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Abstract: Object recognition is a challenging task in unpredictable environments, where service
robots need to react fast, and cooperate with human-users. Lack of training data and limited use
of object information, such as only shape information, reduces the robustness of object recog-
nition algorithms. This study investigates the influences of shape information, color spaces, and
similarity measures in open-ended 3D object recognition. Towards this end, three experimen-
tal setups, color-only, shape-only, and color-shape, were evaluated in both offline and online
setups. Following the OrtohraphicNet construction, the experiments were conducted using two
deep learning networks, Mobilenet-v2, and VGG16 in combination with four parameters: ortho-
graphic image resolution, similarity distance functions, k-values (in a KNN algorithm), and three
color spaces. In the online evaluation, extensive experiments showed that the k-nearest neighbor
algorithm had a neglectable influence over the system’s performance. It was also observed that
the color information improves the performance over shape information alone, color-only RGB
obtaining the best result. The online evaluation showed a decrease in accuracy compared with the
offline results, predicting the lack of robustness of classical train-test experiments in open-ended
domains. The results’ hierarchy from offline followed in the online evaluation as well.

1 Introduction

For the past decades, significant advancements have
been made in the field of computer vision. State-
of-the-art algorithms are getting closer to mimic
human behavior, automating the biological vision
system. Computer vision deals with the follow-
ing tasks: scene reconstruction, object recognition,
image segmentation, 3D pose estimation, motion
tracking, object classification, and more. This pa-
per will solely focus on object recognition. One ap-
plication of such an algorithm can be evaluated in
service robots.

Compared with industrial robots that need to
make repetitive motions in standardized environ-
ments, service robots must make free motions in
various conditions [1]. They should interact with
humans in natural ways, go to specified places, be-
have in a human-like manner, perform manipula-
tion tasks, and recognize the surrounded environ-
ment [2]. Since the service robots need to operate
in unpredictable circumstances, it is not enough to

implement a system that successfully completes one
task (e.g., recognizing a limited amount of objects).
Considering the advancements in computer vision,
we can still see goal-oriented approaches that per-
form well only on specific tasks. The lack of ro-
bustness is on the basis of insufficient data and the
limitations of neural network algorithms.

It does not matter how big the training dataset
is, it is nearly impossible that the dataset repre-
sents the complexity of the real world [3]. A. Yuille
and C. Liu [3] discusses the limitations of current
Deep Nets (deep neural networks), arguing that for
many real-life scenarios, especially when the human
interaction is involved, to capture the world’s com-
plexity, the training has to be conducted on an ex-
ponentially large dataset. Therefore, this will imply
more computational power, time, and memory on
behalf of the system. The goal is to remove these
bottlenecks while achieving a robust working sys-
tem. There is no solution for all; nevertheless, im-
provements have been made in all directions. Open-
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ended object category learning is an advocated so-
lution for minimizing the memory overflow in con-
siderably large datasets.

In this paper, open-ended learning refers to con-
tinuous learning in dynamic environments. It gives
the machines the ability to learn new object cat-
egories that have not been seen before while in-
tegrating further information in the preexisted
knowledge. This approach increases the system’s
robustness by helping the robot quickly face un-
known situations, which brings it closer to human
behavior. The robot does not know in advance what
will be the unknown object categories or when they
will occur in the environment or what information
will be available to support the learning. This ap-
proach also facilitated the training process. The
system architect does not have to integrate all ob-
ject instances and does not have to worry that a
new object category means restarting the training
process. Apart from programming, the human plays
a teacher role for the robot, supporting the learning
process with constant feedback.

Aside from continuous learning, other types of
learning bring their advantages in computer vi-
sion. For example, transfer learning can transfer
the knowledge applicable to one task to solve dif-
ferent tasks. The main difference between continu-
ous learning and transfer learning is that the latter
only focuses on the current goals, not being con-
cerned about keeping the ability to solve previous
tasks [4]. One application of this type of learning
is easily seen in neural networks. Once a network
is trained on a task, to demonstrate the system’s
generalization power, the network weights are used
for future tasks in different settings. Another type
of learning is online learning, which incorporated
continuous learning. Online learning is suited for
situations where the action should be done imme-
diately, so the updates are done on a single data
point basis [4].

Open-ended learning in service robots represents
a vital tool for future developments that will al-
low the robot to adapt to new circumstances and
gain more experiences. We can expect the robots to
learn to recognize object categories and grasp affor-
dances seamlessly to facilitate the human-robot in-
teraction naturally. Hence, a long term perspective
with emphasis on open-ended domains is preferred
for service robots because it helps the robots to re-
act in a live environment as humans do.

Besides the learning mechanism, it is essential to
look at what features make an object unique and
easy to categorize. Humans have an incredible abil-
ity to remember thousands of objects. In doing this,
they create a visual map of the target object, re-
taining it as a whole and the unique features that
characterize it. This flexible representation allows
for recognizing familiar objects under various con-
ditions (e.g., texture, color, lighting, shape) [5].

The main research question of this study is:

Which combination of color spaces, deep shape
feature, similarity measures, and deep learning
architectures performs the best in an open-ended
3D object recognition task?

Towards this goal, this paper aims to analyze two
essential features of objects in object recognition
tasks: shape and color. For this, the first step is
to create a global object reference frame from the
given object using Global Orthographic Object De-
scriptor (GOOD) developed by Kasaei et al. [6].

