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Chapter 1

Introduction

Writing error-free programs is a daunting task, and many programs contain several bugs that were not
detected by the programmer. These undetected errors may cause a program to behave unexpectedly, crash,
or produce incorrect results. To prevent such errors, a programmer may decide to prove the correctness of
a program. Here correctness means that the program satisfies its specification, and is error-free. However,
producing these proofs is on itself an error-prone process.

This document is the report of a Bsc. project which has the aim to make a program that takes a correctness
proof as its input, and verifies that no mistakes have been made in the proof.

This chapter presents the goal of the project, and some concepts and algorithms that should be understood
by the reader in order to be able to understand the technical details of the implementation of the verification
tool. Moreover, a literature overview is given.

1.1 Goal of the project
The goal of this project is to write a program that takes a correctness proof as its input, and verifies that no
mistakes have been made in the proof. We named the program Aladin, which is an anagram of the letters of
the first name of the author, and also a reference to the famous tale from ’The Book of One Thousand and
One Nights’ in which a genie (ghost from the lamp) servers his master.

Aladin takes as its input a annotated correctness proof in the notation that we use in the course Program
Correctness at the Rijksuniversiteit Groningen. This notation will be presented later in this chapter in the
section Programming Language and its Semantics.

We defined a set of requirements that Aladin needs to meet:

1. Aladin should output ”ACCEPTED” when no mistakes are detected in the input proof.

2. Aladin should output ”ERROR” with a counterexample when an error is detected in the input proof.

3. Aladin should output ”UNDECIDED” when it can not verify that the input proof is correct, nor could
it find a counterexample.

1.2 Literature Overview
Program correctness has a long history, which goes back to Floyd, Hoare, Gries and Dijkstra. Robert W.
Floyd introduced a basis for the formal definition of the meaning of a program [11]. After that, Tony Hoare
introduced a new notation [13] which we now know as Hoare Triples. Edsger Dijkstra introduced proofs
using the concept of a weakest precondition [10]. Hoare Triples and weakest preconditions are strongly
related, and are explained in more detail later in this chapter.

Nowadays, several proof assistants are publicly available, of which the following ones are well-known [12]:
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6 CHAPTER 1. INTRODUCTION

• Coq [1]. Coq is an interactive proof assistant. Coq implements a program specification and mathe-
matical higher-level language called Gallina.

• HOL [2]. HOL is an interactive proof assistant for higher-order logic.
• Isabelle [3]. Isabelle is another interactive proof assistant for higer-order logic. Isabelle uses resolu-

tion and unification which we intend to use in Aladin too.
• NQTHM [8]. NQTHM, also known as the Boyer-Moore theorem prover is an interactive proof as-

sistant. It uses first order logic for its proofs and the syntax of the logic resembles that of the LISP
programming language.

• PVS [4]. PVS is an interactive theorem prover. PVS uses a specification language based on higher-
order logic.

• Z3 [5]. Z3 is a theorem prover from Microsoft Research. Z3 uses predicate and propositional logic.

Although these proof assistants are already available, we will develop a new one. Most of these existing
assistants are built to generate mathematical proofs in an interactive fashion with the user, which is quite
different from detecting flaws in a given annotated program. Furthermore, each of these proof assistants
utilize their own specification language. These specification languages are quite different from the annotated
programs that we want to process with Aladin. In our view, it is quite user unfriendly to impose on the user
the burden to translate his/her proof into one of those specification languages. Besides it takes a lot of time to
learn such a language, and the task to translate a program with its annotation into one of those specification
languages is quite error-prone. It is much more convenient to have a tool which accepts a program with its
annotation similar to the way annotations are written in the Program Correctness course.

1.3 Programming Language and its Semantics

1.3.1 Aladin’s Programming Language
The programming language that is accepted by Aladin is very simple, and resembles the notation of the
Pascal programming language. It is not our intention to implement a full-blown programming language with
multiple types, functions, and procedures. Aladin accepts only one variable type, being (infinite precision)
integers. An Aladin program consists of declarations, annotations (predicates) and a few basic programming
constructs: the skip command, an assignment command, an if-then-else construct, a wile loop construct,
and sequential composition of commands. The operational meaning of these constructs is as follows:

• skip is an empty command, it does no do anything.
• x := E is an assignment command. Here x is a program variable and E is an expression in terms

of the declared variables and constants. First E is evaluated and then this value is assigned to the
variable x.

• S;T is a sequential composition. First S is executed, followed by the execution of T .
• if B then S else T end is a conditional command. The Boolean expression B is called the guard

(which is an expression in the program variables and constants) and the commands S and T are
called the branches. If B evaluates to true then the branch S is executed, otherwise the branch T is
executed.

• while B do S end is a repetition construct. Here B is called the guard (like in the if-then-else
construct), and S is called the loop body. The body S is executed as long as the guard B evaluates to
true. If the guard evaluates to false then the loop terminates.

1.3.2 Program States
During the executing of a program, the values stored in the variables associated with the program change.
At any moment of execution time, the set of values assigned to the variables is called the state of the pro-
gram at that given moment. More formally, the state of a program is a collection of pairs (xi, vi), where vi
is a variable with its corresponding value vi.

Example: Consider the following program fragment S, where x, y, and a are integer variables:
S : x := x+ a; y := y − a;

Two example states of this program are {(x, 2), (y, 3), (a, 5)} and {(x = −10), (y = 12), (a, 5)}. If we
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execute the command S starting in any of these states, then after execution, the states have been transformed
in the states {(x, 7), (y,−2), (a, 5)} and {(x = −5), (y = 7), (a, 5)} respectively. This command S will
be used as a running example in the rest of this document.

1.3.3 Hoare Triples, and Specification Constants
Clearly, it is infeasible to track the states during the execution of a program for all possible starting states.
However, predicates (expressions in first order logic) can be used to describe sets of states. For example,
the infinite set of states {{(x, 1)}, {(x, 2)}, {(x, 3), . . .} is easily specified by the predicate x > 0. Using
predicates, we can describe how execution of a program changes its state. For this we use a notation called
Hoare triples. A Hoare triple is of the form:

{P} S {Q}

The operational meaning of this notation is:

If we execute command S in a state where precondition P holds, execution of S will
terminate in a state where postcondition Q holds.

Since P is a predicate that describes the state before execution, it is called the precondition of S. Similarly,
because Q describes the state after execution, it is called the postcondition of S.

Example: When we use again the program S that adds a to x and subtracts a from y and we know that
initially x + y = Z (for any value of Z), then it is clear that after executing x + y = Z is still valid. As a
result, the following is a valid Hoare triple for the program fragment S:

{P : x+ y = Z}
x := x+ a;
y := y − a;
{Q : x+ y = Z}

Note that in the above Hoare triple the value Z was introduced, though it is not a program variable. We call
such a value a specification constant, which is used to implicitly quantify over all possible initial values for
the expression x+ y. Hence, the Hoare triple {x+ y = Z} S {x+ y = Z} actually implicitly means

∀(Z :: {x+ y = Z} S {x+ y = Z})

1.3.4 Annotations, and Weakest Preconditions
Now that it is clear what Hoare triples are, we need a formalism to check the validity of Hoare triples. For
example, it is clear that the Hoare triple {x = Z} x := x + 1; {x = Z + 1} is correct, while the Hoare
triple {x = Z + 1} x := x+ 1; {x = Z} is not.

A systematic way of reasoning about Hoare triples uses the notion of weakest preconditions, which were
introduced by Edsger W. Dijkstra (cf. [10]). For a given program statement S and some postcondition Q
there is a set of program states such that if execution of S is initiated from any one of these states, then S
ends up in a state in which Q holds. This set of initial states is called the weakest precondition of S, and is
denoted by wp(S,Q).

For some language constructs of the Aladin programming language, the function wp is easy to compute:

• wp(skip, Q) ≡ Q
• wp(x := E, Q) ≡ [E/x]Q
• wp(S0; S1, Q) ≡ wp(S0, wp(S1, Q))

Here, the notation [E/x]Q denotes the predicate Q in which each occurrence of x has been replaced by the
expression E (where E is an expression in the declared program variables and constants). For example,
wp(y := y − a, x+ y = Z) ≡ x+ (y − a) = Z.

Using weakest preconditions, we can verify whether a Hoare triple is valid. The proof rule for the validity
of the Hoare triple {P} S {Q} is:

P ⇒ wp(S,Q)
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Example: When we use again the program S which adds a to x and subtracts a from y (and P ≡ Q ≡
x+ y = Z), we can compute its weakest precondition as follows:

P ′: wp(S, Q)
≡
wp(x := x+ a, wp(y := y − a, x+ y = Z))
≡
wp(x := x+ a, x+ (y − a) = Z))
≡
(x+ a) + (y − a) = Z

For humans it is easy to see that (x+ a) + (y − a) = Z ≡ x+ y = Z, and thus trivially P ⇒ P ′. Hence,
the program fragment is correct.

Unfortunately, this is not easy at all for computers. Computing the weakest precondition with a computer
program is (almost) trivial, since it is just syntactical manipulation of expressions. However, proving that
an implication, in this case P ⇒ P ′, is hard and is the main theme of this thesis.

We are rarely interested in proving the correctness of programs that consist of only or two assignments.
Therefore, we introduce the concept of an annotation (also known as an annotated program). An annota-
tion is a program fragment that has a precondition P , a postcondition Q, and assertions (predicates about
the program state enclosed by curly braces) inserted in the program text. An annotation that has sufficiently
fine-grained assertions inserted can be considered to be a proof of correctness of the program. In an anno-
tated program, an assignment command can be enclosed between two assertions. The predicate before the
assignment is the precondition of that command, while it is the postcondition of the command that precedes
the assignment.

Example: Some possible valid annotations of the program fragment S are:

{P : x+ y = Z}
x := x+ a;
y := y − a;
{Q : x+ y = Z}

{P : x+ y = Z}
x := x+ a;
{x+ y = Z + a}

y := y − a;
{Q : x+ y = Z}

{P : x+ y = Z}
(∗ calculus in preparation of x := x+ a ∗)
{(x+ a− a) + y = Z}

x := x+ a;
{(x− a) + y = Z}
(∗ calculus in preparation of y := y − a ∗)
{(x− a) + (y − a+ a) = Z}

y := y − a;
{(x− a) + (y + a) = Z}
(∗ calculus∗)
{Q : x+ y = Z}

As can be seen from the left most case in the above example, multiple assertions may occur consecutively,
possibly with some comment(s) in between. Comments are enclosed by the parentheses (∗ and ∗). For
example, if we take the assertions {P}{Q}, possibly with some comment(s) in between them, then this is
equivalent with the Hoare triple {P} skip {Q}. Hence, in order to show that {P} (∗...∗) {Q} is correct,
it suffices to show that P ⇒ Q. Comments in between assertions should give a human readable argument
why the implication holds, but is not part of the proof (nor is it checked by Aladin). Some examples of valid
annotations are given above.

In the right most one, comments are included. First the assignment x := x+ a is prepared, by transforming
the assertion {P : x+ y = Z} into the equivalent assertion {(x+ a− a) + y = Z}, where (∗ calculus in
preparation of x := x + a ∗) argues why x + y = Z ⇒ (x + a − a) + y = Z holds. The reason for this
transformation is that wp(x := x+ a, (x− a) + y = Z) is (x+ a− a) + y = Z. The same strategy is used
to prepare for the assignment y := y − a;. Finally, the assertion (x− a) + (y + a) = Z clearly implies the
postcondition x+ y = Z by applying some calculus.
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1.4 Resolution and Unification
Producing a correct annotation requires smart inventive manipulation of predicates, and is typically a task
that a computer program cannot perform. However, verifying the correctness of a given annotation by a
computer program may be feasible. To verify that a given input annotation is correct, Aladin uses a proof
technique called resolution combined with arithmetic, and a process that is called unification. Resolu-
tion and unification are explained in this section. Moreover, CNF (Conjuctive Normal Form) and semi-
decidability are discussed, which are strongly related to reasoning by resolution.

1.4.1 Resolution in Propositional Logic
Resolution is a technique (or algorithm), based on proof by contradiction. Resolution corresponds exactly
to the standard mathematical proof technique of reductio ad absurdum, which means reduction to an absurd
thing. A resolution proof is based on producing a proof of the unsatisfiability of the logical negation of what
we want to prove.

For example, proving a logical sentence α from a set KB of givens is done by checking the unsatisfiability
of KB ∧ ¬α. To do this, one assumes α to be false (by negating α) and shows that this leads to a contra-
diction with the set of givens KB. This contradiction is exactly what is meant by saying that the logical
sentence α ∧ ¬β is unsatisfiable. Note the naming of the set of givens being KB. The reason for this
naming is that KB is a set of logical sentences which is usually called the Knowledge Base. The set KB
defines the context in which the sentence α is shown to be correct. Logicians denote this with the notation
KB ` α, which is pronounced as ’the KB entails α’. The knowledge base contains a set of rules which
are assumed to be true. However, it is up to the supplier of the KB to make sure that the KB is consistent,
otherwise KB ∧ ¬α is automatically unsatisfiable (and so is KB ∧ α).

The resolution algorithm tries to prove that KB ` α. To prove this, the algorithm tries to show that
KB ∧ ¬α is unsatisfiable. It does this by repeated application of an inference rule, called the resolution
rule which is applied to clauses.

A clause is a logical expression formed from a disjunction of a finite set of literals (atoms or their negations).
A clause is true whenever at least one of the literals that form it is true, or false otherwise. An example of
two clauses are P∨Q∨R and P∨¬Q∨¬S. Since clauses use only one binary connective, being disjunction
(∨), we can write these clauses unambiguously as sets of literals: C0 = {P,Q,R} and C1 = {P,¬Q,¬S}.

The resolution rule is an inference rule that produces a new clause that is implied by two clauses containing
complementary literals. Two literals are said to be complementary if one is the negation of the other.
The resulting clause contains all the literals that do not have complements. In formal logical notation, the
resolution rule is described as:

α ∨ β, ¬α ∨ γ ` β ∨ γ
The correctness of this rule is completely evident if we realize that ¬α ∨ γ is equivalent to α ⇒ γ, and
α ∨ β is equivalent to ¬β ⇒ α. Hence, the resolution rule is basically a direct translation of the transitivity
of implication:

¬β ⇒ α, α⇒ γ ` ¬β ⇒ γ

Note that ¬β ⇒ γ is equivalent to ¬¬β ∨ γ, which reduces to β ∨ γ after removal of double negation.

If we apply the resolution rule to the clauses C0 and C1 that contain complementary literals (Q and ¬Q),
then we find the clauseC0,1 = {P,R,¬S}. We callC0,1 the resolvent ofC0 andC1. Note that syntactically
we may conclude that C0,1 = {P,R, P,¬S}, however sets do not contain duplicates which matches the
logical rule that P ∨ P is equivalent to simply P . Also note that application of the resolution rule is useful
only when the two clauses that are being resoled have only a single complimentary literal in common. If
the clauses have at least two complimentary literals in common, than the resolution rule derives simply true,
which is a useless conclusion. This is clear from the following example where resolution is applied to the
complimentary literals P and ¬P :

P ∨Q ∨ α, ¬P ∨ ¬Q ∨ β ` Q ∨ α ∨ ¬Q ∨ β

Since Q ∨ ¬Q is always true, the resolvent is trivially true. Of course, the same will happen if we apply
resolution to the complimentary literals Q and ¬Q.
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Figure 1.1: Resolution algorithm for Propositional Logic (PL)

The resolution algorithm for propositional logic (PL) is shown in figure 1.1. In reality, Aladin uses First
order logic (FOL) instead, however we prefer to discuss the algorithm for propositional logic first and
discuss an adapted version for FOL later in section 1.4.3.

To use the resolution rule, all sentences in KB and the query α have to be transformed into Conjuctive
Normal Form (CNF) which will be explained in the next section. The result of this conversion is a set of
clauses. On this set of clauses an iterative process is performed. In each step of this process, each pair
of clauses that contains complementary literals is resolved to a new clause using the resolution rule. This
process is repeated until one of the following conditions is met:

• In an an iteration, no new clauses were inferred. In this case the algorithm could not infer anything
new, and the algorithm stops. The conclusion is that it did not arrive at a contradiction and therefore
the algorithm did not find a proof of KB ` α.

• Two clauses resolved into an empty clause. Note that in the context of the algorithm the empty clause
represents false. An empty clause is considered as a contradiction because it must have been produced
by the resolution rule from two single literal clauses that are complementary (e.g. two clauses like
{P} and {¬P} resolve to the empty clause). In this case we have found a contradiction and we have
proven KB ` α.

Figure 1.2 gives an example of a proof using the resolution algorithm. We want to prove [P ∨ Q, P ⇒
Q, Q⇒ P ] ` P ∧Q. To prove this, we have to show that [(P ∨Q) ∧ (P ⇒ Q) ∧ (Q⇒ P )] ∧ ¬(P ∧Q)
is unsatisfiable by contradiction. We will do this by closely following the resolution algorithm. First, we
have to transform [(P ∨ Q) ∧ (P ⇒ Q) ∧ (Q ⇒ P )] ∧ ¬(P ∧ Q) in CNF. The next section (1.4.2)
explains how to do the conversion of an expression into CNF. For the time being, it is sufficient to know
that (P ∨Q)∧ (P ∨¬Q)∧ (¬P ∨Q)∧ (¬P ∨¬Q) is a the correct CNF representation of KB∧¬(P ∧Q).
The corresponding set of clauses is {P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q}.

Now it is time to pair clauses and infer their resolvents. To make things explicit, we list the steps of the first
iteration of the reolution process:

1. The first two clauses resolve to {P} because the literals Q and ¬Q cancel due to the resolution rule.

2. The first and third clause resolve in the same way to {Q} due to the cancellation of the complementary
literals containing P .

3. The first and fourth clause do not resolve to anything useful, because they resolve to the clause that
is trivially true (i.e. Q ∨ ¬Q).

4. The second and the third clause also produce a useless trivial true clause.

5. The second and the fourth clause produce the clause {¬Q}.

6. The third and the fourth clause produce again a useless trivial clause.
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Figure 1.2: First iteration of the resolution proof of [P ∨Q, P ⇒ Q, Q⇒ P ] |= P ∧Q

At the end of this first iteration, three new (singleton) clauses are found: {P}, {Q}, and {¬Q}. The first
iteration of this process is depicted in Fig. 1.2.

In a second iteration, we can resolve the two new clauses {Q} and {¬Q} to obtain the empty clause, and
hence the proof is completed. Note that the proof is not unique. Another valid proof, albeit using more
steps, would be to pair the clause {Q} with {¬P ∨ ¬Q} to {¬P}, and finally in a third iteration we can
resolve {P} and {¬P} to the empty clause { }. Note that the algorithm that is used in Aladin will always
produce a proof with a minimal number of iterations. The reason is that the algorithm, as can be seen from
the pseudocode in Fig. 1.1, is in fact a specific implementation of breadth first search (BFS) for a proof. It
is well known that BFS will produce the solution with a minimal number of steps.

1.4.2 Conjunctive Normal Form (CNF)
The resolution rule can only be applied to clauses. Clauses are disjunctions of literals. Therefore, we need
to rewrite logical sentences as a conjunction of clauses. This form is called Conjuctive Normal Form. To
convert a sentence to CNF from propositional logic 4 steps are needed in the following order(see [17]):

1. Eliminate⇔: replace each occurrence of α⇔ β by (α⇒ β) ∧ (β ⇒ α)
2. Eliminate⇒: replace each occurrence of α⇒ β by ¬α ∨ β
3. Move negation (¬) recursively inwards using the following equivalences:

¬(¬α) ≡ α.
¬(α ∧ β) ≡ (¬α ∨ ¬β).
¬(α ∨ β) ≡ (¬α ∧ ¬β)

4. Rewrite nested ∧ and ∨ operators with the distibutivity laws:
(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) Distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) Distributivity of ∨ over ∧

After completion of these these steps on some logical sentence, we obtained a logically equivalent sentence
in CNF which is usually harder to read for a human person, but it can be used as input for the automated
resolution algorithm.

