniform grid over the 2 dimensional search space would be
ideal, as it leaves no region disproportionately unexplored. However in this case,
where there is an imbalance in importance between hyperparameters, a number
of trials are wasted. As can be seen in Figure 1, with grid search the function will
only be evaluated at 3 different values for the important hyperparameter, even
though 9 configurations have been computed; the uniformly distributed points
in 2-dimensions of the grid search provide an inefficient coverage of the one
dimensional subspace of the important hyperparameter. Note that the unim-
portant hyperparameter has a similarly inefficiently covered subspace, and as a
result it does not matter which hyperparameter is the important one.
The opposite to grid search would be to evaluate 9 configurations uniformly
spaced along a diagonal. Both 1-dimensional subspaces will be uniformly cov-
ered with 9 trials, thus likely finding a better solution in the case where one
hyperparameter accounts for (nearly) all the variance of a function. In the bal-
anced case however, as the search is missing evaluations in large portions of
the inefficiently covered 2-dimensional search space (in the corners opposite the
diagonal), the solution found is likely worse than with grid search.

8

Random search evaluates randomly chosen, independent trials, and falls in be-
tween the 2 extremes of grid search and evaluating points on the diagonal. As
can be seen in the right panel of Figure 1, the subspace of the important pa-
rameter is covered with 9 randomly distributed trials instead of 3, while still
having a decent coverage of the 2-dimensional space. In the imbalanced case of
Figure 1 this leads to finding a better configuration.
These problems worsen in higher dimensions for grid search. The number of
combinations will grow exponentially with the number of dimensions, and with
more hyperparameters an exponentially growing number of trials will become
irrelevant. Random search on the other hand does not suffer from this problem;
regardless of how many irrelevant dimensions are present, the coverage of the
subspaces of the important parameters will stay the same given the same num-
ber of trials.
To illustrate, if we were to add another completely irrelevant dimension to Fig-
ure 1, again allowing for 3 possible values, grid search would evaluate a total of
27 configurations. Of these 27 only 3 will be unique values for the single impor-
tant hyperparameter, whereas random search would evaluate 27 distinct values
in 27 trials. In the case where 2 out of 3 hyperparameters have a significant
impact, grid search will evaluate 9 uniformly distributed configurations in the
relevant 2-dimensional subspace out of the 27 trials, in contrast with random
search, which evaluates 27 randomly distributed configurations in the same rel-
evant 2-dimensional subspace.
As in practice often only a subset of the hyperparameters account for a large
portion of the variance in performance, random search should often provide bet-
ter results compared to grid search. However, the results may be less consistent
when the total number of evaluations is low [5, 38].
Random search has some other practical benefits over grid search, while being
equally easy to implement. As all individual trials are independent, new ma-
chines can be added to a running experiment on the fly, failing machines can
be removed without problems and the experiment can be stopped at any point
without missing evaluations in a certain portion of the search space [5].

3.2 Bayesian optimization

Both grid search and random search do not incorporate the results of previous
evaluations when determining where in the search space the next trials will be
placed. This ignores valuable information on where the most promising regions
might lie. In contrast, Bayesian optimization (BO) treats the tuning of hyperpa-
rameters as the sequential optimization of a black-box function, where by using
Bayes’ theorem all previous observations are included in the decision process of
what configuration to evaluate next [40].
The black-box function we wish to optimize in our case takes a set of hyper-
parameters and returns the accuracy (or any other metric by which we wish
to optimize) of the classifier trained with those settings. In the case of com-
plex models such as deep neural networks the evaluation of this function, which
would involve training the model and evaluating its performance to obtain the

9

Figure 1: Grid search and random search trials for optimizing a function defined
as f(x) = g(x) + h(x). g(x) is shown at the top in green and h(x) left of the
box in yellow [5].

accuracy, can take a long time. Combined with the fact that we often can-
not obtain the derivatives of the black-box function, i.e. the derivatives of the
accuracy with respect to the hyperparameters, applying function optimization
techniques such as gradient descent to find the optimal hyperparameter config-
uration directly is impossible [12].
Instead, BO constructs a probabilistic model of the objective function, where
combinations of hyperparameters are mapped to a probability distribution over
accuracy values. This model is called the surrogate function. Common choices
for this surrogate function include Gaussian Processes (GP), Random Forests
(RF) and Tree Parzen Estimators (TPE) [22].
Even though an RF is generally not used as a probabilistic model, it can be
turned into one by returning a Gaussian probability distribution N (µλ, σ

2
λ) for

the set of hyperparameters λ, where µλ is the average prediction of all trees in
the forest and σ2

λ its variance [73].
There are a number of factors to take into account when choosing the surrogate
function. For relatively low dimensional search spaces with numerical hyperpa-
rameters (Frazier [25] mentions in cases with less than 20 dimensions) GP-based
implementations typically outperform the tree based models, such as RF and
TPE [38]. While discrete variables can still be used relatively easily by relaxing
them to be continuous and rounding them to the nearest integer at the end, GPs
have more trouble with categorical and conditional variables [20]. Categorical
values can be dealt with for instance by using one-hot encoding [28]. One so-
lution for conditional parameters is using separate GPs for groups of variables
that are active at the same time [4]. This does however lose sight of the depen-
dencies between groups [69]. Generally however, when dealing with categorical
or conditional variables, or when there are many hyperparameters to consider,

10

the tree based approaches are favored. This is a result of the properties of trees
that make them inherently able to deal with conditional and categorical values,
as well as being faster than GP regression in higher dimensions [38].
To determine where the next evaluation of the objective function will be, an
acquisition function is used on the surrogate function to find regions of high in-
terest. This acquisition function tries to find a balance between exploration and
exploitation. Exploration focuses on those regions of the search space where the
uncertainty is high (high variance), whereas exploitation favors regions where
the expected performance is high (high mean).
A commonly used acquisition function is the Expected Improvement (EI) [40].
It is defined by

EI(x|D) =

∫ ∞
fbest

(y − fbest)p(y|x, D)dy, (3)

where y denotes performance, x a possible combination of hyperparameters to
evaluate next and D the set of hyperparameter and performance pairs evaluated
so far. fbest represents the best score found at the current time. Note that
p(y|x, D) is the surrogate function; the probabilistic model of the objective
function based on the evaluations made.
Acquisition functions like EI are computationally inexpensive to evaluate and
can be calculated analytically. The problem of finding the optimum of a function
has now shifted, from optimizing the original black-box function to optimizing
the acquisition function on the surrogate function. How this is done depends on
the implementation details. Common algorithms for this optimization include
Dividing Rectangles, Covariance Matrix Adaptation Evolution Strategy and
Monte Carlo sampling [12, 4].
This process of computing the surrogate function, finding the next point to
evaluate through maximizing the acquisition function, evaluating said sample
point and using this observation to update the surrogate function makes up the
main loop of BO.
Bayes’ theorem states that the posterior probability of a model M with evidence
E is proportional to the product of the prior probability of M and the likelihood
of E given M [12]:

P (M |E) ∝ P (E|M)P (M). (4)

Applied to our optimization problem, the prior is represented by the surrogate
function. Upon evaluation of a new sample point the results are added to
the evidence, and the surrogate function is updated to become the posterior
distribution. This will act as the prior in the next iteration of the process.
Pseudocode for the whole BO procedure is given in Algorithm 1. An illustration
of the main loop in the 1-dimensional case using a GP as the surrogate function
can be found in Figure 2.

A disadvantage of BO is that some choices have to be made for the process
itself, which in some sense only shifts the problem of tuning hyperparameters,
from the model to the optimization algorithm. These include the choice of ac-
quisition function, surrogate function and the total number of iterations. Other
choices that have to be made include where to locate the initial trials, and

11

Algorithm 1 Main loop for Bayesian optimization of an unknown function f
[25][35]

1: {xn, yn}n0
n=1 ← evaluate n0 initial trials, where y = f(x)

2: Mn0 ← fit the surrogate function using the initial evaluations
3: for n = n0 + 1, ..., N :
4: xn ← maximum of the acquisition function over M
5: yn ← evaluation of objective function using f(xn)
6: Mn ← update the surrogate function with the new observation {xn, yn}
7: Return the best configuration found

how many should be evaluated before starting the optimization loop. Options
for this initialization include random sampling, Latin hypercube sampling and
quasi-random sampling with Sobol sequences [35]. If previous knowledge, such
as the results from a random search experiment, are available these can be used
as the basis for the optimization instead. In the case where the model has al-
ready been optimized on different datasets, meta-learning can be employed to
use well performing configurations on the most similar datasets as the initial
trials for the new problem [24].

3.3 Local Penalization

While the BO process is inherently sequential, it can be parallelized by evalu-
ating a batch of parameter settings instead of only evaluating the maximum of
the acquisition function. The most naive way is to fill the batch with random
configurations. In González et al. [31] a heuristic to model the interactions be-
tween evaluations is proposed, with the goal to facilitate a good batch design.
This process is called local penalization (LP), visualized in Figure 3. It is based
on the observation that the main effect on the acquisition function of a function
evaluation will happen in its neighbourhood, and thus the acquisition function
for subsequent parameter choices in the current batch should be less likely to lie
therein. Latin hypercube sampling is recommended as the initial design strat-
egy to use with LP if no previous evaluations are available.
If we want to place n Latin hypercube samples, the range for each variable is
first partitioned into n intervals of the same size. Then, the samples are placed
in such a way that when projecting onto any single dimension there will be
exactly one sample placed in every interval [50]. In the 2 dimensional case this
results in there being exactly one sample in each row and each column. Note
that solely evaluating Latin hypercube samples can already be seen as an opti-
mization strategy, that falls in between grid and random search. No part of the
search space is disproportionately unexplored, and it does not suffer from the
issues of grid search where the subspaces are inefficiently covered. In Bergstra
and Bengio [5], however, they found that this approach was no more efficient
than the expected results with random search.

12

Figure 2: 3 steps of BO on a 1-dimensional toy example, where the black-box
function is given by the dashed line. The solid black line represents the mean of
the Gaussian Process, with the variance shown in blue. The acquisition function
is shown in green. The red triangles indicate the maximum of the acquisition
function at each step, and the dots indicate black-box function evaluations [12].

13

Figure 3: Local penalization for a batch of size 3. Black stars represent the
acquisition function (a(x)) maxima that will be included in the batch. φn(x)
illustrates the local penalization by which the acquisition function was multiplied
to obtain the acquisition function for batch element n+ 1.

The effect of using LP and that of different batch sizes is illustrated in
Figure 4. Every dot in the images represents one model evaluation for a total of
50 evaluations per image, where the first 20 are initialized using Latin hypercube
sampling (shown in red). In the case without LP the BO remains focuses on
the bottom right, and the rest of the search space remains unexplored after the
initial configurations. With a batch size of 2 there is a less dense concentration of
points in the bottom right and a more expansive exploration. Further increasing
the batch size exaggerates this behaviour. Out of the three runs shown in the
images the run with a batch size of 4 found a better model than when using a
batch size of 2, which in turn outperformed the case without LP.

No LP LP with batch size 2 LP with batch size 4

Figure 4: Different BO runs with a total of 50 evaluations each. The 20 initial
points sampled with Latin hypercube sampling are shown in red.

3.4 Hyperparameter Importance

Relying on one of the previously discussed optimization strategies leaves the
user without insight into which hyperparameters contributed the most to the
overall performance, and in what way. To this end, the probabilistic model used

14

during BO cannot only be used for the optimization process, but also to get a
sense of the effect and importance of individual hyperparameters and their in-
teractions after the optimization is complete.
In Hutter, Hoos, and Leyton-Brown [38] the authors developed an algorithm
that computes marginals from a RF surrogate function in linear time. Recall
that the surrogate function maps a configuration of hyperparameters to a prob-
ability distribution over performance, hence the marginals give insight into the
effect of a subset of the hyperparameters on the performance. The marginals
are calculated by averaging over all instantiations of the hyperparameter(s) not
included in the marginal [38].
These marginals can in turn be used with a functional analysis of variance
(fANOVA) to determine the effect of individual hyperparameters as well as their
interactions on the overall variance in performance. fANOVA takes a black-box
function and decomposes its variance into additive components, where the com-
ponents are all the possible subsets of the input variables. The components in
our case consist of all possible combinations of any length of input hyperparam-
eters. With the fANOVA we then know the contribution of every component
to the total variance, and we can quantify the importance of a component by
the fraction of the total variance that it explains [38]. Important to note is
that the results from the fANOVA heavily depend on the chosen ranges. If an
otherwise crucial parameter is only allowed to vary between values where its
impact on the performance is relatively constant, the fANOVA will quantify it
as unimportant. Whether these are good or bad settings is irrelevant. As such
the fANOVA results should only be seen as information about the optimization
procedure that was run with the specified ranges. An illustration of the depen-
dence on the ranges is given in subsection 6.3.
These insights do not have to be limited to just the effect of the hyperparam-
eters on the accuracy; any measure for which we have data can be used. For
example, the effect different settings have on the time it takes to fit the model
can be investigated instead.
We use the implementation made by the authors of Hutter, Hoos, and Leyton-
Brown [38] 1.

