faculty of science
and engineering

university of
groningen

DEEP REPRESENTATION LEARNING FOR 3D OBJECT
RECOGNITION IN OPEN-ENDED DOMAINS

Bachelor’s Project Thesis

Vlad Cosmin Iftime, s3426394, v.c.iftime@student.rug.nl,
Supervisor: Dr. Hamidreza Kasaei, hamidreza.kasaei@rug.nl
Department of Artificial Intelligence

Abstract: Open-ended category learning refers to the act of learning new object categories,
after the training phase, without forgetting the previously learned categories. Due to the limited
number of training data and also the difficulty in reprogramming the entire architecture of the
system when a new category is presented, open-ended category learning is a solution that still
needs improvement in service robotics. To that end, this project analyzes the effects of four dif-
ferent autoencoder neural networks on the representation learning part of the OrtographicNet, a
network designed by H. Kasaei to tackle 3D object recognition in open-ended domains. The four
types of autoencoders analyzed in this project are a simple dense autoencoder, a convolutional
autoencoder, a variational autoencoder, and an adversarial autoencoder. The autoencoders were
first trained to provide a unique object feature representation using a self-supervised represen-
tation learning approach. The feature representation obtained using only the encoder part of
the autoencoders was then used for both the recognition and learning processes. After exhaus-
tive testing using different recognition algorithms parameters, similarity measures distances, and
pooling functions, the best autoencoder model for learning and recognizing 3D objects in open-
ended domains is the variational autoencoder, due to its prior Gaussian distribution that forces

the latent space of the autoencoder to obtain disentangled features.

1 Introduction

Three dimensional (3D) object recognition has
been one of the most attractive research topics
in robotics, computer vision, and deep learning
communities for more than half of the decade [1],
mainly because of its applications in autonomous
cars, human-machine interaction, bio-metrics, and
entertainment. In terms of human-machine inter-
action, one of the ever-evolving fields, in which 3D
object recognition is considered paramount, is ser-
vice robotics. This branch of robotics focuses on
robots aimed at performing tasks for humans (e.g.,
cooking, moving objects, delivery). Although huge
leaps have been made into the development of such
robots in the last year, one of the biggest hurdles
that still plagues both 3D object recognition and
service robotics is robustness. In this work, robust-
ness refers to a system’s ability to perform when
presented with new conditions.

One task where robustness is an essential abil-
ity in service robots is category learning. While it
is true that progress has been made in this area,
there are still some problems where improvements
have to be made. One proposed solution is open-
ended category learning (OECL). OECL refers to
a subject’s ability to sequentially learn new object-
categories without forgetting the previously learned
categories [2][3]. This approach represents a form of
continual learning [3], an effective machine learning
paradigm for robotic agents.

Object categorization is a task quite mundane for
humans. For example, we can learn what a wild an-
imal (e.g., a tiger) looks like after receiving a small
number of pictures of the animal. We can also learn
this type of information without forgetting how
other animals look. On the other hand, present-
ing a service robot with a never-seen-before object
results in failure and retraining the robot’s archi-
tecture. The solution to this kind of problem is evi-

dent; the robot needs to be able to learn new object
categories while operating. Ideally, it should be able
to do it without forgetting previously learned cat-
egories, and it should be able to update its knowl-
edge with feedback from a human teacher.

From the example given above, we can already
contour how the robot’s learning system should
look. First of all, the system should be able to learn
new categories while online. This solves a big prob-
lem for the architect of the system by removing
the necessity for a high number of training exam-
ples. The robot should also be able to adjust the
representation that it learned for a category when
a new instance is taught; thus increasing its over-
all robustness. Finally, a teacher should supervise
the learning system by presenting new instances of
categories and by providing feedback. We simulate
a supervised teaching protocol in open-domains us-
ing the system developed by Kasaei et al. [4], which
successfully replicates a simple interaction between
a robot and a teacher.

Several systems have been developed to tackle
the problem of OECL [5] [6]. In this paper, we
focus on the system proposed by H. Kasei called
OrthographicNet [5]. More specifically, this work
focuses on the Object representation and the Ob-
ject category learning and recognition part of the
OrthographicNet and tries to improve its accuracy
and robustness by replacing the convolutional neu-
ral networks with four types of autoencoders.

For this work, we keep the open-ended object
representation pipeline from the OrthographicNet.
This pipeline feeds the orthographic projection
from three different views of an object (top, side,
and front) to three identical CNNs that obtain
a view-wise in-depth feature of each view. These
views are combined to create a feature vector of
the object, used in the system’s OECL part.

1.1 Our approach

Autoencoders is a term used to describe a simple
artificial neural network that tries to transform a
given input into an identical output. The major-
ity of autoencoders, including those discussed in
this paper, are built based on the encoder-decoder
paradigm. The input is first fed through the en-
coder to create a lower dimensionality representa-
tion, also known as a latent layer or simply code.
The decoder then attempts to obtain the original

image from the latent layer. Due to the lack of la-
bels that the input requires, this sort of network
offers the distinct advantage, over classic CNNs, of
performing self-supervised representation learning.

Self-supervised representation learning repre-
sents a popular topic in machine learning and espe-
cially in robotics. The benefit of this type of learn-
ing is the ability to scale to large amounts of un-
labelled data in a lifelong learning manner and im-
prove performance by reducing dataset bias. Con-
sequently, we seek to use the latent layer repre-
sentation of an autoencoder network, trained using
self-supervised representation learning, to optimize
the supervised category learning that Orthograph-
icNet proposes. More specifically, this work looks
at four different types of autoencoders. In Fig. 1.1,
the reader can find an example for each autoen-
coder architecture.

e Dense autoencoders In this autoencoder
type, both the encoder and the decoder
are constructed out of fully connected lay-
ers that increase/decrease in size as they get
closer/further from the latent layer, i.e., code.

¢ Convolutional autoencoders (CAE) Pro-
posed by Masci et al. [7] this type of autoen-
coder is similar to the dense autoencoder, but
it replaces the fully connected layers with con-
volutional layers and max-pooling layers in be-
tween. As is the case with the dense autoen-
coders, the layers sizes increases/decreases as
they get closer/further from the latent layer,
i.e., code.

e Variational autoencoders (VAE) This
type of autoencoder has a more complex archi-
tecture than the previous two, but the core still
follows the encoder-decoder paradigm. On top
of this paradigm, VAEs force the latent space
into a Gaussian distribution due to the Gaus-
sian sampling done after the encoding com-
bined with a reparametrization term [8]. While
VAEs have a broader usage than latent repre-
sentation learning, more specifically as a gener-
ative model, it goes beyond this paper’s scope
to discuss such usage. We thus refer the reader
to other works such as Walker et al. [9], where
this topic is addressed in more detail. The en-
coder and decoder follow the same construc-
tion as the CAE.

DAE

Output

CAE

Input

Decoder
fix|z)

Adversarial cost for

Sample from the true
distribution p(z)

©

Generator

== samples q(z)
S [ples q(z)
/,’ ‘\ '
Ry)
Y
!
N \\ '
S I
RS I
iy /N
Discriminator

Figure 1.1: Architecture of each type of autoencoder.

e Adversarial autoencoders (AAE) These
are the most recent type of autoencoders [10].
They use a generative adversarial network (i.e.,
GAN) [11] to perform variational inference to
match the latent space distribution produced
by the encoder with one of the data. As ex-
pected, this type of autoencoder can be used as
a generative model, but this goes beyond this
paper’s scope. The VAE heavily inspires this
model, but instead of using a regularization
term in the loss function to force the distribu-
tion of the latent vector, it uses an adversarial
network [10]. As with the VAEs, the encoder
and decoder have the same layer construction
as a CAE. On the other hand, the Discrimi-
nator part of the model is comprised of fully
connected layers.

