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Abstract: Sleep abnormalities occur frequently in Intensive Care Unit (ICU) patients, resulting
in adverse effects on their health. It is important that their sleeping patterns are well understood
in order to improve their sleep. Overnight electroencephalography (EEG) recordings are used to
analyze sleeping patterns. The international norm is manual scoring by sleep experts following
the American Academy of Sleep Medicine (AASM) criteria. When the severely disrupted EEG
patterns of ICU patients were previously scored, low agreement between scorers was found. This
suggests that the current standard for sleep analysis may not extend to ICU acquired data.
Over a period of three years, 61 critically ill ICU patients have been monitored using EEG in
the UMCG hospital in Groningen. Three machine learning algorithms (logistic regression, multi-
class support vector machines and random forests) are trained on EEG recordings acquired from
healthy subjects, and then tested on both the healthy recordings and EEG patterns acquired
from ICU patients. The results show that the algorithms perform significantly worse on ICU
subject data than they do on healthy subject data. This suggests that the current standard for

sleep analysis is less suitable for the analysis of ICU patients’ sleep.

1 Introduction

Research suggests that patients on the Intensive
Care Unit (ICU) exhibit severely disrupted sleeping
patterns compared to healthy individuals (Pisani,
Friese, Gehlbach, Schwab, Weinhouse, and Jones,
2015). For instance, ICU patients experience 6.2
awakenings per hour and the majority of their sleep
is spent in light sleep stages (Friese, Diaz-Arrastia,
McBride, Frankel, and Gentilello, 2007). This has
many consequences on one’s health, including neg-
ative effects on physiology, the respiratory system,
the cardiovascular system and the immunological
system (Delaney, Van Haren, and Lopez, 2015).
These sleep disturbances are also thought to con-
tribute to delirium. This is a common complica-
tion in the ICU, causing issues regarding attention
and consciousness, while also being associated with
loss of physical function (Flaherty, 2007). All of
these health implications caused by disturbed sleep
may contribute to extended recovery times, which
in turn may contribute to an increase in patient
morbidity (Delaney et al., 2015). This is why it is

important to analyze and understand sleep in order
to improve it.

Causes of sleep disturbances in the ICU are
thought to be medications, light, noise and patient
care interactions amongst other things (Kamdar,
Needham, and Collop, 2012).

Using overnight electroencephalography (EEG)
the neural activity of the brain, observable as os-
cillating electrical potential on the scalp, can be
recorded.

The current standard for sleep analysis is manual
scoring of these EEG waves by sleep experts fol-
lowing the American Academy of Sleep Medicine
(AASM) criteria. The EEG signals are split into
time segments of 30 seconds, called epochs. Each
epoch is assigned a sleep stage. The AASM de-
fines five different stages, namely stage W (wake-
fulness), stage REM (rapid eye movement), stage
N1 (non-REM1), stage N2 (non-REM2) and stage
N3 (non-REM3) (Iber, Ancoli-Israel, Chesson, and
Quan, 2007).

This process is called sleep staging. Because it
is all done manually, it is tedious, expensive and



time consuming. It is used for things such as the
diagnosis of sleep related disorders and getting to
know more about the mechanisms and functions of
sleep.

When EEG recordings from ICU patients were
previously scored, it was found that there was
low agreement between scorers compared to when
healthy people’s EEG recordings were scored. This
suggests that there was more ambiguity and un-
certainty, and that the current method for scoring
might therefore be less suitable for ICU patients.
This leads to the question; is the current stan-
dard for sleep scoring equally applicable to ICU pa-
tients? Based on the literature that suggests that
ICU patients’ sleep is different from healthy peo-
ple’s sleep, and that the agreement between scorers
of ICU acquired EEG signals is low, the hypothesis
is that the current standard of sleep analysis is less
suitable for ICU patients.

