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Abstract: In this paper the performance of the auto-encoder Generative Grasp Convolutional
Neural Network (GGCNN) architecture proposed by Morrison et al. (2018) is evaluated in object
classification and 3D object grasping tasks. The GGCNN is trained using the Cornell dataset.
The output of the encoder part of the network is used as object representation for the object
classification task. The full architecture is used for the grasping task to identify the most suitable
grasp given the orthographic image of an object constructed using a Global Orthographic Object
Descriptor (GOOD) from the point cloud. The ModelNet10 and Restaurant-Object datasets were
used to study the impacts of the K value(for the Knn algorithm) and bin parameter of the network
on classification accuracy; resulting in no significant difference in performance across 19 unique
configurations for the ModelNet10 dataset and 18 different configurations for the Restaurant-
Object data set. For the object grasping task, a simulation was developed in PyBullet, where a
gripper executes the best grasp candidate and the success or failure of the grasp is recorded. A
success rate of 83.3% was achieved for total objects grasped, while a total grasping success rate

of 47% for all attempted grasps.

1 Introduction

Up until recent years robots have primarily been
automated to work in assembly jobs with finite-
state domains and little to no uncertainty. Ad-
vances in the fields of artificial intelligence (AI) and
computer vision have enabled researchers to explore
the application of robots outside of these environ-
ments in tasks ranging from autonomous driving
to assistive robotics. Now more than ever, their in-
troduction into the unstructured, dynamic environ-
ments of the real world creates a necessity for con-
sistency and reliability.

A robot must be capable of interpreting the
dynamic environments it occupies, whether the
changes come from the environment, noise, errors,
or inaccuracies in perception and control (Morri-
son et al.,2018). In addition, a robot must be able
to interact and change the state of the world it re-
sides in, which has led to the creation of an ampli-
tude of techniques in Robotic Grasping (Morrison
et al., 2018; Nguyen et al., 2016; Song et al., 2015;
Zeng et al., 2017; Kokic et al. 2017; Kasaei et al.,

2017; Papazov et al., 2012). Object classification,
grasp detection and grasp planning are generally
the three encapsulating steps required to perform
the most basic of grasp tasks. CNNs have proven
to be a popular tool that can out-perform tradi-
tional computer vision methods, to the extent that
every step previously mentioned currently imple-
ments their use in state-of-the-art applications.

The Generative Grasp CNN proposed by Morri-
son et al. (2018) has enabled researchers to avoid
the need to classify and segment objects for grasp
tasks by directly working with the depth images of
the objects. This is known as an object-independent
grasp synthesis approach, producing outstanding
results for known, familiar and unknown 3D ob-
jects in both isolated and clustered environments.

New developments in the field such as Ortho-
graphicNet, developed by Kasaei et al. (2019) uses
orthographic projection for object recognition in
open-ended domains. By generating 3 views of a 3D
object (top, side, front view) and feeding each view
to a CNN to obtain a view-wise feature for each pro-
jection, a global deep representation is constructed



by merging the features.

In this paper we propose an exploratory topic of
feeding the 3D Orthographic projection views pro-
posed on OrthographicNet to depth-image trained
GGCNNSs in order to extrapolate the best grasping
point for a 3D object. The goal of this paper is to
evaluate the performance of a GGCNN trained on
2D images, for 3D object classification and grasping
tasks.

2 Related Work

2.1 Object Classification

Now more than ever, with advances in 3D sensing
technologies, object classification has become a fo-
cal topic in computer vision. With the introduction
of Neural Networks in computer vision, there has
been an increased number of tools that have imple-
mented Neural Networks, however these come with
their own set of limitations.

One of these tools would be the Recursive Neural
Networks and Convolutional Neural Network model
proposed by Socher et al. (2012). Socher introduced
a combinatorial model for deep learning and classi-
fying 3D objects. The single CNN layer extracts low
level features from RGB and depth images, creat-
ing one representation for each. The representations
generated by the CNN are then pooled and passed
to a set of RNN with randomized weights, which
recursively map features into a lower dimensional
space vectors. The vectors are then concatenated
to generate a final feature vector that is given to a
soft-max classifier. This method outperformed two
layer CNNs, while producing state-of-the-art per-
formance.

PointGrid, a deep auto-encoder CNN proposed
by Le and Duan (2018) combines point cloud and
volumetric grids to better learn high-level features.
The general network architecture of PointGrid is
defined by two convolutional layers followed by a
max pooling layer, where after every two convolu-
tional layers, the spatial dimension is halved while
the number of convolutional filters is doubled. In
order to perform high level reasoning they use two
fully connected layers, each with a ReLU activa-
tion and drop out layer. Similarly to Socher et al.
(2012) , the output of the network is then passed
to a soft-max classifier to calculate the probability

of each category the network was trained for.