Their performance is compared based on the fol-
lowing four metrics: how fast does it learn?, how
much does it learn?, how well does it learn?, how
much memory does it take?. The way each of this
measurements are calculated is explained in Section
4.3.

Each type of autoencoder is compared against
each other and against the original Orthographic-
Net in order to answer the research question:

Which autoencoder models perform best for
learning and recognizing 3D objects in open-ended
domains?.

The rest of the paper is structured as follows: Sec-
tion 2 describes related work in terms of OECL and
autoencoders; Section 3 describes our implementa-
tion of the four autoencoder models and the experi-
mental setups; Section 4 presents and discusses the
results of the experimental setups; Section 5 draws
conclusions based on the results of Section 4 to an-
swers the research question, and also presents what
future research could be done.

2 Related work

Our research focuses on two topics, namely open-
ended category learning and autoencoders.

2.1 Open-ended category learning

The idea of a robot able to adapt to its environ-
ment has been around as far back as the late 1990s.
T. Ziemke [12] proposed the use of recurrent neu-
ral networks (RNNs) to create adaptive behavior
for robots. The project results showed that RNNs
could provide a middle ground between utterly re-

Output

distinguishing positive
samples plz) from negative

active behavior and an explicit model of the world.
The task that the robot was able to adapt to was an
obstacle avoidance task in an increasingly complex
environment. While the robot in [12] was able to
adapt to the environment, little learning was tak-
ing place; this is mainly due to the constraints of
technology available at the time, i.e., RNNs.

More recently, continual learning emerged as a
paradigm that aims to solve the adaptability and
robustness challenges of robotics [3][13]. One spe-
cific area where this type of learning has made
great advances and where service robots can be im-
proved is object recognition/categorization. Three
approaches that have made progress into these
tasks are [14], [15], and [4][16]. The latter is of
great importance to this paper. Li et al. [15] pro-
pose an approach, called learning without forget-
ting. The idea is self-explanatory; they propose a
system capable of learning new classification tasks
while maintaining old task’s capabilities. This type
of ability is, of course, a very desirable aspect for
a service robot. As mentioned in the introduction,
a robot should learn what represents a table, with-
out forgetting how a cup or a plate look. The pro-
posed approach focuses on solving the problem of
catastrophic forgetting [17], [18] by learning param-
eters that are specific for new tasks while at the
same time keeping the ones discriminative for the
old tasks.

Gidaris et al. [14] follows the same strategy of
learning without forgetting. Their work tries to im-
prove onto the classical few-shot learning approach,
[19] by learning new categories without forgetting
the previously learned ones. They do this by cre-
ating a weight generator that helps in recognizing
novel categories and keeping a high performance for
the categories used for training.

Both the approaches of Li et al. [15] and Gi-
daris et al. [14] can produce competitive results in
terms of recognition and categorization, but their
major pitfall is that they are unable to operate on-
line. They cannot work if the data is presented in
a stream, and the model needs to perform a task
while also training. Kasaei et al. [4] solve this prob-
lem by using OECL, an approach that combines
the continual learning aspect of remembering pre-
viously learned tasks with cumulative learning [20].
The approach of Kasaei et al. [4] focuses on instance
based category learning [21], where the instances
represent each category that contains them.

2.2 Autoencoders

Autoencoders are a type of artificial neural network
i.e., ANN that was introduced in 1986 by Hinton
et al. [22]. Hinton et al. [22] proposed these net-
works as a solution to the problem of backpropaga-
tion without the need of a teacher. Thus they got
to be in the center stage of the unsupervised ma-
chine learning paradigm [23]. They have also been
used in forms of representation learning [24] due to
their ability to create a latent representation that
encapsulates the main features of data. In this re-
gard, an autoencoder can be taught as a non-linear
principal component analysis, i.e. PCA, alternative
[25]. The latter aspect of autoencoders are why this
type of ANN is the focus of our research. Thus by
taking advantage of the representation learning ca-
pabilities of autoencoders, we produce competitive
results in OECL.

Convolutional neural networks are known to be
good discriminative neural networks [25] and thus
have been used in countless projects regarding com-
puter vision tasks such as recognition [26], [27] and
3D object classification [28]. On the other hand, one
of the biggest drawbacks of these kinds of networks
is their rigidity in introducing new categories. One
way of avoiding this hurdle is by using CNNs pre-
trained on large datasets [29]. These pre-trained
models can offer good features extraction, and as
such, they have been used by Kasaei et al. [5].

On the other hand, autoencoders are known more
as generative models [25], but studies such as Vin-
cent et al. [30] have shown that using the latent
space that they generate we can extract descrip-
tive features from our input. These characteristic
features can remove ambiguity from different ob-
jects that belong to the same category and can be
used in combination with instance-based learning,
where these very descriptive vectors can be com-
bined to represent instances of each category.

3 Methods

The experimental setup that answers the proposed
research question of this paper consists of three dis-
tinct phases. The training phase, the offline phase
and the online phase.

3.1 Training phase

Self-supervised representation learning is one of the
main benefits that autoencoders provide. It offers
the distinct advantage that there is no need for la-
bels on the data. That is why the autoencoders are
first trained on a set of images to make sure that
they can extract meaningful features. This training
phase aims to prepare the encoder of the autoen-
coders to be used in a future task, as a form of
transfer learning [31].

In this first phase i.e., the training phase, we im-
plement the four types of autoencoders, and for
each, we determine their optimal architecture and
loss function. To guide our model construction, we
use the findings of [32] as well as exhaustive trial
and error.

One crucial aspect for all autoencoders, which
is paramount to consider when deciding the archi-
tecture, is the dimensionality of the latent space.
This parameter has a significant effect on the qual-
ity of the images that the autoencoder can recon-
struct from it. On the one hand, a low-dimensional
space is memory and time efficient during the train-
ing process, but it might not capture the essential
features of the input. On the other hand, a high-
dimensional space can lead to over-fitting while also
requiring more time and memory to train. In order
to analyze this effect on the models, we look at an
increasingly larger latent space. Thus, the values
used for analyzing the latent dimensionality effect
are 2, 8, 32, 64.

Lastly, in this phase, the other two parameters
that we look at are the batch-size and the number
of epochs that we train each model. There are ex-
tensive research papers done into how these train-
ing parameters affect the model’s performance, and
they served as a guide for what values we chose. An-
other method that these values are usually deter-
mined through trial and error. For this reason, no
specific values have been predetermined for testing.

For all the models the layer arrangements are
guided by the models in Section 1.2. All the au-
toencoders are programmed in Python 2.7 using
the Keras framework.

3.1.1 Dense autoencoder

The dense autoencoder is built out of an encoder
with four layers. Each layer’s sizes depend on the

size of the latent space, i.e., s; and is half the size
of the previous layer. Thus the first layer has a size
of 16 x s;, and the last layer has a size of 2 x s;.
The decoder is the mirror of the encoder.

The loss function we use for this autoencoder is
a mean squared error:

(X —Y)? (3.1)

where X is the input, and Y is the output.

3.1.2 Convolutional autoencoder

For the convolutional autoencoder, we choose to
have three convolutional layers. The first one has
16 filters, while the other two have 8. The kernel
size for each of them is three by three.

There is a max-pooling layer between each con-
volutional layer that makes the input from the pre-
vious layer half as big. Thus the final max-pooling
layer will output the size of the latent space. The
decoder uses upsampling layers to double the size
of the inputs they receive.

The loss function that we use for this model is
Binary Cross-entropy i.e.

S1(X x log(Vi) + (1 — X;) x log(1— 7)) (3.2)

where X; and Y; represent pixels from the input
and the output respectively.

