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Abstract: Research has suggested higher inter-brain synchrony is associated with improved
cooperation. A similar effect was later found to also exist for periods of agreement and disagree-
ment in a monastic debate, where agreement led to a higher inter-brain synchrony. As periods of
agreement and disagreement can be subjective, this study aimed to confirm this effect of higher
inter-brain synchrony during agreement in a more controlled manner. This was done using debate
specific vocabulary in a monastic debate as indication for agreement and disagreeement. In order
to confirm this hypothesis, the inter-brain synchrony between pairs of monks was measured with
the use of EEG hyperscanning. While we did not observe average differences between utterances
reflecting agreement and disagreement, the Support-Vector Machines classifier was able to distin-
guish between the two conditions on a single-trial basis. A feature importance analysis was done
on both the SVM and LDA (Linear Discriminant Analysis) classifiers while mitigating the effect
of correlation between the different features. No significant differences were found between the
importance of different features using the one-way ANOVA. This led to the conclusion that there
is indeed a difference of averages in inter-brain synchrony between agreement and disagreement
where agreement leads to a decrease in inter-brain synchrony.

1 Introduction

Research done by Cui, Bryant, and Reiss (2012)
on cooperation and competition between two par-
ticipants has found that the inter-brain synchrony
between two participants increased during cooper-
ation, but not during competition. This is part of
a recent move within the social neuroscience from
within-individuals to between-individuals to study
a fundamental part of social interactions (Schilbach
et al., 2013). Inter-brain synchrony is one such way
of measuring the neural activity in social interac-
tions.

Inter-brain synchronisation can be measured
using hyperscanning which assesses the level of
coupling between two brains (Schoot, Hagoort,
& Segaert, 2016). There are several methods of
recording neural activity in the brain to perform
hyperscanning, such as EEG, (f)NIRS, and fMRI
(Sänger, Müller, & Lindenberger, 2012; Miller et
al., 2019; Montague et al., 2002). Although EEG
appears to be the more popular choice, due to its

low cost and wider availability.

Inter-brain synchronisation has been studied in
different contexts. Examples of this are group in-
teractions in the classroom (Dikker et al., 2017)
and joint actions such as the leader-follower task
(Sänger et al., 2012) and the movement synchroni-
sation task (Tognoli, Lagarde, DeGuzman, & Kelso,
2007)

One of the reasons for using inter-brain syn-
chrony as a way to measure the neural activity in
social interactions is because inter-brain synchrony
might play a role in positive social interactions.
An earlier named example of this is cooperation,
which was found to lead to an increase in inter-
brain synchrony (Cui et al., 2012). No similar effect
was found for competition. This is likely caused by
the participant having to model and predict the be-
haviour of others in order to cooperate effectively.
Furthermore, synchrony is said to be a critical com-
ponent of human attachments as it evolved from
coordinated group activity (Feldman, 2017).

Research by Mu, Guo, and Han (2016) has shown
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Figure 1.1: Monastic debate as practiced by Ti-
betan monks at Sera Jey monastery (M. K. van
Vugt et al., 2020)

that cooperation in a lab setting leads to more
inter-brain synchronisation in the alpha band (8-12
Hz). A study done by M. K. van Vugt et al. (2020)
tested the difference of inter-brain synchrony be-
tween agreement and disagreement in a more nat-
uralistic environment.

The environment used in M. K. van Vugt et al.
(2020) is a form of practice in Buddhism called
monastic debate (see figure 1.1). Monastic debate
is a highly social and interactive form of medita-
tion - as opposed to mindfulness meditation - in
order to deepen the participating monks’ under-
standing of the philosophical material studied. In a
monastic debate of two participants - but do note
that more people can participate - there is the role
of challenger and defender. The role of the chal-
lenger is to pose questions and statements in such
a way that the defender will agree to statements
that are contradictory. The role of the defender is to
answer the challenger without contradicting them-
selves. During the debate the defender is limited
to four different responses: (1) I agree, (2) please
state a reason why, (3) the reason is not estab-
lished, or (4) no pervasion. The debate ends once
the defender contradicts themselves, the challenger
is unable to force the defender into contradicting
themselves, the challenger breaks down, or a time
limit has been reached (Dreyfus, 2008; M. K. van
Vugt et al., 2019).

A monastic debate starts with the challenger

proposing the topic of the debate. Although the
challenger may directly proceed to debate the de-
fender, it is common to first ask explanations of the
defender in order to understand his position on the
topic. At this point the challenger will begin to set
forth consequences to draw the defender to contra-
dict themselves. The defender on the other hand
tries to block these contradictions which they can
do with the responses given above (M. K. van Vugt
et al. (2020), appendix 1).

M. K. van Vugt et al. (2020) was able to find
a difference in periods of agreement and disagree-
ment in a monastic debate, where periods of agree-
ment and disagreement were defined by monk rat-
ings. This raises the question whether the differ-
ence in inter-brain synchrony is reproducible in a
more controlled manner. Namely, when looking at
simple debate answers. Therefore, this study looks
at the difference in inter-brain synchronisation be-
tween the defender answering ‘I agree’ or ‘please
state a reason why’ (which implies ‘no I do not
agree’). This leads to the research question: “How
is the debate-specific vocabulary used by the debat-
ing monks correlated with inter-brain synchrony?”