In order to research this, three machine learning
algorithms are utilized, namely logistic regression,
multi-class support vector machines and random
forests. The goal is to make these classifiers predict
the sleep stage for each epoch. They will be trained
on EEG signals acquired from healthy people that
are scored by AASM standards. The classifiers get
tested separately on the same healthy acquired data
and data collected from ICU patients. They are
then evaluated on their accuracy, F; score and Co-
hen’s kappa against the annotations provided by
the sleep experts. Then, comparisons are made be-
tween the results to determine whether the classi-
fiers perform differently. If it is the case that the
classifiers tested on EEG signals from ICU patients
perform worse than the same classifiers tested on
EEG signals from healthy people, the current stan-
dard might be less applicable to analyze the sleep
of ICU patients.

Many machine learning algorithms for classify-
ing sleep have already been developed. They are
trained on data sets containing thousands of sub-
jects and they have a level of performance com-
parable to human experts (Biswal, Sun, Goparaju,
Westover, Sun, and Bianchi, 2018). The goal of this
thesis, however, is not to make the best performing
algorithm. Instead it is to find out how fruitful ap-
plying the current standard to critically ill patients
is.

2 Methods

2.1 EEG datasets

The data was collected as part of a joint project of
the UMCG hospital in Groningen with Philips Re-
search in Eindhoven. Over a period of three years,
61 critically ill patients and 10 healthy subjects
have been monitored in the ICU of the UMCG
hospital. Seven channels were recorded (F3-A2, C3-
A2, C4-A1, O1-A2, EOGL-A2, EOGR-A2, EMGL-
EMGR) at a sampling frequency of 256 Hz. Only
four of those channels were used (F3-A2, C3-A2,
C4-A1, O1-A2), because those are the ones used
by the sleep expert when sleep staging (Iber et al.,
2007). The option to reduce the amount of channels
to just the best performing one(s) was considered,
but this was not done for the reasons that it would
stray from the original sleep scoring method, the
data would be smaller, the channels’ errors were
similar to each other and optimal performance was
not the goal. The EEG recordings were then scored
according to AASM criteria by two different sleep
experts. Any epochs that did not receive a label
were excluded from the data. The epochs were orig-
inally scored into six stages; W (wake), N1 (non-
REM1), N2 (non-REM2), N3 (non-REM3), REM
(rapid eye movement) and movement time. This
last stage is merged with the ‘wake’ stage, because
movement time is typically not used in the AASM
classification criteria (Iber et al., 2007).

The datasets combined result in over one thou-
sand hours of EEG data, which can be split
into more than 125,000 epochs over four channels
to train and test the classifiers on. From these
epochs, 11,382 correspond to the healthy dataset
and 113,910 belong to the ICU dataset. Figure 2.1
shows what a single epoch looks like.

The distribution of sleep stages in both datasets
is shown in Figure 2.2. The data from healthy sub-
jects were only recorded overnight, while the data
from ICU subjects were recorded all day. This is
done, because 40 to 50% of the total sleep time in an
ICU takes place during daytime (Hilton, 1976; Au-
rell and Elmqvist, 1985). This explains the differ-
ent distribution in the ‘wake’ stage. Another factor
that contributes to unequal distributions between
the datasets is that REM sleep is often suppressed
in ICU patients (Kamdar et al., 2012)
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Figure 2.1: One epoch from the C3-A2 channel
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Figure 2.2: The class distributions in percent-
ages of the datasets with five classes

2.2 Classification targets

Each epoch is labeled as one of five stages; W, N1,
N2, N3 and REM. When training and testing the
classifiers, it was found that many prediction er-
rors were made in classifying the non-REM stages.
In order to improve the performance of the algo-
rithms, the non-REM stages were merged. This re-
sults in three target labels, namely W, non-REM
and REM. Even though optimal performance is not
the goal of this thesis, it is important for the algo-
rithms to perform well as they need to resemble the
human scorer in order to find out how they would
perform on ICU acquired data. Hence, it is now for-
mulated as a three-class classification problem. The
new class distributions are shown in Figure 2.3.
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Figure 2.3: The class distributions in percent-
ages of the datasets with three classes

