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Abstract: Reinforcement learning algorithms are widely used algorithms concerning action se-
lection to maximize the reward for a specific situation. Q-learning is such an algorithm. It esti-
mates the quality of performing an action in a certain state. These estimations are continuously
updated with each experience. In this paper we compare different adaptations to the Q-learning
algorithm to learn an agent play the board game Othello. We discuss the use of a second es-
timator in Double Q-learning, the addition of a V-value function in QV- and QV2-learning,
and we consider the on-policy variant of Q-learning called SARSA. A multilayer perceptron is
used as a function approximator and is compared to the use of a convolutional neural network.
Results indicate that SARSA, QV- and QV2-learning perform better than Q-learning. The ad-
dition of a second estimator in Double Q-learning does not seem to improve the performance of
Q-learning. SARSA and QV2-learning converge slower and they struggle to escape local minima,
while QV-learning converges faster. Results show that the multilayer perceptron outperforms the
convolutional neural network.

1 Introduction

In January of 2019, one of the world’s strongest
professional Starcraft players was beaten by Al-
phaStar, an AI trained using Reinforcement Learn-
ing (Wender and Watson, 2012). It learned how to
play using an algorithm called Q-learning (Watkins
and Dayan, 1992), and adaptations of Q-learning.
These algorithms are widely used in machine learn-
ing applications. They are used to generate music
playlists (King and Imbrasaitė, 2015), to set prices
in competitive marketplaces (Tesauro and Kephart,
1999) and even to maintain security and privacy in
health-care systems (Shakeel et al., 2018).

Q-learning trains an agent to obtain the highest
rewards. While the agent explores the environment,
actions and states are evaluated. This evaluation
corresponds to the expected sum of rewards ob-
tained in the future. This way the agent knows how
good it is to be in a state. Q-learning continuously
updates these evaluations while the agent traverses
through the environment. Board games are a per-
fect platform for testing reinforcement learning al-
gorithms, such as Q-learning (Watkins and Dayan,
1992). They are often deterministic, multi agent,
and have a fixed set of rules. There are many re-
inforcement algorithms based on Q-learning. These

Q-learning adaptations can enhance the algorithm
in different ways, such as faster learning speed and a
higher performance. Some of these algorithms have
already been implemented in the board game Oth-
ello before (van der Ree and Wiering, 2013). In this
paper we discuss these Q-learning adaptations and
others, which have not yet been applied to Othello.

One Q-learning variant is the on-policy variant
called SARSA (Rummery and Niranjan, 1994). On-
policy means that the agent updates its policy
based on the performed actions. The following re-
search question is asked: How does Q-learning com-
pare to the on-policy variant, SARSA, in terms of
performance?

In Q-learning the agent chooses the action that
has the maximum expected Q-value. This can re-
sult in overestimation and positive bias. We explore
a relatively new approach to Q-learning called Dou-
ble Q-learning (Hado, 2010). In this algorithm two
different networks are used to bypass the positive
bias. The following research question is posed: How
does the performance of Double Q-learning compare
to Q-learning?

The QV-family is a set of learning algorithms,
introduced by Wiering (2005). It combines Q-
learning with original basic TD-learning methods.
Two members of the family, QV- and QV2-learning,
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are implemented to answer the question: How does
the performance of the QV-family compare to Q-
learning?

Q-learning is often used in combination with a
neural network. A multilayer perceptron (MLP)
can be used to estimate the Q-values removing
the need to store individual state evaluations in a
lookup table. This allows the agent to act in never
before seen environments.

Convolutional neural networks (CNN) are fre-
quently used in image analysis to extract complex
spatial patterns (Schmidhuber, 2015). They show
surprisingly good results when applied to board
games, where the board can be seen as a two dimen-
sional image (Smith, 2015). In previous research a
CNN was trained on a huge set of data to learn to
play the game Othello (Liskowski et al., 2018). This
data set contained board compositions and moves
of games played by expert human players. The use
of a CNN showed to be an accurate approach to
predict expert human moves. We are interested in
the use of a CNN in combination with the previ-
ous mentioned algorithms. The following research
questions is posed: How does the usage of a con-
volutional neural network instead of a multilayer
perceptron affect the performance of Q-learning al-
gorithms?

