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Abstract: Classiyfing emotions based on EEG data has grown in popularity in the last few
decades. At the moment, literature trains classifiers on data sets created in a laboratory where
emotions are artificially evoked, meaning they present a stimulus and expect a certain emotion.
The EEG data during the emotion is then measured and analysed. In order to capture the
EEG data of emotions that are naturally evoked, a special type of debate was analysed which
evokes emotions for the debaters. The goal of this study was to create a classifier that is able
to distinguish happy EEG data from angry EEG data when training the classifiers based on a
data set where the emotions are evoked in a more daily life setting. Time-domain features were
extracted from the preprocessed data set. A random forest classifier and KNN classifier were
trained and returned accuracies of 92.5 % and 92.2 % respectively with parameter optimisation
when tested on the training data. The confusion matrices of the classifiers both showed true
positives and true negatives of above 90 %. K-fold cross validation showed accuracies of 65.1 %
for the random forest classifier and 61.2 % for the KNN classifier.

1 Introduction

Emotion detection is a capability that humans are
capable of by reading facial expressions (Ferretti &
Papaleo, 2019). Humans detect emotions partly by
reading facial expressions but also by reading body
language (Barrett et al., 2011). However, it is not
always the case that humans show their emotions
by expressions that can be perceived with the eyes
since facial expressions and body language can be
consciously suppressed (Zheng et al., 2017). What
humans cannot consciously suppress are their phys-
iological response to a mental state that they are in
(Shu et al., 2018). Examples of these physiological
signals are heart rate, breathing rate, temperature,
brain activity etc. Since humans cannot read the
physiological signals off of others there has been a
big interest in reading off these physiological signals
with the help of measuring instruments.

A study of Ekman et al. (1983) used finger
temperature, heart rate and skin conductance as
physiological signals to distinguish the emotions of
anger, fear, sadness, disgust and happiness. They
were able to find significant differences between
these physiological signals between the different

emotions. Lisetti & Nasoz, (2011) provide a clear
framework of the history of emotion detection with
physiological signals.

Another popular physiological signal in order to
classify emotions is electroencephalography (EEG).
This is a technique that records electrical activity
of the brain and is measured by placing multiple
electrodes along the scalp. Every single electrode
measures the voltage that is a result of the ionic
current coming from the neurons.

This technique has found itself to be useful for
identifying which parts of the brain are more active
when people are in a certain mental state. When a
person is listening to music that should evoke a feel-
ing of happiness and joy, the left frontal area of the
brain is more active and when a person is listening
to negative valenced music the right frontal area
of the brain seems to be more active (Schmidt &
Trainor, 2001).

EEG data has also shown to be successful with
classifying mental states with accuracies of 98.39%
(Amin, 2017). In this study the classifier tried to
predict based on a single trial whether the EEG
data showed patterns of someone performing a
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cognitive complex task or someone performing a
simple baseline task. Such classification of mental
states is done by a particular workflow. Researchers
first feed a stimulus to a participant where the re-
searchers expect a certain mental state. The corre-
sponding EEG data is collected and preprocessed.
Then certain features of the signals are extracted
and finally a classification model is trained with
these features.

Most literature mentions three different types
of features of EEG signals; time-domain features,
frequency-domain features and time-frequency-
domain features. Time-domain features are statis-
tics about a signal that use a function of
time (mean, amplitude etc.) where frequency-
domain features use a function of frequency. Time-
frequency domain features use statistics based on
the frequency and the time. The type of feature ex-
traction and the specific classification model that
is used determines the performance of the model.

Edla et al., (2018) present a random forest clas-
sifier which was trained with time-domain features.
This study tried to distinguish a concentration and
meditation state of mind. The classifier got an ac-
curacy of 75% using k-fold cross validation.

Moshfeghi et al., (2013) trained a support vec-
tor machine based on frequency-domain features.
They used an emotional system where they had a
positive and a negative valence. The accuracy of
this binary classification model is 74% using k-fold
cross validation.

Liu et al., (2016) trained a k-nearest neighbor
classifier and a random forest classifier with fea-
tures from the time-domain, frequency domain and
the time-frequency domain. They got an accuracy
of about 70% when using the DEAP data set (Koel-
stra et al., 2011). The accuracy was measured using
k-fold cross validation.