2.3 Data preparation

The data need to be converted into features that
the machine learning algorithms can use. First, a
bandpass filter between 0.1 and 30 Hz is applied to
get the required frequency range. In order to trans-
form the data to the frequency domain, a Short-
time Fourier transform is applied using Hanning
window to minimize spectral leakage. Twenty-two
spectral features are extracted for each epoch from
the four different channels that are used. These fea-
tures are the power in the (sub-)bands delta (ps),
theta (pg), alpha (p,), spindle (p,), lower beta
(pgr), and upper beta (pgy) bands, total power
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o po With the delta band representing signals
between 0.1 and 4 Hz, theta representing 4 to 8 Hz,
alpha representing 8 to 12 Hz, spindle representing
12 to 16 Hz and beta representing 16 to 30 Hz.

For classifiers that use the distances between
data, feature scaling is recommended. It normal-
izes the range of all features so that each feature
contributes a proportional amount. Hence, scaling
is applied to the features for the logistic regression
and support vector machines classifiers which will
be explained in the upcoming section.

2.4 Training algorithms

The data are classified in Python 3 using the
scikit-learn package. As the datasets contain
labels, supervised learning techniques are used
to classify the epochs. Multiple classifiers are
used to see how consistent the results are. The
hyperparameters for the classes were chosen
using randomized search cross validation, which
randomly takes a set from the candidate hyper-
parameters, trains models for all of the sets made
and compares their fitness via cross validation.
The hyperparameters for each classifier are spec-
ified in the Appendix. To train and test on the
EEG features collected from healthy subjects,
leave-one-out cross-validation is used; nine out of
ten subjects’ sets were used for training and the
remaining set was used for testing. The ‘test set’
was rotated amongst all healthy subjects’ sets
until they were all tested. This was not necessary
for classifying the EEG features collected from
ICU patients, because the training and testing sets
do not overlap. The three following classification
algorithms were used.

Logistic regression: This classifier works by
using a sigmoid function to estimate probabilities
of a certain class occurring for a certain linear
combination of the independent variables or in this
case, features (Theil, 1969). Each class is assigned
a probability between 0 and 1, with the sum
of all probabilities being 1. Multinomial logistic
regression is used as there are three classes and
they are not ordered. Instead of the loss function
that would be used in binary logistic regression,
the cross-entropy loss function is used.

Support vector machines: the objective of
a binary support vector machine is to compute a
hyperplane that divides the classes from each other
by separating the data points belonging to one
class from the other (Cortes and Vapnik, 1995).
The aim when finding this hyperplane during
training is to maximize the distance between the
hyperplane and the nearest data points. This is
done in order to have greater confidence when
testing.

If your data is not linearly separable, a linear
hyperplane will not do well in separating the data
points into the correct classes. This is why different
kernel functions can be chosen when computing the
hyperplane. A radial basis function (RBF) kernel is
used in this research as it gave a higher accuracy
than a polynomial or sigmoid kernel.

Because there are three classes in this case,
a multi-class support vector machine classifier
is needed. In order to support three classes, a
combination of three independent binary classifi-
cation tasks is made. Using the one-vs-rest (OVR)
approach, one class is trained against the ‘rest’.
A combination of these binary classifiers is then
used.

Random forests: random forests is an en-
semble learning method based on decision trees
(Breiman, 2001). These decision trees work by
splitting into different ‘branches’. At each split,
if the data of that particular test iteration meet
a certain condition, it follows one branch and
otherwise it will follow another. This repeats
itself until a ‘leaf’ is found. Every leaf belongs to a
certain class and if that leaf is reached, the decision
tree will choose that class as its prediction. The
majority vote out of all trees is chosen as the final
classification of that test iteration of the algorithm.
The trees have low correlation with each other
so if one errs, the others will not necessarily err too.

These classifiers were chosen because they are
common and applicable to this type of problem, yet
they are still different in the way they work. Since
four EEG channels were used, each tested epoch
gets classified by the algorithms four times. The
majority vote is chosen as the final classification for
each epoch. If there is no single majority, a random
class from the majority group is chosen.