4 Datasets

The classification and optimization algorithms are compared using three differ-
ent datasets, described below. We use the Indian Pines dataset as it is widely
used for evaluating classifiers on remotely sensed hyperspectral imagery (e.g.
[30, 37, 53, 78, 77]). This provides a confirmation that our pipeline functions
as expected, by verifying that when using the same settings our performance
for widely used classifiers is the same as what is reported in the literature. Ad-
ditionally, it serves as an opportunity to compare the usefulness of lesser used
models like ERT and XGB with those widely used classifiers. As Indian Pines
does not have a designated training and testing set, differences in performance

1https://github.com/automl/fanova

15

https://github.com/automl/fanova

Table 1: Class distribution in the Indian Pines dataset.

Index Class Number

A Alfalfa 46
B Corn-notill 1428
C Corn-mintill 830
D Corn 237
E Grass-pasture 483
F Grass-trees 730
G Grass-pasture-mowed 28
H Hay-windrowed 478
I Oats 20
J Soybean-notill 972
K Soybean-mintill 2455
L Soybean-clean 593
M Wheat 205
N Woods 1265
O Buildings-Grass-Trees-Drives 386
P Stone-Steel-Towers 93
- Sum 10249

across experiments can in part be attributed to what labeled samples were used
during training. For this reason, we also perform experiments on the Univer-
sity of Houston image, where the training/testing split was made beforehand.
Finally, for the Lunar Crater Volcanic Field dataset we use the data and labels
as in Merényi et al. [52] to allow for a fair comparison with the self-organizing
map-hybrid artificial neural network (SOM-hybrid ANN) model described there,
which has not been compared with other modern classifiers. The way the per-
formance of the models will be evaluated is described in section 5.

4.1 Indian Pines

The first image used was acquired on June 12, 1992 using the Airborne Visible
/ Infrared Imaging Spectrometer (AVIRIS) sensor [49]. It consists of 145x145
pixels, with 220 spectral reflectance bands. After removing 20 water absorption
bands in the ranges [104, 108], [150,163] and 220, the remaining 200 bands
are used as features for the classification, as in Ghamisi et al. [30]. A total
of 10249 pixels divided into 16 classes have been labeled. The description and
distribution of the classes can be found in Table 1.

4.2 University of Houston

The second dataset was acquired in 2012 by the Compact Airborne Spectro-
graphic Imager with a size of 349*1905 pixels and 144 spectral radiance bands

16

Table 2: Class distribution in the University of Houston dataset.

Index Class Train Test

A Healthy grass 198 1053
B Stressed grass 190 1064
C Synthetic grass 192 505
D Trees 188 1056
E Soil 186 1056
F Water 182 143
G Residential 196 1072
H Commercial 191 1053
I Road 193 1059
J Highway 191 1036
K Railway 181 1054
L Parking lot 192 1041
M Parking lot 2 184 285
N Tennis Court 181 247
O Running Track 187 473
- Sum 2832 12197

[1]. Unlike the Indian Pines (IP) image it has a designated training and testing
set, with a total of 15029 labeled pixels split into 15 classes. Details are given
in Table 2. The mean spectral signatures for each class are given in Figure 5.
This illustrates the difficulty of hyperspectral image classification; the spectra
overlap and cross in many places and the differences between them can be very
subtle.

4.3 Lunar Crater Volcanic Field

The Lunar Crater Volcanic Field (LCVF) image was again made by the AVIRIS
sensor, taken on April 5, 1994. From the 224 bands present in the original image,
194 are used after removing noisy and overlapping bands. Additionally the
image has been atmospherically corrected and converted to reflectance units.
We received a private copy of the data and labels in a preprocessed state as
described in Merényi et al. [52]. The size is 614x420 pixels, 5274 of which were
manually labeled into 23 classes, as shown in Table 3. We use the dataset before
the augmentation done in Merényi et al. [52], where all classes were expanded
to include at least 14 samples. As a result, in this work class G is 7 samples
smaller, and classes J and V are 2 samples smaller.
To further illustrate how similar the spectra can be, in Figure 6 we plot the
training spectra per class pulled apart. For classes such as Q, R, S and T the
spectra are visually nearly identical, only separated by a small margin on the
y-axis.

17

Table 3: Class distribution in the Lunar Crater Volcanic Field dataset.

Index Class Train Test

A Hematite-rich cinders 72 309
B Rhyolite of Big Sand Spring Valley 22 200
C Alluvium #1 50 200
D Dry playa 160 210
E Wet playa #1 115 210
F Young basalt 21 40
G Shingle Pass Tuff 7 105
H Alluvium #2 50 220
I Old basalt 36 100
J Dense scrub brush stands 12 250
K Basalt cobbles on playa 37 248
L Ejecta blankets #1 78 214
M Alluvium #3 14 200
N Dry wash #1 15 300
O Dry wash #2 54 310
P Dry wash #3 45 298
Q Wet playa #2 15 220
R Wet playa #3 14 50
S Wet playa #4 15 59
T Wet playa #5 18 64
U Alluvium #4 36 200
V Wet playa #6 12 50
W Ejecta blankets #2 33 203
- Sum 931 4260

18

Figure 5: Mean spectral signatures for all 15 classes of the UH image [77].

5 Experiment Design

Considering all possible values for every parameter would lead to a huge num-
ber of possible combinations, where the vast majority is not worth evaluating.
As such, ranges in which the parameters of the models are expected to give
good performance have to be specified beforehand. In this section we examine
the recommended parameter ranges for the models we will use, followed by a
description of what experiments are ran on the individual datasets. In Table 4
an overview of the ranges is given.
For bagging, RF, ERT, SGB and SVM we use the scikit-learn package, imple-
mented in Python [60]. For XGB the xgboost Python package is used [14]. The
CNN models are made with Keras [16].
As mentioned before, BO comes with a few of its own hyperparameters. We
keep these at fixed values to avoid the problem of separately optimizing another
layer of parameters. Given the hyperparameters we consider, all methods ex-
cept CNN lack categorical or conditional variables and have a dimensionality
less than 20, hence for these models we use the GP based GPyOpt [3]. We use
the local penalization strategy with a batch size of 4 to speed up the process,
and the commonly used EI as the acquisition function. For the initial configura-
tions we use Latin hypercube sampling, where we try to adhere to the practice
of Jones, Schonlau, and Welch [40] where 10k points are initialized with k the
dimensionality of the hyperparameter space. Using Latin hypercube sampling is
also recommended by González et al. [31]. If the computational budget allows,
we allocate around 40% of the total number of evaluations to this initial design.
This follows from an experiment in Brochu, Cora, and De Freitas [12] where, in
a 15-dimensional search space with 30 Latin hypercube samples, performance

19

Figure 6: Mean (black line), standard deviation (vertical bars) and min/max
value (grey area) of the training LCVF spectra per class. The spectra are in
alphabetical order from top to bottom, left to right.

20

plateaued after around 80 epochs. Feurer, Springenberg, and Hutter [24] used
between 12.5% and 62.5% initial samples but did not find a single best ratio.
As we are dealing with conditional variables for the CNN architecture search
we use a TPE based implementation of BO, named hyperopt, with the default
settings. The number of initial samples does not have to be specified when using
hyperopt [6].

5.1 Bagging

The one choice that has to be made when using the bagging algorithm with
decision trees is how many trees will be constructed. In Breiman [9] it was
found that after a certain point the increase in performance becomes negligible,
but no significant drop was reported at any point afterwards. How soon the
performance converges depends on the dataset. In one experiment, using 25
trees led to the misclassification rate being only 0.1 percentage point lower than
when using 50 or 100 trees. 100 trees was the highest value considered for the
number of trees [9]. By preliminary exploration on the IP image we found that
using 200 trees resulted in the same performance as 500 (80.45%). As there
does not seem to be an indication that any performance will be gained from
setting the upper bound even higher, we set the upper bound to 500 and trace
this hyperparameter in the discrete range [25, 500].

5.2 Random Forest

The 2 parameters to consider are the number of trees to be built and the num-
ber of features to consider when finding the optimal split. In Ham et al. [33]
forests larger than 100 trees did not improve the performance. Oshiro, Perez,
and Baranauskas [58] suggest between 64 and 128 trees and found that there
was no significant increase in performance from 128 to 4096 trees. We adopt
100 trees as the lower bound in our search. As we wish to include the models
used in related works like Ghamisi et al. [30] and Mou, Ghamisi, and Zhu [53],
where 300 and 200 trees were used respectively, the upper bound has to be at
least 300. Similar to bagging, RF does not seem to overfit, but after a certain
number of trees (how many differs between problems) results stop improving
significantly [10]. Preliminary results suggest that differences between using
300 and 500 trees are minimal. Using 13 features, for example, with 500 trees
achieves a testing accuracy of 81.84% on the IP data while 300 trees reached
81.85%. We once again adopt 500 as the upper bound.
The number of features can be as low as 1, where a random feature is selected
to split on at every node. As training with only a single feature is very fast, this
is taken as the lower bound. The optimal number of features for classification
is often reported as the square root of the dimensionality of the input [30]. In
the experiments in Breiman [10] the error did not change much when varying
the number of features over a wide range, but to allow for a wide exploration
we take 4 times the recommended value as the upper bound. This comes down
to 56 for IP and LCVF and 48 for UH.

21

We can adapt the size of the sets for the different hyperparameters when using
grid search to mitigate its problem with imbalanced hyperparameter impor-
tance. As the number of features should have considerably more impact on
the performance (”The number of prediction variables is referred to as the only
adjustable parameter to which the forest is sensitive” [30]) than the number of
trees, we can sample more points along that dimension. Our preliminary results
suggested that differences between 300 and 500 trees are minimal, and we will
sample the number of trees from the set {100, 300, 500}. The rest of the budget
is then devoted to uniformly spaced evaluations for the number of features.
Contrary to the original way of combining the decision trees, the scikit-learn
implementation used in our experiments combines classifiers by averaging their
probabilities, instead of letting each tree vote for a single class. This probability
is given by the fraction of samples of a class in a leaf node.

5.3 Extremely Randomized Trees

The recommendations for both the number of trees and the number of features
considered at each split for ERT are the same as for RF; the more trees are
grown, the higher the accuracy will likely be, and the optimal number of fea-
tures is approximately the square root of the input dimensionality. While the
convergence of ERT is slightly slower than that of RF and bagging, 100 trees
was large enough to ensure convergence on all datasets evaluated in Geurts,
Ernst, and Wehenkel [29]. We use the same ranges for both the number of trees
and the number of features as with RF.
As for the minimum samples a node has to contain in order for it to be split, the
default and lowest possible value of 2 was found optimal for all 12 classification
problems in Geurts, Ernst, and Wehenkel [29]. In one experiment the optimal
value increased to 7 when 10% of the labels were randomly flipped. They con-
clude that the optimal value increases depending on the presence of label noise,
as stopping the splitting of nodes earlier reduces the effect of individual training
samples. Our datasets should not have this much mislabeled data. Nonetheless,
we use 7 as the upper bound for our search, as it might counteract other types
of noise present in the images.