3.1.3 Variational autoencoder

The variational autoencoder has both the encoder
and decoder part identical to the convolutional au-
toencoder with the following exception. The en-
coder contains three different layers right before the
latent space. As in Fig. 1.1 (bottom left), we will
have three other layers. A mean layer (u,) that rep-
resents the mean of the input distribution, a covari-
ance layer (o) that represents the covariance of
the input distribution and finally a sampling layer
(¢) that samples a point from a normal distribu-
tion i.e. a distribution with A(0,I). The sampling
for this layer is done using the reparameterization
trick [8] to ensure that the backpropagation has the
desirable effects.

The latent space, in this model, represents a dis-
tribution and is calculated in the following way:

2 =0+ g (3.3)

The loss function for this model uses the follow-
ing formula:

£($,0,2)=Dx (a6 (h[2)l|po (h))~Eq, (n)x) (logpe (x|h)) (3.4)

¢ represents the parameters for the encoder while
0 represents the ones for the decoder; the first term
of the function is called the regularizer term, en-
suring that the latent distribution is similar to the
sampled one. For this, the Kullback—Leibler, i.e.
KL, divergence is used to calculate the difference
between the two distributions. The second term is
the reconstruction likelihood, and it ensures that
the output is as similar to the input as possible, it
is implemented as a binary-cross-entropy function.

A last note about the implementation of this
model: in our experimental setup, we experienced
posterior collapse, where the autoencoder reaches a
point in the learning process where they ignore the
latent variable and thus generate only trivial solu-
tions [33]. To avoid it, we implement a slightly mod-
ified version of the original loss function proposed
by Bowman et al. [34]. In this loss function, the
regularizer term is annealed and thus introduced
gradually into the function. In this way, the model
will first learn to reconstruct the input precisely
before it starts forcing the distribution.

3.1.4 Adversarial autoencoder

As stated in the introduction, this autoencoder
model is heavily inspired by the variational autoen-
coder [10]. Thus the encoder and decoder follow the
same construction as the VAE and the CAE.

In addition to the encoder’s classical construc-
tion, we also build a discriminator network built
out of three fully connected layers. The first layer
receives input from a vector that is the size of the
latent space, and the last layer outputs either a
negative or a positive response. The layers have
the following sizes from first to last: 512, 256, 1.
The input for this network is either a latent vector
generated by the encoder or a sampled vector. The
sampling is done similarly to the VAE. We sam-
ple using a reparameterization trick from a normal
distribution i.e. N/(0,1).

At each training epoch, this model trains both
the generative network, which is represented by
the encoder-decoder network and the discrimina-
tor network. The generative network has the same
goal as a simple autoencoder to ensure the output is

similar to the input. As such, it uses a mean squared
error, i.e. MSE, as a loss function. The discrimina-
tor network tries to differentiate between the true
distribution i.e., AN(0,I) and the latent representa-
tion from the encoder. By considering the latter as
fake, we force the latent vector’s distribution to be
similar to the true distribution until the discrimi-
nator can no longer tell the difference.

3.1.5 Data

The data that we are using in the training phase
comes from the ModelNet10 dataset [35]. While the
data comes from this dataset, we use the altered
version that fits the OrthographicNet pipeline pro-
posed by H. Kasaei [5] where orthographic projec-
tions of household items represent the data. The
term orthographic projection is a technical term
commonly used by engineers and other profession-
als who use technical drawings. From this point on,
in this paper, the ModelNet10 dataset will refer to
the one proposed by H. Kasaei and not the original
one containing CAD models.

ModelNet10 contains 4899 household items di-
vided into ten classes: bathtub, bed, chair, desk,
dresser, monitor, nightstand, sofa, table, toilet. It
can be observed that the dataset is small, espe-
cially when compared with other image datasets
such as ImageNet [36]. A smaller dataset repre-
sents an advantage because it offers the possibil-
ity for more extensive experiments. Another aspect
of the dataset is the interclass variation of the ten
classes. This variation is a paramount aspect for
OECL that ModelNet10 offers.

Each class contains representations of objects
corresponding to the class. There are three main
orthographic views of each object: front, top, and
right-side. The authors of OrthographicNet did not
consider the other three views due to them being
mirror images of the other three. One picture rep-
resents one of the three main views; thus, there are
three pictures per object. Each picture is 100 by
100 pixels in JPEG format, and all the pixels are
normalized to have values between 0 and 1.

3.1.6 Pre-processing

One way of enhancing the model’s overall perfor-
mance is by making sure that the data used to
train it is adequate and not undermined by noise.

To that end, the data used to train the autoen-
coders was first passed through two different pre-
processing functions. The pre-processing is predom-
inantly done to reduce the noise in the picture and
thus increase the model’s accuracy.

The two different pre-processing function that
are implemented are: erosion and dilation. Since
there is no objective way of determining which
one would improve the performance of the model,
the entire training data set is passed to each
function separately, thus resulting in two differ-
ent dataset each corresponding to a pre-processing
function. Each autoencoder is trained using both
datasets to see which combination of autoencoder-
pre-processing function would result in the best
overall model. The dilation and erosion work on the
orthographic representation because they are black
and white. As such, orthographic projections are
prone to white noise due to the sensors, and both
these functions propose a solution to this. Erosion
works by removing white noise from the object’s
boundaries in the picture by sliding a kernel over
the image and keeping a pixel only if all the other
under the kernel are also white. Because the ero-
sion process might end up making the orthographic
representation of the object too small, the dilation
function is used to ’increase’ the object back closer
to its original form, with the added benefit of re-
moving the noise.

Dilation works similarly to erosion. Thus the di-
lation function is implemented in this project by
first eroding the picture and then dilating it. The
two functions are implemented using the OpenCV’s
Python extensions. To visualize how these two func-
tions perform on the ModelNet10 data set we refer
the reader to Fig. 3.1.

The final pre-processing step is to shrink the im-
ages to a 64 by 64 pixel size.

. l. | -
| 1

Figure 3.1: (left) The original orthographic pro-

jection; (middle) The erosion function applied

to the original; (right) The dilation function ap-
plied to the original.

)

2
=
3
3
z
4
&
o

and recognition

element-wise pooling

(

Figure 3.2: The OrthographicNet pipeline where
the CNNs are replaced with the trained en-
coders that produce a latent representations of
the input images, i.e. z. The image is adapted
from H. Kasaei [5]

3.2 Offline phase

While OrthographicNet offers a solution to the on-
line nature of OECL and continual learning, we
first have to integrate the autoencoders with the
most performant weights, developed in the previous
phase, into OrthographicNet and evaluate them.
The integration is an application of transfer learn-
ing [31].

To that end, we conduct a series of experiments.
For each autoencoder model, we find the most suit-
able combination of object representation charac-
teristics, similarity measures, and pooling function.
These combinations are then passed onto the final
phase of the experimental setup.

The type of experiment used for finding the
most suitable combination for each type of autoen-
coder is K-fold cross-validation. The reason why we
choose this type of cross-validation over the other
types is due to its ability to offer a less biased per-
formance assessment for each combination of an
autoencoder and pre-processing functions applied
to it. The same dataset is used due to its inter-
class variation and its size. These aspects allow for
a high number of experiments to be done in a short
amount of time.

3.2.1 OrthographicNet integration

As mentioned in the introduction, we replace the
CNN in the original OrthographicNet proposed by
H. Kasaei [5] with the trained encoders from the
autoencoders developed in the previous phase.
Fig. 3.2 shows how the open-ended object recog-
nition pipeline looks like when the encoder is at-

tached. We first test different resolutions for the
three projected views. The values that we look at
are 32, 64, 96. These values were chosen follow-
ing the size of the latent space of the autoencoder
model spaces.