2.5 Performance measures

Besides the classification accuracy (Eq. 2.1), three
other performance metrics were utilized. This is
done because of the so-called accuracy paradox; if
there is a class imbalance and the classifier predicts
the most common class very often, even wrongly
so, the accuracy will still be high. As is visible in
Figure 2.3, there is indeed a class imbalance. The
accuracy is described as the proportion of correct
classifications out of all classifications.

TP+TN
TP+TN+FP+ FN

Accuracy = (2.1)

Where:
e TP = True Positives
e TN = True Negatives
e FP = False Positives
e FN = False Negatives

The Fy score (Eq. 2.4) is a performance metric
that combines precision (Eq. 2.2) and recall (Eq.
2.3) in a harmonic mean. Precision asks the ques-
tion; out of the predicted positive values, how many
are actually positive? It is useful when the cost of
false positives is high. Recall asks the question; out
of all actual positives, how many were predicted as
positive? It is useful when the cost of false negatives
is high.

Because the Fj score is a harmonic mean of these
metrics, it is more suitable for an uneven class dis-
tribution than the classification accuracy is.

TP
Precision = ——— 2.2
recision = s (2.2)
TP
Recall = m (23)
Precision - Recall
F score — 2. recision - Reca (2.4)

Precision + Recall

Cohen’s kappa (k) (Eq. 2.5) was also determined.
It is used to measure agreement among raters, in
this case the classifier algorithm and the sleep stag-
ing expert. The number can vary between -1 and
1, with x = 1 being perfect agreement among the
raters, k = 0 being no agreement among the raters
other than what would be expected by chance and

x = —1 being that the raters are in complete dis-
agreement.
Po — Pe
R = ——— 2.5
- (2.5)
Where:

e p, = relative observed agreement among raters
(or accuracy)

e p. = hypothetical probability of chance agree-
ment, calculated by the probabilities of the
classes appearing

The accuracy and F score metrics were both cal-
culated individually for each class and in total. The
totals were computed by taking the true positives,
true negatives, false positives and false negatives
of all classes summed up. Because multiple testing
iterations had to be done for the healthy dataset,
the means of the iterations were taken. In order to
accurately record the F) score, each class needed
to be present in the tested data or the precision
and recall would result in zero. In the ICU dataset,
not every person’s data had a REM sleep annota-
tion. To make sure the requirement for the F score
was still met, the data was randomly split into ten
groups, with each group incorporating a data file
that contained REM sleep annotations.

3 Results

The results of applying the performance metrics
discussed in the previous section can be found in
Table 3.1, Table 3.2 and Table 3.3. The tables con-
tain the mean of each performance metric over all
subjects of the individual datasets rounded to two
decimals. The confusion matrices for each algo-
rithm are shown in Figures 3.1-3.6. The accuracies
and F} scores for individual classes can be found in
Table 3.5.

For every classifier and every performance met-
ric, the numbers for the classifiers tested on healthy
subjects are higher than the ones for the classifiers
tested on ICU subjects. The accuracies for clas-
sifiers tested on healthy subject data range from
approximately 0.80 to 0.82, while the accuracies
for classifiers tested on ICU subject data range
from approximately 0.58 to 0.60. Similar differences
are found in other performance metrics (0.72-0.74



against 0.42-0.44 for F} score, 0.61-0.64 against
0.25-0.27 for Cohen’s kappa).

Cohen’s kappa can be interpreted according to
the range it falls in. This is shown in Table 3.4.
The x values for classifiers tested on healthy data
fall in the lower end of the ‘substantial’ range, while
the k values for classifiers tested on ICU data fall
in the ‘fair’ range.

The results of the individual classes found in Ta-
ble 3.5 show that the REM class tends to be pre-
dicted relatively poorly. This is even more promi-
nent in the F} score of the ICU data tested classi-
fiers.