This research is not about making the best Oth-
ello playing agent. The interest goes out to the per-
formance comparison of the learning algorithms.
We compare the performance by training the agents
against fixed opponents, while learning from their
own moves.

Outline. In the next section we explain the
board game Othello. In Section 3 the theory of re-
inforcement learning and different algorithms are
discussed. Furthermore, it describes the application
of the algorithms to Othello. Section 4 describes
the experiments and Section 5 shows the results of
these experiments. Finally we discuss the results in
Section 6 and conclude our research in Section 7.

2 Othello

Othello is a two player strategy board game played
on a 8×8 board. It is a variant of the original board
game Reversi, invented in 1883, and differs in the
initial setup of the board. In the game each player is
represented by a color, either black or white. Discs,

Figure 2.1: User interface of Othello. White
starts. Yellow discs represent possible legal
moves.

black on one side and white on the other, can be
placed to make a play. The goal of the game is to
have the most discs faced up with your color at
the end of the game. The initial game setup starts
with four discs in the center square of the board.
The top right and bottom left discs are white and
the two remaining discs are black. The player using
white discs always starts the game. A disc has to be
placed in a position, such that there is at least one
straight occupied line, between the placed disc and
another disc of the player. This horizontal, vertical
or diagonal line may only consist of discs of the
opponent. All enclosed discs of the opponent in this
line are then flipped such that they now have the
color of the player. The turn now alternates to the
other player. If a player cannot make a move, the
turn also alternates to the other player. The yellow
discs in Figure 2.1 represent the legal moves for the
player using white discs. The game finishes when
both players consecutively are unable to make a
move. The player with the most discs on the board
wins the game. A game is tied when both players
have the same amount of discs.
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3 Reinforcement Learning

Finding a winning strategy in a game can often be
done by using reinforcement learning (Ghory, 2004;
Baxter et al., 2001; Mnih et al., 2015). It frames
the problem of learning, by updating the proba-
bilities of chosen actions, depending on a reward.
Which action should be performed, is determined
by a certain policy π. The goal of the reinforcement
learning (RL) algorithm is to obtain a policy, that
selects actions that result in the highest rewards as
often as possible. In playing board games this can
be seen as a policy that leads to winning the most
games.

The Markov property states that the future is
independent of the past given the present (Sutton
and Barto, 1998). Problems that can be defined as
a Markov Decision Process (MDP), can be solved
by using reinforcement learning. An MDP is de-
fined by a finite set of states s ∈ S and finite set of
actions a ∈ A. The transition function to go from
state s to state s′ by performing action a is defined
by T (s, a, s′). The reward for the agent, when per-
forming action a in state s is defined by R(s, a). The
discount factor 0 ≤ γ ≤ 1 is used in weighing im-
mediate rewards more heavily than future rewards.
We will now explain several reinforcement learning
algorithms that are applicable to the Markov Deci-
sion Process.

Temporal Difference learning Temporal dif-
ference learning is a reinforcement learning algo-
rithm. It can learn directly from raw experiences
without having a model of the environment (Sutton
and Barto, 1998). When there is no clear reward for
a state, it predicts what the reward will be for that
state using previous estimations, essentially boot-
strapping. Therefore, it can learn without having to
wait for a final reward. A policy determines what
action to take in a given state s : a = π(s). The best
policy is the one with the highest state-value for
every state. The state-value estimation, calculated
by the V-value function, is defined by the expected
value, E[.], of the cumulative reward:

V π(s) = E

[ ∞∑
i=0

γiri|s0 = s, π

]
(3.1)

After visiting a state, the TD-method updates its
value estimation of the previous state. This reduces

the difference between the current estimation and
the previous estimation. The value is updated using
the rule:

V̂ new(s)←− V̂ (s) + α(r + γV̂ (s′)− V̂ (s)) (3.2)

Here 0 < α ≤ 1 represents the learning rate,
which controls effect of an experience (s, r, s′) on
the current estimate.