1.4.3 Resolution in First Order Logic (FOL)
First-order logic (FOL) or predicate logic is an extension of propositional logic. The main difference lies
in the introduction of the quantifiers ∀ (for all) and ∃ (there exists) and corresponding quantified variables
(a.k.a. bound variables), and relational operators (like =, <,≤, etc.). This makes it possible to write logical
sentence like ∀(x :: x < x+ 1), where x is a quantified variable.

Resolution in First Order Logic is not that different from resolution in propositional logic. Just as in the
case of propositional logic, a FOL sentence has to converted into an equivalent CNF sentence. The first
step of this conversion is to drop all ∀-quantifiers. This is simple, because it simply means that we drop
the quantifier. However, this might introduce conflicts because a bound variable might suddenly interfere
with a free (non-bound variable) with the same name. In Aladin this issue is solved by introducing a special
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notation for bound variables. Those variables are prefixed by the symbol #, such that the bound #x differs
from the free variable x. As an example, the CNF conversion of the predicate ∀(x :: x < x+ 1) in Aladin
yields the clause {#x < #x+1}. Clearly, if needed, this clause can be renamed to {#y < #y+1} or any
other name that does not conflict with names in other clauses. The second step in the conversion of FOL
sentences in CNF is to remove the existential quantifier. This step is not implemented in Aladin, because
Aladin does not use the existential quantifier. After removal of quantifiers, the process that is described in
section 1.4.2 is followed to perform the remaining steps of the conversion.

In the remainder of this section, for readability reasons, we use Greek letters for bound variables, while we
use Roman letters for free variables. We start by discussing an example with a knowledge base consisting of
only one rule: KB = {(α+β)+ (γ−β) = δ ⇒ α+ γ = δ}. We want to prove (x+a)+ (y−a) = Z ⇒
x+ y = Z. The first step consists of the conversion of the knowledge base and the negation of the goal into
CNF format. A CNF representation of the knowledge base is {¬((α + β) + (γ − β) = δ) ∨ α + γ = δ}
and a CNF representation of the negation of the goal is {(x + a) + (y − a) = Z ∧ ¬(x + y = Z)}. After
that, we can use resolution to prove this example. Now we can use the resolution algorithm to proof the
unsatisfiability of {(¬((α+ β) + (γ − β) = δ)∨α+ γ = δ)∧ ((x+ a) + (y− a) = Z)∧¬(x+ y = Z)}

Due to the introduction of relational operators, we have two different notations for the expression x+y 6= Z,
being x+ y 6= Z itself and ¬(x+ y = Z). Even though these expressions are semantically equivalent, they
are syntactically different. Since resolution is based on syntactically comparing clauses, it is awkward to
deal with these dual notations. For this reason, we have made the following decision.

The only relational operators that are used in the resolution process are 6=, <, and <=.
Moreover, the negation operator (¬) applied to a comparison is replaced by the comple-
mentary relational operator (e.g. ¬(a < b) is replaced by b ≤ a).

This decision significantly reduces the amount of cases that we have to consider in the resolution algorithm.
For example, consider the literal p > q, then without this convention there are four possible complementary
literals: ¬(p > q), ¬(q < p), q ≥ p and p ≤ q. Clearly, this leads to a combinatorial explosion of cases,
which is eliminated by adopting this convention.

If we apply this convention to the above example, then we end up with the following set of CNF clauses
(knowledge base together with negation of the goal):

{{(α+ β) + (γ − β) 6= δ, α+ γ = δ}, {(x+ a) + (y − a) = Z}, {x+ y 6= Z}}

Now we start a resolution proving process. Clearly, the intention is that the literals (α+ β) + (γ − β) 6= δ
and (x+a)+(y−a) = Z are detected to be complementary. The problem however is that the variables have
different names. To solve this, we need a way to replace bound variables (the Greek letters) by expressions.
The process that detects which variables should be replaced by which expressions (if possible) is called
unification and is explained in section 1.4.4. For now, it suffices to know that if we substitute x for α,
a for β, y for γ and Z for δ, then we have two matching complementary literals, yielding the resolvent
{α+ γ = δ} on which we have to apply the same substitution, i.e. the resolvent is the clause {x+ y = Z}.
In turn, this clause is resolved (without need for a substitution) with the complementary clause {x+y 6= Z}
resulting in the empty clause, and so the proof is completed.

An additional problem which may arise when converting First Order Logic sentences into equivalent CNF
clauses is that the same variable name occurs more than once in different contexts. Consider for example
the clauses {α · (β + γ) = α · β + α · γ} and {α + 0 = α}. These clauses are the result of elimination
of the quantifier ∀, and now have an overlapping name α, while clearly these α’s are not the same vari-
able. To avoid confusion we have to rename one of the variables. The process that does this renaming is
called standardize-apart. For example we can rename α in the second expression to δ without changing its
meaning and we obtain {δ + 0 = δ}.

1.4.4 Unification
When humans produce formal proofs from a set of axioms (i.e. a knowledge base), they routinely match
patterns, (implicitly) rename variables (to avoid name collisions), and perform substitution of expressions
for bound variables. For example, consider a minimal knowledge base containing only the (familiar) rules
α · (β+γ) = α ·β+α ·γ and α+β = β+γ. In both rules, we implicitly quantified over all possible values
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of α, β, and γ. Clearly, these rules should suffice to prove that x · (y+ z) = x · z+x ·y. However, in reality
this observation consists of several implicit steps. The first consists of simply substituting α = x, β = y
and γ = z in the first rule to obtain x · (y + z) = x · y + x · z. The reason is that, by pattern matching, we
realized that we now have an expression on the left hand side of the goal that is equal to the left hand side of
the expression that we just obtained. Hence, we can replace the left hand side of the goal by the right hand
side of the equation that we just derived. More explicit, we used (probably without even realizing) the rule
E0 = F0 ∧E0 = F1 ⇒ F0 = F1. As a result, we obtained x · y + x · z = x · z + x · y. Next, we substitute
α = x · y and β = y · z in the second rule of the knowledge base to discover that the latter equation is true,
and hence we completed the proof.

For a computer program, producing this proof is a lot harder. It requires pattern matching. For example,
we had to match the left hand side of the goal (i.e. x · (y + z)) with the left hand side of the first rule
in the knowledge base (i.e. α · (β + γ)). For these expressions to match, we need the substitution θ =
{α/x, β/y, γ/z}, where the notation v/e means that the quantified variable v must be replaced by the
expression e. The set of substitution θ is called a unifier of the expressions x · (y + z) and α · (β + γ).

Let Subst(θ, e) be a function that takes two arguments. Its first argument θ is a set of substitutions, and
the second argument e is an expression. The function returns an expression that is obtained by applying all
substitution from θ to the expression e. For example, Subst({α/x, β/y}, α+ β + γ) = x+ y + γ. Using
the function Subst we can define what a unifier is.

A substitution θ is called a unifier of the expressions e0 and e1 if Subst(θ, e0) = Subst(θ, e1).

Note that the empty set is a unifier for any expression with itself. Also note that a unifier is not unique.
For example, the expressions α + β + α and x + γ + δ have several unifiers. One obvious unifier is
θ0 = {α/x, β/x, γ/x, δ/x}, but this one is very specific. A more general one is θ1 = {α/x, β/γ, δ/x}
Clearly we wish to use a unifier which is as general as possible, since it imposes fewer restrictions on the
values of the variables. So, we want to use the most general unifier (mgu), which is defined as follows:

A unifier θ0 is called the most general unifier of the expressions e0 and e1 if for any other unifier
θ1 of e0 and e1 there exists a substitution θ2 such that Subst(θ2, Subst(θ0, e0)) = Subst(θ1, e0)
and Subst(θ2, Subst(θ0, e1)) = Subst(θ1, e1).

Indeed, the unifier θ1 = {α/x, β/γ, δ/x} is an mgu of the expressions α+β+α and x+γ+δ, and θ0 is less
general because it can be composed of first applying θ1, followed by applying the substitution {γ/x}. Note
that two expressions may have several most general unifiers, because most gereneral unifiers are unique up
to renaming of variables. The mgu θ1 = {α/x, β/γ, δ/x} has a related mgu being θ′1 = {α/x, γ/β, δ/x}.
Note that, if we have the choice between several mgu’s, then it is irrelevant which one we choose.

To compute most general unifiers, we made a variant of the unification algorithm that was published by
Martelli and Montanari in 1982 (see [16]). The variant is an extension of the original algorithm, because
we incorporated arithmetic (numeric) expressions, while the original algorithm only addresses sentences
in pure FOL. The original algorithm is used in the Prolog progrmming language. The pseudocode of this
extended unification algorithm for unifiying literals is given in Fig. 1.3. The main routine is the function
literalMGU which takes two literals x and y, and returns a most general unifier or failure if no unifier
exists. Note that a literal is an expressions of the type lhs � rhs, where lhs and rhs are arithmetic
expressions (involving numbers, constants, and the standard arithmetic operators). The comparison operator
� can be either <, ≤, =, or 6= (as discussed before). Note that in the pseudocode, the symbols ⊕ and ⊗ are
used to denote any of the standard binary arithmetic operators (+,−,×,div,mod).

The unification algorithm is simple. It recursively explores the two expressions simultaneously building up
a unifier along the way (starting from an empty one). If at some point the (sub-)structures do not match,
it returns failure. The algorithm contains one expensive step, which is the case in which it tries to unify
a variable v with a (possibly complex) expression x (in the routine unifyVar). In that case we have to
traverse the entire expression x to check whether the variable v occurs in x. If that is the case, no consistent
unifier can be constructed and failure is returned.
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function recursiveMGU(x, y, θ) returns a substitution to make x and y identical
input: x and y are arithmetic expressions, θ is the MGU so far
output: a most general unifier, or fail if such a unifier does not exist
if θ = failure then return failure;
if x = y then return θ;
if x is a variable then return unifyVar(x, y, θ);
if y is a variable then return unifyVar(y, x, θ);
if x is of the form x0 ⊕ x1 and y is of the form y0 ⊗ y1 and ⊕ = ⊗
then return recursiveMGU(x1, y1,recursiveMGU(x0, y0));
return fail;

function unifyVar(v, x, θ) returns a substitution
input: v is a variable, x is an arithmetic expression, θ is the MGU so far
output: a most general unifier, or fail if such a unifier does not exist
if v/e ∈ θ then return recursiveMGU(e, x, θ);
if x/e ∈ θ then return recursiveMGU(v, e, θ);
if v occurs in x then return failure;
return θ ∪ {v/x};

function arithMGU(x, y) returns a substitution to make arithmetic expressions x and y identical
input: x and y are arithmetic expressions
output: a most general unifier, or fail if such a unifier does not exist
return recursiveMGU(x, y, ∅);

function literalMGU(x, y) returns a substitution to make literals x and y identical
input: x and y are literals
output: a most general unifier, or fail if such a unifier does not exist
if x = y then return ∅;
if x is of the form x0 < x1 and y is of the form y0 < y1

then return recursiveMGU(x1,y1,arithMGU(x0,y0));
if x is of the form x0 ≤ x1 and y is of the form y0 ≤ y1

then return recursiveMGU(x1,y1,arithMGU(x0,y0));
if x is of the form x0 = x1 and y is of the form y0 = y1

then return recursiveMGU(x1,y1,arithMGU(x0,y0));
if x is of the form x0 6= x1 and y is of the form y0 6= y1

then return recursiveMGU(x1,y1,arithMGU(x0,y0));
return fail;

Figure 1.3: Unification algorithm for arithmetic expressions
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1.4.5 Semi-Decidability
It is well-known that resolution is a complete process in the context of propositional logic. Here complete
means that it is guaranteed to find a proof if a proof exists (i.e. the goal is entailed by the knowledge base).

Unfortunately, in the context of FOL this is no longer true. It is well-known that in this context the resolution
technique is semi-decidable, which means that it will eventually (even though this may take a very long
time) come up with a proof for entailed goals, but it may not terminate on goals which are not entailed by
the knowledge base. The problem with sentences that are not entailed is that the resolution proof might
be generating new clauses forever, and there is no way to detect that these new clauses will not eventually
lead to a proof. In this sense, it is very similar to the famous Halting problem. Moreover, even sentences
that are entailed by the knowledge base may not be provable in practice, because it simply requires too
much computation time (or too much memory, or both). For example, if we want to generate a resolution
proof for a goal α which is actually entailed by the knowledge base, but it takes like 20 iterations to finalize
this proof (note again, that resolution is performing basically breadth first search) where each iteration on
average triples the number of clause, then we need to generate in the order of 320 ≈ 3.5×109 clauses. Note
that for many proofs, the number of clauses is not tripled but the number of clauses grows much faster than
that. In fact, the worst case is that the number of clauses is squared in each iteration. Clearly, this means
that even some entailed sentences can practically not be derived using the resolution technique.

As a consequence, if Aladin finds a proof for the correctness of annotation, then it will report that the
annotation is correct an the user can rely on this verdict.

Aldain may also find that an annotation is incorrect by generating a counter example, in which case the
counter example will be reported. Also, in this case the user can rely on this verdict (although he will be
less happy).

But, since we cap the number of iterations that the resolution process may perform, Aladin may not be able
to find a proof (even if it exists). In such a case, it will give ”UNDECIDED” as output. So, when Aladin
gives ”UNDECIDED” as output it does not necessary mean that the annotation is incorrect (but it might be).
Moreover, it could also mean that the knowledge base does not have enough rules to complete the proof.

1.5 Example proof
Now that all necessary ingredients have been discussed, we conclude this chapter with an example of a
complete verification of a simple annotation. For this example we use the running example:

{P : x+ y = Z}
x := x+ a;
y := y − a;
{Q : x+ y = Z}

First, we compute the weakest precondition P ′ of the two assignments, and after that we need to prove that
P ⇒ P ′. We obtain P ′ as follows:

P ′ : wp(x := x+ a,wp(y := y − a, x+ y = Z))
≡ wp(x := x+ a, x+ (y − a) = Z))
≡ (x+ a) + (y − a) = Z

Our goal α is to prove that x + y = Z ⇒ (x + a) + (y − a) = Z. Since we want to perform a resolution
proof, we negate this goal, and transform it into CNF using the steps from section 1.4.2:

{¬(x+ y = Z ⇒ (x+ a) + (y − a) = Z)}
≡ (* Step 2 *)
{¬(¬(x+ y = Z) ∨ (x+ a) + (y − a) = Z)}

≡ (* Step 3 *)
{x+ y = Z ∧ (x+ a) + (y − a) 6= Z}
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So, we find the set of clauses α = {{x+ y = Z}, {(x+ a) + (y − a) 6= Z}}.

Now we assume we have a knowledge base KB which contains the following basic rules of arithmetic:

• α+ β = γ ⇔ α = γ − β

• α = (β − γ) + δ ⇒ α = β − (γ − δ)

• α = β ⇒ α+ γ = β + γ

Of course, the implications in the 2nd and 3rd rule can be replaced by equivalences, but to keep the example
proof as short as possible, we decided to use only equivalences when they are needed in the proof. The
identifiers ’α’..’δ’ are quantified variables, and are therefore unifiable. Note that the identifiers x, y, and a
are program variables, and hence are not unifiable variables. Nor is Z, which is a specification constant.
The set of clauses that we obtain after converting the knowledge base into CNF is:

KB = {{α+β 6= γ, α = γ−β}, {α 6= γ−β, α+β = γ}, {α 6= (β−γ)+δ, α = β−(γ−δ)}, {α 6= β, α+γ = β+γ}}

Now that the knowledge base and the goal are in clausal format, we can start the resolution process. In
figure 1.4 we see the complete resolution proof tree for KB |= α. The clauses that form the negation of the
goal are marked in grey.

Figure 1.4: Proof of the running example

Note that the tree shows only resolvents that lead to completion of the proof. The resolution process gen-
erates more resolvents than the ones shown in the figure. For example {α + β 6= γ, α = γ − β} and
{x+ y = Z} would yield the resolvent {x = Z − y}, but it does not constitute to the proof. For reasons of
readability we left out superfluous resolvents, but the reader should realize that the resolution process does
generate them.

In the first step the clauses {α 6= γ − δ, α+ β = γ} and {(x+ a) + (y − a) 6= Z} resolve, using the mgu
{α/(x+ a), β/(y − a), γ/Z}, to the clause {x+ a 6= Z − (y − a)}. On its turn, this clause resolves with
{α 6= (β−γ)+ δ, α = β− (γ− δ)} to {x+a 6= (Z−y)+a} using the mgu {α/(x+a), β/Z, γ/y, δ/a}.
In the third step, the this result resolves with {α 6= β, α + γ = β + γ} to {x 6= Z − y} using the
mgu {α/x, β/Z − y γ/a}. This result on its turn resolves with the clause {α + β 6= γ, α = γ − β} to
{x + y 6= Z} using the mgu {α/x, β/y, γ/Z}. The last step is the observation that we now have the
complementary clauses {x + y 6= Z} and {x + y = Z}, so no mgu is needed to obtain the empty clause,
and hence the proof is completed.



Chapter 2

Parsing and Storing Expressions

Clearly, we need data structures to represent expressions. Moreover, we need functions that convert a textual
representation of an expression into the corresponding data structures. In this chapter, we will discuss how
we store and parse numerical and Boolean expressions.

We have decided to implement Aladin in the functional programming language Haskell (cf. [15]). The
reason for this decision is that it is easy in Haskell to syntactically manipulate expressions (or data structures
in general) without the need of (deep-)copying data structures and doing memory management. Moreover,
the pattern matching features of Haskell, together with its possibility to use wildcards, really helps in writing
short and elegant implementations of many recursive algorithms.

2.1 Numerical Expressions
We start with the representation of numerical expressions. In Aladin, numeric expressions consist of integer
constants, specification constants, program variables, and the standard arithmetic operators (+, −, ∗, div,
and mod). Note that Aladin (currently) only supports integer expressions. A floating point data type, and a
Boolean data type may be added in the future.

Numerical expressions are defined by the standard grammar which is shown in figure 2.1. The grammar can
be parsed with a recursive descent parser (see section 2.3).

E → T E′

E′ → + T E′

| - T E′

| <empty string>
T → F T ′

T ′ → * F T ′

| div F T ′

| mod F T ′

| <empty string>
F → ( E )

| - F
| <integer constant>
| <specification constant>
| <variables>
| <unifiable variables>

Figure 2.1: Grammar for numeric expressions. The start symbol is E.

17
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This grammar is used for parsing numeric expressions in annotations as well as in the knowledge base.
This explains why <unifiable variables> (i.e. bound/quantified variables) are incorporated in the
grammar, even though they are not allowed to appear in an annotation (which is checked by the parser). The
other way around, specification constants may appear in the annotation of a program, but not in the program
code itself, nor may they appear in the knowledge base. These restrictions are checked by a semantic
analysis phase that follows syntactic checking.

In this grammar we can see that addition (+) and subtraction (−) have a lower priority than multiplication
(∗), division (div), and computing a remainder (mod). In turn, we see that these operations have a lower
priority than expressions enclosed by parentheses, or factors that are prefixed by a unary minus sign.