It is expected that the debate-specific vocabulary
used by the debating monks is indeed associated
with inter-brain synchrony as this was also found by
M. K. van Vugt et al. (2020) when using agreement
and disagreement as rated by monks. This way, the
following hypothesis was created: “Inter-brain syn-
chrony is positively associated with debate-specific
vocabulary used by debating monks.” Where pos-
itively associated means that there is more inter-
brain synchrony when the debating monks are in
agreement than when they are in disagreement.

In order to test the research question, a new, yet
unpublished, dataset collected by M. K. van Vugt et
al. (2020) is used. The dataset was created by mea-
suring the brain activity of two monks participating
in a monastic debate by the use of EEG. This EEG
can be used for hyperscanning as it was recorded
simultaneously (see Cui et al. (2012) for an exam-
ple of NIRS hyperscanning). Additionally, videos
of the debate were recorded. This can be used to
extract moments of agreement and disagreement.

Earlier research has already laid out a foundation
of the cognitive functions that can be measured by
different bands of wavelengths in EEG. The bands
and their association are the following: 1) the theta
(4-9Hz) oscillations associate with attention, ab-
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sorption and cognitive control (Cavanagh, Frank,
Klein, & Allen, 2010), more specifically, theta os-
cillations in predominantly parieto-temporal loca-
tions are associated with both accumulating and
comparing information (M. K. van Vugt, Simen,
Nystrom, Holmes, & Cohen, 2012), and memory en-
coding and retrieval (Sederberg, Kahana, Howard,
Donner, & Madsen, 2003), 2) the alpha (10-14Hz)
oscillations associate with idling and inhibition
(Händel, Haarmeier, & Jensen, 2011; Pfurtscheller,
Stancák, & Neuper, 1996), 3) the beta oscilla-
tions (14-28Hz) are mostly associated with mo-
tor activity (Brovelli, Ding, Chen, Nakamura, &
Bressler, 2004), and 4) faster gamma (28-48Hz) os-
cillations have been associated with focused atten-
tion (Bauer, Oostenveld, Peeters, & Fries, 2006;
Hoogenboom, Schoffelen, Oostenveld, Parkes, &
Fries, 2006). Research on cooperation and competi-
tion, which is similar to the focus of this study, has
found that alpha and theta bands play an impor-
tant role on the centro-parietal and centro-frontal
regions respectively (Balconi & Vanutelli, 2016; Hu
et al., 2018). Furthermore, research by M. K. van
Vugt et al. (2020) also found the alpha band to
indicate significant differences between agreement
and disagreement in the frontal region. In all in-
stances, cooperation or agreement led to the in-
crease of inter-brain synchrony. In light of these
findings I will also look at the oscillatory power
within-individuals on the theta and alpha band to
examine if these effects can also be found in the
current study.

Being able to classify states of agreement and dis-
agreement can prove useful both in future studies as
well as more practical applications. In future stud-
ies classification can help answer questions such as
whether the debate-specific utterances of the par-
ticipating monks or the ratings of observing monks
are more reliable indicators of agreement and dis-
agreement. On a more practical level, classification
helps in classifying data that has to be investigated
(e.g. videos don’t have to be manually tagged any-
more) and the possibility to do online classification
may arise.

Although the use of classification in EEG has
been studied before (Vézard, Legrand, Chavent,
Fäıta-Aı̈nseba, & Trujillo, 2015; Zhao et al., 2018;
Jrad & Congedo, 2012), the use of classification
on the topic of hyperscanning or cooperation was
not very prevalent (Verdiere, Dehais, & Roy, 2019).

Classification methods that were used include a
variant of Linear Discriminant Analysis (LDA)
(Tharwat, Gaber, Ibrahim, & Hassanien, 2017):
shrinkage LDA (Ahdesmaki & Strimmer, 2012),
Support-Vector Machines (SVM) (Cortex & Vap-
nik, 1995) and extreme learning machine (ELM)
(Huang, Zhu, & Siew, 2007). The differentiation
between agreement and disagreement is a binary
classification task. As such, all three methods are
suitable for binary classification. All three meth-
ods are used to train on the EEG data from the
monastic debates and the labels assigned to these
data. After which the classifiers were used to pre-
dict agreement and disagreement on a single-trial
basis.

2 Methods

In order to answer how debate-specific vocabulary
correlates with inter-brain synchrony, EEG record-
ings of the monks participating in a monastic de-
bate have been taken. With the use of these record-
ings, I have studied the difference in inter-brain
synchrony during agreement and disagreement. I
used these findings as features to train classifiers in
order to find future occurrences of agreement and
disagreement.

The data that I use in this study was collected
in the study by M. K. van Vugt et al. (2020). For
clarity, I summarise the methods of the experiment
here.

2.1 Participants

The participants were all Tibetan monks from the
Sera Jey monastery aged between 20 and 30 years
old. All participants were male. The participants
were recruited by way of an announcement in the
monastery. Additionally, a few monks were asked
directly. In order to limit the difference between
experienced and inexperienced monks M. K. van
Vugt et al. (2020) endeavored to select students
with top marks in their classes. The participants
were rewarded by being served lunch or dinner fol-
lowing their participation. There were two groups
of monks. One group existed out of experienced
monks, which were monks on the Vinaya class level
(equaling at least fifteen years (∼18750 hours) or
more of experience). The other group existed out of
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Figure 2.1: Monastic debate as they were be-
ing recorded with the use of EEG measurement
devices.

inexperienced monks which were from the Paramita
class level (with at least three years (∼3750 hours)
of experience). The experienced monks numbered
a total of 10 while the inexperienced group had 14
monks.