5.4 Stochastic Gradient Boosting

With SGB, more trees can lead to a decrease in performance, as it is not immune
to overfitting. Furthermore, the number of trees built is directly related to the
learning rate used, as with a lower learning rate more trees will be needed for
convergence. Experiments with standard GB in Friedman [26] found that for
learning rates lower than 0.125 increases in performance on held out test data
stagnated. Generally, a lower learning rate resulted in an increased generaliza-
tion capacity, albeit with diminishing returns for smaller values like 0.06 and
0.03.
The recommendation in Friedman [26] is to choose the number of trees as large
as computationally convenient, followed by tuning the learning rate such that

22

the accuracy reaches its maximum close to the chosen number of trees. In ex-
periments done in Friedman [26] they found it can take up to 500 iterations to
converge. Similar to the previous methods however nearly optimal performance
on a held out test set is achieved rapidly (±100 iterations), followed by a level-
ling off of the curve. We will follow the recommendation by fixing the number
of trees to be 500, as well as the empirical evidence that learning rates smaller
than 0.1 lead to the best performance [27]. Friedman [27] uses a learning rate of
0.005 on small datasets containing 500 samples which we will use as the lower
bound. On larger datasets (N=5000) the learning rate was increased to 0.05.
He did not vary this depending on the choice of maximum depth or subsample
ratio. We account for possible interactions with these hyperparameters by in-
creasing the upper bound to 0.15.
The subsample size, i.e. the randomly sampled fraction of the training set used
for each tree, tends to be optimal between 0.5 and 0.8 for classification [27].
We set our lower bound to 0.4 and the upper bound to 1.0 (standard gradient
boosting). No subsampling turned out to be optimal for a small number of the
classification problems in Friedman [27].
Lastly, we have to specify the maximum depth the individual decision trees are
allowed to grow to. We follow the recommendation in Hastie, Tibshirani, and
Friedman [34] and use the range [4, 8]. Note that the subsample size and the
maximum depth are also related: allowing bigger trees will increase the risk of
overfitting, which in turn can be combated by decreasing the subsample size.
The scikit-learn implementation sets the initial guesses relative to the class pri-
ors.

5.5 Extreme Gradient Boosting

Being the youngest and one of the more complex classifiers considered in this
work, usage recommendations for XGB are somewhat less clear. There exist
some recent studies unrelated to remote sensing that use optimization algo-
rithms in combination with XGB, although there seems to be no consensus on
which hyperparameters to optimize for [80, 63, 74]. We optimize for the same
hyperparameters plus lambda as in Zhang et al. [80], and add the minimum
purity and gamma compared to Putatunda and Rama [63]. The ranges used
encapsulate the settings used in the (limited) number of studies we found that
use XGB on hyperspectral imagery (though these are all different in some way,
for example used after feature extraction with a CNN, or on data acquired from
a hyperspectral sensor mounted on a tripod)[7, 39, 48].
All the hyperparameters present in SGB are used for XGB, some with slightly
different usage recommendations. Generally, the learning rate can be somewhat
higher with the increased regularization. To illustrate, the default learning rate
for the xgboost implementation of XGB is 0.3, which we now use as the upper
bound, while the scikit-learn SGB implementation has a default learning rate of
0.1. In any case, the optimal value again depends on the other settings such as
the number of trees built, which we fix to 500 for the same reason as with SGB.
For both the maximum depth and the subsample ratio we also use the same

23

ranges. These have the goal to prevent overfitting and decreasing computation
time when lowering their values, at the risk of a lower generalization capacity
when set too low. The optimal maximum tree depth for XGB was found to be
as low as 1 in Zhang et al. [80] and as high as 16 in Putatunda and Rama [63],
hence [1, 16] is the range we will use.
Four more parameters are introduced, all related to regularization. The column
(bands) subsample ratio fulfills a similar purpose as the row (pixels) subsam-
pling ratio, and we trace it in the same range of [0.4, 1]. The minimum purity
a node needs to have in order to be split tends to have a lower bound of 0, its
lowest possible value. The upper bound varies, for instance set to 4 in Xia et al.
[79] and 10 in [74]. We adopt the higher bound of 10. Gamma, the variable
that stops the growing process once a partition will be unable to meet a certain
purity gain, has varying ranges across articles. The lower bound is again usually
the lowest possible value of 0. Some articles set the upper bound very close at
0.01 or 0.02 [74, 79]. In Zhang et al. [80] the optimal value found was 1.099. We
allow it in the range [0, 1.5]. In Putatunda and Rama [63] the lambda parameter
has a lower bound of 0, which is also the theoretical lower bound, and an upper
bound of 1, which is the default value in the xgboost implementation.

5.6 Convolutional Neural Network

We divide the tuning of the CNN into two phases; first finding an optimal
architecture, then fully training it to achieve its maximal potential.

5.6.1 Architecture search heuristics

In Saxe et al. [68] it was found that a large fraction of CNN performance can be
attributed to just the feature extraction part of the architecture initialized with
random weights, without training the network through backpropagation or un-
supervised pretraining. The architecture in this case consists of the properties
of the convolutional layers such as the feature map and pooling sizes. Conse-
quently, an efficient way to find promising architecture candidates in the vast
search space is to optimize based on the performance achieved when classifying
features extracted with almost or completely random weights [68, 32].
The way the random weight performance of a model is calculated in Saxe et al.
[68] is by using a linear SVM with a small grid search of 3 values ({10−3, 10−1, 10)
to classify the random features, and averaging the best performance over a num-
ber of random initializations. They found that when the random weight perfor-
mance was high, so was the fully trained performance and vice versa.
Hahn et al. [32] add the fully connected layer to the architecture, and their
heuristic involves first training the convolutional layers for a small number of
epochs (e.g. 3), and then the fully connected layer for some more (e.g. 30).
Performance is averaged over a number of random initializations to give the
final heuristic score. A BO loop is then used to optimize for the architecture
hyperparameters.
We test three architecture search heuristics based on these studies. The first

24

we will consider combines the two by using completely random weights in the
convolutional layers followed by training the fully connected layer for 30 epochs.
Secondly, we adopt the approach of Hahn et al. [32] entirely by training the fea-
ture extraction part for 3 and the classifier for 30 epochs. Finally, we use the
Saxe et al. [68] approach to determine random weight performance and add a
BO loop to optimize for it.
As for the hyperparameters, we look at models ranging from 1 to 5 convolutional
layers deep. This includes 1 layer models used in remote sensing papers such as
Mou, Ghamisi, and Zhu [53] and Hu et al. [37], as well as 4 layer networks like
in Wu and Prasad [77] or 5 layers as in Ghamisi et al. [30]. In the convolutional
layers we consider filter sizes in the range [3, 25], again including the previously
mentioned papers, and allow for between 5 and 100 convolutions in a layer, as
well as max pooling of sizes between 2 and 5 for identical reasons. We decrease
the lower bound for the pool size to 1 (no pooling) in the 5th layer for two
reasons: to include the IP network of Ghamisi et al. [30] where the 5th layer
uses pooling of size 1, and to increase the number of valid deep architectures.
Initial experiments showed that out of the 3 values tested for C in the grid
search of Saxe et al. [68], the largest value always gave the best performance.
For this reason we remove the lowest value for C and replace it with 103, after
which both 10 and 103 at times occurred as the best value for C.
Hahn et al. [32] include the fully connected layers into the architecture, and
for the number of neurons in the first fully connected layer we consider values
between 64 and 512 neurons, again incorporating models from the literature
such as the layer with 100 neurons in Hu et al. [37] or 256 neurons in Ghamisi
et al. [30]. The second layer always has a size equal to the number of classes as
it will be used to assign class probabilities.

5.6.2 Training hyperparameters

Upon finding a promising architecture that performed well in the heuristic, the
hyperparameters specific to the training process can be optimized separately
(although this split is not always trivial, and parameters such as dropout could
be argued to belong to either). For this we again use a BO loop, optimizing for
the number of epochs, the batch size and values relating to the Adam optimizer,
such as the learning rate. We use Adam over standard stochastic gradient de-
scent (SGD) for two reasons. First, its learning rate and other hyperparameters
in general require little tuning [43]. According to Ruder [66] the default learning
rate often achieves the best results, which also makes it a good choice to use
with our heuristic based on Hahn et al. [32]. Second, Ruder [66] also recom-
mend optimizers that internally use adaptive learning rates, like Adam, in the
case of training complex networks where we care about fast convergence, as it
converges faster than standard SGD [66]. As we will be training many networks
during both phases of our optimization, this should decrease the required time
needed to find a good model.
Adam introduces 3 hyperparameters besides the learning rate. β1 and β2 are

25

related to how fast the influence of the moving average over the gradient of the
previous steps on the update rule will diminish, with higher values leading to a
slower decay. Epsilon is set to a small value in order to prevent division by 0 in
the update rule [43].
The number of epochs is allowed to vary between 50 and 200. In early experi-
ments even the most complex 5 layer networks converged before 120 epochs with
the default settings on all images. Increasing the upper bound to 200 should
allow for a proper evaluation of configurations that take longer to converge (e.g.
with a lower learning rate) while still keeping computation time manageable.
Powers of 2 are often tested for the batch size in a range such as [32, 512], which
is the range we will use, where typically lower values lead to an increase in test-
ing accuracy, but also an increase in training time required [41]. The epsilon
parameter has a default value of 10−7, however in the keras documentation it
is mentioned for certain tasks a good value might be as high as 1 2. We trace
it in the logarithmic range [10−8, 1]. We will copy the ranges used for β1 and
β2 in one of the experiments in the original paper, [0, 0.9] and [0.99, 0.9999] re-
spectively [43]. Finally we also use the range for the learning rate in that same
experiment, which has the logarithmic range [10−5, 10−1].
As we are dealing with multi-class classification we use the categorical crossen-
tropy loss function during training. Training data is scaled to fall in the range
[−1, 1] for numerical stability, and the test set is scaled using the same factors
[36]. For our hidden layer activation function we use the Rectified Linear Unit
function (ReLU). ReLU is faster to compute than activation functions such as
tanh, and it is the most common choice in conjunction with softmax in the
output layer for most state of the art CNNs [56]. There is no single activation
function adopted in the remote sensing literature, with for example Hu et al.
[37] using the tanh and Ghamisi et al. [30] using a sigmoid function.

5.7 Support Vector Machine

The first choice to be made when using an SVM is what kernel to use. Depend-
ing on the choice, some more hyperparameters are introduced. In the remote
sensing literature the Gaussian kernel has shown the best results and is the
most commonly used [59, 61, 30]. With this kernel one extra hyperparameter
is introduced that controls the size of the kernel, namely gamma. Besides the
kernel specific hyperparameters, there is one hyperparameter C present in all
SVM variants, which controls the penalty incurred for the misclassification of
a datapoint. In Hsu, Chang, Lin, et al. [36] a grid search tracing C in the
range [2−5, 215] and gamma in [2−15, 23] is recommended, followed by a finer
grid search on a promising region. We will use the wide search space for the
comparison of our optimization strategies. Furthermore, each attribute should
be scaled to avoid numerical problems, which is again done using the training
set, to the range [−1, 1] [36].

2https://keras.io/api/optimizers/adam/

26

Table 4: Lower and upper bounds for all models. Bounds are inclusive.