In the second step, using the orthographic pro-
jection method to create the object’s views, we use
the projections as input for a convolutional neural
network and extract view-wise object representa-
tions. The result is then used for both learning and
recognition processes. In this project, we mainly
use an instance-based learning approach and a K-
nearest neighbor recognition to evaluate the object
representations. Since the object is represented as
a feature vector, we use different distance functions
to determine the similarity between the target ob-
ject and the other classes.

The performance is assessed through the accu-
racy metric calculated by averaging the number of
instances correctly classified.

2 Related work

The object recognition task can be divided into four
steps:

0. Object detection

1. Object representation

2. Object evaluation in the recognition module

3. Category classification
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The dataset used in this study have all the ob-
jects already segmented from the scene, so the first
step Object detection is not discussed. Henceforth,
no related work is provided for this topic. Cat-
egory classification is an essential step in object
recognition tasks; however, in this study, the prob-
lem is tackled using only two approaches similarity
measures and k-nearest neighbor algorithm. Both
are discussed in the next section. No other related
works about this topic are discussed.

2.1 Research on object representa-
tion

The way the object is represented is essential. The
approach can contain too much unnecessary infor-
mation that increases the noise or too little infor-
mation that does not benefit the architecture. In
real-life applications, an easy way to extract the rel-
evant information from a scene is crucial since a so-
phisticated approach is time-consuming and abol-
ishes the robot’s role. Han et al. [7] mentions three
classes of 3D point cloud object descriptors: local-
based descriptor, global-based descriptor, hybrid-
based descriptor. Local descriptors encode distinct
patches of the object in a piece-wise style. The
authors conduct a comparison among multiple de-
scriptors concluding that the two global descriptors
Ensemble of Shape Functions (ESF) [8] and View-
point Feature Histogram (VFH) [9] are suitable for
real-time object recognition, and provide a right
balance between accuracy and running efficiency. A
local descriptor, SHOTColor [10], also shows satis-
factory results, but the higher computational time
required can pose a disadvantage.

Finding the best compromise solution between
computation time and complexity, the Global Or-
thographic Object Representation (GOOD) [6][11]
is both efficient and descriptive. GOOD is a light-
weight object descriptor that creates the object rep-
resentation from a 3D point cloud. It performs a
principal component analysis on the point cloud ob-
ject and extracts the depth information. In a simi-
lar work, Kasaei et al. [12] investigates the impor-
tance of shape feature, color constancy, color spaces
for open-ended 3D category learning, adjusting the
GOOD descriptor by incorporating the color in-
formation. They conclude that the color informa-
tion, combined with the shape information, shows
a significant improvement over the shape feature

alone. They also investigates three color spaces,
RGB, YUV, and HSV, observing that the HSV
color space outperforms the other two. This work
represents a starting point and the inspiration for
this study. The mechanisms of the GOOD descrip-
tor is presented in the next section.

2.2 Research on features

The object representation should be descriptive
enough, to be able to recognize the same object
from multiple perspectives. This leads to the ques-
tion what is the relevant information that should
be encoded? We have already seen in Kasaei et al.
[12] that the color information with the shape in-
formation improves the results in object recogni-
tion tasks. Other studies have shown that image
classification has better results when only one fea-
ture, such as color, is used for classification [13]. S.
Gowda and C. Yuan [13] proposes a model, Color-
Net, that investigates this approach and shows the
state of the art results can be obtained with differ-
ent color spaces than RGB and smaller densenets.
Even though the results are satisfactory, the ap-
proach is not as close as possible to the human vi-
sual system, since it does not use all the information
of the object on the scene. Such models tend to re-
inforce biases towards a single feature and reduce
the model’s robustness in different environments.
A transfer learning approach is also excluded since
the performance drastically drops in different se-
tups. The bias problem is also discussed by Geirhos
et al. [14], where they observe a texture bias in the
CNNs trained on ImageNet dataset [15]. When the
CNN is presented with a cat shape but elephant
texture, the model wrongly classifies the image as
an elephant and not as a cat as humans do. Their
solution to improve the performance to overcome
unseen image distortions is to adapt the dataset
used by applying AdaIN style transfer [16].

Cognitive science shows that the most important
cue for human object recognition is shape [17], and
color, lighting, texture, orientation, and size are
used as secondary cues. Hence, the global shape
is the most used feature in object recognition ap-
plications, which draw many researchers’ attention
and motivated them to test the boundaries of this
hypothesis [18] [19].
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2.3 Research on convolutional neu-
ral networks

After the object representation frame is computed
based on the calculation of a set of features, the
obtained representation is sent to the object recog-
nition module. The recognition module consists of a
deep CNN. CNNs have been progressively used for
3D object recognition. However, the fixed number
of categories and the increased size of the train-
ing data represent limitations that make integrat-
ing a CNN in open-ended domain difficult. A way
to solve this problem could be to transfer the fea-
tures from a pre-trained CNN and then fine-tuning
to the target dataset [20]. This solution increases
the network’s robustness, but it still not enough
to operate in an online environment. H. Kasaei
[21] proposes, OrtographicNet, an online classifier
that, in combination with a pre-trained CNN, can
handle open-ended object category learning and
recognition. His approach starts by constructing
the unique reference frame of the object extract-
ing three orthographic projections. Each projection
is fed into CNN to obtain the view-wise features
that are merged into a global feature of the ob-
ject using an element-wise pooling function. Con-
cerning the CNNs, he analyzes the performance of
MobileNet-v2 [22], VGG16-fc1 [23], and ResNet50
[24]. In terms of CNN performance, MobileNet-v2
and ResNet50 perform similarly. VGG16-fc1 does
not master all the categories learned in 4 out of 10
experiments. This research extends the Ortograph-
icNet by analyzing the effect of the color informa-
tion on 3D object recognition.