2.2 Design

The monastic debate took place between a pair of
monks. One of the monks played the role of chal-
lenger while the other played the role of defender.
An audience was present during the debates (see
figure 2.1) but they were not allowed to interfere.
Two different debates were held: easy and hard,
where the specific topic of debate was manipulated
in difficulty.

In this study I follow a within-subject design
where every utterance of agreement and disagree-
ment represents a trial.

2.3 Procedure

The experiment is started with the easy debate and
followed up by the hard debate.

Before the experiment was started, the partici-
pants were told about the procedure. They were
told that participation in the study was completely
voluntary and that they had the possibility to quit
at any point of time without repercussions. At
which point the participants gave verbal informed
consent. The study was conducted in accordance
with the declaration of Helsinki.

The topic of the debates was “The Definition of
Bodhicitta”. The reason that this topic was cho-
sen is because of its familiarity among both inex-
perienced and experienced monks. Since the expe-
rienced monks had studied this topic many years
ago, all monks were instructed to review their text-
book for 15 minutes before the debate started.

Before the actual start of the debate the par-
ticipants provided personal information such as
their age, the year they started their studies at
the monastery, and their level in monastic training.
This information was tied to a sequential number
serving as their identification number in order to
anonymise the data. At this point the EEG caps
were applied and the easy debate was performed
followed by the hard debate (see figure 2.1 for an
impression of what the setup looked like). All par-
ticipants played at least one role in the debate. If
time allowed for it, the roles were reversed and the
experiment was repeated. This was the case for al-
most all instances.

2.4 Video recordings

In order to know at which points during the EEG
recordings the words ‘I accept’ and ‘Why?’ were
said, video recordings were made at the same time
as the EEG recordings. In total 44 videos were
recorded which all contained one debate (either
easy or hard) per video. The easy debates took
around 10 minutes while the hard debates took
around 15 minutes, creating an average of about
thirteen minutes per video. In all videos, there was
only one challenger and one defender. 17 videos in-
cluded experienced monks while 27 videos included
inexperienced monks. The videos were recorded
with a video camera that had audio recording ca-
pabilities. The sampling frequency of the audio was
48KHz. The synchronisation of the video recordings
with the EEG measurements were initially done by
indicating the start of the EEG measurements in
the video. In the last 14 videos a different method
was used. One participant would blink their eyes
five times in front of the video camera. This would
result in five easily recognisable blinking artifacts
in the EEG data which would allow us to compute
the temporal offset between the video and the EEG
streams. This was done in order to minimise the
discrepancy in synchronisation between the video
and EEG streams.
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Annotation Easy Hard Total
‘I agree’ 3.83 8.27 270
‘Why?’ 0.35 2.14 55

Table 2.1: An overview of the average num-
ber of annotations established as ground truth
per video grouped on debate category. The last
column notes the total number of annotations
made for that category.

2.4.1 Video analysis

The analysis of the videos was done by three re-
searchers using the BORIS event-logging software
(Friard & Gamba, 2016). Each researcher would
watch the video independently and tag the times
at which the keywords indicating agreement or dis-
agreement were uttered. Any tags that were in com-
mon would be established as ground truth. In order
for a tag to be in common, a tag of one researcher
would have to be within a one second range of the
tag of another researcher, and the tag would have
to be of the same category.

A delay of roughly half a second was introduced
in the annotations as human response time is not
instanteneous. For this reason all trials were moved
back by half a second before the analysis.

A categorisation of the annotations can be seen
in table 2.1. A disparity between the number of an-
notations of hard and easy videos can be noted.
This reflects the difference in difficulty between
both types of debates.

2.5 EEG recordings

The EEG measurements of the participants were
taken using two Biosemi EEG headsets (one for
each participant participating in the debate) with
32 electrodes arranged in the international 10-20
system. Both monks participating in the monas-
tic debate were recorded simultaneously. The sam-
pling rate of the electrodes in the EEG headset is
256Hz but was recorded through a bandpass-filter
of 0.1-1000Hz. The electrodes were adjusted until
the electrical impedances were below 25 kΩ.

2.6 Preprocessing

Movement is an essential part of the monastic de-
bate and makes it more engaging. An example of
this is stomping on the ground after the challenger
makes a statement. Due to this and other move-
ments, a lot of EEG artifacts were created. How-
ever, EEG artifacts were not just created by (ex-
plicit) movement. Other causes of EEG artifacts in-
clude inexplicit movements such as eye blinks, and
jaw-clenching, but also heart beats. Artifacts were
removed as they are not a byproduct of brain activ-
ity and are not relevant for the analysis. Brain ar-
tifacts were identified and removed using indepen-
dent componenent analysis (ICA) (Comon, 1994).
ICA is able to split the signal into different com-
ponents (much like the ear). EEG artifacts such as
heart beats have very different temporal dynamics
than EEG itself. This makes it possible to iden-
tify these sources of EEG artifacts as independent
sources and remove them, before transforming the
signal back into the original space. This way the
signal that is used for analysis is corrected.