Classifier Hyperparameter Lower Bound Upper Bound

Bagging Number of trees (nTre) 25 500

RF Number of trees (nTre) 100 500
RF Number of features (nFtr) 1 56 (IP/LCVF), 48(UH)

ERT Number of trees (nTre) 100 500
ERT Number of features (nFtr) 1 56 (IP/LCVF), 48(UH)
ERT Minimum samples split (mss) 2 7

SGB Number of trees (nTre) 500 500
SGB Learning rate (lr) 0.005 0.15
SGB Subsample ratio (subs) 0.4 1
SGB Maximum depth (maxD) 4 8

XGB Number of trees (nTre) 500 500
XGB Learning rate (lr) 0.005 0.3
XGB Row subsample ratio (rSubs) 0.4 1
XGB Maximum depth (maxD) 1 16
XGB Column subsample ratio (cSubs) 0.4 1
XGB Minimum purity (mp) 0 10
XGB Gamma (gam) 0 1.5
XGB Lambda (lam) 0 2

CNN (arch) Number of layers (nLay) 1 5
CNN (arch) Filter size (filt) 3 25
CNN (arch) Pooling size (pool) 2 (Layer 1-4), 1 (Layer 5) 5
CNN (arch) Number of convolutions (nConv) 5 100
CNN (train) Number of fully connected neurons (nFc) 64 512

CNN (train) Number of epochs (nEpo) 50 200
CNN (train) Batch size (bs) 32 512
CNN (train) Learning rate (lr) 10−5 10−1

CNN (train) Epsilon (eps) 10−8 1
CNN (train) Beta 1 (b1) 0 0.9
CNN (train) Beta 2 (b2) 0.99 0.9999

SVM C (C) 2−5 215

SVM Gamma (gamma) 2−15 23

27

5.8 Evaluation

We assess the performance of the seven classification models by using all three
optimization strategies when the hyperparameter dimensionality is 3 or lower.
For the models with higher dimensional spaces grid search is dropped, for the
reasons described in section 3. The experiments ran differ slightly between the
datasets.
For our experiments on the IP data we split the labeled samples into 4 mutually
exclusive folds. All models are then trained on one of these folds, amounting to
25% of the data, followed by evaluating the results on the remaining 3. As we
are directly optimizing for performance on the test data this allows for a direct
comparison between optimization strategies, as well as providing an idea of the
optimal classifier performance.
The UH dataset has a designated training and testing set, and as a result we
run a slightly different experiment compared to IP. In a first step, using 4-fold
cross validation on the training data, a promising configuration is found. Note
that this time the model is trained on 3 folds and validated on the one held out
(the validation set). The model is then trained using these settings on the whole
training set, and the final score is obtained by using that model to predict the
data in the test set. This experiment gives insight into the generalization capac-
ities of the classifiers, as fully optimizing using cross-validation on the training
set does not necessarily imply optimal test set performance (see for example
Figure 15).
Due to delayed access to the LCVF data, only BO is run for all models and we
directly optimize for test set accuracy using the whole training set, similar to
IP.
The accuracy score reported throughout the next sections is the weighted over-
all accuracy (WOA), calculated by the number of correctly classified samples
divided by the total number of samples. In the final comparison, the Kappa co-
efficient will also be introduced, which corrects for the possibility of similarities
occurring by chance. It is defined by

p0 − pe
1− pe

,

where p0 denotes the agreement between the method and the ground truth, and
pe the expected agreement when the method randomly labels the sample [17].
While the Kappa coefficient has a value between -1 and 1, we multiply it by 100
throughout this work for readability.

6 Results

The results of tuning the models given the ranges as specified in Table 4 are
presented here. When comparing different optimization methods the same ran-
dom seed is used for the building of the models, such that the results differ due

28

Table 5: Mean and standard deviation over 3 optimization runs of the test set
WOA for the optimal bagging models found.

IP UH LCVF
Mean Std Mean Std Mean Std

Default 76.17% 0.01% 70.62% 0.40%
Grid 80.44% 0.03% 71.50% 0.09%
Random 80.44% 0.03% 71.47% 0.11%
BO 80.45% 0.04% 71.48% 0.09% 82.47% 0.15%

to the quality of the optimization instead of the inherent randomness of the
machine learning methods.

6.1 Bagging

Table 5 shows the mean and standard deviation of the WOA of the best model
found over 3 runs for the different optimization methods on the different datasets,
each consisting of 25 evaluations. Recall that the number of initial points is set
to 10 times the hyperparameter dimensionality and accounts for 40% of the
evaluations. In this case we only optimize for the number of trees, hence the
total number of evaluations is 10 ∗ 1 ∗ 2.5 = 25.
As mentioned in subsection 3.4, the method for determining hyperparameter

importance can be applied to more measures than the classification performance.
In Figure 7 we use the method to assess the effect of the number of trees on
both the test WOA and the time required to train the model. After around 200
trees there is a clear plateau in the WOA, but the training time keeps linearly
increasing with every added tree. Combining both results shows that using 200
trees likely gives optimal performance and adding more would only increase the
time needed to train the model.

6.2 Random Forest

For the grid search we evaluate a structured grid consisting of multiples of 200
for the number of trees and 1+3k (k integer) for the number of features up to the
upper bound, leading to a total of 57 evaluations on the Indian Pines dataset and
48 for UH. Random search and BO are run for the same number iterations. The
results over 3 initializations of the different optimization methods are compared
in Table 6.

As RF has only 2 parameters, we can plot the points found together with
their test set accuracies and linearly interpolate to get a view of the search
space and the approaches the optimization algorithms take. These are shown
in Figure 8. The BO has a high concentration of points in the bottom right,
where the number of trees is high and the number of features set to around the
square root of the input dimensionality. The other parts are explored less as

29

Test WOA Training time (s)

Figure 7: Effect of the number of trees on the WOA and training time for the
IP image.

Table 6: Mean and standard deviation over 3 optimization runs of the test set
WOA for the optimal RF models found.

IP UH LCVF
Mean Std Mean Std Mean Std

Default 81.30% 0.02% 72.88% 0.07%
Grid 81.85% 0.02% 73.04% 0.13%
Random 81.85% 0.06% 73.11% 0.02%
BO 81.88% 0.01% 73.00% 0.07% 85.48% 0.11%

30

the algorithm does not expect any improvement in those regions, but no section
is completely left out. Grid search shows the adapted resolution, with far more
values for the number of features tested than for the number of trees. All 3
strategies find similar solutions, and we see the bright yellow regions indicating
high performance in the same places.

Grid search Random search Bayesian optimization

Figure 8: View of the search space obtained by the different optimization meth-
ods.

6.3 Extremely Randomized Trees

Using the ranges described in section 5 to run the 3 optimization algorithms,
followed by using those results to calculate the importance and the effect of the
hyperparameters in the model, we obtain the graphs of Figure 9. As expected,
a larger number of trees has a positive effect on the accuracy, and a value of
2 for the minimum samples needed to split a node is optimal. These effects
only account for approximately 0.8% and 3.5% of the variance respectively, also
reflected by the small range of accuracy values on the y-axes. The number
of features however, which is responsible for around 87% of the variability of
accuracy, does not show its optimal point as expected at the square root of
the input dimensionality. Instead, it seems that an even higher value than was
initially included in the search space might result in better performance.
Running BO for 200 iterations, while allowing the number of features to range

from the minimal value of 1 to the maximal possible value of the number of
bands, and again plotting its marginal accuracy results in Figure 10. Here we
see that the initial upper bound was more or less the maximum of the marginal,
and BO favors a value of around 60 for the number of features. We re-run the
experiment, now setting no upper bound for number of features which gives
the results of Table 7 when each optimization is run 3 times for 90 iterations.

As mentioned in subsection 3.4 the results of the fANOVA depend heavily
on the chosen hyperparameter ranges. To illustrate this, if instead of using
the original ranges we were to run the ERT optimization with the number of
trees varying between 1 and 100 and the number of features between 40 and
80, the importance of the number of features drops from 87% to 5% while the

31

Number of trees Number of features Minimum samples split

Figure 9: Effect of individual hyperparameters for ERT on the WOA for the IP
dataset. Note the differences in y-axes range, a reflection of relative hyperpa-
rameter importance.

Table 7: Mean and standard deviation over 3 optimization runs of the test set
WOA for the optimal ERT models found.

IP UH LCVF
Mean Std Mean Std Mean Std

Default 82.93% 0.02% 73.75% 0.05%
Grid 83.94% 0.03% 73.53% 0.12%
Random 83.90% 0.01% 73.62% 0.24%
BO 83.96% 0.02% 73.65% 0.09% 87.26% 0.26%

Figure 10: Effect on the WOA for all possible values of the number of features

importance of the number of trees increases to 63%. Hence, the fANOVA results
only give an indication about the relative importance on the experiment that
was ran, and should not be taken as a general truth about the classifier.

32

Table 8: Mean and standard deviation over 3 optimization runs of the test set
WOA for the optimal SGB models found.

IP UH LCVF
Mean Std Mean Std Mean Std

Default 79.37% 0.12% 68.27% 0.11%
Random 81.84% 0.06% 72.97% 0.24%
BO 81.83% 0.06% 72.87% 0.22% 76.10% 0.37%

6.4 Stochastic Gradient Boosting

Where we saw one hyperparameter dominate the variance in test set accuracy
for ERT, this is not the case for SGB. No single hyperparameter or interaction
between hyperparameters accounts for over a third of the variance on either
the IP or the UH dataset. The subsample ratio comes the closest, responsible
for around a quarter. Furthermore the individual hyperparameters together
represent only about half of the variance in WOA given the ranges specified in
Table 4.
Take for example the three most influential effects on the test set WOA, depicted
in Figure 11. The empirical recommendation of setting the learning rate to below
0.1 shows up, and a subsample ratio of over 0.6 seems optimal. The interaction
between them however favors a higher learning rate with a lower subsample
ratio. The optimal model settings will thus probably be somewhere where the
high values for these 3 graphs overlap, but again not even half of the variance
is accounted for. The accuracies over 3 instances of 100 iterations can be found
in Table 8.

Learning rate Subsample ratio Interaction

Figure 11: Effect of the subsample and learning rate as well as their interaction
on the test set accuracy for the IP dataset.

33

Table 9: Mean and standard deviation over 3 optimization runs of the test set
WOA for the optimal XGB models found.

IP UH LCVF
Mean Std Mean Std Mean Std

Default 82.66% 0.00% 73.07% 0.00%
Random 84.05% 0.05% 73.74% 0.17%
BO 84.44% 0.13% 73.82% 0.28% 83.66% 0.77%

6.5 Extreme Gradient Boosting

As we are optimizing for 8 hyperparameters, we evaluate each optimization
strategy three times each for 200 iterations, after which the scores given in Ta-
ble 9 are found. Both by looking at the marginals as well as the tendencies
of the Bayesian optimization algorithm it seems that the ranges chosen for the
hyperparameters are not optimal. For example, the highest scoring model on
the UH dataset uses the lower bound for the row and column subsample ratio,
gamma and the minimum purity as well as the upper bound for the learning
rate. Only in two of these cases, for the minimum purity and gamma, both set
to 0, this bound cannot be extended further in that direction. Hence, either the
ranges of the already comparatively large 8-dimensional search space will have
to be expanded even further, which will in turn require more iterations to find
an optimum, or we can shift the ranges towards where we expect an optimum
to be, which introduces a bias.
The first approach did not result in finding models with higher WOA. Using
the second approach however, we can increase the test set accuracy for IP to
85.61, over 1 percentage point higher than the best models found using the first
bounds. On the UH data this approach is less successful, and the best model
found remains the one with many hyperparameters on the edge of the search
space. The highest values found will be used for the comparison in the next
chapter.

6.6 Convolutional Neural Networks

The first heuristic, combining Saxe et al. [68] and Hahn et al. [32] by classifying
completely random weights with a fully connected layer for 30 epochs, does
not seem to be a good indication of the quality of the complete architecture.
Optimizing on the Indian Pines image gives average accuracy scores for different
architectures ranging from around 60% to as low as 25%. When fully training
three of these networks with a large difference in random weight scores the
ordering is not preserved. Figure 12 shows this, where the top scoring model on
the heuristic scores lowest when fully trained, while the other 2 give comparable
results despite a difference of over 10% on the random weight classification. In

34

general, the more layers the model has, the lower the random weight score is
using this approach.

61.38% 48.83% 37.37%

Figure 12: Train and test accuracies after fully training architectures that scored
the percentage given in the subcaption for the heuristic.

When following Hahn et al. [32] entirely and training the convolutional layers
for 3 epochs followed by the classification layer for 30 epochs the best perform-
ing networks found by the Bayesian optimization all consist of 2 layers, and the
clear ordering of models with less layers outperforming the more complex ones
is no longer present, although the bottom half is mostly comprised of the larger
models with 4 or 5 layers. With the highest test accuracy found at 77.37% and
all but one of the 50 models scoring below the previously found maximum of
around 60%, training the feature extraction part for only 3 epochs has a sur-
prisingly large impact on the test accuracies found. The results are also getting
closer to the findings in Hahn et al. [32], where the heuristic reaches accuracies
almost one percentage point below that of a fully trained model. The highest
scoring model for example scores only around 3 percentage points lower using
the heuristic than when fully training the model.
A 5-layer model scoring 70.55% with this heuristic scores higher than the model
with the highest heuristic score (77.37%) after 200 epochs, with around a 83%
test accuracy compared to ±80.5%. A 4-layer model reaching 61.66% accuracy
in the heuristic achieves similar scores (±83%) after full training.
With the third heuristic, running a BO loop when using a linear SVM with a
small grid search to determine random weight performance, we again run into
the same problem. All the highest scoring models are single layer models that
end up performing worse than the deeper networks upon full training. It is
nonetheless interesting that classifying completely random weights, while only
checking 3 values for C in the linear SVM, the test WOA can reach up to 80%
on the IP data.
Clearly the current heuristics do not allow for the more complex models to com-
pete with the simpler ones, even though they can outperform them when fully
trained. One solution would be to increase the number of epochs we train either
the convolutional layers, the fully connected layers or both. The most complex
model in our search space has to be able to reach a score close to its potential.
Alternatively we can use models of similar complexity and stick to the heuristic.