Descriptors are another tool used for object clas-
sification, as indicated by Kasaei et al. (2016b),
they can generally be either local or global. Lo-
cal descriptors encode a small area of an object
around a point, while global descriptors generally
encode the entire object. Local descriptors are gen-
erally better at handling cluttered and occluded im-
ages, where comparison is done by analyzing local
features. Global descriptors tend to be less compu-
tationally expensive, yet are not capable of com-
paring local features as effectively as local descrip-
tors. Descriptors are a powerful tool in open-ended
learning environments as they allow for unknown
categories to be learned, unlike CNNs which can
only classify based on predefined categories. Frome
et al. (2004) helped lay the framework for recog-
nizing objects by developing a 3D generalization
of 2D shape object descriptors. Additionally they
proposed the harmonic shape context descriptor,
which at the time outperformed other state-of-the-
art descriptors, such as Spin Images (Johnson and
Hebert, 1999), for cluttered scenes.

In more recent years, Kasaei et al. (2016b) pro-
posed GOOD, a global orthographic object descrip-
tor for orthographic images based on 3D point
cloud data. By creating a local reference frame us-
ing a Principal Component Analysis (See Section
3.1) and performing a vector concatenation, sim-
ilarly to Socher et al. (2012), of the orthographic
projections, the GOOD descriptor can be calcu-
lated. Section 3.2 describes the methodology for
calculating GOOD.

2.2 Object Representation

Object representations can be generally classified
based on the type of data used, which can either
be point clouds, meshes, or volumetric grids (Le
and Duan, 2018). As mentioned by Qi et al. (2016)
neither meshes nor point clouds provide highly reg-
ular input data formats, which leads to researchers
transforming such data to 3D voxel grids (Matu-
rana and Scherer, 2015; Le and Duan, 2018) or a
collection of images (Kasaei, 2019). However said
transformation can increase the size of data unnec-
essarily and conceal natural in-variances.

Point clouds and volumetric grids have been the
favored feature extraction format. Point clouds are
flexible and simple, they avoid the combinatorial



Figure 2.1: The partial point cloud representa-
tion of a pistol.

irregularities of meshes (Qi et al., 2016). However,
point clouds still have limitations such as their un-
organized structure and being permutation invari-
ant (Qi, Su, Mo, and Guibas, 2016; Le and Duan,
2018). An example of a point cloud can be seen in
Figure 2.1. As indicated by Le et al. (2018) volu-
metric grids provide highly regular data, unlike the
previous representations, yet suffer from the com-
putational and memory requirements due to the 3D
grid resolution required to produce finer geometry
details.

Tools such as OrthographicNet (Kasaei, 2019)
generates three orthographic views of an object
by using 3D point clouds, which contain the 3D
coordinates of the point and the RGB data. In
this paper, the object representation replicates the
methodology of OrthographicNet, by generating or-
thographic projections. For an in-depth look at the
orthographic projection methodology read Section
3.1.

2.3 Object Grasping

As mentioned by Bohg et al. (2013), identifying
the best grasp from incredibly large sets of can-
didate grasps is a challenge that has generated a
magnitude of methods. These methods can be di-
vided into analytic methods and data-driven meth-
ods. Analytic methods generally assume that the
exact location of object and contact points is known
(Mabhler et al., 2017). These methods provide the
advantage of making grasp analysis more practical.

However, it comes at the cost of increased inconsis-
tencies and ambiguities (Bohg et al., 2013). In re-
cent years data-driven grasp methods have become
popular, which emphasize and rely on perceptual
data such as effective object classification and pose
estimation. This has occurred due to the increased
use of CNNs in robotics and computer vision. Fur-
thermore, it is widely accepted to group the data-
driven methodologies based on the object informa-
tion that is available (Kasaei et al. , 2017; Bohg
et al., 2013; Papazov et al., 2012)whether methods
attempt to generate grasp candidates for unknown
objects, familiar objects or known objects.

In earlier years, Miller et al. (2003) investigated
the effectiveness of grasping known objects by gen-
erating grasps based on the shape primitives (cylin-
ders, boxes, cones and spheres). In this method, the
grasp candidate domain is constrained by the prim-
itives, where each primitive was given a strategy for
grasping. Due to the nature of the approach, there
was no consideration for grasp affordances, nor ob-
ject recognition, leading to sub-optimal results in
objects such as flasks. Additionally, this approach
was not robust enough to effectively work in dy-
namic, complex environments in a timely manner.

Recent research has been focused on identify-
ing grasp candidates by using affordance detec-
tion, yielding a large number of successful meth-
ods (Zeng et al., 2017; Song et al., 2015 Kokic et
al., 2017; Kasaei et al., 2017; Ardon et al., 2019).
Methodology proposed by Morrison et al. (2018)
combined affordance detection with semantic ob-
ject representation, by using Markov logic networks
to learn the semantic relationships between object
attributes, grasp affordances and locations. By us-
ing Gibbs sampling, they sample their grasping
candidates based on the probability distribution
of the candidate set and select the grasp with the
highest probability given an affordance.

Kokic et al. (2017) addressed task-specific grasp-
ing. By combining grasp affordance detection using
an auto-encoder CNN with contact constraints they
are able to evaluate affordances in both full and
partial view synthetic data. To describe semantic
relationships between tasks and object classes they
generate affordance labels, either cut, poke, pound,
pour or support, to categorize object parts in order
to identify if an object can be used to perform a
task. In parallel they classify the object as a whole
and identify the orientation. Once both object clas-



sification and affordance detection has finished they
produce a binary output map that represents the
graspable and non-graspable parts of the object.
The binary output map, in addition to the classi-
fication and orientation of the object, are given to
an optimization based grasp planner to generate a
path perform the grasp.