The DEAP data set is used often in literature
when classifying emotional states with EEG data.
This data set handles emotions in a 2-dimensional
model consisting of valence and arousal as can be
seen in figure 1.1. This model is similar to the
model of Schlosberg (1954) if the third dimension of
Schlosberg called level of activation is ignored. The
two dimensions are arousal and valence (originally
called pleasantness and attention by Schlosberg). A
high level of valence is associated with positive emo-
tions like happy or joy. A low level of valence is as-
sociated with negative emotions like anger or frus-

tration. The level of arousal determines how awake
or excited someone is. If the level of arousal is low,
a person is tired and when the level of arousal is
high, someone is very alert and awake.

Figure 1.1: Two dimensional model of emotions.
This model plots arousal versus valence. Inside
this model are the associated emotions that cor-
responds to the levels of arousal and valence.

All of the classifiers mentioned were trained on
data sets that were created in a laboratory set-
ting. A participant wearing an EEG cap is pre-
sented a stimulus where the researchers expect a
certain emotion. One could say that these emotions
are artificially evoked. Furthermore, not every par-
ticipant reaches the wanted intensity of the emo-
tion that the researchers expect since some peo-
ple are better at emotional regulation than others
(Gessner, 2015). More ideal would be to record the
EEG data of emotions that are evoked in a natural
setting or a daily life setting since these emotions
might result in EEG data that a person actually
has when in a certain mental state of emotion.

Such a data set was collected by Van Vugt.
In this study a monastic debate is researched. A
monastic debate is a debate performed by Tibetan
Buddhists. More experienced debaters improve ’the
ability to handle high cognitive load situations as
well as emotional changes’ (Van Vugt et al., 2020).
The setting of the debate is as follows: Two peo-
ple participate in the debate. One of the two is the
defender while the other is the challenger. The de-
fender sits in a cross-legged position and the chal-
lenger is standing in front of the defender. The chal-
lenger makes statements. The subject of the de-
bate can vary a lot. When the challenger makes a
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Figure 1.2: Typical setting of a monastic debate.
The challenger stands in front of the defender.
Both the defender and the challenger are wear-
ing an EEG cap.

statement, the defender has two options; accept the
statement of the challenger or questioning the rea-
soning of the statement and requesting an explana-
tion of the challenger. The defender is not allowed
to accept a contradicting statement of the chal-
lenger. If the defender does accept two contradict-
ing statements, the challenger creates awareness for
that contradiction by screaming ”tsa!”. The chal-
lenger often makes intimidating verbal signs like
clapping very loud after making a statement, or
raising his voice in order to pressurize and the de-
fender.

During such a debate the challenger and the
defender undergo different emotions. For example
when the challenger wants to pressurize the de-
fender he may get angry. Or when the defender is
in a tight spot during the debate he may get frus-
trated or angry since he cannot regulate his emo-
tions anymore. During the debates, the two partic-
ipants also laugh quite often. This means that we
can distinguish two types of emotions during the
debate, emotions with a high valence (happy) and
emotions with a low valence (anger).

The question that this study tries to answer is
whether we can distinguish happy EEG data from
angry EEG data in a natural setting and whether
we can build a classifier that is able to predict these
two emotions on a single trial level.

2 Methods

In order to try to answer the research question the
data set by Van Vugt was used. This data set was
collected by creating a set up where a challenger
and a defender debate with each other in a setting
similar to figure 1.2. As mentioned in the intro-
duction a monastic debate evokes naturally evoked
emotions. The brain activity of both the challenger
and the defender were collected. All debates were
video recorded. Afterwards researchers annotated
whether the debaters were happy or whether one
of the debaters was angry. The annotations and the
corresponding EEG data is combined and features
of the data are extracted. Finally machine learn-
ing algorithms were trained on the data and the
performance was analyzed.

2.1 Participants

The participants that participated during the de-
bates were all Tibetan monks that all had some
experience with monastic debates. Monks consid-
ered to be experienced had more than 15 years of
experience where inexperienced monks had more
than 3 years of experience. 10 experienced and 14
inexperienced monks participated in the debates.