35

We will use the former.
Assuming that models with more layers will take longer to converge, we looked
into the convergence of some of these deep networks. After fully training for
around 110 epochs, the test accuracy had plateaued for all 5-layer models tested
on the IP image. This happened at around 70 epochs on UH. We will use these
as the number of epochs all layers in the model are trained for during the opti-
mization. Clearly this does not resemble the original heuristics anymore, and it
is a time-consuming process. Note that we do not need to worry about invalid
architectures and adapt the search space when switching between datasets, in-
stead by returning a score of 0 for invalid models the BO will learn to avoid
these architectures, and random search will simply continue with the next ar-
chitecture.
The loss and accuracy graphs for all models tested follow the pattern seen in
Figure 13. There is a clear sign of overfitting where the training and test loss
diverge after some number of epochs, but both training and testing accuracy do
not decrease. For our heuristic this allows us to increase the number of epochs
trained without the worry of overfitting the simpler models and misrepresenting
their potential.

What makes these comparisons more difficult are the per-epoch fluctuations

Loss Accuracy

Figure 13: Typical training and testing loss and accuracy graphs. Note that
even though there are clear signs of overfitting after 100 epochs where the losses
start to diverge, the testing accuracy does not decrease.

in both the training and testing accuracy and loss, similar to what is seen in
Figure 12. As these fluctuations do not appear in the same places for the dif-
ferent folds, this makes it difficult to set the number of epochs to a value that
consistently gives a high accuracy. Taking again the highest scoring model as
an example, there is a difference of around 5 percentage points in test accuracy
between the 4 folds after 200 epochs. The maximum testing accuracies obtained
during the epochs on the other hand only differ by 1,5 percentage point between
the folds. Slightly decreasing the learning rate does not solve the issue. While

36

Table 10: Mean and standard deviation of test WOA in percentages with CNN, using different
strategies for picking the number of epochs. The Full column give the scores of the model
after all epochs, Loss gives the performance at the point of minimum training loss and Acc
when the training accuracy is at its highest.

IP UH
Layers Full Loss Acc Full Loss Acc

1 79.47± 1.88 80.79± 0.64 80.60± 0.39 74.80± 0.55 74.20± 0.63 75.32± 1.09
2 79.78± 2.53 81.56± 0.79 81.49± 0.68 74.87± 1.00 74.40± 1.66 74.40± 1.56
3 81.74± 0.78 82.01± 0.61 82.32± 0.82 75.85± 0.77 76.24± 0.51 76.05± 0.36
4 80.24± 0.46 81.13± 0.68 81.13± 0.68 76.08± 0.25 75.57± 0.33 75.63± 0.31
5 79.55± 1.06 80.73± 0.75 80.73± 0.75 76.37± 0.36 76.61± 1.00 76.39± 1.02

lowering the learning rate further should result in a smooth curve, this will
greatly lengthen the time needed to form an idea of the potential of a candidate
architecture, and as a result hamper the optimization procedure.
Instead, as visually there does seem to be some overlap in the peaks of the
training accuracy with that of the test accuracy, we investigate if we can use
either this or the training loss to determine for how many epochs to train our
model.
In Table 11 the results are given of training different sized architectures on IP
and UH, using three different strategies for determining how many epochs to
train for: the model after all epochs, the point where training loss was minimal
and the point of maximal training accuracy. For the IP data the minimal loss
or maximum accuracy give overall better results, while for UH they are similar.
From here on out we use the maximum training accuracy as the determining
factor for choosing the number of epochs.

With all of the above in mind, we use TPE-based BO to optimize over the
defined search space on each image 3 times for 50 iterations, which was found to
still be computationally manageable. The best models were then trained for 500
epochs and the mean and standard deviation are presented in Table 11. Since
we have access to the test set beforehand, besides the score at the epoch with
the highest training accuracy we also report the peak test WOA in the table.
This can give an indication of what the performance could be after optimal
training, but is not used in the comparisons. The BO and random search made
use of a different batch size during optimizing, hence a part of the difference
between them may be attributable to this.

The best architecture found for each model is optimized in a second BO loop
for 150 iterations. We limited the number of epochs to 200 while optimizing as
the performance always plateaued before that point during initial testing and
to keep computation time manageable. However, after more training the model
keeps very slowly increasing its WOA. As a result, the highest score during the
BO loop did not always result in the best final model. On the IP dataset the
best configuration reached 82.89% test accuracy after 170 epochs, and 92.97%

37

Table 11: Mean and standard deviation over 3 optimization runs of the test set
WOA for the optimal CNN models found.

IP UH LCVF

Random (acc) 85.50% 1.03% 77.51% 0.39%
Random (max) 86.11% 0.99% 78.73% 0.29%
BO (acc) 84.68% 0.66% 77.20% 0.62% 89.06% 0.59%
BO (max) 85.30% 0.65% 78.75% 0.42% 89.79% 0.24%

training WOA. Full training then resulted in a 83.96% test WOA. A configura-
tion with slightly lower test accuracy but much lower training accuracy in 167
epochs, 81.92% and 84.68% respectively, reached 86.49% test WOA after full
training. This is unlike the UH image, where the model with 95.41% valida-
tion and 96.70% training WOA achieved 0.11% higher on the test set compared
to the model with 94.77% validation and 90.67% training WOA. The highest
scoring settings after full training are used in the comparison in section 7.

6.7 Support Vector Machine

The results of running the SVM for 90 iterations are given in Table 12. The
number of iterations was chosen to follow the grid search of Hsu, Chang, Lin,
et al. [36]. As we are again dealing with a 2-dimensional search space we can
visualize the tendencies of the BO algorithm, shown in Figure 14. The optimal
configuration for UH seems to be on the edge of the defined search space, and
perhaps lies outside of it. To test this we ran another BO loop where the upper
bound for gamma and C were extended, but the resulting optimal configuration
did not improve upon the one previously found.

IP UH

Figure 14: SVM search spaces using BO on 2 different datasets. Note that the
axes are on a binary logarithmic scale.

38

Figure 15: Cross validation versus testing accuracy for SVM.

Scaling the training data from its original values to [−1, 1] and the test data
by the same factor increases the performance by a factor 10 approximately. As
this has such a huge effect on the accuracy it would be interesting to consider
this as another aspect to tune. Consequently, we add 2 hyperparameters to our
2-dimensional search space. The first one, x, scales the data to the interval [0, x],
with the second one, y, acting as the offset. This then results in the training
data being scaled to the interval [−y, x− y].
Running BO for 200 iterations does not improve the score found during the opti-
mization. Similar to ERT however, where the default values slightly outperform
the optimized values on the UH test set, even though the default values result
in a lower score during cross validation, the best SVM configuration found in
this 4-dimensional space does in fact reach a higher accuracy and kappa score
on the UH test set while having a lower cross validation score.
This raises the question whether the training set is a good representation of the
larger test set, and if fully optimizing on the training set is the most effective
strategy. In Figure 15 we plot the accuracy found during the optimization with
cross validation against the testing accuracy of the same model using the orig-
inal 2-dimensional hyperparameter space. The expected diagonal line largely
shows up, but the optimal model on the testing data is in fact not the optimal
configuration found during cross validation on the training set. The maximal
testing accuracy is 81.87%, which reached a cross validation score of 94.74% (C
= 11094.06 and gamma = 0.02), compared to the 79.17% test WOA of the model
with the highest cross validation score of 97.57% (C = 11587.60 and gamma =
0.15). As there is no clear way to determine from the training set alone what
model will score highest on the testing data, we stick with the optimal model
found during the first phase.

According to the fANOVA, the C parameter is the most important, ac-
counting for around 52% of the variance on IP. It is followed by gamma which
represents ±39%, and their interaction the remaining 9%. Plots of their effects
are given in Figure 16, where we see that high C values and gamma values
slightly below the upper bound are considered optimal.

39

Table 12: Mean and standard deviation over 3 optimization runs of the test set
WOA for the optimal SVM models found.

IP UH LCVF
Mean Std Mean Std Mean Std

Default 51.85% 0.00% 66.34% 0.00%
Grid 86.96% 0.00% 79.37% 0.00%
Random 86.95% 0.20% 78.99% 0.20%
BO 87.26% 0.02% 79.34% 0.10% 86.49% 0.01%

C gamma
Interaction between C
and gamma

Figure 16: Effect of the 2 SVM hyperparameters and their interaction on the
WOA on the IP image. Note that the axes are on a binary logarithmic scale.

7 Comparison

This section starts with a comparison between the seven classifiers, followed by
an evaluation of the hyperparameter tuning strategies.

7.1 Models

A comparison of the best scoring models is given in Table 13, alongside a com-
parison between fit and predict times in Table 14. These run times can vary
heavily between similar scoring models on the same image and as such should be
taken with a grain of salt. Consider for example the highest scoring RF model
on the UH dataset, which constructs 160 trees using 14 features. The second
best model, only scoring around 0.001% WOA lower on the test set, builds 486
trees with the same number of features. As a result this second model takes
over triple the time to fit compared to the first model.
For the IP data the mean and standard deviation are calculated over the 4
folds, using 1 fold for training and the remaining 3 for testing. Since there is a
designated training and testing set for both the UH and LCVF data, for these
images the values are computed by training the optimal model on the whole
training set and evaluating on the test set 4 times with different random seeds.

Out of bagging, RF and ERT there is a clear ordering in quality when ap-

40

Table 13: Mean and standard deviation of the accuracy and kappa score for the optimal models
found.

IP UH LCVF
Acc κ Acc κ Acc κ
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Bagging 80.49% 0.42% 77.56 0.47 71.59% 0.06% 69.50 0.06 82.21% 0.35% 81.25 0.46
RF 81.91% 0.24% 79.19 0.27 73.09% 0.03% 71.09 0.03 85.34% 0.18% 84.56 0.23
ERT 83.98% 0.23% 81.61 0.26 73.79% 0.13% 71.83 0.15 86.99% 0.47% 86.28 0.60
SGB 81.91% 0.19% 79.20 0.21 73.07% 0.33% 71.04 0.36 75.72% 0.39% 74.43 0.40
XGB 85.64% 0.11% 83.52 0.11 73.93% 0.17% 71.81 0.22 84.49% 0.43% 83.65 0.45
CNN 86.49% 0.81% 84.57 0.96 77.49% 0.50% 75.63 0.54 88.80% 0.63% 88.19 0.67
SVM 87.33% 0.15% 85.53 0.15 79.17% 0.00% 77.58 0.00 86.43% 0.00% 85.68 0.00

Table 14: Mean and standard deviation of the fit and predict time in CPU seconds for the optimal
models found.

