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Abstract: Argumentation-Based Learning (ABL) is a newly developed algorithm for on-line
incremental learning which has been shown to have outperformed other algorithms in both
learning speed and precision. To expand upon the comparisons made to other algorithms in the
original paper, this study focused on tabular and Deep Q-Learning. A genetic algorithm was used
to explore the parameters for Deep Q-learning. The ε-greedy and Boltzman exploration policies
for the Deep Q-Learning algorithm were considered. It was found that ABL outperforms both
tabular and Deep Q-Learning, both in terms of final precision and learning speed. However, it
should be noted that the search for parameters for the Deep Q-Learning neural network and its
exploration policy were by no means exhaustive, and further investigations are required for a
more definitive conclusion.

1 Introduction

When Autonomous Systems are designed to op-
erate in very dynamic environments such as the
real world, it is impossible to account for each
possible situation these systems may encounter.
Therefore an agent operating in those environments
needs to be able to make decisions about situations
which may not have been encountered prior, and
change their decision making strategies based on
the outcomes of such actions. In order to achieve
these goals the Argumentation-Based Learning al-
gorithm was designed, which is rooted in argumen-
tation theory (Ayoobi et al. (2019)). This method
is promising and outperformed other algorithms
such as a näıve Bayesian classifier, and the PART,
PRISM, ID3, J48, ORF and ISVM algorithms on
the same tasks. ABL performs better both in terms
of learning speed and accuracy. In order to ex-
pand upon this set of comparisons to other appli-
cable algorithms, this research will focus on com-
paring the performance of ABL with the perfor-
mance of two other methods, tabular Q-learning
and approximation-based Q-learning using a neu-

ral network, also known as Deep Q-learning.

1.1 Argumentation-Based Learning

Argumentation-Based Learning (ABL) is an algo-
rithm that makes use of an Argumentation Frame-
work (AF) and a Bipolar Argumentation Frame-
work (BAF) (see Dung (1995) and Amgoud et al.
(2008), respectively). It learns and chooses which
behaviour to perform via interaction of two units:
The hypothesis argumentation unit (using AF),
and the hypothesis generation unit (using BAF).
When a scenario is presented to an agent using
ABL, the hypothesis argumentation unit generates
the first action to perform in order to resolve the
situation. If this fails, this information is passed
on to the hypothesis generation unit. This unit is
tasked with generating a second guess for the cor-
rect action to take, as well as updating the hypoth-
esis argumentation unit. This architecture can be
seen in figure 1.1.

1



Figure 1.1: The high-level architecture of ABL,
taken from Ayoobi et al. (2019).

1.1.1 Argumentation Frameworks

An argumentation framework is a pair AF =
(AR,Ratt), where AR is a set of abstract argu-
ments and Ratt a set of attack relations, formally
Rarr ⊆ AR× AR (Dung (1995)). These arguments
and their relations can be used to reason about
which sets of arguments can be held without con-
flict.

1.1.2 Bipolar Argumentation Frameworks

A bipolar argumentation framework is an argumen-
tation framework expanded with an additional sup-
porting relation (Amgoud et al. (2008)). Formally,
it is a triple BAF =< AR,Ratt, Rsup >, where AR
is a set of abstract arguments, Ratt a set of attack
relations Ratt ⊆ AR×AR and Rsup is a set of sup-
port relations Rsup ⊆ AR×AR. Support relations
have a weight, which can be used to assign a nu-
merical value to how well supported an argument
is. This can be used to distinguish which argument
is seen as defeating another in the case of a mutual
attack relationships.

1.1.3 Argumentation theory in machine
learning

Argumentation theory has been combined success-
fully with machine learning. An interesting applica-
tion is using argumentation in order to clarify and
improve classifications (Možina et al. (2007)). This
is done by allowing an expert to provide the reasons
for a classification with an example. Further, this
system will not only produce classifications, but

provide reasons alongside with it. This allows for
the output to be understood by experts in the field
that the classifier is performing in and allows them
to correct erroneous reasonings. Other interesting
uses have been proposed in the field of linguistics,
where argumentation theory was used for out-of-
domain sentiment classification (Carstens and Toni
(2015) and Carstens and Toni (2017)), and argu-
ment mining (Carstens and Toni (2017)).