The EEG data was cut in segments with an in-
terval of two seconds. One interval exists out of
512 samples (256 x 2) across 32 channels of EEG
data. The power and cross-correlation at each chan-
nel was computed by centering the windows around
values found at a distance of 100ms. For 2 seconds
of EEG - which is the length of each trial - this re-
sulted in 10 samples of cross-correlation and power
spectra across 32 channels.

2.7 Feature extraction

In order to perform time-frequency analysis, the
Fieldtrip toolbox (Oostenveld, Fries, Maris, &
Schoffelen, 2011) in Matlab (MATLAB, 2019) was
used. Raw EEG data was converted by applying
ft_frequencyanalysis() for a given frequency in-
terval. This resulted in the power spectrum for all
channels of that given frequency. The power spec-
tra was then calculated using the mtmconvol()

function from the Fieldtrip toolbox. In order to
prevent spectral leakage, DPSS (discrete prolate
spheroidal sequences) were used as tapers. Multi-
ple tapers were used as they have the advantage of
being able to detect non-stationary signals (M. van
Vugt, Sederberg, & Kahana, 2007). Which is use-
ful considering the way signals are generated in the
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brain (Kaplan, Fingelkurts, Fingelkurts, Borisov, &
Darkhovsky, 2005).

2.8 Statistics

The data analysis was carried out using the Mat-
lab programme (MATLAB, 2019) with the use of
the Fieldtrip toolbox (Oostenveld et al., 2011). The
EEG data were first frequency-transformed. This
was done by convolving it with a Hanning taper as
the bands of interest were below 30Hz. I defined
the theta band to contain the frequencies between
4 and 8 Hz (Sederberg et al., 2003), and the alpha
frequency to contain the frequencies between 9 and
13Hz (Händel et al., 2011).

For all trials the inter-brain synchrony of both
participants and the oscillatory power for each in-
dividual participant was computed in a within-
trials design for every channel and for the frequency
bands of interest (M. K. van Vugt et al., 2020).
This was then compared using linear mixed effects
models (Pinheiro & Bates, 2004). I made use of
the linear mixed effects models as it is robust to
violations of independence (Baayen, Davidson, &
Bates, 2008). Furthermore, it is less susceptible to
individual differences between participants and the
statistical power is higher than that of a regular
ANOVA. The baseline used for the t-statistics in
the linear mixed effects models is 0.

As a different model was made for each combina-
tion of channel and frequency band, the chance of
making a type-I error increases. In order to counter-
act this, the False Discovery Rate (FDR) method
(Benjamini & Hochberg, 1995) was used to calcu-
late the correction in p-value. The False Discovery
Rate method was used as opposed to the (Holm-
)Bonferroni method (Holm, 1979) as the risk of
making a type-I error could be manually controlled.
The cut-off Q-value of the FDR was set to 0.05, lim-
iting the chance of significant values that are false
positives to 5% in multiple-measurements testing.

Outliers were defined as being more than 4 stan-
dard deviations removed from the mean. All out-
liers were removed from the dataset.

2.9 Classification

Classifiers were used to detect if I could discrimi-
nate between utterances of agreement and disagree-
ment. The classifiers were trained on all channels,

but different instances of the classifiers were used
for different data sources. These data sources were
a combination of inter-brain synchrony, oscillatory
power of the challenger, or oscillatory of the de-
fender and the theta or alpha frequency band.

In the classification selection, a few characteri-
sations were preferable. First of all, a supervised
classifier was needed as I wanted the classifier to
classify the data based on the two labels (agree-
ment and disagreement). This also means that I
am working with a binary output. Furthermore, our
data had a low number of samples and a high num-
ber of dimensions.

A possible classifier that is well-grounded in
both the neuroscience and machine learning liter-
ature (Mechelli & Vieira, 2019; Wei et al., 2018;
Bayram, Kizrak, & Bolat, 2014; Saccà, Campolo,
Mirarchi, & Gambardella, 2018) is the Support-
Vector Machines (SVM) classifier (Cortex & Vap-
nik, 1995). SVM is able to work well with a high-
dimensionality of data, this is also true when work-
ing with a low number of samples. Another possi-
bility is the shrinkage Linear Discriminant Analysis
(shrinkage LDA) (Tharwat et al., 2017; Ahdesmaki
& Strimmer, 2012). Like SVM it is able to work
well with a high number of dimensions, even when
using a low number of samples, due to the shrinkage
adaptation. Additionally, unlike SVM it has feature
selectivity. Finally, a third classifier that has been
used to classify EEG data in the literature is the
Extreme Learning Machine (ELM) (Huang et al.,
2007). Due to the random initialisation of the hid-
den layer, it is able to get a reasonably good perfor-
mance with a short training time. This is an advan-
tage over LDA, which is not able to deal well with a
low number of samples (although this is somewhat
mitigated by the shrinkage adaptation). All three
classifiers will be tested in this study.