We use the following Haskell data structure NumExpr to store numerical expressions:

1 type Name = String
2 type UnifiableVar = Int
3

4 data NumOperator = Add | Sub | Mult | Div | Mod
5

6 data NumExpr = IntConst Integer
7 | SpecConst Name
8 | Var Name
9 | UniVar UnifiableVar

10 | UnaryMinus NumExpr
11 | Binary NumOperator NumExpr NumExpr

The constructor IntConst is used for integer constants. The constructor SpecConst is used for spec-
ification constants, which are strings of which the first letter must be a capital letter. The constructor Var
is used for variables, which are strings of which the first letter must be a lowercase letter. The construc-
tor UniVar is used for unifiable variables, followed by an integer. The reason for this to be an integer
is that the actual name of a unifiable variable is not relevant. The names of unifiable variables in the
knowledge base are prefixed by the character #, and are replaced by the parsing process by an integer.
For example, a rule in the knowledge base like #a*#b=#a+#a*(#b-1) is replaced, after parsing, by
#0*#1=#0+#0*(#1-1), where #a is replaced by #0 and #b is replaced by #1. Choosing integers, in-
stead of names, is very helpful later in the resolution process, since it is easy this way to standardize apart
unifiable variables by simply adding offsets to the integer names. The constructor UnaryMinusis used
to store expressions that are prefixed by a unary minus sign (like -5, but also complex expressions like
-(x+y)). We chose to make an extra data type called NumOperator to represent the binary arithmetical
operations. The reason is that this yields significant less cases in a lot of functions in which we use pattern
matching. For example, if we want to recursively compute a list of all variables in a numeric expression,
then the recursive process is exactly the same for expressions of the type e0 ⊕ e1, where ⊕ denotes any of
the binary operators. All these case can now be matched by a single line of code, thanks to pattern matching
and the introduction of the data type NumOperator.

2.2 Boolean Expressions
Next, we consider the representation of Boolean expressions. In Aladin, Boolean expressions consist of
atoms (literals) and the Boolean operators == (equivalence), -> (implies), <- (follows), and, or and not
(negation).

Boolean expressions are defined by the grammar which is shown in figure 2.2, which also can be parsed
using a recursive descent parser (see section 2.3). In this grammar we see that the connectives == (equiv-
alence), <- (follows) and -> (implies) all have a lower priority than the or connective. In turn, this
connective has a lower priority than the and connective. Finally, Boolean expressions enclosed by paren-
theses and the negation of a Boolean expression have the highest priority. Note that we deliberately chose
the parentheses for Boolean expressions to be square brackets (i.e. [ and ]). This solves a recursive
descent parsing conflict between the parentheses used for numeric expressions and those from Boolean
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BE → BO BE′

BE′ → == BO BE′

| <- BO BE′

| -> BO BE′

| <empty string>
BO → BT BO′

BO′ → or BF BT ′

| <empty string>
BT → BF BT ′

BT ′ → and BF BT ′

| <empty string>
BF → [ BE ]

| not BF
| ATOM

ATOM → true
| false
| E <E
| E <= E
| E = E
| E >= E
| E > E
| E /= E

Figure 2.2: Grammar for Boolean expressions. The start symbol is BE.

expressions. For example, if we try to parse an expression like (x>0 or 2*(x+y)<z) and z<x+y
using a recursive descent parser, then the parser cannot decide (at the moment that it detects the first open
parenthesis), whether this would match ( E )from the grammar for numeric expressions, or (BF )from
the grammar for Boolean expressions. There are two ways out of this parsing conflict. Either we use
another parsing strategy (a so-called LR(0) bottom up parser is able to solve this conflict), or we use dif-
ferent style parentheses for Boolean expressions. We chose to do the latter, since this project is not a
project with its main focus on compiler construction techniques. So, the given example must be written
as [x>0 or 2*(x+y)<z] and z<x+y. Moreover, we actually like this choice, because as a side-
effect of this decision we have now typed parentheses, which actually makes expressions with many mixed
parentheses easier to read.

We use the following Haskell data structure BoolExpr to store Boolean expressions:

1 data BinaryBoolOperator = And | Or | Implies | Follows | Equivalence
2

3 data BoolExpr = Atom BoolAtom
4 | BinOp BinaryBoolOperator BoolExpr BoolExpr
5 | Not BoolExpr

A Boolean expression may be an atom, a negation of a Boolean expression, or an expression using one of
the other five connectives together with two Boolean expressions (a left-hand side and a right-hand side).
Similarly to the NumExpr data structure, we used the extra data type BinaryBoolOperator and the
constructor BinOp to limit the amount of cases to consider in pattern matching.

We use the following Haskell data structure to store Boolean atoms:

1 data BoolAtom = T | F | Compare CompOperator NumExpr NumExpr
2

3 data CompOperator = LessThan | LessEqual | Equal | NotEqual
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Figure 2.3: Processing pipeline for parsing.

Here again, we made an extra data type CompOperator and the constructor Compare to reduce the
number of cases for pattern matching. As we can see in this code, a Boolean atom can be T (true), F (false)
or a comparison operator together with two numerical expressions (the left-hand side and the right-hand
side of the comparison). Note that we have omitted the comparison operators > and ≥. As explained
before, we decided to remove these operators for simplicity. For example, the atoms p > q and r ≥ s can
easily be rewritten as q < p and s ≤ r respectively. This conversion is performed by Aladin directly in the
parser for Boolean atoms. The main advantage of this decision is that we need to consider fewer cases in
the resolution algorithm.

2.3 Parsing Expressions
Now that have a way to store expressions, we discuss how to parse the expressions. The process that
converts the input, which is basically a (large) string of characters, into BoolExprs and NumExprs, which
are representations of syntax trees, is called parsing.

The parsing process is very similar to a standard front end of a compiler, and consists of a pipeline with three
stages (see Fig. 2.3). The first stage is called the lexer, the second the parser, and the third the semantic
analyzer.

The lexer is the first stage of the pipeline. Its task is to convert the input, which is a sequence of characters,
into a sequence of tokens. The reason to use a lexer is that at the level of the parser we do not have
to process the input at the low level granularity of characters, but at a higher level of tokens (keywords,
arithmetic operators, etc.). Moreover, the lexer is able to skip superfluous white space (spaces, tabs, and
newlines) without the parser even knowing.

We implemented the lexer as a standard Haskell function which has the prototype

lexer :: String -> [(LexToken,Int)]

Its input is simply a String of characters, while its output is a list of pairs of the type (LexToken,Int).
Each pair consists of a recognized token, and an integer value representing the line number of the input in
which the token was found. This line number is irrelevant in the rest of the processing pipeline, but it is
used for error reporting.

The type LexTokenis an enumeration type representing all tokens:

1 data LexToken = LessThanTok | LessEqualTok | GreaterThanTok
2 | GreaterEqualTok | EqualTok | NotEqualTok | LparTok
3 | RparTok | LsqBrackTok | RsqBrackTok | LcurlBrackTok
4 | RcurlBrackTok | SemicolonTok | CommaTok | TrueTok
5 | FalseTok | AndTok | OrTok | NotTok | ImpliesTok | FollowsTok
6 | EquivalenceTok | IfTok | ThenTok | ElseTok | EndTok WhileTok
7 | DoTok | AddTok | SubTok | MultTok | DivTok | ModTok
8 | AssignTok |SkipTok | VarDeclTok | ConstTok | LetTok
9 | CommentTok String | VarTok String | UniVarTok String

10 | SpecConstTok String | IntTok Integer
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The data type LexToken is used for tokenizing annotated programs, and not only expressions. Note that
the constructors in the lines 9-10 have an additional argument. The constructor CommentTok is used to
store comment lines (i.e. text between (* and *)in a program) and thus has an additional String to store
this text. Note that a lexer for a compiler would simply drop comment lines, but we do not want to loose
these lines because we need it for pretty printing the output. The same holds for the constructor VarTok,
which is used for storing the name of a variable (i.e. a String). The constructor UniVarTok is used
for representing unifiable variable (i.e. identifiers that start with the character #). Note that, as discussed
before, these names are replaced by integers, but that is done at the level of the parser. The lexer simply
passes the name of the unifiable variable as a String. Similarly, the constructor SpecConstTok needs
a String to store the name of a specification constant. If the lexer encounters a series of digits, then
these digits are converted to an integer value and returned via the constructor IntTok. We will not discuss
the exact implementation of the lexer, since its implementation details are not relevant in the rest of this
document.

The next stage of the pipeline is the parser. The grammar for the input of Aladin has been constructed such
that it can be parsed using a recursive descent parser. This type of parsers can readily be written by hand,
by an (almost) mechanic translation from grammar rules to program code. Grammars of this type are called
LL(k) grammars (see [6]), and have the property that the input can be parsed from left to right, and that
at any moment the parser can decide which grammar rule to apply based on (at most) the last k tokens.
The grammar of Aladin is in the class LL(1), so the parser can always decide which grammar rule to apply
based on a single token. Note, as said before, we have decided to use different style parentheses for Boolean
and numeric expressions. Without this decision the grammar of Aladin would not have been LL(k) (for
any k), requiring a much more complicated parsing technique.

We now discuss the parsing of Boolean expressions. The main Haskell function for parsing these expres-
sions is called parseBoolExpr .

1 parseBoolExpr :: String -> (BoolExpr,[(LexToken,Int)])
2 parseBoolExpr input = parseBexpr (lexer input)
3

4 parseBexpr :: [(LexToken,Int)] -> (BoolExpr,[(LexToken,Int)])
5 parseBexpr tokens = (acc,rest)
6 where (acc,_,rest) = parseBE [] tokens

The function parseBoolExpr takes as its input a string of characters, which gets tokenized using the
lexer. The output of the lexer is the input for the function parseBexpr, which is the actual starting func-
tion of the recursive descent parsing process. Note that the return type of the functions parseBoolExpr and
parseBexpr is a pair of the type (BoolExpr,[(LexToken,Int)]). On a successful parse, the first
element of this pair is the accepted expression, while the second element is the remaining tokenized input
(if it exists). For example, the call parseBoolExpr "2*x=y=y" would return a pair of which the first
element denotes the expression 2*x=y, and the second element would be a list containing the tokenization
of "=y". From the code snippet we can see that the function parseBoolExpr is actually a wrapper
function around the function parseBexpr. The reason for this wrapping is that we use the function
parseBexpr also in the Aladin parser for complete programs (not only expressions), and in that case the
input has already been tokenized.

The function parseBexpr calls the function parseBE, which is the function that is the Haskell transla-
tion of the starting rule from the grammar for Boolean expressions. Note that the function parseBE ac-
cepts two arguments. The first argument is a list of names of unification variables that is built up and passed
around during the parsing of the expression. Initially this list is empty, hence parseBexpr passes the
empty list to parseBE . The list is needed in the translation of the names of unification variables into unique
integers. The second argument of the function ishttps://www.overleaf.com/project/5ece62befd98920001654f5c
the list of input tokens that is produced by the lexer.

The consequence of this design is that many functions that are part of the parser for BoolExprs are typed as
[Name] -> [(LexToken,Int)] -> (BoolExpr,[Name],[(LexToken,Int)]). The first
two arguments are as explained. The return type is a triple, of which the first element is the accepted parsed
expression, the second the (possibly extended) list of unification variables that was built up (so far), and the
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third is the remaining tokenized input.

The function parseBE also has this type, and implements the grammar rule BE → BO BE′.

1 parseBE :: [Name] -> [(LexToken,Int)] ->
2 (BoolExpr,[Name],[(LexToken,Int)])
3 parseBE uvars tokens = parseBE’ acc uv rest
4 where (acc,uv,rest) = parseBO uvars tokens

As the grammar rule dictates, the parser first tries to accept an expression that can be produced by BO.
Next, it tries to parse BE′. The function that accepts BO is called parseBO, and the function that accepts
BE′ is called parseBE’. The processing order is clear from the code. First parseBO is called in the
where clause, and its output is input for the function parseBE’. In fact, this style of coding actually
implements a form of function composition.

Recall the grammar rule for BE′:

BE′ → == BO BE′

| <- BO BE′

| -> BO BE′

| <empty string>

The Haskell function parseBE’implements the parsing of this grammar rule.

1 parseBE’ :: BoolExpr -> [Name]-> [(LexToken,Int)] ->
2 (BoolExpr,[Name],[(LexToken,Int)])
3 parseBE’ accepted uvars ((EquivalenceTok,_):tokens) =
4 parseBE’ (BinOp Equivalence accepted acc) uv rest
5 where (acc,uv,rest) = parseBO uvars tokens
6 parseBE’ accepted uvars ((ImpliesTok,_):tokens) =
7 parseBE’ (BinOp Implies accepted acc) uv rest
8 where (acc,uv,rest) = parseBO uvars tokens
9 parseBE’ accepted uvars ((FollowsTok,_):tokens) =

10 parseBE’ (BinOp Follows accepted acc) uv rest
11 where (acc,uv,rest) = parseBO uvars tokens
12 parseBE’ accepted uvars tokens = (accepted,uvars,tokens)

Note that parseBE’ has an additional (first) argument with the type BoolExpr. This argument contains
the Boolean expression that was already built up before parseBE’ was called (i.e. in parseBO), and this
function will return it immediately in the case it accepts the empty string (line 12). Otherwise, it matches
any of the connectives == (equivalence), -> (implies), or <- (follows), and uses this extra argument in the
left hand side of the returned binary Boolean expression. In these cases (lines 3-11), the structure is the same
as in the function parseBE, i.e. first parseBO is called and its output is the input for another recursive
call to parseBE’. This structure is typical for recursive descent parsers. In imperative languages, such
parsers typically consist of huge nested if-then-else constructs. In Haskell we can make use of its (top-down)
pattern matching facility, to prevent this nested coding style.

The grammar rules for BO, BO′, BT , BT ′, and BF have the same structure. As noted before, the reason
that the grammar is written in a layered fashion is that the priority of the connectives is now explicitly
expressed in the structure of the grammar rules.
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BO → BT BO′

BO′ → or BF BT ′

| <empty string>
BT → BF BT ′

BT ′ → and BF BT ′

| <empty string>
BF → [ BE ]

| not BF
| ATOM

The parsing functions for these rules have the same structure as the combination parseBE and parseBE’:

1 parseBO :: [Name] -> [(LexToken,Int)] ->
2 (BoolExpr,[Name],[(LexToken,Int)])
3 parseBO uvars tokens = parseBO’ acc uv rest
4 where (acc,uv,rest) = parseBT uvars tokens
5

6 parseBO’ :: BoolExpr -> [Name] -> [(LexToken,Int)] ->
7 (BoolExpr,[Name],[(LexToken,Int)])
8 parseBO’ accepted uvars ((OrTok,_):tokens) = parseBO’
9 (BinOp Or accepted acc) uv rest

10 where (acc,uv,rest) = parseBT uvars tokens
11 parseBO’ accepted uvars tokens = (accepted,uvars,tokens)
12

13 parseBT :: [Name] -> [(LexToken,Int)] ->
14 (BoolExpr,[Name],[(LexToken,Int)])
15 parseBT uvars tokens = parseBT’ acc uv rest
16 where (acc,uv,rest) = parseBF uvars tokens
17

18 parseBT’ :: BoolExpr -> [Name] -> [(LexToken,Int)] ->
19 (BoolExpr,[Name],[(LexToken,Int)])
20 parseBT’ accepted uvars ((AndTok,_):tokens) = parseBT’
21 (BinOp And accepted acc) uv rest
22 where (acc,uv,rest) = parseBF uvars tokens
23 parseBT’ accepted uvars tokens = (accepted,uvars,tokens)
24

25 parseBF :: [Name] -> [(LexToken,Int)] ->
26 (BoolExpr,[Name],[(LexToken,Int)])
27 parseBF uvars ((NotTok,_):tokens) = ((Not acc),uv,rest)
28 where (acc,uv,rest) = parseBF uvars tokens
29 parseBF uvars ((LsqBrackTok,_):tokens) = (expr,uv,tokens1)
30 where (expr,uv,((RsqBrackTok,_):tokens1)) = parseBE uvars tokens
31 parseBF uvars (tok:tokens) = ((Atom acc),uv,rest)
32 where (acc,uv,rest) = parseBA uvars (tok:tokens)

The last grammar rule of which we will discuss the parser is the grammar rule for ATOMs.

ATOM → T | F | E <E | E <= E | E = E | E >= E | E > E | E /= E

The function parseBA implements the parser for this rule. The function makes use of the function parseE
which is responsible for parsing numerical expressions. The first two cases, T (true) and F (false), are easy.
The remaining cases are comparisons of two numeric expression. In these cases, first the function parseE
is called (in line 7), which parses the left hand side (lhs) of the comparison. Next, a helper function
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parseBA’ is called. This helper function parses the remaining list of tokens, which should start with
a comparison operator followed by a numeric expression. Note that, if the remaining list of tokens does
not start with such an operator, then an error is reported (lines 18-19). Moreover, an error is also reported
in the case of an unexpected end of input (line 7). If a successful parse yields a right hand side, then
the function makeAtom (together with the comparison operator) produces in the end a valid BoolAtom
expression. Note that the comparisons lhs > rhs and lhs >= rhs are converted into rhs < lhs
and rhs <= lhs respectively (in lines 14-15).

1 parseBA :: [Name] -> [(LexToken,Int)] ->
2 (BoolAtom,[Name],[(LexToken,Int)])
3 parseBA uvars ((TrueTok,_):tokens) = (T,uvars,tokens)
4 parseBA uvars ((FalseTok,_):tokens) = (F,uvars,tokens)
5 parseBA uvars tokens = parseBA’ rest
6 where
7 (lhs,uvrs,rest) = parseE uvars tokens
8 parseBA’ [] = error "Error: unexpected end of input."
9 parseBA’ (tok:tokens) = (makeAtom tok lhs rhs,uv,rest)

10 where (rhs,uv,rest) = parseE uvrs tokens
11 makeAtom :: (LexToken,Int) -> NumExpr -> NumExpr -> BoolAtom
12 makeAtom (LessThanTok,_) lhs rhs = Compare LessThan lhs rhs
13 makeAtom (LessEqualTok,_) lhs rhs = Compare LessEqual lhs rhs
14 makeAtom (GreaterThanTok,_) lhs rhs = Compare LessThan rhs lhs
15 makeAtom (GreaterEqualTok,_) lhs rhs = Compare LessEqual rhs lhs
16 makeAtom (EqualTok,_) lhs rhs = Compare Equal lhs rhs
17 makeAtom (NotEqualTok,_) lhs rhs = Compare NotEqual lhs rhs
18 makeAtom (_,n) _ _ = error ("Syntax error in line " ++ show(n)
19 ++ ": expected relational operator")

Parsing numerical expressions is done with the function parseE and a set of other parsing functions. The
type of the function parseE is similar to the type of parseBE.

1 parseE :: [Name] -> [(LexToken,Int)] ->
2 (NumExpr,[Name],[(LexToken,Int)])

The structure of the parser functions for numerical expressions is very similar to the parsing functions for
Boolean expressions. In numerical expressions there is a hierarchy based on the precedence rules for the
arithmetic operators, similar to the hierarchy of the Boolean connectives that was discussed in this section.
We will not discuss the parsing of numerical expressions any further, because the discussion would be
a repetition of the discussion of parsing Boolean expressions. Moreover, parsing is an essential part of
Aladin, but it is not the main focus of this thesis.



Chapter 3

Finding Counterexamples

As described in chapter 1, for incorrect annotations Aladin might output ”ERROR” together with a coun-
terexample. If counterexamples exist, it is not guaranteed that Aladin actually succeeds in finding them.
Aladin is only doing a best effort in trying to find them. The fact that Aladin did not find a counterexam-
ple is therefore not a proof of correctness, which is in line with the following famous quote of E.W. Dijkstra:

“Program testing can be used to show the presence of bugs, but never to show their absence!”