1.2 Q-learning

Q-learning has shown successes in domains where
learning must occur through interaction with the
environment, which makes it a potentially suitable
approach for the scenarios as discussed in Ayoobi
et al. (2019). Examples of such successes are play-
ing certain video games such as pong and breakout
better than an expert human player (Mnih et al.
(2015)). Q-learning in general, and the implemen-
tations chosen in this paper, will be discussed in
section 2 and section 3 respectively.

2 Background

In this section, background information on a
variety of topics is discussed. If the reader is
interested in the actual implementation, this can
be found in section 3 instead.

In subsection 2.1 active reinforcement learning
is discussed. Subsection 2.2 up to subsection 2.5
discusses Q-learning. In subsection 2.6, neural
networks are briefly discussed. Finally, genetic
algorithms are discussed in subsection 2.7.

2.1 Active reinforcement learning

In active reinforcement learning problems, the goal
is to learn the best action to take in any given sce-
nario, under the restriction that the world is not
fully observable to the agent(s) acting in the en-
vironment (Russel and Norvig (2016)). A function
that tells such an agent which action to take in
any given state is called a policy (π). The goal is
thus to find the optimal policy, that is a policy that
maximizes the possible rewards received. The prob-
lem can be described as a set of states S, a set of
actions that the agent can take A, and a function
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R : S × A × S 7→ R which tells us the reward the
agent receives for performing an action in a start-
ing state and ending up in a subsequent state. It
is known that applying an action in a state may
result in a state transition, but it is not known to
which states state-action pairs transition to. More-
over, these state transitions are stochastic. The set
of possible states and actions that can be taken are
known. This allows us to give a formal definition of
a policy as: π : s 7→ a,∀s ∈ S. The best actions to
take in the environment are learned through inter-
action, which is where the agent takes an action in
the environment. This results in a sample, a tuple
(s, s′, a, r), with s ∈ S, s′ ∈ S, a ∈ A and r ∈ R.
This tuple contains the original state s, the action
the agent took in that state a, the resulting state
after performing said action s′, and the reward ob-
served r obtained with R. States may be terminat-
ing, which is to say that the simulation ends once
a terminal state is reached. An example of a termi-
nating state would be reaching the target location
in a navigation problem.

2.2 Q-learning

In Q-learning (Watkins and Dayan (1992)) active
reinforcement learning is performed by learning a
Q-function, which maps state-action pairs onto a
Q-score representing the average expected reward
for taking that action. That is, the average expected
reward that is received in total before reaching any
terminating state. There is no need to learn the un-
derlying transition model and rewards, as the algo-
rithm is not interested in knowing the likelihood
of all state-transitions, only the averaged best out-
come. Learning of the Q-function is done via Q-
updates, which are of the form:

Q(s, a)← Q(s, a)+α(R(s)+γmax
a′

Q(s′, a′)−Q(s, a))

(2.1)
Where α represents the learning rate, or the speed
of adjustment after receiving new information. γ
represents the discount factor, which is used to
devalue rewards that are obtained later. If a dis-
count factor of γ ∈ [0, 1) is specified, then the
agent will favour more immediate reward over more
distant rewards. max

a′
Q(s′, a′) represents the max-

imal Q-value of any action in the resulting state
s′. Through the gradual application of this Q-
update with many observations, the Q-value will

start to hold the approximate total expected value
received for choosing any action in any state, typi-
cally adjusted so that more immediate rewards are
favoured.

2.3 Exploration vs. Exploitation

An important problem encountered in Q-learning
(and reinforcement learning in general) is the prob-
lem of exploration versus exploitation. As a Q-
function is changed over time, it provides us with an
approximation of the underlying actual Q-values.
Since the algorithm does not have a model of the
environment, it is not known when this Q-function
cannot be improved further. This means that it
may be the case that taking a sub-optimal action
in one state may eventually yield a greater reward
than performing the best action in this state. In
order to address this, exploration (taking actions
that may eventually lead to a better reward, but
of which this is not known) and exploitation (us-
ing the learned knowledge to maximize the reward
received) must be balanced. In order to solve this
issue, a variety of exploration policies may be used,
which balance these two needs of the system.