3 Methods

In the following section, each of three modules that
complete the object recognition task is discussed in
the context of this study:

1. Object Representation

2. Object Recognition

3. Object Classification

3.1 Object representation

3.1.1 Object descriptor

This module consists of calculating a set of features
that give the mathematical notation for the recog-
nition module. The point cloud representation of an
object consists of a set of points pi : i = {1, ..., n}.
Each point has 3D coordinates [x,y,z] and RGB
information. The approach proposed by Kasaei et
al. [6] starts by constructing a global object refer-
ence frame (RF) for the object. Towards this goal,
they perform a principal component analysis on the
point cloud of the object and find the eigenvectors
of the object [v1, v2, v3]. By looking at the eigen-
vectors’ direction, we can conclude the X, Y, and
Z axes. Afterward, the views of the object are gen-
erated using the orthographic projection method.
They only look at the front, top, and right-side
views since the other three, rear, bottom, and right-
side are their mirrors’. The projections are divided
into n × n bins, which are used to compute a nor-
malized distribution matrix by counting how many
points fall within each bin. By stringing the ma-
trix’s rows together, we obtain a histogram that is
fed into the deep learning architecture. Each pro-
jection is feed individually.

The projection with the maximum information is
considered to have the highest entropy. For study-
ing the effect of color spaces on object recognition,
only the view with the highest entropy is chosen.
Figure 3.1 shows the three projections of a vase. It
can be observed that the front-view contains the

3D Point Cloud

Front-view

Top-view

Side-view

RGB

Figure 3.1: The three orthographic projections of a sam-
ple point cloud of a vase. The view with the highest en-
tropy (front-view) is presented in the RGB color space.
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most information, which means that it is presented
in the color space. As an example, we can see the
RGB image of the front-view.

3.1.2 Color spaces

In many neural network applications for image clas-
sification, the models do not perform any color
transformation to the image and instead only use
the RGB image directly for the classification. The
datasets’ nature mostly influences this bias, since
most of them consist of color images represented
in RGB format. Color spaces are an essential tool
for image classification, providing the medium to
describe colors as numbers. We convert the color
information into three different color spaces: RGB,
YUV, HSV.

RGB is the most popular color space consisting of
three channels, R (red), G (green), B (blue). Each
channel has a range of values from 0 to 255, encoded
in 8-bit each.

The second color space that is discussed in this
study is YUV. YUV is mainly used for television
transmission. It has one channel for luminance (Y,
which refers to brightness) and two chrominance
channels. The V channel takes values from 0 to 255,
while the U and V channels range from -128 to
+127 (they determine the color itself).

Another color space that is analyzed in this pa-
per is HSV. HSV stands for hue, saturation, and
value. It encodes the color (hue) as a combination
of saturation and brightness (value). The S and V
channels have a range of values from 0 to 255, while
the H channel extends to 350. This method of rep-
resenting colors is closer to how the human eyes see
and perceive the colors.

3.2 Recognition module

Once the representation of the object is computed,
the histograms are fed into the CNN. In this study,
the performance of two states of the art architec-
tures, MobileNet-v2 [22] and VGG16 [23], is evalu-
ated. The configurations are kept as suggested in
the original research, and both architectures are
pre-trained on the ImageNet dataset [15]. Besides
being two excellent vision model architectures, they
also showed remarkable results in the research by
H. Kasaei [21]. The pre-trained weights and the pre-
trained feature layers are used in OrtographicNet to

perform instance-based learning. Due to this trans-
fer of weights and feature layers to perform a new
type of task, we can consider this as an instance of
transfer learning.

Following the OrtographicNet structure (Figure
3.2), the three feature vectors corresponding to the
three views are combined using a pooling function.
As a result of the pooling function, the feature vec-
tor is both scale and rotation invariant. Henceforth,
we have chosen two widely used pooling functions,
Max Pooling and Average Pooling. One value in the
final feature vector is calculated following the for-
mula 3.1 for Max pooling, and formula 3.2 for Av-
erage pooling respectively, where the i represents
the position in the vector. In both equations, the
notation stands for:

• fi: corresponding feature vector for the front-
view on one

• ti: corresponding feature vector for the top-
view

• si: corresponding feature vector for the side-
view

Fi = max(fi, ti, si) (3.1)

Fi = avg(fi, ti, si) (3.2)

where Fi is the final feature vector after applying
the pooling function.