Finding those counter examples is the topic of this chapter. The method that Aladin uses to find them
is based on a combination of finding solutions of a constraint satisfaction problem (CSP) and simulated
executions of the program in which all assertions are checked on the fly. Both elements are discussed in this
chapter. The constraint satisfaction problem consists of finding initial values of the specification constants
and program variables that satisfy the precondition of the program. The solutions of these CSPs are used as
the initial states for simulation runs.

3.1 Parsing and Storing Programs

Aladin accepts as its input an annotated program. Therefore we need to parse annotated programs and store
them in a data type. The LL(1) grammar of Aladin is given in Figure 3.1. The non-terminals E and BE
refer to the grammars for numeric and Boolean expressions that was discussed in chapter 2.

Program → ConstDecl ; V arDecl ; Statements
ConstDecl → const IdentList | <empty string>
V arDecl → var IdentList | <empty string>
IdentList → < identifier > Idl′

Idl′ → , < identifier > Idl′ | <empty string>
Statements → Command ; Statements | <empty string>
Command → skip | Commentline | Assertion | Assignment

| ConditionalCommand | WhileCommand
Commentline → (∗ <anything in text> ∗)
Assertion → { Assertion′ }
Assertion′ → BE | let <specification constant> = E
Assignment → <variable> := E
ConditionalCommand → if BE then Commands else Commands end
WhileCommand → while BE do Commands end

Figure 3.1: Grammar of Aladin

25



26 CHAPTER 3. FINDING COUNTEREXAMPLES

From the grammar it is clear that a program consists of an optional list of declared constants, followed by
an optional list of declared variables, followed by a series of statements. This observation leads naturally to
the following Haskell type to represent programs.

data Program = Program [Name] [Name] [(Statement,Int)]

A Program consists of a list of specification constants (the first [Name] list), a list of declared variables
(the second [Name] list) and a list of tuples (Statement,Int). The first element of such a tuple is
of the type Statement which represents a program statement, while the second element is an integer
denoting the corresponding line number in the source code. This line number is used for proper error
reporting.

An Aladin statement can be a skip statement (which does not do anything), an assignment to a variable, a
conditional statement, or a loop. Moreover, comment lines and assertions are also considered statements
that have no effect on the program state.

We also introduced a let statement which is a special type of assertion. This ’statement’ can be used to
introduce a new local specification constant. Its primary use is in termination proofs of repetitions that use
a bounded integer expression vf, called the variant function, that needs to decrease in each iteration of the
repetition. If S is the body of such a loop, then this can be expressed as the proof rule {vf = V } S{vf < V }.
However, the value V is not a normal specification constant, but actually a local constant that, before the
execution of S, has the value of the expression vf. This can be expressed in Aladin using the let construct:
{let V= vf}, where vf is an expression in the program variables and (normal) specification constants.

We use the following Haskell data structure Statement to store statements:

1 data Statement = Skip
2 | Comment String
3 | Assertion BoolExpr
4 | Let Name NumExpr
5 | Assignment Name NumExpr
6 | Conditional BoolExpr [(Statement,Int)]
7 [(Statement,Int)]
8 | WhileLoop BoolExpr [(Statement,Int)]

Parsing a program is done in the same way as parsing Boolean and numeric expressions using a recursive
descent parser. We decided that each program consists of an assertion, the precondition, followed by a
number of blocks. A block is either a series of assignments (possible mixed with comments and skip
commands), a conditional statement, or a loop construct. Each block must be followed by an assertion. This
enforces that each block has a ’local’ post condition, and a ’local’ precondition that is the post condition
of the preceding block. The first block of the program has no preceding block, and its precondition is
the precondition of the entire program. Similarly, the last block its ’local’ postcondition is actually the
postcondition of the entire program. Note that this block structure of an annotated program is not enforced
by the grammar in figure 3.1, however after a program has been parsed Aladin checks whether the program
satisfies these structural rules.

3.2 Reducing Expressions
In the simulation runs in which Aladin tries to find counterexamples, we clearly need a way to evaluate
expressions given values for the variables involved to evaluate the right hand side of assignments. Moreover,
we also need a way to reduce (simplify) expressions in the CSP solving process. In this section we explain
how expressions are reduced maximally.

Note that we explicitly use the term reduction of expressions (instead of evaluation). The reason is that we
want to reduce (or simplify) expressions, even if no value is available for some of the identifiers involved.
For example, if we know that x equals 2, while we do not know the value of y, then the numeric expression
x+2*(5+x)*y can still be reduced to the expression 2+14*y. A reduction becomes an evaluation if
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values for all involved identifiers are known. We start this section with a discussion on the reduction of
numeric expressions.

3.2.1 Simplifying and Reducing Numeric Expressions
We call an identifier together with its value a valuation, which is implemented as a tuple of two numerical
expressions. The first element represents the identifier, and the second a numerical expression.

type Valuation = (NumExpr,NumExpr)

Note that the ’value’ of an identifier is a numeric expression. For example, x = 42 is represented by the
valuation (Var "x",IntConst 42), while (Var "y", Var "z") is a valuation for y = z.

We implemented a function reduceNumExpr which has the prototype

1 reduceNumExpr :: NumExpr -> [Valuation] -> NumExpr

It accepts a numerical expression and a list of valuations. If that list is empty, reduceNumExpr will return
a numeric expression which is obtained by simplifying sub-expressions in which no variables are involved
(e.g. 2*3*x+5*3 will reduce to 6*x+15). If the list of valuations is non-empty, then reduceNumExpr
will substitute these valuations during the reduction of the numerical expression. The implentation of
reduceNumExpr is straightforward, and we will discuss it only partially. We consider only a few cases
of the call reduceBoolExpr e.

In the case that e is a simple integer constant, it is returned unmodified. In the case that e is an identifier
(a variable, specification constant, or a unifiable variable), the list of valuations is searched to find a corre-
sponding valuating expression for the identifier. If such an expression is found, then the reduction of this
expression is returned. If it is not found, then the identifier itself is returned unmodified. The following
code snippet shows these cases.

1 reduceNumExpr :: NumExpr -> [Valuation] -> NumExpr
2 reduceNumExpr (IntConst c) _ = IntConst c
3 reduceNumExpr (Var x) vs = reduceNumIdentExpr (Var x) vs
4 reduceNumExpr (UniVar x) vs = reduceNumIdentExpr (UniVar x) vs
5 reduceNumExpr (SpecConst x) vs = reduceNumIdentExpr (SpecConst x) vs
6

7 reduceNumIdentExpr :: NumExpr -> [Valuation] -> NumExpr
8 reduceNumIdentExpr idt vs = reduceIdent [z | (y,z) <- vs , y==id]
9 where

10 reduceIdent [] = id
11 reduceIdent xs = reduceNumExpr (head xs) vs

The remaining cases, in which e is not a numeric atom, are simply implementations of the arithmetic
operators. Of these, we only show the implementation of the multiplication operation. The remaining
operations have similar code. For all binary operators, first the operands are recursively reduced, after
which the corresponding operator is implemented. Note that expressions like x*0 and 0*x are reduce to
0, and 1*x and x*1 are reduced to x. Several other optimisations are used for other operators as well. For
example, the expression e0-e0 is simply reduced to zero, even if e0 is a complicated expression.

1 reduceNumExpr (Binary Mult p q) vs =
2 reduceMult (reduceNumExpr p vs) (reduceNumExpr q vs)
3 where
4 reduceMult (IntConst 0) rhs = IntConst 0
5 reduceMult (IntConst 1) rhs = reduceNumExpr rhs vs
6 reduceMult lhs (IntConst 0) = IntConst 0
7 reduceMult lhs (IntConst 1) = reduceNumExpr lhs vs
8 reduceMult (IntConst x) (IntConst y) = IntConst (x*y)
9 reduceMult (IntConst x) (Binary Mult (IntConst y) e0) =
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10 Binary Mult (IntConst (x*y)) e0
11 reduceMult (Binary Mult (IntConst x) e0) e1 =
12 reduceNumExpr (Binary Mult
13 (IntConst x) (reduceNumExpr (Binary Mult e0 e1) vs)) vs
14 reduceMult lhs (IntConst y) =
15 reduceNumExpr (Binary Mult (IntConst y) lhs) vs
16 reduceMult lhs rhs = Binary Mult lhs rhs

3.2.2 Simplifying and Reducing Boolean Expressions
Now that we have a function to reduce numeric expressions, we consider the reduction of Boolean expres-
sion. We start with the function reduceBoolExpr, which (like numeric expressions in section 3.2.1)
reduces a Boolean expression as much as possible given a list of valuations. However, the function does
not infer valuations. As an example, if we reduce the Boolean expression x=36-2 and y=2*4+x us-
ing an empty valuations list, then the returned reduced expression should be x=34 and y=8 + x, and
not x=40 and y=42 because the latter requires the inference that x=34 can be substituted in the sec-
ond conjunct. The reason for not allowing such inferences is simply that it is very hard to do this ef-
ficiently in a recursive one-pass algorithm. For example, if the algorithm does perform inferences and
processes first the left conjunct, followed by the right conjunct, then reduction of the equivalent expression
y=2*4+x and x=36-2 would yield a different answer. However, if we do a reduction of the expres-
sion x=36-2 and y=2*4+x with the valuation list [(Var "x",IntConst 34)] (meaning that the
value of x is 34) then we obtain the expression y=42. The reason is that x=34 is now not an inference, but
a valuation which can be substituted everywhere where x occurs. Hence x=36-2 reduces to 34=34 (i.e.
true), and the result is the remainder of the reduction of the second second conjunct. Similarly, if we try to
reduce x=36-2 and y=2*4+xwith the valuation list [(Var "x",IntConst 0)] then the returned
reduced expression is simply false, since the reduction of the first conjunct already yields false.

In the following code snippet we consider a fragment of the function reduceBoolExpr.

1 reduceBoolExpr :: BoolExpr -> [Valuation] -> BoolExpr
2 reduceBoolExpr (BinOp And e0 e1) vals =
3 reduceAndExpr (reduceBoolExpr e0 vals) (reduceBoolExpr e1 vals)
4 where
5 reduceAndExpr (Atom T) rhs = rhs
6 reduceAndExpr (Atom F) rhs = Atom F
7 reduceAndExpr lhs (Atom T) = lhs
8 reduceAndExpr lhs (Atom F) = Atom F
9 reduceAndExpr lhs rhs = BinOp And lhs rhs

In the above code snippet the reduction of a Boolean expression which is the conjunction of two Boolean
sub-expressions (e0 and e1) (given a list of valuations) is computed. The function recursively reduces
the expressions e0 and e1, and combines the result using the helper function reduceAndExpr. From
the code it is clear that the function performs short-circuit reduction thanks to Haskell’s lazy evaluation
strategy. For example, if the reduction of e0 yields false (line 6), then the returned reduced expression is
automatically false (i.e. Atom F) without reducing the second conjunct. Similarly, if the first conjunct
reduces to true, then the resulting reduced expression is the reduction of the second conjunct (line 5). The
lines 7 and 8 are based on the same reasoning for the second argument, and are only reached when the first
conjunct does not reduce to either true or false. Line 9 is reached if neither conjunct reduces to true or false,
and the returned reduced expression is the conjunction of the reduced sub-expressions.

For the reduction of disjunctions, reduceBoolExpr has similar code that is tailored to the properties of
disjunctions.

1 reduceBoolExpr (BinOp Or e0 e1) vals =
2 reduceOrExpr (reduceBoolExpr e0 vals) (reduceBoolExpr e1 vals)
3 where
4 reduceOrExpr (Atom T) rhs = Atom T
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5 reduceOrExpr (Atom F) rhs = rhs
6 reduceOrExpr lhs (Atom T) = Atom T
7 reduceOrExpr lhs (Atom F) = lhs
8 reduceOrExpr lhs rhs = BinOp Or lhs rhs

For the other three binary connectives (implies, follows and equivalence), the function reduceBoolExpr
has similar code structure (which is not discussed further). An interesting remaining case is the reduction
of a negation of the type Not e, where e is a BoolExpr. If e=Not(Not e0)), then the negations
cancel and we recursively reduce e0. In the case that e is a conjunction of two expressions e0 and e1, then
we apply De Morgan’s law, and reduce the disjunction of the negation of e0 and the negation of e1. De
Morgan’s rule is also applied if e is a disjunction of two sub-expressions. In the case that e is an implication
of the type e0 implies e1, then we recursively reduce the expression e0 and not e1, which is a direct
translation of ¬(p → q) ≡ ¬(¬p ∨ q) ≡ p ∧ ¬q. The same rule is used if e is an implication in the
opposite direction. In the case that e is an equivalence of two sub-expressions e0 and e1, then we simply
apply the rule ¬(p ≡ q) ≡ (¬p ≡ q). The remaining case is that e is an Atom, in which case a helper
function negateAtom is used to implement the reduction of the negation of e (e.g. the comparison a < b
is replaced by b ≤ a).

1 reduceBoolExpr (Not e) vals = reduceNotExpr e
2 where
3 reduceNotExpr (Not e0) = reduceBoolExpr e0 vals
4 reduceNotExpr (BinOp And e0 e1) =
5 reduceBoolExpr (BinOp Or (Not e0) (Not e1)) vals
6 reduceNotExpr (BinOp Or e0 e1) =
7 reduceBoolExpr (BinOp And (Not e0) (Not e1)) vals
8 reduceNotExpr (BinOp Implies e0 e1) =
9 reduceBoolExpr (BinOp And e0 (Not e1)) vals

10 reduceNotExpr (BinOp Follows e0 e1) =
11 reduceBoolExpr (BinOp And e1 (Not e0)) vals
12 reduceNotExpr (BinOp Equivalence e0 e1) =
13 reduceBoolExpr (BinOp Equivalence (Not e0) e1) vals
14 reduceNotExpr (Atom e0) =
15 reduceBoolExpr (Atom (negateAtom e0)) vals
16

17 negateAtom :: BoolAtom -> BoolAtom
18 negateAtom T = F
19 negateAtom F = T
20 negateAtom (Compare LessThan p q) = Compare LessEqual q p
21 negateAtom (Compare LessEqual p q) = Compare LessThan q p
22 negateAtom (Compare Equal p q) = Compare NotEqual p q
23 negateAtom (Compare NotEqual p q) = Compare Equal p q

There is only one case left for reduceBoolExpr e, and that is the case in which e is an Atom.

1 reduceBoolExpr (Atom e) vals = Atom (reduceBoolAtom e vals)
2

3 reduceBoolAtom :: BoolAtom -> [Valuation] -> BoolAtom
4 reduceBoolAtom T _ = T
5 reduceBoolAtom F _ = F
6 reduceBoolAtom (Compare op p q) vals =
7 reduceAtom op (reduceNumExpr p vals) (reduceNumExpr q vals)
8 where
9 reduceAtom LessThan (IntConst x) (IntConst y) =

10 if x < y then T else F
11 reduceAtom LessEqual (IntConst x) (IntConst y) =
12 if x <= y then T else F
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13 reduceAtom Equal (IntConst x) (IntConst y) =
14 if x == y then T else F
15 reduceAtom NotEqual (IntConst x) (IntConst y) =
16 if x /= y then T else F
17 reduceAtom LessEqual e0 e1 = if e0==e1 then T else
18 (Compare LessEqual e0 e1)
19 reduceAtom Equal e0 e1 = if e0==e1 then T else
20 (Compare Equal e0 e1)
21 reduceAtom LessThan e0 e1 = if e0==e1 then F else
22 (Compare LessThan e0 e1)
23 reduceAtom op lhs rhs = Compare op lhs rhs

An Atom is either a trivial case (being true or false), in which case it simply reduces to itself, or a com-
parison of two numeric expressions. In the latter case, the two numeric expressions are reduced using the
function reduceNumExpr. If both these reduction yield an integer constant, then the corresponding com-
parison is performed and the atom reduces to either T (true) or F (false). If two expressions e0 and e1 are
not fully reduced, but are the same and have one of the compare operators <,≤ or =, then we can perform
an optimization to reduce a whole expression to T or F. If the expressions are not the same, we can simply
return the comparison. Also, for all other cases a (possibly reduced) comparison is returned.

3.3 Solving a CSP
To find a counterexample for an annotation, simulation runs of the program are performed. To run such
a simulation, we have to find a set of values for the specification constants in the precondition together
with initial values for program variables such that the precondition holds. Given such a set of values, a
simulation run is started, in which each assertion in the annotation is checked for validity. As soon as one
of these assertions is false, the offending state (and line number in the program) is reported. Moreover, the
initial state and the values of the specification constants are reported as a counter example of the annotation.
In the case that a simulation run terminates without detecting false assertions, Aladin simply tries another
simulation run starting from another initial set of values.

Finding initial values for the specification constants and variables that satisfy the precondition is actually
a special case of solving a constraint satisfaction problem (CSP). Many methods (using clever heuristics)
exist to solve constraint satisfaction problems, but the problem remains NP-complete which is obvious
since many NP-complete problems can be phrased as a CSP. In 2015 a bachelor thesis by J. Bakker (see [7])
was published about this subject including the implementation of several heuristics to speed up the solving
process. Unfortunately, the solvers from that thesis are not applicable for this project, since the solvers were
implemented in C and cannot process the Haskell data structures that are used by Aladin.

An extra problem that we are facing is that in standard CSPs a finite domain of values is given for each
variable of the CSP. In Aladin this is not true, since integers can take on an infinite number of values. We
have decided to approach this problem in a pragmatic fashion by simply choosing the domain finite, being
the range [−100..100] for some variables. For example, if we have two variables x and y that need to satisfy
2 ∗ x = y then the system iterates for x over this limited range, and computes for each x a corresponding
value for y. Hence, the value of y may not be from the domain [−100..100].

Since the main objective of this thesis is to check formal annotations, we did not spend much time on
implementing an efficient CSP solver using heuristics. Instead, we use the naive method of generating
values for some variables and trying to solve for remaining variables. Clearly, this approach is not very
efficient and can be improved implementing the techniques from [7] in Haskell.

In order to try values for the identifiers (variables and/or specification constants) in the CSP (which is
represented by a BoolExpr), we need a function that returns the list of variables in the CSP. The function
identifiersInBoolExpr does exactly that. It recursively traverses a Boolean expression, with the
help of the functions identifiersInBoolAtom and identifierInNumExpr, constructing a list
of variables on the fly.
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1 identifiersInBoolExpr :: BoolExpr -> [NumExpr]
2 identifiersInBoolExpr expr = nub (idents expr)
3 where
4 idents (Atom e) = identifiersInBoolAtom e
5 idents (Not e) = idents e
6 idents (BinOp op lhs rhs) = idents lhs ++ idents rhs
7

8 identifiersInBoolAtom :: BoolAtom -> [NumExpr]
9 identifiersInBoolAtom expr = nub (idents expr)

10 where
11 idents (Compare op lhs rhs) =
12 identifiersInNumExpr lhs ++ identifiersInNumExpr rhs
13 idents _ = []
14

15 identifiersInNumExpr :: NumExpr -> [NumExpr]
16 identifiersInNumExpr expr = nub (idents expr)
17 where
18 idents (IntConst _) = []
19 idents (UnaryMinus e) = idents e
20 idents (Binary op lhs rhs) = idents lhs ++ idents rhs
21 idents ident = [ident]

Note that identifiersInBoolExpr does not return a list of Names, but a list of NumExprs. The
reason is that the returned list is a list that can contain variables and specification constants. As noted before
in the discussion of the data type NumExpr we represent variables by numeric expressions of the type
Var Name, and specification constants by numeric expressions of the type SpecConst Name. Also
note that the recursive helper function idents yields a list that may contain duplicates. The standard
Haskell function nub (in line 2) is used to remove duplicates from the list.