2.3.1 Exploration policy - Epsilon-greedy

The epsilon-greedy (Sutton and Barto (2018)) ex-
ploration policy selects an action at random with
a probability of ε, and otherwise selects the action
whose predicted Q-value is the highest. As initially
the need to explore is higher, ε is typically reduced
over time. If ε is never reduced entirely to zero,
it guarantees the Greedy in the Limit of Infinite
Exploration (GLIE) property. That is to say, all
actions must be tried in all states without limiting
the attempts to avoid missing an optimal solution,
if given infinite time.

2.3.2 Exploration policy - Boltzman

The Boltzman exploration policy (Sutton and
Barto (2018)) is a modified softmax function, and
can be seen in Equation 2.2.

p(s, a, t) =
e

Q(s,a)
t

Σi∈Ae
Q(s,i)

t

(2.2)

Here, the probability of an action being selected
in a state is determined by the Q-value of all ac-
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tions in that state, combined with a temperature
value. By adjusting the temperature value, the be-
haviour of this exploration policy changes. Lower
temperature values result in a greedier behaviour,
whereas higher temperatures result in random se-
lection. As before with the ε-greedy exploration pol-
icy, the temperature is often changed over time. An-
other similarity is that selecting the right minimal
temperature also guarantees the GLIE property.

2.4 Tabular Q-learning

In tabular Q-learning, the Q-value for each state-
action pair is saved explicitly in a large table. These
values in the table are initialised at random. The
first time that the Q-value of a state-action pair is
used to choose an action, the algorithm will thus
perform a random guess. Furthermore, each sce-
nario that is encountered is stored as an entry in the
table, with its own Q-value, in its entirety. This has
as effect that each time a Q-update is performed, it
affects at most one entry in the table itself, and does
not change the Q-values of similar states/actions.
The consequence of this is that using this method
accurate Q-values will only ever be obtained of the
situations which have been encountered prior, and
it has to rely on guessing if this is not the case until
sufficient information has been obtained to make a
more informed decision.

2.5 Approximation-based
Q-learning

With an increase in states, there is an exponential
increase in the state-space and therefore it is infea-
sible to keep track of all Q-values. This is known as
the curse of dimensionality (Bellman (1957)). This
can be addressed by approximating the Q-function,
which removes the need for storing all Q-values sep-
arately. In this paper a neural network was used
for this purpose. This network takes as its input
a state, and has one output node per action giv-
ing the approximated Q-value for that action in
the given state, as illustrated in Figure 2.1. This
has as additional benefit that the different state-
action pairs can influence all Q-values during train-
ing, meaning that information can be inferred from
similar states. This is an improvement over the tab-
ular method as that approach needs to encounter

Figure 2.1: The structure of the neural net-
work used for Q-value approximation. As input
it takes the state, and as output it will produce
the Q-value of each possible action in that state.

a particular state at least once in order to make a
meaningful decision in it.

2.6 Neural Networks

A neural network consists of layers of connected
artificial neurons. Each of these connections has a
weight associated with it. The value of a neuron
is calculated by multiplying the weights with the
activations of the previous layer, and adding a bias:

a = θ +

n∑
i=1

wixi (2.3)

Where θ represents the bias, wi represents the
weight of the connection i, and xi represents the
value of the output of the neuron in the previous
layer associated with wi. To calculate the output
value of a neuron, its activation function is applied
to the activation a.

2.6.1 Training a Neural Network to ap-
proximate a Q-function

When neural networks are trained on single exam-
ples, the network can unlearn previous information
which nullifies the learning done prior. To mitigate
this, one can collect enough samples to present the
network with batches. This is done by saving previ-
ously encountered experiences and their outcomes.
The batches used for training are also referred to
as minibatches, and are smaller samples of this his-
tory of experiences. Re-using previous samples is a
technique which is also known as experience replay
(Lin (1993)).
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2.7 Genetic Algorithm

A genetic algorithm is an algorithm that mimics
aspects of evolution in order to find a solution to
an optimisation problem (Kramer (2017)). It main-
tains a population of potential solutions, which it
updates in iterations. At every iteration, each in-
dividual solution in the population is assigned a
fitness score, after which a selection is made of in-
dividuals from the current generation to create the
next.