Q-learning Q-learning is a very popular and
widely used reinforcement learning algorithm
(Watkins and Dayan, 1992). Opposed to TD-
learning not only the state is evaluated but also
the accompanying action. They can be evaluated
together as a state-action pair (st, at). The evalua-
tion of this state-action pair is called a Q-value and
is defined by the Q-value function:

Qπ(s, a) = E

[ ∞∑
i=0

γiri|s0 = s, a0 = a, π

]
(3.3)

Board games like Othello are played with two
players and are therefore not fully deterministic.
The next state depends not only on the move of
the agent, but also on the move from the opponent
after that. Hence, the Q-value is calculated by using
state st+1, which is the state after the opponent
has made a move and it is the agent’s turn again.
The value function is defined in Equation 3.4. The
maxaQ(st+1, a) part returns the maximal Q-value
for all possible actions. This essentially evaluates
all possible state-action pairs available from st+1.

Q(st, at) = E[rt]+γ
∑
st+1

T (st, at, st+1) max
a

Q(st+1, a)

(3.4)
The estimated Q-value is updated using the tem-

poral difference between the previous estimate and
the current estimate. The Q-learning algorithm can
be used to update the value function (Watkins and
Dayan, 1992):

Qnew(st, at)←− Q(st, at)+

α(rt + γmax
a

Q(st+1, a)−Q(st, at))

(3.5)

The application of the Q-learning algorithm can
be observed here:
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Algorithm 3.1: Q-Learning

1 Initialize Q(s, a) arbitrarily
2 for each epoch do
3 for each environment step do
4 Observe state st
5 Select at ∼ π(st)
6 Execute at, observe st+1 and reward

rt = R(st, at)
7 Q(st, at)←− Q(st, at) + α(rt +

γmaxaQ(st+1, a)−Q(st, at))
8 st ← st+1

9 end

10 end

SARSA The on-policy variant of Q-learning is
called SARSA (State, Action, Reward, State, Ac-
tion). Q-learning updates its estimates with the
maximum possible Q-value of the successive state-
action pair. SARSA updates with the estimate of
the action performed in the next state while follow-
ing the policy. SARSA’s update rule is the follow-
ing:

Qnew(st, at)←− Q(st, at)+

α(rt + γQ(st+1, at+1)−Q(st, at))

(3.6)

Notice that Q-learning and SARSA are the same
if the policy is defined as π(st) = maxaQ(st, at).
Hence, SARSA is used in combination with other
policies, which do not use a greedy action selection.
For example, in combination with random explo-
ration.

Double Q-learning Problems arise when using
Q-learning in stochastic environments. Q-learning
uses the maximum state-action value as an approx-
imation for the maximum expected state-action
value. Essentially learning estimates from esti-
mates. Always taking the maximum of estimates
introduces positive bias and results in overestima-
tion of state-action pair values (Hado, 2010). Van
Hasselt proposed the use of two estimators to by-
pass the overestimation of action values. This re-
sults in two independent Q-value functions: QA and
QB . Both Q-value functions can estimate Q-values
by using the opposite estimator as an action se-
lector. Hereby decoupling the action selection from

the state-action pair evaluation. Rewriting Equa-
tion 3.5 results in the following:

QA(st, at)←− QA(st, at) + α(rt+

γQB(st+1,max
a

QA(st+1, a))−QA(st, at))

(3.7)

QB(st, at)←− QB(st, at) + α(rt+

γQA(st+1,max
a

QB(st+1, a))−QB(st, at))

(3.8)

When updating, there is a 0.5 probability to use
either Equation 3.7 or Equation 3.8. Either one can
then be used as an estimator.

QV-Learning QV-learning is an on-policy rein-
forcement learning algorithm that keeps track of
two value functions (Wiering, 2005). These are:
the V-value function, which is used in the tempo-
ral difference learning algorithm (Eq. 3.2), and the
Q-value function, which is used in the Q-learning
algorithm (Eq. 3.5). QV-learning learns by first
estimating the expected value of the state, using
the V-value function. Then, this state evaluation is
used to update the estimation of the corresponding
state-action pair of the Q-value function. I.e. since
st+1 is the state after performing action at in state
st, the estimation Q(st, at) can be updated using
the estimation V (st+1):

Qnew(st, at)←− Q(st, at)+β(rt+γV (st+1)−Q(st, at))
(3.9)

Here 0 < β ≤ 1 is the learning rate similar to α.
After the Q-value function is updated, the V-value
function is updated following the TD-learning rule
(Eq. 3.2). QV-learning might be effective, because
the V-value does not take the action into account.
As a result, it may find an optimal value faster than
the Q-value function. The Q-values can therefore
be compared to how an action in a state leads to
different successor states.