2.2 Monastic debate

As mentioned in the introduction the debate con-
sists of a challenger and a defender where the chal-
lenger makes statements. The defender can accept
or question the statements of the challenger. A de-
fender is not allowed to accept contradicting state-
ments. During the debate some researchers were
also in the room as can be seen in figure 1.2. These
researchers were not allowed to interfere with the
debate.

In total 50 debates were analyzed of which 24 de-
bates were considered easy debates and 26 debates
were considered hard debates. An easy debate han-
dles a topic that is more accessible where a hard
debate is handles a topic that is more difficult to
reason about for the defender. An easy debate took
approximately 10 minutes and a hard debate ap-
proximately 15 minutes. Every debater was paired
up with another debater. Every pair performed 4
debates. 2 easy debates and 2 hard debates. For
every type of debate both debaters once acted as a
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challenger and one time as a defender. Two debates
were excluded from the data set due to unforeseen
technical issues.

2.3 Video recording

All debates were video and audio recorded from
the perspective that can be seen in figure 1.2. This
means that the face of the challenger is not visible
most of the time while the face of the defender is
visible all the time.

2.4 EEG recording

The EEG system in this study uses the same setup
as used in Jin et al., (2019). Both the debaters wore
Biosemi EEG equipment with 32 electrodes instead
of 128 electrodes as used in Jin et al., (2019). The
two EEG caps were connected using a daisy chain
methodology which means that the two systems are
connected in a wiring scheme in a sequence. As
mentioned in Jin et al. (2019) the sampling rate
is 512 Hz which was down-sampled to 256 Hz after
being passed to a band-filter with a range of 0.5 -
40 Hz.

2.5 Preprocessing the EEG data

Since we only want to capture the EEG data rele-
vant to cognitive tasks in the brain we need to ex-
clude irrelevant, unwanted EEG data, also called
artifacts. Movements of the body generate arti-
facts. Think about eye blinking which is visible
from spikes in the electrodes at the front side of
the skull. It is also possible that the electrodes cap-
ture other electrical activity that is irrelevant for
the person itself. For example a heater can also
sent out a small amount of electrical activity that
can be recorded by the EEG electrodes. In order to
exclusively capture EEG data related to cognitive
tasks, these artifacts should be removed in order to
perform a meaningful analysis.

The preprocessing of the raw EEG data was done
with Fieldtrip (Oostenveldt et al., 2011) which is
software developed in Matlab that allows EEG data
processing. In order to remove the artifacts, an
independent component analysis (ICA) was per-
formed (Radüntz et al., 2015). This analysis rec-
ognizes fixed patterns that are in EEG data. For
example an eye blink has a very characteristic EEG

signal and can be identified by an ICA. Other fixed
patterns are muscle movement, heartbeats, sweat-
ing and clapping. After identifying these fixed pat-
terns, they can be removed from the signal which
leaves us with only the relevant brain activity.

2.6 Annotating the emotions

Four researchers were given the task to watch the
videos of the debates and annotate whether they
saw the defender or challenger being in a mental
state of happiness or anger. The annotations were
done with Boris which is software that allows to cre-
ate annotations with states. When the researchers
saw one of the debaters entering a state of happi-
ness or anger this was annotated. When, according
to the researchers, that debater entered a neutral
state of emotion again, the end of that emotion was
annotated. This allowed to create a time interval of
which a debater is in a certain mental state. Due to
the subjective nature of annotating emotions, every
video was annotated by three researchers.

When one of the researchers annotated a video,
these annotation were saved in a .csv file. This
means that per video, there are three .csv files
which have to be combined in order to reach a
final annotation file per video. The three annota-
tion files per video were combined as follows: When
two time intervals of the same emotion of the same
debater overlaps for two or more researchers, this
overlapping time interval is annotated as a final an-
notation. Imagine one researcher annotated the de-
fender as being in a happy state at time interval 6s
- 10s. Now consider another researcher annotating
the defender being in a happy state at time inter-
val 8s - 11s. When the annotation files are combined
the final annotation will be 8s - 10s because two re-
searchers annotated the defender being in a happy
state at this time interval.