2.7.1 Genotype

Each individual in the population has its features
encoded in a genotype, which contains various pa-
rameters that describe it. As the genotype is an
encoding, it may need to be interpreted to create
the phenotype, or actual individual, which it rep-
resents.

2.7.2 Population & initialisation

The population has a size which remains constant
over all generations. Before the first run an initial
set of individuals is created at random, by setting
each trait in each individual to a random value of
a set of permissible values. Alternatively, a popula-
tion can also be loaded in to resume training.

2.7.3 Fitness function

Each individual is evaluated by means of a fitness
function. This function assigns a numerical score
to each individual, allowing to make comparisons
between them. Generally, a higher fitness indicates
a better performing individual, and thus ideally a
better solution. However, designing a fitness func-
tion is a matter in which great care is required.
The fitness function is a heuristic used to guide the
search for a desired performance, and is not pre-
cise. Individuals with a high fitness value may dis-
play unwanted behaviours. It can also be the case
that the fitness function is not a heuristic for the
goal that the designer of the function had in mind.
For an overview of interesting examples of this be-
haviour, see Lehman et al. (2018).

2.7.4 Reproduction

Once the fitness score of each individual has been
calculated, the next generation is constructed. In-
dividuals are selected proportionate to their fit-
ness, and several methods can be applied to cre-
ate new individuals in the next generation. Fitness-
proportionate selection is often done through
roulette-wheel selection, a type of selection in which
the probability of an individual i to be chosen is de-
fined as:

p(i) =
f(i)

Σj∈Gf(j)
(2.4)

Where f is the fitness function, G the set of all
individuals within the current generation, and
i ∈ G. In this type of selection, given a properly
designed fitness function, each individual within
a population has a chance of being selected. The
downside of using this selection method is that if
there is one individual which scores very high, it
can start to dominate the selection process, leading
to a reduction of variety in a gene-pool.

The following techniques can be used to obtain
new individuals:

Elitism When elitism is used to obtain new in-
dividuals, a set number of the best performers in
each generation is directly copied over into the next.
This has as benefit that the best performance in a
gene-pool should not drop over generations, at the
cost of reducing genetic variety.

One parent crossover A single individual is se-
lected from the generation. A mutation function is
applied over all genes, which has a small probability
to alter the value of any gene. This can be done by
choosing a random (valid) value, a method which
is referred to as random resetting. This method
can be applied to genes encoding integers as well
as categorical variables. Another method for mu-
tation, often used with continuous variables, is to
add a semi-random value to the current. Of these
methods, the Gaussian mutation is sometimes used,
which adds a value drawn from a Gaussian distri-
bution as mutation. Typically, each gene has a set
of permissible values (for instance, a pre-specified
range), and the new value is clamped to fit within
these bounds.
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Figure 2.2: A visualisation of 1-point crossover: two parent genes are recombined to create 2
children by splitting both parents at 1 point.

Two parent crossover In two parent crossover,
two individuals are selected from the current
generation, and their genes are combined such
that the result is two new individuals for the next
generation. One method of accomplishing this is
n-point crossover. In this method, n points are
selected in the genome. The parents are split up
in sections defined by these points, and are then
recombined. An example of 1-point crossover can
be seen in Figure 2.2.

It should be noted that there exist different
crossover techniques, and it is possible to perform
crossover using more than 2 parents. This is outside
of the scope of this paper, however.

2.7.5 Parameter tuning in Genetic Algo-
rithms

It was found by Jong (1975) that a genetic algo-
rithm performed best if the population was between
50-100 individuals, with a crossover probability of
0.6 and mutation probability of 0.001. Furthermore,
they found that elitism was viable for unimodal,
but not multimodal functions. Schaffer et al. (1989)
found through experimentation with a different set
of functions that they achieved the best results us-
ing a population size between 20 and 30 individuals,
with a crossover rate between 0.75 and 0.95, and a
mutation rate in the range of 0.005 - 0.01. In the
latter paper, there was no research conducted on
the influence of elitism.