Three independent samples t-tests were con-
ducted on both the classification accuracies and I}
scores. The independent samples t-test was cho-
sen because the samples were collected indepen-
dently of each other and the difference between the
means will be tested. For classification accuracy,
the healthy-tested classifiers of logistic regression
(Mrr = 0.80, SD1r = 0.09), support vector ma-
chines (Mgyp = 0.81, SDgyy = 0.11) and ran-
dom forests (Mgr = 0.82, SDgrr = 0.08) were
tested against the ICU-tested classifiers of logistic
regression (Mpr = 0.60, SDpr = 0.13), support
vector machines (Mgyy = 0.58, SDgyy = 0.14)
and random forests (Mgrp = 0.56, SDrp = 0.13).
These tests revealed a significant difference be-
tween testing on healthy data and testing on ICU
data across all classifiers; logistic regression t(69) =
4.1, p<.001, support vector machines, t(69) = 4.2,
p<.001, and random forests, t(69) = 5.0, p<.001.

For the F} score, another three independent
samples t-test were performed. The healthy-
tested classifiers of logistic regression (Mpp =
0.72, SDrr = 0.11), support vector machines
(Msyay = 0.74, SDgypy = 0.14) and random
forests (Mrp = 0.73, SDrr = 0.12) were tested
against the ICU-tested classifiers of logistic regres-
sion (MrLr = 0.42, SDyr = 0.07), support vec-
tor machines (Mgyy = 041, SDgyy = 0.08)
and random forests (Mrp = 0.41, SDrp = 0.08).
These tests revealed a significant difference be-
tween testing on healthy data and testing on ICU
data across all classifiers; logistic regression t(18) =
7.5, p<.001, support vector machines, t(18) = 7.0,
p<.001, and random forests, t(18) = 7.5, p<.001.

Healthy | ICU

Accuracy 0.80 0.60
Precision 0.75 0.39
Recall 0.70 0.46
Macro F1-score 0.72 0.42
Cohen’s kappa 0.61 0.27

Table 3.1: Logistic regression

Healthy | ICU

Accuracy 0.81 0.58
Precision 0.76 0.39
Recall 0.72 0.44
Macro F1-score 0.74 0.41
Cohen’s kappa 0.63 0.25

Table 3.2: Support vector machines

Healthy | ICU

Accuracy 0.82 0.56
Precision 0.75 0.40
Recall 0.73 0.43
Macro F1-score 0.74 0.41
Cohen’s kappa 0.64 0.26

Table 3.3: Random forests

Kappa Statistic | Strength of Agreement
<0.00 Poor
0.00 - 0.20 Slight
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Substantial
0.81 - 1.00 Almost Perfect

Table 3.4: Interpretation of Cohen’s kappa (Lan-
dis and Koch, 1977)
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Figure 3.1: Confusion matrix for the logistic re-

Logistic regression | Random forests | Support vector machines
Healthy ICU Healthy ICU | Healthy ICU
Wake 0.81 0.53 0.87 0.63 0.84 0.62
Accuracy Non-REM 0.87 0.73 0.88 0.53 0.86 0.56
REM 0.49 0.41 0.45 0.39 0.57 0.39
Wake 0.80 0.64 0.82 0.70 0.82 0.68
Fy score  Non-REM 0.85 0.60 0.87 0.52 0.85 0.53
REM 0.51 0.03 0.50 0.02 0.56 0.02

Table 3.5: Individual classes
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Figure 3.6: Confusion matrix for the random
forests classifier tested on ICU subject data

4 Discussion

This study attempted to determine whether the
current standard for sleep analysis is just as appli-
cable to ICU patients as it is to healthy individuals.
In order to research this, three machine learning
classifiers trained on EEG signals collected from
healthy people were tested on both EEG signals
obtained from healthy people and EEG signals ob-
tained from ICU patients. The result of comparing
the performance of the classifiers when tested on
one group against the same classifier when tested

on the other, show that the classifiers tested on ICU
data perform significantly worse.