3.3 Object classification

In this module, the target object is finally rec-
ognized by comparing its feature representation
against all known objects’ descriptions in the per-
ceptual memory. The output of the object recogni-
tion module influences the learning as well as recog-
nition directly. For the first part of the study, we
look at the influence of the similarity measures on
accuracy performance. Since the given object rep-
resentation represents a feature vector, the dissim-
ilarity between the resulted feature vector and the
learned instances can be calculated using different
distance functions. In this case, following the ap-
proach used by Kasaei et al. [12], and the insight
survey provided by S. Cha [25], we looked at the
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Figure 3.2: OrtographicNet pipeline where three orthographic representations are individually fed into the deep
learning architecture. The final global representation of a given object is calculated by performing element-wise
pooling on the three feature vectors representative for each view. The final representation is used in the classification
module, the final stage in the object categorization task.

following distance functions: KLDivergance, Sym-
metricKL, Motyka, Divergence, Euclidean, Man-
hattan, Intersection, Cosine, Dice, Bhattacharyya,
Sorensen, Canberra, Pearson, Neyman, Gower,
and ChiSquared. For the mathematical equations,
we refer the reader to S. Cha [25].

The final step in the classification process is to
determine the category of the object. We can look
at the shortest distance and conclude the category
or use an additional classification algorithm to pos-
sibly reduce noise sensitivity. The proposed algo-
rithm is the k-nearest neighbor (KNN). It assumes
that similar objects exist in close proximity to each
other. The distances from the given object to all the
other instances are already calculated using the dis-
tance functions, so the remaining part is to judge
the k closest categories. This means that for a k-
value of 3, we look at the first three closest in-
stances. By majority voting, the best category is
decided.

3.4 Experiments

Two types of experiments are performed to evalu-
ate the proposed methods: offline evaluation, and
online evaluation.

3.4.1 Offline evaluation

Offline evaluation consists of two stages. In both
stages, the evaluation is carried using the Restau-
rant RGB-D Object Dataset, representing house-
hold objects, Figure 3.3. It consists of 305 instances
distributed over ten classes. Even though it is a
small dataset, it provides a significant intra-class

variation suitable for performing exhaustive sets of
experiments.

The evaluation is conducted on a 10-fold cross-
validation approach because it offers less biased
performance. It reduces the variance by averaging
over ten different partitions. This advantage is de-
sired in small datasets. The cross-validation algo-
rithm implies that the dataset is divided into ten
equal subsets. In one iteration, one subset (fold) is
kept for the test phase, and all the remaining data
is used for training. We perform ten iterations, one
for each fold. The value 10 for the cross-validation
is considered a standard throughout the literature.

In the first stage, for each deep learning archi-
tecture, MobileNet-v2 and VGG16, we determined
the top 5 best configurations of orthographic image
resolution, pooling function, and distance function.
Hence, we perform 288 experiments for each CNN,
where we took into consideration 9 orthographic
image resolutions increasing by 25 from 100 × 100
to 300×300, two pooling function, max pooling and
average pooling (see Section 3.2) , and 16 distance
functions discussed in Section 3.3. The best config-

Figure 3.3: The 10 classes of Restaurant RGB-D Object
Dataset developed by Kasaei et al. [26]
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urations provide a good balance among recognition
performance, and computation time.

Taking the five best configurations from the pre-
vious stage, we continue testing on the KNN algo-
rithm in the second stage. We take into account five
k values: 1, 3, 5, 7, 9. We only look at odd values
smaller than the number of categories in order to
avoid the chance of a draw. To investigate the ef-
fect of color spaces, we perform 7 experiments for
each configuration: color RGB + shape, color HSV
+ shape, color YUV + shape, color RGB, color
HSV, color YUV, and shape. Color RGB means
that we only look at the orthographic image repre-
sentations with the highest entropy that integrates
the color information. The same applies to other
color spaces. In addition, the combination color +
shape, means that the evaluation is conducted on 4
representations. The three orthographic image rep-
resentations for shape and the new representation
for color.

On important observation is that we take the
view with the highest entropy for color-only exper-
iments, so only one representation is fed into the
deep learning architecture. Hence, the pooling func-
tion is not necessary, and for those experiments, the
pooling function is omitted.

The evaluation metric for these stages is a stan-
dardized object recognition accuracy calculated as
follows:

accuracy =
#correctly predicted categories

total target categories
(3.3)

Due to system constraints, it was beneficial for
this study to first asses the effect of distance func-
tions and then the effect of KNN algorithm together
with color spaces. Otherwise, it would have implied
to perform 10,080 experiments for each CNN, in
order to exhaust all possible combinations of or-
thographic image resolution × pooling function ×
distance function × k-value for KNN × color space
configurations.

3.4.2 Online evaluation

The dataset used for this evaluation is the Wash-
ington RGB-D dataset. It consists of 250,000 views
from 300 household objects, organized into 51 cat-
egories. (Figure 3.4)

Online learning is not a task easy to achieve
using an offline evaluation that follows the clas-

Figure 3.4: Example objects from the Washington RGB-
D Object Dataset developed by Lai et al. [27]

sical Train-Test methodology. Nevertheless, online
learning can be quickly evaluated using an open-
ended protocol proposed by Kasaei et al. [26]. The
teaching protocol simulates the interaction of the
robot with a real environment. It integrates both
the learning and recognition phases. It also has a
Train and Test methodology, but it is a Train-then-
Test scheme compared with the offline evaluation.
Here, the protocol determines which instances are
used for the Train phase and which are used for the
Test phase by evaluating the system’s performance.
This scheme can be followed by a human user or a
simulated user. In this study, we adapt the sim-
ulated user strategy. The simulated user interacts
with the system using one of the three actions [28]:

• Teach: used for introducing a new object cat-
egory

• Ask: used for asking the system what the cat-
egory of a given object view is

• Correct: used for providing the corrective
feedback in case of misclassification

The training process starts with the simulated
user presenting three randomly selected object
views of a category to the system. The system cre-
ates a model of that class using the three examples.
Afterward, the user presents a never-seen-before
object view to the system and checks whether it had
successfully learned the category. When it makes a
misclassification, the simulated user provides feed-
back with the correct category. Hence, the system
adjusts its category model using the mistaken in-
stance. When the recognition performance is higher
than a specific threshold, τ , the simulated user
introduces a new category. The threshold in this
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study was set to 67%, following the setup form the
literature [21].