IP UH LCVF
fit predict fit predict fit predict
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Bagging 23.21 0.39 0.13 0.00 58.26 0.05 0.51 0.00 5.21 0.02 0.09 0.00
RF 6.37 0.04 0.35 0.00 2.80 0.02 0.22 0.00 0.34 0.00 0.20 0.00
ERT 5.67 0.99 0.58 0.00 0.36 0.02 0.20 0.00 0.40 0.00 0.19 0.00
SGB 314.19 5.61 0.60 0.03 73.46 0.55 1.94 0.01 27.58 0.22 0.87 0.01
XGB 20.39 0.07 3.46 0.02 51.56 0.13 5.67 0.02 11.30 0.01 1.53 0.03
CNN 5172.50 1184.78 4.44 0.05 3518.78 583.95 5.03 0.11 174.28 13.40 0.89 0.02
SVM 0.52 0.01 2.27 0.06 0.26 0.00 1.21 0.00 0.07 0.00 0.45 0.00

41

plied to the datasets used in this work. Bagging performs worst while also being
the slowest of the three, and even though RF and ERT both only need a few
seconds to train, ERT outperforms RF in both WOA and kappa score. Where
RF is usually seen as a good model to get a baseline on a hyperspectral data
classification problem that does not much optimization, this can instead be done
with ERT. Similar to RF the performance is mostly dependant on the number of
features considered, but using the square root of the input dimensionality while
setting the number of trees to a high enough number and keeping the number of
samples required to split a node at 2 consistently produces good results. Even
though the number of features favored by the optimization can be much higher
than the recommendation, as shown in Table 15 and Figure 10, the fact that
the default settings actually outperform the optimized variants on the UH data
(Table 7) shows its robustness.
As for the 2 gradient boosting models, there does not seem to be any reason
for using SGB. It achieves similar performance to RF, while having more hy-
perparameters that are harder to tune and taking longer to train. XGB is a
more nuanced case. It takes a similar amount of time to train given the optimal
settings found as bagging, and achieves the highest performance out of the 5
tree ensemble classifiers considered. Tuning the 8 hyperparameters however is
a difficult problem. Given the fact that the optimal configurations found on all
3 images include multiple parameters on the edges of their defined ranges, it is
possible the performances reported here may be improved upon.
It should be noted that we ran into some issues while running parallel instances
of XGB, as they attempt to use multiple cores each. This was solved by restrict-
ing them to a single core, and as such the times seen in Table 14 are obtained
by using a single core. The models will likely be faster when ran in isolation.
The SVM, as has been established in many articles before, is a good choice for
classifying hyperspectral imagery. Not only is it the fastest method to fit to the
data, it also achieves the highest scores on two of our datasets. Furthermore, the
speed and low hyperparameter dimensionality make it relatively easy to tune
the model, as many configurations can be tried in a short period of time, and as
can be seen in Figure 14 the location of the maximum within the search space
spans a wide enough area to be found by a coarse grid search or a few random
search iterations.
While the CNN scores are only slightly lower than the SVM on IP and UH and
slightly higher on LCVF, the tuning process is the exact opposite, being both
time consuming and unintuitive.
The dimensionality and possible size of the CNN search space is huge. For
example, many other pooling layers such as average pooling can be used, the
order of layers could be switched up by having multiple convolutional layers
before the pooling operation or by using more than two fully connected layers
as the classifier, we can allow for more than 100 convolutions, etc. As a result,
even though many architectures have been tested, there is no guarantee that
the results found in this work will be optimal.
The large standard deviations for the CNN fit times are a result of early stop-
ping, where the training process is halted once the training accuracy plateaus

42

before the set number of epochs. The architectures found were able to reach
100% training accuracy on all 3 images. All optimal configurations for the tree
ensembles also reached 100% training accuracy, hence this metric is not included
in the comparison tables.
From Table 13 we see that there is a larger gap in performance between the tree
ensembles and CNN/SVM on UH compared to IP, as well as larger differences
amongst the tree ensembles on IP compared to UH. Classifiers such as XGB
perform relatively better when optimized directly for test set performance, than
when used to generalize to the test set from an optimal model found on the
training set. An explanation is that they are overfitting, learning characteris-
tics that are too specific and do not translate well to a slightly different test set.
Table 13 also shows that the ordering in quality of the classifiers is different for
the LCVF image when compared to both UH and IP. The performance of SGB
dropped drastically and is now surpassed by bagging, and both ERT and the
CNN outperform the SVM. A possible explanation for these results is the fact
that the LCVF image has more classes (23 compared to 15 and 16), while also
having less training samples, and some classes containing as little as 7 spectra.
In contrast, the class with the lowest number of samples in the UH image has
181 training spectra, while the largest LCVF class has size 160, and 2832 total
training samples compared to 931. The IP image does contain classes with as
little as 5 or 7 training samples, but is the most imbalanced, including classes
up to a size of 614 for a total of 2562 training samples. Another factor could be
that, unlike for UH and IP, all spectra of the LCVF image are selected manually.
As a result, they might be a better characterization of their classes.
We provide a visual comparison on the UH image in Figure 17. The optimal

classifiers trained on the whole training set are used to predict all spectra in
the image. For classes that achieve similar scores, e.g. RF and SGB or ERT
and XGB there are still obvious differences between their predictions on the
whole image. Consider for example the large region on the right where XGB
predicts mostly trees (yellow), whereas ERT finds water (black) and residen-
tial areas (blue). While this is the most striking example, differences appear
throughout the images, mostly at unlabeled pixels that likely do not belong to
one of the 15 classes. In Figure 18 we show a typical example of the certainty
with which the pixels are classified. In the large region to the right all pixels
are classified with a low probability, leading to a less meaningful comparison
in these areas. One could instead set a threshold, such that pixels that are
classified with low certainty will remain unlabeled. This can lead to interesting
discoveries. Unlabeled pixels within groups of similarly labeled pixels could be
a new class, and unlabeled pixels between two classes could indicate they were
not fully represented by their training samples [52].

After the training of tree based models we can get an idea of what bands
were most important during the training of the model. This is done for each
band by calculating the average purity gain over all splits that were made when
using a specific band. The higher this metric - called the impurity importance
- is, the more important the feature is for discriminating between spectra using
said classifier [11].

43

Table 15: Optimal configurations for each model on the different datasets.

Bagging nTre

IP 126
UH 363
LCVF 159

RF nTre nFtr

IP 329 20
UH 160 14
LCVF 327 1

ERT nTre nFtr mss

IP 491 58 2
UH 100 12 2
LCVF 328 15 2

SGB nTre subs lr maxD

IP 500 0.90 0.08 4
UH 474 0.44 0.06 6
LCVF 500 0.62 0.30 4

XGB nTre rSubs lr maxD cSubs mp gam lam

IP 500 0.75 0.19 4 0.1 0.06 0.00 1.00
UH 500 0.40 0.15 7 0.4 0.00 0.00 1.00
LCVF 500 0.40 0.30 2 0.40 0.00 0.00 0.00

CNN (arch) conv1 filt1 max1 conv2 filt2 max2 conv3 filt3 max3 fc1

IP 57 4 3 51 6 4 88 4 3 151
UH 67 5 4 41 5 2 71 5 3 498
LCVF 14 9 2 - - - - - - 155

CNN (train) lr bs eps b1 b2

IP 10−2.88 68 10−2.32 0.69 0.99
UH 10−2.33 32 10−6.07 0.40 0.99
LCVF 10−2.57 52 10−1.93 0.49 0.99

SVM C gamma

IP 28.22 0.27
UH 213.50 0.15
LCVF 29.83 0.002

44

Color composite of the UH image, with band 70 as R, 50 as G and 20 as B [30].

All labeled samples

Bagging

Random Forest

Extremely Randomized Trees

Stochastic Gradient Boosting

Extreme Gradient Boosting

Convolutional Neural Network

Support Vector Machine

Legend, see Table 2 for class names

Figure 17: Classification maps of the optimal configurations on UH.

45

Figure 18: The certainty with which the SVM classified each pixel on the UH
image. Black means 0%, while white represents 100% certainty.

We calculate the impurity importance for all 5 tree ensembles on the LCVF
dataset and normalize the results to sum to 1. The results are shown in Fig-
ure 19. Both bagging and SGB have access to all features at every split, which
is reflected in a few very high peaks in the variable importance. ERT and RF
on the other hand subsample the features at each node and as a result have a
much more evenly spread out distribution. This is especially the case for RF as
the optimal configuration found on LCVF only used a single randomly selected
feature at every split. Nonetheless, we see similar patterns for both models,
where the bands in the range between 75 and 100 are the least useful for the
classification and peaks emerge around bands 10, 50, 120 and 165 (after pre-
processing). The most important bands with their importance can be found in
Table 16.
Due to the peculiar settings found for XGB by the optimization, with among
other things a maximum depth of only 2, only 14 bands are ever used to split
on. As a result, many variables have an undefined importance. This is likely
also the reason it gives a variable importance of 0 for the bands that are actu-
ally being used. When running XGB with different configurations, such as with
the default settings, all features are used and the importance again sums to 1.
Hence, this is unlikely due to an error in the implementation.
Probst and Boulesteix [62] suggest that variable importance measure estimates
become more precise when using more trees. We try this for our RF by building
ten times the original number of trees. As we see in the final panel of Figure 19
indeed the distribution is smoother than original RF case. This model with
3270 trees scored 0.3 percentage point less WOA on the test set compared to
the original model with 327 trees.
We can compare our importance measures with an analysis done in Mendenhall
and Merényi [51], where they identify the most important features on the LCVF
data using an improved version of generalized relevance learning vector quanti-
zation (GRLVQ). Their results look similar to the ERT and RF results, with 2
peaks followed by an unimportant section and another peak. There is however
one key difference: the last peak, around band 165, is completely absent. Why
this is warrants further research, but one contributing factor might be that the
work of Mendenhall and Merényi [51] is done only with the training set of the
LCVF data.

In Table 17 we give the user and producer accuracy (the remote sensing
equivalents of precision and recall [76]) on the LCVF image to see whether the

46

Bagging Random Forest

Extremely Randomized Trees Stochastic Gradient Boosting

Extreme Gradient Boosting
Random Forest with 10 times the number
of trees

Figure 19: Variable importance for the optimal LCVF models.

47

Table 16: The 5 most important bands for each tree ensemble classifier by
normalized purity gain.

Classifier Band Importance

BG 6 0.035
BG 12 0.038
BG 53 0.043
BG 190 0.077
BG 9 0.090

RF 35 0.007
RF 46 0.007
RF 5 0.008
RF 11 0.008
RF 42 0.008

ERT 4 0.015
ERT 5 0.016
ERT 6 0.017
ERT 9 0.018
ERT 12 0.018

SGB 53 0.042
SGB 186 0.044
SGB 163 0.058
SGB 190 0.069
SGB 12 0.072

XGB 71 0.000
XGB 69 0.000
XGB 67 0.000
XGB 68 0.000
XGB 193 0.000

48

small differences in training sets between Merényi et al. [52] and this work,
as described in section 4, have an impact on the performance and thus the
comparison. Class G, J and V have 14 training samples in Merényi et al. [52].
In this work they have 7, 12 and 12 respectively. If the differences in accuracies
between the studies for one of these three classes is noticeably different than
the differences in accuracies between the studies for the other 20 classes, we will
have to disregard that class in our comparison.
We add the results of the best model in Merényi et al. [52], the SOM-hybrid
ANN, to Table 17. The SOM-hybrid ANN reached a WOA of 88.71% with a
Kappa score of 88.11. We compare it with its closest competitors: CNN, SVM
and ERT. Note that the CNN scores extremely similar, with a WOA of 88.80%
and a Kappa score of 88.19. Only in one case, the user accuracy when compared
to ERT, does one of these classes (V) have the largest difference in accuracy out
of all 23 classes. The performance differences when classifying V are generally
the largest out of the three, but differences for unchanged classes such as S are
typically even larger. Hence, there does not seem to be an indication that the
slightly modified training set had a large impact on the results. While this does
not mean that the comparison is completely accurate, it should still provide a
good idea of the relative quality of the classifiers on the LCVF image.

7.2 Optimization Strategies

Overall the models under consideration do not benefit from a more sophisti-
cated optimization algorithm than grid or random search, given the number of
iterations they were used for. The two minor exceptions on the IP data to this
rule are SVM and XGB, where the BO algorithm finds configurations that score
higher than the other strategies by over 1 standard deviation. On the UH data
this does not happen. This is reflected in the convergence of the BO, as seen
in Figure 20, where during the initial phase of the optimization loop a config-
uration close to the optimal one is already found for every model except XGB.
The three CNN architecture search heuristics considered were not successful

in predicting the performance of the fully trained models. All three favored
shallow networks which were outperformed upon full training on UH and IP. As
the best LCVF model found consists of a single layer, the heuristics might have
been successful on that data, but due to the delayed access to the image we were
unable to investigate this further. Furthermore, even though the performance
of the CNNs during training plateaued well before 200 epochs, the slow but
steady rise that followed led to the optimization loop being unable to find the
best model for IP when using 200 as the upper bound for the number of epochs.
All in all, the best choice might have been to consider all CNN hyperparame-
ters at the same time while optimizing until the performance truly plateaued,
even though this would have been far more time-consuming. An alternative can
be found in the very recent Chen et al. [15], in which automatic CNN design
was applied to remote sensing for the first time using a gradient descent based
search, where they were able to achieve competitive results on 4 hyperspectral
datasets.

49

Table 17: User (U) and producer (P) accuracy for all optimal models on LCVF as well as the SOM-hybrid
ANN from Merényi et al. [52].