Now that we have a list of the relevant identifiers, we can try to assign values to them in search of a set of
values that satisfy the CSP. A list of valuations in which each identifier of the CSP is given a value such that
the CSP is satisfied, is a solution of the CSP. Using the function reduceBoolExpr (see section 3.2.2) it
is easy to test whether a list of valuations is a solution, because it would simply mean that the reduction of
the CSP (given the valuations) reduces to T (true).

The function solveCSP is the top-level function of the process that tries to solve a CSP. Its first argument
is the CSP represented as a Boolean expression. It returns a list of lists of valuations. Each of these lists is
a solution to the CSP. If the CSP has no solution, the empty list (of lists) is returned.

1 solveCSP :: BoolExpr -> [[Valuation]]
2 solveCSP csp = solve idents reducedCSP []
3 where
4 reducedCSP = reduceBoolExpr csp []
5 idents = identifiersInBoolExpr csp
6 solve _ (Atom T) vals = [vals]
7 solve _ (Atom F) vals = []
8 solve (var:vars) csp valuations = let val=searchValuation csp in
9 if val == Nothing then

10 concat[solve vars (reduceBoolExpr csp [v])(v:vals)|v <- dom var]
11 else
12 solve vars (reduceBoolExpr csp (sure val:vals)) (sure val:vals)
13 dom var = [(var,IntConst n) | n <- 0:shake 100 31]
14 shake :: Int -> Integer -> [Integer]
15 shake 0 _ = []
16 shake n m = -m : m : shake (n-1) (99*m ‘mod‘ 101)
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Before starting the recursive solving process, which is done by the helper function solve, the CSP is
reduced with an empty valuation (i.e. constant sub-expressions are simplified). The function solve takes
three arguments. The first is the list of identifiers which have not been assigned a value yet (i.e. they do not
have a valuation). The second is a CSP which is reduced as much as possible using a list of valuations that
is being built up during the solving process. This list of valuations is the third argument of the function. It
returns a list of solutions.

The base cases of the recursive function solve are in the lines 6-7. If the CSP has been reduced to T (true)
then a solution is found. This solution is returned as a singleton list (line 6). If the CSP has been reduced to
F (false) then the valuation that has been built up is not a solution. Therefore, the empty list is returned (line
7). Note that there is no special case for the empty list of identifiers that have no valuation yet, because in
that case the CSP will reduce to either T or F anyway.

This leaves one more case to consider, which is the case that the list of identifiers is not empty (i.e.
var:vars), and csp is not fully reduced. In this case, we could in principal choose any variable that
has not a valuation yet, and try to substitute all possible values for it (in a backtracking style). However,
consider as an example the following case in which csp represents the expression x=2*y and y+7=28,
and var is the variable x. It would be inefficient to try all possible values for x, while it is clear that y equals
21, and hence by substitution x must be 42. For cases like these, we implemented the following optimisa-
tion. First (see line 8), a function searchValuation is called. This function returns values of the type
Maybe Valuation. If csp contains a conjunct which is an equation containing a single identifier, then it
tries to solve the equation for that identifier. If it succeeds in solving the equation, then it returns a valuation
for that identifier. So, in the given example, it would return Just (Var "y", IntConst 21). This
means that the recursive solve process can simply use this valuation to reduce csp, add it to the list of
valuations found this far, and continue to solve recursively (line 12). If searchValuation cannot find a
solution to a single identifier conjunct, then it returns Nothing and the solve process has to resort in trying
all possible valuations for var (see line 10). In this case, for var all values from the domain [−100..100]
are tried in a pseudo-random order. This pseudo random order is implemented by the function shake, that
implements a simple linear congruential pseudo random generator (see e.g. [14]) that generates numbers
from the domain ±[0..100] in pseudo random order using the recurrence xo = 31 and xi+1 = (99 · xi)
mod 101. It is well known, because 101 is a prime number, that this recurrence will visit all numbers from
the specified range. Note that there may be several solutions to the CSP, which explains why line 10 is a list
comprehension, which is of the type [[[Valuation]]]. The function concat converts this result to
the proper return type [[Valuation]].

3.4 Running Program Simulations
Using the CSP solver, we can try to find initial program states that satisfy the precondition of a program. If
we succeed in finding those, then we start simulating program runs starting from any of these initial states,
verifying assertions on the fly. The top level function of this process is the function runTests.

runTests :: Int -> Program -> String

The first argument of runTests is an integer, which specifies the maximum number of attempts that
Aladin should try to find a counterexample. The number is a maximum, since Aladin might not be able
to find that many states that fit the precondition. In fact, due to the simplicity of the CSP solver, it might
not perform any test at all, even though satisfying initial states exist. The function runTests returns a
string with the possible outcomes "Passed X tests" (where X is the number of executed simulation
runs) or "Assertion failed". In the latter case, Aladin also reports the initial state of the program,
and the state at the moment that the assertion failed (and the corresponding line number). Note that, if
Aladin does not find a counterexample within the maximal number of attempts, it may in the end still
output ”UNDECIDED” if it does not find a formal proof for the annotation.

1 runTests :: Int -> Program -> String
2 runTests trials program = result ‘echo‘ result
3 where
4 result = verdict (runProgram program initstates)
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5 initstates = take trials (solveCSP (precondition program))
6 verdict Nothing = "Passed "++show(length initstates)++" tests."
7 verdict (Just (init,(state,assertion,line))) =
8 "Assertion failed on line " ++ (show line) ++ ": " ++
9 show assertion ++ "\n" ++

10 "Initial state: " ++ (valuationToString init) ++ "\n" ++
11 "Current state: " ++ (valuationToString state) ++ "\n"
12

13 precondition :: Program -> BoolExpr
14 precondition (Program constants variables code) = pre code
15 where pre ((Comment text,nr):rest) = pre rest
16 pre ((Assertion expr,nr):rest) = expr
17 pre _ = error ("No precondition found :(")

The function runTests first determines (using the helper function precondition) the precondition
of the program which should be the first non-comment line of the code segment. Next, it computes a list
initstates of states that match the precondition (see line 5). Note that at most trial states will
be computed thanks to the function take and Haskell’s lazy evaluation strategy. Once this list has been
constructed, it is passed to the function runProgram that successively starts a test run for each initial
state until it finds a counterexample or the list of states is exhausted. The return type of this function is
Maybe([Valuation],([Valuation],BoolExpr,Int)). It returns Nothing if it did not find a
counterexample, and Just(init,(state,assertion,linenr)) if it did find a couterexample. In
the latter case, the valuation init is the initial state that satisfies the precondition, state is the offending
state that has been reached, assertion is the assertion that failed, and linenr is the source line in
the program where assertion is found. In the end, the function verdict converts the return value of
runProgram in a human readable string format, which is echoed to the screen (standard output) using the
function echo in line 2. Note that the semantics of the expression a ‘echo‘ str is that a is evaluated
and returned, with the side effect that str is printed to the screen. Hence, result ‘echo‘ result
prints the string result and also returns it.

runProgram :: Program -> [[Valuation]] ->
Maybe ([Valuation],([Valuation],BoolExpr,Int))

runProgram program [] = Nothing
runProgram program (val:vals)
| test == Nothing = runProgram program vals
| otherwise = Just (val, sure test)
where

test = testValuation program val
sure (Just x) = x

The key function of runProgram is the function testValuation that, given a program and and initial
state (valuation), performs a simulation run. It returns Nothing if the run did not encounter any errors,
otherwise it return Just(state,assertion,linenr) where state is the offending state that has
been detected, assertion is the failed assertion, and linenr is the corresponding line in the program.

1 testValuation :: Program -> [Valuation] ->
2 Maybe ([Valuation],BoolExpr,Int)
3 testValuation (Program consts vars code) val = run code val
4 where
5 run [] val = Nothing -- no counter example found
6 run (((Assertion expr),nr):rest) val
7 | reduceBoolExpr expr val == Atom T = run rest val
8 | otherwise = Just (val,expr,nr)
9 run (((Comment text),nr):rest) val = run rest val

10 run (((Skip),nr):rest) val = run rest val
11 run (((Conditional guard thenPart elsePart),nr):rest) val
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12 | checkConditional == Atom T = run (thenPart++rest) val
13 | otherwise = run (elsePart++rest) val
14 where checkConditional = reduceBoolExpr guard val
15 run (((WhileLoop guard body),nr):rest) val
16 | reduceBoolExpr guard val == Atom T =
17 run (body++[(WhileLoop guard body,nr)]++rest) val
18 | otherwise = run rest val
19 run (((Assignment name expr),nr):rest) val =
20 run rest (update (Var name) expr val)
21 run (((Let name expr),nr):rest) val =
22 run rest (update (SpecConst name) reduceNumExpr expr val)
23

24 update :: NumExpr -> NumExpr -> [Valuation] -> [Valuation]
25 update name expr val =
26 (name,(reduceNumExpr expr val)):[(n,e)| (n,e) <- val, n/=name]

The function testValuation uses the recursive helper function run which accepts a list of statements
(code) and a valuation. Basically, this funtion implements an interpreter for the programming language
of Aladin. The valuation denotes the state of the program during the simulation. The base case is the case
that code is the empty list, meaning that the entire program has been executed. In that case Nothing is
returned (line 5).

If we reach a code line which is an assertion (lines 6-8), then reduceBoolExpr is used to reduce the
assertion. If the assertion reduces to T (true), then the program execution simply continues. Otherwise, an
offending state has been detected and it is returned. Note that a nice side-effect of reducing expressions
(instead of evaluating them) is that the use of uninitialized variables in assertions will be detected as an
error (since these assertions do not reduce to T).

Running skip statements and comment lines is trivial. these statements do not change the state, so they are
simply skipped (lines 9-10). In lines 11-14 the if-then-else construct is implemented. The guard is reduced
using reduceBoolExpr. If it reduces to T (true), then the thenPart of the code is placed ahead of the
rest of the code, and it is (recursively) executed. Otherwise, the elsePart is placed in front of the rest of
the code, followed by its execution. Note that, due to Haskell’s lazy evaluation strategy, this concatenation
actually does not take place (and therefore no excessive memory is consumed). Lines 15-18 implement a
while loop in a similar way that the if-then-else construct is interpreted.

Lines 19-20 implement an assignment statement, which clearly changes the state of a program (and hence,
the valuation of the state). This update is performed by the function update, which accepts three argu-
ments. The first argument is a NumExpr which represents the left hand side of the assignment (hence, it is
of the type Var x). The second argument is the right hand side of the assignment, and the third argument
is a valuation describing the state just before the assignment. The function update replaces the valuation
for the corresponding variable by a new one that is obtained by reducing the right hand side expression, and
returns it.

Lines 21-22 implement an assertion contain the let construct. As described in section 3.1, this is an artificial
construct that does not change the state of any of the program variables. However, it does introduce a fresh
specification constant, so it is part of the valuation of the program. So, for the interpreter there is only an
artificial distinction between assignment and the introduction of a such a specification constant. Hence, the
code in these lines is very similar to the code for a ’normal’ assignment.

3.5 Example Runs
We conclude this chapter with the demonstration of two example runs. The first is a clearly incorrect
implementation of the swap of two variables:

1 VAR x,y;
2 {x=X and y=Y}
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3 x := y;
4 y := x;
5 {x=Y and y=X}

If we run Aladin with this program as its input, we get the following output:

Assertion failed on line 5: x=Y and y=X
Initial state: Y=-31 y=-31 X=0 x=0
Current state: y=-31 x=-31 Y=-31 X=0

Counter example found.

The following code fragment is clearly a correct implementation.

1 VAR x,y,z;
2 {x=X and y=Y}
3 z := x;
4 x := y;
5 y := z;
6 {x=Y and y=X}

If we run Aladin with this program as its input, we get the following output:

Passed 10000 tests.
## Proving: [x=X and y=Y] -> [y=Y and x=X]
#### Proving: [x=X and y=Y] -> [y=Y]
#### Success
#### Proving: [x=X and y=Y] -> [x=X]
#### Success
## Success
Annotation is correct.

Clearly the program passed 10000 tests. Moreover, the annotation was checked by Aladin for correctness,
and was approved. In the following chapters, we will discuss how Aladin is able to verify the formal
correctness of the annotation.
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Chapter 4

Unification

In order to formally verify an annotation, Aladin uses rules from a knowledge base. We described earlier
that knowledge base rules contain bound variables, which we call unifiable variables. These unifiable
variables are in fact place holders for which we can substitute expressions that contain program variables,
specification constant, and other unifiable variables. As discussed in section 1.4.3 we distinguish unifiable
variables from other identifiers by prefixing their names with the # symbol.

For example, if the knowledge base contains a rule like #a<=#b and #b<=#c -> #a<=#c which ex-
presses the transitivity of the ≤ relation, then we may conclude x+Y<=42 from x+Y<=Z and Z<=42.
This is the consequence of a pattern matching process that discovers that we can substitute the sub-expression
x+Y for the unification variable #a, Z for #b, and 42 for #c. As described in section 1.4.4, we denote this
substitution as {#a/x+Y, #b/z, #c/42}which is the most general unifier of #a<=#b and #b<=#c
(the premise of the knowledge base rule) and x+Y<=Z and Z<=42.

Note that the conclusion that x+Y<=42 consists actually of two steps. First we need to match the premise
of the KB rule with x+Y<=Z and Z<=42. This process is called unification, and is the topic of
this chapter. The second step involves inferring the result (i.e. applying the KB rule), which is done using
resolution and will be discussed in chapter 5.

4.1 Unification Algorithm
In this section we will discuss the implementation of a unification algorithm. In fact, the algorithm always
finds the most general unifier, if a unifier exists. From now on, if we use the term unifier, we in fact mean
a most general unifier (unless explicitly stated otherwise). The implementation is based on the unification
algorithm that was published by Martelli and Montanari in 1982 (see [16]). However, that algorithm was
developed for the implementation of the Prolog ([9]) programming language, which is based on pure first-
order logic (FOL). This means that numeric expressions, and their comparisons are not incorporated in that
algorithm. On the other hand, the original version of the algorithm allowed unification of functions (and
their arguments), which Aladin does not support (currently).

We start by introducing the type Substitution, which represents a substitution for a single unifiable
variable by an expression. The type is a simple pair, where the first element is the unifiable variable, and
the second is the corresponding expression.

1 type Substitution = (UnifiableVar, NumExpr)

We implemented a unification algorithm for BoolAtoms only. A more general unification algorithm for
BoolExprs can be built on top of it, but we do not need that in the implementation of Aladin since
the resolution algorithm needs to match atoms only. The aim of the algorithm is to return, given two
BoolAtoms, a unifier (which is a list of substitutions) if it exists, or signal failure if a unifier does not exist.
So the return type of the algorithm is similar to the Maybe data type. However, we preferred to make failure
more explicit and therefore implemented explicitly our own variant of the Maybe data type. Note that the

37
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empty list is a valid unifier, since it is a unifier for two identical expressions. Hence, the empy list can not
be used to signal failure. We use the following data type Unifier to store unifiers.

1 data Unifier = Fail | Success [Substitution]

The function mguAtom is the top-level function of the unification process. Its takes two BoolAtoms,
and it returns a Unifier. The following haskell code snippet implements the function literalMGU of
Figure 1.3:

1 mguAtom :: BoolAtom -> BoolAtom -> Unifier
2 mguAtom (Compare Equal p q) (Compare Equal r s) =
3 mguCommutativeNumExpr p q r s (Success [])
4 mguAtom (Compare NotEqual p q) (Compare NotEqual r s) =
5 mguCommutativeNumExpr p q r s (Success [])
6 mguAtom (Compare op1 p q) (Compare op2 r s)
7 | op1 == op2 = mguNumExpr q s (mguNumExpr p r (Success []))
8 | otherwise = Fail
9 mguAtom p q

10 | p == q = Success []
11 | otherwise = Fail

We discuss now the processing of mguAtom e0 e1. If e0 and e1 are both comparisons, then they only
match if they both use the same comparison operator (see lines 6-8). If they do not, then the returned unifier
is Failure. If they do, then we have to unify the operands of the comparison operator, which are numeric
expressions. The function mguNumExpr computes the unification of two NumExprs. It, in contrast to
mguAtom, accepts three arguments. The first two are numeric expressions that need to be unified, while
the third is an accumulating unifier (i.e. a unifier that gets built up during the unification process). Initially
this unifier is empty (i.e. Success []). If we want to unify two atoms α⊕β and γ⊕ δ, where ⊕ denotes
the same binary operator, then we first unify the numeric expression α with the numeric expression γ. The
returned unifier is the unifier built up this far, and therefore the third argument of mguNumExpr in the
unification of β with δ. If either e0 or e1 is not a comparison (i.e. T or F) then e0 and e1 only unify if
they are equal. In that case, no substitution is needed and the empty unifier is returned (line 10).

Note that we have implemented two special cases in the lines 2-5. The reason is that we would like to be
able to match for example α + β = γ with x = y + z. The unification process in lines 6-8 will fail for
such a case, because the left hand side of both expressions do not match with each other (nor do the right
hand sides). However, we wish to to find the unifier {α/y.β/z, γ/x}. This can be solved by introducing
rules like #a=#b -> #b=#a in the knowledge base, however we prefer to keep the knowledge base as
small as possible (in view of the combinatorial explosion that may happen later in the resolution process).
So, we solve this problem by introducing a variant of mguNumExpr called mguCommutativeNumExpr
that tries to unify α+ β with x and γ with y+ z. After failure, it tries to unify α+ β with y+ z and γ with
z, which will succeed. The implementation of mguCommutativeNumExpr is as follows:

1 mguCommutativeNumExpr :: NumExpr -> NumExpr -> NumExpr -> NumExpr
2 -> Unifier -> Unifier
3 mguCommutativeNumExpr lhs0 rhs0 lhs1 rhs1 theta =
4 let unifier = mguNumExpr lhs0 lhs1 theta in
5 if unifier == Fail
6 then mguNumExpr rhs0 lhs1 (mguNumExpr lhs0 rhs1 theta)
7 else mguNumExpr rhs0 rhs1 unifier

The functions mguAtom and mguCommutativeNumExpr make use of the function mguNumExpr,
which is the main function for unifiying two numeric expressions. The following Haskell snippet shows
its code, which implements the function recursiveMGU of Figure 1.3. As mentioned earlier, the third
argument of mguNumExpr is a unifier that represents a unifier that was built up during the recursive unifi-
cation process. Hence, if we want to find a unifier of two numeric expression e0 and e1, we need to call
it as mguNumExpr e0 e1 (Success []), since at the top level of the recursion no unifier has been
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built up yet.

1 mguNumExpr :: NumExpr -> NumExpr -> Unifier -> Unifier
2 mguNumExpr _ _ Fail = Fail
3 mguNumExpr (Binary Add p q) (Binary Add r s) theta =
4 mguCommutativeNumExpr p q r s theta
5 mguNumExpr (Binary Mult p q) (Binary Mult r s) theta =
6 mguCommutativeNumExpr p q r s theta
7 mguNumExpr (Binary binop1 p q) (Binary binop2 r s) theta
8 | binop1 == binop2 = mguNumExpr q s (mguNumExpr p r theta)
9 | otherwise = Fail

10 mguNumExpr (UniVar name) e2 theta = unifyVar name e2 theta
11 mguNumExpr e1 (UniVar name) theta = unifyVar name e1 theta
12 mguNumExpr p q theta
13 | p == q = theta
14 | otherwise = Fail

Clearly, if during the recursive process the unification of sub-expressions has failed, then the overall unifica-
tion fails (line 2). The lines 3-9 try to unify two expressions which both consist of binary operators applied
to their arguments. The code is very similar to the unification process that is used in mguAtom. Note that
the hard coded strategy for commutative operators that is applied in mguAtom is also applied here (lines
3-6). The lines 10-11 are the most interesting part of this code. In these lines, we try to unify an expression
that consists of only a unifiable variable with another expression. In that case, the function unifyVar is
called. This function adds substitutions to the unifier θ (the unifier built up this far) if it is not already in
the unifier. The function unifyVar is implemented as follows and is an implementation of the function
unifyVar of Figure 1.3.