These findings suggest two things. Firstly, as was
already found in previous research, ICU patient’s
sleep is different from healthy people’s sleep. Many
factors contribute to this, a lot of research has been
done and efforts have been made to improve it
(Friese et al., 2007; Friese, 2008; Delaney et al.,
2015).

Secondly, and more importantly, the classifiers
and sleep experts have a significantly lower agree-
ment with each other when classifying ICU sleep
compared to classifying healthy sleep. This suggests
uncertainty and ambiguity for ICU sleep analysis.
This in turn implies that the current standard to
analyze sleep, which is based on healthy people, is
less applicable to ICU patients’ sleep.

Something that stands out from the results is
that they are similar across all algorithms. The rea-
son for this is unclear. Something else that stands
out is how poorly REM sleep is classified, both in
healthy sleep and in ICU sleep. As can be seen in
the class distributions pictured in Figure 2.3 in the
methods section, REM sleep is the smallest class in
the healthy/training set. Therefore, the algorithms
have trained less on the REM class than others. The
class performance of REM sleep is also much worse
in the ICU data trained classifiers than the healthy
data trained classifiers. This might have to do with
the fact that ICU patients have a lack of REM
sleep, because REM sleep duration increases as du-
ration of sleep increases and ICU patients sleep for
short periods of time (Aurell and Elmqvist, 1985;
Delaney et al., 2015). As the REM sleep stages are
so short, they might be difficult to classify.

In hindsight it would have been good to make
use of a neural network in addition to the clas-
sifiers. This method is often used for sleep clas-
sification for several reasons; compared to several
other conventional classifiers, it is robust (Schal-
tenbrand, Lengelle, and Macher, 1993), good with
new data (Robert, Guilpin, and Limoge, 1998) and
it performs well in discriminating the REM sleep
stage (Robert, Guilpin, and Limoge, 1997) which
the classifiers in this research did not perform well
on. It might therefore have produced different re-
sults. Alternatively, more REM stage training data
could have been provided so that the classifiers
would perform better on this particular sleep stage.

For future research, it would be interesting to



find out how ICU sleep should be analyzed instead.
As clarified in the introduction, this is important,
as when a good method for sleep analysis for ICU
patients is found, a way to improve their sleep
might be found.

As was also clarified in the introduction, pre-
vious studies have created machine learning algo-
rithms for sleep classification that perform as well
as human experts do (Biswal et al., 2018). It might
be interesting to research how well these classi-
fiers would perform when trained and tested on
EEG signals from ICU patients. If this method
would work well, it would likely also be less time-
consuming and expensive than manual sleep stag-
ing.

However, this method does come with an im-
portant assumption, namely that different ICU pa-
tients’ sleep can all be classified in the same way.
This leads to another interesting question; can all
ICU patients be put into a single group when it
comes to sleep classification? There might be dif-
ferences depending on age, amount of time since
they have been admitted to the ICU, type of illness
or degree of illness.
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A Appendix

The hyperparameters used for the classifiers can be

found in the following tables.

parameter value
penalty 11
dual False
tol le-4
C 10
fit_intercept True
intercept_scaling 1
class_weight None
random_state None
solver saga
max_iter 10000
multi_class multinomial
verbose 0
warm_start False
n_jobs None
11_ratio None

Table A.1: Hyperparameters for logistic regres-

sion

parameter value
C 1000
kernel rbf
degree 3
gamma 0.001
coefl 0.0
shrinking True
probability False
tol 0.001
cache_size 200
class_weight None
verbose False
max_iter -1
decision_function_shape ovr
break _ties False
random_state None

Table A.2: Hyperparameters for support vector

machines

parameter value
n_estimators 800
criterion gini
max_depth 80
min_samples_split 10
min_samples_leaf 4
min_weight_fraction_leaf | 0.0
max_features auto
max_leaf_nodes None
min_impurity_decrease 0.0
min_impurity_split None
bootstrap True
oob_score False
n_jobs None
random_state None
verbose 0
warm_start False
class_weight None
ccp-alpha 0.0
max_samples None

Table A.3: Hyperparameters for random forests

11