QV2-Learning Another adaptation of QV-
learning is QV2-learning (Wiering and Van Hasselt,
2009). The update rule of the Q-value function is
the same as Equation 3.9. The only difference is
how the V-value function is updated. Instead of up-
dating with its own estimates by using the rule in
Equation 3.2, it updates using the estimates of the
Q-value function:
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V new(st)←− V (st) + α(rt + γV (st+1)−Q(st, at))
(3.10)

Essentially, both algorithms are updating each
other.

3.1 Application to Othello

Since the game Othello has a limited set of ac-
tions for every state and the states are fully observ-
able, reinforcement learning is well applicable. It
has shown good performances in previous research
(van der Ree and Wiering, 2013). The evaluation
of a finished game is simple, since there are only
three outcomes: win, tie and loss. However, the re-
ward for intermediate states is not present. Only in
the final state does the agent know what the result
of its previous set of actions was. The lacking of im-
mediate rewards, can be solved by using the previ-
ously discussed reinforcement learning algorithms.
In this section we will show the application of the
previous discussed algorithms to the game Othello.

3.1.1 Value function approximators

Since the state space of Othello is very large
(approximately 1028), storing all estimations in a
lookup table is not feasible (van Eck and Wezel,
2008). The V- and Q-value functions can however
be approximated by using neural networks. The in-
put layer consists of nodes that represent the board
state. The output of the network is an estimated
value of the state or state-action pair, depending
on the used reinforcement learning algorithm. The
neural networks have a learning rate for controlling
the effect of training samples on the estimations
over time. The learning rate in Equations 3.2 and
3.5 can thus be set to 1. The equations then simplify
to Equation 3.11 and Equation 3.12 respectively.

V new ←− rt + γV (st+1) (3.11)

Qnew(st, at)←− rt + γmax
a

Q(st+1, a) (3.12)

There are no intermediate rewards and the final
reward can only be observed in the final state of the
game. In all states except for the last, rt is equal
to zero. In the final state rt is equal to the final
reward of the game for the agent. Here Q(st+1, a)
and V (st+1) are equal to zero since st+1 does not
exist.

We compare two different neural networks as
function approximators. The Multilayer Perceptron
(MLP) is a feed-forward network, that maps a set
of output variables to a given input, using a hier-
archical structure of multiple nodes. The Convolu-
tional Neural Network (CNN), often used in image
recognition, can detect simple visual patterns and
combine them into more complex patterns.

3.1.2 Algorithms

Q-Learning The neural network used for esti-
mating Q-values is called the Q-network. The out-
put layer of the Q-network consists of 60 nodes,
each representing an action. Note here that four
nodes have been removed since these are always
occupied in the initial start of the game. Not every
action is a legal action, since board locations can
be occupied. A move is also illegal if the placed disc
does not result in flipping of opponents discs. These
illegal actions are filtered out. The legal action with
the highest expected reward is performed. Hence,
the policy function is defined as:

π(s) = argmax
a

Q̂(s, a) (3.13)

Always performing the action expected to have the
highest reward, can limit the agent from finding
high rewarding actions and new tactics. Actions
can remain to have the highest reward even though
they are not the best. ε-decreasing exploration
takes care of this problem. With a probability, a
random action can be performed instead of picking
the one deemed optimal. This probability decreases
over time, as best actions become more certain
and less optimal actions should be avoided. This
exemplifies the Exploration-Exploitation trade-off
dilemma.

In every state except for the first the agent takes
the following steps:

1. Observe state st

2. Compute Q(st, a
′
t) for all legal actions a′t

3. Choose an action at using ε-decreasing policy
π

4. Compute target value of Q(st−1, at−1) using
Equation 3.12

5. Use Q-network to compute Q(st−1, at−1)
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6. Back propagate the difference between esti-
mate and target as error

7. Execute at

When training the network, state st−1 is forward
propagated once. Therefore, all errors of the other
output nodes are set to zero. Only the output node
for the performed action is changed. The error is
then back propagated through the network.