2.7 Synchronize the EEG data with
the annotations

Since the EEG data did not always start at the
same time as the video recording, a problem arises
when synchronizing the timing of the EEG data
and the annotations. This problem was solved with
multiple measures. In some videos a technique was
used where the challenger blinks three times. Blink-
ing creates very characteristic spikes at electrodes
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above the forehead. If this is done three times, this
can be easily red off the EEG data and is easily
visible from the video recordings since these blinks
were done in front of the camera. This means that
it is possible to synchronize the EEG data with
the video recordings and the annotations. Unfor-
tunately this accurate technique was done for only
30 videos. For the other 20 videos the delay of the
EEG data recording was manually timed.

2.8 Feature extraction

In order to prepare the data so it can be put in
the model to train, we first need to extract fea-
tures from the EEG signals. Features from the time-
domain were extracted from the EEG signals since
these features have shown to be able to classify ba-
sic emotions such as happy and anger(Chai, Woo,
Rizon, & Tan, 2010; Takahashi, 2004). More specif-
ically, the mean, standard deviation and the power
were extracted. For the sake of completeness all
three statistic calculations are shown in equation
2.1, 2.2 and 2.3.

Mean:

x̄ =
1

N

N∑
i=1

xi (2.1)

Standard deviation:

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (2.2)

Power:

P =

√√√√ 1

N

N∑
i=1

x2i (2.3)

The features are measured over the entire time in-
terval of a final annotation. This means that if a
final annotation was 3 seconds long, the mean, SD
and power for all 32 channels were extracted over
the entire 3 seconds resulting into one data point
with 96 values (32 means, 32 SDs and 32 powers).

It is a possibility to exclude the non significant
channels but these channels might be relevant in
combination with other channels in order to pro-
vide us information about whether a person is an-
gry or happy. Because of this reason no channels
were excluded for the classification.

2.9 Classification

A random forest classifier and a k-nearest neighbors
were used in order to classify the data points. 5-fold
cross validation was used to test the performance
of the classifiers. The classifiers were implemented
with functions from the python library sklearn. The
following two functions were used to create the clas-
sifiers in python3: RandomForestClassifier() and
KNeighborsClassifier()

2.9.1 Random forest classifier

A random forest classifier is an ensemble method
for classification. This classifier creates an N
amount of randomly initialized decision trees. All
of these decision trees are trained. All outputs of
the decision trees are calculated and the mean pre-
diction of all output of the trees will be the output
of the classification. Due to the bootstrapping na-
ture of this algorithm the random forest classifier
reduces overfitting which single decision trees do
not.

2.9.2 K-nearest neighbor classifier

K-nearest neighbors (KNN) is a simple but pow-
erful classifier that relies on a parameter K. If a
data point needs to be classified, the K closest data
points are determined. The class with a majority of
labels of these K-nearest neighbors determine the
class of the to be classified data point.

3 Results

The data set showed an imbalanced number of data
points. After the data was collected there were
1953 happy data points and 439 angry data points.
Since the durations of the annotations of the an-
gry data points were longer than the annotations
of the happy data points, all data points were multi-
plied by the duration of that annotation so that the
data became more balanced. If for example a data
point’s duration was 5 seconds, that data point was
repeated 5 times. This resulted in 10842 happy data
points and 13415 angry data points.

5



3.1 Statistics

In order to explore the data an exploratory analysis
was done between happy and angry EEG data. This
analysis focused on finding differences between the
channels and to get a global overview of the data.
Appendix B shows the results of dependent t-tests
for all channels for the mean, standard deviation
and power for happy and angry EEG data. For the
power and standard deviation only 2 channels were
not significantly different from each other. Surpris-
ingly this was the same channel for both statis-
tics, namely channel FP1 and T8. For the mean,
5 channels on the anterior ventral side of the skull
were found to be significantly different from an-
other (these are denoted by a * in appendix B and
are highlighted red in figure 3.1). More specifically,
channels AF3, F7, F3, FC5 and CP1 are signif-
icantly different between happy and angry EEG
data when looking at the mean. In appendix A a
table is shown which show the mean per channel
per class.

Figure 3.1: Overview of the electrodes placed
on the scalp. The electrodes in red are the elec-
trodes that turned out to be significantly differ-
ent for happy and angry EEG data when using
the mean as a statistic for a dependent t-test.
Appendix C provides the same figure but big-
ger.