Class Bagging RF ERT SGB XGB CNN SVM ANN[52]
U P U P U P U P U P U P U P U P

A 0.97 0.99 0.98 0.99 0.98 1 0.98 1 0.98 1 0.98 1 0.98 1 0.98 0.96
B 0.98 0.58 1 0.48 1 0.45 0.9 0.39 0.99 0.45 0.99 0.61 1 0.56 0.95 0.72
C 0.72 0.98 0.83 0.98 0.73 0.98 0.53 0.93 0.65 0.97 0.84 0.93 0.61 0.97 0.95 0.87
D 0.79 0.96 0.88 0.95 0.86 0.96 0.75 0.95 0.86 0.95 0.93 0.95 0.9 0.97 0.92 0.94
E 0.88 1 0.95 1 0.95 1 0.89 1 0.9 1 0.9 0.99 0.9 1 0.94 0.88
F 0.31 1 0.29 1 0.53 1 0.4 1 0.53 1 0.7 1 0.57 1 0.40 0.85
G 1 0.25 1 0.21 1 0.78 0.92 0.77 1 0.77 1 0.78 1 0.88 1.00 0.65
H 0.96 0.93 0.96 0.97 0.95 0.96 0.76 0.84 0.89 0.9 0.95 0.94 0.96 0.94 0.97 1.00
I 0.36 0.87 0.34 0.84 0.64 0.87 0.33 0.68 0.58 0.73 0.7 0.9 0.75 0.86 0.51 0.63
J 1 0.8 1 0.93 1 0.93 0.98 0.76 1 0.92 1 0.98 1 0.91 1.00 0.96
K 0.95 0.71 0.99 0.79 0.99 0.77 0.98 0.78 0.99 0.72 0.98 0.79 0.99 0.79 0.93 0.94
L 0.94 0.99 0.93 1 0.92 1 0.94 1 0.94 1 0.87 1 0.85 1 0.98 0.98
M 0.92 0.66 0.93 0.38 0.94 0.7 0.82 0.24 0.92 0.61 0.88 0.69 0.86 0.27 0.92 0.83
N 0.94 0.73 0.99 0.71 0.99 0.68 0.95 0.49 0.98 0.64 0.98 0.96 0.99 0.89 0.88 0.98
O 0.92 0.91 0.91 0.95 0.91 0.94 0.88 0.8 0.91 0.92 0.92 0.93 0.89 0.94 0.95 0.96
P 0.8 0.95 0.78 0.98 0.78 0.97 0.67 0.95 0.78 0.97 0.86 0.95 0.82 0.95 0.97 0.83
Q 1 0.74 0.98 0.99 1 0.84 1 0.5 1 0.76 1 0.67 1 0.65 0.99 0.96
R 0.55 0.98 1 0.9 0.92 0.98 0.82 0.92 0.88 0.98 0.98 0.98 0.86 0.98 0.88 0.92
S 0.97 0.98 0.98 0.98 0.67 1 0.57 0.93 0.69 0.98 0.5 0.98 0.51 1 0.91 0.80
T 0.9 0.98 0.95 0.98 0.95 0.98 0.55 0.95 0.89 0.98 0.91 0.97 0.95 0.94 0.91 0.92
U 0.64 0.41 0.7 0.77 0.72 0.86 0.45 0.47 0.67 0.86 0.7 0.97 0.66 0.98 0.78 0.74
V 0.41 0.72 0.53 0.7 0.46 0.78 0.42 0.58 0.3 0.68 0.82 0.8 0.84 0.74 1.00 0.62
W 0.85 0.89 0.94 0.9 0.91 0.88 0.89 0.83 0.93 0.89 0.95 0.81 0.96 0.76 0.94 0.92
Avg 0.82 0.83 0.86 0.84 0.86 0.88 0.76 0.77 0.84 0.86 0.88 0.89 0.86 0.87 0.90 0.86

50

Bagging Random Forest

Extremely Randomized Trees Stochastic Gradient Boosting

Extreme Gradient Boosting Support Vector Machine

CNN architecture search CNN training hyperparameters

Figure 20: Convergence over multiple BO optimization over the course of its
iterations for all classifiers on the LCVF data. The initial Latin hypercube
samples are shown in red.

51

As the CNN contains conditional variables dependant on the number of layers,
it is the only model optimized using the TPE based hyperopt. The way this
is implemented is by a 5-way choice for the number of layers, followed by opti-
mizing the other parameters such as the filter size in each layer. This considers
parameters in the same layer in models of different sizes as different hyperpa-
rameters, e.g. the filter size in the second layer of a network with 2 layers will be
considered different from the filter size in the second layer of a 5 layer network.
It would be interesting to see if performance can be improved by adding a binary
choice at each layer, whether to add another layer or not, instead of choosing the
number of layers at the start. This approach would consider hyperparameters
in the same layer as the same hyperparameter, irrespective of the depth of the
network.
Even though BO can be parallelized, for example using GPyOpt with local
penalization, it will still be slower than grid and random search, because the
whole batch has to be finished before the surrogate function can be updated.
In other words, the slowest model in the batch decides how quickly the batch
is completed and the configurations for the next batch can be determined. Fur-
thermore, the calculation of the surrogate function itself can be costly, with GPs
for instance having a time complexity cubic in the number of hyperparameters.
Note that there do exist some more involved GP alternatives that reduce the
computational complexity [69].
In order to determine if the optimization procedures carried out here as a whole
resulted in finding better configurations for common models, we take a look at
other scores reported in the literature on the same datasets. As our LCVF ver-
sion is not publicly available, and IP does not come with a designated training
and testing split, we focus on the UH data to compare weighted overall accura-
cies and kappa scores. In Table 18 we compare our results with those of Ghamisi
et al. [30] and Mou, Ghamisi, and Zhu [53].
This table shows the usefulness of the kappa statistic. Purely going by WOA
it appears that Mou, Ghamisi, and Zhu [53] found an excellent architecture; a
model with a single convolutional layer scoring 5 percentage points higher than
anything reported in this work. The kappa statistic however reveals that this
is not the case. This raises the question if the hyperparameter optimization
algorithms would find better models if they use the kappa statistic to optimize
for instead of the WOA. No discrepancies between WOA and kappa score as
large as those in Mou, Ghamisi, and Zhu [53] are present in our findings.
Even though the train and test samples used are exactly the same, the small
differences in performance given in the table can still in part be attributed to
other factors than just the hyperparameter configurations. Implementation de-
tails will have an impact, such as the scikit-learn RF implementation averaging
the probabilities instead of letting each classifier vote for a single class, or using
the one-versus-one instead of one-versus-many approach for the SVM. Addi-
tionally, details not specified such as the batch size or optimizer used for the
CNN will also impact the final scores. Furthermore, the inherent randomness
of classifiers such as the order in which training samples will be presented to a
neural network can also have an impact.

52

Table 18: Performance of overlapping classifiers between studies on the UH
dataset.

Ghamisi [30] Mou [53] Doorenbos
Acc κ Acc κ Acc κ

RF 72.99 70.97 72.93 70.91 73.13 71.26
SVM 80.18 78.66 77.09 75.36 79.17 77.58
CNN 78.21 78.46 85.42 72.00 79.28 77.56

All in all, from both Table 18 and Figure 20, there does not seem to be an
indication that BO is able to find better models than those already reported in
the literature.

8 Conclusion

We were able to provide a unique insight into the comparative performance of
several modern classifiers on remotely sensed hyperspectral imagery, by actively
addressing the important matter of hyperparameter optimization.
Out of the seven models considered in this context, the results presented in this
work show that the SVM is an excellent choice. It outperforms the five tree
ensembles, and reaches a higher score than the CNN on 2 out of the 3 images,
while being very fast to train. Furthermore, the combination of its speed and
only having 2 hyperparameters make it easy to optimize, with the BO loops
used in our comparison generally finishing well before the full training of one
single CNN model.
Out of the tree ensembles, the ERT lends itself as a good baseline that does
not require much tuning, slightly outperforming RF in all aspects. There does
not seem to be a use case where either bagging or SGB is the optimal choice of
classifier, due to their relatively low accuracies and high training times. While
XGB achieves decent performance, the tuning procedure is unintuitive and the
training times are relatively high.
The 1-dimensional CNN achieves high scores, but due to the considerable amount
of time needed for tuning and training, as well as the difficulty of its optimiza-
tion, it should not be used as the first choice of classifier. Nevertheless, it can
produce good results given enough time.
The classifiers considered did not seem to benefit from using a more involved
hyperparameter optimization algorithm than grid or random search. Only in
two cases, when directly optimizing for test WOA, did BO manage to find a
configuration scoring over 1 standard deviation higher than the other strategies.
In further research the results in this work can be used for a comparison with
the performance of other underrepresented models such as Deep Forest, or as
a baseline to investigate the effects of dimensionality reduction [82]. Reducing
the dimensionality can for instance be achieved by techniques such as Principal

53

Component Analysis, or through the manual selection of bands by a domain
expert.
Alternatively, while we did not find large differences in model performance us-
ing different optimization strategies, these could occur when running them for
a lower or higher number of iterations. Thus, additional research can be done
comparing the effectiveness of these strategies as a function of the number of
iterations.

9 Acknowledgements

I would like to thank Dr. Pedram Ghamisi for providing the University of
Houston dataset and Dr. Erzsébet Merényi for providing the Lunar Crater
Volcanic Field dataset.

References

[1] 2013 IEEE GRSS Data Fusion Contest. http://www.grss-ieee.org/
community/technical-committees/data-fusion/.

[2] Jacopo Acquarelli et al. “Spectral-spatial classification of hyperspectral
images: Three tricks and a new learning setting”. In: Remote Sensing
10.7 (2018), p. 1156.

[3] The GPyOpt authors. GPyOpt: A Bayesian Optimization framework in
Python. http://github.com/SheffieldML/GPyOpt. 2016.

[4] James S Bergstra et al. “Algorithms for hyper-parameter optimization”.
In: Advances in neural information processing systems. 2011, pp. 2546–
2554.

[5] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter
optimization”. In: Journal of machine learning research 13.Feb (2012),
pp. 281–305.

[6] James Bergstra, Daniel Yamins, and David Daniel Cox. “Making a science
of model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures”. In: Proceedings of Machine Learning Research
(2013).

[7] Rohit Uttam Bhagwat and B Uma Shankar. “A novel multilabel classi-
fication of remote sensing images using XGBoost”. In: 2019 IEEE 5th
International Conference for Convergence in Technology (I2CT). IEEE.
2019, pp. 1–5.

[8] Christopher M Bishop. Pattern recognition and machine learning. Springer,
2006.

[9] Leo Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996),
pp. 123–140.

54

http://www.grss-ieee.org/community/technical-committees/data-fusion/
http://www.grss-ieee.org/community/technical-committees/data-fusion/
http://github.com/SheffieldML/GPyOpt

[10] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–
32.

[11] Leo Breiman et al. Classification and regression trees. CRC press, 1984.

[12] Eric Brochu, Vlad M Cora, and Nando De Freitas. “A tutorial on Bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning”. In: arXiv preprint arXiv:1012.2599
(2010).

[13] Jonathan Cheung-Wai Chan et al. “An evaluation of ensemble classifiers
for mapping Natura 2000 heathland in Belgium using spaceborne angu-
lar hyperspectral (CHRIS/Proba) imagery”. In: International Journal of
Applied Earth Observation and Geoinformation 18 (2012), pp. 13–22.

[14] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting
system”. In: Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. 2016, pp. 785–794.

[15] Yushi Chen et al. “Automatic design of convolutional neural network for
hyperspectral image classification”. In: IEEE Transactions on Geoscience
and Remote Sensing 57.9 (2019), pp. 7048–7066.

[16] François Chollet. Keras. https://github.com/fchollet/keras. 2015.

[17] Jacob Cohen. “A coefficient of agreement for nominal scales”. In: Educa-
tional and psychological measurement 20.1 (1960), pp. 37–46.

[18] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Ma-
chine learning 20.3 (1995), pp. 273–297.

[19] Michele Dalponte et al. “Tree species classification in boreal forests with
hyperspectral data”. In: IEEE Transactions on Geoscience and Remote
Sensing 51.5 (2012), pp. 2632–2645.

[20] Erik Daxberger et al. “Mixed-Variable Bayesian Optimization”. In: arXiv
preprint arXiv:1907.01329 (2019).