This process goes until the system manages to
learn all categories, moment when the training pro-
cess stops due to lack of data. This means that the
system can learn more categories, but it is no longer
possible to continue the protocol. The process can
also halt when the system, cannot meet the proto-
col threshold τ . The latter is evaluated after a fixed
number of iterations. Following the literature [21],
we choose the maximum number of iterations to be
100.

Since the order of categories presented is ran-
dom, we conducted ten experiments for each con-
figuration and analyzed the averaged result. In this
experiments, we investigate the influence of color
spaces and test whether the offline results perform
similarly in an open-ended learning domain.

In evaluating the open-ended domain’s perfor-
mance does not suffice to only look at the stan-
dardized accuracy. In this case, M. Oliveira et al.
[29] introduces three new metrics:

• NLC: The number of learned categories (in-
dicator for how much the system is capable of
learning)

• AIC: Average number of stored in-
stances/category (indicator for the necessary
resources for learning)

• QCI: The number of question/correction ex-
ercises (indicator of how long it took to learn)

• Accuracy: Average accuracy (an indication of
how well the system learns)

4 Results and discussion

This section presents the results obtained for the
Offline and Online evaluation and also discusses
what they mean in the context of this project.

4.1 Offline evaluation

The results corresponding to the first stage of the
offline evaluation are presented in Table 4.1, and
Table 4.2. We can observe that the best results are
obtained by MobileNet-v2 with 0.9455 accuracies.
In these cases, we cannot observe a conclusive im-
provement over the number of bins since the highest

accuracy was obtained with various configurations.
On the other hand, VGG16 shows better results
with a lower orthographic image resolution. With
a higher resolution of the orthographic images, the
representation provides more details about the ob-
ject, but it also increases computation time and
noise sensitivity. We can observe that the max pool-
ing function showed good performances in more
configurations than the average pooling function.
However, we can not formulate a concrete con-
clusion about the effect of the pooling functions,
and weather max pooling is outperforming average
pooling.

Looking at the distance functions, we can observe
that distance functions with the same number of
bins (i.e., 125x125 - Sorensen and 125x125 - Mo-
tyka) have the same average class accuracy. Taking
each CNN aside, and having another look at all
the results, it was visible that some distance func-
tions, when tested on the same number of bins and
the same pooling function yield the same accuracy
every time. For MobileNet-v2, this insight is sup-
ported by Sorensen and Motyka, while for VGG16,
we have the effect followed by Cosine, Gower, Eu-
clidean, and Manhattan. For simplicity, we decid to
only look at the configuration with the best compu-
tational time in such cases. Between Sorensen and
Motyka for MobileNet-v2, Motyka took 332 seconds
to complete a full experimnet, while Sorensen took
333 seconds. Regarding VGG16, the time difference

Table 4.1: Top 5 best accuracy results against four sys-
tem parameters for the MobileNet-v2 architecture. The
results chosen or the next stage of the offline evaluation
are highhanded by blue

MobileNet-v2
# of bins Pooling function Distance function Accuracy

250 Avg Canberra 0.9544
100 Max SymmetricKL 0.9544
125 Max Sorensen 0.9544
125 Max Motyka 0.9544
200 Max Sorensen 0.9544

Table 4.2: Top 5 best accuracy results against four sys-
tem parameters for the VGG16 architecture. The results
chosen or the next stage of the offline evaluation are
highhanded by blue

VGG16
# of bins Pooling function Distance function Accuracy

125 Max Cosien 0.9349
125 Max Gower 0.9349
125 Max Euclidean 0.9349
125 Max Manhattan 0.9349
300 Max Canberra 0.916
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between the four configurations is little, but follow-
ing the same reasoning, the best time was Manhat-
tan with 232 seconds. One important observation is
that the two CNNs cannot be compared in terms of
computation time due to system constraints. The
results used for the second stage in offline evalu-
ation are highlighted with blue in Table 4.1, and
Table 4.2.