SARSA The application of SARSA is very sim-
ilar to the application of Q-learning on Othello. It
also uses a Q-network to approximate the Q-values.
The steps used in the Q-learning algorithm are the
same, except for step 4. Instead of using the update
rule from Equation 3.12 it uses:

Q̂(st, at)←− rt + γQ̂(st+1, at+1) (3.14)

Instead of using the highest estimate of all possi-
ble actions to update the network, the estimate of
the performed action is used.

Double Q-Learning Van Hasselt (2016) shows
an updated version of the Double Q-learning al-
gorithm implemented with a deep neural network.
The principle is the same. There are two networks
each with an independent set of weights. One net-
work, the online network Qonline, is used for action
selection and finding the greedy policy. The other,
the target network Qtarget, is used for evaluating
that policy. The online network is trained with the
update rule while the target network is not. Action
selection of the agent is now as follows:

a = max
a

Qonline(st+1,a) (3.15)

The update rule (Eq. 3.12) is changed into the fol-
lowing:

Qonline(st, at)←− rt + γQtarget(st+1, a) (3.16)

In every state except for the first the agent takes
the following steps:

1. Observe state st

2. Compute Qonline(st, a
′
t) for all legal actions a′t

3. Choose an action at with Eq. 3.15 while using
ε-decreasing policy π

4. Compute target value of Q(st−1, at−1) with
Equation 3.16

5. Use Qonline to compute Q(st−1, at−1)

6. Back propagate the difference between esti-
mate and target as error

7. Execute at

After a predetermined amount of training sam-
ples, the weights of the online network are copied
to the target network.

QV-Learning QV-learning uses both the value
function approximators of Q-learning and TD-
learning. Therefore, it uses a similar Q-network
as discussed in the Q-learning section. The neu-
ral network that approximates the V-value, here-
after V-network, has only one node in the out-
put layer. This node returns the estimated value
of the input state. The Q-network is used to play
Othello and determines the next state, by choos-
ing an action with policy from Equation 3.13. The
V-network is the target network, which is used to
update the weights of the Q-network. Updating is
done in two steps. First the state is evaluated with
the V-network using forward-propagation. Next,
this evaluation is used to back-propagate both the
V-network and the Q-network. This is done using
Equation 3.11 and Equation 3.17 respectively.

Q̂(st, at)←− rt + γV̂ (st+1) (3.17)

QV2-Learning QV2-learning uses the same Q-
network and V-network as QV-learning. Similarly,
the update rule from Equation 3.17 is used to up-
date the Q-network. We use a simple version of
QV2-learning, in which the V-network is updated
using the estimations of the Q-network. The update
rule of the V-network becomes:

V new ←− rt + γQ(st+1, a) (3.18)

3.1.3 Experience replay

Learning from sequential states can negatively im-
pact the learning of neural networks due to the cor-
relation between successive states. A biologically
inspired replay memory mechanism is introduced
which stores experiences in a buffer. The mecha-
nism, called experience replay, allows to smooth the
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distribution of training samples by taking a ran-
dom uniformly distributed set of experiences from
the replay memory. Effectively allowing retraining
and thus refreshing on past experiences (Lin, 1992)
but also removing correlation between states (Mnih
et al., 2015).

An experience is a quadruple (st, at, rt, st+1) and
stored in a buffer with size D. An agent con-
tinuously interacts with its environment, storing
each experience in the buffer. Whenever the buffer
reaches its capacity D it will remove the oldest
memory and adds the new memory. After a certain
amount of environment steps, a random uniformly
distributed sample of experiences is retrieved from
the replay memory buffer. This sample is then pre-
sented to the learning algorithm.

The reinforcement learning algorithms slightly
change in their application to Othello. In Algo-
rithm 3.2 the pseudocode of Q-learning with ex-
perience replay can be observed. Other algorithms
follow this changed procedure and only differ in the
update steps previously mentioned. They are omit-
ted for clarity.