After the orthographic representations are fed to
the encoders, they each produce a latent represen-
tation of these representations. The three latent
representations are then pooled to create a single
feature vector. The two pooling functions that we
test are max pooling and average pooling, which are
commonly used throughout the literature. The for-
mulas for the two pooling functions are the follow-
ing, 3.5 and 3.6, where f = feature vector; © = first
latent space vector; y = second latent space vector;
z = third latent space vector; i = position in vector.

Max pooling formula

fi = max(zi, yi, z:) (3.5)
Average pooling formula
fi = avg(@i, yi, 2i) (3.6)

These functions help create a feature vector that
is invariant to small translations of the input. The
creation of the feature vector marks the end of the
object representation part of the pipeline. Finally,
using the feature vector, the system learns and cat-
egorizes the original object.

The OECL part of the pipeline is done through
the use of a K-nearest neighbor algorithm. This al-
gorithm is well known in the machine learning field
and is used for clustering objects based on their
similarities. We test different neighborhood sizes for
the algorithm to see which one would give compet-
itive results. The neighborhood sizes that we use
are 1, 3, 5, 7, 9. It is considered good practice only
to take odd values smaller than the number of cat-
egories in the dataset to avoid the possibility of a
draw as much as possible.

In order to determine the distance from one ob-
ject to another, we follow the study of S. Cha
[37]. We use a total of 16 different distance func-
tions from the ones proposed by S. Cha [37] :KL-
Divergance, SymmetricKL, Motyka, Divergence,
Euclidean, Manhattan, Intersection, Cosine, Dice,
Bhattacharyya, Sorensen, Canberra, Pearson, Ney-
man, Gower, Chi-squared. These functions deter-
mine the distance between different feature vectors,
while the K-nearest neighbor algorithm categorizes

them based on the distance. We refer the reader
to S. Cha [37] for a in depth description of each
function.

In total we run 480 experiments for each model
of autoencoder. The experiments represent all
the combinations of #resolutions x #K values X
#distance functions X #pooling functions = 3 x
5 x 16 x 2 = 480.

3.3 Online phase

A robot is capable of online learning if it can learn
new pieces of information while operating without
the need to reprogram its system. This is a use-
ful feature that can help different sorts of service
robots while operating on the field, where taking
the robot offline to train it may be undesirable or
even impossible(e.g., a robot working in the medi-
cal field or on the site of a construction). One ap-
proach to online learning is to have a human teacher
present along the robot to provide feedback and
new information.

This type of learning is a staple for OECL and
continual learning and, as a result, also for this pa-
per’s scope. In this phase, the four Orthographic-
Net alternatives built using the four different au-
toencoders models are subjected to an Open-ended
evaluation where we can determine the answer to
the proposed research question: Which autoencoder
models perform best for learning and recognizing 3D
objects in open-ended domains?.

3.3.1 Simulated user

While the offline phase did provide insightful re-
sults into autoencoder’s performance in terms of
object representation learning and categorization,
they are not suited for the evaluation of OECL.
The reason being that they follow the train-test
methodology. This two-stage approach overlooks
the aspect of simultaneous recognition and learning
and also requires full knowledge of the categories to
be learned [16].

Thus, to correctly assess the autoencoder’s per-
formance in open-ended domains, we will use a
simulated user protocol [38]. This protocol sim-
ulates the interaction of a human user with a
robot over a number of interactions. The overall
working of the protocol can be considered to be
a train-test method that follows more closely to

how human teaching occurs. More specifically, a
simulated-teacher interacts directly with the Or-
thographicNet system trough three tasks:

e Teach, the simulated-teacher presents a new
object category to the system.

o Ask, the simulated-teacher presents an object
to the system and asks for the category of said
object.

e Correct, in case the system provides the
wrong category when asked, the simulated-
teacher will provide corrective feedback. Dur-
ing this task, the learning occurs.

The way online learning occurs is as follows [39].
The simulated-teacher continually monitors the
global recognition accuracy of the system, which
is computed as:

Fcorrect predictions

Global accuracy = .
nracy #presented instances (3.7)

When this accuracy exceeds a given threshold,
the simulated-teacher presents a new category to
the system. The threshold is 7 = 0.67; this way,
we ensure that the global accuracy is at least twice
the error rate. While the system does not exceed
the threshold, the simulated-teacher chooses new
objects from the already presented categories and
inquires about their category.

The experiments halt in one of two cases. The
system cannot surpass the global accuracy in a
given number of epochs (e.g., 100) the simulated-
teach considers that the system is unable to learn
any new categories and stops the experiment. The
second case is when the system learns all the cate-
gories in the dataset. There is no reason to continue
the protocol in such a case, and the experiment is
stopped due to lack of data. This is the preferable
case because it shows that the model is capable of
learning even more.

3.3.2 Dataset

The dataset used for this phase of the experimen-
tal setup is the Washington RGB-D Object dataset
[40]. This dataset is more extensive when compared
to ModelNet10. It contains a total of 300 everyday
household objects split into 51 categories. Since this
is the last step of the experimental setup, and there

are only four types of systems that we test, it makes
sense to use a more comprehensive dataset to an-
swer the research question.

4 Experimental results and

discussion

For each phase described in the previous section,
we perform a type of experiment. In this section,
we look at the results of those experiments and an-
alyze what they mean for our project and research
question.

4.1 Training evaluation

In the training phase, we look to recognize the best
architecture for each of the four types of autoen-
coders. The results of this evaluation are repre-
sented by the size of the latent vector(i.e., code), the
number of epochs, and the size of the batches used
to train the weights of the model. This code sizes
and training parameters provide the best weights
for each autoencoder in the following two evalua-
tions. It is worth noting that in this experimen-
tal set-up, we lastly evaluate which pre-processing
function provides the medium for self-supervised
representation learning.

Since the data for this section is unlabelled, we
cannot calculate the accuracy to see which parame-
ters will give the best results. Thus, we use the loss
function for each type of autoencoder to see which
parameters give the smallest loss between the input
and the output.

Another aspect to note about the results of this
phase is that because the loss functions are dif-
ferent, as noted in Section 3.1, we cannot directly
compare the performances of the different autoen-
coders.

We first determine the size of the latent vector
by running a classical train-test protocol with the
same batch-size and number of epochs on increas-
ingly larger latent space sizes. The results can be
observed in Fig. 4.1. These results are averaged over
10 runs.

It can be observed that the relation between the
value of the loss function at the end of the train-
ing phase and the size of the code is inversely pro-
portional for the most part. This relation is valid

9
)
g
H
2
]
H
2
g
S

CAE

08
0s
0e
03
02 =
01
o

2 s E] e

Latent space size

o

s =
Latent space size

VAE
0
00 I
0
2 s @ o

Latent space size

AAE
008
mll
001
o
2 s 2 o

Latent space size

Figure 4.1: The loss function value in terms of the size of the latent vector for each model. The
dense autoencoder (first); The convolutional autoencoder (second); The variational autoencoder

(third); The adversarial autoencoder (fourth).

DAE

Loss function value

Enose oine
Pre-processing function

Enoce Dime
Pre-processing function

Figure 4.2: The loss function value in terms of the pre-processing function used on the input. The
dense autoencoder (first); The convolutional autoencoder (second); The variational autoencoder

(third); The adversarial autoencoder (fourth).

for the dense, variational, and adversarial autoen-
coders until the code reaches size 64. At this size,
the value increases, which may show that the au-
toencoders start to overfit. The exception to this
is the convolutional autoencoder. For this autoen-
coder, the loss for sizes 32 and 64 is similar. For all
the other encoders, we continue our experimental
set up with a latent space with size 32, while for
the convolutional model, we use a size of 64.