Proceeding to the second stage of the offline ex-
periments, we look at the influence of the k-nearest
neighbor algorithm on seven types of experiments,
which investigates the influence of color spaces on
the object recognition task.
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Figure 4.1: Summary of offline evaluation: the graphs
show the accuracy versus k-values of KNN for color-only
experiments in all color spaces. Each plot presents the
performance of the six best system’s configurations
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Figure 4.2: Summary of offline evaluation: the graphs
show the accuracy versus k-values of KNN for all shape
experiments. Each plot presents the performance of the
six best system’s configurations

Looking at the k-nearest neighbor algorithm’s
influence, we cannot conclude a definite improve-
ment in the correctly classified classes over the five
values of k. We can observe that as the k-value
increases, the accuracy decreases, Figure 4.1 and
Figure 4.2. In most of the combinations, at a k-
value of 5, the trend is downwards, and at a k-value
of 9, the lowest accuracy is observed (e.g., color-
shape experiments). The high values of k indicate
an unstable performance, as many instances influ-
ence the final decision in the classification module.
Similar objects, e.g., red apple with red tomato or
spoon with a fork, are misclassified easily. While
in datasets with many classes, it could show better
performances, in smaller datasets, it is not favor-
able to work with high values of k. What is left
is to investigate weather from k = 1 to k = 3 is
a significant improvement. As we can see, in some
combinations, it is a slight improvement (e.g. color-
shape HSV in Figure 4.2. At first glance, the box-
plots do not show a significant difference between
the accuracies of k = 1 and k = 3, Figure 4.3.

To answer the question, Is there a significant
difference in different k-values on accuracy?, we
perform a statistical test. Since the normality as-
sumption for the data is not meet, we perform a
nonparametric statistical test, Kruskal-Wallis test.
The results of the test show a p-value of 0.107 >
0.05. This means that there cannot be detected any
significant differences in the accuracy between the
k-values. Taking this result into consideration, for
the online experiments, we do not be using the k-
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Figure 4.3: The boxplots represent the distribution of
obtained accuracies for each value of k
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nearest neighbor algorithm and only assess the clos-
est class using only the distance functions.

Looking at the performance of color spaces
on system performance, we can observe that all
six configurations of the number of bins × deep
learning architecture × pooling function × dis-
tance function performed better in the RGB color
space, Figure 4.1 top-left, and Figure 4.2 top-
right. 100-MobileNetv2-SymmetricKL obtains the
best result with 0.9707 accuracy. For the YUV
color space, the best result is obtained by 200-
MobileNetv2-Sorensen with 0.9511 accuracy. For
the HSV color space, the best result is obtained
by 250-MobileNetv2-Canberra with 0.9414 accu-
racy. For the color-shape experiments, in all three
color spaces, the combination 250-MobileNetv2-
Avg-Canberra obtains the best results, Figure 4.2.
The accuracy in the RGB color space is 0.9674, in
YUV color space is 0.9642, and for the HSV color
space is 0.9479.

The combination of color and shape yields bet-
ter results than shape and color alone. While for
color-only experiments, we can observe that a few
spikes are exceeding 0.95 (Figure 4.1), we also have
many results bellow 0.9 (color-only YUV and color-
only HSV). In contrast, the color-shape experi-
ments have only one value lower than 0.9, in the
HSV color space for a k-value of 9 and combination
200-MobileNetv2-Sorensen.

Out of all three color spaces, the RGB color
space results in a better performance for both color-
only experiments and color-shape experiments. The
shape-only experiments show the worst results.
However, the lowest result is reported with the com-
bination 325-VGG16-Max-Canberra, in the YUV
color space, color-only experiment, where all five
results are bellow 0.9 (Figure 4.1 top-left). This
can be influenced by the noise sensitivity of a size-
able orthographic image resolution. The combina-
tion 125-VGG16-Max-Manhattan determines the

Table 4.3: Summary of final results of offline evaluation.
Each of the seven configurations obtained the highest
score in the corresponding experiment

Experiment
Configuration

# bins Architecture Pooling function Distance function
Color-only RGB 100 MobileNet-v2 - SymmetricKL
Color-only YUV 200 MobileNet-v2 - Sorensen
Color-only HSV 250 MobileNet-v2 - Canberra

Color-Shape RGB 250 MobileNet-v2 Avearge Canberra
Color-Shape YUV 250 MobileNet-v2 Avearge Canberra
Color-Shape HSV 250 MobileNet-v2 Avearge Canberra

Shape-only 125 VGG16 Max Manhattan

Accuracy: 93.81% (Shape-only: 125-VGG16-Max-Manhattan)
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Figure 4.4: Confusion matrix of the best configuration
in the shape-only experiments

best result for the shape-only experiments with an
accuracy of 0.9381.

Taking the best results for each type of experi-
ment presented in Table 4.3, we look at their con-
fusion matrix to evaluate the misclassified classes
and discuss the possible reasons for that (all confu-
sion matrices are presented in Appendix A). Figure
4.4 represents the confusion matrix for the best re-
sult of shape-only experiments. Since the results for
this category were the lowest, with this confusion
matrix, we can discuss more conflicts among the
categories. We can observe that the misclassifica-
tions mainly occur among classes that look alike.
In Figure 4.5, we can observe the similarities be-
tween the spoon, fork, and knife classes. It is easy
to observe that in all combinations, the classes pre-
viously mentioned are continuously mixed up. The
system is even more sensitive in the color-shape
combinations.

Even though the shape information should dis-
tinguish the object at a detailed level, since the
color is very similar, the results show the opposite
effect. In the shape-only experiments, we can also
observe that the mug is misclassified as a teapot

Figure 4.5: One sample from class spoon(left),
fork(center), knife(right) [26]. The image aims to
underline the similarities among the three categories
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and vice versa (Figure 4.4). This underlines the
shape sensitivity for objects that have a similar sil-
houette.