Morrison et al. (2018) generated grasps on a real
time manner using an object independent auto-
encoder CNN. By using pixel-wise quality and pose
prediction, they were able to avoid discrete sam-
pling on grasp candidates and reduce computa-
tional time significantly, while reducing the size
of the CNN and maintain performance similar to
other CNN. Using their proposed method, they
were capable of producing high-accuracy grasping
results in static, dynamic environments for both
isolated and cluttered objects; particularly a 81%
accuracy in the dynamic cluttered environment.
Additionally, due to the object independent nature
of the GGCNN, it simply requires depth images to
effectively grasp any object, forgoing the need to
classify objects.

3 Methodology

As previously mentioned, the research goal of this
paper is to evaluate the effectiveness of GGCNNs
in object classification and grasping tasks that use
orthographic projections. This section outlines the
methods by which the research goal is studied, with
a focus on orthographic projection, GOOD and
the GGCNN. First a concise section regarding the
method to generate the orthographic projections,
and GOOD; both replicating the methodology of
Kasaei et al. (2016a,2016b) and Kasaei (2019). Fol-
lowed by an in-depth section focused on describing
the architecture and other important features of the
GGCNN and its use in the described tasks. Lastly,
an explanation of the grasping pipeline used in this

paper.

3.1 Orthographic Projection

Orthographic projection refers to the representa-
tion of a 3D object in 2D. Following Kasaei’s
(2016a, 2019) methodology, based on Principal
Component Analysis (PCA), the point cloud of
an object is represented as a set of points P =

pi{l,...,n}, where each point p; contains the x,y,z
coordinates of the point. Kasaei (2019) creates
a global object reference frame to represent the
bounding box of the object, where the three princi-
pal axes of an object’s point cloud are constructed
by computing the center of the object using Equa-

tion 3.1.
1 n
Cc= Ez;pi
1=

Once the center of the object has been calcu-
lated, a normalized co-variance matrix of the ob-
ject is generated. This matrix, denoted as X, will
be used in order to identify the eigen-values of the
global object reference frame through eigen-value
decomposition. X' can be found by using the result
from 3.1, where in order to find the variance, the
geometric center is subtracted from the point and
multiplied by its transposed value, as seen in Equa-
tion 3.2 .

(3.1)

(3.2)

Eigen-value decomposition is done using the
equation XYV= EV, where V and E are a set of
three eigen-vectors and three eigen-values respec-
tively. It is important to note that these eigen-
values are ordered in decreasing order. Due to the
fact the eigen-values have a corresponding eigen-
vector, the eigen-vector v7 is always the largest
vector of Y, which indicates the direction with
the largest variance. v3 is the second largest eigen-
vector, and is orthogonal to v1, this allows us to
define the X and Y axes using the v7 and v3 respec-
tively. The Z axis is defined by the cross-product of
v1 and v3.

Kasaei (2019) generated only the front, top and
right-side primary orthographic views of the ob-
ject and mirrored them for the rear, bottom and
left-side views respectively. For each of the primary
views a squared projection plane centered on the
geometric center is generated; each view is perpen-
dicular to one axis. The largest dimension of the
axis aligned bounding box of an object determines
the dimensions of the projections, which are always
a square. The bounding box dimensions can be eas-
ily found by calculating the distance in coordinates
between the minimum and maximum points of the
largest side of the object. In order to identify the



sign of the axis, Kasaei (2019) calculates Pearson’s
correlation coefficients of the X and Y axes by pro-
jecting on the Z plane. To calculate the Pearson
Correlation, each point in the projection plane can
be denoted as p = (a, ) € R*. The value range
for this correlation is [-1,1], where a -1 is a strong
negative relationship and a 1 is a strong positive
relationship; it is this value that indicates the sign
of the axis. Pearson’s correlation can be seen in
Equation 3.3:

Taxis = (Tl — 1)Sa55 (33)

Where r is the coefficient for the axis being pro-
jected on the Z plane, a and [ indicate the per-
pendicular distance to the horizontal and vertical
axis respectively. Furthermore, n is the number of
points in the projection plane, @ and 3 are the mean
values of their respective distances. Both s, and sg
indicate the standard deviation of the points in the
axis being projected on the Z plane, Equation 3.4
demonstrates how to calculate the s, value; the sg
can be calculated analogously.

n

1 =32
n_lz(a—a)

=1

(3.4)

Saq =

Once the correlation values for r, and r, are cal-
culated, the sign value is found by their multipli-
cation. If the product is a negative value, the three
projections are mirrored, otherwise they remain the
same.

3.2 Global Orthographic Object De-
scriptor

As described by Kasaei et al. (2016a, 2016b)
GOOD is scale and pose invariant object descrip-
tor. GOOD uses a unique and repeatable local ref-
erence frame (LRF), created by performing PCA
(See Section 3.1). GOOD is computed by the con-
catenation of the three orthographic projections of
the object in their respective orthogonal plane; as
indicated in the previous sub-section. Each projec-
tion created by the orthographic projection can be
described by a distribution matrix.