Table 4.1 shows the results for the number of
epochs and the size of the batches used to train the
weights of the model. As we can see, the more com-
plex the model’s architecture is, the larger the num-
ber of epochs required to train it is. The adversarial
autoencoder required the most significant number
of epochs to train and the largest batch size. These

Table 4.1: The Number of Epochs and the Batch
size that result in the lowest loss values for each
autoencoder model

| Autoencoder model | Number of epochs | Batch size |

Dense 100 216
Convolutional 300 216
Variational 500 216
Adversarial 1500 512

parameters result from the fact that the adversarial
model contains two networks that require training,
the generator and the discriminator.

Finally, the pre-processing functions are tested.
We look at how the erode and dilate functions affect
the loss functions of the determined autoencoder
models. The results, averaged over ten runs, can be
observed in Fig. 4.2. The erode function performed
better in all models. The dilate function removed a
lot more of the detail by increasing the size of the
outer edges and other white sections, which led to
the models overestimating those specific section’s
size. Thus, the results are worse when using dilate
because a lot of the smaller details are lost, espe-
cially in the dense and adversarial autoencoders.

4.2 Offline evaluation

Taking the weights trained on the models from the
previous phase, in this evaluation phase, we look at
how the different object representations, similarity
measures and pooling functions affect the Average
Instance Accuracy(AIA) and the Average Class Ac-
curacy (ACA). AIA is calculated as the percentage
of correctly classified training instances, while ACA
is calculated as the overall categorie’s average ac-
curacy.

10

Table 4.2: The results of the offline evaluation, where the best combination of parameters is chosen

for each autoencoder model

’ Autoencoder model \ Image resolution | Distance function \ K \ Pooling function | AIA \ ACA ‘
Dense 64 x 64 Euclidian 3 Average 0.8524 | 0.8990
Convolutional 64 x 64 Euclidian 3 Average 0.8524 | 0.9067
Variational 64 x 64 Euclidian 3 Average 0.8524 | 0.9125
Adversarial 32 x 32 Dice 3 Average 0.8502 | 0.8524

For each autoencoder model we have to test all
combinations of 4 image resolutions, 5 K-values for
the KNN algorithm, 16 distance functions, and 2
pooling functions, we have a total of 480 experi-
ments for each model. This leaves us with a large
number of experimental results. As such, we only
look at the top result for each model. These are
presented in Table 4.2.

It can be seen that the three out of the four mod-
els performed best when the resolution of the ortho-
graphic projections was 64 x 64, and the distance
function was Euclidian. For the adversarial model,
the most performant resolution was 32 x 32 with the
Dice distance function. Since no model performed
best with the resolution 96 x 96, it can be observed
that a higher resolution is not guaranteed to of-
fer better performance, even though it offers more
detail. On the other hand, a too-small resolution
lacks the detail necessary to extract useful features
for the categorization. Thus an in-between resolu-
tion offers the best results for most of the mod-
els. The exception is, again, the adversarial autoen-
coder that performs best on the lower resolution.
This divergence could be due to the discriminator
being able to impose a better representation in the
latent space.

For both the K-value used in the KNN algorithm
and the pooling function, all the models perform
best when K is 3 and when the pooling function
is Average. These results make sense because a
smaller neighborhood size can offer less ambiguity
in categorization. Simultaneously, an average pool-
ing function does not entirely ignore features from
two of the views, which is what the max-pooling
function does, which can help with the ambiguity
by offering a more robust feature vector.

Finally, if we are to look at these offline eval-
uation’s performances, we can see that the worst-
performing model is the adversarial one, in both the
average instance accuracy, a value of 0.8502, and

the average class accuracy value of 0.8524. These
poor results may come from poor optimization in
the previous phase or from the overall implementa-
tion.

Looking at the other three models, we can see
that they all perform equally well in ATA with a
value of 0.8524. The variational model has the best
ACA performance, with a value of 0.9125, followed
closely by the convolutional model, with a value of
0.9067, and then by the dense model, with a value
of 0.899.

It can be noticed that all the autoencoders per-
form well, with all values for both ATA and ACA
above 0.85. This performance is plausibly a result
of using the dataset to conduct the evaluation that
we used in the training phase.

In order to better understand the results of this
offline evaluation, we can look at the confusion ma-
trices of the models from Table 4.2. The matrices
are presented in Figure 4.3. We can observe that all
models have a problem identifying the desk, 55.8%
accuracy for the AAE, and 60.5% for the rest of
the models. These accuracies show the ambiguity
in the data set as this category is mistaken most
frequently with the sofa category i.e., 20.9% of the
time the AAE categorizes a desk as a sofa while
the rest of the models do it 19.8% of the time.
This confusion seems odd at first, but both objects
are mainly represented by flat surfaces with dif-
ferent attachments. Other notable confusions are
between desk and tables, and between nightstands
and dressers. This confusion makes more sense as
the objects themselves are quite similar and can be
confused even by humans.

4.3 Online evaluation

In this final experimental evaluation, we use the
simulated user protocol, described in Section 3.3.1,
to analyze the performance of the four models ob-

11

Accuracy: 85.24% (DAE)
10.0% 0.0% 0.0% 0.0% 0.0% 0.0% 18.0% 6.0% 0.0%

0o 0o 9 3 o0 %0
0% XA 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 1.0% 0.0%
2 0 0 0 1 1 0 80
0.0% 3. 0.0% 0.0% 0.0% 1.0% 0.0%
> 0o 3 o 0o o0 0 1 0 70
S ,100% 23% 0.0% 3.5% 19.8%10.5% 0.0% |
9] 0o 2 o0 0 3 17 9 0 60
@ [0.0% 0.0% 0.0% 1. 0.0% 12.8% 2.3% 0.0% 0.0% |
O o 0 o 1 2 0 o0 50
T ¢ [0.0% 0.0% 1.0% 0 BA1.0% 0.0% 0.0% 0.0%]
g o 0o 1 o0 2 i 0 0 0 20
5 5 [12% 1.2% 1.2% 0.0% 23.3% 0.0% [EREA 0.0% 8.1% 0.0%)
9] 11 1 0 2 o0 70 20
o 0.0%|

o [2.0% 0.0% 0.0% 0.0% 1.0% 1.0% 2.
2 0 0 0 1 1
o [0.0% 0.0% 0.0% 17.0% 0.0% 0.0%
0 0o 0 17 0 0
[0.0% 1.0% 2.0% 0.0% 0.0% 0.0%
Q 1 2 Q Q Q Q Q
1t 2 3 4 5 6 7 8 9 10

Target Category

Accuracy: 85.24% (VAE)

4 [10.0% 0.0% 0.0% 0.0% 0.0% 0.0% 180% 6.0% 0.0%]
5 00 0 9 3 0 9%
o2 2 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 1.0% 0.0%
2 o o 1 1 0 80
5 [0.0% 3. B80.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0%]
> o 3 HEE 0 0 70
S 410-0% 2.3% 0. 0.0% 3.5% 19.8%10.5% 0.0% |
Q 0o 2 o 3 17 9 o0 60
T 5[0.0% 0.0% 12.8% 2.3% 0.0% 0.0% |
O o 0 o0 1 2 0 0 50
T [0.0% 0.0% 1.0% 0.0% 2.0% ZHEH 1.0% 0.0% 0.0% 0.0% |
D 6
g o o0 1 0o 0 o0 %0
5 7112% 1.2% 1.2% 0.0% 23.3% 0.0% 8.1% 0.0%
© 11 1 0 20 o0 7 0 30
O g |20% 0.0% 0.0% 0.0% 1.0% 1.0% 2. 0.0% 0.0%
2 0 0 o0 1 1 20
o [0.0% 0.0% 0.0% 17.0% 0.0% 0.0% 0
o 0o o0 17 0 0 10
10[00% 1.0% 2.0% 0.0% 0.0% 0.0%
Q 1 2 Q Q Q Q