4.2 Online evaluation

All results represent the average of 10 experiments
(together with standard deviation) for each of the
color-only, color-shape, and shape-only configura-
tions. The overview of the performances is pre-
sented in Table 4.4. At first glance, we can ob-
serve that the RGB color space performed the best
in both color-only and color-shape experiments,
achieving an accuracy of 0.84 in color-only and 0.78
in color-shape (Table 4.4, blue rows). Looking at
the table, it can also be observed that all color
spaces show improvement to the shape information.
Shape-only experiments perform the worst in all
four metrics. While all six color configurations man-
age to learn all 51 categories and stop prematurely
due to lack of data, the shape-only configuration
succeed in learning all 51 categories in only 2 out
of 10 experiments (Table 4.4, second column). Re-
garding the YUV and HSV color spaces, the latter
perform better in color-shape experiments, while
the former perform very similarly in both types of
experiments. The similarities can be observed in
Figure 4.6, where the averaged accuracy results are
represented in boxplots. This type of plot is rep-
resentative of analyzing the significant differences
among the results by showing the minimum, first
quartile, median, third quartile, and maximum per-
formances. While color-only RGB and shape-only
have very distinctive results, the other combina-
tions have the distribution around the same results.

Overall, we can observe that the hierarchy from
the offline results is followed in the online evalua-
tion. It is worth noticing that the system perfor-
mance dropped in the online experiments. While
in offline conditions, all configurations successfully

Table 4.4: Summary of online evaluation of all ap-
proaches. The results represent the average of 10 tests.
The best result for each type of experiment color-only,
color-shape, and shape-only is highlighted with blue

Experiment NLC AIC QCI Accuracy
Color-only RGB 51 7.11±0.22 1329.2±3.42 0.84±0.008
Color-only YUV 51 9.09±0.42 1374.4±39.44 0.77±0.01
Color-only HSV 51 10.77±0.84 1516.4±77.21 0.74±0.01

Color-Shape RGB 51 8.7±0.6 1357.2±36.45 0.78±0.01
Color-Shape YUV 51 9.1±0.62 1367.4±25.83 0.77±0.01
Color-Shape HSV 51 9.24±0.46 1389.4±30.44 0.76±0.01

Shape-only 37.2±11.4 14.194±42.02 1345.2±635.87 0.67±0.01
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Figure 4.6: Average accuracy plotted as boxplot distri-
bution, for each of the seven experiments. The accuracy
is a measurement of how well the system learns

score over 90% accuracy, none of the conditions
manage to reach such high performance in the cur-
rent experiments. This observation shows a lack of
robustness on the side of offline implementations
and standard Train-Test methodology for open-
ended domains.

Looking further through results, the number of
question/correction exercises is similar for all con-
figurations expect color-only HSV, which scores the
highest QCI (Table 4.4 fourth column, third row).

Looking at the number of stored in-
stances/category, it is noticeable that the smaller
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Figure 4.7: Average number of instances necessary per
category(AIC) plotted as boxplot distribution, for each
of the seven experiments. The number of instances is a
measurement of the amount of necessary resources for
learning
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Figure 4.8: The graph shows the number of instances stored in the models of all the categories in three system
configurations: Color-only RGB, Color-only YUV, and Color-only HSV. The categories in the end seem to be
presented fewer times, which means that they have also been testes less. In all three configurations, the system
managed to successfully learn all 51 categories
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Figure 4.9: The graph shows the number of instances stored in the models of all the categories in four system
configurations: Shape-only, Color-Shape RGB, Color-Shape YUV, and Color-Shape HSV. The categories in the
end seem to be presented fewer times, which means that they have also been testes less. Out of all experiments,
the shape-only model succeeded in learning only 22 categories. All the other three models successfully learned all
51 categories

the AIC, the higher the accuracy. In Figure 4.7, we
look at the averaged number of instances needed
for learning in all six configurations. Color-only
RGB needs an average of 7.11 instances/category
while the shape-only uses twice as much (Table
4.4, the third column). The remaining five config-
urations need, on average, 9 instances/categories
for learning.

Figure 4.8 and Figure 4.9 represent the average
number of needed instances on category. Since the
order of the categories is randomly chosen, the clas-
sifier’s performance is negatively influenced by sim-
ilar objects presented one after another. For exam-
ple, a red apple presented after a red ball can mis-
lead the system in deciding that both are from the
same category. In contrast, a red ball showed af-
ter a yellow banana is unlikely to be misclassified
as part of the same class. In Figure 4.9, we cannot
observe a definite pattern that reflects the sensitiv-
ity to one shape. One notable observation is that
only 22 categories were commonly presented among
the 10 experiments in the shape-only configuration.
Hence, even though the average number of learned
categories is 37, as reported in Table 4.4, only 22
categories were able to be presented here.

Since the configuration is not the same for all
seven experiments, we cannot conclude an evident
influence of color-spaces, and only the influence of
color-spaces at an discrete level. The comparison is

conducted between the offline evaluation and the
online evaluation but not among themselves. How-
ever, it can be noticed that the configuration 250-
MobileNetv2-Avg-Canberra showed good results in
four out of seven online configurations. A definite
improvement can be observed for the HSV color
spaces, and that the shape information is an im-
provement to the recognition module. It is interest-
ing to observe that the performance of color space
alone does not match the configuration with the
shape information. For example, color-only HSV
needed 21 instances for the ”lime” category, while
color-shape HSV needed only 9, Figure 4.9.