A distribution matrix, M can be calculated by
counting the number of points that fall into a bin.
A projection is divided into n X n bins; where n

is the parameter that indicates the number of bins
specified to compute GOOD. Using the same math-
ematical definitions for projections in Section 3.1,
each projection is selected to generate a distribu-
tion matrix M,,x,, which is then normalized to
achieve invariance. The matrix is converted into a
vector my 2. Since three projections are generated
for a single object, three vectors are produced. The
vectors are finally concatenated.

The vector is concatenated in a specific order, the
first vector must be the most informative and there-
fore it must have the highest entropy (See Section
3.2.1 for a detailed view at entropy). The two re-
maining vectors must be ordered based on the vari-
ance of the vectors in order to select which one ap-
pears as the second vector on the descriptor. Vari-
ance is defined using Equation 3.5 obtained from
Kasaei et al. (2016b), this is an appropriate mea-
sure as it indicates the spread of the points in rela-
tion to each other; if many points are closer to each
other it is likely the image is not very informative.

n

o(m) = 32 (i = )P

i=1

(3.5)

As seen in the equation, ¢ indicates the myy.,,2
vector and m; indicates the distribution at bin i.
Im 1s the weighted average of the values of i, which
correspond to the center of the object in the pro-
jection; this value can be calculated using Equation
3.6.

(3.6)

n2
Hm = g imy;
=1

3.2.1 Calculating Entropy of an Image

The entropy of an image allows us to identify the
image with most states, which serves as an indi-
cator for the image with most information. The
first step towards calculating entropy is convert-
ing the RGB image into a single-band grey-scale
image. By having a grey-scale image, it becomes
easier to find the marginal distribution of an im-
age. The marginal distribution, in this context, is
the probability distribution of the grey-scale lev-
els in the image; the occurrences of each grey-scale
level are counted and divided by the total number
of levels. The probabilities that are equal to zero,



meaning no occurrences happen, are filtered out.
The entropy is then calculated using Equation 3.7:

n—1

— > pilogipi (3.7)
i=0

where p; indicates the probability of a pixel p hav-

ing a gray level ¢ and b indicates the base used for
the logarithmic function, in this case b = 2.

3.3 Generative Grasp Convolutional
Neural Network

As previously mentioned the GGCNN created by
Morrison et al. (2018) is a real-time object inde-
pendent auto-encoder network that uses pixel-wise
quality and pose prediction to generate a grasp
map. Additionally, due to the network’s single pass
nature it has significantly less parameters than
other classification methods, with 62,420 parame-
ters. The network was trained using a subset of the
Cornell dataset, created by Morrison et al. (2018),
which contains 885 images of real objects that have
a total of 8019 human labelled grasps. The data is
augmented by generating images with random ro-
tations, crops and zooms, producing a total of 8840
RGB-D images. The network is trained with 80%
of the RGB-D images, using the RMSprop opti-
mizer, and evaluated with the remaining 20% of
the RGB-D images. The following subsection will
dive deeper into how the GGCNN is used for the
object classification task, and how it is used for the
object grasping task, how it represents a grasp and
its components, in addition to how the grasp map
is represented. Immediately after, a subsection ded-
icated to the network architecture and its topology.

3.3.1 Object Classification

As previously stated, the GGCNN is an autoen-
coder network, meaning that it has one encoder
and one decoder part. By using the output of the
encoder part of the network, we obtain a feature
vector which is used as an object representation.
This representation is produced by feeding a train-
ing object instance into the network; in other words
the network can be seen as a function that re-
ceives a depth image and produces a feature vector.
For the object classification segment of this paper,

two datasets will be used to benchmark the perfor-
mance of the network for object recognition; Mod-
elNet1l0 (Wu et al., 2015) and restaurant object
(Kasaei et al., 2015). These datasets are divided
into training and data, for a more in-depth look at
the datasets, refer to sub-sections 4.1 and 4.2.

The feature vectors produced from the training
split of each category in the dataset can then be
stored in memory, along with their labels, to serve
as "training” instances. Once all the feature vectors
from the training partition have been produced,
we can use them to classify the objects from the
evaluation partition. A evaluation instance would
be given to the network, which produces its corre-
sponding feature vector, to then compare said vec-
tor with every other feature vector in memory (ob-
tained from the training data). In order to carry
out the comparison between two feature vectors
the chi-squared distance function is used, as seen
in Equation 3.8; where x and y are vectors, x; and
y; are the elements 7 of their respective vector, and
n is the length of the vector.

W) =3 56

The k closest number of neighbours are com-
pared, the label that appears the most frequently
is assigned as the classification label of the evalua-
tion instance, if there is an equal number of labels
for different categories, the one with the closest dis-
tance is chosen. Each newly assigned label is then
compared to the test instance’s ground truth, and
the accuracy of each set is calculated. Figure 3.1
visualizes how the algorithm works.