3.2 Classifiers

After exploring the data I tried to build a classifier
that is able to distinguish happy and angry emo-
tions on a single trial. As previously mentioned, a
random forest classifier and k-nearest neighbor al-
gorithm were used. In the next sections I will go
over the performance of these classifiers.

3.3 Random forest classifier

Multiple random forest classifiers were used
with different numbers of trees. Table 3.1 shows
the accuracy, precision and recall of three
random forest classifiers with 8, 10 and 12 trees.
Trees Accuracy Recall Precision

8 92.3 % 94.8 % 81.4 %
10 92.5 % 95.4 % 81.4 %
12 92.4 % 95.2 % 81.3 %

Table 3.1: Accuracy, precision and recall of
a random forest classifier with 8, 10 and 12
trees when tested on the training data

As can be seen from table 3.1 the the ran-
dom forest classifier performs slightly better
when using 10 trees in comparison with 8 and
12 trees. The accuracy is 92.5 % when tested
on the training data. For all forests with more
than 12 trees or with less than 8 trees, the
accuracy, recall and precision decreases. Table
3.2 shows the confusion matrix when testing the
random forest classifier on the training data.

Predict: happy Predict: angry
True: happy 0.952 0.0484
True: angry 0.0867 0.913

Table 3.2: Normalized confusion matrix of
the Random Forest Classifier with 10 trees
when tested on the training data

As can be seen from the normalized confu-
sion matrix in table 3.2, 95.2 % of the happy
data points and 91.3 % of the angry data points
are correctly classified from the training data. In
order to test the classifier on data it has not seen
before a 5-fold cross validation was used. This test
returned 5 accuracies with a mean of 65.1 % and a
standard deviation of 7.2.
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3.4 K-nearest neighbors

This KNN classifier uses the Euclidean distance
as a distance function. Multiple values for K were
tried. The ones with the best performances were
K = 3, 5, 7, 9. The accuracy, precision and recall
are in table 3.3 when tested on the training data.

K Accuracy Recall Precision
3 92.2 % 95.5 % 80.7 %
5 90.8 % 88.3 % 81.2 %
7 89.2 % 81.2 % 80.8 %
9 86.2 % 79.2 % 74.1 %

Table 3.3: Accuracy, precision and re-
call of a k-nearest neighbor algorithm with
K = 3, 5, 7 and 9 when tested on the
training data
As can be seen from table 3.3 the KNN classifier
works best for K = 3 where the accuracy is 92.2 %
when tested on the training data. The confusion
matrix of the KNN classifier for K = 3 when
tested on the training data is shown in table 3.4.

Predict: happy Predict: angry
True: happy 0.955 0.0453
True: angry 0.0907 0.909

Table 3.4: Normalized confusion matrix of
K-nearest neighbors for K = 3 when tested
on the training data

The normalized confusion matrix in table 3.4
shows that 95.5 % of the happy data points and
90.9 % of the angry data points were classified cor-
rectly. A 5-fold cross validation was also used for
the KNN with K = 3. This test returned 5 accura-
cies with a mean of 61.2 % and a standard deviation
of 5.2 mV.

4 Discussion

This study attempted to train classifiers that are
able to classify happy EEG data and angry EEG
data. This classifier was trained on data that was
created in a setting that evokes emotions similar as
in daily life instead of emotions that are artificially
evoked in a laboratory based on a stimulus and an
expected emotion.

After the raw EEG data got preprocessed, fea-
tures from the time-domain were extracted, namely
the mean, power and standard deviation. Then a

random forest classifier and a k-nearest neighbors
classifier were trained with parameter optimisation.

The random forest classifier with 10 trees got
an accuracy of 92.5% when tested on the training
data where the confusion matrix showed true posi-
tives and true negatives of above 91% which suggest
that this classifier recognizes patterns in the data
and reaches accuracies similar to studies using the
DEAP data set (Alhagry et al., 2017; Lui et al.,
2016). When 5-fold cross validation is used an ac-
curacy of 65.1% is used which is similar to other
studies using a random forest classifier with k-fold
cross validation (Nascimben et al., 2019).