5 Conclusion

5.1 Research question

This study aimed to answer the following research
question: Which combination of similarity mea-
sures, color spaces, shape information, and deep
learning architectures performs the best in an open-
ended 3D object recognition task?

For deep learning architectures, we analyzed
the performance of two state-of-the-art CNNs,
MobileNet-v2, and VGG16. Overall, MobileNet-v2
showed better results in both offline and online
evaluations, confirming the results of H. Kasaei
[21]. Following the result from the offline exper-
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iments, the average pooling function showed the
highest accuracies for color-shape experiments.

Concerning the similarity measure, we looked at
the impact of two approaches, distance functions,
and k-nearest neighbor algorithm. Conducting the
second stage of offline experiments, the k-nearest
neighbor algorithm did not significantly improve
the system’s performance over the distance func-
tions alone. However, it is worth investigating the
effect of this classification algorithm on more exten-
sive datasets with more than 10 classes. From the
16 distance functions evaluated in the offline sce-
nario, the final results showed that SymmetricKL,
Canberra, and Sorensen showed the best perfor-
mance for the MobileNet-v2. At the same time,
Manhattan was suited better for VGG16 architec-
ture.

The three color spaces that we evaluated in this
study are RGB, YUV, HSV. RGB color space out-
performed the other two in both offline and on-
line evaluations. The YUV color space followed in
second place, and in the last place was HSV color
space. YUV and HSV color spaces, in combination
with the shape information, showed better results
than color or shape information alone.

However, the RGB color space obtained a higher
accuracy in the color-only configuration. The train-
ing data could influence the bias towards the RGB
color space. MobileNet-v2 was pre-trained on the
ImageNet dataset, which could have influenced the
recognition module to have an easier time classify-
ing RGB images. Conclusively, the experiments us-
ing only the global shape information (shape-only)
revealed that only the object’s figure is not enough
to master an object classification task, especially in
the open-ended domain.

5.2 Further work

When deciding upon the object representation,
the chosen method can change the system’s per-
formance decidedly. Naturally, to mimic the hu-
man vision system, we tend to aim to integrate
or extract as many objects features as possible.
(e.g., shape, color, texture, etc.). As we discussed
in section 2, global shape information is consid-
ered to embody enough characteristics of the tar-
get object. Hence, other features are ignored as a
compromise for a faster approach [30]. However,
we showed that the shape information alone per-

formed the worst among the seven configurations of
color-only, color-shape, and shape-only. This study
showed that color spaces are already an improve-
ment to methodological shape-only experiments.
Further research should investigate the importance
of texture information.

One approach is to apply a texture filter over
the original image, such as Gabor Filters, that are
widely used for texture analysis, and extract the
texture information that follows to be bind or in-
tegrated into the object representation before be-
ing sent to the recognition module. When using
deep learning architectures, they are trained to ex-
tract such features automatically. If not trained
on texture-rich datasets, the CNNs does not look
for texture specifically. Hence, for investigating the
texture influence, a richer dataset is needed.

In Section 4.1, we mentioned that some distance
functions when tested on the same number of bins,
and the same pooling function yielded the same
accuracy every time. Since the distance function’s
formula is different, it is worth discovering what
parameter of a combination of parameters con-
cluded this effect. It is also interesting to investi-
gate whether such parameters cancel the effect and
minimize distance function performance in precise
evaluations.

Regarding the RGB color space, one view was
enough, while for the other color spaces, color-
shape showed better results. Since both deep learn-
ing architectures were pre-trained on the ImageNet
dataset, it can underline a slight bias towards RGB
color space. Hence, it is worth investigating if other
CNNs pre-trained on ImageNet dataset show the
same results or if CNNs pre-trained on other color
spaces show different performances. In instance
based learning approaches, the HSV outperformed
the RGB color space. Therefore, when correctly
used HSV color space from the training stage, the
system’s performance increases.

The final assessment of our results should be de-
termined in real-time system demonstrations. In
such experiments, we can immediately witness the
system’s actual flaws and understand what can be
improved. Real-time system evaluations are vital in
implementing the proposed system in service robots
for a 3D object classification task. Consequently,
these experiments should be performed as further
research.
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and T.-K. Kim, “Perceiving, learning, and recog-
nizing 3D objects: An approach to cognitive ser-
vice robots,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

15



A Appendix

These are the confusion matrices for each system configuration described in Table 4.3. The first column
represents the color-only experiments while the second column represents the color-shape experiments.
On the fourth row there is the shape-only experiment.

Accuracy: 97.07% (Color-only RGB: 100-MobileNetv2-SymmetricKL)
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Accuracy: 96.74% (Color-Shape RGB: 250-MobileNetv2-Avg-Caneberra)
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Accuracy: 95.11% (Color-only YUV: 200-MobileNetv2-Sorensen)
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Accuracy: 96.42% (Color-Shape YUV: 250-MobileNet2v-Avg-Canberra)
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Accuracy: 94.14% (Color-only HSV: 250-MobileNetv2-Canberra)
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Accuracy: 94.79% (Color-Shape HSV: 250-MobileNetv2-Avg-Canberra)
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Accuracy: 93.81% (Shape-only: 125-VGG16-Max-Manhattan)
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