3.3.2 Grasp Representation

In order to represent a grasp we must be able to
represent its components. The GGCNN, like other
CNNs, defines its grasps perpendicular to a 2D axis.
Morrison et al. (2018) define a grasp with the Equa-
tion 3.9. Here p indicates the pose of the gripper
as the Cartesian coordinates (x,y) of the gripper’s
centre relative to an image, ¢ indicates the rota-
tion of the gripper on the depth axis, w indicates
the necessary width of the gripper and lastly the
scalar quality heuristic ¢ that represents the success
probability of the grasp. Therefore a grasp point is
selected based on the ¢ parameter as it indicates
the best grasp.
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Figure 3.1: The blue filled circle indicates a fea-
ture vector in the coordinate space that is to
be classified, while the green diamonds and red
squares indicate classified objects from different
categories. The blue circle is compared to the
k closest instances, represented by the encapsu-
lating circles.

9= (p,é,w,q) (3.9)

Since the objective is to detect grasps on an or-
thographic depth image, each grasp is generated
with coordinates relative to the projection i.e on
the XoZ plane, where the X axis remains as the
horizontal axis while the Z axis serves as the verti-
cal axis and the Y axis as the depth. Morrison et
al. (2018) redefine a grasp ¢ in an image I as:

G =(56,1,q) (3.10)

For orthographic images the same definition
holds, where s is a 2D point that represents the
pixel coordinates; it is important to note that these
coordinates can be represented in different axes, as
previously described, as they are dependent on the
axes of the selected orthographic projection. Addi-
tionally, ¢ is the rotation of the gripper and w is
the grasp width in terms of image coordinates.

A grasp map, which is the collection of grasps
available in the orthographic image space, is then
defined by Morrison et al. (2018) as:

G = (8,,Q) (3.11)

where @, W, Q) are all elements of I and contain the
values ¢,w,q for every pixel in an orthographic im-
age I, in turn, they too are images since they con-
tain a value for every pixel; therefore the output of
the network is a set of orthographic images.

The grasp map is represented by three images of
300x300 pixels as seen in Equation 3.11. The two
previously mentioned @ and W represent the qual-
ity of a grasp at each pixel and the gripper width
necessary to grasp the object at each point respec-
tively. @ is a scalar value that indicates the quality
of the grasp point, where a 0 is of poor quality,
while a 1 is of excellent quality. Meanwhile W is
a value in pixels in the range of [0,150], indicat-
ing that a grasp width cannot be larger than half
of the image I. The third image ® represents the
angle required to execute a grasp at each point in
the image. ® has a value range of [~7 , 7], due to
the two point gripper used in their experiments;
similarly in this paper a two finger gripper is used.
Figure 3.2 demonstrates the output of the network
for a sample object.

Orthographic Image

Grasp Quality Grasp Angle

e

Figure 3.2: Output of the GGCNN for a pair of
glasses for which the best grasp is calculated;
Orthographic Image being the input of the net-
work.



3.3.3 Network Architecture

Morrison, Corke, and Leitner (2018) indicate that
initially the image is pre-processed in order to be
fed into the network. The image is cropped to and
scaled to a 300 x 300 pixel resolution in order to
fit it to the input of the network, followed by in-
painting invalid depth values. The image is fed to
the GGCNN, which is a fully convolutional network
with 6 convolution layers. The GGCNN’s first layer
is 9 x 9 layer with 32 filters with a stride of 3. The
second layer is a 5 x 5 layer with 16 filters and a
decreased stride of 2, followed by a third 3x3 layer
with 8 filters with a stride of 2. It is at the forth
layer where transposed convolution begins, with the
identical dimensions, filters and stride sizes of the
third layer. The fifth layer is a 3 x 3 transposed
convolutional layer, with 16 filters of stride 2. The
sixth and last transposed convolutional layer has
the identical properties as the first layer.

As input it takes an Indepth image I of 300 x 300
pixels, and produces four 300 x 300 images: @, ®
and W. @ is a special case as it generates two im-
ages that represent the unit vector components of
20, one for sin(2®) and cos(2P) each. The output
of the network is a grasp map G, where @ is fil-
tered using a Gaussian kernel, which increases the
robustness of grasps by making G’s local-maxima
converge to regions with more quality grasps. The
best grasp pose is then obtained by identifying the
pixel with the highest value in Q.

3.4 Grasping pipeline

The execution of a grasp requires a multitude of
steps, first the image from the simulation environ-
ment is taken from the camera, which has multiple
buffers. The depth buffer of the camera is used to
produce and store a depth image, which is then
pre-processed by in-painting the depth values in
the image in order to only have an image of the
object. Next the image is passed to the GOOD ser-
vice, which calculates the GOOD of an image, and
returns the most informative projection in the form
of a 300 x 300 in-painted depth image. The projec-
tion is then fed to the GGCNN network service in
order to calculate an n number of grasps, ordered
by success probability, the network then returns all
the values for each grasp. The output of the net-
work is then given to the gripper to execute.