The classifiers were implemented in the Python
programming language (van Rossum, 1995), using
the scikit-learning (Pedregosa et al., 2011) machine
learning library. As the ELM algorithm wasn’t im-
plemented in scikit-learning, a separate library was
used (Lambert, 2013). I implemented the SVM clas-
sifier by using cross-validation on the training data
for estimating the C and gamma parameters. I used
the Gaussian radial basis function as kernel as it is
very generalisable (no prior knowledge about the
data was needed). In the implementation of LDA I
used the least squares solution solver as it can be
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combined with shrinkage and it does not need to
calculate the covariance matrix (which would make
it unsuitable for usage with a high number of fea-
tures). The shrinkage itself is determined by using
the Ledoit-Wolf lemma. For the implementation of
ELM I used the traversal method to find a good
number of hidden neurons. The activation function
used is the hyperbolic tangent function:

tanh(x) =
sinh(x)

cosh(x)
=
e2x − 1

e2x + 1

In all implementations k-fold cross-validation was
used in order to prevent overfitting.

The classifiers were tested by using k-fold cross-
validation with k = 10. The performance was mea-
sured by the accuracy, precision and recall. As pre-
cision and recall are both measurements based on
the relevance of the data, the F1 score is used as
an additional measurement of the quality of the
classifications for better interpretability as it turns
precision and recall into one score of quality.

2.9.1 Feature importance analysis

In order to see what features are used by the clas-
sifiers to classify the testing data, two different fea-
ture importance analyses were performed. The first
feature importance analysis will make use of an al-
gorithm that trains the classifier once with all fea-
tures and n times with n − 1 features where each
time a different feature will be removed. This way
the baseline performance (where all features are
used) can be compared to the performance when
a feature is not used. This makes it possible to see
whether a feature plays an important role in the
classifier. In the second feature importance analysis
a similar approach is used, but instead of removing
the feature, its values were shuffled in the testing
phase. This analysis is also known as permutation
importance (Breiman, 2001).

One problem that arises when doing feature im-
portance analysis is that it may undercut the im-
portance of a feature when it correlates with other
features. In order to mitigate this, the features were
organised in hierarchical clusters based on the cor-
relation distance calculated with Spearman rank-
order correlation coefficient (Zwillinger & Kokoska,
2000). These clusters were merged until 10 clusters
remain. One feature from each cluster was picked

and used in the classifier for the feature importance
analysis.

In order to determine whether certain features
are important for the classifier to train on, a one-
way ANOVA (Heiman, 1997) was performed for ev-
ery feature importance analysis. This establishes
whether a difference in change in performance
(against the baseline) can be measured among the
different features.

3 Results

I examined whether there was a difference in inter-
brain synchrony between agreement and disagree-
ment, and what frequency bands show such a differ-
ence. In addition, I asked whether there were differ-
ences in oscillatory power between agreement and
disagreement for both the defender and the chal-
lenger.

Furthermore, different classifiers were used in or-
der to test whether it is possible to distinguish be-
tween the agreement and disagreement utterances
on a single-trial basis.

3.1 Average differences in brain ac-
tivity between agreement and
disagreement

I first examined if there was a difference in inter-
brain synchrony between agreement and disagree-
ment using LMEs. A topography plot of the re-
sults can be seen in figure 3.1. When considering
a false-discovery rate of 0.05, no significant val-
ues were found. However, when uncorrected us-
ing a p-value threshold of 0.01, the channels Pz
(estimate = −0.547, t(320) = −2.745, p = 0.007),
and PO4 (estimate = −0.5098, t(320) = −2.682,
p = 0.008) on the alpha band show a significant
difference. In these channels, inter-brain synchrony
is smaller for agreement than for disagreement.

I also examined the difference in within-
individual oscillatory power between disagreement
and agreement. I fitted LMEs for both the power of
the challenger and the defender. A topography plot
of the results can again be seen in figure 3.1. When
considering a false-discovery rate of 0.05, no signifi-
cant values were found. However, when uncorrected
using a p-value threshold of 0.01, the channels CP1
(estimate = 0.1727, t(318) = 2.696, p = 0.007),
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Pz (estimate = 0.2674, t(318) = 3.265, p = 0.001),
and CP2 (estimate = 0.1533, (t = 315) = 2.98,
p = 0.003) on the theta band show a significant
difference for the power of the defender. This could
potentially indicate a difference of power for agree-
ment compared to disagreement in the defender.

3.2 Classification

As significant average differences indicated by the
LMEs do not equal being able to predict on a single-
trial level, I trained and tested three different clas-
sifiers on six different datasets.

These datasets are the same datasets that were
used for calculating the statistics, namely: inter-
brain synchrony (IBS), power in the defender (Pow.
Def.), and power in the challenger (Pow. Chal.) on
both the theta and alpha band. However, as the
data was unbalanced (269 agreement samples vs.
55 disagreement samples), the agreement samples
were subsampled and the disagreement samples
were supersampled to create a balanced dataset of
110 samples for both conditions. The data was then
seperated based on the frequency band resulting in
six different pools of data. This makes it possible to
see what data source results in better performance.

In the end, a feature importance analysis was
performed to test what channels were important for
a classifier to perform well on a single-trial level.

3.2.1 Support Vector Machines

The first classifier used is the Support Vector Ma-
chines (SVM) classifier. The hyperparameters C
and gamma were estimated individually for each
data source, using an exhaustive grid search. Both
parameters were in the log space: 1x with the ranges
−2 ≤ x ≤ 13 and −9 ≤ x ≤ 3 for C and gamma
respectively. The step size of x was 1 for both pa-
rameters.