[21] Binu Melit Devassy and Sony George. “Ink Classification Using Convolu-
tional Neural Network”. In: NISK Journal 12 (2019).

[22] Ian Dewancker, Michael McCourt, and Scott Clark. Bayesian optimization
primer. 2015.

[23] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification.
John Wiley & Sons, 2012.

[24] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. “Initializ-
ing bayesian hyperparameter optimization via meta-learning”. In: Twenty-
Ninth AAAI Conference on Artificial Intelligence. 2015.

[25] Peter I Frazier. “A tutorial on bayesian optimization”. In: arXiv preprint
arXiv:1807.02811 (2018).

[26] Jerome H Friedman. “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics (2001), pp. 1189–1232.

55

https://github.com/fchollet/keras

[27] Jerome H Friedman. “Stochastic gradient boosting”. In: Computational
statistics & data analysis 38.4 (2002), pp. 367–378.

[28] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. “Dealing with
categorical and integer-valued variables in bayesian optimization with
gaussian processes”. In: Neurocomputing 380 (2020), pp. 20–35.

[29] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely random-
ized trees”. In: Machine learning 63.1 (2006), pp. 3–42.

[30] Pedram Ghamisi et al. “Advanced spectral classifiers for hyperspectral
images: A review”. In: IEEE Geoscience and Remote Sensing Magazine
5.1 (2017), pp. 8–32.

[31] Javier González et al. “Batch bayesian optimization via local penaliza-
tion”. In: Artificial intelligence and statistics. 2016, pp. 648–657.

[32] Lukas Hahn et al. “Fast and Reliable Architecture Selection for Convolu-
tional Neural Networks”. In: arXiv preprint arXiv:1905.01924 (2019).

[33] Jisoo Ham et al. “Investigation of the random forest framework for classi-
fication of hyperspectral data”. In: IEEE Transactions on Geoscience and
Remote Sensing 43.3 (2005), pp. 492–501.

[34] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements
of statistical learning: data mining, inference, and prediction. Springer
Science & Business Media, 2009.

[35] Matthew W Hoffman and Bobak Shahriari. “Modular mechanisms for
Bayesian optimization”. In: NIPS workshop on Bayesian optimization.
Citeseer. 2014, pp. 1–5.

[36] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide
to support vector classification. 2003.

[37] Wei Hu et al. “Deep convolutional neural networks for hyperspectral image
classification”. In: Journal of Sensors 2015 (2015).

[38] F. Hutter, H. Hoos, and K. Leyton-Brown. “An Efficient Approach for
Assessing Hyperparameter Importance”. In: Proceedings of International
Conference on Machine Learning 2014 (ICML 2014). June 2014, pp. 754–
762.

[39] Shulong Jiang et al. “A novel framework for remote sensing image scene
classification”. In: International Archives of the Photogrammetry, Remote
Sensing & Spatial Information Sciences 42.3 (2018).

[40] Donald R Jones, Matthias Schonlau, and William J Welch. “Efficient
global optimization of expensive black-box functions”. In: Journal of Global
optimization 13.4 (1998), pp. 455–492.

[41] Nitish Shirish Keskar et al. “On large-batch training for deep learning:
Generalization gap and sharp minima”. In: arXiv preprint arXiv:1609.04836
(2016).

56

[42] Muhammad Jaleed Khan et al. “Modern trends in hyperspectral image
analysis: a review”. In: IEEE Access 6 (2018), pp. 14118–14129.

[43] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic op-
timization”. In: arXiv preprint arXiv:1412.6980 (2014).

[44] Sarawak Kuching. “The performance of maximum likelihood, spectral an-
gle mapper, neural network and decision tree classifiers in hyperspectral
image analysis”. In: Journal of Computer Science 3.6 (2007), pp. 419–423.

[45] Chandan Kumar et al. “Automated lithological mapping by integrating
spectral enhancement techniques and machine learning algorithms using
AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks
in Hutti, India”. In: International Journal of Applied Earth Observation
and Geoinformation 86 (2020), p. 102006.

[46] Rick Lawrence et al. “Classification of remotely sensed imagery using
stochastic gradient boosting as a refinement of classification tree anal-
ysis”. In: Remote sensing of environment 90.3 (2004), pp. 331–336.

[47] Ying Li, Haokui Zhang, and Qiang Shen. “Spectral–spatial classification of
hyperspectral imagery with 3D convolutional neural network”. In: Remote
Sensing 9.1 (2017), p. 67.

[48] Kyle Loggenberg et al. “Modelling water stress in a shiraz vineyard using
hyperspectral imaging and machine learning”. In: Remote Sensing 10.2
(2018), p. 202.

[49] David A. Landgrebe Marion F. Baumgardner Larry L. Biehl. 220 Band
AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test
Site 3. Sept. 2015. doi: doi:/10.4231/R7RX991C. url: https://purr.
purdue.edu/publications/1947/1.

[50] Michael D McKay, Richard J Beckman, and William J Conover. “A com-
parison of three methods for selecting values of input variables in the
analysis of output from a computer code”. In: Technometrics 42.1 (2000),
pp. 55–61.

[51] Michael J Mendenhall and Erzsébet Merényi. “Relevance-based feature
extraction for hyperspectral images”. In: IEEE Transactions on Neural
Networks 19.4 (2008), pp. 658–672.

[52] Erzsébet Merényi et al. “Classification of hyperspectral imagery with neu-
ral networks: comparison to conventional tools”. In: EURASIP Journal on
Advances in Signal Processing 2014.1 (2014), p. 71.

[53] Lichao Mou, Pedram Ghamisi, and Xiao Xiang Zhu. “Deep recurrent neu-
ral networks for hyperspectral image classification”. In: IEEE Transac-
tions on Geoscience and Remote Sensing 55.7 (2017), pp. 3639–3655.

[54] G Narendra and D Sivakumar. “Deep Learning Based Hyperspectral Im-
age Analysis—A Survey”. In: Journal of Computational and Theoretical
Nanoscience 16.4 (2019), pp. 1528–1535.

57

https://doi.org/doi:/10.4231/R7RX991C
https://purr.purdue.edu/publications/1947/1
https://purr.purdue.edu/publications/1947/1

[55] Ary Noviyanto and Waleed H Abdulla. “Honey botanical origin classifi-
cation using hyperspectral imaging and machine learning”. In: Journal of
Food Engineering 265 (2020), p. 109684.

[56] Chigozie Nwankpa et al. “Activation functions: Comparison of trends in
practice and research for deep learning”. In: arXiv preprint arXiv:1811.03378
(2018).

[57] Lucas Prado Osco et al. “A Machine Learning Framework to Predict Nu-
trient Content in Valencia-Orange Leaf Hyperspectral Measurements”. In:
Remote Sensing 12.6 (2020), p. 906.

[58] Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas.
“How many trees in a random forest?” In: International workshop on ma-
chine learning and data mining in pattern recognition. Springer. 2012,
pp. 154–168.

[59] Mahesh Pal and PM Mather. “Support vector machines for classification in
remote sensing”. In: International journal of remote sensing 26.5 (2005),
pp. 1007–1011.

[60] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[61] Antonio Plaza et al. “Recent advances in techniques for hyperspectral
image processing”. In: Remote sensing of environment 113 (2009), S110–
S122.

[62] Philipp Probst and Anne-Laure Boulesteix. “To tune or not to tune the
number of trees in random forest”. In: The Journal of Machine Learning
Research 18.1 (2017), pp. 6673–6690.

[63] Sayan Putatunda and Kiran Rama. “A comparative analysis of hyper-
opt as against other approaches for hyper-parameter optimization of XG-
Boost”. In: Proceedings of the 2018 International Conference on Signal
Processing and Machine Learning. 2018, pp. 6–10.

[64] Laura Elena Raileanu and Kilian Stoffel. “Theoretical comparison between
the gini index and information gain criteria”. In: Annals of Mathematics
and Artificial Intelligence 41.1 (2004), pp. 77–93.

[65] Sebastian Raschka. Python Machine Learning. Birmingham, UK: Packt
Publishing, 2015. isbn: 1783555130.

[66] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: arXiv preprint arXiv:1609.04747 (2016).

[67] Alim Samat et al. “Ensemble Extreme Learning Machines for Hyperspec-
tral Image Classification”. In: IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 7.4 (2014), pp. 1060–1069.

[68] Andrew M Saxe et al. “On random weights and unsupervised feature
learning.” In: ICML. Vol. 2. 3. 2011, p. 6.

58

[69] Bobak Shahriari et al. “Taking the human out of the loop: A review
of Bayesian optimization”. In: Proceedings of the IEEE 104.1 (2015),
pp. 148–175.

[70] Rei Sonobe et al. “Crop classification from Sentinel-2-derived vegetation
indices using ensemble learning”. In: Journal of Applied Remote Sensing
12.2 (2018), p. 026019.

[71] Rei Sonobe et al. “Monitoring Photosynthetic Pigments of Shade-Grown
Tea from Hyperspectral Reflectance”. In: Canadian Journal of Remote
Sensing 44.2 (2018), pp. 104–112.

[72] Jinya Su et al. “Aerial Visual Perception in Smart Farming: Field Study
of Wheat Yellow Rust Monitoring”. In: IEEE Transactions on Industrial
Informatics (2020).

[73] Chris Thornton et al. “Auto-WEKA: Combined selection and hyperpa-
rameter optimization of classification algorithms”. In: Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and
data mining. 2013, pp. 847–855.

[74] Yan Wang and Xuelei Sherry Ni. “A XGBoost risk model via feature
selection and Bayesian hyper-parameter optimization”. In: arXiv preprint
arXiv:1901.08433 (2019).

[75] Björn Waske et al. “Mapping of hyperspectral AVIRIS data using machine-
learning algorithms”. In: Canadian Journal of Remote Sensing 35.sup1
(2009), S106–S116.

[76] Jeanette Weaver et al. “A Comparison of Machine Learning Techniques to
Extract Human Settlements from High Resolution Imagery”. In: IGARSS
2018-2018 IEEE International Geoscience and Remote Sensing Sympo-
sium. IEEE. 2018, pp. 6412–6415.

[77] Hao Wu and Saurabh Prasad. “Convolutional recurrent neural networks
for hyperspectral data classification”. In: Remote Sensing 9.3 (2017), p. 298.

[78] Junshi Xia et al. “Hyperspectral remote sensing image classification based
on rotation forest”. In: IEEE Geoscience and Remote Sensing Letters 11.1
(2013), pp. 239–243.

[79] Yufei Xia et al. “A boosted decision tree approach using Bayesian hyper-
parameter optimization for credit scoring”. In: Expert Systems with Ap-
plications 78 (2017), pp. 225–241.

[80] Xiliang Zhang et al. “Novel soft computing model for predicting blast-
induced ground vibration in open-pit mines based on particle swarm op-
timization and XGBoost”. In: Natural Resources Research (2019), pp. 1–
11.

[81] Liheng Zhong, Lina Hu, and Hang Zhou. “Deep learning based multi-
temporal crop classification”. In: Remote sensing of environment 221 (2019),
pp. 430–443.

59

[82] Zhi-Hua Zhou and Ji Feng. “Deep forest”. In: arXiv preprint arXiv:1702.08835
(2017).

60

	Introduction
	Classifiers
	Bagging
	Random Forest
	Extremely randomized trees
	Gradient Boosting
	Stochastic Gradient Boosting
	Extreme Gradient Boosting
	Convolutional Neural Network
	Support Vector Machine

	Hyperparameter Optimization
	Grid search versus Random search
	Bayesian optimization
	Local Penalization
	Hyperparameter Importance

	Datasets
	Indian Pines
	University of Houston
	Lunar Crater Volcanic Field

	Experiment Design
	Bagging
	Random Forest
	Extremely Randomized Trees
	Stochastic Gradient Boosting
	Extreme Gradient Boosting
	Convolutional Neural Network
	Architecture search heuristics
	Training hyperparameters

	Support Vector Machine
	Evaluation

	Results
	Bagging
	Random Forest
	Extremely Randomized Trees
	Stochastic Gradient Boosting
	Extreme Gradient Boosting
	Convolutional Neural Networks
	Support Vector Machine

	Comparison
	Models
	Optimization Strategies

	Conclusion
	Acknowledgements