1 2 3 4 5 6 7 8 9 10

Target Category

Accuracy: 85.24% (CAE)
BXRA10.0% 0.0% 0.0% 0.6% 0.0% 0.6% 18.0% 6.6% 0.0%
o 0o 0 0 0 9 3 0 90
EGEA 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 1.0% 0.0%
o 0o 0 o0 1 1 0 80
B 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0%

> 0o 3 o 0o o 0 1 0 70
S, 4|00% 23% 0.0% TEF 3.5% 19.8%10.5% 0.0%,

Qo 0 2 o0 3 17 9 0 60
@ [0.0% 0.0% 0.0% 1. 12.8% 2.3% 0.0% 0.0%,

O o 0 o 0 11 2 0 0 50
S [0.0% 0.0% 1.0% 0.0% 2. A 1.0% 0.0% 0.0% 0.0%

D 6

g [i 0 0 0 20
5 5 [1:2% 1.2% 1.2% 0.0% 23.3% 0.0% 0.0%,

o} 11 1 0 20 o0 70 20
<

o

g [2:0% 0.0% 0.0% 0.0% 1.0% 1.0% 2 0.0% 0.0%
2 0 0 0

9 0.0% 0.0% 0.0% 17.0% 0.0% 0.0%
0 0 0o 17 0 0
0 0.0% 1.0% 2.0% 0.0% 0.0% 0.0%
Q 1 Q Q Q Q

1 2 3 4 5 6 7 8 9 10
Target Category

Accuracy: 84.58% (AAE)

, BERR120% 0.6% 2.0% 0.0% 0.0% 0.0% 16.0% 8.0% 0.0%
o 1 0o ©0 0 8 4 0 90
o [0 0.0% 0.0% 0.0% 0.0% 2.0% 2.0% 1.0%
0 o o o o0 2 2 1 80
510.0% A0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0%
> 0o 3 0o 0 0 0 1 0 0 70
S 4[28% 12% 1.2% 3.5% 0.0% 4.7% 20.9%10.5% 0.0%,
o) 1 4 18 9 0 60
T 5[0.0% 0.0% 0.0% 1.2% 14.0% 2.3% 0.0% 0.0%
O 0o 0o 0 1 2 2 0 0 50
B §100% 0.0% 0.0% 0.0% 2 A1.0% 1.0% 0.0% 0.0%
B o 0 0 0 2 1 0 40
5 |23% 1.2% 00% 0.0% 19.8% 1.2% [0% 35% 1.2%
[} 2 1 0 0 17 1 1 20
O 5 [0.0% 1.0% 0.0% 0.0% 0.0% 1.0% 3.
o 1 0 0 0 1 20
[0.0% 0.0% 0.0% 13.0% 0.0% 0.0%
0 0 0 18 0 0 10
10[00% 1.0% 5.0% 0.0% 0.0% 0.0%
Q 1 5 Q Q Q Q Q

1 2 3 4 5 6 7 8 9 10

Target Category

Figure 4.3: Confusion matrices showing how well each model performed in object recognition
task. The darker diagonal cell is the better it was predicted by the model. Dense autoencoder
top-left, Convolutional autoencoder (top-right), Variational autoencoder (bottom-left), Adversarial

autoencoder (bottom-right).

tained in the previous evaluation in an open-ended
domain. In this way, we will answer the proposed
research question.

In the introduction, we mention that we assess
the model’s performance and subsequently answer
the research question by looking at four metrics:

e How fast does it learn? For this we look at the
number of Question / Correction Iterations i.e.

#QCI

e How much does it learn? For this we look
at the average number of categories that the
model learned before the experiment stops i.e.
ALC

e How well does it learn? In order to answer this
question we look at the global accuracy of the
classification i.e. GCA

e How much memory does it take? This is an
evaluation of the memory efficiency of the

model and for this we look at the average num-
ber of instances needed to learn a category i.e.
AIC

It can be observed that for the metrics #QIC and
AIC, a lower result is better as it shows that the
model needs less time to complete the experiment
and needs fewer objects from a category to learn
said category as such it is better at generalizing.

To obtain these metrics, each autoencoder model
is run through the simulated user protocol five
times, and the averages of the four metrics is taken.
We perform five experiments for each model be-
cause the order in which the categories are pre-
sented to the system may affect the performance.
As we saw in the previous section, some objects
are harder to categorise than others, and as such,
if they were presented first, the experiment might
end too fast.

The results of the open-ended evaluation can be
found in Table 4.3.

12

Table 4.3: Summary of open-ended (online) eval-
uations

| Model of autoencoder | #QIC [ALC | GCA | AIC |

Dense 984 30.2 0.65 16.84
Convolutional 1822.2 44 0.67 16.21

Variational 1430.2 | 39.6 | 0.68 | 14.33
Adversarial 1338 34.6 | 0.66 15.6

The first aspect to note is that the relation be-
tween the #QIC and ALC scores is directly propor-
tional, preferably inversely proportional. Thus, the
faster the experiment finishes, the fewer categories
the model is able to learn.

We can observe that in terms of learning speed,
the best performing model is the dense autoen-
coder, with 984 iterations. This result is not entirely
representative because, in all the cases, the exper-
iment stops well before the model learns all the
categories. We can observe that the model has the
lowest ALC score of all models, only 30.2 categories
learned. The second fastest model is the adver-
sarial autoencoder, which needs 1338 iterations to
learn 34.6 categories. The third fastest autoencoder
model is the variational one, which needs 1430.2 it-
erations to learn 39.6 categories. Finally, the slow-
est model in terms of iterations, but the model that
learns the most categories is the convolutional au-
toencoder, which learns 44 categories in 1822.2 it-
erations. Looking at the last two metrics, we can
observe the model that performs the best in both
metrics is the variational autoencoder, with GCA
of 0.68 and an AIC of 14.33. The convolutional au-
toencoder performs second best in terms of GCA,
with 0.67, and third-best in terms of AIC, with
16.21. The adversarial autoencoder performs third-
best in terms of GCA , with 0.66 and second best,
with a value of 15.60, in terms of AIC. Finally, the
worst-performing autoencoder in both categories is
the dense model with a value of 0.65348 for the
GCA and 16.84 for the AIC.

We can note that the models that use a prior
distribution to sample, the adversarial and varia-
tional autoencoder, generalize the best, as pointed
by their AIC scores. They also perform quite simi-
lar in terms of global classification accuracy.

The odd aspect of this result is that there is a
distinct difference in performance between the vari-
ational autoencoder and the adversarial autoen-

coder. It is odd because both models are guided
by the same principle, as noted in the previous
sections. The difference in performance can be at-
tributed to the offline evaluation, too poor imple-
mentation or poor fine-tuning of the model.

To better understand and visualize the results
presented above, we can look at the graphs from
Fig. 4.4. These graphs show the results at the end
of one of the simulated user protocols for the vari-
ational autoencoders. The first graph shows the
evolution of protocol accuracy, i.e., the blue line
over the number of iterations. When the simulated
teacher introduces a new category (the red boxes),
the accuracy drops suddenly. This drop occurs from
the system not knowing what the category is due to
the low number of instances it initially stores for the
particular category. Another aspect worth pointing
out from this graph is that as the model learns more
categories, the speed with which it manages to pass
the threshold again gets slower.