The average accuracy of the SVM was 0.92 when
tested on all different datasets. The distribution of
accuracy scores can be seen in figure 3.2. A further
comparison of the scores among the different data
sources can be seen in figure 3.3. Table 3.1 shows
the performance details on all data source. Both the
figure and table show that there is very little dif-
ference in performance between the different data
sources. One thing that should be noted is that the
recall score is (almost) 1.0, meaning that it almost

Data source Acc. Precision Recall F1
θ IBS 0.93 0.88 1.0 0.93

θ Pow. Def. 0.93 0.88 1.0 0.94
θ Pow. Chal. 0.92 0.87 1.0 0.93

α IBS 0.92 0.86 1.0 0.93
α Pow. Def. 0.92 0.87 1.0 0.93
α Pow. Chal. 0.91 0.86 0.99 0.92

Table 3.1: Performance of the SVM classifier on
testing data for all different data sources.

Data source Acc. Precision Recall F1
θ IBS 0.63 0.63 0.63 0.63

θ Pow. Def. 0.61 0.64 0.49 0.56
θ Pow. Chal. 0.53 0.53 0.52 0.52

α IBS 0.62 0.63 0.58 0.60
α Pow. Def. 0.65 0.73 0.49 0.59
α Pow. Chal. 0.49 0.48 0.36 0.41

Table 3.2: Performance of the shrinkage LDA
classifier on testing data for all data sources.
Showing a slightly above odds performance for
all data sources with the exception of the power
of the challenger on both the theta and alpha
band. The classifier performs no better than
chance on these data sources and on the alpha
band the recall is even below chance.

always classifies the ‘Why?’ annotation correctly.
This is likely due to the decision boundary leaving
more space (for error) for the ‘Why?’ annotations
than for the ‘Accept’ annotations.

3.2.2 Shrinkage Linear Discriminant Anal-
ysis

The second classifier that was used is the shrinkage
LDA. The average accuracy of the shrinkage LDA
was 0.59 when tested on all different datasets. The
distribution of accuracy scores can be seen in fig-
ure 3.2. A difference in performance can be seen
between the different data sources. Both figure 3.3
as well as table 3.2 show a performance not better
than odds for the power of the challenger in both
the theta and alpha band.
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Figure 3.1: Topographical plot of difference between agreement and disagreement in terms of
significance for all channels, as measured by the Linear Mixed Effects model. The gradient from
blue to yellow indicates smaller p-values, where yellow is significant.
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Figure 3.2: Comparison of the performance
across all data sources grouped by classifier.

Figure 3.3: Comparison of the performance
across the different data sources. The box-
plots visualise the performance of all classifiers
grouped together. The individual scores of k-
fold cross validation is indicated by dots, which
are colour-grouped by classifier.

Data source Acc. Precision Recall F1
θ IBS 0.76 0.9 0.58 0.71

θ Pow. Def. 0.74 0.87 0.58 0.69
θ Pow. Chal. 0.76 0.87 0.61 0.71

α IBS 0.72 0.83 0.55 0.66
α Pow. Def. 0.74 0.82 0.64 0.72
α Pow. Chal. 0.73 0.81 0.58 0.68

Table 3.3: Performance of the ELM classifier on
all data sources.

3.2.3 Extreme Learning Machine

The third classifier used is Extreme Learning Ma-
chine (ELM). In order to find a good number of hid-
den neurons, the traversal method was used. The
range of possible hidden neurons had a limit equal
to the number of samples in the data to minimise
overfitting, and a step of 1. The traversal method
was used for each data source individually.

The average accuracy of ELM was 0.74 when
tested on all different datasets. The distribution of
accuracy scores can be seen in figure 3.2. ELM per-
forms above odds, and although it does not have
a better performance than SVM, it does perform
better than shrinkage LDA as is visualised in fig-
ure 3.3. Table 3.3 shows the different performance
measurements for all data sources. There does not
seem to be a clear difference between different data
sources.

3.2.4 Classifier feature importance analysis

Two different feature importance analyses were
performed on the shrinkage LDA and SVM classi-
fiers. Shrinkage LDA was used due to its sensitivity
to the variance of different channels, however it is
offset by its performance which is not much better
than odds. SVM on the other hand has a good per-
formance but also a clear decision boundary, mak-
ing it less ideal for feature importance analysis.

The Spearman rank-order correlation coefficients
of the features were calculated for all different
sources of data (inter-brain synchrony, power chal-
lenger and power defender) on both bands. This
was followed up by hierarchical clustering. An ex-
ample of this can be seen in figure 3.4, where the
hierarchy is shown for inter-brain synchrony on the
theta band.
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Figure 3.4: A dendogram of the correlations
between the inter-brain synchrony of differ-
ent channels on the theta band in a hierarchi-
cal manner. The lower two (or more) channels
merge, the more correlated these channels are.

The hierarchical clustering was used in order to
group the features with the highest correlations in
the same cluster. Clusters were merged until 10
clusters remained. This leads to the minimum cor-
relation distances of 1.55, 0.7 and 1.1 for inter-brain
synchrony, power defender, and power challenger
on the theta band respectively, and 1.7, 0.8, and
1.1 for inter-brain synchrony, power defender, and
power challenger on the alpha band respectively.
One feature was picked from every cluster and the
feature importance analysis was done on these re-
maining ten channels.