1 unifyVar :: UnifiableVar -> NumExpr -> Unifier -> Unifier
2 unifyVar var x (Success theta)
3 | e == Nothing = unifyVar’ var x
4 | otherwise = mguNumExpr (sure e) x (Success theta)
5 where
6 v = findSubst var theta
7 unifyVar’ var (UniVar x)
8 | e’ == Nothing = unifyVar’’ var (UniVar x)
9 | otherwise = mguNumExpr (UniVar var) (sure e’) (Success theta)

10 where e’ = findSubst x theta
11 unifyVar’ var x = unifyVar’’ var x
12 unifyVar’’ var x
13 | occurCheck var x = Fail
14 | otherwise = Success ((var,x):theta)
15

16 occurCheck :: UnifiableVar -> NumExpr -> Bool
17 occurCheck x (UniVar y) = x==y
18 occurCheck x (UnaryMinus e) = occurCheck x e
19 occurCheck x (Binary op e0 e1) = occurCheck x e0 || occurCheck x e1
20 occurCheck x _ = False
21

22 findSubst :: UnifiableVar -> [Substitution] -> Maybe NumExpr
23 findSubst v theta = fsub theta
24 where
25 fsub [] = Nothing
26 fsub ((w,expr):theta)
27 | v==w = Just expr
28 | otherwise = fsub theta
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That this Haskell code implements the function unifyVar from the pseudo-code of Figure 1.3 is maybe
not obvious. The call unifyVar var x (Success theta) tries to unify the unifiable variable var
with the expression x, given the unifier theta built up so far. In line 6, we look up var in theta.
If a substitution (var,e) is found in theta (we use the helper function findSubst for that), then
unifyVar simply returns the unifier of e and x (line 4). The lines 3-6 are a concrete implementation of
the line “if v/e ∈ θ then return recursiveMGU(e, x, θ);” from the pseudo code in Figure 1.3.

If a substitution (var,e) does not exist in theta, then we reach line 3 which jumps to the helper function
unifyVar’ (lines 7-10). The code of this function is similar to the code just described, and it implements
the line “if x/e ∈ θ then return recursiveMGU(v, e, θ);” from the pseudo-code for the special case that the
expression x is actually itself a unifiable variable.

If this is also not the case, then we reach line 12 (either via line 8, or via line 11). Here, we check whether
var occurs in the expression x using the function occurCheck. If this is the case, then a unifier does not
exist, and Fail is returned. This implements the pseudo-code “if v occurs in x then return failure;”. This
check prevents circular substitution (i.e. replace var by an expressions containing var).

In the end, if var does not occur in x, then we can simply add the substitution (var,x) to theta and
return it as the overall unifier (line 14). This implements “return θ ∪ {v/x};”.

4.2 Applying a Unifier
It is clear that, once we have found a unifier for two atoms, we want to apply the unifier to infer new
conclusions. For example, the premise of the rule α ∗ (β + γ) = δ ⇒ α ∗ β + α ∗ γ = δ unifies with
x ∗ (y+ z) = w using the unifier θ = {α/x, β/y, γ/z, δ/w}. So, we can apply this unifier to the right hand
of the rule to infer x ∗ y + x ∗ z = w .

As mentioned before, Aladin only needs to apply unifiers to the elements of clauses, i.e. Boolean atoms.
The application of a unifier to a BoolAtom is implemented in the function applyMGU.

1 applyMGU :: BoolAtom -> Unifier -> BoolAtom
2 applyMGU expr (Success theta) = mguApply expr theta
3 where
4 mguApply expr [] = expr
5 mguApply expr (substitution:theta) =
6 mguApply (mguApplyAtom expr substitution) theta
7

8 mguApplyAtom :: BoolAtom -> Substitution -> BoolAtom
9 mguApplyAtom T _ = T

10 mguApplyAtom F _ = F
11 mguApplyAtom (Compare op p q) subst =
12 Compare op (applySubstitution p subst)(applySubstitution q subst)
13

14 applySubstitution :: NumExpr -> Substitution -> NumExpr
15 applySubstitution (UnaryMinus p) subst =
16 UnaryMinus (applySubstitution p subst)
17 applySubstitution (Binary op p q) subst =
18 Binary op (applySubstitution p subst) (applySubstitution q subst)
19 applySubstitution (UniVar x) (y,expr)
20 | x == y = expr
21 | otherwise = UniVar x
22 applySubstitution expr _ = expr

The call applyMGU expr (Success theta) applies the unifier theta to the atom expr. The
function is basically the implementation of the recurrence rule:

Subst(∅, E) = E and Subst({x0/e0, x1/e1, .., xn/en}, E) = Subst({x1/e1, .., xn/en}, [e0/x0]E)
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Here, [e/x]E denotes the expression E in which each occurrence of x has been replace by e. In fact, this
is exactly what the function mguApplyAtom implements for BoolAtoms, and applySubstitution
for NumExprs.

4.3 Substitution of Equalities
Besides finding unifiers for atomic expressions, we also implemented substitution of equalities using unifi-
cation. For example, if we have the expression x ∗ (y + z) = w and the rule α ∗ (β + γ) = α ∗ β + α ∗ γ,
then we can use the unifier θ = {α/x, β/y, γ/z} to unify the left hand sides of both expressions. Next, we
can replace the left hand side x ∗ (y + z) by the inference x ∗ y + x ∗ z resulting in x ∗ y + x ∗ z = w.

There are two major advantages of this technique. First, we can write much more natural rules in the
knowledge base, like for example α ∗ (β + γ) = α ∗ β + α ∗ γ. This rule is much more natural than the
equivalent rule α∗(β+γ) = δ ⇔ α∗β+α∗γ = δ, which needs an auxiliary unifiable variable δ. Moreover,
after conversion to CNF format, this rule yields two clauses, while the rule α ∗ (β + γ) = α ∗ β + α ∗ γ
(which is already in CNF) yields only one singleton clause.

Second, the technique can be used to deal with sub-expressions. For example, consider again the rule
α ∗ (β + γ) = α ∗ β + α ∗ γ and the atomic expression x + 2 ∗ (y ∗ (z + w)) = v. Here, the matching
sub-expression y ∗ (z + w) is nested inside a larger expression. Standard unification will not be able to
match the entire atomic expression with the knowledge base rule. However, it is clear that the unifier
θ = {α/y, β/z, γ/w} can be used to replace the sub-expression y ∗ (z + w) by y ∗ z + y ∗ w yielding the
expression x + 2 ∗ (y ∗ z + y ∗ w) = v. A naive way to tackle this problem is to put a special rule for a
sub-expression like this in the the knowledge base, but this is a very poor solution for two reasons. Extra
rules in the knowledge base will produce (spurious) clauses during the resolution proving process, yielding
a (much) longer execution time to (in)validate an annotation. Moreover, the problem with this approach is
that sub-expressions that are nested at a deeper level will still not match the extra rule.

The top-level Haskell function for performing substitutions on a list of clauses (which has the type CNF) is
makeSubstitution.

1 makeSubstitution :: [BoolAtom] -> CNF -> CNF
2 makeSubstitution [] clauses = clauses
3 makeSubstitution equalities clauses =
4 (nub.concat)[substitution equality clauses|equality <- equalities]
5

6 substitution :: BoolAtom -> CNF -> CNF
7 substitution equality clauses =
8 concat [substitutionEquality equality clause | clause <- clauses]

The function makeSubstitution takes a list of atoms, which is a list of equalities, and a list of clauses.
If the list with equalities is empty, i.e. no substitutions can be performed, then the list of clauses is simply
returned (line 2). Otherwise, makeSubstitution tries to apply each equality (i.e. a possible sub-
stitution) to all clauses using a list comprehension (see line 4). In this list comprehension, the function
substitution is used that takes a single equality and a list of clauses, and returns all possible substitu-
tions of the equation in all (sub-)expressions in the list of clauses. Note that this function returns a list of
clauses, hence the result of this list comprehension is a list of lists. Therefore, concat is used to flatten
this structure to a standard list. Moreover, nub is used to remove any duplicate clauses.

The same flattening is used in the function substitution which, given an equality, is a list com-
prehension over all the clauses. In this comprehension we call the function substitutionEquality,
which again is a list comprehension over all the atoms in a clause.

1 substitutionEquality :: BoolAtom -> Clause -> CNF
2 substitutionEquality equality atoms =
3 combinations [substitutionAtom equality atom | atom <- atoms]
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Note that in line 3 the helper function combinations is called. This function produces, given a list of
lists, a list of lists of all possible combinations. For example, if we apply this function to a list strings, then
the output will be a list of strings: combinations combinations ["abc","de"] will produce
["ad","ae","bd","be","cd","ce"].

The reason why the function combinations is needed in substitutionEquality is quite subtle.
We explain the need using a small example. The function substitutionAtom (in line 3) performs the
actual substitutions. It accepts two atoms, of which the first is the equality that may be substituted in the
second argument (which is an atom from a clause), and returns a list of all possible substitution including
the original atom. Now, if we feed substitutionEquality with the rule α ∗ (β + γ) = α ∗ β +α ∗ γ
and the clause a ∗ (x + y) = z ∨ a ∗ (x + y) = w then it produces in the list comprehension in line 3 the
result [[a∗(x+y) = z, a∗x+a∗y = z], [a∗(x+y) = w, a∗x+a∗y = w]]. If we apply on this result the
function combinations, then we end up with the list [[a ∗ (x+ y) = z, a ∗ (x+ y) = w], [a ∗ (x+ y) =
z, a ∗ x+ a ∗ y = w], [a ∗ x+ a ∗ y = z, a ∗ (x+ y) = w], [a ∗ x+ a ∗ y = z, a ∗ x+ a ∗ y = w]]. Each
element of this list is a valid substitution clause for the original clause.

The implementation of the function substitutionAtom is relatively straightforward. Note that only
substitutions are applied to atoms which are comparisons. Any non-comparison atom is either trivially
True or False, and thus no substitution can be applied (line 5).

1 substitutionAtom :: BoolAtom -> BoolAtom -> [BoolAtom]
2 substitutionAtom equality (Compare op r s) =
3 [Compare op r’ s’ | r’ <- (r:(substituteAllSubExpr equality r)),
4 s’ <- (s:(substituteAllSubExpr equality s))]
5 substitutionAtom equality trivialTF = [trivialTF]

In the end, the function substitutionAtom uses the function substitueAllSubExpr . This func-
tion performs the actual substitution on a numeric expression. This function is implemented as follows:

1 substituteAllSubExpr :: BoolAtom -> NumExpr -> [NumExpr]
2 substituteAllSubExpr (Compare Equal lhs rhs ) expr =
3 substituteAllSE (Compare Equal lhs rhs) expr ++
4 substituteAllSE (Compare Equal rhs lhs) expr
5 where
6 substituteAllSE (Compare Equal lhs rhs) expr = toplevel ++
7 substAll lhs rhs expr
8 where
9 unifier = mguNumExpr lhs expr (Success [])

10 toplevel = if unifier == Fail then [] else
11 [applyMGUNumExpr rhs unifier]
12 substAll :: NumExpr -> NumExpr -> NumExpr -> [NumExpr]
13 substAll lhs rhs (Binary op e0 e1) =
14 [Binary op e0 r | r <- rs] ++ [Binary op l e1 | l <- ls]
15 ++ [Binary op l r | l <- ls, r <- rs]
16 where
17 ls = substituteAllSubExpr (Compare Equal lhs rhs) e0
18 rs = substituteAllSubExpr (Compare Equal lhs rhs) e1
19 substAll lhs rhs (UnaryMinus e) = map UnaryMinus
20 (substituteAllSubExpr (Compare Equal lhs rhs) e)
21 substAll lhs rhs _ = []

The function substituteAllSubExp takes as input an equality (an atom) and a numerical expression
and returns a list of numerical expressions. Because α = β ⇔ β = α, we call substituteAllSE for
both combinations (lines3-4). The helper function substitueAllSE tries to recursively match the left
hand side of the equality with the expression. If this matching yields a unifier, the unifier is applied to the
right hand side of the equality and added to the list of possible substitutions (line 10-11). Note that, once
the expression has been processed, the process recursively descends to one level deeper in the expression to
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see if it can match (and substitute) sub-expressions. This is implemented in the function substAll. As an
example of this process, consider the expression x∗y∗(w+z) = u and the rule α∗(β+γ) = α∗β+α∗γ.
The algorithm will first find the unifier θ0 = {α/x ∗ y, β/w, γ/z} which matches on the top level. Next,
the function substAll is called. Now, assume that in line 13, e0 is x and e1 is y ∗ (w + z), then we
call for the expression y ∗ (w+ z) the recursively function substituteAllSubExpr again, making the
expression y ∗ (w + z) the top level expression in the next recursion level. This level will find the unifier
θ1 = {α/y, β/w, γ/z}. The process will not find any other unifiers. Hence, the result is that rs in line 14
is the singleton list [y ∗w+ y ∗ z] and we use this expression instead of y ∗ (w+ z) when we complete the
expression again. We use the same structure for the expression e0 but x does not match either side of the
equality. Also, we use the same approach for expressions which contain a unary minus.
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Chapter 5

Resolution

Aladin, like many theorem provers, uses the resolution technique as its main inference tool. We discussed
in section 1.4 the principals of the resolution method. For a more extensive overview of resolution theorem
proving, the reader is referred to [18]. The topic of this chapter is the implementation of the resolution
algorithm in Aladin. Although Aladin is based on First Order Logic (extended with integer arithmetic), we
implemented the algorithm closely following the pseudo code from Figure 1.1 (which is the algorithm for
propositional logic).

5.1 Resolution Algorithm
Recall that we want to show, given a knowledge base KB and a goal predicate α, that KB |= α. However,
the resolution technique is based on proof by refutation which means that it tries to show that KB |= ¬α is
unsatisfiable.

The top-level function for performing resolution proofs is the function resolutionProof, which takes
two arguments and returns a Boolean value. The first argument is the knowledge base KB in CNF format,
while te second argument is the goal predicate α. The knowledge base contains a set of (arithmetic) rules
containing unifiable variables. The function returns True if it was able to prove that KB |= α, i.e. it was
able to infer the empty clause (i.e. false). It returns False otherwise. As mentioned before, the return
value False does not necessarily mean that the goal cannot be proven. It might also mean that inferring the
empty clause needs a deeper breadth first search than the fixed horizon that is set in Aladin. Moreover, it can
also mean that more rules are needed in the knowledge base. The implementation of resolutionProof
is given below:

1 resolutionProof :: CNF -> BoolExpr -> Bool
2 resolutionProof knowledgebase goal = bfsProof 0 [] notGoal
3 where
4 notGoal = reduceCNF (toCNF (Not goal))
5 bfsProof n kb clauses = bfs n kb clauses
6 bfs 5 _ _ = False {- search horizon reached -}
7 bfs n kb clauses
8 | done = True
9 | otherwise = bfsProof (n+1) kb’ inferred’

10 where
11 (done,inferred) = resProof kb (reduceCNF clauses)
12 inferred’ = filter (not.containsUniVarClause) inferred
13 kb’ = resolveAllPairs knowledgebase inferred

The second argument goal is a BoolExpr and not in CNF format yet. The reason is that we first need to
negate the goal, an convert it to CNF afterwards. This is done in line 4. Note that after this conversion, the
function reduceCNF is applied to the resulting set of clauses and the result is given the name notGoal.

45
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The function reduceCNF tries to reduce and simplify clauses as much as possible. It will be discussed in
section 5.3. It implements optimisations that are not essential for resolutionProof, but it speeds up
the proving process significantly.

In line 2, notGoal is passed to the function bfsProof, which is the function that actually performs the
breadth first search (BFS) resolution process. The function takes 3 arguments. The first being the depth of
the BFS process, which is initially zero. Aladin stops searching for a proof after 5 BFS levels. This horizon
can be changed by simply changing it in line 6 of the code. For the tests that we performed, the horizon
value 5 was sufficient. Setting this value higher will not affect the execution time for correct annotations that
do not need a larger horizon (since BFS search finds a shortest proof if it can be found within the horizon),
but it will drastically increase the execution time for annotations for which Aladin is not able to find a proof
(due to the combinatorial explosion of the number of inferred clauses).

The second argument of bfsProof plays the role of the knowledge base, and the third argument is the
negation of the goal in (reduced) CNF format. Note that at BFS level zero, the knowledge base is actually
empty (see line 2). Hence, in a first BFS iteration, we try to prove the goal without using the knowledge
base. At first sight, this may seem odd. But there is a good reason for this decision. Consider for example
the following fragment from some annotation:

{ x = Xand y = Y }
(∗ drop conjunct ∗)

{ x = X }

Dropping one or more conjuncts, like in this example, is a very common structure in program annotations.
For this example, the system needs to prove the goal x = X ∧ y = Y ⇒ x = X , which converts after
negation and conversion to CNF to [[x=X],[y=Y],[x/=X]]. Obviously, the clause [x=X] resolves
with the clause [x/=X] to the empty clause, without the need of a knowledge base. We use this strategy
because a proof that does not make use of the knowledge base is usually much faster than a proof that does
make use of it.

In line 11, a tuple (done,inferred)is computed using the helper function resProof, which imple-
ments the actual resolution algorithm. The Boolean value done is True if resProof was able to find a
proof, otherwise it is False. During this search for a proof, new clauses are (possibly) inferred. These new
clauses are returned in inferred. If resProof returns False, then the function bfsProof is called
with a raised BFS level, a new knowledge base kb’, and the third argument inferred’ is the set of all
newly inferred clauses that do not contain unification variables. Note that the second argument kb’ is the
result of resolving all clauses from the knowledge base with the newly inferred clauses. The reason that the
function resProof has two arguments, a knowledge base and a set of inferred clauses, is that we do not
want to resolve the knowledge base with itself. We only want to resolve inferred clauses with clauses from
the knowledge base.

The resolving process takes place in resProof, which resembles the pseudo code from Fig. 1.1.

1 resProof :: CNF -> CNF -> (Bool,CNF)
2 resProof clauses inferred
3 | [] ‘elem‘ inferred = (True,clauses’)
4 | inferred == [] = (False,clauses)
5 | otherwise = resolutionProof’ clauses’ inferred’’
6 where
7 clauses’ = clauses ++ inferred
8 inferred’ = resolveAllPairs clauses inferred
9 clausesWithSubstitution = makeSubstitution

10 (equalities (clauses++inferred++inferred’))(inferred’++inferred)
11 inferred’’ = filter (\x -> (not(x ‘elem‘ clauses) &&
12 not (x ‘elem‘ inferred) && not (x ‘elem‘ inferred’)))
13 clausesWithSubstitution
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The function resProof implements the loop of Figure 1.1 using recursion. In the loop of that algorithm,
the resolvents of each pair of clauses from the set of currently known clauses is computed. Our implemen-
tation does not do that, because it is inefficient to do this for pairs of clauses that were already processed
(paired) in a previous iteration. This is exactly the reason why resProof has two arguments, the first
is clauses which is the set of known clauses thus far, and the second is inferred which is the set of
newly inferred clauses from the previous iteration of the algorithm. In each iteration, we only compute from
pairs of clauses which have not been paired before. This is done in the function resolveAllPairs (see
line 8), which will be discussed hereafter.