Algorithm 3.2: Q-Learning with experi-
ence replay

1 Initialize Q(s, a) with random weights,
replay buffer B

2 for each iteration do
3 for each environment step do
4 Observe state st
5 Select at ∼ π(st)
6 Execute at, observe st+1 and reward

rt = R(st, at)
7 Store (st, at, rt, st+1) in replay buffer

B
8 end
9 for each update step do

10 sample et = (st, at, rt, st+1) ∼ B
11 Compute target value of Q(st, at)

with Equation 3.12
12 Use Q-network to compute Q(st, at)
13 Back propagate difference between

estimate and target as error
14 end

15 end

4 Experiments

Multilayer perceptron The setup of the multi-
layer perceptron is based on previous research of
van der Ree and Wiering (2013), which showed
good performances with Q-learning. The input
layer consists of 64 nodes, which represent the state
of the 8 × 8 grid. Every node represents a single
space in the grid. The state of a grid space is rep-
resented by a number, which is determined by the
occupation of a disc. The value of the grid space is
1 if occupied by a white disc, -1 for a black disc and
0 when empty. The MLP has one hidden layer of
60 nodes. As previously mentioned, it has an out-
put layer consisting of 60 nodes when used as a
Q-network and one output node when used as a V-
network. Sigmoid activation functions are used on
the hidden and the output layer:

f(a) =
1

1 + e−a
(4.1)

Before training, all network weights are initial-
ized randomly between the values −0.5 and 0.5.
The learning rate of the neural network is set to
0.001. An Adam optimizer is used to update the
network weights.

Convolutional Neural Network The use of
a convolutional neural network (CNN) as a func-
tion approximator is tested against the use of a
multilayer perceptron. The setup of the CNN was
optimized in preliminary experiments. We chose
smaller networks over more complex networks,
since they showed similar performance and training
time was considerably shorter. The CNN consists
of 2 convolutional layers each with 64 feature maps
with 3×3 receptive fields. The stride is set to 1 in all
directions. There are no pooling layers in the CNN
setup since the input, the Othello board state, is al-
ready very small. The input for each layer is padded
with zeros on the border. Two fully-connected lay-
ers are added on top of the network. The hidden
layer contains 64 nodes. Similar to the MLP, the
output layer contains 60 nodes when used as Q-
network and 1 node when used as a V-network.
All layers, except for the output layer, use rectified
linear units (ReLU ) to process outcomes. The out-
put layer uses the sigmoid activation function (Eq.
4.1). Network weights are randomly initialized at
the start with values between -0.01 and 0.01. As
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input, two 8 × 8 channels are used, one for each
player. All values are zero except for the location
of discs of the player, which are set to one. The
two channels are combined into a 8× 8× 2 matrix.
This translation of the board state to a three di-
mensional representation is based on the research
by Liskowski et al. (2018). The learning rate of the
network is set to 0.001.

Starting states Games played by agents with a
deterministic strategy will often end up with the
same results. To prevent this, we do not use the
initial starting state of Othello, but the 236 possi-
ble states after 4 turns. These are all used twice,
since an agent can play as both white and black.
These 472 positions are used in a random order for
training and to measure performance during test-
ing. When all 472 games are played, the order is
shuffled again.

Opponents In all experiments, the agent trained
with reinforcement learning is played against two
opponents: the random agent and the heuristic
agent. The random agent will always pick a random
legal move on its turn. The heuristic agent is a po-
sitional agent. It performs the action that results in
the state with the highest evaluation. Evaluating a
state is done by:

V =

64∑
i=1

xiwi (4.2)

Here i represents a square on the board. xi is 0 if
square i is empty, 1 if it is occupied by a disc of the
agent and -1 if it is occupied by a disc of the oppo-
nent. wi is the weight on square i, which is deter-
mined by a weighted piece counter (Szubert et al.,
2011). This positional agent is used extensively in
previous research in the game Othello (van der Ree
and Wiering, 2013; Yoshioka et al., 1999; Lucas and
Runarsson, 2006). The predetermined weights of
the heuristic player are shown in Table 4.1. Playing
against a positional agent is a good way to measure
the performance, since it plays well and is determin-
istic. The random and heuristic agent were tested
against each other. A test run consists of playing
472 games, using all starting states once. The av-
erage score of 1000 test runs is 0.18 for the random
agent and 0.82 for the heuristic agent.