The middle graph presents the relation between
global classification accuracy and the number of
learned categories. As expected initially, the rela-
tion between the two is inversely proportional; the
accuracy suffers a sharp drop as the model learns
new categories. Eventually, the accuracy stabilizes
and does not drop nor increase anymore.

The final graph shows how many instances the
model stores for each category at the end of the
protocol. The higher the number of instances, the
harder it is for the model to learn that category.
Some categories are innately ambiguous when look-
ing at them just in terms of shape e.g., potato,
tomato, bell pepper. These categories are quite
variant in their shape, and thus it makes sense that
they would be harder to learn by the model and
require more instances to get them right. On the
other hand, categories with more distinct shapes
such as scissors, bowls, and plates require fewer in-
stances to be learned.

For the graphs showing the performance of the
other three models we refer the user to Appendix

A.

5 Conclusions
In this section, we answer the research proposed

in the introduction based on the previous section’s
results. We also look at how future research could

13

>
3
g
8 I
L3
i 1 ! \ :
g i | [| |
e} l' |] d | | 1]
o n [N ! | ! . |
2.0 [T T T v ; |
So g b Y Y camera | I
T W | h y y WALET wrouuen | f |
i T i !
v I \ |
' H [\ | t !
02 i ' T i | ! .
ball 1 i R H | 1 onion
doolator i i i i] I
Sl || | tomato | | | | | toothpgste | | |
o 50 100 150 200 250 300 350 400 450 500
Question / Correction Iterations
= 're
9 i
g i
3 i
o9 i
< 1
c i
L i
Tos
2 i
2 4 o0,
L Lo -0--0--6-.. - -o-
© 0.7 o ., -0 00 =6:= @ --0---0=-O—-O" -e- -0
© QB0
o \o_,—&.v,&-'o Q&
=
Q
oo6—
(6]
s | | | | | | | | | J
0 5 10 15 20 25 30 35 40 45 50
Number of Learned Categories
35
@
@30
<]
2
o
%25
£
520
2
@ 15
H |
B 10
8
3
= 5
0
PSP P PR D OE SO R N SR N S N S S SV NSy EF NI S SR N
S PP EF PSP SE L PO E O F F T L FEFFF & P & & & & F P S
S TP FELE S E WS O SF LS \c®$pﬁ®q\@\@q@§ﬁ PLE & € PRSI S
z\\’g&‘ NG S &&\\p & ¢ £ & F & T Q&\@é\\p& @§\§ & c“&@o @&\\9 & &@‘

Figure 4.4: All the graphs are for the variational autoencoder model in the open-ended evaluation.
The evolution of the learning protocol accuracy over the first 500 interactions (top); The global
accuracy in terms of learned categories (middle); The number of instances that the model stored

for each category (bottom)

build upon our project and what it should analyze.

5.1 Research question

In this project, we aimed to answer the following
research question: Which autoencoder models per-
form best for learning and recognizing 3D objects
in open-ended domains?. We performed three types
of experiments using four different types of autoen-
coders integrated into the OrthographicNet system.
The first two experiments helped us determine the
optimal combination of parameters for each autoen-
coder. These combinations were tested in the last
experimental setup, where we found the answer to
the proposed research question. In this last evalu-
ation, the variational autoencoder performed best
regarding the generalization and overall accuracy,

second-best in regards to the number of learned
categories, and third-best in the speed of learning.
Thus the autoencoder model that performs best for
learning and recognizing 3D objects in open-ended
domains is the Variational Autoencoder. This
is expected because, unlike the other three models,
the VAE provides a probability distribution of the
latent space, which matches the data closer. Fur-
thermore, due to the Gaussian priors that it sam-
ples in the latent space, the model learns disentan-
gled factors, as pointed out by [41]. The rest of the
models are ranked as follows based on the results in
the open-ended evaluation: convolutional autoen-
coder, adversarial autoencoder and dense autoen-
coder.

14

5.2

While the VAE proved to be the most performant
model out of the four that we tested, its results fall
short of the ones obtained by H. Kasaei [5]. This
shows that further research is needed to bring the
autoencoders to the level of state of the art convo-
lutional networks such as VGG16 and MobileNet-
v2. These are pretrained networks developed over
a more extended period and were trained in Ima-
geNet, the most diverse image dataset.

On the other hand, our autoencoders are trained
on much smaller datasets, and due to time con-
straints, the fine-tuning is not performed at its
fullest potential.

We propose that further research look into train-
ing the models on larger datasets and look at ways
to improve the architecture of the models’s trough
fine-tuning. For example, other distributions, then
the Gaussian distribution, could be tested for the
sampling in both the variational autoencoder and
the adversarial autoencoder. Also, even larger la-
tent spaces could be tested and other pooling func-
tions for the creation of the feature vector in Or-
thographicNet.

As a final point, due to time constraints and
the global epidemic of COVID-19, real-time sys-
tem demonstrations were not possible for our sys-
tem. These experiments are fundamental to show
the real-world applications of our project on service
robots, and thus they should be tested in future re-
search.

Future research

References

[1] A. Andreopoulos and J. K. Tsotsos, “50 years of
object recognition: Directions forward,” Computer
vision and image understanding, vol. 117, no. §,
pp- 827-891, 2013.

[2] S. H. Kasaei, J. Sock, L. S. Lopes, A. M. Tomé,
and T.-K. Kim, “Perceiving, learning, and recog-
nizing 3d objects: An approach to cognitive ser-
vice robots,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[3] A.S.D. M. D. F. N. D.-R. Timothée Lesort, Vin-
cenzo Lomonaco, “Continual learning for robotics:
Definition, framework, learning strategies, op-
portunities and challenges,” Information Fusion,
vol. 58, pp. 52-68, 2020.

[4] S. H. Kasaei, A. M. Tomé, and L. S. Lopes, “Hier-
archical object representation for open-ended ob-
ject category learning and recognition,” in NIPS,
2016.

[5] S. H. Kasaei, “OrthographicNet: A deep learning
approach for 3D object recognition in open-ended
domains,” ArXiv, vol. abs/1902.03057, 2019.

[6] L. S. Lopes and A. Chauhan, “Open-ended cate-
gory learning for language acquisition,” Connec-
tion Science, vol. 20, pp. 277 — 297, 2008.

[7] J. Masci, U. Meier, D. C. Ciresan, and J. Schmid-
huber, “Stacked convolutional auto-encoders for
hierarchical feature extraction,” in ICANN, 2011.

[8] D. P. Kingma and M. Welling, “Auto-encoding
variational bayes,” CoRR, vol. abs/1312.6114,
2014.

9

J. Walker, C. Doersch, A. Gupta, and M. Hebert,
“An uncertain future: Forecasting from static im-
ages using variational autoencoders,” in ECCYV,
2016.

[10] A. Makhzani, J. Shlens, N. Jaitly, and I. J.
Goodfellow, “Adversarial autoencoders,” ArXiv,

vol. abs/1511.05644, 2015.

[11] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza,
B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio, “Generative adversarial networks,”

ArXiv, vol. abs/1406.2661, 2014.

[12] T. Ziemke, “Remembering how to behave: Recur-
rent neural networks for adaptive robot behavior.,”

1999.

[13] S. H. Kasaei, M. Oliveira, G. H. Lim, L. S.
Lopes, and A. M. Tomé, “Towards lifelong assistive
robotics: A tight coupling between object percep-
tion and manipulation,” Neurocomputing, vol. 291,

pp. 151-166, 2018.

S. Gidaris and N. Komodakis, “Dynamic few-
shot visual learning without forgetting,” 2018
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4367-4375, 2018.

(14]

[15] Z. Li and D. Hoiem, “Learning without forget-
ting,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 40, pp. 2935-2947, 2018.