3 Methods

3.1 The scenario

This scenario is the same one as in Ayoobi et al.
(2019). The context of the scenario shown to
the agent is as follows: It was assumed that the
agent has as goal to reach a specific location, as
illustrated in Figure 3.1. Before reaching this goal,
the agent is confronted with 6 different spaces
which can hold an object, of differing colours,
or no object at all. Only the fifth space is a
relevant obstacle for reaching the specified goal.
For everything that the system can encounter in
the fifth field, there exists one correct action to
perform. The agent has no initial knowledge on
which action is the right action for a situation, nor
does it know that only the fifth field is relevant.
Any algorithm solving this problem has to learn
these two properties.

The experiment was performed with 3 differ-
ent types of objects (ball, box, person), which
could have 4 possible colours (red, blue, yellow,
green). Additionally, a field could be empty, mak-
ing for 13 different possible combinations that can
be encountered on each field. The object types and
colours are stand-ins for meaningful observations
an agent can make from the environment and may
both play a role in the right solution to an obstacle.
The agent has the ability to perform 4 different
actions, each with an execution time associated
with them. These are finding an alternative route
(10s), pushing the obstacle (5s), asking (4s), and
continuing (2s).
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Figure 3.1: The environment in which the agent
must act, taken from Ayoobi et al. (2019). The
state-space observed by the agent consists of the
6 numbered fields, in which only the fifth field
is relevant for solving the problem.

3.2 Q-Learning

Two different types of Q-learning were performed
for this paper, namely tabular and approximation-
based Q-learning using a neural network. For the
latter, two different versions were used, one using
an ε-greedy exploration policy, and the other us-
ing Boltzman. The hyperparameters for the neu-
ral networks were found using a genetic algorithm,
which will be discussed in subsection 3.5. Each ver-
sion was run 1000 times. In each run, a random
solution-key was generated, which for that run de-
cided the correct behaviour to resolve each specific
obstacle. The agent was then presented with 200
subsequent encounters, with each being a descrip-
tion of all objects appearing in slots 1 through 6.
For each encounter, the agent attempted to find the
correct solution and was allowed to retry until they
eventually did.

Reward function The reward function was
based on the time each action took to execute. If
an action succeeded, the reward was 20 minus the
time it took to complete said action. Otherwise,
it was equal to the negative time needed to com-
plete an action. This guarantees a positive reward
for the right solution, while still keeping the execu-
tion times into account, as defined by Ayoobi et al.
(2019).

3.3 Tabular-based Q-learning

In the experiment settings of a discount factor (γ)
of 0 and a learning rate (α) of 1 were used. The
algorithm used a greedy exploration policy, which
always took the action with the highest Q-value.
The Q-table was initialized at random, using uni-
formly drawn values from [−2, 0).

3.4 Approximation-based
Q-learning

For the implementation of the approximation-
based Q-learning method, a neural network was
used. The hyperparameters for the neural network
were obtained using a genetic algorithm. Two
different sets of hyperparameters were found, each
using a different exploration policy. These values
can be found in Table A.3. Furthermore, both
exploration policies decayed their initial parameter
(ε & temperature) using multiplication with their
decay parameter.

The weights of each neural network were initial-
ized by being randomly drawn from a normal dis-
tribution, with µ = 0 and the standard deviation
for each layer is calculated as:

σ =

√
2

fi + fo
(3.1)

Where fi is the number of inputs for the layer, and
fo is the number of outputs. This method is known
as the Glorot method, after one of the authors of
the original paper describing it (Glorot and Bengio
(2010)).

3.4.1 State-input encoding

In this paper, Exponential Linear Unit (ELU), as
seen in Equation 3.2 (for the layers within the net-
work) and linear, as seen in Equation 3.3 (for the
final layer) activation functions were used.

R(a) =

{
a a > 0

α(ea − 1) a ≤ 0
(3.2)

R(a) = a (3.3)

The input states were presented to the network us-
ing one-hot encoding, for all 6 states. With this
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encoding, each attribute of the state is encoded as
a sequence of zeroes and ones. For instance, in this
paper 4 different object types were possible (ball,
box, person or none). This attribute is represented
by three zeroes and a one, the order of which signi-
fies what attribute is encoded, as demonstrated in
Table 3.1. This encoding is applied to each attribute
of the state and each individual digit is treated as
a different input of the network.