The KNN classifier (K = 3) got an accuracy
of 92.2% when tested on the training data. The
confusion matrix showed true positives and true
negatives of above 90% which also suggests that
the KNN classifier recognizes patterns in the data
and is able to perform similar to classifiers trained
on the DEAP data set. 5-fold cross validation re-
turned an accuracy of 61.2% which is also similar
to Nascimben et al., (2019).

Both classifiers got accuracies above 90% when
tested on the training data but the cross fold vali-
dation shows that the accuracy decreases by almost
30% when tested on data the classifier has not yet
seen before which makes the classifiers less generic.

The exploratory analysis of independent t-tests
for the mean found some interesting results.
Namely that certain channels were significantly dif-
ferent from each other. This analysis found that
channels FC1, FC5, F3, C3 and P7 are significantly
different for happy EEG data and angry EEG data.
From figure 3.1 it is visible that four of these elec-
trodes are in the frontal lobe. One electrode is in
the parietal lobe. From appendix A it is visible that
for all of these electrodes the mean of the brain ac-
tivity is higher for happy EEG data than for angry
EEG data. This finding suggests that these areas
are more active when a person is in a happy state
than in an angry state which is partly in accor-
dance with Machado et al., (2017) which also sug-
gests that the prefrontal cortex is associated with
being in a mental state of positive valence. How-
ever, the electrode in the parietal lobe is more dif-
ficult to place in the context of the literature since
research suggests that the parietal lobe is more ac-
tive when being in a mental state of negative va-
lence (Luo et al., 2016). As mentioned in the intro-
duction, Schmidt et al., 2001 found that negatively
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valenced emotions were visible in the right frontal
lobe. Although the data suggests that the mean of
the electrical activity is higher in the right frontal
lobe (this is true for electrodes FC2, FC6, F4, F8,
AF4, FP2) when in an angry state than the mean
when someone is in a happy state, no significant
differences were found in the electrodes placed on
this part of the scalp when looking at the mean.

4.1 Problems and improvements

Some aspects of the methods might need improve-
ment. As previously mentioned in the methods sec-
tion, three researchers were given the task to watch
all of the videos of the debates and annotate the
challenger or defender was happy or angry. Anno-
tating emotions is a subjective matter, therefore
two researchers had to agree in order for an an-
notation to become a definitive annotation. This
method reduces the aspect of subjectivity but does
not minimize it. An improvement would be to pro-
vide the researchers examples of debaters being
happy and angry in order to make the annotations
of the different researchers more consistent. This
could also provide more data which is important
for machine learning.

Every final annotation was seen as a single data
point. If there was a final annotation of 3 seconds,
this was processed as a single data point. However
after balancing the data set, all data points were re-
peated relative to the duration of that annotation
since the annotations of the angry data points were
longer and there was a lack of angry data points.
Even though this resulted in a more balanced data
set, a potential improvement might be to process
the EEG data by creating data points with a time
interval of 1 second. So for example if a final an-
notation has a time interval of 4 seconds, the data
could be split into four different data points and
the features of the EEG data could be extracted
per second instead of over the entire time interval.

Furthermore, as cited in Popescu, (2019) ’people
from within a culture are better able at recogniz-
ing emotions from that culture than people from
outside it (Gendron et al., 2014)’. If other debaters
who are culturally related to the Tibetan monks
(or who are actually Tibetan monks) annotated the
emotions of the videos, the annotations might have
been more accurate.

4.2 Future research

In order to build upon this research and this
data set, multiple features and classifiers should
be tested. Since literature presents many promising
classifiers with a support vector machine and time-
frequency domain features (Iscan et al., 2011) or
a neural network instead of machine learning (La-
hane & Sangaiah, 2015) this is definitely something
worth looking into.