S. H. Kasaei, L. F. S. Lopes, and A. M. Tomé,
“Local-LDA: Open-ended learning of latent topics
for 3D object recognition,” IEEE transactions on
pattern analysis and machine intelligence, 2019.

(16]

15

(17]

20]

(21]

(22]

23]

1. J. Goodfellow, M. Mirza, X. Da, A. C. Courville,
and Y. Bengio, “An empirical investigation of
catastrophic forgeting in gradient-based neural
networks,” CoRR, vol. abs/1312.6211, 2014.

M. McCloskey and N. J. Cohen, “Catastrophic in-
terference in connectionist networks: The sequen-
tial learning problem,” Psychology of Learning and
Motivation, vol. 24, pp. 109-165, 1989.

W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang,
and J.-B. Huang, “A closer look at few-shot clas-
sification,” ArXiv, vol. abs/1904.04232, 2019.

K. R. Thoérisson, J. Bieger, X. Li, and P. Wang,
“Cumulative learning,” in AGI, 2019.

D. W. Aha, D. F. Kibler, and M. K. Albert,
“Instance-based learning algorithms,” Machine
Learning, vol. 6, pp. 37-66, 1991.

G. H. D.E. Rumelhart and R. Williams, “Learn-
ing internal representations by error propagation,”
Parallel Distributed Processing, vol. 1, p. Founda-
tions, 1986.

D. Erhan, A. C. Courville, Y. Bengio, and P. Vin-
cent, “Why does unsupervised pre-training help
deep learning?,” J. Mach. Learn. Res., vol. 11,
pp. 625-660, 2010.

G. E. Hinton and R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Sci-
ence, vol. 313, pp. 504 — 507, 2006.

A. Shrestha and A. Mahmood, “Review of deep
learning algorithms and architectures,” IEEE Ac-
cess, vol. 7, pp. 53040-53065, 2019.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi,
“A survey of the recent architectures of deep con-
volutional neural networks,” Artificial Intelligence
Review, pp. 1 — 62, 2020.

A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional
neural networks,” in CACM, 2017.

A. Sinha, J. Bai, and K. Ramani, “Deep learn-
ing 3D shape surfaces using geometry images,” in
ECCYV, 2016.

A. S. Razavian, H. Azizpour, J. Sullivan, and
S. Carlsson, “CNN features off-the-shelf: An as-
tounding baseline for recognition,” 2014 IEEE
Conference on Computer Vision and Pattern
Recognition Workshops, pp. 512-519, 2014.

30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

39]

(40]

41]

P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol, “Extracting and composing robust fea-
tures with denoising autoencoders,” in ICML 08,
2008.

S. J. Pan and Q. Yang, “A survey on transfer learn-
ing,” IEEE Transactions on Knowledge and Data
Engineering, vol. 22, pp. 1345-1359, 2010.

D. Stathakis, “How many hidden layers and
nodes?,” International Journal of Remote Sensing,
vol. 30, pp. 2133 — 2147, 2009.

J. Lucas, G. Tucker, R. B. Grosse, and M. Norouzi,
“Understanding posterior collapse in generative la-
tent variable models,” in DGS@QICLR, 2019.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai,
R. Jézefowicz, and S. Bengio, “Generating sen-
tences from a continuous space,” in CoNLL, 2016.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang,
X. Tang, and J. Xiao, “3D shapenets: A deep
representation for volumetric shapes,” 2015 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1912-1920, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “ImageNet: A large-scale hierarchical
image database,” 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 248—
255, 2009.

S.-H. Cha, “Comprehensive survey on dis-
tance/similarity measures between probability
density functions,” 2007.

S. H. Kasaei, M. Oliveira, G. H. Lim, L. S. Lopes,
and A. M. Tomé, “Interactive open-ended learning
for 3D object recognition: An approach and exper-
iments,” Journal of Intelligent Robotic Systems,
vol. 80, pp. 537-553, 2015.

S. H. Kasaei, L. S. Lopes, and A. M. Tomé,
“Coping with context change in open-ended object
recognition without explicit context information,”
in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), IEEE, 2018.

K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale
hierarchical multi-view RGB-D object dataset,”
2011 IEEE International Conference on Robotics
and Automation, pp. 1817-1824, 2011.

I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria,
C. Blundell, S. Mohamed, and A. Lerchner, “Early
visual concept learning with unsupervised deep
learning,” ArXiv, vol. abs/1606.05579, 2016.

16

A Appendix

— 1
J‘, R {
> a) M, water-bottle A a ! .
o 1] .
go T kgt i 1 B
3 M TS A S A S [T Y
3 I~ e A e L - staplernt b o e 3l s R bty
< . IR ATTER §R S gy o [A v ! o
3 O glu-stibk " I T ! " garlic .00 it e ! i
[l Iy | .

g rar ! ! :{: ! ! ¥ | i :: o’ o keyboard | !
4 i | v] "
a } Lo [¥ ' " 1 |

N l ! v H | I

1 1 1 T 1 1

I orange ! ! H ! flashlight

| Come I I I i ¢ |
150 200 300 350 400 450 500

v
Z—

s
==l

Protocol Accuracy

|
|
i
i
i
| b camer:
|
i
i
i
i

500

0.4
iy H water oo]
! , b !
! I :
02 ‘
ball ! T onion
Cuhoulator i N i
. s X L1 | tomato | | | | | toothpgste | | |
o 50 100 150 200 250 300 350 400 450
Question / Correction Iterations
12

keyboard

Protocol Accuracy
5

Ry
dry-bat~=-"* .
o= | stapler
04 i .
N

K soda-can
] | ' | | | |

toothbrush
PCudde

) ! \ \
!

0 20 40 60 80 100 120 140 160 180

Question / Correction lterations

200

Figure A.1l: The evolution of the learning protocol over the first 500 interactions for the open-
ended evaluation. Dense autoencoder(top); Convolutional autoencoder(middle); Adversarial au-

toencoder(bottom)

17

°
T

o
T

°
T

Global Classification Accuracy
o
T

s | | | ! ! J

15
Number of Learned Categories

°
T

°

s b0 6. oo

-9--0-0-0--0--0-0-O-g._
o--e...

°
T

00000 0 0-C. g

Global Classification Accuracy
o
T

1 1 1 1 1 1 1 1 1 1 |
0 5 10 15 20 25 20 35 4 45 50 55
Number of Learned Categories

°

©
T

&
T

0. g6 Bunr O e Br-O-O=O =

©=0-0.-0~-0--6--0--0-0-.

© -0--0-.g

Global Classification Accuracy
s
T

0 5 10 15 20 25 30 35 40 45 50
Number of Learned Categories

Figure A.2: The evolution of global accuracy as a function of learned categories. Dense autoen-
coder(top); Convolutional autoencoder(middle); Adversarial autoencoder(bottom)

18

Number of Stored Instances

o

Rk &

Number of Stored Instances
R

40

s 8 B 8 8

Number of Stored Instances

» & & 2 & & S & © O F $ & 3 & S
E Q‘,\»@@f@ PR ‘i g L «"‘i S S
& & T & TN

S P 4 o o o @ B S © o fe @ g (86 o 0 (e (B @ @® (@© o
B B @ P 0 o o © @ o 8 0 o o o @ o (@ e o e @ (o
0 m\‘“@ e o o & oo o B\av““ « O 9 o @ P @‘!"0 o (9 @ M e ﬁ@w
o o i
w

N e P P DF S D SO S
S S LSS P E S
€ F LS E & & ¢
FSE N AR g St W <&
& & ¢ &

K

Figure A.3: The number of instances stored for each category. Dense autoencoder(top); Convolu-

tional autoencoder(middle); Adversarial autoencoder(bottom)

19