Type Encoding
Ball 1000
Box 0100
Person 0010
None 0001

Table 3.1: An example of 1-hot encoding, which
encodes a property of a state onto a bitstring,
with the position of the 1 indicating which prop-
erty is encoded.

3.4.2 Training

Each sample obtained from interacting with the en-
vironment was stored in memory. Training began as
soon as the amount of samples stored in memory
was equal to a pre-defined minimum, performing 1
training per sample collected. A minibatch, a sam-
pling from the recorded memories, was generated
each training, whose size was also pre-specified. The
most recently obtained sample was always included
in this minibatch. The network then adjusted its
weights using the Adam optimizer (Kingma and Ba
(2014)).

3.5 Genetic algorithm

3.5.1 Design

Scenarios Before the simulation of each genera-
tion, a random mapping was made between each
possible object on the fifth field and the correct ac-
tion to perform. Further, all scenarios (states) that
would be presented to the individuals were gener-
ated up front, so that each individual would train
and be evaluated on the same data. Each individ-
ual was presented with 200 subsequent situations,
in which they were allowed to select actions until
they had found the correct one.

Genome All relevant parameters of the neural
network were encoded into the genome, with pre-
specified ranges, as can be seen in Table A.1. It
should be noted that the variable for minibatch
size should be equal to or smaller than the mini-
mum size of the replay memory, and this was en-
forced at any time these variables changed or were
instantiated. This was done by changing the mini-
batch size to be equal to the minimum size of the
replay memory, when this constraint was violated.
The gene ”Starting exploration policy value” was
used to determine the starting ε value for ε-greedy,
and the starting temperature for Boltzman. For the
latter, the value was first multiplied by 1000. Both
exploration policies had a pre-specified lower limit,
which were an epsilon of 0.01 and a temperature of
10 respectively. This value was decayed once per en-
countered scenario via multiplication with the value
of the gene ”exploration policy decay rate”.

Fitness function The fitness function for selec-
tion was based on the two criteria on which Ayoobi
et al. (2019) compared the algorithms: final accu-
racy, and speed of learning. As both learning speed
and final performance are relevant, the resulting fit-
ness score of the model was defined as the sum of
the final accuracy and the learning speed. The fi-
nal accuracy was obtained by presenting the model
with 10,000 random scenarios at the end of a run,
and assigning a score between 0 to 1 to obtain the
fraction of correctly solved scenarios. These 10,000
scenarios were held constant for each generation.
It should be noted that during this evaluation, the
exploration policy that was used was temporarily
replaced by a greedy policy, so only the prediction
made by the final model was considered. The learn-
ing speed was approximated by averaging the accu-
racy of all 200 runs, where accuracy is the inverse
of the needed guesses to successfully resolve an en-
counter. This resulted in a score of between 0 and
1. These two values are then summed, resulting in
a final fitness ranging between 0 and 2.

Mutation The mutation operator was applied to
individuals created using 1-parent crossover. For
each gene, with a probability specified within the
parameters for each run (the mutation rate), the
gene would either be randomly reset, or scaled
Gaussian noise would be added. This Gaussian
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noise was drawn from a Gaussian distribution with
µ = 0 and σ = 1, which then was scaled by a multi-
plication with 0.1. Random resetting was applied to
genes that were integers, while the noise was added
to genes encoded as a floating point number.

3.5.2 Parameters

The genetic algorithm for each exploration policy
was ran 4 different times, with different parame-
ters as seen in Table A.1. These settings were in-
spired by the works of Jong (1975) and Schaffer
et al. (1989), who performed quantitative studies of
parameter settings for genetic algorithms. Each run
consisted out of 25 independent simulations of the
genetic algorithm. Each of these simulations was
initialized with a generation of random genes of a
size as indicated in Table A.1, after which 100 gen-
erations were simulated.

4 Results

Figure 4.1: A comparison of various methods of
Q-learning with ABL, averaged over 1000 indi-
vidual runs.