100 -25 10 5 5 10 -25 100
-25 -25 2 2 2 2 -25 -25
10 2 5 1 1 5 2 10
5 2 1 2 2 1 2 5
5 2 1 2 2 1 2 5
10 2 5 1 1 5 2 10
-25 -25 2 2 2 2 -25 -25
100 -25 10 5 5 10 -25 100

Table 4.1: Weighted piece counter of the heuris-
tic agent

Rewards and parameters The reward for the
end of a game, is valued at 1, 0.5 and 0 for win, tie
and loss respectively. These rewards are used for
training, in e.g. Equation 3.11 and Equation 3.12,
and to measure performance when testing. The ca-
pacity size of the experience replay memory is set
to 50,000 with a sample size of 200. We train on
200,000 games in total. After every game the net-
works are updated. The random exploration value
ε is set to 0.1 and linearly decreases to 0 over the
total amount of games. The discount factor is set
to 1.

5 Results

All algorithms, Q-, DQ-, QV-, QV2-learning and
SARSA, are trained against both the random and
the heuristic agent. Each training session consists
of playing 200,000 games. Every 2000 games the al-
gorithm is tested. A test run consists of playing all
472 starting positions once. For each algorithm 10
training sessions are performed and all test scores
are recorded. The average scores of these trials are
shown in Figure 5.1 and 5.2. The best results, which
are used to compare the performance of the algo-
rithms, are presented in Tables 5.1 and 5.2.

To compare the performance of using a CNN in-
stead of an MLP, all experiments are repeated but
now with a CNN as function approximator. The
results are presented in Figures 5.3 and 5.4 and
Tables 5.3 and 5.4
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Figure 5.1: The average scores of 10 trials
using an MLP. Trained for 200,000 games
versus the random agent

Figure 5.2: The average scores of 10 trials
using an MLP. Trained for 200,000 games
versus the heuristic agent

Figure 5.3: The average scores of 10 trials using
a CNN. Trained for 200,000 games versus the
random agent

Figure 5.4: The average scores of 10 trials using
a CNN. Trained for 200,000 games versus the
heuristic agent
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Algorithm Score St. Err.
Q 0.853 0.026

SARSA 0.919 0.014
DQ 0.860 0.021
QV 0.941 0.011
QV2 0.920 0.015

Table 5.1: Performances of MLPs trained while
playing against a random agent. The score of
the best test during the learning session is pre-
sented, with the standard error.

Algorithm Score St. Err.
Q 0.744 0.030

SARSA 0.772 0.028
DQ 0.748 0.043
QV 0.800 0.015
QV2 0.774 0.026

Table 5.2: Performances of MLPs trained while
playing against a heuristic agent. The score of
the best test during the learning session is pre-
sented, with the standard error.

Algorithm Score St. Err.
Q 0.848 0.034

SARSA 0.875 0.019
DQ 0.849 0.422
QV 0.900 0.020
QV2 0.806 0.095

Table 5.3: Performances of CNNs trained while
playing against a random agent. The score of
the best test during the learning session is pre-
sented, with the standard error.

Algorithm Score St. Err.
Q 0.681 0.052

SARSA 0.736 0.058
DQ 0.688 0.048
QV 0.690 0.167
QV2 0.608 0.165

Table 5.4: Performances of CNNs trained while
playing against a heuristic agent. The score of
the best test during the learning session is pre-
sented, with the standard error.

6 Discussion

Following our results we will look back to the
research questions posed earlier:

How does the performance of SARSA compare to
Q-learning?

The results in Tables 5.1 and 5.2 show that
SARSA outperforms Q-learning while playing
and learning against both the random (r) and the
heuristic (h) agent. These differences are significant
(tr(18) = 7.0678, p < .0001 and th(18) = 2.1577,
p = .0447). This indicates that learning on the ac-
tion performed by the agent, may lead to a higher
performance, than an off-policy approach. While
using a policy with exploration steps, on-policy
learning might converge slower, since it may cause
larger variance. This can be seen in Figure 5.2.

How does the performance of Double Q-learning
compare to Q-learning?