The gripper always approaches the object in an
orthogonal direction to the projection, meaning the
gripper always makes a direct approach towards the
desired grasp point. This indicates that, for exam-
ple in a projection of the XoY plane the gripper
approaches the plane directly perpendicular using
the Z axis, in other words from the ’top’. Prior to
the approach, the depth value of the point is found
by reanalyzing the image and selecting the clos-
est depth at the desired coordinate point. Once the
depth has been identified the gripper approaches
the object in a straight line, performs a stop, closes
the two gripper fingers, and moves in an upward
motion. If the object is not grasped, or if it falls
from the grasp, it is considered a failed grasp at-
tempt. Rightfully, if the gripper still has the object
in its grasp after the upward motion is completed
it is considered a successful grasp.

4 Experiments

There were a multitude of experiments ran, in par-
ticular to evaluate the GGCNN’s performance and
identify the best configurations in a object clas-
sification setting. In order to do so, two datasets
were used to measure the accuracy of classification;
ModelNet10 and the restaurant object dataset. The
aforementioned datasets are significantly different
in terms of size, which led to different experimen-
tal set-ups for each one. However the two parame-
ters that were studied are the same, the number of
neighbours used to classify the object (using the K
nearest neighbours algorithm) and the number of
bins used to divide the projections.

4.1 ModelNetl10 Dataset

The ModelNet10 dataset contains 10 categories,
with a total of 4899 object instances. The cate-
gories of the dataset are bathtub, bed, chair, desk,
dresser, monitor, night stand, sofa, table, and toi-
let. Due to the relatively large size of the dataset,
the dataset was split into mutually exclusive sub-
categories for training and testing. Approximately
80% of the dataset was used for training, while the
remaining 20% was used for evaluation.

As previously mentioned, the goal of the exper-
iments was to identify the best configurations for
object classification. The K parameter was modi-



fied in order to inspect the effect on performance,
starting with a value of 1 up to 11 using only odd
values; this resulted in 6 configurations. It is impor-
tant to note that the number of bins in these exper-
iments remained constant; being 150 bins. In order
to effectively measure the impact of every config-
uration each one was run three times with differ-
ent training and testing data partitions, resulting
in a total 18 evaluation runs. The average results
of these experiments can be seen in Figure 5.1.

A similar experiment set-up was conducted for
the bin parameter. The first experiment had con-
figuration of 30 bins, each succeeding configuration
after had an increment of 10 bins with 150 being
the maximum bin value used for an evaluation run.
Every configuration had a K value of 3. Similarly,
every configuration was run 3 times with different
training and testing data partitions, resulting in 39
evaluation runs. The average results of these exper-
iments can be seen in Figure 5.2.

4.2 Restaurant Object Dataset

Similarly to the ModelNet-10 dataset, the restau-
rant object dataset has 10 categories; bottle, bowl,
flask, fork, knife, mug, plate, spoon, teapot and
vase. This dataset is significantly smaller with a
total of 306 object instances, leading to a differ-
ent, yet equally valid experimental set up. By per-
forming a 10-fold cross-validation on the dataset
where 80% of the dataset was used for training,
while the remaining 20% was used for evaluation,
with each cross validation having different training
and evaluation data. The difference with this exper-
imental set-up is the use of the 10-fold cross vali-
dation, meaning that rather than running 3 differ-
ent instances of the same configuration on different
data, the same configuration is run only once iter-
ating over different mutually exclusive partitions of
training and testing data. It is important to note
the configuration parameters were not modified be-
tween folds in the cross validation.

Subsequently, a similar experiment set-up for the
K parameters was performed. Each configuration
was run once, each one with a bin parameter of 150
bins, with K being 1 in the first run, with an incre-
ment of 2 each consequent run up until 9. The rea-
son for this dataset not performing an 11 nearest
neighbour classification is due to limitations with
one of the categories in the dataset; the fork cate-

gory only contains 11 instances. The total number
of configurations ran were 5, in which each run had
10 cross validations, resulting in 50 runs. The av-
erage results of these experiments can be seen in
Figure 5.3.

The same number of bin configurations as the
ModelNet-10 setup were evaluated; starting with
30 bins, each configuration having an increment of
10 bins, until a maximum of 150 bins. In total there
were 13 configurations for this parameter, in which
each run had 10 cross validations, resulting in 130
runs. The average results of these experiments can
be seen in Figure 5.4.

4.3 Grasping Simulation

The simulation was developed using PyBullet,
which is an API in python for the C++4 based Bul-
let Physics Engine. It is a modified version of the
simulation created by Li et al. (2020). The simu-
lation runs in real time and grasps are performed
on objects of 10 different categories using a two
contact point Kuwait gripper. The 10 object cate-
gories used for measuring performance are as fol-
lows: axes, bottles, cups, glasses, guns, hammers,
knives, mugs, lamps and plane-models.