The resulting guesses recorded were transformed
into precision, as that is the metric that was
used by Ayoobi et al. (2019). This was done by
calculating the number of 1st correct solutions
over the number of scenarios. All runs were then
averaged, and the result can be seen in Figure 4.1.
The results for ABL were taken from Ayoobi

et al. (2019). The final precision for the tabular
Q-learning and approximation-based Q-learning
using Boltzman was 61%. The final precision for
approximation-based Q-learning using ε-greedy
was 66%. ABL outperformed all three in this
regard, having obtained a final precision of 95%.
Using permutation testing with 1 million repeti-
tions, this difference in final accuracy was found
to be significant between ABL and approximation-
based Q-learning using ε-greedy (p < 0.001), ABL
and approximation-based Q-learning using Boltz-
man (p < 0.001), and ABL and tabular Q-learning
using a greedy exploration policy (p < 0.001).

After 30 attempts, ABL achieves a precision
of 74%, whereas for the tabular Q-learning and
approximation-based Q-learning using Boltzman,
the precision was 25%. Lastly, the precision after
30 attempts for approximation-based Q-learning
using an ε-greedy policy was 27%. This differ-
ence was found significant between ABL and
approximation-based Q-learning using ε-greedy
(p < 0.001), ABL and approximation-based Q-
learning using Boltzman (p < 0.001), and ABL
and tabular Q-learning using a greedy exploration
policy (p < 0.001).

5 Discussion

5.1 Tabular Q-learning

The failure to learn by the tabular Q-learning
algorithm is easily explained by examining how it
stores the information it learns. In its table, each
state is stored together with the approximated
Q-values for each possible action in that state only.
Therefore, tabular Q-learning can only obtain
information about which action to take in a state
by having encountered the exact same state before.
No inferences can be drawn from related states.
As the state-space is equal to 4, 826, 809 different
possible states (4 objects with 3 possible colours,
as well as the option of an empty spot, in 6 spaces),
only encountering 200 will lead to no noticeable
increase in performance.

The Q-table has been randomly initialized, such
that the values are negative, but smaller than the
reward that would be received from choosing a
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wrong option. Combined with a greedy exploration
policy this results in the algorithm trying actions
randomly that have not yet been tried in the sit-
uation until the correct one has been found. This
is the best performance that can be expected from
this algorithm, even if certain parameters or the
exploration policy are changed. Using a discount
factor of γ = 0 and learning rate of α = 1 are the
best possible settings. Only one action needs to be
taken to resolve an encounter and hence there is no
need to take into account a later, possible reward.
Further, the environment is entirely deterministic,
removing the need for gradual learning and allow-
ing for a learning rate of 1. Lastly, any exploration
policy can only either match the greedy exploration
policy in performance, or perform worse. This is
because any exploration policy does not solve the
fundamental problem of lack of inference between
similar states which hinders the generalisation of
knowledge.

5.2 Approximation-based
Q-learning

5.2.1 Approximation-based
Q-learning using ε-greedy

The comparatively worse performance of the
approximation-based Q-learning method (using ε-
greedy) as compared to ABL can be partially ex-
plained by looking at the shape of the precision in
Figure 4.1 and the parameters in Table A.3. The
initial chance level performance is the result of the
high value of ε at that time, combined with the
minimum size of the replay memory, which governs
when training can occur. The performance starts
increasing when ε has decayed further, and the
network has collected enough experiences to start
training. This, combined with the slower improve-
ment rate as compared to ABL, can be attributed
to the need of a neural network to train using a
lot of data. It learns using correlation only, and
when there are many inputs which are not related
to the desired output, this increases the amount of
samples that are needed. As ABL forms hypotheses
about causation, it quickly find evidence against,
and for, causal links. This results in a faster in-
crease in classification precision.

5.2.2 Approximation-based Q-learning
using Boltzman

The performance of the approximation-based
Q-learning method (using Boltzman) can be
explained similarly to the one of the algorithm
using ε-greedy. The initial value of the temperature
is decayed to the minimum of 10 within the first 4
scenarios that are presented to the agent. However,
the untrained network provides Q-values that are
relatively small (due to how it is initialized), and
even with this minimal temperature the chances
of selection for each action are nearly identical,
essentially acting like the ε-greedy exploration
policy. There usually is a very slight preference for
the highest scoring action, which can be seen in
the results as the performance of the untrained
network with this policy is a little lower (around
0.5%) than with truly picking an action at random.
The difference between this method and ABL can
also be explained by the need of the neural network
to collect many samples prior to training.