Another very promising addition to the project
could be to use channel selection. In this project all
channels were used but a genetic algorithm could
provide the optimal channels which could increase
the accuracy of the classifier (Wen & Zhang, 2017).
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Appendix A

Channel happy mean angry mean

Fp1 -0.0545 0.395
AF3 0.252 -0.152
F7 0.135 0.0329
F3 0.0251 -0.266

FC1 0.0489 -0.280
FC5 0.0344 -0.452
T7 0.0393 0.113
C3 0.0301 -0.278

CP1 0.00277 -0.188
CP5 0.0105 -0.103
P7 0.00620 0.639
P3 -0.0289 -0.104
Pz 0.0162 -0.142

PO3 0.00882 0.00808
PO1 0.00531 0.215
OZ -0.0111 0.228
O2 -0.0912 0.176

PO4 -0.0313 0.0252
P4 -0.0342 0.0102
P8 -0.0987 0.112

CP6 0.0238 0.0646
CP2 0.0151 -0.191
C4 0.00859 -0.0535
T8 -0.0757 0.193

FC6 -0.0706 0.150
FC2 -0.0768 -0.210
F4 -0.0170 -0.0122
F8 -0.0149 0.211

AF4 -0.120 0.232
FP2 -0.00382 0.144
Fz 0.0325 -0.342
Cz 0.00895 -0.179

Table A.1: Mean of the mean of all data
points for happy and angry EEG data per
channel

Appendix B

Mean T-test results:

t-test channel: Fp1
(statistic=-0.592, p-value=0.554)
t-test channel: AF3
(statistic=1.378, p-value=0.171)
t-test channel: F7
(statistic=0.439, p-value=0.661)
t-test channel: F3
(statistic=2.391, p-value <0.05) *
t-test channel: FC1
(statistic=2.645, p-value <0.05) *
t-test channel: FC5
(statistic=2.087, p-value <0.05) *
t-test channel: T7
(statistic=-0.322, p-value=0.747)
t-test channel: C3
(statistic=2.113, p-value <0.05) *
t-test channel: CP1
(statistic=1.1470, p-value=0.255)
t-test channel: CP5
(statistic=0.641, p-value=0.523)
t-test channel: P7
(statistic=-2.050, p-value <0.05) *
t-test channel: P3
(statistic=0.984, p-value=0.328)
t-test channel: Pz
(statistic=1.011, p-value=0.314)
t-test channel: PO3
(statistic=0.004, p-value=0.996)
t-test channel: O1
(statistic=-1.103, p-value=0.273)
t-test channel: OZ
(statistic=-1.019, p-value=0.310)
t-test channel: O2
(statistic=-1.325, p-value=0.189)
t-test channel: PO4
(statistic=-0.478, p-value=0.633)
t-test channel: P4
(statistic=-0.359, p-value=0.720)
t-test channel: P8
(statistic=-0.965, p-value=0.336)
t-test channel: CP6
(statistic=-0.220, p-value=0.826)
t-test channel: CP2
(statistic=1.534, p-value=0.129)
t-test channel: C4
(statistic=0.406, p-value=0.685)
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t-test channel: T8
(statistic=-1.366, p-value=0.175)
t-test channel: FC6
(statistic=-1.251, p-value=0.214)
t-test channel: FC2
(statistic=0.901, p-value=0.369)
t-test channel: F4
(statistic=-0.008, p-value=0.993)
t-test channel: F8
(statistic=-0.836, p-value=0.405)
t-test channel: AF4
(statistic=-1.529, p-value=0.129)
t-test channel: FP2
(statistic=-0.236, p-value=0.813)
t-test channel: FZ
(statistic=1.876, p-value=0.064)
t-test channel: CZ
(statistic=1.190, p-value=0.237)

Table B.1: Dependent t-test between
the means for happy and angry EEG data
per channel, DF = 24255

Power T-test results:
t-test channel: Fp1
(statistic=-0.741, p-value=0.459)
t-test channel: AF3
(statistic=-2.771, p-value <0.05) *
t-test channel: F7
(statistic=-3.857, p-value <0.05) *
t-test channel: F3
(statistic=-3.387, p-value <0.05) *
t-test channel: FC1
(statistic=-4.199, p-value <0.05)*
t-test channel: FC5
(statistic=-5.956, p-value <0.05) *
t-test channel: T7
(statistic=-2.431, p-value <0.05) *
t-test channel: C3
(statistic=-4.858, p-value <0.05) *
t-test channel: CP1
(statistic=-3.554, p-value <0.05) *
t-test channel: CP5
(statistic=-4.582, p-value <0.05)
t-test channel: P7
(statistic=-2.705, p-value <0.05) *
t-test channel: P3
(statistic=-3.776, p-value <0.05) *
t-test channel: Pz
(statistic=-4.339, p-value <0.05) *