In the first feature importance analysis, the
change in performance was tested by leaving one
feature out and testing the performance against
the baseline (of all features). In the second fea-
ture importance analysis, permutation importance
(Breiman, 2001) was used. For all combinations of
data sources, frequency bands, and classifiers a one-
way ANOVA (Heiman, 1997) was performed on the
feature importance analysis to see if there was a dif-
ference in importance among the channels. These
results can be found in table A.1 and A.2 for the
first and second analysis respectively. No signficant
differences were found. The p-values were not cor-
rected for multiple measurements.

4 Discussion

This study extends previous inter-brain synchrony
research about agreement and disagreement by
looking at inter-brain synchrony during utterances
of agreement and disagreement in a monastic de-
bate. To reach this goal a number of analyses were
performed.

In the first analysis I made use of linear mixed ef-
fects models to find a statistical difference between
agreement and disagreement and the rate of syn-
chrony. Although numerous trends for a decrease
in inter-brain synchrony were found, none of these
trends were statistically significant.

This result was unexpected as M. K. van Vugt
et al. (2020) found an increase in inter-brain syn-
chrony during periods of agreement compared to
periods of disagreement. The trends found in this
study on the other hand indicate a decrease in inter-
brain synchrony for agreement. However, this could
potentially be explained by another result found in
M. K. van Vugt et al. (2020). As the channels that
were found to be sensitive to monastic experience
showed a decrease in inter-brain synchrony during
periods of agreement when compared to periods of
disagreement. These channels (Fp, CP1, and par-
tially Pz) partly overlap with the channels found to
indicate a trend of significance in this study.

Additionally I examined whether there was a sig-
nificant difference between agreement and disagree-
ment in within-individual oscillatory power. Nu-
merous trends towards a significant difference be-
tween agreement and disagreement and oscillatory
were found, but none of these proved to be statis-
tically significant.

In the second analysis I looked into whether it
would be possible to distinguish between the ‘Ac-
cept’ and ‘Why?’ utterances on a single-trial basis.
Of the three different classifiers that were used to
reach this goal, the Support-Vector Machines clas-
sifier was able to distinguish between agreement
and disagreement with an average accuracy of 92%.
This was expected as it corresponds both to previ-
ous research by M. K. van Vugt et al. (2020) and
Hu et al. (2018). Subsequently, different algorithms
were employed to find the channels that lead to this
accuracy, but none were found. A potential expla-
nation for the inability to clearly pinpoint certain
channels both here and in the statistical analysis
might be that the difference between agreement
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and disagreement is carried by an interaction ef-
fect among multiple channels. This would in turn
also explain why the SVM classifier could detect a
difference while the LMEs could not.

This study has several potential issues. One
such issue is the synchronisation between the video
footage that was recorded and the EEG measure-
ments. As the annotations were based on the time
denoted in the video footage, this could lead to
some discrepancy between the annotation time and
the EEG measurement time. After several sessions,
this discrepancy was reduced by having the partic-
ipant blink in front of the camera before the exper-
iment. This is very visible both on camera and in
the EEG data and could thus be used as synchro-
nisation point.

Another issue was the language gap between the
monks that participated in the debate and the re-
searchers that annotated the videos. Although the
researchers were informed of the utterances that
they should pay attention to, in some cases this was
not clearly audible. An analysis of the annotations
further confirmed this issue, as only about 10% of
all annotations were agreed upon by all researchers.
Context would give more clarity about whether the
monks agreed or disagreed in circumstances where
that would otherwise be more difficult.

In regards to the research question, the hypothe-
sis predicted a positive association in inter-brain
synchrony between disagreement and agreement.
Based on the results achieved by the usage of ma-
chine learning, the hypothesis was indeed correct
in predicting that there is an association in inter-
brain synchrony between agreement and disagree-
ment. However, whether this association is positive
or negative remains disputable, as feature impor-
tance analyses of the classifiers did not yield any
results and the results of the LMEs seem to hint at
a decrease of inter-brain synchrony in the Pz and
PO4 channels - although it was not found to be
significant.

Future research can be headed in two directions:
the further investigation of inter-brain synchrony
or further research into the application of machine
learning to distinguish between different mental
states. On the topic of further investigation of inter-
brain synchrony, it would be good to look into pos-
sible causes of the confliciting results between the
statistics in this study and the results in M. K. van
Vugt et al. (2020). Possible causes can include a dif-

ference in timing (e.g. the annotations in this study
could be timed earlier and therefore mostly miss the
desired effect), but also the fact that a more holisitc
approach was used in M. K. van Vugt et al. (2020).
On the topic of machine learning, the findings in
this study could be further expanded upon by at-
tempting to distinguish between the ‘neutral’ state
and the agreement and disagreement states. This
would be relevant for further research into the de-
velopment of a brain-computer interface that would
be able to classify the different mental states online.
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Saccà, V., Campolo, M., Mirarchi, D., & Gam-
bardella, A. (2018, 08). On the classification
of EEG signal by using an SVM based algo-
rithm. In (p. 271-278). doi: doi:10.1007/978-
3-319-56904-826