Each category has 3 different object instances.
Only one instance of an object exists on the
simulation at any time, and each object is simply
loaded in a location centered on the camera near
the origin point of the world; as the simulation
uses the world coordinates for moving and placing
the gripper. For each object instance 3 grasps
are calculated. Each of the calculated grasps can
only be attempted three times, starting with the
highest success probability grasp, followed by
the second and third highest success probability
grasps; if a grasp succeeds in less than three trials,
the remaining grasps are not attempted. If the
gripper does not succeed at the third trial, the
grasp is considered a failure. Each grasp attempt
is run completely independent of any other grasp
trial, in order to ensure the experimental set-up is
consistent for all runs. Additionally, it is important
to note that a bin value of 150 was used for the
GOOD descriptor. The value was selected to be
half the resolution of the image, as any lower
value would make grasping very inaccurate. The
code for this can be found in the following repos-
itory: https://github.com/RobertoNavrro/
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Figure 5.1: The average accuracy performance
for every K value for the ModelNet10 dataset.
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5 Results

5.1 ModelNetl10 Dataset

As previously indicated there were a total of 57
evaluations runs on the ModelNet10 dataset. In
order to measure if the configuration had a sig-
nificant impact on the GGCNN’s performance, a
series of statistical test are carried out, which al-
lows us to identify if some configurations have
a significantly different classification performance
by analyzing the mean accuracy. To do so, the
mean values of each configuration with the same
independent variable were compared; all configu-
rations with bin = 150 and & = 1,3,..,11 with
each other, and all configurations with £ = 3 and
bin = 30,40, .., 150 with each other.

K parameter: A visualization of the results can
be seen in Figure 5.1. Using ANOVA we obtain a
F = 1.941, furthermore it yielded a p = 0.161.

bin parameter: By performing the ANOVA
test, we obtain a F' = 1.223 and a p = 0.32. These
results are further visualized in Figure 5.2.

5.2 Restaurant Object Dataset

The restaurant object dataset is significantly
smaller, due to this a 10-cross-fold validation was
ran for each configuration. The total number of val-
idations for this dataset is therefore 180 runs, 130
for the bin parameter, and 50 for the K parameter.
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Figure 5.2: The plotted accuracy performance
for every bin value for the ModelNet10 dataset.

Unlike the data for the ModelNet10, the results vi-
olate the normality assumption of ANOVA, leading
us to use a non-parametric alternative; the Kruskal-
Wallis test. Similarly to the set-up proposed in the
ModelNet10 subsection, the aim is to compare the
means of each configuration with the same inde-
pendent variable as indicated previously.

K parameter: Using the Kruskal-Wallis test, we
obtain a p = 0.6842. The results can be seen in
Figure 5.3.

bin parameter: The results can be seen in Fig-
ure 5.4. Once again by running the Kruskal-Wallis
test, we obtain a p = 1.

Accuracy vs. K value for Restaurant Object
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Figure 5.3: The plotted accuracy performance
for every K value for the restaurant object
dataset.
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Figure 5.4: The average accuracy performance
for every bin value for the restaurant object
dataset.

5.3 Grasping

As previously mentioned, for each object in a cat-
egory three grasps are calculated and executed.
There will be two measures of performance that
will be carried out in order to study the perfor-
mance of the GGCNN on orthographic images; to-
tal accuracy and object accuracy. Total accuracy
refers to the total number of successful grasps from
the total attempted grasps, while object accuracy
refers to the number of successfully grasped objects
from the total object set. A total of 90 grasps were
attempted.

As seen in Figure 5.5 the overall success of ob-
ject grasping percentage was relatively high with
an 83.3%, while the total grasping percentage was
significantly worse with a 47% success rate.

Total Grasp and Object Grasp

0 Total Grasp [ Object Grasp
100.00% —
75.00% —

50.00% —

25.00% —

0.00% —

Axe Bottle Cup Glasses Gun Hammer Knife Lamp Mug Plane

Category

Figure 5.5: Results for the total and object
grasping experiments performed per category.

6 Discussion

The following section delves deeper into the results
obtained from the experiments. First, an analysis
focused on the object classification task, which can
be divided by datasets, followed by an examination
of the results obtained in the grasping task.

6.1 Object Classification

An impact study of the bin and k parameters for
the ModelNet10 and restaurant object datasets are
examined to identify their importance on network
performance.

6.1.1 ModelNet1l0 Dataset

The null hypothesis for the ANOVA testisH : 1 =
o = ... = pp, In order to reject the null hypothesis,
our test should produce a p < 0.05.

K parameter: As previously mentioned, the
ANOVA test produced F' = 1.941, indicating that
the variability of performance within the same con-
figurations is slightly high, this could be attributed
to the quality of neighbours available at testing
time. The p-value obtained was p = 0.161, indi-
cating that the performance differences are not sig-
nificantly different; the null hypothesis cannot be
rejected.

bin parameter: As described in the results sec-
tion, the ANOVA test produced an F = 1.223,
which indicates that the variability of performance
within equal bin parameter runs is relatively low.
Furthermore, the obtained p = 0.32 clearly indi-
cates that modifying the bin parameter does not
yield any significant performance difference. This
indicates that the alternative hypothesis is rejected,
and the null hypothesis is true.

Figure 6.1 is the confusion matrix of the configu-
ration with the best performance. This figure gives
a clear example of the performance of the GGCNN
on the ModelNet dataset, as it demonstrates that
the 14.66% misclassification can primarily be at-
tributed to the similarity between the categories
table-desk, dresser-nightstand and sofa-bathtub.