The algorithm stops successfully if the empty list is in the set of newly inferred clauses (line 3), since the
empty clause represents false (hence a contradiction). A proof fails (i.e. False is returned) if the set
inferred of newly inferred clauses is empty (line 4). Note that this differs from the pseudo code in
Figure 1.1 which stops if the set of newly inferred clauses is a subset of the already known clauses. Testing
whether an unordered list of clauses is a subset of another unordered list of clauses is quite computationally
expensive. For that reason, we maintain the invariant that the intersection of clauses and inferred
(also inferred’ and inferred’’) is empty. In other words, we make sure that inferred (also
inferred’ and inferred’’) only contains newly discovered clauses. Hence, we can replace the
subset test by the simple (and cheap) test whether inferred is empty.

On those newly obtained clauses, we apply the function makeSubstitution which we discussed in
Chapter 4, yielding an extended set of inferred clauses named clausesWithSubstitution. From this
extended set, we construct the set inferred’’ which does not contain any clauses which were already
known before (using a filter operation in line11-13). If no new clauses are found, i.e. inferred’’
is empty, then resProof will terminate in the next recursive call of of resProof , in which the set of
known clauses (clauses’ in lines 5 and 7) is the set union of inferred and clauses and the list of
inferred clauses is inferred’’.

What remains to discuss is the function resolveAllPairs.

1 resolveAllPairs :: CNF -> CNF -> CNF
2 resolveAllPairs clauses inferred
3 | infinf == [[]] = [[]]
4 | clausesinf == [[]] = [[]]
5 | otherwise = clausesinf ++ infinf
6 where
7 infinf = resolvePairs (pairs inferred) clauses
8 known’ = infinf ++ clauses
9 clausesinf = resolvePairs [(c,d)|c<-inferred, d<-clauses] known’

10

11 resolvePairs :: [(Clause,Clause)] -> CNF -> CNF
12 resolvePairs pairs alreadyKnown = resPairs pairs []
13 where
14 resPairs [] resolvents = resolvents
15 resPairs ((c,d):pairs) resolvents
16 | new == [[]] = [[]]
17 | otherwise = resPairs pairs (new ++ resolvents)
18 where
19 res = resolveTwoClauses c (standardizeApartFromClause c d)
20 new = discoveries (discoveries res resolvents) alreadyKnown
21 discoveries cs known = filter (not.(‘elem‘ known)) cs

The function resolveAllPairs takes two list of clauses (i.e. CNF format) and returns a list of resolvent
clauses. It makes use of the helper function resolvePairs which accepts a list of pairs of clauses and
a list of already known clauses, and it produces the actual newly discovered resolvents. In other words,
the main task of resolveAllPairs is to produce the list of pairs of clauses that need to be resolved,
and pass it to resolvePairs. These lists are produced in the lines 7 and 9. In line 7, a helper function
pairs is used that takes a list and produces a list of all possible pairs that can be constructed from that
list. In this line, a list of pairs of clauses is produced that are taken from newly obtained inferences from
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the previous iteration of the resolving algorithm. This list is passed to resolvePairs and the resulting
list of resolvents is named infinf. Note that, if any of the pairs that are passed to resolvePairs
resolves to the empty clause, then resolvePairs returns a singleton list containing the empty clause
(i.e. [[]]). This is a short-cut optimisation. Once an empty clause has been found, there is no need to
compute resolvents any further.

So, if infinf equals [[]], then resolvePairs itself returns immediately [[]] (line 3). Otherwise,
each clause of inferred gets resolved with each clause from clauses using a list comprehension
(line 9). The result is named clausesinf. If this list equals the singleton list [[]] (see line 4), then
resolvePairs returns immediately [[]] and the proof is completed. When neither is true, we return
the set of newly discovered resolvents, being clausesinf++infinf(line 5).

As mentioned before, the function resolvePairs takes a list of pairs of clauses, and resolves these pairs
one by one. The function has an extra argument being a list of clauses that are already known. This extra
list is necessary in maintaining the invariant that inferred only contains newly discovered clauses (lines
20-21). For each pair we call the function resolveTwoClauses, which we will discuss in section 5.2.
Again, note that the processing stops as soon as an empty clause is found, and [[]]is returned (line 16).
Otherwise it continues resolving the remaining clauses (line 17). Note that we call in this function the helper
function standardizeApartFromClause c d (in line 19). This function returns a clause which is
equivalent to the clause d, but all unifiable variables have been renamed such that they are disjoint with the
set of unifiable variables in the clause c.

5.2 Resolving Two Clauses
In this section, we discuss the implementation of the function resolveTwoClauses which takes two
clauses, and returns their resolvents. We implemented resolveTwoClauses as follows:

1 resolveTwoClauses :: Clause -> Clause -> [Clause]
2 resolveTwoClauses c0 c1
3 | [] ‘elem‘ resolvents = [[]]
4 | otherwise = resolvents
5 where
6 resolvents = nub (resolveTwoClauses’ c0 c1)
7

8 resolveTwoClauses’ :: Clause -> Clause -> [Clause]
9 resolveTwoClauses’ c0 c1 = filterTrivialClauses (nub

10 (applyMGUOnResolvents c0 c1 (makeEachCombiUnifier c0 c1)))
11 where
12 makeEachCombiUnifier :: Clause -> Clause ->
13 [((BoolAtom,BoolAtom),Unifier)]
14 makeEachCombiUnifier cs ds = filter ((/= Fail).snd) [((c,d),
15 (complementaryMGU c d)) | c <- cs, d <- ds]
16 ------
17 applyMGUOnResolvents :: Clause -> Clause ->
18 [((BoolAtom,BoolAtom),Unifier)] -> [Clause]
19 applyMGUOnResolvents _ _ [] = []
20 applyMGUOnResolvents cs ds (((c,d),unifier):rest) =
21 (applyMGUClause ((filter (/=c) cs)++(filter (/=d) ds))
22 unifier):(applyMGUOnResolvents cs ds rest)
23

Note that the function resolveTwoClauses returns a list of clauses. We return a list of clauses and not
a single clause. The reason is that it may be possible to resolve two clauses in multiple ways. For example,
the clauses x ∗ (y + z) 6= w ∨ r ∗ (s + t) 6= q and α ∗ (β + γ) = δ ∨ α ∗ β + α ∗ γ = δ have two pairs
of complementary atoms that can be used to apply the resolution rule. The atom α ∗ (β + γ) = δ matches
with both the complementary atoms x ∗ (y+ z) 6= w and r ∗ (s+ t) 6= q, both yielding different resolvents.
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Again, note that resolveTwoClauses returns the singleton list containing only the empty list as soon
as an empty clause is found. We use this shortcut because once we found False (the empty clause) we are
not interested in the rest anymore and this saves a lot of time. If if does not find an empty list, the function
returns the result of the function resolveTwoClauses’. The function resolveTwoClauses’ uses
the function complementaryMGU to find a unifier for two complementary clauses.

1 complementaryMGU :: BoolAtom -> BoolAtom -> Unifier
2 complementaryMGU T F = Success []
3 complementaryMGU F T = Success []
4 -- a/=b is complemented by a=b
5 complementaryMGU (Compare NotEqual a b) (Compare Equal a’ b’) =
6 mguAtom (Compare Equal a b) (Compare Equal a’ b’)
7 -- a <= b is complemented by b < a
8 complementaryMGU (Compare LessEqual a b) (Compare LessThan a’ b’) =
9 mguAtom (Compare LessThan a b) (Compare LessThan b’ a’)

10 -- a=b is complemented by any of a/=b, a<b, b<a
11 complementaryMGU (Compare Equal a b) (Compare NotEqual a’ b’) =
12 mguAtom (Compare Equal a b) (Compare Equal a’ b’)
13 complementaryMGU (Compare Equal a b) (Compare LessThan a’ b’) =
14 mguAtom (Compare Equal a b) (Compare Equal a’ b’)
15 -- a < b is complemented by any of a=b, b<=a, b<a
16 complementaryMGU (Compare LessThan a b) (Compare Equal a’ b’) =
17 mguAtom (Compare Equal a b) (Compare Equal a’ b’)
18 complementaryMGU (Compare LessThan a b) (Compare LessEqual b’ a’) =
19 mguAtom (Compare LessThan a b) (Compare LessThan a’ b’)
20 complementaryMGU (Compare LessThan a b) (Compare LessThan b’ a’) =
21 mguAtom (Compare LessThan a b) (Compare LessThan a’ b’)
22 -- everything else: Fail
23 complementaryMGU _ _ = Fail

Note that the function complementaryMGU is not strict regarding complements. For example, the strict
complement of a < b is b ≤ a, however the function also accepts any of a = b, b ≤ a, or b < a as the
complement of a < b.

5.3 Filtering and Reducing Clauses
Resolution may generate useless clauses. For example, clauses that have the structure α ∨ β ∨ γ and
¬α ∨ ¬β ∨ δ will resolve to either α ∨ ¬α ∨ γ ∨ δ or β ∨ ¬β ∨ γ ∨ δ. In both cases, the resolvent contains
the structure P ∨ ¬P which is trivially true. Since we cannot deduce anything from true, we can simply
omit resolvents like these. Moreover, due to the introduction of substitution of qualities, we can construct
trivial clauses as well. For example, a knowledge base rule α ∗ (β + γ) = α ∗ β + α ∗ γ together with the
clause x ∗ (y + z) 6= w ∨ x ∗ y + x ∗ z = w will produce (after unification and substitution) the clause
x ∗ y + x ∗ z 6= w ∨ x ∗ y + x ∗ z = w. Again, this clause has the form P ∨ ¬P , and can be omitted.

To remove trivial clauses, we implemented the functions reduceCNF and FilterTrivialClauses.
The function reduceCNF takes a set of clauses (i.e. of the type CNF) and returns an equivalent set of
clauses in which numeric expressions have been simplified as much as possible (e.g. expressions like
3*(7+7)*x are simplified to 42*x) and trivial clauses have been removed. The simplification of numeric
expressions in a set of clauses is performed by the function simplifyCNF, which takes a set of clauses
and traverses through the set while applying the numeric simplification functions that were discussed in
section 3.2.1.

1 reduceCNF :: CNF -> CNF
2 reduceCNF clauses = filterTrivialClauses(simplifyCNF clauses)

After simplification of numeric expressions, the function filterTrivialClauses takes care of remov-
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ing clauses that are trivially true. It takes a list of clauses and returns an equivalent (but possible shorter)
list of clauses.

1 filterTrivialClauses :: CNF -> CNF
2 filterTrivialClauses clauses =
3 map removeSelfComparisons (filterTrueClauses clauses)

The function filterTrivialClauses first uses the function filterTrueClauses which removes
clauses that are trivially true. The output is passed to the function removeSelfComparisons which we
will discuss later. First we discuss the function filterTrueClauses:

1 filterTrueClauses :: CNF -> CNF
2 filterTrueClauses clauses =
3 filter (not.isTrueClause) clausesWithoutSelfComparisons
4 ------
5 clausesWithoutSelfComparisons =
6 filter (not.containsTrueSelfCompare) clauses
7 containsTrueSelfCompare :: Clause -> Bool
8 containsTrueSelfCompare clause = any isTrueSelfCompare clause
9 isTrueSelfCompare (Compare op p q) =

10 (op==Equal || op==LessEqual) && p==q
11 isTrueSelfCompare _ = False

In filterTrueClauses clauses are removed which are trivially true. First it removes clauses which
contain atoms that are trivial self comparisons of the form α = α or α ≤ α from the list. This is done using
a filter that uses the Boolean functions containsTrueSelfCompare , which returns True if and only
if a clause contains a trivial self comparison, and isTrueSelfCompare (lines 5-11).

After removal of trivial self comparisons, the function filterTrueClauses filters the result using the
Boolean function isTrueClause. Its implementation is given in the following code snippet.

1 isTrueClause :: Clause -> Bool
2 isTrueClause clause = or [isComplement p q | (p,q) <- pairs clause]
3 ------
4 isComplement :: BoolAtom -> BoolAtom -> Bool
5 isComplement (Compare LessThan p q) (Compare LessEqual r s) =
6 p==s && q==r
7 isComplement (Compare LessEqual p q) (Compare LessThan r s) =
8 p==s && q==r
9 isComplement (Compare Equal p q) (Compare NotEqual r s) =

10 (Compare Equal p q) == (Compare Equal r s)
11 isComplement (Compare NotEqual p q) (Compare Equal r s) =
12 (Compare Equal p q) == (Compare Equal r s)
13 isComplement (Compare _ _ _) _ = False
14 isComplement T F = True
15 isComplement T _ = False
16 isComplement F F = True
17 isComplement F _ = True

The function isTrueClause accepts a clause and returns a Boolean value. It returns True if a clause
contains complementary atoms. For example, the atoms α < β and β ≤ α are complementary atoms. Also,
α = β and α 6= β are complementary atoms. If two of these complementary atoms exist in a clause, then
the clause is trivially true. Hence, clauses like these can be removed. Note that the trivial literals True and
False are also considered in this function.

After the removal of trivial true clauses, the function filterTrivialClauses passes the filtered list
of clauses to the function removeSelfComparisons.
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1 removeSelfComparisons clause = filter (not.isSelfCompare) clause
2 isSelfCompare :: BoolAtom -> Bool
3 isSelfCompare (Compare op p q) = (op==LessThan||op==NotEqual)&&p==q
4 isSelfCompare _ = False

The function removeSelfComparisonstakes a clause, and removes from it atoms of the form α 6= α
and α < α. Atoms like these are clearly false. Recall that a clause is a disjunction of its elements, so false
atoms can safely be removed from a clause.
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Chapter 6

Verification of an Annotated Program

As described in Chapter 1, the goal of this project is to verify the correctness of an annotated program. We
already discussed how Aladin parses (and stores) programs, and runs simulations in an attempt to generate
counterexamples. We also discussed the unification algorithm and the resolution algorithm on which proofs
generated by Aladin are based. However, we did not discuss yet how these ingredients are used to verify an
annotated program. This is the topic of this chapter.

6.1 Verifying Correctness
The top-level function that is used to verify an annotated program is the function proofProgram:

1 proofProgram :: Program -> Bool
2 proofProgram program = proofAnnotation (removeSkipCommands program)

The function proofProgram takes a Program and returns a Bool. It returns True if it is able to
verify the correctness of the program, otherwise it returns False. Recall that the return value False may
mean that Aladin was not able to find a correctness proof even though it exists. This can be the result of a
knowledge base containing insufficient rules to establish a proof, or a proof needs more breadth first search
layers in the resolution proof tree than the horizon set by Aladin.

A Program may contain several comment lines and lines containing the skip command, which do not
play any (formal) role in the annotation nor do they change the state of the program. Therefore, as an
initializing step, proofProgram removes these lines using the function removeSkipCommands. The
output is an equivalent program without comment lines and skip commands, which is the input for the
actual proving process that is performed by the function proofAnnotation. Note that the function
removeSkipCommands cannot be a simple filter applied to the list of statements that the program
consists of, because it must recursively filter the bodies of conditional statements and loops.

1 removeSkipCommands (Program constants variables code) =
2 (Program constants variables (rmSkip code))
3 where
4 rmSkip [] = []
5 rmSkip ((Skip,_):code) = rmSkip code
6 rmSkip ((Comment _,_):code) = rmSkip code
7 rmSkip ((Conditional guard thenPart elsePart,n):code =
8 (Conditional guard
9 (rmSkip thenPart) (rmSkip elsePart),n):rmSkip code

10 rmSkip ((WhileLoop guard body,n):code) =
11 (WhileLoop guard (rmSkip body),n):rmSkip code
12 rmSkip (statement:code) = statement:rmSkip code
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After the removal of skip statements and comment lines, the actual verification of the annotation is per-
formed by the function proofAnnotation.

1 proofAnnotation :: Program -> Bool
2 proofAnnotation (Program constants variables code) =
3 proof (findPrecondition code) (tail code)
4 where
5 findPrecondition :: [(Statement,Int)] -> BoolExpr
6 findPrecondition ((Assertion expr,nr):_) = expr
7 findPrecondition _ = error ("No precondition found :(")

Recall from the discussion of the structure of a program (in section 3.1) that we decided that Programs
consist of blocks of code and that a program has to start with an assertion (its precondition). Hence, after
removal of all comment lines and skip statements, the first statement of the code should be the precondi-
tion. If the first statement is not an assertion (i.e. not the precondition), then Aladin will output an error and
abort. The precondition is found in the lines 5-7. When the first statement is the precondition, the actual
proving process is started in the function proof.

1 proof :: BoolExpr -> [(Statement, Int)] -> Bool
2 proof precondition [] = True

The function proof takes two arguments. The second argument is a list of statements (and their line
numbers) and the first is the precondition of this list of statements. The function is recursive, and processes
on each recursive call a block of the list of statements. Hence, the first arguments is either the precondition
of the entire program, or the precondition of a block, which is basically the postcondition of the preceding
block. We start with the base case of this function, which is clearly the case in which the list of statements
is empty. This means that the end of the program has been reached, and the function returns True since all
preceding blocks have been proven correct (line 2).

1 proof precondition ((Assertion expr,nr):code)
2 | proofImplication precondition expr = proof expr code
3 | otherwise = False

The next case we consider is the case that the first statement of the list of statements is an assertion. Hence,
we need to show that the precondition implies this assertion. The function proofImplication is used
to prove implications. It accepts two BoolExprs, a premise p and a conclusion q, and it returns True
if it is able to prove that p → q, otherwise it returns False. If the proof fails, then the proving process
stops (line 3), otherwise it continues using the assertion (the conclusion of the implication) as the new
precondition (line 2). We will discuss the implementation of the function proofImplication after the
complete discussion of the function proof in section 6.2.

1 proof precondition ((Assignment lhs rhs,nr):code)
2 | proofImplication precondition weakest = proof postcondition rest
3 | otherwise = False
4 where
5 (assignments,postcondition,rest) =
6 findAssignments ((Assignment lhs rhs,nr):code)
7 weakest = wps assignments postcondition

When the first statement of the list of statements is an assignment, then we deal with a block S containing
one or more assignments, followed by the postcondition Q of the block. Aladin first computes the weakest
precondition weakest of the block S with postcondition Q, i.e. wp(S,Q) (see section 1.3.4), using the
function wps. We postpone the discussion of the implementation of wps until the entire function proof
has been discussed (see section 6.3). Next, it needs to prove that precondition implies weakest
(in line 2). If this proof succeeds, the recursive proof process continues, with Q playing the role of the
precondition of the rest of the statement list. Otherwise, False is returned and the proving process stops
(line 3).
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Note that we made use of the function findAssignments that returns a triple, of which the first element
is the block of assignments S, the second element the postcondition Q, and the third element the rest of the
code.

1 findAssignments :: [(Statement,Int)] ->
2 ([(String,NumExpr)], BoolExpr, [(Statement,Int)])
3 findAssignments code
4 | [] == rest = error ("No postcondition found.")
5 | not(isAssertion (head rest))= error ("In line "
6 ++ show (snd(head rest)) ++ " should be an assertion.")
7 | otherwise = (assignments,assertionToBoolExpr(head rest),
8 tail rest)
9 where

10 assignments = map toPair (takeWhile isAssignment code)
11 rest = dropWhile isAssignment code
12 toPair ((Assignment lhs rhs),_) = (lhs,rhs)

The assignments of the block S are returned as a list of pairs, of which the first element is a String which
is the name of the variable on the left hand side of an assignment. The second element is a NumExpr
which is the right hand side of the assignment. The assignments of the code are collected using the function
takeWhile, and converted using toPair to the format (String,NumExpr). When there is no asser-
tion at the end of the block of assignments, the function will report an error. We distinguish two different
error cases: if there is no code left, the error is ”No postcondition found.”, but if there is code left
then the error ”In line X there should be an assertion.” is reported.