Following the results in Tables 5.1 and 5.2 we
observe that Double Q-learning is on par with
Q-learning when playing against the random and
heuristic agent (tr(18) = .6623, p = .5162 and
th(18) = .2413, p = .8121). Observing Figures 5.1
and 5.2 we see that the development of the per-
formance is the same for Q-learning and Double Q-
learning. This seems to indicate that the addition of
a second estimator does not affect the performance.
These are interesting results as Double Q-learning
often outperforms Q-learning in previous research
(Hado, 2010). A probable cause might be the lim-
ited amount of games played before copying the
online network weights to the target network. This
could negate the effect of having a second estima-
tor, since the networks would have been trained on
a too similar set of experiences thus not reducing
positive bias.

How does the performance of the QV-family com-
pare to Q-learning?

Both QV- and QV2-learning perform better
while learning against the random and the heuris-
tic agent than Q-learning. This can be observed in
Tables 5.1 and 5.2. The differences, compared to Q-
learning, are significant for QV-learning (tr(18) =
9.8572, p < .0001 and th(18) = 7.0585, p < .0001)
and for QV2-learning (tr(18) = 5.2797, p < .0001
and th(18) = 2.3897 p = .0280). The results of the
QV-family are similar to SARSA, which is also an
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on-policy learning algorithm. This again indicates
that an on-policy variant has a better performance
than Q-learning. This is in line with the results of
previous research (Wiering, 2005).

When an agent, trained with QV- or QV2-
learning, plays against a heuristic agent, conver-
gence is slower. This can be observed in Figure 5.2.
Similar to SARSA, this can be explained by the
fact that it is on-policy and the policy function
uses exploration steps. However, the performance
of QV-learning surpasses the performance of Q-
learning after roughly 40,000 games. This might be
due to the fact that both networks are updated
using state evaluations instead of state-action eval-
uations. Similarly, this might explain why the QV-
learning converges faster than Q-learning, when
playing against a random agent, as shown in Fig-
ure 5.1.

QV2-learning converges slower than Q-learning,
when playing against both the random and the
heuristic agent. This might be caused by the fact,
that two random initialized networks update each
other. In combination with the exploratory policy,
converging might be slow.

How does the usage of a convolutional neural net-
work instead of a multilayer perceptron affect the
performance of the Q-learning adaptations?

The performance development when using a
CNN, shows that the CNN is able to extract spatial
information from the board and the agent is able
to learn. Comparing Tables 5.2 and 5.4, we can ob-
serve that all algorithms using a CNN instead of an
MLP as a function approximator, perform worse
when playing against the heuristic agent. The al-
gorithms do show similar development in perfor-
mance when using an MLP or a CNN, except for
QV-learning. QV-learning shows a faster increase of
performance when using a CNN but using an MLP
will result in a higher maximum performance. The
result of playing against a random opponent show
similar performances when using an MLP or CNN.
Do notice the higher fluctuations in the develop-
ment of performance when using a CNN.

7 Conclusion

In this research we have compared the performance
of different adaptations of Q-learning applied to the

game Othello. Also, we compared the performance
when using a CNN instead of an MLP as a function
approximator.

The results show that SARSA outperforms
Q-learning when playing against both agents.
The QV-family also performs better than Q-
learning. QV2-learning converges slower, where
QV-learning converges faster than Q-learning. Dou-
ble Q-learning seems to perform similar to Q-
learning. The usage of a CNN instead of an MLP as
function approximator seems to decrease the per-
formance, when playing against the heuristic agent.
The performance of the trained agents versus the
random agent is similar when using a CNN or MLP.
QV-learning even shows a faster increase in perfor-
mance when using a CNN but will not reach the
highest score of QV-learning when using an MLP.

Since our implementation of Double Q-learning
shows different results than previous research, more
focus could be directed on the use of double es-
timators. Since it produced similar results as Q-
learning, we are interested in optimizing the num-
ber of games until weights are copied over from the
target network to the online network. The usage
of a CNN shows a promising performance develop-
ment when training in QV-learning. Although the
usage of an MLP still outperforms our implementa-
tion of the CNN, it would be interesting to inspect
the performance of more complex CNNs.
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