Perhaps more interesting is how the different
exploration policies have a very different value for
the minimum size of the replay memory, but still
seem to be improving their precision at a point
that is close in time. With the ε-greedy policy,
enough data to begin training was usually collected
at around 10 scenarios encountered. However, the
value of ε decays slowly and at this point, the
agent is still taking a random action 69% of the
time. When it reaches the 25th scenario, this is
still 42%. Therefore, learning may start earlier,
but the ability of the network to act according to
obtained information is limited by its exploration
policy. As the temperature for Boltzman is already
at the lowest value possible by the time sufficient
data has been collected in order to start training,
it immediately starts showing strong preferences
for actions.

5.3 Exhaustivity of parameter
search

Regarding the exhaustivity of the parameter
search, a few remarks can be made. Certain
behaviour and parameters could have been a part
of the search performed by the genetic algorithm,
but were not. Only one type of schedule for the
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temperature and ε was evaluated. A search over
certain parameters needs to be considered over a
wider range, such as the minimum temperature for
the Boltzman exploration policy, as it was found
that an agent assuming this minimum value within
few scenarios performed well.

Further, different exploration policies may be
used. While this might result in a different ap-
proach with regards to exploration, however,
the fundamental learning is done by the neural
network itself. In the neural network, only one
method of initialisation, and specific activation
functions were considered. It may be interesting
to explore if differently selected parameters would
make a difference in performance. Nevertheless,
the issues that were touched upon in the difficulties
of learning in a neural network, given the task
at hand, still hold regardless of the choice of
parameters.

6 Conclusion

This study aimed to compare the performance
of Argumentation-Based Learning (ABL) to tab-
ular and approximate Q-learning using a neural
network, also known as Deep Q-Learning. It was
shown that ABL performed better than tabular
Q-learning in a deterministic scenario in which a
single action was required to reach a terminating
state. ABL also outperformed approximation-based
Q-learning, but further research is required to con-
clude that no possible implementation can outper-
form ABL.
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A Appendix

A.1 Genetic algorithm

Parameter De Jong I De Jong II Schaffer et al. I Schaffer et al. II
Pool size 64 64 24 24
Crossover 40 40 18 18
Elitism 0 4 0 2
Mutation rate 0.001 0.001 0.01 0.01

Table A.1: The settings used for the genetic algorithm, as inspired by the
research done by Jong (1975) and Schaffer et al. (1989). The crossover repre-
sents how many individuals were computed via crossover of two parents. The
remaining individuals that were not created using crossover or elitism (if ap-
plicable), were copied over directly into the next generation after a mutation
function was applied.

Parameter Minimum value Maximum value
Learning rate 0.000001 1.0
Minimum size of replay memory 1 200
Minibatch size 1 200
Layers in Neural Network 1 16
Neurons per layer 1 32
Starting exploration policy value 0.01 1.0
Exploration policy decay rate 0.01 1.0

Table A.2: The valid ranges of each parameter encoded in a gene in the neu-
ral network. Note that all parameter ranges specified with a decimal point
indicate floating point values, whereas the other ranges indicate integers. For
the Boltzman exploration policy, the encoded starting exploration policy value
was first multiplied by 1000 when constructing the phenotype.
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A.2 Neural Network hyperparame-
ters

Parameter Value (ε-greedy) Value (Boltzman)
Learning rate 0.9138424977829493 0.7895546693120532
Minimum size of replay memory 42 174
Minibatch size 42 53
Layers 2 3
Neurons per layer 3 11
Starting exploration policy value 0.9768238402411479 0.3870137999961333
Exploration policy decay rate 0.9663420261989969 0.3976583785573679

Table A.3: The hyperparameters found for the best performing neural network
of all genetic algorithm settings tried. The starting exploration policy value
was multiplied by 1000 when the phenotype was created from the genotype.
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B Appendix

B.1 Software

Software / Library Version
Python 3 3.7.5
Tensorflow 2.2.0
Tensorflow gpu 1.14.0
Keras 2.3.1
Numpy 1.16.2
Matplotlib 3.0.2
Tqdm 4.43.0

Table B.1: A list of software and libraries which have been used in this study.
The source code can be found at https://github.com/MaxVinValk/Bachelor_

Project
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