6.1.2 Restaurant Object Dataset

The null hypothesis for the Kruskal Wallis test is
the same as for ANOVA, H : 1 = po = ... = . In
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Figure 6.1: The confusion matrix of the best

configuration run for the ModelNet10 dataset,
where K = 3 and bin = 150.
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Figure 6.2: The confusion matrix of the best
configuration run for the Restaurant Object
dataset, where K =1 and bin = 150

order to reject the null hypothesis, our test should
produce a p < 0.05.

K parameter: The Kruskal Wallis test pro-
duced a p = 0.6842, which clearly indicates that
modifying the K parameter has no impact on the
performance of the network.

bin parameter: As previously described, the
Kruskal Wallis test produced a p = 1, which in-
dicates that modifying the bin parameter yields no
significant difference in the performance of the net-
work.

Once again, by inspecting the confusion matrix
of the best configuration run for the Restaurant
Object dataset in Figure 6.2 it can be identified
that the 4.66% misclassification occurs primarily

due to three categories. These are the fork, spoon
and knife categories. These objects are quite similar
to each other, which explains the erroneous classi-
fications.

6.2 Object Grasping

The results can be explained primarily two fac-
tors, the orthographic projection method and some
of the simulation’s inaccuracies. Object categories
knife, bottle, gun and hammer all had an instance
that could not be successfully grasped, leading to
a negatively skewed success rate, primarily due to
their thin depth at the grasp location, not allow-
ing the gripper to successfully pull the object. Ad-
ditionally, in some occasions the grasp moved to
a slightly inaccurate position causing the grasp to
closely miss the desired location, this was due to
the need to go from a resized orthographic image of
the lower resolution to a real world coordinate sys-
tem. Additionally, this conversion also required the
grasping pipeline to approximate the closest depth
value in that location, adding another potential in-
accuracy.

7 Conclusions

In this section the main conclusions regarding the
classification and grasping tasks are discussed, fol-
lowed by a look into future potential research topics
and the limitations of this study for each task.

7.1 Object Classification

The GGCNN provides an acceptable performance
for 3D object classification tasks, by achieving an
85.34% accuracy on the ModelNet10 dataset and a
95.44% accuracy on the Restaurant Object dataset.
The difference in performance between datasets can
be explained by the data itself. The distance be-
tween objects within a category in the ModelNet10
is greater and the objects have much higher vari-
ability, while the objects for the Restaurant Object
dataset are much similar within categories.

The obtained results indicate that the GGCNN
could potentially be used in real-world environ-
ments where there might be notable memory re-
strictions, however if such restrictions do not exists
there are other neural network tools that provide
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better performance. Using the ModelNet10 dataset
as a benchmark, other networks such as Ortho-
graphicNet, RotationNet, VRN-Ensemble and SP-
Net provide a higher accuracy by a margin of at-
least 4%.

For future research it might be of interest to
benchmark the performance of the network using
the ModelNet40 dataset, and it would be fruit-
ful to examine and study how the parameters for
training the GGCNN can be refined to selectively
improve classification performance. Furthermore, a
study regarding the impact of pooling and distance
functions in a similar classification task using the
GGCNN could be insightful and hopefully generate
better results.

7.1.1 Limitations

The primary limitation with the object classifi-
cation tasks is the number of datasets used for
bench-marking performance. In order to validate
the GGCNN for object classification tasks in the
real world, more datasets would be required. Addi-
tionally, due to the scope of this research, classifica-
tion performance was not evaluated in a real world
environment. It is crucial to test the GGCNN for
object classification tasks in a real world setting to
further validate the results obtained.

7.2 Object Grasping

As seen in the results for the grasping, the GGCNN
achieves an object grasping success rate of 83%,
however, the total grasping success rate indicates
that the GGCNN might not be an ideal choice for
orthographic images with a 47% total grasping suc-
cess rate, a real world approach would be neces-
sary to further evaluate the networks performance.
Additionally due to the low object instance count,
more trials with additional object instances and dif-
ferent object categories would be fruitful.

Furthermore, as a result of the limitations posed
by the simulation environment and approximation
methodology required, a study regarding the im-
pact the of the bins in performance could indicate
whether a higher bin count could provide better
performance, albeit a bin count closer to the image
resolution would defeat the purpose of separating
the image in bins.

7.2.1 Limitations

The object grasping experimental set-up has a no-
table number of limitations, primarily due to the
simulation environment. As previously mentioned,
PyBullet is a python wrapper for the Bullet physics
engine, and it is not fully complete as it lacks
certain functionality from the Bullet Engine. The
number of instances for each category could be big-
ger, this is due to the unavailability of working ob-
ject models, specially since the models themselves
simply provide the visual geometry of the object.
The collision geometry of the object is obtained by
performing Hierarchical Approximate Convex De-
composition, which produces a somewhat crude ap-
proximation of the object’s hit-box, which inher-
ently adds inaccuracies to the grasp execution and
results. Furthermore, because of the down-sampling
created by bins in the GOOD, some accuracy is
again lost. Testing the performance of the GGCNN
with orthographic images in a real world environ-
ment, where less inaccuracies can be present, could
help produce more decisive results.
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