t-test channel: PO3
(statistic=-4.230, p-value <0.05) *
t-test channel: O1
(statistic=-4.951, p-value <0.05 *
t-test channel: Oz
(statistic=-3.209, p-value <0.05) *
t-test channel: O2
(statistic=-5.047, p-value <0.05) *
t-test channel: PO4
(statistic=-4.007, p-value <0.05) *
t-test channel: P4
(statistic=-4.682, p-value <0.05) *
t-test channel: P8
(statistic=-3.693, p-value <0.05) *
t-test channel: CP6
(statistic=-3.946, p-value <0.05) *
t-test channel: CP2
(statistic=-3.336, p-value <0.05) *
t-test channel: C4
(statistic=-4.322, p-value <0.05) *
t-test channel: T8
(statistic=0.0217, p-value=0.982)
t-test channel: FC6
(statistic=-3.796, p-value <0.05) *
t-test channel: FC2
(statistic=-2.951, p-value <0.05) *
t-test channel: F4
(statistic=-3.734, p-value <0.05) *
t-test channel: F8
(statistic=-4.699, p-value <0.05) *
t-test channel: AF4
(statistic=-3.747, p-value <0.05) *
t-test channel: Fp2
(statistic=-2.214, p-value <0.05) *
t-test channel: Fz
(statistic=-3.743, p-value <0.05) *
t-test channel: Cz
(statistic=-4.739, p-value <0.05) *

Table B.2: Dependent t-test between
the powers for happy and angry EEG data
per channel, DF = 24255

Standard Deviation T-test results:
t-test channel: Fp1
(statistic=-0.770, p-value=0.441)
t-test channel: AF3
(statistic=-2.765, p-value <0.05 *
t-test channel: F7
(statistic=-3.861, p-value <0.05 *
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t-test channel: F3
(statistic=-3.373, p-value <0.05 *
t-test channel: FC1
(statistic=-4.191, p-value <0.05 *
t-test channel: FC5
(statistic=-5.907, p-value <0.05 *
t-test channel: T7
(statistic=-2.429, p-value <0.05 *
t-test channel: C3
(statistic=-4.844, p-value <0.05 *
t-test channel: CP1
(statistic=-3.538, p-value <0.05 *
t-test channel: CP5
(statistic=-4.557, p-value <0.05 *
t-test channel: P7
(statistic=-2.692, p-value <0.05 *
t-test channel: P3
(statistic=-3.779, p-value <0.05 *
t-test channel: Pz
(statistic=-4.339, p-value <0.05 *
t-test channel: PO3
(statistic=-4.233, p-value <0.05 *
t-test channel: 01
(statistic=-4.930, p-value <0.05 *
t-test channel: Oz
(statistic=-3.196, p-value <0.05 *
t-test channel: O2
(statistic=-5.034, p-value <0.05 *
t-test channel: PO4
(statistic=-4.029, p-value <0.05 * *
t-test channel: P4
(statistic=-4.690, p-value <0.05 * *
t-test channel: P8
(statistic=-3.686, p-value <0.05 * *
t-test channel: CP6
(statistic=-3.939, p-value <0.05 *
t-test channel: CP2
(statistic=-3.325, p-value <0.05 *
t-test channel: C4
(statistic=-4.311, p-value <0.05 *
t-test channel: T8
(statistic=0.0520, p-value=0.9585)
t-test channel: FC6
(statistic=-3.768, p-value <0.05 *
t-test channel: FC2
(statistic=-2.946, p-value <0.05 *
t-test channel: F4
(statistic=-3.722, p-value <0.05 *
t-test channel: F8
(statistic=-4.684, p-value <0.05 *

t-test channel: AF4
(statistic=-3.738, p-value <0.05 *
t-test channel: Fp2
(statistic=-2.225, p-value <0.05 *
t-test channel: Fz
(statistic=-3.730, p-value <0.05 *
t-test channel: Cz
(statistic=-4.725, p-value <0.05 *
Table B.3: Dependent t-test between the
standard deviations for happy and angry
EEG data per channel, DF = 24255
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Appendix C

Figure .1: Overview of the locations of the elec-
trodes as used in the experiment.
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