We continue with the discussion of the function proof for the case that we are dealing with a let statement.
Recall that this statement is actually not a real statement, but a way to introduce locally a specification
constant. A typical use of this feature is in the proof of termination of loops using a variant functions (see
section 3.1). The processing of let statements is easy, because we can simply continue the proving process
(i.e. call proof) with an extended precondition. The extended precondition is the conjunction of the current
precondition with the extra condition of the let statement (line 2). For example, if we have at a some point in
the program the assertion {p : x = X ∧ y = Y } and we come across the let statement {let V=E} (where
E is an expression) then we call proof with the extended precondition {x = X ∧ y = Y ∧ vf = E} and
the remaining code.

1 proof precondition ((Let specconst expr,_):code) =
2 proof (BinOp And precondition extension) code
3 where extension = Atom (Compare Equal (SpecConst name) expr)

The next case that we consider is an if-then-else construct, which is more complicated than the other cases
that we have discussed thus far. We start with the prove rule for this construct. The Hoare triple

{P} if B then S0 {Q0} else S1 {Q1} end; {Q}

is correct if and only if all of the following requirements are met:

• {P ∧B} S0 {Q0}

• {P ∧ ¬B} S1 {Q1}

• Q0 ⇒ Q

• Q1 ⇒ Q

Hence, instead of producing a single proof, Aladin has to produce four sub-proofs in the verification of the
validity of an if-then-else construct. The implementation is shown in the following code snippet. The first
requirement is checked in line 3, the second in line 4, the third in the lines 5-6, and the last requirement is
checked in the lines 7-8. The function last that is used in the lines 5 and 7 is a helper function that returns
the postcondition of a code block (i.e. the local postconditions Q0 and Q1 in the above proof rule). Note
that the function proof returns the conjunction of the four proofs. However, as soon as any of these proofs
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fails, then the remaining cases are not evaluated (due to lazy evaluation) and the proving process stops and
proof returns False. If all these cases pass, then the proving process continues in line 9, which processes
the rest of the code.

1 proof precondition ((Conditional guard thenPart elsePart,nr):
2 (Assertion postcondition,_):code) =
3 proof (BinOp And precondition guard) thenPart &&
4 proof (BinOp And precondition (Not guard)) elsePart &&
5 proofImplication (assertionToBoolExpr (last thenPart))
6 postcondition &&
7 proofImplication (assertionToBoolExpr (last elsePart))
8 postcondition &&
9 proof postcondition code

There is one more construct to consider in the function proof, which is the while construct. The Hoare
triple

{P} while B do S {Q0} end; {Q}

is correct if the following requirements are met:

• {P ∧B} S {Q0}

• Q0 ⇒ P

• P ∧ ¬B ⇒ Q

Usually the predicate Q0 equals the predicate P , in which case P is called an invariant of the loop. The
implementation is shown in the following code snippet. The first requirement is checked in line 3, the
second requirement is checked in line 4, and the third in the lines 5-6. The structure of the code is similar
to the structure of the if-then-else construct.

1 proof precondition ((WhileLoop guard body,n):
2 (Assertion postcondition,_):code) =
3 proof (BinOp And precondition guard) body &&
4 proofImplication (assertionToBoolExpr(last body)) precondition &&
5 proofImplication (BinOp And precondition (Not guard))
6 postcondition &&
7 proof postcondition code

Note that the given proof rule for a loop does not guarantee that the loop terminates. Termination can
be shown by introducing the following extra proof rules. Let vf be an integer expression in terms of the
program variables and specification constants. Then, the loop terminates if the following requirements hold.

• P ∧B ⇒ vf ≥ 0

• {P ∧B ∧ vf = V } S {P ∧ vf < V }

The rationale behind these rules is that the expressions vf (called the variant function) decreases in each
iteration, while P is kept invariant. Since the variant function is integer valued, it must at some point
become negative. However, the first requirement says that the variant function is non-negative as long as
P ∧B holds. Hence, the conclusion must be that at that moment ¬B holds, and the loop stops. Termination
detection has deliberately not been implemented in Aladin, since the user can easily ‘encode’ termination
detection using the let construct. An example of this technique is given in section 6.4.

6.2 The Implementation of proofImplication
As the discussion in section 6.1 shows, the function proofImplication is a key ingredient of Aladin’s
proving process. The function takes two Boolean expressions, and returns a Boolean value. If p and q are
two predicates, then proofImplication p q returns True if Aladin is able to prove KB |= p ⇒ q,
otherwise it returns False. Note that the function has a (small) side-effect, since it outputs on the standard
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output which proof it is performing, and what the outcome is. This output allows the user to trace the state
of a proof while it is running.

The function proofImplication makes use of a local helper function proofImpl that accepts an
extra argument, being a string, that is used for indenting proofs on the standard output. This indentation
is introduced because some proofs are split into sub-proofs. For example, an implication of the type p ⇒
q0 ∧ q1 is actually proved by a proof of p ⇒ q0 followed by a proof of p ⇒ q1. The reason for this split is
that the sub-proofs are typically shorter than a proof of the entire implication. In practice this means that the
number of clauses that is produced using sub-proofs is much smaller than the number of clauses that would
have been produced if the complete implication is proven at once. The actual proof is performed by the
function proof’, which also performs the splitting in sub-proofs (lines 9-10). Proofs that cannot be split
further are in the end passed to the function resolutionProof (in line 11) together with the knowledge
base in CNF format.

1 proofImplication :: BoolExpr -> BoolExpr -> Bool
2 proofImplication p q = proofImpl "##" p q
3 where
4 proofImpl indent p q
5 | proof indent p q = True ‘echo‘ (indent ++ " Success")
6 | otherwise = False ‘echo‘ (indent ++ " Failed")
7 proof indent p q = proof’ indent p q ‘echo‘
8 (indent++" Proving: [" ++ show p ++ "] -> [" ++ show q ++ "]")
9 proof’ indent p (BinOp And q r) =

10 proofImpl ("##"++indent) p q && proofImpl ("##"++indent) p r
11 proof’ indent p q = resolutionProof cnfKB (BinOp Implies p q)

6.3 Computing Weakest Preconditions of Assignments
Another key element of Aladin’s proving process is the computation of weakest preconditions of assignment
statements. As discussed in section 1.3.4, the weakest precondition of a series of assignments S and a post-
condition Q is a predicate that describes a set of program states such that if execution of S is initiated from
any one of these states, then S ends up in a state in which Q holds. Computing the weakest precondition,
given S and Q, is a purely syntactical process as described in section 1.3.4.

We implement the series of assignments S as a list of the type [(String,NumExpr)], where each tuple
of this list consists of a String representing the name of a variable on the left hand side of an assignment,
and a NumExpr which represents the right hand side of the assignment. The weakest precondition of a
series of assignments with a given postcondition is computed recursively via the function wps. It computes
the weakest precondition using the rule wp(x := E; rest,Q) = wp(x := E,wp(rest,Q)).

1 wps :: [(String,NumExpr)] -> BoolExpr -> BoolExpr
2 wps [] post = post
3 wps ((lhs,rhs):rest) post = wp lhs rhs (wps rest post)

The function wps relies on the function wp, which computes the weakest precondition of a single assign-
ment given a postcondition q.

1 wp :: String -> NumExpr -> BoolExpr -> BoolExpr
2 wp name rhs (BinOp op be1 be2) =
3 BinOp op (wp name rhs be1) (wp name rhs be2)
4 wp name rhs (Not be) = Not (wp name rhs be)
5 wp name rhs (Atom ba) = Atom (replaceVarBA name rhs ba)

The function wp accepts three arguments. The first is the name of the variable on the left hand side of
the assignment. The second argument is the expression rhs on the right hand of the assignment, and
the third argument is the postcondition q of the assignment. It returns a Boolean expression which is the
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weakest precondition. It is computed by replacing each occurrence of name in q by rhs. The function
wp itself is basically only traversing the expression rhs, while the helper functions replaceVarBA and
replaceVariable perform the actual replacement.

1 replaceVarBA :: String -> NumExpr -> BoolAtom -> BoolAtom
2 replaceVarBA name rhs (Compare op p q) =
3 Compare op(replaceVariable name rhs p)(replaceVariable name rhs q)
4 replaceVarBA _ _ ba = ba
5

6 replaceVariable :: String -> NumExpr -> NumExpr -> NumExpr
7 replaceVariable name rhs (Var x) =
8 if x == name then rhs else (Var x)
9 replaceVariable name rhs (Binary op p q) =

10 Binary op (replaceVariable name rhs p)(replaceVariable name rhs q)
11 replaceVariable name rhs (UnaryMinus p) =
12 UnaryMinus (replaceVariable name rhs p)
13 replaceVariable _ _ expr = expr

6.4 Some Examples of Verification Runs
In this section we show some example runs performed by Aladin. We start with the running example that
consists solely of assignments statements.

const a;
var x, y;
{x+ y = Z}

x := x+ a;
y := y − a;
{x+ y = Z}

We made a file with the file name runningExample.p containing the above code, and ran Aladin on it
(as if it were a compiler). The following log of the running session is the result.

./Aladin runningExample.p
Passed 10000 tests.
## Proving: [(x + y)=Z] -> [((x + a) + (y - a))=Z]
## Success
Annotation is correct.

We see that Aladin needs to only prove that x+ y = Z ⇒ (x+ a) + (y − a) = Z, which is indeed correct
since this is the direct translation of x+ y = Z ⇒ wp(x := x+ a,wp(y := y − a, x+ y = Z)).

The next example program consists of an if-then-else construct. It computes the minimum of two variables
x and y, and stores it in the variable x.

var x, y;
{x = X ∧ y = Y }

if x < y then skip; {[x = X ∨ x = Y ] ∧ x < y}
else x := y; {[x = X ∨ x = Y ] ∧ x ≤ y}
end; {[x = X ∨ x = Y ] ∧ x ≤ y}

The output that is produced when we feed this program to Aladin is shown in the following log.
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./Aladin min.p
Passed 10000 tests.
## Proving: [x=X and y=Y and x<y] -> [[x=X or x=Y] and x<y]
#### Proving: [x=X and y=Y and x<y] -> [x=X or x=Y]
#### Success
#### Proving: [x=X and y=Y and x<y] -> [x<y]
#### Success
## Success
## Proving: [x=X and y=Y and not x<y] -> [[y=X or y=Y] and y<=y]
#### Proving: [x=X and y=Y and not x<y] -> [y=X or y=Y]
#### Success
#### Proving: [x=X and y=Y and not x<y] -> [y<=y]
#### Success
## Success
## Proving: [[x=X or x=Y] and x<y] -> [[x=X or x=Y] and x<=y]
#### Proving: [[x=X or x=Y] and x<y] -> [x=X or x=Y]
#### Success
#### Proving: [[x=X or x=Y] and x<y] -> [x<=y]
#### Success
## Success
## Proving: [[x=X or x=Y] and x<=y] -> [[x=X or x=Y] and x<=y]
#### Proving: [[x=X or x=Y] and x<=y] -> [x=X or x=Y]
#### Success
#### Proving: [[x=X or x=Y] and x<=y] -> [x<=y]
#### Success
## Success
Annotation is correct.

We clearly see that the proof is split in four sub-proofs. In each of these sub-proofs, on their turn, proofs of
the type α⇒ β ∧ γ are split again into two sub-proofs α⇒ β and α⇒ γ. The latter splits are done by the
function proofImplication. The sub-proofs are indented using the symbol ## for readability reasons.
If at some point Aladin is not able to complete a sub-proof then it terminates, and the user can easily see
which sub-proofs succeeded and which sub-proof failed.

The last example that we show is a simple implementation of the integer multiplication a ∗ b using solely
addition and subtraction. Of course, we simply have the multiplication operator at our disposal in Aladin’s
programming language (so, there is little need to implement it), but this example is a standard (early)
exercise in proving the correctness of loops in Bachelor courses that focus on Program Correctness.

const n;
var a, b, c;
{P : a ∗ b = n ∧ b ≥ 0}

c := 0;
{c+ a ∗ b = n ∧ b ≥ 0}

while b 6= 0 do
{let V = b}
{c+ a ∗ b = n ∧ b ≥ 0 ∧ b 6= 0 ∧ b = V ∧ V ≥ 0}

c := c+ a;
b := b− 1;
{c+ a ∗ b = n ∧ b ≥ 0 ∧ b < V }

end;
{Q : c = n}

Clearly, the invariant of this loop is c + a ∗ b = n ∧ 0 ≤ b. A termination proof is included using the let
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construct, where the variant function vf = b is introduced. The requirement that the function is positive, is
encoded in the conjuncts b = V ∧ V ≥ 0 in the line directly following the let statement. The decrement of
the variant function is encode by the conjunct b < V in the last line of the body of the loop.

If we feed the program to Aladin, then we get the following output:

Passed 10000 tests.
## Proving: [(a*b)=n and 0<=b] -> [(0 + (a*b))=n and 0<=b]
#### Proving: [(a*b)=n and 0<=b] -> [(0 + (a*b))=n]
#### Success
#### Proving: [(a*b)=n and 0<=b] -> [0<=b]
#### Success
## Success
## Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] ->

[(c + (a*b))=n and 0<=b and b/=0 and b=V and 0<=V]
#### Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] ->

[(c + (a*b))=n and 0<=b and b/=0 and b=V]
###### Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] ->

[(c + (a*b))=n and 0<=b and b/=0]
######## Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] ->

[(c + (a*b))=n and 0<=b]
########## Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] ->

[(c + (a*b))=n]
########## Success
########## Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] -> [0<=b]
########## Success
######## Success
######## Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] -> [b/=0]
######## Success
###### Success
###### Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] -> [b=V]
###### Success
#### Success
#### Proving: [(c + (a*b))=n and 0<=b and b/=0 and V=b] -> [0<=V]
#### Success
## Success
## Proving: [(c + (a*b))=n and 0<=b and b/=0 and b=V and 0<=V] ->

[((c + a) + (a*(b - 1)))=n and 0<=(b - 1) and (b - 1)<V]
#### Proving: [(c + (a*b))=n and 0<=b and b/=0 and b=V and 0<=V] ->

[((c + a) + (a*(b - 1)))=n and 0<=(b - 1)]
###### Proving: [(c + (a*b))=n and 0<=b and b/=0 and b=V and 0<=V] ->

[((c + a) + (a*(b - 1)))=n]
###### Success
###### Proving: [(c + (a*b))=n and 0<=b and b/=0 and b=V and 0<=V] ->

[0<=(b - 1)]
###### Success
#### Success
#### Proving: [(c + (a*b))=n and 0<=b and b/=0 and b=V and 0<=V] ->

[(b - 1)<V]
#### Success
## Success
## Proving: [(c + (a*b))=n and 0<=b and b<V] -> [(c + (a*b))=n and 0<=b]
#### Proving: [(c + (a*b))=n and 0<=b and b<V] -> [(c + (a*b))=n]
#### Success
#### Proving: [(c + (a*b))=n and 0<=b and b<V] -> [0<=b]
#### Success
## Success
## Proving: [(c + (a*b))=n and 0<=b and not b/=0] -> [c=n]
## Success
Annotation is correct.
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Conclusion and Future Work

In this last chapter, we will discuss the conclusions of this project. Moreover we will discuss some limita-
tions of Aladin and some future work to improve Aladin.

The most important conclusion is that Aladin works, and that it is possible to verify annotations using
a proving strategy that is based on resolution, unification, substitutions, and arithmetic. As shown in the
examples at the end of the chapters 3 and 6, Aladin is able to find counterexamples for incorrect annotations,
and is able to verify correct annotations. When no errors are found in the annotation, Aladin outputs:

Annotation is correct.

If Aladin finds a counterexample, it outputs:

Assertion failed on line X: ...
Initial state: ...
Current state: ...
Verification failed.

Although we successfully reached the goal of this project, Aladin has quite some limitations. Currently,
Aladin supports only the integer data type. Most examples of annotations that are presented in the bachelor
course ‘Program Correctness’ at the university of Groningen involve the integer data type. Indeed, Aladin
gets quite far in verifying the correctness of annotations from that course. However, if we want to verify
annotations that involve other data types (like Booleans or floating point numbers), then Aladin is not able
to process them. Especially, the addition for the support of arrays would greatly improve the applicability
of Aladin. Aladin also lacks support for functions, both in its programming language and in the language
for expressing Boolean expressions (i.e. assertions). Introducing functions would greatly enhance Aladin’s
applicability to annotations of real life programs. Adding these features to Aladin however would result in a
large project, which is well beyond the size of a Bsc project (in fact, it could easily qualify as a Phd project).

As mentioned in Chapter 1, the resolution algorithm is in fact an implementation of a breath first search. A
great advantage of this proving strategy is that it will produce proofs with a minimal length (i.e. number of
proving steps). However, a huge disadvantage of this strategy is that in every layer of the proving process
all possible inferences are generated, including ones that do not constitute to the proof. The combinato-
rial explosion of generated clauses can be significant, and we have seen several examples where memory
consumption exceeds the size of available memory, and/or execution times are not realistic.

Therefore, it might be worth considering an alternative proving strategy that is based on a technique called
backward chaining. In fact, that is the technique that is at the the heart of the programming language Prolog
(see [9], [17]). The main idea of this proving strategy is to perform directed searches for a proof. For
example, if we want to proof the correctness of some predicate q, the strategy is as follows.

1. Check if q is already in the knowledge base . If it is, return True.

2. Find all implications I , whose conclusion matches q.

61
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3. Recursively establish the premises of all i in I via backward chaining.

The great advantage of this proving strategy is that it avoids inferring unrelated facts. For example, assume
that we are dealing with the following knowledge base:

KB = {α ∗ (β + γ) = δ → α ∗ β + α ∗ γ = δ, α = β → α− 1 < β, x ∗ (y + z) = w}

We want to prove that x∗ y+x∗ z = w. A proof that uses resolution will generate, amongst others clauses,
the clause x ∗ (y + z) − 1 < w. However correct, this clause is useless and does not play any role in the
proof. If however, we would use backward chaining, we see that only the first rule is an implication whose
conclusion matches the goal x ∗ y + x ∗ z = w. Therefore, In the next step, we recursively try to find
a proof for the premise x ∗ (y + z) = w. This proof is trivial, since it is present in the knowledge base.
Clearly, this directed proving strategy is more effective, but implementing it correctly is far from trivial. For
example, it requires careful detection of cycles in the proving process. A disadvantage of using backward
chaining is that the knowledge base is required to consist solely of facts (i.e. atoms) and implications of the
form α0 ∧ α1 ∧ . . .∧ αn → β, where all literals must be positive (i.e no negations). Implications like these
are called Horn clauses and are the basis for the Prolog language. Therefore, it is likely that imposing the
requirement that the knowledge base contains only Horn clauses is likely not to impact Aladin’s usability
very much.

As described in Chapter 3, in an attempt to find counterexamples, we solve a constraint satisfaction problem
(CSP) in a rather naive way. We described also that we did not spend much time to implement an efficient
CSP solver because this is not the main topic of this thesis. However, many more sophisticated CSP solvers
exist using smart heuristics techniques that drastically increase the performance of these solvers. In a future
release of Aladin, one of these sophisticated solvers could be incorporated.

It always seems impossible until it’s done
(Nelson Mandela)
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