Sänger, J., Müller, V., & Lindenberger, U. (2012).
Intra- and interbrain synchronization and
network properties when playing guitar in
duets. Frontiers in human neuroscience, 6 ,
312-331. doi: doi:10.3389/fnhum.2012.00312

Schilbach, L., Timmermans, B., Reddy, V., Costall,
A., Bente, G., Schilicht, T., & Vogeley, K.
(2013). Toward a second-person neuroscience.
Behavioral and Brain Sciences, 36 , 393-462.
doi: 10.1017/S0140525X12000660

Schoot, L., Hagoort, P., & Segaert, K. (2016).
What can we learn from a two-brain ap-

proach to verbal interaction? Neuroscience
and Biobehavioral Reviews, 68 , 454-459. doi:
doi:10.1016/j.neubiorev.2016.06.009

Sederberg, B., Kahana, M. J., Howard, M. W.,
Donner, E. J., & Madsen, J. R. (2003).
Theta and gamma oscillations during en-
coding predict subsequent recall. Jour-
nal of Neuroscience, 23 , 10809-10814. doi:
doi:10.1523/JNEUROSCI.23-34-10809.2003

Tharwat, A., Gaber, T., Ibrahim, A., & Hassanien,
A. E. (2017). Linear discriminant analysis:
A detailed tutorial. AI Communications, 30 ,
169-190. doi: doi:10.3233/AIC-170729

Tognoli, E., Lagarde, J., DeGuzman, G., & Kelso,
J. (2007). The phi complex as a neuromarker
of human social coordination. Proceedings
of the National Academy of Sciences of the
United States of America, 19 , 8190-8195. doi:
doi:10.1073/pnas.0611453104

van Rossum, G. (1995, May). Python tuto-
rial (Tech. Rep. No. CS-R9526). Amster-
dam: Centrum voor Wiskunde en Informatica
(CWI).

van Vugt, M., Sederberg, P., & Kahana, M.
(2007). Comparison of spectral analy-
sis methods for characterizing brain oscil-
lations. Journal of Neuroscience Meth-
ods, 162 , 49-63. doi: https://doi-org.proxy-
ub.rug.nl/10.1016/j.jneumeth.2006.12.004

van Vugt, M. K., Moye, A., Pollock, J., John-
son, B., Bonn-Miller, M. O., Gyatso, K.,
. . . Freso, D. M. (2019). Tibetan bud-
dhist monastic debate: psychological and
neuroscientific analysis of a reasoning-based
analytical meditation practice. Progress
in Brain Research, 244 , 233-253. doi:
doi:10.1016/bs.pbr.2018.10.018

van Vugt, M. K., Pollock, J., Johnson, B., Gy-
atso, K., Norbu, N., Lodroe, T., . . . Fresco,
M. (2020). Inter-brain synchronization in the
practice of tibetan monastic debate. Mindful-
ness, 11 , 1105-1119. doi: doi:10.1007/s12671-
020-01338-1

van Vugt, M. K., Simen, P., Nystrom, L. E.,
Holmes, P., & Cohen, J. D. (2012). EEG os-
cillations reveal neural correlates of evidence
accumulation. Frontiers in Neuroscience, 6 .
doi: 10.3389/fnins.2012.00106

Verdiere, K. J., Dehais, F., & Roy, R. N. (2019).
Spectral EEG-based classification for opera-

14



tor dyads’ workload and cooperation level es-
timation. Conference Proceedings - IEEE In-
ternational Conference on Systems, Man and
Cybernetics, 2019-october , 3919-3924. doi:
doi:10.1109/SMC.2019.8913848
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A Appendix

The appendix contains data that was too tedious
to present in-line.

Data source Shrinkage LDA SVM
θ inter-brain synchrony F(9,90) = 0.1461, p = 0.9981 F(9,90) = 0.2877, p = 0.9765
θ power challenger F(9,90) = 0.4002, p = 0.9319 F(9,90) = 0.3405, p = 0.9589
θ power defender F(9,90) = 0.1137 p = 0.9993 F(9,90) = 0.3423, p = 0.9583

α inter-brain synchrony F(9,90) = 0.2404, p = 0.9875 F(9,90) = 0.3254, p = 0.9646
α power challenger F(9,90) = 0.2670, p = 0.9819 F(9,90) = 0.1223, p = 0.9991
α power defender F(9,90) = 0.1400, p = 0.9984 F(9,90) = 0.8800, p = 0.5462

Table A.1: One-way ANOVA statistics of the
first feature importance analysis.

Data source Shrinkage LDA SVM
θ inter-brain synchrony F(9,90) = 0.1467, p = 0.9981 F(9,90) = 0.5297, p = 0.8495
θ power challenger F(9,90) = 0.5636, p = 0.8234 F(9,90) = 0.0506, p = 1
θ power defender F(9,90) = 0.1355, p = 0.9986 F(9,90) = 0.2546, p = 0.9847

α inter-brain synchrony F(9,90) = 0.2300, p = 0.9893 F(9,90) = 0.2696, p = 0.9812
α power challenger F(9,90) = 0.3785, p = 0.9426 F(9,90) = 0.9630, p = 0.4758
α power defender F(9,90) = 0.0804, p = 1 F(9,90) = 0.9630, 0.4758

Table A.2: One-way ANOVA statistics of the
second analysis.
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